Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 
 
 16
 17#include "internal.h"
 18
 19static void perf_output_wakeup(struct perf_output_handle *handle)
 20{
 21	atomic_set(&handle->rb->poll, POLL_IN);
 22
 23	handle->event->pending_wakeup = 1;
 24	irq_work_queue(&handle->event->pending);
 25}
 26
 27/*
 28 * We need to ensure a later event_id doesn't publish a head when a former
 29 * event isn't done writing. However since we need to deal with NMIs we
 30 * cannot fully serialize things.
 31 *
 32 * We only publish the head (and generate a wakeup) when the outer-most
 33 * event completes.
 34 */
 35static void perf_output_get_handle(struct perf_output_handle *handle)
 36{
 37	struct ring_buffer *rb = handle->rb;
 38
 39	preempt_disable();
 40	local_inc(&rb->nest);
 
 
 
 
 
 41	handle->wakeup = local_read(&rb->wakeup);
 42}
 43
 44static void perf_output_put_handle(struct perf_output_handle *handle)
 45{
 46	struct ring_buffer *rb = handle->rb;
 47	unsigned long head;
 
 
 
 
 
 
 
 
 
 
 
 48
 49again:
 
 
 
 
 
 
 
 
 
 50	head = local_read(&rb->head);
 51
 52	/*
 53	 * IRQ/NMI can happen here, which means we can miss a head update.
 
 54	 */
 55
 56	if (!local_dec_and_test(&rb->nest))
 57		goto out;
 58
 59	/*
 60	 * Since the mmap() consumer (userspace) can run on a different CPU:
 61	 *
 62	 *   kernel				user
 63	 *
 64	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 65	 *			(A)		smp_rmb()	(C)
 66	 *	STORE $data			LOAD $data
 67	 *	smp_wmb()	(B)		smp_mb()	(D)
 68	 *	STORE ->data_head		STORE ->data_tail
 69	 *   }
 70	 *
 71	 * Where A pairs with D, and B pairs with C.
 72	 *
 73	 * In our case (A) is a control dependency that separates the load of
 74	 * the ->data_tail and the stores of $data. In case ->data_tail
 75	 * indicates there is no room in the buffer to store $data we do not.
 76	 *
 77	 * D needs to be a full barrier since it separates the data READ
 78	 * from the tail WRITE.
 79	 *
 80	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 81	 * an RMB is sufficient since it separates two READs.
 82	 *
 83	 * See perf_output_begin().
 84	 */
 85	smp_wmb(); /* B, matches C */
 86	rb->user_page->data_head = head;
 87
 88	/*
 89	 * Now check if we missed an update -- rely on previous implied
 90	 * compiler barriers to force a re-read.
 
 91	 */
 
 
 
 
 
 
 
 
 92	if (unlikely(head != local_read(&rb->head))) {
 93		local_inc(&rb->nest);
 94		goto again;
 95	}
 96
 97	if (handle->wakeup != local_read(&rb->wakeup))
 98		perf_output_wakeup(handle);
 99
100out:
101	preempt_enable();
102}
103
104int perf_output_begin(struct perf_output_handle *handle,
105		      struct perf_event *event, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106{
107	struct ring_buffer *rb;
108	unsigned long tail, offset, head;
109	int have_lost, page_shift;
110	struct {
111		struct perf_event_header header;
112		u64			 id;
113		u64			 lost;
114	} lost_event;
115
116	rcu_read_lock();
117	/*
118	 * For inherited events we send all the output towards the parent.
119	 */
120	if (event->parent)
121		event = event->parent;
122
123	rb = rcu_dereference(event->rb);
124	if (unlikely(!rb))
125		goto out;
126
127	if (unlikely(!rb->nr_pages))
 
 
128		goto out;
 
129
130	handle->rb    = rb;
131	handle->event = event;
132
133	have_lost = local_read(&rb->lost);
134	if (unlikely(have_lost)) {
135		size += sizeof(lost_event);
136		if (event->attr.sample_id_all)
137			size += event->id_header_size;
138	}
139
140	perf_output_get_handle(handle);
141
142	do {
143		tail = ACCESS_ONCE(rb->user_page->data_tail);
144		offset = head = local_read(&rb->head);
145		if (!rb->overwrite &&
146		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147			goto fail;
 
 
 
148
149		/*
150		 * The above forms a control dependency barrier separating the
151		 * @tail load above from the data stores below. Since the @tail
152		 * load is required to compute the branch to fail below.
153		 *
154		 * A, matches D; the full memory barrier userspace SHOULD issue
155		 * after reading the data and before storing the new tail
156		 * position.
157		 *
158		 * See perf_output_put_handle().
159		 */
160
161		head += size;
 
 
 
162	} while (local_cmpxchg(&rb->head, offset, head) != offset);
163
 
 
 
 
 
164	/*
165	 * We rely on the implied barrier() by local_cmpxchg() to ensure
166	 * none of the data stores below can be lifted up by the compiler.
167	 */
168
169	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170		local_add(rb->watermark, &rb->wakeup);
171
172	page_shift = PAGE_SHIFT + page_order(rb);
173
174	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
175	offset &= (1UL << page_shift) - 1;
176	handle->addr = rb->data_pages[handle->page] + offset;
177	handle->size = (1UL << page_shift) - offset;
178
179	if (unlikely(have_lost)) {
180		struct perf_sample_data sample_data;
181
182		lost_event.header.size = sizeof(lost_event);
183		lost_event.header.type = PERF_RECORD_LOST;
184		lost_event.header.misc = 0;
185		lost_event.id          = event->id;
186		lost_event.lost        = local_xchg(&rb->lost, 0);
187
188		perf_event_header__init_id(&lost_event.header,
189					   &sample_data, event);
190		perf_output_put(handle, lost_event);
191		perf_event__output_id_sample(event, handle, &sample_data);
192	}
193
194	return 0;
195
196fail:
197	local_inc(&rb->lost);
198	perf_output_put_handle(handle);
199out:
200	rcu_read_unlock();
201
202	return -ENOSPC;
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205unsigned int perf_output_copy(struct perf_output_handle *handle,
206		      const void *buf, unsigned int len)
207{
208	return __output_copy(handle, buf, len);
209}
210
211unsigned int perf_output_skip(struct perf_output_handle *handle,
212			      unsigned int len)
213{
214	return __output_skip(handle, NULL, len);
215}
216
217void perf_output_end(struct perf_output_handle *handle)
218{
219	perf_output_put_handle(handle);
220	rcu_read_unlock();
221}
222
223static void
224ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
225{
226	long max_size = perf_data_size(rb);
227
228	if (watermark)
229		rb->watermark = min(max_size, watermark);
230
231	if (!rb->watermark)
232		rb->watermark = max_size / 2;
233
234	if (flags & RING_BUFFER_WRITABLE)
235		rb->overwrite = 0;
236	else
237		rb->overwrite = 1;
238
239	atomic_set(&rb->refcount, 1);
240
241	INIT_LIST_HEAD(&rb->event_list);
242	spin_lock_init(&rb->event_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245#ifndef CONFIG_PERF_USE_VMALLOC
246
247/*
248 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
249 */
250
251struct page *
252perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
253{
254	if (pgoff > rb->nr_pages)
255		return NULL;
256
257	if (pgoff == 0)
258		return virt_to_page(rb->user_page);
259
260	return virt_to_page(rb->data_pages[pgoff - 1]);
261}
262
263static void *perf_mmap_alloc_page(int cpu)
264{
265	struct page *page;
266	int node;
267
268	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
269	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
270	if (!page)
271		return NULL;
272
273	return page_address(page);
274}
275
276struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 
 
 
 
 
 
 
 
277{
278	struct ring_buffer *rb;
279	unsigned long size;
280	int i;
281
282	size = sizeof(struct ring_buffer);
283	size += nr_pages * sizeof(void *);
284
285	rb = kzalloc(size, GFP_KERNEL);
 
 
 
 
286	if (!rb)
287		goto fail;
288
289	rb->user_page = perf_mmap_alloc_page(cpu);
290	if (!rb->user_page)
291		goto fail_user_page;
292
293	for (i = 0; i < nr_pages; i++) {
294		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
295		if (!rb->data_pages[i])
296			goto fail_data_pages;
297	}
298
299	rb->nr_pages = nr_pages;
300
301	ring_buffer_init(rb, watermark, flags);
302
303	return rb;
304
305fail_data_pages:
306	for (i--; i >= 0; i--)
307		free_page((unsigned long)rb->data_pages[i]);
308
309	free_page((unsigned long)rb->user_page);
310
311fail_user_page:
312	kfree(rb);
313
314fail:
315	return NULL;
316}
317
318static void perf_mmap_free_page(unsigned long addr)
319{
320	struct page *page = virt_to_page((void *)addr);
321
322	page->mapping = NULL;
323	__free_page(page);
324}
325
326void rb_free(struct ring_buffer *rb)
327{
328	int i;
329
330	perf_mmap_free_page((unsigned long)rb->user_page);
331	for (i = 0; i < rb->nr_pages; i++)
332		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
333	kfree(rb);
334}
335
336#else
337static int data_page_nr(struct ring_buffer *rb)
338{
339	return rb->nr_pages << page_order(rb);
340}
341
342struct page *
343perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
344{
345	/* The '>' counts in the user page. */
346	if (pgoff > data_page_nr(rb))
347		return NULL;
348
349	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
350}
351
352static void perf_mmap_unmark_page(void *addr)
353{
354	struct page *page = vmalloc_to_page(addr);
355
356	page->mapping = NULL;
357}
358
359static void rb_free_work(struct work_struct *work)
360{
361	struct ring_buffer *rb;
362	void *base;
363	int i, nr;
364
365	rb = container_of(work, struct ring_buffer, work);
366	nr = data_page_nr(rb);
367
368	base = rb->user_page;
369	/* The '<=' counts in the user page. */
370	for (i = 0; i <= nr; i++)
371		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
372
373	vfree(base);
374	kfree(rb);
375}
376
377void rb_free(struct ring_buffer *rb)
378{
379	schedule_work(&rb->work);
380}
381
382struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
383{
384	struct ring_buffer *rb;
385	unsigned long size;
386	void *all_buf;
 
387
388	size = sizeof(struct ring_buffer);
389	size += sizeof(void *);
390
391	rb = kzalloc(size, GFP_KERNEL);
 
392	if (!rb)
393		goto fail;
394
395	INIT_WORK(&rb->work, rb_free_work);
396
397	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
398	if (!all_buf)
399		goto fail_all_buf;
400
401	rb->user_page = all_buf;
402	rb->data_pages[0] = all_buf + PAGE_SIZE;
403	rb->page_order = ilog2(nr_pages);
404	rb->nr_pages = !!nr_pages;
 
 
405
406	ring_buffer_init(rb, watermark, flags);
407
408	return rb;
409
410fail_all_buf:
411	kfree(rb);
412
413fail:
414	return NULL;
415}
416
417#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Performance events ring-buffer code:
  4 *
  5 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  7 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  8 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 
 
  9 */
 10
 11#include <linux/perf_event.h>
 12#include <linux/vmalloc.h>
 13#include <linux/slab.h>
 14#include <linux/circ_buf.h>
 15#include <linux/poll.h>
 16#include <linux/nospec.h>
 17
 18#include "internal.h"
 19
 20static void perf_output_wakeup(struct perf_output_handle *handle)
 21{
 22	atomic_set(&handle->rb->poll, EPOLLIN);
 23
 24	handle->event->pending_wakeup = 1;
 25	irq_work_queue(&handle->event->pending);
 26}
 27
 28/*
 29 * We need to ensure a later event_id doesn't publish a head when a former
 30 * event isn't done writing. However since we need to deal with NMIs we
 31 * cannot fully serialize things.
 32 *
 33 * We only publish the head (and generate a wakeup) when the outer-most
 34 * event completes.
 35 */
 36static void perf_output_get_handle(struct perf_output_handle *handle)
 37{
 38	struct perf_buffer *rb = handle->rb;
 39
 40	preempt_disable();
 41
 42	/*
 43	 * Avoid an explicit LOAD/STORE such that architectures with memops
 44	 * can use them.
 45	 */
 46	(*(volatile unsigned int *)&rb->nest)++;
 47	handle->wakeup = local_read(&rb->wakeup);
 48}
 49
 50static void perf_output_put_handle(struct perf_output_handle *handle)
 51{
 52	struct perf_buffer *rb = handle->rb;
 53	unsigned long head;
 54	unsigned int nest;
 55
 56	/*
 57	 * If this isn't the outermost nesting, we don't have to update
 58	 * @rb->user_page->data_head.
 59	 */
 60	nest = READ_ONCE(rb->nest);
 61	if (nest > 1) {
 62		WRITE_ONCE(rb->nest, nest - 1);
 63		goto out;
 64	}
 65
 66again:
 67	/*
 68	 * In order to avoid publishing a head value that goes backwards,
 69	 * we must ensure the load of @rb->head happens after we've
 70	 * incremented @rb->nest.
 71	 *
 72	 * Otherwise we can observe a @rb->head value before one published
 73	 * by an IRQ/NMI happening between the load and the increment.
 74	 */
 75	barrier();
 76	head = local_read(&rb->head);
 77
 78	/*
 79	 * IRQ/NMI can happen here and advance @rb->head, causing our
 80	 * load above to be stale.
 81	 */
 82
 
 
 
 83	/*
 84	 * Since the mmap() consumer (userspace) can run on a different CPU:
 85	 *
 86	 *   kernel				user
 87	 *
 88	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 89	 *			(A)		smp_rmb()	(C)
 90	 *	STORE $data			LOAD $data
 91	 *	smp_wmb()	(B)		smp_mb()	(D)
 92	 *	STORE ->data_head		STORE ->data_tail
 93	 *   }
 94	 *
 95	 * Where A pairs with D, and B pairs with C.
 96	 *
 97	 * In our case (A) is a control dependency that separates the load of
 98	 * the ->data_tail and the stores of $data. In case ->data_tail
 99	 * indicates there is no room in the buffer to store $data we do not.
100	 *
101	 * D needs to be a full barrier since it separates the data READ
102	 * from the tail WRITE.
103	 *
104	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105	 * an RMB is sufficient since it separates two READs.
106	 *
107	 * See perf_output_begin().
108	 */
109	smp_wmb(); /* B, matches C */
110	WRITE_ONCE(rb->user_page->data_head, head);
111
112	/*
113	 * We must publish the head before decrementing the nest count,
114	 * otherwise an IRQ/NMI can publish a more recent head value and our
115	 * write will (temporarily) publish a stale value.
116	 */
117	barrier();
118	WRITE_ONCE(rb->nest, 0);
119
120	/*
121	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122	 * Otherwise we cannot be sure we caught the 'last' nested update.
123	 */
124	barrier();
125	if (unlikely(head != local_read(&rb->head))) {
126		WRITE_ONCE(rb->nest, 1);
127		goto again;
128	}
129
130	if (handle->wakeup != local_read(&rb->wakeup))
131		perf_output_wakeup(handle);
132
133out:
134	preempt_enable();
135}
136
137static __always_inline bool
138ring_buffer_has_space(unsigned long head, unsigned long tail,
139		      unsigned long data_size, unsigned int size,
140		      bool backward)
141{
142	if (!backward)
143		return CIRC_SPACE(head, tail, data_size) >= size;
144	else
145		return CIRC_SPACE(tail, head, data_size) >= size;
146}
147
148static __always_inline int
149__perf_output_begin(struct perf_output_handle *handle,
150		    struct perf_sample_data *data,
151		    struct perf_event *event, unsigned int size,
152		    bool backward)
153{
154	struct perf_buffer *rb;
155	unsigned long tail, offset, head;
156	int have_lost, page_shift;
157	struct {
158		struct perf_event_header header;
159		u64			 id;
160		u64			 lost;
161	} lost_event;
162
163	rcu_read_lock();
164	/*
165	 * For inherited events we send all the output towards the parent.
166	 */
167	if (event->parent)
168		event = event->parent;
169
170	rb = rcu_dereference(event->rb);
171	if (unlikely(!rb))
172		goto out;
173
174	if (unlikely(rb->paused)) {
175		if (rb->nr_pages)
176			local_inc(&rb->lost);
177		goto out;
178	}
179
180	handle->rb    = rb;
181	handle->event = event;
182
183	have_lost = local_read(&rb->lost);
184	if (unlikely(have_lost)) {
185		size += sizeof(lost_event);
186		if (event->attr.sample_id_all)
187			size += event->id_header_size;
188	}
189
190	perf_output_get_handle(handle);
191
192	do {
193		tail = READ_ONCE(rb->user_page->data_tail);
194		offset = head = local_read(&rb->head);
195		if (!rb->overwrite) {
196			if (unlikely(!ring_buffer_has_space(head, tail,
197							    perf_data_size(rb),
198							    size, backward)))
199				goto fail;
200		}
201
202		/*
203		 * The above forms a control dependency barrier separating the
204		 * @tail load above from the data stores below. Since the @tail
205		 * load is required to compute the branch to fail below.
206		 *
207		 * A, matches D; the full memory barrier userspace SHOULD issue
208		 * after reading the data and before storing the new tail
209		 * position.
210		 *
211		 * See perf_output_put_handle().
212		 */
213
214		if (!backward)
215			head += size;
216		else
217			head -= size;
218	} while (local_cmpxchg(&rb->head, offset, head) != offset);
219
220	if (backward) {
221		offset = head;
222		head = (u64)(-head);
223	}
224
225	/*
226	 * We rely on the implied barrier() by local_cmpxchg() to ensure
227	 * none of the data stores below can be lifted up by the compiler.
228	 */
229
230	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
231		local_add(rb->watermark, &rb->wakeup);
232
233	page_shift = PAGE_SHIFT + page_order(rb);
234
235	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
236	offset &= (1UL << page_shift) - 1;
237	handle->addr = rb->data_pages[handle->page] + offset;
238	handle->size = (1UL << page_shift) - offset;
239
240	if (unlikely(have_lost)) {
 
 
241		lost_event.header.size = sizeof(lost_event);
242		lost_event.header.type = PERF_RECORD_LOST;
243		lost_event.header.misc = 0;
244		lost_event.id          = event->id;
245		lost_event.lost        = local_xchg(&rb->lost, 0);
246
247		/* XXX mostly redundant; @data is already fully initializes */
248		perf_event_header__init_id(&lost_event.header, data, event);
249		perf_output_put(handle, lost_event);
250		perf_event__output_id_sample(event, handle, data);
251	}
252
253	return 0;
254
255fail:
256	local_inc(&rb->lost);
257	perf_output_put_handle(handle);
258out:
259	rcu_read_unlock();
260
261	return -ENOSPC;
262}
263
264int perf_output_begin_forward(struct perf_output_handle *handle,
265			      struct perf_sample_data *data,
266			      struct perf_event *event, unsigned int size)
267{
268	return __perf_output_begin(handle, data, event, size, false);
269}
270
271int perf_output_begin_backward(struct perf_output_handle *handle,
272			       struct perf_sample_data *data,
273			       struct perf_event *event, unsigned int size)
274{
275	return __perf_output_begin(handle, data, event, size, true);
276}
277
278int perf_output_begin(struct perf_output_handle *handle,
279		      struct perf_sample_data *data,
280		      struct perf_event *event, unsigned int size)
281{
282
283	return __perf_output_begin(handle, data, event, size,
284				   unlikely(is_write_backward(event)));
285}
286
287unsigned int perf_output_copy(struct perf_output_handle *handle,
288		      const void *buf, unsigned int len)
289{
290	return __output_copy(handle, buf, len);
291}
292
293unsigned int perf_output_skip(struct perf_output_handle *handle,
294			      unsigned int len)
295{
296	return __output_skip(handle, NULL, len);
297}
298
299void perf_output_end(struct perf_output_handle *handle)
300{
301	perf_output_put_handle(handle);
302	rcu_read_unlock();
303}
304
305static void
306ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
307{
308	long max_size = perf_data_size(rb);
309
310	if (watermark)
311		rb->watermark = min(max_size, watermark);
312
313	if (!rb->watermark)
314		rb->watermark = max_size / 2;
315
316	if (flags & RING_BUFFER_WRITABLE)
317		rb->overwrite = 0;
318	else
319		rb->overwrite = 1;
320
321	refcount_set(&rb->refcount, 1);
322
323	INIT_LIST_HEAD(&rb->event_list);
324	spin_lock_init(&rb->event_lock);
325
326	/*
327	 * perf_output_begin() only checks rb->paused, therefore
328	 * rb->paused must be true if we have no pages for output.
329	 */
330	if (!rb->nr_pages)
331		rb->paused = 1;
332}
333
334void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
335{
336	/*
337	 * OVERWRITE is determined by perf_aux_output_end() and can't
338	 * be passed in directly.
339	 */
340	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
341		return;
342
343	handle->aux_flags |= flags;
344}
345EXPORT_SYMBOL_GPL(perf_aux_output_flag);
346
347/*
348 * This is called before hardware starts writing to the AUX area to
349 * obtain an output handle and make sure there's room in the buffer.
350 * When the capture completes, call perf_aux_output_end() to commit
351 * the recorded data to the buffer.
352 *
353 * The ordering is similar to that of perf_output_{begin,end}, with
354 * the exception of (B), which should be taken care of by the pmu
355 * driver, since ordering rules will differ depending on hardware.
356 *
357 * Call this from pmu::start(); see the comment in perf_aux_output_end()
358 * about its use in pmu callbacks. Both can also be called from the PMI
359 * handler if needed.
360 */
361void *perf_aux_output_begin(struct perf_output_handle *handle,
362			    struct perf_event *event)
363{
364	struct perf_event *output_event = event;
365	unsigned long aux_head, aux_tail;
366	struct perf_buffer *rb;
367	unsigned int nest;
368
369	if (output_event->parent)
370		output_event = output_event->parent;
371
372	/*
373	 * Since this will typically be open across pmu::add/pmu::del, we
374	 * grab ring_buffer's refcount instead of holding rcu read lock
375	 * to make sure it doesn't disappear under us.
376	 */
377	rb = ring_buffer_get(output_event);
378	if (!rb)
379		return NULL;
380
381	if (!rb_has_aux(rb))
382		goto err;
383
384	/*
385	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
386	 * about to get freed, so we leave immediately.
387	 *
388	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
389	 * the same order, see perf_mmap_close. Otherwise we end up freeing
390	 * aux pages in this path, which is a bug, because in_atomic().
391	 */
392	if (!atomic_read(&rb->aux_mmap_count))
393		goto err;
394
395	if (!refcount_inc_not_zero(&rb->aux_refcount))
396		goto err;
397
398	nest = READ_ONCE(rb->aux_nest);
399	/*
400	 * Nesting is not supported for AUX area, make sure nested
401	 * writers are caught early
402	 */
403	if (WARN_ON_ONCE(nest))
404		goto err_put;
405
406	WRITE_ONCE(rb->aux_nest, nest + 1);
407
408	aux_head = rb->aux_head;
409
410	handle->rb = rb;
411	handle->event = event;
412	handle->head = aux_head;
413	handle->size = 0;
414	handle->aux_flags = 0;
415
416	/*
417	 * In overwrite mode, AUX data stores do not depend on aux_tail,
418	 * therefore (A) control dependency barrier does not exist. The
419	 * (B) <-> (C) ordering is still observed by the pmu driver.
420	 */
421	if (!rb->aux_overwrite) {
422		aux_tail = READ_ONCE(rb->user_page->aux_tail);
423		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
424		if (aux_head - aux_tail < perf_aux_size(rb))
425			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
426
427		/*
428		 * handle->size computation depends on aux_tail load; this forms a
429		 * control dependency barrier separating aux_tail load from aux data
430		 * store that will be enabled on successful return
431		 */
432		if (!handle->size) { /* A, matches D */
433			event->pending_disable = smp_processor_id();
434			perf_output_wakeup(handle);
435			WRITE_ONCE(rb->aux_nest, 0);
436			goto err_put;
437		}
438	}
439
440	return handle->rb->aux_priv;
441
442err_put:
443	/* can't be last */
444	rb_free_aux(rb);
445
446err:
447	ring_buffer_put(rb);
448	handle->event = NULL;
449
450	return NULL;
451}
452EXPORT_SYMBOL_GPL(perf_aux_output_begin);
453
454static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
455{
456	if (rb->aux_overwrite)
457		return false;
458
459	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
460		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
461		return true;
462	}
463
464	return false;
465}
466
467/*
468 * Commit the data written by hardware into the ring buffer by adjusting
469 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
470 * pmu driver's responsibility to observe ordering rules of the hardware,
471 * so that all the data is externally visible before this is called.
472 *
473 * Note: this has to be called from pmu::stop() callback, as the assumption
474 * of the AUX buffer management code is that after pmu::stop(), the AUX
475 * transaction must be stopped and therefore drop the AUX reference count.
476 */
477void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
478{
479	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
480	struct perf_buffer *rb = handle->rb;
481	unsigned long aux_head;
482
483	/* in overwrite mode, driver provides aux_head via handle */
484	if (rb->aux_overwrite) {
485		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
486
487		aux_head = handle->head;
488		rb->aux_head = aux_head;
489	} else {
490		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
491
492		aux_head = rb->aux_head;
493		rb->aux_head += size;
494	}
495
496	/*
497	 * Only send RECORD_AUX if we have something useful to communicate
498	 *
499	 * Note: the OVERWRITE records by themselves are not considered
500	 * useful, as they don't communicate any *new* information,
501	 * aside from the short-lived offset, that becomes history at
502	 * the next event sched-in and therefore isn't useful.
503	 * The userspace that needs to copy out AUX data in overwrite
504	 * mode should know to use user_page::aux_head for the actual
505	 * offset. So, from now on we don't output AUX records that
506	 * have *only* OVERWRITE flag set.
507	 */
508	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
509		perf_event_aux_event(handle->event, aux_head, size,
510				     handle->aux_flags);
511
512	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
513	if (rb_need_aux_wakeup(rb))
514		wakeup = true;
515
516	if (wakeup) {
517		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
518			handle->event->pending_disable = smp_processor_id();
519		perf_output_wakeup(handle);
520	}
521
522	handle->event = NULL;
523
524	WRITE_ONCE(rb->aux_nest, 0);
525	/* can't be last */
526	rb_free_aux(rb);
527	ring_buffer_put(rb);
528}
529EXPORT_SYMBOL_GPL(perf_aux_output_end);
530
531/*
532 * Skip over a given number of bytes in the AUX buffer, due to, for example,
533 * hardware's alignment constraints.
534 */
535int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
536{
537	struct perf_buffer *rb = handle->rb;
538
539	if (size > handle->size)
540		return -ENOSPC;
541
542	rb->aux_head += size;
543
544	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
545	if (rb_need_aux_wakeup(rb)) {
546		perf_output_wakeup(handle);
547		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
548	}
549
550	handle->head = rb->aux_head;
551	handle->size -= size;
552
553	return 0;
554}
555EXPORT_SYMBOL_GPL(perf_aux_output_skip);
556
557void *perf_get_aux(struct perf_output_handle *handle)
558{
559	/* this is only valid between perf_aux_output_begin and *_end */
560	if (!handle->event)
561		return NULL;
562
563	return handle->rb->aux_priv;
564}
565EXPORT_SYMBOL_GPL(perf_get_aux);
566
567/*
568 * Copy out AUX data from an AUX handle.
569 */
570long perf_output_copy_aux(struct perf_output_handle *aux_handle,
571			  struct perf_output_handle *handle,
572			  unsigned long from, unsigned long to)
573{
574	struct perf_buffer *rb = aux_handle->rb;
575	unsigned long tocopy, remainder, len = 0;
576	void *addr;
577
578	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
579	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
580
581	do {
582		tocopy = PAGE_SIZE - offset_in_page(from);
583		if (to > from)
584			tocopy = min(tocopy, to - from);
585		if (!tocopy)
586			break;
587
588		addr = rb->aux_pages[from >> PAGE_SHIFT];
589		addr += offset_in_page(from);
590
591		remainder = perf_output_copy(handle, addr, tocopy);
592		if (remainder)
593			return -EFAULT;
594
595		len += tocopy;
596		from += tocopy;
597		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
598	} while (to != from);
599
600	return len;
601}
602
603#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
604
605static struct page *rb_alloc_aux_page(int node, int order)
606{
607	struct page *page;
608
609	if (order > MAX_ORDER)
610		order = MAX_ORDER;
611
612	do {
613		page = alloc_pages_node(node, PERF_AUX_GFP, order);
614	} while (!page && order--);
615
616	if (page && order) {
617		/*
618		 * Communicate the allocation size to the driver:
619		 * if we managed to secure a high-order allocation,
620		 * set its first page's private to this order;
621		 * !PagePrivate(page) means it's just a normal page.
622		 */
623		split_page(page, order);
624		SetPagePrivate(page);
625		set_page_private(page, order);
626	}
627
628	return page;
629}
630
631static void rb_free_aux_page(struct perf_buffer *rb, int idx)
632{
633	struct page *page = virt_to_page(rb->aux_pages[idx]);
634
635	ClearPagePrivate(page);
636	page->mapping = NULL;
637	__free_page(page);
638}
639
640static void __rb_free_aux(struct perf_buffer *rb)
641{
642	int pg;
643
644	/*
645	 * Should never happen, the last reference should be dropped from
646	 * perf_mmap_close() path, which first stops aux transactions (which
647	 * in turn are the atomic holders of aux_refcount) and then does the
648	 * last rb_free_aux().
649	 */
650	WARN_ON_ONCE(in_atomic());
651
652	if (rb->aux_priv) {
653		rb->free_aux(rb->aux_priv);
654		rb->free_aux = NULL;
655		rb->aux_priv = NULL;
656	}
657
658	if (rb->aux_nr_pages) {
659		for (pg = 0; pg < rb->aux_nr_pages; pg++)
660			rb_free_aux_page(rb, pg);
661
662		kfree(rb->aux_pages);
663		rb->aux_nr_pages = 0;
664	}
665}
666
667int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
668		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
669{
670	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
671	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
672	int ret = -ENOMEM, max_order;
673
674	if (!has_aux(event))
675		return -EOPNOTSUPP;
676
677	if (!overwrite) {
678		/*
679		 * Watermark defaults to half the buffer, and so does the
680		 * max_order, to aid PMU drivers in double buffering.
681		 */
682		if (!watermark)
683			watermark = nr_pages << (PAGE_SHIFT - 1);
684
685		/*
686		 * Use aux_watermark as the basis for chunking to
687		 * help PMU drivers honor the watermark.
688		 */
689		max_order = get_order(watermark);
690	} else {
691		/*
692		 * We need to start with the max_order that fits in nr_pages,
693		 * not the other way around, hence ilog2() and not get_order.
694		 */
695		max_order = ilog2(nr_pages);
696		watermark = 0;
697	}
698
699	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
700				     node);
701	if (!rb->aux_pages)
702		return -ENOMEM;
703
704	rb->free_aux = event->pmu->free_aux;
705	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
706		struct page *page;
707		int last, order;
708
709		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
710		page = rb_alloc_aux_page(node, order);
711		if (!page)
712			goto out;
713
714		for (last = rb->aux_nr_pages + (1 << page_private(page));
715		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
716			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
717	}
718
719	/*
720	 * In overwrite mode, PMUs that don't support SG may not handle more
721	 * than one contiguous allocation, since they rely on PMI to do double
722	 * buffering. In this case, the entire buffer has to be one contiguous
723	 * chunk.
724	 */
725	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
726	    overwrite) {
727		struct page *page = virt_to_page(rb->aux_pages[0]);
728
729		if (page_private(page) != max_order)
730			goto out;
731	}
732
733	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
734					     overwrite);
735	if (!rb->aux_priv)
736		goto out;
737
738	ret = 0;
739
740	/*
741	 * aux_pages (and pmu driver's private data, aux_priv) will be
742	 * referenced in both producer's and consumer's contexts, thus
743	 * we keep a refcount here to make sure either of the two can
744	 * reference them safely.
745	 */
746	refcount_set(&rb->aux_refcount, 1);
747
748	rb->aux_overwrite = overwrite;
749	rb->aux_watermark = watermark;
750
751out:
752	if (!ret)
753		rb->aux_pgoff = pgoff;
754	else
755		__rb_free_aux(rb);
756
757	return ret;
758}
759
760void rb_free_aux(struct perf_buffer *rb)
761{
762	if (refcount_dec_and_test(&rb->aux_refcount))
763		__rb_free_aux(rb);
764}
765
766#ifndef CONFIG_PERF_USE_VMALLOC
767
768/*
769 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
770 */
771
772static struct page *
773__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
774{
775	if (pgoff > rb->nr_pages)
776		return NULL;
777
778	if (pgoff == 0)
779		return virt_to_page(rb->user_page);
780
781	return virt_to_page(rb->data_pages[pgoff - 1]);
782}
783
784static void *perf_mmap_alloc_page(int cpu)
785{
786	struct page *page;
787	int node;
788
789	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
790	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
791	if (!page)
792		return NULL;
793
794	return page_address(page);
795}
796
797static void perf_mmap_free_page(void *addr)
798{
799	struct page *page = virt_to_page(addr);
800
801	page->mapping = NULL;
802	__free_page(page);
803}
804
805struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
806{
807	struct perf_buffer *rb;
808	unsigned long size;
809	int i, node;
810
811	size = sizeof(struct perf_buffer);
812	size += nr_pages * sizeof(void *);
813
814	if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
815		goto fail;
816
817	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
818	rb = kzalloc_node(size, GFP_KERNEL, node);
819	if (!rb)
820		goto fail;
821
822	rb->user_page = perf_mmap_alloc_page(cpu);
823	if (!rb->user_page)
824		goto fail_user_page;
825
826	for (i = 0; i < nr_pages; i++) {
827		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
828		if (!rb->data_pages[i])
829			goto fail_data_pages;
830	}
831
832	rb->nr_pages = nr_pages;
833
834	ring_buffer_init(rb, watermark, flags);
835
836	return rb;
837
838fail_data_pages:
839	for (i--; i >= 0; i--)
840		perf_mmap_free_page(rb->data_pages[i]);
841
842	perf_mmap_free_page(rb->user_page);
843
844fail_user_page:
845	kfree(rb);
846
847fail:
848	return NULL;
849}
850
851void rb_free(struct perf_buffer *rb)
 
 
 
 
 
 
 
 
852{
853	int i;
854
855	perf_mmap_free_page(rb->user_page);
856	for (i = 0; i < rb->nr_pages; i++)
857		perf_mmap_free_page(rb->data_pages[i]);
858	kfree(rb);
859}
860
861#else
862static int data_page_nr(struct perf_buffer *rb)
863{
864	return rb->nr_pages << page_order(rb);
865}
866
867static struct page *
868__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
869{
870	/* The '>' counts in the user page. */
871	if (pgoff > data_page_nr(rb))
872		return NULL;
873
874	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
875}
876
877static void perf_mmap_unmark_page(void *addr)
878{
879	struct page *page = vmalloc_to_page(addr);
880
881	page->mapping = NULL;
882}
883
884static void rb_free_work(struct work_struct *work)
885{
886	struct perf_buffer *rb;
887	void *base;
888	int i, nr;
889
890	rb = container_of(work, struct perf_buffer, work);
891	nr = data_page_nr(rb);
892
893	base = rb->user_page;
894	/* The '<=' counts in the user page. */
895	for (i = 0; i <= nr; i++)
896		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
897
898	vfree(base);
899	kfree(rb);
900}
901
902void rb_free(struct perf_buffer *rb)
903{
904	schedule_work(&rb->work);
905}
906
907struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
908{
909	struct perf_buffer *rb;
910	unsigned long size;
911	void *all_buf;
912	int node;
913
914	size = sizeof(struct perf_buffer);
915	size += sizeof(void *);
916
917	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
918	rb = kzalloc_node(size, GFP_KERNEL, node);
919	if (!rb)
920		goto fail;
921
922	INIT_WORK(&rb->work, rb_free_work);
923
924	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
925	if (!all_buf)
926		goto fail_all_buf;
927
928	rb->user_page = all_buf;
929	rb->data_pages[0] = all_buf + PAGE_SIZE;
930	if (nr_pages) {
931		rb->nr_pages = 1;
932		rb->page_order = ilog2(nr_pages);
933	}
934
935	ring_buffer_init(rb, watermark, flags);
936
937	return rb;
938
939fail_all_buf:
940	kfree(rb);
941
942fail:
943	return NULL;
944}
945
946#endif
947
948struct page *
949perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
950{
951	if (rb->aux_nr_pages) {
952		/* above AUX space */
953		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
954			return NULL;
955
956		/* AUX space */
957		if (pgoff >= rb->aux_pgoff) {
958			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
959			return virt_to_page(rb->aux_pages[aux_pgoff]);
960		}
961	}
962
963	return __perf_mmap_to_page(rb, pgoff);
964}