Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 
 
 16
 17#include "internal.h"
 18
 19static void perf_output_wakeup(struct perf_output_handle *handle)
 20{
 21	atomic_set(&handle->rb->poll, POLL_IN);
 22
 23	handle->event->pending_wakeup = 1;
 24	irq_work_queue(&handle->event->pending);
 25}
 26
 27/*
 28 * We need to ensure a later event_id doesn't publish a head when a former
 29 * event isn't done writing. However since we need to deal with NMIs we
 30 * cannot fully serialize things.
 31 *
 32 * We only publish the head (and generate a wakeup) when the outer-most
 33 * event completes.
 34 */
 35static void perf_output_get_handle(struct perf_output_handle *handle)
 36{
 37	struct ring_buffer *rb = handle->rb;
 38
 39	preempt_disable();
 40	local_inc(&rb->nest);
 41	handle->wakeup = local_read(&rb->wakeup);
 42}
 43
 44static void perf_output_put_handle(struct perf_output_handle *handle)
 45{
 46	struct ring_buffer *rb = handle->rb;
 47	unsigned long head;
 48
 49again:
 50	head = local_read(&rb->head);
 51
 52	/*
 53	 * IRQ/NMI can happen here, which means we can miss a head update.
 54	 */
 55
 56	if (!local_dec_and_test(&rb->nest))
 57		goto out;
 58
 59	/*
 60	 * Since the mmap() consumer (userspace) can run on a different CPU:
 61	 *
 62	 *   kernel				user
 63	 *
 64	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 65	 *			(A)		smp_rmb()	(C)
 66	 *	STORE $data			LOAD $data
 67	 *	smp_wmb()	(B)		smp_mb()	(D)
 68	 *	STORE ->data_head		STORE ->data_tail
 69	 *   }
 70	 *
 71	 * Where A pairs with D, and B pairs with C.
 72	 *
 73	 * In our case (A) is a control dependency that separates the load of
 74	 * the ->data_tail and the stores of $data. In case ->data_tail
 75	 * indicates there is no room in the buffer to store $data we do not.
 76	 *
 77	 * D needs to be a full barrier since it separates the data READ
 78	 * from the tail WRITE.
 79	 *
 80	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 81	 * an RMB is sufficient since it separates two READs.
 82	 *
 83	 * See perf_output_begin().
 84	 */
 85	smp_wmb(); /* B, matches C */
 86	rb->user_page->data_head = head;
 87
 88	/*
 89	 * Now check if we missed an update -- rely on previous implied
 90	 * compiler barriers to force a re-read.
 91	 */
 92	if (unlikely(head != local_read(&rb->head))) {
 93		local_inc(&rb->nest);
 94		goto again;
 95	}
 96
 97	if (handle->wakeup != local_read(&rb->wakeup))
 98		perf_output_wakeup(handle);
 99
100out:
101	preempt_enable();
102}
103
104int perf_output_begin(struct perf_output_handle *handle,
105		      struct perf_event *event, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
106{
107	struct ring_buffer *rb;
108	unsigned long tail, offset, head;
109	int have_lost, page_shift;
110	struct {
111		struct perf_event_header header;
112		u64			 id;
113		u64			 lost;
114	} lost_event;
115
116	rcu_read_lock();
117	/*
118	 * For inherited events we send all the output towards the parent.
119	 */
120	if (event->parent)
121		event = event->parent;
122
123	rb = rcu_dereference(event->rb);
124	if (unlikely(!rb))
125		goto out;
126
127	if (unlikely(!rb->nr_pages))
 
 
128		goto out;
 
129
130	handle->rb    = rb;
131	handle->event = event;
132
133	have_lost = local_read(&rb->lost);
134	if (unlikely(have_lost)) {
135		size += sizeof(lost_event);
136		if (event->attr.sample_id_all)
137			size += event->id_header_size;
138	}
139
140	perf_output_get_handle(handle);
141
142	do {
143		tail = ACCESS_ONCE(rb->user_page->data_tail);
144		offset = head = local_read(&rb->head);
145		if (!rb->overwrite &&
146		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147			goto fail;
 
 
 
148
149		/*
150		 * The above forms a control dependency barrier separating the
151		 * @tail load above from the data stores below. Since the @tail
152		 * load is required to compute the branch to fail below.
153		 *
154		 * A, matches D; the full memory barrier userspace SHOULD issue
155		 * after reading the data and before storing the new tail
156		 * position.
157		 *
158		 * See perf_output_put_handle().
159		 */
160
161		head += size;
 
 
 
162	} while (local_cmpxchg(&rb->head, offset, head) != offset);
163
 
 
 
 
 
164	/*
165	 * We rely on the implied barrier() by local_cmpxchg() to ensure
166	 * none of the data stores below can be lifted up by the compiler.
167	 */
168
169	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170		local_add(rb->watermark, &rb->wakeup);
171
172	page_shift = PAGE_SHIFT + page_order(rb);
173
174	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
175	offset &= (1UL << page_shift) - 1;
176	handle->addr = rb->data_pages[handle->page] + offset;
177	handle->size = (1UL << page_shift) - offset;
178
179	if (unlikely(have_lost)) {
180		struct perf_sample_data sample_data;
181
182		lost_event.header.size = sizeof(lost_event);
183		lost_event.header.type = PERF_RECORD_LOST;
184		lost_event.header.misc = 0;
185		lost_event.id          = event->id;
186		lost_event.lost        = local_xchg(&rb->lost, 0);
187
188		perf_event_header__init_id(&lost_event.header,
189					   &sample_data, event);
190		perf_output_put(handle, lost_event);
191		perf_event__output_id_sample(event, handle, &sample_data);
192	}
193
194	return 0;
195
196fail:
197	local_inc(&rb->lost);
198	perf_output_put_handle(handle);
199out:
200	rcu_read_unlock();
201
202	return -ENOSPC;
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205unsigned int perf_output_copy(struct perf_output_handle *handle,
206		      const void *buf, unsigned int len)
207{
208	return __output_copy(handle, buf, len);
209}
210
211unsigned int perf_output_skip(struct perf_output_handle *handle,
212			      unsigned int len)
213{
214	return __output_skip(handle, NULL, len);
215}
216
217void perf_output_end(struct perf_output_handle *handle)
218{
219	perf_output_put_handle(handle);
220	rcu_read_unlock();
221}
222
223static void
224ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
225{
226	long max_size = perf_data_size(rb);
227
228	if (watermark)
229		rb->watermark = min(max_size, watermark);
230
231	if (!rb->watermark)
232		rb->watermark = max_size / 2;
233
234	if (flags & RING_BUFFER_WRITABLE)
235		rb->overwrite = 0;
236	else
237		rb->overwrite = 1;
238
239	atomic_set(&rb->refcount, 1);
240
241	INIT_LIST_HEAD(&rb->event_list);
242	spin_lock_init(&rb->event_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245#ifndef CONFIG_PERF_USE_VMALLOC
246
247/*
248 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
249 */
250
251struct page *
252perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
253{
254	if (pgoff > rb->nr_pages)
255		return NULL;
256
257	if (pgoff == 0)
258		return virt_to_page(rb->user_page);
259
260	return virt_to_page(rb->data_pages[pgoff - 1]);
261}
262
263static void *perf_mmap_alloc_page(int cpu)
264{
265	struct page *page;
266	int node;
267
268	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
269	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
270	if (!page)
271		return NULL;
272
273	return page_address(page);
274}
275
276struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
277{
278	struct ring_buffer *rb;
279	unsigned long size;
280	int i;
281
282	size = sizeof(struct ring_buffer);
283	size += nr_pages * sizeof(void *);
284
285	rb = kzalloc(size, GFP_KERNEL);
286	if (!rb)
287		goto fail;
288
289	rb->user_page = perf_mmap_alloc_page(cpu);
290	if (!rb->user_page)
291		goto fail_user_page;
292
293	for (i = 0; i < nr_pages; i++) {
294		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
295		if (!rb->data_pages[i])
296			goto fail_data_pages;
297	}
298
299	rb->nr_pages = nr_pages;
300
301	ring_buffer_init(rb, watermark, flags);
302
303	return rb;
304
305fail_data_pages:
306	for (i--; i >= 0; i--)
307		free_page((unsigned long)rb->data_pages[i]);
308
309	free_page((unsigned long)rb->user_page);
310
311fail_user_page:
312	kfree(rb);
313
314fail:
315	return NULL;
316}
317
318static void perf_mmap_free_page(unsigned long addr)
319{
320	struct page *page = virt_to_page((void *)addr);
321
322	page->mapping = NULL;
323	__free_page(page);
324}
325
326void rb_free(struct ring_buffer *rb)
327{
328	int i;
329
330	perf_mmap_free_page((unsigned long)rb->user_page);
331	for (i = 0; i < rb->nr_pages; i++)
332		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
333	kfree(rb);
334}
335
336#else
337static int data_page_nr(struct ring_buffer *rb)
338{
339	return rb->nr_pages << page_order(rb);
340}
341
342struct page *
343perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
344{
345	/* The '>' counts in the user page. */
346	if (pgoff > data_page_nr(rb))
347		return NULL;
348
349	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
350}
351
352static void perf_mmap_unmark_page(void *addr)
353{
354	struct page *page = vmalloc_to_page(addr);
355
356	page->mapping = NULL;
357}
358
359static void rb_free_work(struct work_struct *work)
360{
361	struct ring_buffer *rb;
362	void *base;
363	int i, nr;
364
365	rb = container_of(work, struct ring_buffer, work);
366	nr = data_page_nr(rb);
367
368	base = rb->user_page;
369	/* The '<=' counts in the user page. */
370	for (i = 0; i <= nr; i++)
371		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
372
373	vfree(base);
374	kfree(rb);
375}
376
377void rb_free(struct ring_buffer *rb)
378{
379	schedule_work(&rb->work);
380}
381
382struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
383{
384	struct ring_buffer *rb;
385	unsigned long size;
386	void *all_buf;
387
388	size = sizeof(struct ring_buffer);
389	size += sizeof(void *);
390
391	rb = kzalloc(size, GFP_KERNEL);
392	if (!rb)
393		goto fail;
394
395	INIT_WORK(&rb->work, rb_free_work);
396
397	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
398	if (!all_buf)
399		goto fail_all_buf;
400
401	rb->user_page = all_buf;
402	rb->data_pages[0] = all_buf + PAGE_SIZE;
403	rb->page_order = ilog2(nr_pages);
404	rb->nr_pages = !!nr_pages;
 
 
405
406	ring_buffer_init(rb, watermark, flags);
407
408	return rb;
409
410fail_all_buf:
411	kfree(rb);
412
413fail:
414	return NULL;
415}
416
417#endif
v4.17
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 16#include <linux/poll.h>
 17#include <linux/nospec.h>
 18
 19#include "internal.h"
 20
 21static void perf_output_wakeup(struct perf_output_handle *handle)
 22{
 23	atomic_set(&handle->rb->poll, EPOLLIN);
 24
 25	handle->event->pending_wakeup = 1;
 26	irq_work_queue(&handle->event->pending);
 27}
 28
 29/*
 30 * We need to ensure a later event_id doesn't publish a head when a former
 31 * event isn't done writing. However since we need to deal with NMIs we
 32 * cannot fully serialize things.
 33 *
 34 * We only publish the head (and generate a wakeup) when the outer-most
 35 * event completes.
 36 */
 37static void perf_output_get_handle(struct perf_output_handle *handle)
 38{
 39	struct ring_buffer *rb = handle->rb;
 40
 41	preempt_disable();
 42	local_inc(&rb->nest);
 43	handle->wakeup = local_read(&rb->wakeup);
 44}
 45
 46static void perf_output_put_handle(struct perf_output_handle *handle)
 47{
 48	struct ring_buffer *rb = handle->rb;
 49	unsigned long head;
 50
 51again:
 52	head = local_read(&rb->head);
 53
 54	/*
 55	 * IRQ/NMI can happen here, which means we can miss a head update.
 56	 */
 57
 58	if (!local_dec_and_test(&rb->nest))
 59		goto out;
 60
 61	/*
 62	 * Since the mmap() consumer (userspace) can run on a different CPU:
 63	 *
 64	 *   kernel				user
 65	 *
 66	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 67	 *			(A)		smp_rmb()	(C)
 68	 *	STORE $data			LOAD $data
 69	 *	smp_wmb()	(B)		smp_mb()	(D)
 70	 *	STORE ->data_head		STORE ->data_tail
 71	 *   }
 72	 *
 73	 * Where A pairs with D, and B pairs with C.
 74	 *
 75	 * In our case (A) is a control dependency that separates the load of
 76	 * the ->data_tail and the stores of $data. In case ->data_tail
 77	 * indicates there is no room in the buffer to store $data we do not.
 78	 *
 79	 * D needs to be a full barrier since it separates the data READ
 80	 * from the tail WRITE.
 81	 *
 82	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 83	 * an RMB is sufficient since it separates two READs.
 84	 *
 85	 * See perf_output_begin().
 86	 */
 87	smp_wmb(); /* B, matches C */
 88	rb->user_page->data_head = head;
 89
 90	/*
 91	 * Now check if we missed an update -- rely on previous implied
 92	 * compiler barriers to force a re-read.
 93	 */
 94	if (unlikely(head != local_read(&rb->head))) {
 95		local_inc(&rb->nest);
 96		goto again;
 97	}
 98
 99	if (handle->wakeup != local_read(&rb->wakeup))
100		perf_output_wakeup(handle);
101
102out:
103	preempt_enable();
104}
105
106static bool __always_inline
107ring_buffer_has_space(unsigned long head, unsigned long tail,
108		      unsigned long data_size, unsigned int size,
109		      bool backward)
110{
111	if (!backward)
112		return CIRC_SPACE(head, tail, data_size) >= size;
113	else
114		return CIRC_SPACE(tail, head, data_size) >= size;
115}
116
117static int __always_inline
118__perf_output_begin(struct perf_output_handle *handle,
119		    struct perf_event *event, unsigned int size,
120		    bool backward)
121{
122	struct ring_buffer *rb;
123	unsigned long tail, offset, head;
124	int have_lost, page_shift;
125	struct {
126		struct perf_event_header header;
127		u64			 id;
128		u64			 lost;
129	} lost_event;
130
131	rcu_read_lock();
132	/*
133	 * For inherited events we send all the output towards the parent.
134	 */
135	if (event->parent)
136		event = event->parent;
137
138	rb = rcu_dereference(event->rb);
139	if (unlikely(!rb))
140		goto out;
141
142	if (unlikely(rb->paused)) {
143		if (rb->nr_pages)
144			local_inc(&rb->lost);
145		goto out;
146	}
147
148	handle->rb    = rb;
149	handle->event = event;
150
151	have_lost = local_read(&rb->lost);
152	if (unlikely(have_lost)) {
153		size += sizeof(lost_event);
154		if (event->attr.sample_id_all)
155			size += event->id_header_size;
156	}
157
158	perf_output_get_handle(handle);
159
160	do {
161		tail = READ_ONCE(rb->user_page->data_tail);
162		offset = head = local_read(&rb->head);
163		if (!rb->overwrite) {
164			if (unlikely(!ring_buffer_has_space(head, tail,
165							    perf_data_size(rb),
166							    size, backward)))
167				goto fail;
168		}
169
170		/*
171		 * The above forms a control dependency barrier separating the
172		 * @tail load above from the data stores below. Since the @tail
173		 * load is required to compute the branch to fail below.
174		 *
175		 * A, matches D; the full memory barrier userspace SHOULD issue
176		 * after reading the data and before storing the new tail
177		 * position.
178		 *
179		 * See perf_output_put_handle().
180		 */
181
182		if (!backward)
183			head += size;
184		else
185			head -= size;
186	} while (local_cmpxchg(&rb->head, offset, head) != offset);
187
188	if (backward) {
189		offset = head;
190		head = (u64)(-head);
191	}
192
193	/*
194	 * We rely on the implied barrier() by local_cmpxchg() to ensure
195	 * none of the data stores below can be lifted up by the compiler.
196	 */
197
198	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
199		local_add(rb->watermark, &rb->wakeup);
200
201	page_shift = PAGE_SHIFT + page_order(rb);
202
203	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
204	offset &= (1UL << page_shift) - 1;
205	handle->addr = rb->data_pages[handle->page] + offset;
206	handle->size = (1UL << page_shift) - offset;
207
208	if (unlikely(have_lost)) {
209		struct perf_sample_data sample_data;
210
211		lost_event.header.size = sizeof(lost_event);
212		lost_event.header.type = PERF_RECORD_LOST;
213		lost_event.header.misc = 0;
214		lost_event.id          = event->id;
215		lost_event.lost        = local_xchg(&rb->lost, 0);
216
217		perf_event_header__init_id(&lost_event.header,
218					   &sample_data, event);
219		perf_output_put(handle, lost_event);
220		perf_event__output_id_sample(event, handle, &sample_data);
221	}
222
223	return 0;
224
225fail:
226	local_inc(&rb->lost);
227	perf_output_put_handle(handle);
228out:
229	rcu_read_unlock();
230
231	return -ENOSPC;
232}
233
234int perf_output_begin_forward(struct perf_output_handle *handle,
235			     struct perf_event *event, unsigned int size)
236{
237	return __perf_output_begin(handle, event, size, false);
238}
239
240int perf_output_begin_backward(struct perf_output_handle *handle,
241			       struct perf_event *event, unsigned int size)
242{
243	return __perf_output_begin(handle, event, size, true);
244}
245
246int perf_output_begin(struct perf_output_handle *handle,
247		      struct perf_event *event, unsigned int size)
248{
249
250	return __perf_output_begin(handle, event, size,
251				   unlikely(is_write_backward(event)));
252}
253
254unsigned int perf_output_copy(struct perf_output_handle *handle,
255		      const void *buf, unsigned int len)
256{
257	return __output_copy(handle, buf, len);
258}
259
260unsigned int perf_output_skip(struct perf_output_handle *handle,
261			      unsigned int len)
262{
263	return __output_skip(handle, NULL, len);
264}
265
266void perf_output_end(struct perf_output_handle *handle)
267{
268	perf_output_put_handle(handle);
269	rcu_read_unlock();
270}
271
272static void
273ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
274{
275	long max_size = perf_data_size(rb);
276
277	if (watermark)
278		rb->watermark = min(max_size, watermark);
279
280	if (!rb->watermark)
281		rb->watermark = max_size / 2;
282
283	if (flags & RING_BUFFER_WRITABLE)
284		rb->overwrite = 0;
285	else
286		rb->overwrite = 1;
287
288	atomic_set(&rb->refcount, 1);
289
290	INIT_LIST_HEAD(&rb->event_list);
291	spin_lock_init(&rb->event_lock);
292
293	/*
294	 * perf_output_begin() only checks rb->paused, therefore
295	 * rb->paused must be true if we have no pages for output.
296	 */
297	if (!rb->nr_pages)
298		rb->paused = 1;
299}
300
301void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
302{
303	/*
304	 * OVERWRITE is determined by perf_aux_output_end() and can't
305	 * be passed in directly.
306	 */
307	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
308		return;
309
310	handle->aux_flags |= flags;
311}
312EXPORT_SYMBOL_GPL(perf_aux_output_flag);
313
314/*
315 * This is called before hardware starts writing to the AUX area to
316 * obtain an output handle and make sure there's room in the buffer.
317 * When the capture completes, call perf_aux_output_end() to commit
318 * the recorded data to the buffer.
319 *
320 * The ordering is similar to that of perf_output_{begin,end}, with
321 * the exception of (B), which should be taken care of by the pmu
322 * driver, since ordering rules will differ depending on hardware.
323 *
324 * Call this from pmu::start(); see the comment in perf_aux_output_end()
325 * about its use in pmu callbacks. Both can also be called from the PMI
326 * handler if needed.
327 */
328void *perf_aux_output_begin(struct perf_output_handle *handle,
329			    struct perf_event *event)
330{
331	struct perf_event *output_event = event;
332	unsigned long aux_head, aux_tail;
333	struct ring_buffer *rb;
334
335	if (output_event->parent)
336		output_event = output_event->parent;
337
338	/*
339	 * Since this will typically be open across pmu::add/pmu::del, we
340	 * grab ring_buffer's refcount instead of holding rcu read lock
341	 * to make sure it doesn't disappear under us.
342	 */
343	rb = ring_buffer_get(output_event);
344	if (!rb)
345		return NULL;
346
347	if (!rb_has_aux(rb))
348		goto err;
349
350	/*
351	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
352	 * about to get freed, so we leave immediately.
353	 *
354	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
355	 * the same order, see perf_mmap_close. Otherwise we end up freeing
356	 * aux pages in this path, which is a bug, because in_atomic().
357	 */
358	if (!atomic_read(&rb->aux_mmap_count))
359		goto err;
360
361	if (!atomic_inc_not_zero(&rb->aux_refcount))
362		goto err;
363
364	/*
365	 * Nesting is not supported for AUX area, make sure nested
366	 * writers are caught early
367	 */
368	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
369		goto err_put;
370
371	aux_head = rb->aux_head;
372
373	handle->rb = rb;
374	handle->event = event;
375	handle->head = aux_head;
376	handle->size = 0;
377	handle->aux_flags = 0;
378
379	/*
380	 * In overwrite mode, AUX data stores do not depend on aux_tail,
381	 * therefore (A) control dependency barrier does not exist. The
382	 * (B) <-> (C) ordering is still observed by the pmu driver.
383	 */
384	if (!rb->aux_overwrite) {
385		aux_tail = READ_ONCE(rb->user_page->aux_tail);
386		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
387		if (aux_head - aux_tail < perf_aux_size(rb))
388			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
389
390		/*
391		 * handle->size computation depends on aux_tail load; this forms a
392		 * control dependency barrier separating aux_tail load from aux data
393		 * store that will be enabled on successful return
394		 */
395		if (!handle->size) { /* A, matches D */
396			event->pending_disable = 1;
397			perf_output_wakeup(handle);
398			local_set(&rb->aux_nest, 0);
399			goto err_put;
400		}
401	}
402
403	return handle->rb->aux_priv;
404
405err_put:
406	/* can't be last */
407	rb_free_aux(rb);
408
409err:
410	ring_buffer_put(rb);
411	handle->event = NULL;
412
413	return NULL;
414}
415EXPORT_SYMBOL_GPL(perf_aux_output_begin);
416
417static bool __always_inline rb_need_aux_wakeup(struct ring_buffer *rb)
418{
419	if (rb->aux_overwrite)
420		return false;
421
422	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
423		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
424		return true;
425	}
426
427	return false;
428}
429
430/*
431 * Commit the data written by hardware into the ring buffer by adjusting
432 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
433 * pmu driver's responsibility to observe ordering rules of the hardware,
434 * so that all the data is externally visible before this is called.
435 *
436 * Note: this has to be called from pmu::stop() callback, as the assumption
437 * of the AUX buffer management code is that after pmu::stop(), the AUX
438 * transaction must be stopped and therefore drop the AUX reference count.
439 */
440void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
441{
442	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
443	struct ring_buffer *rb = handle->rb;
444	unsigned long aux_head;
445
446	/* in overwrite mode, driver provides aux_head via handle */
447	if (rb->aux_overwrite) {
448		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
449
450		aux_head = handle->head;
451		rb->aux_head = aux_head;
452	} else {
453		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
454
455		aux_head = rb->aux_head;
456		rb->aux_head += size;
457	}
458
459	if (size || handle->aux_flags) {
460		/*
461		 * Only send RECORD_AUX if we have something useful to communicate
462		 */
463
464		perf_event_aux_event(handle->event, aux_head, size,
465		                     handle->aux_flags);
466	}
467
468	rb->user_page->aux_head = rb->aux_head;
469	if (rb_need_aux_wakeup(rb))
470		wakeup = true;
471
472	if (wakeup) {
473		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
474			handle->event->pending_disable = 1;
475		perf_output_wakeup(handle);
476	}
477
478	handle->event = NULL;
479
480	local_set(&rb->aux_nest, 0);
481	/* can't be last */
482	rb_free_aux(rb);
483	ring_buffer_put(rb);
484}
485EXPORT_SYMBOL_GPL(perf_aux_output_end);
486
487/*
488 * Skip over a given number of bytes in the AUX buffer, due to, for example,
489 * hardware's alignment constraints.
490 */
491int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
492{
493	struct ring_buffer *rb = handle->rb;
494
495	if (size > handle->size)
496		return -ENOSPC;
497
498	rb->aux_head += size;
499
500	rb->user_page->aux_head = rb->aux_head;
501	if (rb_need_aux_wakeup(rb)) {
502		perf_output_wakeup(handle);
503		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
504	}
505
506	handle->head = rb->aux_head;
507	handle->size -= size;
508
509	return 0;
510}
511EXPORT_SYMBOL_GPL(perf_aux_output_skip);
512
513void *perf_get_aux(struct perf_output_handle *handle)
514{
515	/* this is only valid between perf_aux_output_begin and *_end */
516	if (!handle->event)
517		return NULL;
518
519	return handle->rb->aux_priv;
520}
521EXPORT_SYMBOL_GPL(perf_get_aux);
522
523#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
524
525static struct page *rb_alloc_aux_page(int node, int order)
526{
527	struct page *page;
528
529	if (order > MAX_ORDER)
530		order = MAX_ORDER;
531
532	do {
533		page = alloc_pages_node(node, PERF_AUX_GFP, order);
534	} while (!page && order--);
535
536	if (page && order) {
537		/*
538		 * Communicate the allocation size to the driver:
539		 * if we managed to secure a high-order allocation,
540		 * set its first page's private to this order;
541		 * !PagePrivate(page) means it's just a normal page.
542		 */
543		split_page(page, order);
544		SetPagePrivate(page);
545		set_page_private(page, order);
546	}
547
548	return page;
549}
550
551static void rb_free_aux_page(struct ring_buffer *rb, int idx)
552{
553	struct page *page = virt_to_page(rb->aux_pages[idx]);
554
555	ClearPagePrivate(page);
556	page->mapping = NULL;
557	__free_page(page);
558}
559
560static void __rb_free_aux(struct ring_buffer *rb)
561{
562	int pg;
563
564	/*
565	 * Should never happen, the last reference should be dropped from
566	 * perf_mmap_close() path, which first stops aux transactions (which
567	 * in turn are the atomic holders of aux_refcount) and then does the
568	 * last rb_free_aux().
569	 */
570	WARN_ON_ONCE(in_atomic());
571
572	if (rb->aux_priv) {
573		rb->free_aux(rb->aux_priv);
574		rb->free_aux = NULL;
575		rb->aux_priv = NULL;
576	}
577
578	if (rb->aux_nr_pages) {
579		for (pg = 0; pg < rb->aux_nr_pages; pg++)
580			rb_free_aux_page(rb, pg);
581
582		kfree(rb->aux_pages);
583		rb->aux_nr_pages = 0;
584	}
585}
586
587int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
588		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
589{
590	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
591	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
592	int ret = -ENOMEM, max_order = 0;
593
594	if (!has_aux(event))
595		return -EOPNOTSUPP;
596
597	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
598		/*
599		 * We need to start with the max_order that fits in nr_pages,
600		 * not the other way around, hence ilog2() and not get_order.
601		 */
602		max_order = ilog2(nr_pages);
603
604		/*
605		 * PMU requests more than one contiguous chunks of memory
606		 * for SW double buffering
607		 */
608		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
609		    !overwrite) {
610			if (!max_order)
611				return -EINVAL;
612
613			max_order--;
614		}
615	}
616
617	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
618	if (!rb->aux_pages)
619		return -ENOMEM;
620
621	rb->free_aux = event->pmu->free_aux;
622	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
623		struct page *page;
624		int last, order;
625
626		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
627		page = rb_alloc_aux_page(node, order);
628		if (!page)
629			goto out;
630
631		for (last = rb->aux_nr_pages + (1 << page_private(page));
632		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
633			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
634	}
635
636	/*
637	 * In overwrite mode, PMUs that don't support SG may not handle more
638	 * than one contiguous allocation, since they rely on PMI to do double
639	 * buffering. In this case, the entire buffer has to be one contiguous
640	 * chunk.
641	 */
642	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
643	    overwrite) {
644		struct page *page = virt_to_page(rb->aux_pages[0]);
645
646		if (page_private(page) != max_order)
647			goto out;
648	}
649
650	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
651					     overwrite);
652	if (!rb->aux_priv)
653		goto out;
654
655	ret = 0;
656
657	/*
658	 * aux_pages (and pmu driver's private data, aux_priv) will be
659	 * referenced in both producer's and consumer's contexts, thus
660	 * we keep a refcount here to make sure either of the two can
661	 * reference them safely.
662	 */
663	atomic_set(&rb->aux_refcount, 1);
664
665	rb->aux_overwrite = overwrite;
666	rb->aux_watermark = watermark;
667
668	if (!rb->aux_watermark && !rb->aux_overwrite)
669		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
670
671out:
672	if (!ret)
673		rb->aux_pgoff = pgoff;
674	else
675		__rb_free_aux(rb);
676
677	return ret;
678}
679
680void rb_free_aux(struct ring_buffer *rb)
681{
682	if (atomic_dec_and_test(&rb->aux_refcount))
683		__rb_free_aux(rb);
684}
685
686#ifndef CONFIG_PERF_USE_VMALLOC
687
688/*
689 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
690 */
691
692static struct page *
693__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
694{
695	if (pgoff > rb->nr_pages)
696		return NULL;
697
698	if (pgoff == 0)
699		return virt_to_page(rb->user_page);
700
701	return virt_to_page(rb->data_pages[pgoff - 1]);
702}
703
704static void *perf_mmap_alloc_page(int cpu)
705{
706	struct page *page;
707	int node;
708
709	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
710	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
711	if (!page)
712		return NULL;
713
714	return page_address(page);
715}
716
717struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
718{
719	struct ring_buffer *rb;
720	unsigned long size;
721	int i;
722
723	size = sizeof(struct ring_buffer);
724	size += nr_pages * sizeof(void *);
725
726	rb = kzalloc(size, GFP_KERNEL);
727	if (!rb)
728		goto fail;
729
730	rb->user_page = perf_mmap_alloc_page(cpu);
731	if (!rb->user_page)
732		goto fail_user_page;
733
734	for (i = 0; i < nr_pages; i++) {
735		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
736		if (!rb->data_pages[i])
737			goto fail_data_pages;
738	}
739
740	rb->nr_pages = nr_pages;
741
742	ring_buffer_init(rb, watermark, flags);
743
744	return rb;
745
746fail_data_pages:
747	for (i--; i >= 0; i--)
748		free_page((unsigned long)rb->data_pages[i]);
749
750	free_page((unsigned long)rb->user_page);
751
752fail_user_page:
753	kfree(rb);
754
755fail:
756	return NULL;
757}
758
759static void perf_mmap_free_page(unsigned long addr)
760{
761	struct page *page = virt_to_page((void *)addr);
762
763	page->mapping = NULL;
764	__free_page(page);
765}
766
767void rb_free(struct ring_buffer *rb)
768{
769	int i;
770
771	perf_mmap_free_page((unsigned long)rb->user_page);
772	for (i = 0; i < rb->nr_pages; i++)
773		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
774	kfree(rb);
775}
776
777#else
778static int data_page_nr(struct ring_buffer *rb)
779{
780	return rb->nr_pages << page_order(rb);
781}
782
783static struct page *
784__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
785{
786	/* The '>' counts in the user page. */
787	if (pgoff > data_page_nr(rb))
788		return NULL;
789
790	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
791}
792
793static void perf_mmap_unmark_page(void *addr)
794{
795	struct page *page = vmalloc_to_page(addr);
796
797	page->mapping = NULL;
798}
799
800static void rb_free_work(struct work_struct *work)
801{
802	struct ring_buffer *rb;
803	void *base;
804	int i, nr;
805
806	rb = container_of(work, struct ring_buffer, work);
807	nr = data_page_nr(rb);
808
809	base = rb->user_page;
810	/* The '<=' counts in the user page. */
811	for (i = 0; i <= nr; i++)
812		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
813
814	vfree(base);
815	kfree(rb);
816}
817
818void rb_free(struct ring_buffer *rb)
819{
820	schedule_work(&rb->work);
821}
822
823struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
824{
825	struct ring_buffer *rb;
826	unsigned long size;
827	void *all_buf;
828
829	size = sizeof(struct ring_buffer);
830	size += sizeof(void *);
831
832	rb = kzalloc(size, GFP_KERNEL);
833	if (!rb)
834		goto fail;
835
836	INIT_WORK(&rb->work, rb_free_work);
837
838	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
839	if (!all_buf)
840		goto fail_all_buf;
841
842	rb->user_page = all_buf;
843	rb->data_pages[0] = all_buf + PAGE_SIZE;
844	if (nr_pages) {
845		rb->nr_pages = 1;
846		rb->page_order = ilog2(nr_pages);
847	}
848
849	ring_buffer_init(rb, watermark, flags);
850
851	return rb;
852
853fail_all_buf:
854	kfree(rb);
855
856fail:
857	return NULL;
858}
859
860#endif
861
862struct page *
863perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
864{
865	if (rb->aux_nr_pages) {
866		/* above AUX space */
867		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
868			return NULL;
869
870		/* AUX space */
871		if (pgoff >= rb->aux_pgoff) {
872			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
873			return virt_to_page(rb->aux_pages[aux_pgoff]);
874		}
875	}
876
877	return __perf_mmap_to_page(rb, pgoff);
878}