Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 16
 17#include "internal.h"
 18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19static void perf_output_wakeup(struct perf_output_handle *handle)
 20{
 21	atomic_set(&handle->rb->poll, POLL_IN);
 22
 23	handle->event->pending_wakeup = 1;
 24	irq_work_queue(&handle->event->pending);
 25}
 26
 27/*
 28 * We need to ensure a later event_id doesn't publish a head when a former
 29 * event isn't done writing. However since we need to deal with NMIs we
 30 * cannot fully serialize things.
 31 *
 32 * We only publish the head (and generate a wakeup) when the outer-most
 33 * event completes.
 34 */
 35static void perf_output_get_handle(struct perf_output_handle *handle)
 36{
 37	struct ring_buffer *rb = handle->rb;
 38
 39	preempt_disable();
 40	local_inc(&rb->nest);
 41	handle->wakeup = local_read(&rb->wakeup);
 42}
 43
 44static void perf_output_put_handle(struct perf_output_handle *handle)
 45{
 46	struct ring_buffer *rb = handle->rb;
 47	unsigned long head;
 48
 49again:
 50	head = local_read(&rb->head);
 51
 52	/*
 53	 * IRQ/NMI can happen here, which means we can miss a head update.
 54	 */
 55
 56	if (!local_dec_and_test(&rb->nest))
 57		goto out;
 58
 59	/*
 60	 * Since the mmap() consumer (userspace) can run on a different CPU:
 61	 *
 62	 *   kernel				user
 63	 *
 64	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 65	 *			(A)		smp_rmb()	(C)
 66	 *	STORE $data			LOAD $data
 67	 *	smp_wmb()	(B)		smp_mb()	(D)
 68	 *	STORE ->data_head		STORE ->data_tail
 69	 *   }
 70	 *
 71	 * Where A pairs with D, and B pairs with C.
 72	 *
 73	 * In our case (A) is a control dependency that separates the load of
 74	 * the ->data_tail and the stores of $data. In case ->data_tail
 75	 * indicates there is no room in the buffer to store $data we do not.
 76	 *
 77	 * D needs to be a full barrier since it separates the data READ
 78	 * from the tail WRITE.
 79	 *
 80	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 81	 * an RMB is sufficient since it separates two READs.
 82	 *
 83	 * See perf_output_begin().
 84	 */
 85	smp_wmb(); /* B, matches C */
 86	rb->user_page->data_head = head;
 87
 88	/*
 89	 * Now check if we missed an update -- rely on previous implied
 90	 * compiler barriers to force a re-read.
 91	 */
 92	if (unlikely(head != local_read(&rb->head))) {
 93		local_inc(&rb->nest);
 94		goto again;
 95	}
 96
 97	if (handle->wakeup != local_read(&rb->wakeup))
 98		perf_output_wakeup(handle);
 99
100out:
101	preempt_enable();
102}
103
104int perf_output_begin(struct perf_output_handle *handle,
105		      struct perf_event *event, unsigned int size)
106{
107	struct ring_buffer *rb;
108	unsigned long tail, offset, head;
109	int have_lost, page_shift;
 
110	struct {
111		struct perf_event_header header;
112		u64			 id;
113		u64			 lost;
114	} lost_event;
115
116	rcu_read_lock();
117	/*
118	 * For inherited events we send all the output towards the parent.
119	 */
120	if (event->parent)
121		event = event->parent;
122
123	rb = rcu_dereference(event->rb);
124	if (unlikely(!rb))
125		goto out;
126
127	if (unlikely(!rb->nr_pages))
128		goto out;
129
130	handle->rb    = rb;
131	handle->event = event;
132
133	have_lost = local_read(&rb->lost);
134	if (unlikely(have_lost)) {
135		size += sizeof(lost_event);
136		if (event->attr.sample_id_all)
137			size += event->id_header_size;
 
138	}
139
140	perf_output_get_handle(handle);
141
142	do {
143		tail = ACCESS_ONCE(rb->user_page->data_tail);
144		offset = head = local_read(&rb->head);
145		if (!rb->overwrite &&
146		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147			goto fail;
148
149		/*
150		 * The above forms a control dependency barrier separating the
151		 * @tail load above from the data stores below. Since the @tail
152		 * load is required to compute the branch to fail below.
153		 *
154		 * A, matches D; the full memory barrier userspace SHOULD issue
155		 * after reading the data and before storing the new tail
156		 * position.
157		 *
158		 * See perf_output_put_handle().
159		 */
160
 
 
161		head += size;
 
 
162	} while (local_cmpxchg(&rb->head, offset, head) != offset);
163
164	/*
165	 * We rely on the implied barrier() by local_cmpxchg() to ensure
166	 * none of the data stores below can be lifted up by the compiler.
167	 */
168
169	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170		local_add(rb->watermark, &rb->wakeup);
171
172	page_shift = PAGE_SHIFT + page_order(rb);
173
174	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
175	offset &= (1UL << page_shift) - 1;
176	handle->addr = rb->data_pages[handle->page] + offset;
177	handle->size = (1UL << page_shift) - offset;
178
179	if (unlikely(have_lost)) {
180		struct perf_sample_data sample_data;
181
182		lost_event.header.size = sizeof(lost_event);
183		lost_event.header.type = PERF_RECORD_LOST;
184		lost_event.header.misc = 0;
185		lost_event.id          = event->id;
186		lost_event.lost        = local_xchg(&rb->lost, 0);
187
188		perf_event_header__init_id(&lost_event.header,
189					   &sample_data, event);
190		perf_output_put(handle, lost_event);
191		perf_event__output_id_sample(event, handle, &sample_data);
192	}
193
194	return 0;
195
196fail:
197	local_inc(&rb->lost);
198	perf_output_put_handle(handle);
199out:
200	rcu_read_unlock();
201
202	return -ENOSPC;
203}
204
205unsigned int perf_output_copy(struct perf_output_handle *handle,
206		      const void *buf, unsigned int len)
207{
208	return __output_copy(handle, buf, len);
209}
210
211unsigned int perf_output_skip(struct perf_output_handle *handle,
212			      unsigned int len)
213{
214	return __output_skip(handle, NULL, len);
215}
216
217void perf_output_end(struct perf_output_handle *handle)
218{
219	perf_output_put_handle(handle);
220	rcu_read_unlock();
221}
222
223static void
224ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
225{
226	long max_size = perf_data_size(rb);
227
228	if (watermark)
229		rb->watermark = min(max_size, watermark);
230
231	if (!rb->watermark)
232		rb->watermark = max_size / 2;
233
234	if (flags & RING_BUFFER_WRITABLE)
235		rb->overwrite = 0;
236	else
237		rb->overwrite = 1;
238
239	atomic_set(&rb->refcount, 1);
240
241	INIT_LIST_HEAD(&rb->event_list);
242	spin_lock_init(&rb->event_lock);
243}
244
245#ifndef CONFIG_PERF_USE_VMALLOC
246
247/*
248 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
249 */
250
251struct page *
252perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
253{
254	if (pgoff > rb->nr_pages)
255		return NULL;
256
257	if (pgoff == 0)
258		return virt_to_page(rb->user_page);
259
260	return virt_to_page(rb->data_pages[pgoff - 1]);
261}
262
263static void *perf_mmap_alloc_page(int cpu)
264{
265	struct page *page;
266	int node;
267
268	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
269	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
270	if (!page)
271		return NULL;
272
273	return page_address(page);
274}
275
276struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
277{
278	struct ring_buffer *rb;
279	unsigned long size;
280	int i;
281
282	size = sizeof(struct ring_buffer);
283	size += nr_pages * sizeof(void *);
284
285	rb = kzalloc(size, GFP_KERNEL);
286	if (!rb)
287		goto fail;
288
289	rb->user_page = perf_mmap_alloc_page(cpu);
290	if (!rb->user_page)
291		goto fail_user_page;
292
293	for (i = 0; i < nr_pages; i++) {
294		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
295		if (!rb->data_pages[i])
296			goto fail_data_pages;
297	}
298
299	rb->nr_pages = nr_pages;
300
301	ring_buffer_init(rb, watermark, flags);
302
303	return rb;
304
305fail_data_pages:
306	for (i--; i >= 0; i--)
307		free_page((unsigned long)rb->data_pages[i]);
308
309	free_page((unsigned long)rb->user_page);
310
311fail_user_page:
312	kfree(rb);
313
314fail:
315	return NULL;
316}
317
318static void perf_mmap_free_page(unsigned long addr)
319{
320	struct page *page = virt_to_page((void *)addr);
321
322	page->mapping = NULL;
323	__free_page(page);
324}
325
326void rb_free(struct ring_buffer *rb)
327{
328	int i;
329
330	perf_mmap_free_page((unsigned long)rb->user_page);
331	for (i = 0; i < rb->nr_pages; i++)
332		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
333	kfree(rb);
334}
335
336#else
337static int data_page_nr(struct ring_buffer *rb)
338{
339	return rb->nr_pages << page_order(rb);
340}
341
342struct page *
343perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
344{
345	/* The '>' counts in the user page. */
346	if (pgoff > data_page_nr(rb))
347		return NULL;
348
349	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
350}
351
352static void perf_mmap_unmark_page(void *addr)
353{
354	struct page *page = vmalloc_to_page(addr);
355
356	page->mapping = NULL;
357}
358
359static void rb_free_work(struct work_struct *work)
360{
361	struct ring_buffer *rb;
362	void *base;
363	int i, nr;
364
365	rb = container_of(work, struct ring_buffer, work);
366	nr = data_page_nr(rb);
367
368	base = rb->user_page;
369	/* The '<=' counts in the user page. */
370	for (i = 0; i <= nr; i++)
371		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
372
373	vfree(base);
374	kfree(rb);
375}
376
377void rb_free(struct ring_buffer *rb)
378{
379	schedule_work(&rb->work);
380}
381
382struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
383{
384	struct ring_buffer *rb;
385	unsigned long size;
386	void *all_buf;
387
388	size = sizeof(struct ring_buffer);
389	size += sizeof(void *);
390
391	rb = kzalloc(size, GFP_KERNEL);
392	if (!rb)
393		goto fail;
394
395	INIT_WORK(&rb->work, rb_free_work);
396
397	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
398	if (!all_buf)
399		goto fail_all_buf;
400
401	rb->user_page = all_buf;
402	rb->data_pages[0] = all_buf + PAGE_SIZE;
403	rb->page_order = ilog2(nr_pages);
404	rb->nr_pages = !!nr_pages;
405
406	ring_buffer_init(rb, watermark, flags);
407
408	return rb;
409
410fail_all_buf:
411	kfree(rb);
412
413fail:
414	return NULL;
415}
416
417#endif
v3.1
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 
 15
 16#include "internal.h"
 17
 18static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
 19			      unsigned long offset, unsigned long head)
 20{
 21	unsigned long mask;
 22
 23	if (!rb->writable)
 24		return true;
 25
 26	mask = perf_data_size(rb) - 1;
 27
 28	offset = (offset - tail) & mask;
 29	head   = (head   - tail) & mask;
 30
 31	if ((int)(head - offset) < 0)
 32		return false;
 33
 34	return true;
 35}
 36
 37static void perf_output_wakeup(struct perf_output_handle *handle)
 38{
 39	atomic_set(&handle->rb->poll, POLL_IN);
 40
 41	handle->event->pending_wakeup = 1;
 42	irq_work_queue(&handle->event->pending);
 43}
 44
 45/*
 46 * We need to ensure a later event_id doesn't publish a head when a former
 47 * event isn't done writing. However since we need to deal with NMIs we
 48 * cannot fully serialize things.
 49 *
 50 * We only publish the head (and generate a wakeup) when the outer-most
 51 * event completes.
 52 */
 53static void perf_output_get_handle(struct perf_output_handle *handle)
 54{
 55	struct ring_buffer *rb = handle->rb;
 56
 57	preempt_disable();
 58	local_inc(&rb->nest);
 59	handle->wakeup = local_read(&rb->wakeup);
 60}
 61
 62static void perf_output_put_handle(struct perf_output_handle *handle)
 63{
 64	struct ring_buffer *rb = handle->rb;
 65	unsigned long head;
 66
 67again:
 68	head = local_read(&rb->head);
 69
 70	/*
 71	 * IRQ/NMI can happen here, which means we can miss a head update.
 72	 */
 73
 74	if (!local_dec_and_test(&rb->nest))
 75		goto out;
 76
 77	/*
 78	 * Publish the known good head. Rely on the full barrier implied
 79	 * by atomic_dec_and_test() order the rb->head read and this
 80	 * write.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81	 */
 
 82	rb->user_page->data_head = head;
 83
 84	/*
 85	 * Now check if we missed an update, rely on the (compiler)
 86	 * barrier in atomic_dec_and_test() to re-read rb->head.
 87	 */
 88	if (unlikely(head != local_read(&rb->head))) {
 89		local_inc(&rb->nest);
 90		goto again;
 91	}
 92
 93	if (handle->wakeup != local_read(&rb->wakeup))
 94		perf_output_wakeup(handle);
 95
 96out:
 97	preempt_enable();
 98}
 99
100int perf_output_begin(struct perf_output_handle *handle,
101		      struct perf_event *event, unsigned int size)
102{
103	struct ring_buffer *rb;
104	unsigned long tail, offset, head;
105	int have_lost;
106	struct perf_sample_data sample_data;
107	struct {
108		struct perf_event_header header;
109		u64			 id;
110		u64			 lost;
111	} lost_event;
112
113	rcu_read_lock();
114	/*
115	 * For inherited events we send all the output towards the parent.
116	 */
117	if (event->parent)
118		event = event->parent;
119
120	rb = rcu_dereference(event->rb);
121	if (!rb)
122		goto out;
123
124	handle->rb	= rb;
125	handle->event	= event;
126
127	if (!rb->nr_pages)
128		goto out;
129
130	have_lost = local_read(&rb->lost);
131	if (have_lost) {
132		lost_event.header.size = sizeof(lost_event);
133		perf_event_header__init_id(&lost_event.header, &sample_data,
134					   event);
135		size += lost_event.header.size;
136	}
137
138	perf_output_get_handle(handle);
139
140	do {
 
 
 
 
 
 
141		/*
142		 * Userspace could choose to issue a mb() before updating the
143		 * tail pointer. So that all reads will be completed before the
144		 * write is issued.
 
 
 
 
 
 
145		 */
146		tail = ACCESS_ONCE(rb->user_page->data_tail);
147		smp_rmb();
148		offset = head = local_read(&rb->head);
149		head += size;
150		if (unlikely(!perf_output_space(rb, tail, offset, head)))
151			goto fail;
152	} while (local_cmpxchg(&rb->head, offset, head) != offset);
153
154	if (head - local_read(&rb->wakeup) > rb->watermark)
 
 
 
 
 
155		local_add(rb->watermark, &rb->wakeup);
156
157	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
158	handle->page &= rb->nr_pages - 1;
159	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
160	handle->addr = rb->data_pages[handle->page];
161	handle->addr += handle->size;
162	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
163
164	if (have_lost) {
 
 
 
165		lost_event.header.type = PERF_RECORD_LOST;
166		lost_event.header.misc = 0;
167		lost_event.id          = event->id;
168		lost_event.lost        = local_xchg(&rb->lost, 0);
169
 
 
170		perf_output_put(handle, lost_event);
171		perf_event__output_id_sample(event, handle, &sample_data);
172	}
173
174	return 0;
175
176fail:
177	local_inc(&rb->lost);
178	perf_output_put_handle(handle);
179out:
180	rcu_read_unlock();
181
182	return -ENOSPC;
183}
184
185void perf_output_copy(struct perf_output_handle *handle,
186		      const void *buf, unsigned int len)
187{
188	__output_copy(handle, buf, len);
 
 
 
 
 
 
189}
190
191void perf_output_end(struct perf_output_handle *handle)
192{
193	perf_output_put_handle(handle);
194	rcu_read_unlock();
195}
196
197static void
198ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
199{
200	long max_size = perf_data_size(rb);
201
202	if (watermark)
203		rb->watermark = min(max_size, watermark);
204
205	if (!rb->watermark)
206		rb->watermark = max_size / 2;
207
208	if (flags & RING_BUFFER_WRITABLE)
209		rb->writable = 1;
 
 
210
211	atomic_set(&rb->refcount, 1);
 
 
 
212}
213
214#ifndef CONFIG_PERF_USE_VMALLOC
215
216/*
217 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
218 */
219
220struct page *
221perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
222{
223	if (pgoff > rb->nr_pages)
224		return NULL;
225
226	if (pgoff == 0)
227		return virt_to_page(rb->user_page);
228
229	return virt_to_page(rb->data_pages[pgoff - 1]);
230}
231
232static void *perf_mmap_alloc_page(int cpu)
233{
234	struct page *page;
235	int node;
236
237	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
238	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
239	if (!page)
240		return NULL;
241
242	return page_address(page);
243}
244
245struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
246{
247	struct ring_buffer *rb;
248	unsigned long size;
249	int i;
250
251	size = sizeof(struct ring_buffer);
252	size += nr_pages * sizeof(void *);
253
254	rb = kzalloc(size, GFP_KERNEL);
255	if (!rb)
256		goto fail;
257
258	rb->user_page = perf_mmap_alloc_page(cpu);
259	if (!rb->user_page)
260		goto fail_user_page;
261
262	for (i = 0; i < nr_pages; i++) {
263		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
264		if (!rb->data_pages[i])
265			goto fail_data_pages;
266	}
267
268	rb->nr_pages = nr_pages;
269
270	ring_buffer_init(rb, watermark, flags);
271
272	return rb;
273
274fail_data_pages:
275	for (i--; i >= 0; i--)
276		free_page((unsigned long)rb->data_pages[i]);
277
278	free_page((unsigned long)rb->user_page);
279
280fail_user_page:
281	kfree(rb);
282
283fail:
284	return NULL;
285}
286
287static void perf_mmap_free_page(unsigned long addr)
288{
289	struct page *page = virt_to_page((void *)addr);
290
291	page->mapping = NULL;
292	__free_page(page);
293}
294
295void rb_free(struct ring_buffer *rb)
296{
297	int i;
298
299	perf_mmap_free_page((unsigned long)rb->user_page);
300	for (i = 0; i < rb->nr_pages; i++)
301		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
302	kfree(rb);
303}
304
305#else
 
 
 
 
306
307struct page *
308perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
309{
310	if (pgoff > (1UL << page_order(rb)))
 
311		return NULL;
312
313	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
314}
315
316static void perf_mmap_unmark_page(void *addr)
317{
318	struct page *page = vmalloc_to_page(addr);
319
320	page->mapping = NULL;
321}
322
323static void rb_free_work(struct work_struct *work)
324{
325	struct ring_buffer *rb;
326	void *base;
327	int i, nr;
328
329	rb = container_of(work, struct ring_buffer, work);
330	nr = 1 << page_order(rb);
331
332	base = rb->user_page;
333	for (i = 0; i < nr + 1; i++)
 
334		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
335
336	vfree(base);
337	kfree(rb);
338}
339
340void rb_free(struct ring_buffer *rb)
341{
342	schedule_work(&rb->work);
343}
344
345struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
346{
347	struct ring_buffer *rb;
348	unsigned long size;
349	void *all_buf;
350
351	size = sizeof(struct ring_buffer);
352	size += sizeof(void *);
353
354	rb = kzalloc(size, GFP_KERNEL);
355	if (!rb)
356		goto fail;
357
358	INIT_WORK(&rb->work, rb_free_work);
359
360	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
361	if (!all_buf)
362		goto fail_all_buf;
363
364	rb->user_page = all_buf;
365	rb->data_pages[0] = all_buf + PAGE_SIZE;
366	rb->page_order = ilog2(nr_pages);
367	rb->nr_pages = 1;
368
369	ring_buffer_init(rb, watermark, flags);
370
371	return rb;
372
373fail_all_buf:
374	kfree(rb);
375
376fail:
377	return NULL;
378}
379
380#endif