Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (!tty)
 185		return;
 186	if (tty->dev)
 187		put_device(tty->dev);
 188	kfree(tty->write_buf);
 189	tty->magic = 0xDEADDEAD;
 190	kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195	return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 206	file->private_data = priv;
 207
 208	return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214	struct tty_file_private *priv = file->private_data;
 215
 216	priv->tty = tty;
 217	priv->file = file;
 218
 219	spin_lock(&tty_files_lock);
 220	list_add(&priv->list, &tty->tty_files);
 221	spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232	struct tty_file_private *priv = file->private_data;
 233
 234	file->private_data = NULL;
 235	kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241	struct tty_file_private *priv = file->private_data;
 
 242
 243	spin_lock(&tty_files_lock);
 244	list_del(&priv->list);
 245	spin_unlock(&tty_files_lock);
 246	tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *	tty_name	-	return tty naming
 254 *	@tty: tty structure
 255 *	@buf: buffer for output
 256 *
 257 *	Convert a tty structure into a name. The name reflects the kernel
 258 *	naming policy and if udev is in use may not reflect user space
 259 *
 260 *	Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266		strcpy(buf, "NULL tty");
 267	else
 268		strcpy(buf, tty->name);
 269	return buf;
 270}
 271
 272EXPORT_SYMBOL(tty_name);
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 275			      const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278	if (!tty) {
 279		printk(KERN_WARNING
 280			"null TTY for (%d:%d) in %s\n",
 281			imajor(inode), iminor(inode), routine);
 282		return 1;
 283	}
 284	if (tty->magic != TTY_MAGIC) {
 285		printk(KERN_WARNING
 286			"bad magic number for tty struct (%d:%d) in %s\n",
 287			imajor(inode), iminor(inode), routine);
 288		return 1;
 289	}
 290#endif
 291	return 0;
 292}
 293
 
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 295{
 296#ifdef CHECK_TTY_COUNT
 297	struct list_head *p;
 298	int count = 0;
 299
 300	spin_lock(&tty_files_lock);
 301	list_for_each(p, &tty->tty_files) {
 302		count++;
 303	}
 304	spin_unlock(&tty_files_lock);
 305	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 307	    tty->link && tty->link->count)
 308		count++;
 309	if (tty->count != count) {
 310		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311				    "!= #fd's(%d) in %s\n",
 312		       tty->name, tty->count, count, routine);
 313		return count;
 314	}
 315#endif
 316	return 0;
 317}
 318
 319/**
 320 *	get_tty_driver		-	find device of a tty
 321 *	@dev_t: device identifier
 322 *	@index: returns the index of the tty
 323 *
 324 *	This routine returns a tty driver structure, given a device number
 325 *	and also passes back the index number.
 326 *
 327 *	Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332	struct tty_driver *p;
 333
 334	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335		dev_t base = MKDEV(p->major, p->minor_start);
 336		if (device < base || device >= base + p->num)
 337			continue;
 338		*index = device - base;
 339		return tty_driver_kref_get(p);
 340	}
 341	return NULL;
 342}
 343
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *	tty_find_polling_driver	-	find device of a polled tty
 348 *	@name: name string to match
 349 *	@line: pointer to resulting tty line nr
 350 *
 351 *	This routine returns a tty driver structure, given a name
 352 *	and the condition that the tty driver is capable of polled
 353 *	operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357	struct tty_driver *p, *res = NULL;
 358	int tty_line = 0;
 359	int len;
 360	char *str, *stp;
 361
 362	for (str = name; *str; str++)
 363		if ((*str >= '0' && *str <= '9') || *str == ',')
 364			break;
 365	if (!*str)
 366		return NULL;
 367
 368	len = str - name;
 369	tty_line = simple_strtoul(str, &str, 10);
 370
 371	mutex_lock(&tty_mutex);
 372	/* Search through the tty devices to look for a match */
 373	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374		if (strncmp(name, p->name, len) != 0)
 375			continue;
 376		stp = str;
 377		if (*stp == ',')
 378			stp++;
 379		if (*stp == '\0')
 380			stp = NULL;
 381
 382		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384			res = tty_driver_kref_get(p);
 385			*line = tty_line;
 386			break;
 387		}
 388	}
 389	mutex_unlock(&tty_mutex);
 390
 391	return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 
 
 
 
 
 
 396/**
 397 *	tty_check_change	-	check for POSIX terminal changes
 398 *	@tty: tty to check
 399 *
 400 *	If we try to write to, or set the state of, a terminal and we're
 401 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *	Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409	unsigned long flags;
 
 410	int ret = 0;
 411
 412	if (current->signal->tty != tty)
 413		return 0;
 414
 415	spin_lock_irqsave(&tty->ctrl_lock, flags);
 
 416
 417	if (!tty->pgrp) {
 418		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419		goto out_unlock;
 420	}
 421	if (task_pgrp(current) == tty->pgrp)
 422		goto out_unlock;
 423	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424	if (is_ignored(SIGTTOU))
 425		goto out;
 426	if (is_current_pgrp_orphaned()) {
 427		ret = -EIO;
 428		goto out;
 
 
 
 
 
 
 
 429	}
 430	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431	set_thread_flag(TIF_SIGPENDING);
 432	ret = -ERESTARTSYS;
 433out:
 434	return ret;
 435out_unlock:
 436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437	return ret;
 438}
 439
 
 
 
 
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443				size_t count, loff_t *ppos)
 444{
 445	return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449				 size_t count, loff_t *ppos)
 450{
 451	return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461		unsigned long arg)
 462{
 463	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467				     unsigned int cmd, unsigned long arg)
 468{
 469	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 
 
 
 
 
 472static const struct file_operations tty_fops = {
 473	.llseek		= no_llseek,
 474	.read		= tty_read,
 475	.write		= tty_write,
 476	.poll		= tty_poll,
 477	.unlocked_ioctl	= tty_ioctl,
 478	.compat_ioctl	= tty_compat_ioctl,
 479	.open		= tty_open,
 480	.release	= tty_release,
 481	.fasync		= tty_fasync,
 482};
 483
 484static const struct file_operations console_fops = {
 485	.llseek		= no_llseek,
 486	.read		= tty_read,
 487	.write		= redirected_tty_write,
 488	.poll		= tty_poll,
 489	.unlocked_ioctl	= tty_ioctl,
 490	.compat_ioctl	= tty_compat_ioctl,
 491	.open		= tty_open,
 492	.release	= tty_release,
 493	.fasync		= tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497	.llseek		= no_llseek,
 498	.read		= hung_up_tty_read,
 499	.write		= hung_up_tty_write,
 500	.poll		= hung_up_tty_poll,
 501	.unlocked_ioctl	= hung_up_tty_ioctl,
 502	.compat_ioctl	= hung_up_tty_compat_ioctl,
 503	.release	= tty_release,
 
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509/**
 510 *	tty_wakeup	-	request more data
 511 *	@tty: terminal
 512 *
 513 *	Internal and external helper for wakeups of tty. This function
 514 *	informs the line discipline if present that the driver is ready
 515 *	to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520	struct tty_ldisc *ld;
 521
 522	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523		ld = tty_ldisc_ref(tty);
 524		if (ld) {
 525			if (ld->ops->write_wakeup)
 526				ld->ops->write_wakeup(tty);
 527			tty_ldisc_deref(ld);
 528		}
 529	}
 530	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *	tty_signal_session_leader	- sends SIGHUP to session leader
 537 *	@tty		controlling tty
 538 *	@exit_session	if non-zero, signal all foreground group processes
 539 *
 540 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *	Optionally, signal all processes in the foreground process group.
 542 *
 543 *	Returns the number of processes in the session with this tty
 544 *	as their controlling terminal. This value is used to drop
 545 *	tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549	struct task_struct *p;
 550	int refs = 0;
 551	struct pid *tty_pgrp = NULL;
 552
 553	read_lock(&tasklist_lock);
 554	if (tty->session) {
 555		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556			spin_lock_irq(&p->sighand->siglock);
 557			if (p->signal->tty == tty) {
 558				p->signal->tty = NULL;
 559				/* We defer the dereferences outside fo
 560				   the tasklist lock */
 561				refs++;
 562			}
 563			if (!p->signal->leader) {
 564				spin_unlock_irq(&p->sighand->siglock);
 565				continue;
 566			}
 567			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570			spin_lock(&tty->ctrl_lock);
 571			tty_pgrp = get_pid(tty->pgrp);
 572			if (tty->pgrp)
 573				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574			spin_unlock(&tty->ctrl_lock);
 575			spin_unlock_irq(&p->sighand->siglock);
 576		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577	}
 578	read_unlock(&tasklist_lock);
 579
 580	if (tty_pgrp) {
 581		if (exit_session)
 582			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583		put_pid(tty_pgrp);
 584	}
 585
 586	return refs;
 587}
 588
 589/**
 590 *	__tty_hangup		-	actual handler for hangup events
 591 *	@work: tty device
 592 *
 593 *	This can be called by a "kworker" kernel thread.  That is process
 594 *	synchronous but doesn't hold any locks, so we need to make sure we
 595 *	have the appropriate locks for what we're doing.
 596 *
 597 *	The hangup event clears any pending redirections onto the hung up
 598 *	device. It ensures future writes will error and it does the needed
 599 *	line discipline hangup and signal delivery. The tty object itself
 600 *	remains intact.
 601 *
 602 *	Locking:
 603 *		BTM
 604 *		  redirect lock for undoing redirection
 605 *		  file list lock for manipulating list of ttys
 606 *		  tty_ldiscs_lock from called functions
 607 *		  termios_rwsem resetting termios data
 608 *		  tasklist_lock to walk task list for hangup event
 609 *		    ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613	struct file *cons_filp = NULL;
 614	struct file *filp, *f = NULL;
 615	struct tty_file_private *priv;
 616	int    closecount = 0, n;
 617	int refs;
 618
 619	if (!tty)
 620		return;
 621
 622
 623	spin_lock(&redirect_lock);
 624	if (redirect && file_tty(redirect) == tty) {
 625		f = redirect;
 626		redirect = NULL;
 627	}
 628	spin_unlock(&redirect_lock);
 629
 630	tty_lock(tty);
 631
 632	if (test_bit(TTY_HUPPED, &tty->flags)) {
 633		tty_unlock(tty);
 634		return;
 635	}
 636
 637	/* some functions below drop BTM, so we need this bit */
 638	set_bit(TTY_HUPPING, &tty->flags);
 639
 640	/* inuse_filps is protected by the single tty lock,
 641	   this really needs to change if we want to flush the
 642	   workqueue with the lock held */
 643	check_tty_count(tty, "tty_hangup");
 644
 645	spin_lock(&tty_files_lock);
 646	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 647	list_for_each_entry(priv, &tty->tty_files, list) {
 648		filp = priv->file;
 649		if (filp->f_op->write == redirected_tty_write)
 650			cons_filp = filp;
 651		if (filp->f_op->write != tty_write)
 652			continue;
 653		closecount++;
 654		__tty_fasync(-1, filp, 0);	/* can't block */
 655		filp->f_op = &hung_up_tty_fops;
 656	}
 657	spin_unlock(&tty_files_lock);
 658
 659	refs = tty_signal_session_leader(tty, exit_session);
 660	/* Account for the p->signal references we killed */
 661	while (refs--)
 662		tty_kref_put(tty);
 663
 664	/*
 665	 * it drops BTM and thus races with reopen
 666	 * we protect the race by TTY_HUPPING
 667	 */
 668	tty_ldisc_hangup(tty);
 669
 670	spin_lock_irq(&tty->ctrl_lock);
 671	clear_bit(TTY_THROTTLED, &tty->flags);
 672	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 673	put_pid(tty->session);
 674	put_pid(tty->pgrp);
 675	tty->session = NULL;
 676	tty->pgrp = NULL;
 677	tty->ctrl_status = 0;
 678	spin_unlock_irq(&tty->ctrl_lock);
 679
 680	/*
 681	 * If one of the devices matches a console pointer, we
 682	 * cannot just call hangup() because that will cause
 683	 * tty->count and state->count to go out of sync.
 684	 * So we just call close() the right number of times.
 685	 */
 686	if (cons_filp) {
 687		if (tty->ops->close)
 688			for (n = 0; n < closecount; n++)
 689				tty->ops->close(tty, cons_filp);
 690	} else if (tty->ops->hangup)
 691		(tty->ops->hangup)(tty);
 692	/*
 693	 * We don't want to have driver/ldisc interactions beyond
 694	 * the ones we did here. The driver layer expects no
 695	 * calls after ->hangup() from the ldisc side. However we
 696	 * can't yet guarantee all that.
 697	 */
 698	set_bit(TTY_HUPPED, &tty->flags);
 699	clear_bit(TTY_HUPPING, &tty->flags);
 700
 701	tty_unlock(tty);
 702
 703	if (f)
 704		fput(f);
 705}
 706
 707static void do_tty_hangup(struct work_struct *work)
 708{
 709	struct tty_struct *tty =
 710		container_of(work, struct tty_struct, hangup_work);
 711
 712	__tty_hangup(tty, 0);
 713}
 714
 715/**
 716 *	tty_hangup		-	trigger a hangup event
 717 *	@tty: tty to hangup
 718 *
 719 *	A carrier loss (virtual or otherwise) has occurred on this like
 720 *	schedule a hangup sequence to run after this event.
 721 */
 722
 723void tty_hangup(struct tty_struct *tty)
 724{
 725#ifdef TTY_DEBUG_HANGUP
 726	char	buf[64];
 727	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 728#endif
 729	schedule_work(&tty->hangup_work);
 730}
 731
 732EXPORT_SYMBOL(tty_hangup);
 733
 734/**
 735 *	tty_vhangup		-	process vhangup
 736 *	@tty: tty to hangup
 737 *
 738 *	The user has asked via system call for the terminal to be hung up.
 739 *	We do this synchronously so that when the syscall returns the process
 740 *	is complete. That guarantee is necessary for security reasons.
 741 */
 742
 743void tty_vhangup(struct tty_struct *tty)
 744{
 745#ifdef TTY_DEBUG_HANGUP
 746	char	buf[64];
 747
 748	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 749#endif
 750	__tty_hangup(tty, 0);
 751}
 752
 753EXPORT_SYMBOL(tty_vhangup);
 754
 755
 756/**
 757 *	tty_vhangup_self	-	process vhangup for own ctty
 758 *
 759 *	Perform a vhangup on the current controlling tty
 760 */
 761
 762void tty_vhangup_self(void)
 763{
 764	struct tty_struct *tty;
 765
 766	tty = get_current_tty();
 767	if (tty) {
 768		tty_vhangup(tty);
 769		tty_kref_put(tty);
 770	}
 771}
 772
 773/**
 774 *	tty_vhangup_session		-	hangup session leader exit
 775 *	@tty: tty to hangup
 776 *
 777 *	The session leader is exiting and hanging up its controlling terminal.
 778 *	Every process in the foreground process group is signalled SIGHUP.
 779 *
 780 *	We do this synchronously so that when the syscall returns the process
 781 *	is complete. That guarantee is necessary for security reasons.
 782 */
 783
 784static void tty_vhangup_session(struct tty_struct *tty)
 785{
 786#ifdef TTY_DEBUG_HANGUP
 787	char	buf[64];
 788
 789	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 790#endif
 791	__tty_hangup(tty, 1);
 792}
 793
 794/**
 795 *	tty_hung_up_p		-	was tty hung up
 796 *	@filp: file pointer of tty
 797 *
 798 *	Return true if the tty has been subject to a vhangup or a carrier
 799 *	loss
 800 */
 801
 802int tty_hung_up_p(struct file *filp)
 803{
 804	return (filp->f_op == &hung_up_tty_fops);
 805}
 806
 807EXPORT_SYMBOL(tty_hung_up_p);
 808
 809static void session_clear_tty(struct pid *session)
 810{
 811	struct task_struct *p;
 812	do_each_pid_task(session, PIDTYPE_SID, p) {
 813		proc_clear_tty(p);
 814	} while_each_pid_task(session, PIDTYPE_SID, p);
 815}
 816
 817/**
 818 *	disassociate_ctty	-	disconnect controlling tty
 819 *	@on_exit: true if exiting so need to "hang up" the session
 820 *
 821 *	This function is typically called only by the session leader, when
 822 *	it wants to disassociate itself from its controlling tty.
 823 *
 824 *	It performs the following functions:
 825 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 826 * 	(2)  Clears the tty from being controlling the session
 827 * 	(3)  Clears the controlling tty for all processes in the
 828 * 		session group.
 829 *
 830 *	The argument on_exit is set to 1 if called when a process is
 831 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 832 *
 833 *	Locking:
 834 *		BTM is taken for hysterical raisins, and held when
 835 *		  called from no_tty().
 836 *		  tty_mutex is taken to protect tty
 837 *		  ->siglock is taken to protect ->signal/->sighand
 838 *		  tasklist_lock is taken to walk process list for sessions
 839 *		    ->siglock is taken to protect ->signal/->sighand
 840 */
 841
 842void disassociate_ctty(int on_exit)
 843{
 844	struct tty_struct *tty;
 845
 846	if (!current->signal->leader)
 847		return;
 848
 849	tty = get_current_tty();
 850	if (tty) {
 851		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 852			tty_vhangup_session(tty);
 853		} else {
 854			struct pid *tty_pgrp = tty_get_pgrp(tty);
 855			if (tty_pgrp) {
 856				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 857				if (!on_exit)
 858					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 859				put_pid(tty_pgrp);
 860			}
 861		}
 862		tty_kref_put(tty);
 863
 864	} else if (on_exit) {
 865		struct pid *old_pgrp;
 866		spin_lock_irq(&current->sighand->siglock);
 867		old_pgrp = current->signal->tty_old_pgrp;
 868		current->signal->tty_old_pgrp = NULL;
 869		spin_unlock_irq(&current->sighand->siglock);
 870		if (old_pgrp) {
 871			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 872			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 873			put_pid(old_pgrp);
 874		}
 875		return;
 876	}
 877
 878	spin_lock_irq(&current->sighand->siglock);
 879	put_pid(current->signal->tty_old_pgrp);
 880	current->signal->tty_old_pgrp = NULL;
 881
 882	tty = tty_kref_get(current->signal->tty);
 883	if (tty) {
 884		unsigned long flags;
 885		spin_lock_irqsave(&tty->ctrl_lock, flags);
 886		put_pid(tty->session);
 887		put_pid(tty->pgrp);
 888		tty->session = NULL;
 889		tty->pgrp = NULL;
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		tty_kref_put(tty);
 892	} else {
 893#ifdef TTY_DEBUG_HANGUP
 894		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 895		       " = NULL", tty);
 896#endif
 897	}
 898
 899	spin_unlock_irq(&current->sighand->siglock);
 900	/* Now clear signal->tty under the lock */
 901	read_lock(&tasklist_lock);
 902	session_clear_tty(task_session(current));
 903	read_unlock(&tasklist_lock);
 904}
 905
 906/**
 907 *
 908 *	no_tty	- Ensure the current process does not have a controlling tty
 909 */
 910void no_tty(void)
 911{
 912	/* FIXME: Review locking here. The tty_lock never covered any race
 913	   between a new association and proc_clear_tty but possible we need
 914	   to protect against this anyway */
 915	struct task_struct *tsk = current;
 916	disassociate_ctty(0);
 917	proc_clear_tty(tsk);
 918}
 919
 920
 921/**
 922 *	stop_tty	-	propagate flow control
 923 *	@tty: tty to stop
 924 *
 925 *	Perform flow control to the driver. For PTY/TTY pairs we
 926 *	must also propagate the TIOCKPKT status. May be called
 927 *	on an already stopped device and will not re-call the driver
 928 *	method.
 929 *
 930 *	This functionality is used by both the line disciplines for
 931 *	halting incoming flow and by the driver. It may therefore be
 932 *	called from any context, may be under the tty atomic_write_lock
 933 *	but not always.
 934 *
 935 *	Locking:
 936 *		Uses the tty control lock internally
 937 */
 938
 939void stop_tty(struct tty_struct *tty)
 940{
 941	unsigned long flags;
 942	spin_lock_irqsave(&tty->ctrl_lock, flags);
 943	if (tty->stopped) {
 944		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 945		return;
 946	}
 947	tty->stopped = 1;
 948	if (tty->link && tty->link->packet) {
 949		tty->ctrl_status &= ~TIOCPKT_START;
 950		tty->ctrl_status |= TIOCPKT_STOP;
 951		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 952	}
 953	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 954	if (tty->ops->stop)
 955		(tty->ops->stop)(tty);
 956}
 957
 
 
 
 
 
 
 
 
 958EXPORT_SYMBOL(stop_tty);
 959
 960/**
 961 *	start_tty	-	propagate flow control
 962 *	@tty: tty to start
 963 *
 964 *	Start a tty that has been stopped if at all possible. Perform
 965 *	any necessary wakeups and propagate the TIOCPKT status. If this
 966 *	is the tty was previous stopped and is being started then the
 967 *	driver start method is invoked and the line discipline woken.
 968 *
 969 *	Locking:
 970 *		ctrl_lock
 971 */
 972
 973void start_tty(struct tty_struct *tty)
 974{
 975	unsigned long flags;
 976	spin_lock_irqsave(&tty->ctrl_lock, flags);
 977	if (!tty->stopped || tty->flow_stopped) {
 978		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 979		return;
 980	}
 981	tty->stopped = 0;
 982	if (tty->link && tty->link->packet) {
 983		tty->ctrl_status &= ~TIOCPKT_STOP;
 984		tty->ctrl_status |= TIOCPKT_START;
 985		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 986	}
 987	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 988	if (tty->ops->start)
 989		(tty->ops->start)(tty);
 990	/* If we have a running line discipline it may need kicking */
 991	tty_wakeup(tty);
 992}
 993
 
 
 
 
 
 
 
 
 994EXPORT_SYMBOL(start_tty);
 995
 996/* We limit tty time update visibility to every 8 seconds or so. */
 997static void tty_update_time(struct timespec *time)
 998{
 999	unsigned long sec = get_seconds() & ~7;
1000	if ((long)(sec - time->tv_sec) > 0)
 
 
 
 
 
 
 
1001		time->tv_sec = sec;
1002}
1003
1004/**
1005 *	tty_read	-	read method for tty device files
1006 *	@file: pointer to tty file
1007 *	@buf: user buffer
1008 *	@count: size of user buffer
1009 *	@ppos: unused
1010 *
1011 *	Perform the read system call function on this terminal device. Checks
1012 *	for hung up devices before calling the line discipline method.
1013 *
1014 *	Locking:
1015 *		Locks the line discipline internally while needed. Multiple
1016 *	read calls may be outstanding in parallel.
1017 */
1018
1019static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020			loff_t *ppos)
1021{
1022	int i;
1023	struct inode *inode = file_inode(file);
1024	struct tty_struct *tty = file_tty(file);
1025	struct tty_ldisc *ld;
1026
1027	if (tty_paranoia_check(tty, inode, "tty_read"))
1028		return -EIO;
1029	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030		return -EIO;
1031
1032	/* We want to wait for the line discipline to sort out in this
1033	   situation */
1034	ld = tty_ldisc_ref_wait(tty);
 
 
1035	if (ld->ops->read)
1036		i = (ld->ops->read)(tty, file, buf, count);
1037	else
1038		i = -EIO;
1039	tty_ldisc_deref(ld);
1040
1041	if (i > 0)
1042		tty_update_time(&inode->i_atime);
1043
1044	return i;
1045}
1046
1047void tty_write_unlock(struct tty_struct *tty)
1048	__releases(&tty->atomic_write_lock)
1049{
1050	mutex_unlock(&tty->atomic_write_lock);
1051	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052}
1053
1054int tty_write_lock(struct tty_struct *tty, int ndelay)
1055	__acquires(&tty->atomic_write_lock)
1056{
1057	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058		if (ndelay)
1059			return -EAGAIN;
1060		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061			return -ERESTARTSYS;
1062	}
1063	return 0;
1064}
1065
1066/*
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1069 */
1070static inline ssize_t do_tty_write(
1071	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072	struct tty_struct *tty,
1073	struct file *file,
1074	const char __user *buf,
1075	size_t count)
1076{
1077	ssize_t ret, written = 0;
1078	unsigned int chunk;
1079
1080	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081	if (ret < 0)
1082		return ret;
1083
1084	/*
1085	 * We chunk up writes into a temporary buffer. This
1086	 * simplifies low-level drivers immensely, since they
1087	 * don't have locking issues and user mode accesses.
1088	 *
1089	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090	 * big chunk-size..
1091	 *
1092	 * The default chunk-size is 2kB, because the NTTY
1093	 * layer has problems with bigger chunks. It will
1094	 * claim to be able to handle more characters than
1095	 * it actually does.
1096	 *
1097	 * FIXME: This can probably go away now except that 64K chunks
1098	 * are too likely to fail unless switched to vmalloc...
1099	 */
1100	chunk = 2048;
1101	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102		chunk = 65536;
1103	if (count < chunk)
1104		chunk = count;
1105
1106	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107	if (tty->write_cnt < chunk) {
1108		unsigned char *buf_chunk;
1109
1110		if (chunk < 1024)
1111			chunk = 1024;
1112
1113		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114		if (!buf_chunk) {
1115			ret = -ENOMEM;
1116			goto out;
1117		}
1118		kfree(tty->write_buf);
1119		tty->write_cnt = chunk;
1120		tty->write_buf = buf_chunk;
1121	}
1122
1123	/* Do the write .. */
1124	for (;;) {
1125		size_t size = count;
1126		if (size > chunk)
1127			size = chunk;
1128		ret = -EFAULT;
1129		if (copy_from_user(tty->write_buf, buf, size))
1130			break;
1131		ret = write(tty, file, tty->write_buf, size);
1132		if (ret <= 0)
1133			break;
1134		written += ret;
1135		buf += ret;
1136		count -= ret;
1137		if (!count)
1138			break;
1139		ret = -ERESTARTSYS;
1140		if (signal_pending(current))
1141			break;
1142		cond_resched();
1143	}
1144	if (written) {
1145		tty_update_time(&file_inode(file)->i_mtime);
1146		ret = written;
1147	}
1148out:
1149	tty_write_unlock(tty);
1150	return ret;
1151}
1152
1153/**
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1157 *
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1161 *
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1163 */
1164
1165void tty_write_message(struct tty_struct *tty, char *msg)
1166{
1167	if (tty) {
1168		mutex_lock(&tty->atomic_write_lock);
1169		tty_lock(tty);
1170		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171			tty_unlock(tty);
1172			tty->ops->write(tty, msg, strlen(msg));
1173		} else
1174			tty_unlock(tty);
1175		tty_write_unlock(tty);
1176	}
1177	return;
1178}
1179
1180
1181/**
1182 *	tty_write		-	write method for tty device file
1183 *	@file: tty file pointer
1184 *	@buf: user data to write
1185 *	@count: bytes to write
1186 *	@ppos: unused
1187 *
1188 *	Write data to a tty device via the line discipline.
1189 *
1190 *	Locking:
1191 *		Locks the line discipline as required
1192 *		Writes to the tty driver are serialized by the atomic_write_lock
1193 *	and are then processed in chunks to the device. The line discipline
1194 *	write method will not be invoked in parallel for each device.
1195 */
1196
1197static ssize_t tty_write(struct file *file, const char __user *buf,
1198						size_t count, loff_t *ppos)
1199{
1200	struct tty_struct *tty = file_tty(file);
1201 	struct tty_ldisc *ld;
1202	ssize_t ret;
1203
1204	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205		return -EIO;
1206	if (!tty || !tty->ops->write ||
1207		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208			return -EIO;
1209	/* Short term debug to catch buggy drivers */
1210	if (tty->ops->write_room == NULL)
1211		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212			tty->driver->name);
1213	ld = tty_ldisc_ref_wait(tty);
 
 
1214	if (!ld->ops->write)
1215		ret = -EIO;
1216	else
1217		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218	tty_ldisc_deref(ld);
1219	return ret;
1220}
1221
1222ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223						size_t count, loff_t *ppos)
1224{
1225	struct file *p = NULL;
1226
1227	spin_lock(&redirect_lock);
1228	if (redirect)
1229		p = get_file(redirect);
1230	spin_unlock(&redirect_lock);
1231
1232	if (p) {
1233		ssize_t res;
1234		res = vfs_write(p, buf, count, &p->f_pos);
1235		fput(p);
1236		return res;
1237	}
1238	return tty_write(file, buf, count, ppos);
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243/**
1244 *	pty_line_name	-	generate name for a pty
1245 *	@driver: the tty driver in use
1246 *	@index: the minor number
1247 *	@p: output buffer of at least 6 bytes
1248 *
1249 *	Generate a name from a driver reference and write it to the output
1250 *	buffer.
1251 *
1252 *	Locking: None
1253 */
1254static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255{
1256	int i = index + driver->name_base;
1257	/* ->name is initialized to "ttyp", but "tty" is expected */
1258	sprintf(p, "%s%c%x",
1259		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260		ptychar[i >> 4 & 0xf], i & 0xf);
1261}
1262
1263/**
1264 *	tty_line_name	-	generate name for a tty
1265 *	@driver: the tty driver in use
1266 *	@index: the minor number
1267 *	@p: output buffer of at least 7 bytes
1268 *
1269 *	Generate a name from a driver reference and write it to the output
1270 *	buffer.
1271 *
1272 *	Locking: None
1273 */
1274static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275{
1276	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277		return sprintf(p, "%s", driver->name);
1278	else
1279		return sprintf(p, "%s%d", driver->name,
1280			       index + driver->name_base);
1281}
1282
1283/**
1284 *	tty_driver_lookup_tty() - find an existing tty, if any
1285 *	@driver: the driver for the tty
1286 *	@idx:	 the minor number
1287 *
1288 *	Return the tty, if found or ERR_PTR() otherwise.
 
1289 *
1290 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291 *	be held until the 'fast-open' is also done. Will change once we
1292 *	have refcounting in the driver and per driver locking
1293 */
1294static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295		struct inode *inode, int idx)
1296{
 
 
1297	if (driver->ops->lookup)
1298		return driver->ops->lookup(driver, inode, idx);
 
 
1299
1300	return driver->ttys[idx];
 
 
1301}
1302
1303/**
1304 *	tty_init_termios	-  helper for termios setup
1305 *	@tty: the tty to set up
1306 *
1307 *	Initialise the termios structures for this tty. Thus runs under
1308 *	the tty_mutex currently so we can be relaxed about ordering.
1309 */
1310
1311int tty_init_termios(struct tty_struct *tty)
1312{
1313	struct ktermios *tp;
1314	int idx = tty->index;
1315
1316	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317		tty->termios = tty->driver->init_termios;
1318	else {
1319		/* Check for lazy saved data */
1320		tp = tty->driver->termios[idx];
1321		if (tp != NULL)
1322			tty->termios = *tp;
1323		else
 
1324			tty->termios = tty->driver->init_termios;
1325	}
1326	/* Compatibility until drivers always set this */
1327	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329	return 0;
1330}
1331EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334{
1335	int ret = tty_init_termios(tty);
1336	if (ret)
1337		return ret;
1338
1339	tty_driver_kref_get(driver);
1340	tty->count++;
1341	driver->ttys[tty->index] = tty;
1342	return 0;
1343}
1344EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346/**
1347 *	tty_driver_install_tty() - install a tty entry in the driver
1348 *	@driver: the driver for the tty
1349 *	@tty: the tty
1350 *
1351 *	Install a tty object into the driver tables. The tty->index field
1352 *	will be set by the time this is called. This method is responsible
1353 *	for ensuring any need additional structures are allocated and
1354 *	configured.
1355 *
1356 *	Locking: tty_mutex for now
1357 */
1358static int tty_driver_install_tty(struct tty_driver *driver,
1359						struct tty_struct *tty)
1360{
1361	return driver->ops->install ? driver->ops->install(driver, tty) :
1362		tty_standard_install(driver, tty);
1363}
1364
1365/**
1366 *	tty_driver_remove_tty() - remove a tty from the driver tables
1367 *	@driver: the driver for the tty
1368 *	@idx:	 the minor number
1369 *
1370 *	Remvoe a tty object from the driver tables. The tty->index field
1371 *	will be set by the time this is called.
1372 *
1373 *	Locking: tty_mutex for now
1374 */
1375void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376{
1377	if (driver->ops->remove)
1378		driver->ops->remove(driver, tty);
1379	else
1380		driver->ttys[tty->index] = NULL;
1381}
1382
1383/*
1384 * 	tty_reopen()	- fast re-open of an open tty
1385 * 	@tty	- the tty to open
1386 *
1387 *	Return 0 on success, -errno on error.
 
1388 *
1389 *	Locking: tty_mutex must be held from the time the tty was found
1390 *		 till this open completes.
1391 */
1392static int tty_reopen(struct tty_struct *tty)
1393{
1394	struct tty_driver *driver = tty->driver;
1395
1396	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397			test_bit(TTY_HUPPING, &tty->flags))
1398		return -EIO;
1399
1400	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401	    driver->subtype == PTY_TYPE_MASTER) {
1402		/*
1403		 * special case for PTY masters: only one open permitted,
1404		 * and the slave side open count is incremented as well.
1405		 */
1406		if (tty->count)
1407			return -EIO;
1408
1409		tty->link->count++;
1410	}
1411	tty->count++;
1412
1413	WARN_ON(!tty->ldisc);
 
1414
1415	return 0;
1416}
1417
1418/**
1419 *	tty_init_dev		-	initialise a tty device
1420 *	@driver: tty driver we are opening a device on
1421 *	@idx: device index
1422 *	@ret_tty: returned tty structure
1423 *
1424 *	Prepare a tty device. This may not be a "new" clean device but
1425 *	could also be an active device. The pty drivers require special
1426 *	handling because of this.
1427 *
1428 *	Locking:
1429 *		The function is called under the tty_mutex, which
1430 *	protects us from the tty struct or driver itself going away.
1431 *
1432 *	On exit the tty device has the line discipline attached and
1433 *	a reference count of 1. If a pair was created for pty/tty use
1434 *	and the other was a pty master then it too has a reference count of 1.
1435 *
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open.  The new code protects the open with a mutex, so it's
1438 * really quite straightforward.  The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1440 */
1441
1442struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443{
1444	struct tty_struct *tty;
1445	int retval;
1446
1447	/*
1448	 * First time open is complex, especially for PTY devices.
1449	 * This code guarantees that either everything succeeds and the
1450	 * TTY is ready for operation, or else the table slots are vacated
1451	 * and the allocated memory released.  (Except that the termios
1452	 * and locked termios may be retained.)
1453	 */
1454
1455	if (!try_module_get(driver->owner))
1456		return ERR_PTR(-ENODEV);
1457
1458	tty = alloc_tty_struct();
1459	if (!tty) {
1460		retval = -ENOMEM;
1461		goto err_module_put;
1462	}
1463	initialize_tty_struct(tty, driver, idx);
1464
1465	tty_lock(tty);
1466	retval = tty_driver_install_tty(driver, tty);
1467	if (retval < 0)
1468		goto err_deinit_tty;
1469
1470	if (!tty->port)
1471		tty->port = driver->ports[idx];
1472
1473	WARN_RATELIMIT(!tty->port,
1474			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475			__func__, tty->driver->name);
1476
1477	tty->port->itty = tty;
1478
1479	/*
1480	 * Structures all installed ... call the ldisc open routines.
1481	 * If we fail here just call release_tty to clean up.  No need
1482	 * to decrement the use counts, as release_tty doesn't care.
1483	 */
1484	retval = tty_ldisc_setup(tty, tty->link);
1485	if (retval)
1486		goto err_release_tty;
1487	/* Return the tty locked so that it cannot vanish under the caller */
1488	return tty;
1489
1490err_deinit_tty:
1491	tty_unlock(tty);
1492	deinitialize_tty_struct(tty);
1493	free_tty_struct(tty);
1494err_module_put:
1495	module_put(driver->owner);
1496	return ERR_PTR(retval);
1497
1498	/* call the tty release_tty routine to clean out this slot */
1499err_release_tty:
1500	tty_unlock(tty);
1501	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502				 "clearing slot %d\n", idx);
1503	release_tty(tty, idx);
1504	return ERR_PTR(retval);
1505}
1506
1507void tty_free_termios(struct tty_struct *tty)
1508{
1509	struct ktermios *tp;
1510	int idx = tty->index;
1511
1512	/* If the port is going to reset then it has no termios to save */
1513	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514		return;
1515
1516	/* Stash the termios data */
1517	tp = tty->driver->termios[idx];
1518	if (tp == NULL) {
1519		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520		if (tp == NULL) {
1521			pr_warn("tty: no memory to save termios state.\n");
1522			return;
1523		}
1524		tty->driver->termios[idx] = tp;
1525	}
1526	*tp = tty->termios;
1527}
1528EXPORT_SYMBOL(tty_free_termios);
1529
1530/**
1531 *	tty_flush_works		-	flush all works of a tty
1532 *	@tty: tty device to flush works for
1533 *
1534 *	Sync flush all works belonging to @tty.
1535 */
1536static void tty_flush_works(struct tty_struct *tty)
1537{
1538	flush_work(&tty->SAK_work);
1539	flush_work(&tty->hangup_work);
 
 
 
 
1540}
1541
1542/**
1543 *	release_one_tty		-	release tty structure memory
1544 *	@kref: kref of tty we are obliterating
1545 *
1546 *	Releases memory associated with a tty structure, and clears out the
1547 *	driver table slots. This function is called when a device is no longer
1548 *	in use. It also gets called when setup of a device fails.
1549 *
1550 *	Locking:
1551 *		takes the file list lock internally when working on the list
1552 *	of ttys that the driver keeps.
1553 *
1554 *	This method gets called from a work queue so that the driver private
1555 *	cleanup ops can sleep (needed for USB at least)
1556 */
1557static void release_one_tty(struct work_struct *work)
1558{
1559	struct tty_struct *tty =
1560		container_of(work, struct tty_struct, hangup_work);
1561	struct tty_driver *driver = tty->driver;
 
1562
1563	if (tty->ops->cleanup)
1564		tty->ops->cleanup(tty);
1565
1566	tty->magic = 0;
1567	tty_driver_kref_put(driver);
1568	module_put(driver->owner);
1569
1570	spin_lock(&tty_files_lock);
1571	list_del_init(&tty->tty_files);
1572	spin_unlock(&tty_files_lock);
1573
1574	put_pid(tty->pgrp);
1575	put_pid(tty->session);
1576	free_tty_struct(tty);
1577}
1578
1579static void queue_release_one_tty(struct kref *kref)
1580{
1581	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583	/* The hangup queue is now free so we can reuse it rather than
1584	   waste a chunk of memory for each port */
1585	INIT_WORK(&tty->hangup_work, release_one_tty);
1586	schedule_work(&tty->hangup_work);
1587}
1588
1589/**
1590 *	tty_kref_put		-	release a tty kref
1591 *	@tty: tty device
1592 *
1593 *	Release a reference to a tty device and if need be let the kref
1594 *	layer destruct the object for us
1595 */
1596
1597void tty_kref_put(struct tty_struct *tty)
1598{
1599	if (tty)
1600		kref_put(&tty->kref, queue_release_one_tty);
1601}
1602EXPORT_SYMBOL(tty_kref_put);
1603
1604/**
1605 *	release_tty		-	release tty structure memory
1606 *
1607 *	Release both @tty and a possible linked partner (think pty pair),
1608 *	and decrement the refcount of the backing module.
1609 *
1610 *	Locking:
1611 *		tty_mutex
1612 *		takes the file list lock internally when working on the list
1613 *	of ttys that the driver keeps.
1614 *
1615 */
1616static void release_tty(struct tty_struct *tty, int idx)
1617{
1618	/* This should always be true but check for the moment */
1619	WARN_ON(tty->index != idx);
1620	WARN_ON(!mutex_is_locked(&tty_mutex));
1621	if (tty->ops->shutdown)
1622		tty->ops->shutdown(tty);
1623	tty_free_termios(tty);
1624	tty_driver_remove_tty(tty->driver, tty);
1625	tty->port->itty = NULL;
1626	if (tty->link)
1627		tty->link->port->itty = NULL;
1628	cancel_work_sync(&tty->port->buf.work);
1629
1630	if (tty->link)
1631		tty_kref_put(tty->link);
1632	tty_kref_put(tty);
1633}
1634
1635/**
1636 *	tty_release_checks - check a tty before real release
1637 *	@tty: tty to check
1638 *	@o_tty: link of @tty (if any)
1639 *	@idx: index of the tty
1640 *
1641 *	Performs some paranoid checking before true release of the @tty.
1642 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643 */
1644static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645		int idx)
1646{
1647#ifdef TTY_PARANOIA_CHECK
1648	if (idx < 0 || idx >= tty->driver->num) {
1649		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650				__func__, tty->name);
1651		return -1;
1652	}
1653
1654	/* not much to check for devpts */
1655	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656		return 0;
1657
1658	if (tty != tty->driver->ttys[idx]) {
1659		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660				__func__, idx, tty->name);
1661		return -1;
1662	}
1663	if (tty->driver->other) {
 
 
1664		if (o_tty != tty->driver->other->ttys[idx]) {
1665			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666					__func__, idx, tty->name);
1667			return -1;
1668		}
1669		if (o_tty->link != tty) {
1670			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671			return -1;
1672		}
1673	}
1674#endif
1675	return 0;
1676}
1677
1678/**
1679 *	tty_release		-	vfs callback for close
1680 *	@inode: inode of tty
1681 *	@filp: file pointer for handle to tty
1682 *
1683 *	Called the last time each file handle is closed that references
1684 *	this tty. There may however be several such references.
1685 *
1686 *	Locking:
1687 *		Takes bkl. See tty_release_dev
1688 *
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1692 *
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1695 */
1696
1697int tty_release(struct inode *inode, struct file *filp)
1698{
1699	struct tty_struct *tty = file_tty(filp);
1700	struct tty_struct *o_tty;
1701	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1702	int	idx;
1703	char	buf[64];
 
1704
1705	if (tty_paranoia_check(tty, inode, __func__))
1706		return 0;
1707
1708	tty_lock(tty);
1709	check_tty_count(tty, __func__);
1710
1711	__tty_fasync(-1, filp, 0);
1712
1713	idx = tty->index;
1714	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715		      tty->driver->subtype == PTY_TYPE_MASTER);
1716	/* Review: parallel close */
1717	o_tty = tty->link;
1718
1719	if (tty_release_checks(tty, o_tty, idx)) {
1720		tty_unlock(tty);
1721		return 0;
1722	}
1723
1724#ifdef TTY_DEBUG_HANGUP
1725	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726			tty_name(tty, buf), tty->count);
1727#endif
1728
1729	if (tty->ops->close)
1730		tty->ops->close(tty, filp);
1731
1732	tty_unlock(tty);
 
 
1733	/*
1734	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736	 * wait queues and kick everyone out _before_ actually starting to
1737	 * close.  This ensures that we won't block while releasing the tty
1738	 * structure.
1739	 *
1740	 * The test for the o_tty closing is necessary, since the master and
1741	 * slave sides may close in any order.  If the slave side closes out
1742	 * first, its count will be one, since the master side holds an open.
1743	 * Thus this test wouldn't be triggered at the time the slave closes,
1744	 * so we do it now.
1745	 *
1746	 * Note that it's possible for the tty to be opened again while we're
1747	 * flushing out waiters.  By recalculating the closing flags before
1748	 * each iteration we avoid any problems.
1749	 */
1750	while (1) {
1751		/* Guard against races with tty->count changes elsewhere and
1752		   opens on /dev/tty */
1753
1754		mutex_lock(&tty_mutex);
1755		tty_lock_pair(tty, o_tty);
1756		tty_closing = tty->count <= 1;
1757		o_tty_closing = o_tty &&
1758			(o_tty->count <= (pty_master ? 1 : 0));
1759		do_sleep = 0;
1760
1761		if (tty_closing) {
1762			if (waitqueue_active(&tty->read_wait)) {
1763				wake_up_poll(&tty->read_wait, POLLIN);
1764				do_sleep++;
1765			}
1766			if (waitqueue_active(&tty->write_wait)) {
1767				wake_up_poll(&tty->write_wait, POLLOUT);
1768				do_sleep++;
1769			}
1770		}
1771		if (o_tty_closing) {
1772			if (waitqueue_active(&o_tty->read_wait)) {
1773				wake_up_poll(&o_tty->read_wait, POLLIN);
1774				do_sleep++;
1775			}
1776			if (waitqueue_active(&o_tty->write_wait)) {
1777				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778				do_sleep++;
1779			}
1780		}
1781		if (!do_sleep)
1782			break;
1783
1784		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785				__func__, tty_name(tty, buf));
1786		tty_unlock_pair(tty, o_tty);
1787		mutex_unlock(&tty_mutex);
1788		schedule();
 
 
 
 
1789	}
1790
1791	/*
1792	 * The closing flags are now consistent with the open counts on
1793	 * both sides, and we've completed the last operation that could
1794	 * block, so it's safe to proceed with closing.
1795	 *
1796	 * We must *not* drop the tty_mutex until we ensure that a further
1797	 * entry into tty_open can not pick up this tty.
1798	 */
1799	if (pty_master) {
1800		if (--o_tty->count < 0) {
1801			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802				__func__, o_tty->count, tty_name(o_tty, buf));
1803			o_tty->count = 0;
1804		}
1805	}
1806	if (--tty->count < 0) {
1807		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808				__func__, tty->count, tty_name(tty, buf));
1809		tty->count = 0;
1810	}
1811
1812	/*
1813	 * We've decremented tty->count, so we need to remove this file
1814	 * descriptor off the tty->tty_files list; this serves two
1815	 * purposes:
1816	 *  - check_tty_count sees the correct number of file descriptors
1817	 *    associated with this tty.
1818	 *  - do_tty_hangup no longer sees this file descriptor as
1819	 *    something that needs to be handled for hangups.
1820	 */
1821	tty_del_file(filp);
1822
1823	/*
1824	 * Perform some housekeeping before deciding whether to return.
1825	 *
1826	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827	 * case of a pty we may have to wait around for the other side
1828	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829	 */
1830	if (tty_closing)
1831		set_bit(TTY_CLOSING, &tty->flags);
1832	if (o_tty_closing)
1833		set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835	/*
1836	 * If _either_ side is closing, make sure there aren't any
1837	 * processes that still think tty or o_tty is their controlling
1838	 * tty.
1839	 */
1840	if (tty_closing || o_tty_closing) {
1841		read_lock(&tasklist_lock);
1842		session_clear_tty(tty->session);
1843		if (o_tty)
1844			session_clear_tty(o_tty->session);
1845		read_unlock(&tasklist_lock);
1846	}
1847
1848	mutex_unlock(&tty_mutex);
1849	tty_unlock_pair(tty, o_tty);
1850	/* At this point the TTY_CLOSING flag should ensure a dead tty
 
 
 
 
1851	   cannot be re-opened by a racing opener */
1852
1853	/* check whether both sides are closing ... */
1854	if (!tty_closing || (o_tty && !o_tty_closing))
1855		return 0;
1856
1857#ifdef TTY_DEBUG_HANGUP
1858	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859#endif
1860	/*
1861	 * Ask the line discipline code to release its structures
1862	 */
1863	tty_ldisc_release(tty, o_tty);
1864
1865	/* Wait for pending work before tty destruction commmences */
1866	tty_flush_works(tty);
1867	if (o_tty)
1868		tty_flush_works(o_tty);
1869
1870#ifdef TTY_DEBUG_HANGUP
1871	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872#endif
1873	/*
1874	 * The release_tty function takes care of the details of clearing
1875	 * the slots and preserving the termios structure. The tty_unlock_pair
1876	 * should be safe as we keep a kref while the tty is locked (so the
1877	 * unlock never unlocks a freed tty).
1878	 */
1879	mutex_lock(&tty_mutex);
1880	release_tty(tty, idx);
1881	mutex_unlock(&tty_mutex);
1882
1883	return 0;
1884}
1885
1886/**
1887 *	tty_open_current_tty - get tty of current task for open
1888 *	@device: device number
1889 *	@filp: file pointer to tty
1890 *	@return: tty of the current task iff @device is /dev/tty
 
 
1891 *
1892 *	We cannot return driver and index like for the other nodes because
1893 *	devpts will not work then. It expects inodes to be from devpts FS.
1894 *
1895 *	We need to move to returning a refcounted object from all the lookup
1896 *	paths including this one.
1897 */
1898static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899{
1900	struct tty_struct *tty;
 
1901
1902	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903		return NULL;
1904
1905	tty = get_current_tty();
1906	if (!tty)
1907		return ERR_PTR(-ENXIO);
1908
1909	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910	/* noctty = 1; */
1911	tty_kref_put(tty);
1912	/* FIXME: we put a reference and return a TTY! */
1913	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1914	return tty;
1915}
1916
1917/**
1918 *	tty_lookup_driver - lookup a tty driver for a given device file
1919 *	@device: device number
1920 *	@filp: file pointer to tty
1921 *	@noctty: set if the device should not become a controlling tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 * 	If @return is not erroneous, the caller is responsible to decrement the
1926 * 	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *noctty, int *index)
1932{
1933	struct tty_driver *driver;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939		driver = tty_driver_kref_get(console_driver);
1940		*index = fg_console;
1941		*noctty = 1;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947		if (console_driver) {
1948			driver = tty_driver_kref_get(console_driver);
1949			if (driver) {
1950				/* Don't let /dev/console block */
1951				filp->f_flags |= O_NONBLOCK;
1952				*noctty = 1;
1953				break;
1954			}
1955		}
1956		return ERR_PTR(-ENODEV);
1957	}
1958	default:
1959		driver = get_tty_driver(device, index);
1960		if (!driver)
1961			return ERR_PTR(-ENODEV);
1962		break;
1963	}
1964	return driver;
1965}
1966
1967/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	struct tty_driver *driver = NULL;
1996	int index;
1997	dev_t device = inode->i_rdev;
1998	unsigned saved_flags = filp->f_flags;
1999
2000	nonseekable_open(inode, filp);
2001
2002retry_open:
2003	retval = tty_alloc_file(filp);
2004	if (retval)
2005		return -ENOMEM;
2006
2007	noctty = filp->f_flags & O_NOCTTY;
2008	index  = -1;
2009	retval = 0;
2010
2011	mutex_lock(&tty_mutex);
2012	/* This is protected by the tty_mutex */
2013	tty = tty_open_current_tty(device, filp);
2014	if (IS_ERR(tty)) {
2015		retval = PTR_ERR(tty);
2016		goto err_unlock;
2017	} else if (!tty) {
2018		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019		if (IS_ERR(driver)) {
2020			retval = PTR_ERR(driver);
2021			goto err_unlock;
2022		}
2023
2024		/* check whether we're reopening an existing tty */
2025		tty = tty_driver_lookup_tty(driver, inode, index);
2026		if (IS_ERR(tty)) {
2027			retval = PTR_ERR(tty);
2028			goto err_unlock;
2029		}
2030	}
2031
2032	if (tty) {
2033		tty_lock(tty);
2034		retval = tty_reopen(tty);
2035		if (retval < 0) {
2036			tty_unlock(tty);
2037			tty = ERR_PTR(retval);
2038		}
2039	} else	/* Returns with the tty_lock held for now */
2040		tty = tty_init_dev(driver, index);
2041
2042	mutex_unlock(&tty_mutex);
2043	if (driver)
2044		tty_driver_kref_put(driver);
2045	if (IS_ERR(tty)) {
 
2046		retval = PTR_ERR(tty);
2047		goto err_file;
 
 
 
2048	}
2049
2050	tty_add_file(tty, filp);
2051
2052	check_tty_count(tty, __func__);
2053	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054	    tty->driver->subtype == PTY_TYPE_MASTER)
2055		noctty = 1;
2056#ifdef TTY_DEBUG_HANGUP
2057	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058#endif
2059	if (tty->ops->open)
2060		retval = tty->ops->open(tty, filp);
2061	else
2062		retval = -ENODEV;
2063	filp->f_flags = saved_flags;
2064
2065	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066						!capable(CAP_SYS_ADMIN))
2067		retval = -EBUSY;
2068
2069	if (retval) {
2070#ifdef TTY_DEBUG_HANGUP
2071		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072				retval, tty->name);
2073#endif
2074		tty_unlock(tty); /* need to call tty_release without BTM */
2075		tty_release(inode, filp);
2076		if (retval != -ERESTARTSYS)
2077			return retval;
2078
2079		if (signal_pending(current))
2080			return retval;
2081
2082		schedule();
2083		/*
2084		 * Need to reset f_op in case a hangup happened.
2085		 */
2086		if (filp->f_op == &hung_up_tty_fops)
2087			filp->f_op = &tty_fops;
2088		goto retry_open;
2089	}
2090	clear_bit(TTY_HUPPED, &tty->flags);
2091	tty_unlock(tty);
2092
2093
2094	mutex_lock(&tty_mutex);
2095	tty_lock(tty);
2096	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
 
 
2097	if (!noctty &&
2098	    current->signal->leader &&
2099	    !current->signal->tty &&
2100	    tty->session == NULL)
2101		__proc_set_tty(current, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102	spin_unlock_irq(&current->sighand->siglock);
 
2103	tty_unlock(tty);
2104	mutex_unlock(&tty_mutex);
2105	return 0;
2106err_unlock:
2107	mutex_unlock(&tty_mutex);
2108	/* after locks to avoid deadlock */
2109	if (!IS_ERR_OR_NULL(driver))
2110		tty_driver_kref_put(driver);
2111err_file:
2112	tty_free_file(filp);
2113	return retval;
2114}
2115
2116
2117
2118/**
2119 *	tty_poll	-	check tty status
2120 *	@filp: file being polled
2121 *	@wait: poll wait structures to update
2122 *
2123 *	Call the line discipline polling method to obtain the poll
2124 *	status of the device.
2125 *
2126 *	Locking: locks called line discipline but ldisc poll method
2127 *	may be re-entered freely by other callers.
2128 */
2129
2130static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131{
2132	struct tty_struct *tty = file_tty(filp);
2133	struct tty_ldisc *ld;
2134	int ret = 0;
2135
2136	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137		return 0;
2138
2139	ld = tty_ldisc_ref_wait(tty);
 
 
2140	if (ld->ops->poll)
2141		ret = (ld->ops->poll)(tty, filp, wait);
2142	tty_ldisc_deref(ld);
2143	return ret;
2144}
2145
2146static int __tty_fasync(int fd, struct file *filp, int on)
2147{
2148	struct tty_struct *tty = file_tty(filp);
2149	struct tty_ldisc *ldisc;
2150	unsigned long flags;
2151	int retval = 0;
2152
2153	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154		goto out;
2155
2156	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157	if (retval <= 0)
2158		goto out;
2159
2160	ldisc = tty_ldisc_ref(tty);
2161	if (ldisc) {
2162		if (ldisc->ops->fasync)
2163			ldisc->ops->fasync(tty, on);
2164		tty_ldisc_deref(ldisc);
2165	}
2166
2167	if (on) {
2168		enum pid_type type;
2169		struct pid *pid;
2170
2171		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172		if (tty->pgrp) {
2173			pid = tty->pgrp;
2174			type = PIDTYPE_PGID;
2175		} else {
2176			pid = task_pid(current);
2177			type = PIDTYPE_PID;
2178		}
2179		get_pid(pid);
2180		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181		retval = __f_setown(filp, pid, type, 0);
2182		put_pid(pid);
 
2183	}
2184out:
2185	return retval;
2186}
2187
2188static int tty_fasync(int fd, struct file *filp, int on)
2189{
2190	struct tty_struct *tty = file_tty(filp);
2191	int retval;
2192
2193	tty_lock(tty);
2194	retval = __tty_fasync(fd, filp, on);
 
2195	tty_unlock(tty);
2196
2197	return retval;
2198}
2199
2200/**
2201 *	tiocsti			-	fake input character
2202 *	@tty: tty to fake input into
2203 *	@p: pointer to character
2204 *
2205 *	Fake input to a tty device. Does the necessary locking and
2206 *	input management.
2207 *
2208 *	FIXME: does not honour flow control ??
2209 *
2210 *	Locking:
2211 *		Called functions take tty_ldiscs_lock
2212 *		current->signal->tty check is safe without locks
2213 *
2214 *	FIXME: may race normal receive processing
2215 */
2216
2217static int tiocsti(struct tty_struct *tty, char __user *p)
2218{
2219	char ch, mbz = 0;
2220	struct tty_ldisc *ld;
2221
2222	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223		return -EPERM;
2224	if (get_user(ch, p))
2225		return -EFAULT;
2226	tty_audit_tiocsti(tty, ch);
2227	ld = tty_ldisc_ref_wait(tty);
 
 
2228	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229	tty_ldisc_deref(ld);
2230	return 0;
2231}
2232
2233/**
2234 *	tiocgwinsz		-	implement window query ioctl
2235 *	@tty; tty
2236 *	@arg: user buffer for result
2237 *
2238 *	Copies the kernel idea of the window size into the user buffer.
2239 *
2240 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241 *		is consistent.
2242 */
2243
2244static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245{
2246	int err;
2247
2248	mutex_lock(&tty->winsize_mutex);
2249	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250	mutex_unlock(&tty->winsize_mutex);
2251
2252	return err ? -EFAULT: 0;
2253}
2254
2255/**
2256 *	tty_do_resize		-	resize event
2257 *	@tty: tty being resized
2258 *	@rows: rows (character)
2259 *	@cols: cols (character)
2260 *
2261 *	Update the termios variables and send the necessary signals to
2262 *	peform a terminal resize correctly
2263 */
2264
2265int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266{
2267	struct pid *pgrp;
2268	unsigned long flags;
2269
2270	/* Lock the tty */
2271	mutex_lock(&tty->winsize_mutex);
2272	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273		goto done;
2274	/* Get the PID values and reference them so we can
2275	   avoid holding the tty ctrl lock while sending signals */
2276	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277	pgrp = get_pid(tty->pgrp);
2278	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
 
 
2280	if (pgrp)
2281		kill_pgrp(pgrp, SIGWINCH, 1);
2282	put_pid(pgrp);
2283
2284	tty->winsize = *ws;
2285done:
2286	mutex_unlock(&tty->winsize_mutex);
2287	return 0;
2288}
2289EXPORT_SYMBOL(tty_do_resize);
2290
2291/**
2292 *	tiocswinsz		-	implement window size set ioctl
2293 *	@tty; tty side of tty
2294 *	@arg: user buffer for result
2295 *
2296 *	Copies the user idea of the window size to the kernel. Traditionally
2297 *	this is just advisory information but for the Linux console it
2298 *	actually has driver level meaning and triggers a VC resize.
2299 *
2300 *	Locking:
2301 *		Driver dependent. The default do_resize method takes the
2302 *	tty termios mutex and ctrl_lock. The console takes its own lock
2303 *	then calls into the default method.
2304 */
2305
2306static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	struct winsize tmp_ws;
2309	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310		return -EFAULT;
2311
2312	if (tty->ops->resize)
2313		return tty->ops->resize(tty, &tmp_ws);
2314	else
2315		return tty_do_resize(tty, &tmp_ws);
2316}
2317
2318/**
2319 *	tioccons	-	allow admin to move logical console
2320 *	@file: the file to become console
2321 *
2322 *	Allow the administrator to move the redirected console device
2323 *
2324 *	Locking: uses redirect_lock to guard the redirect information
2325 */
2326
2327static int tioccons(struct file *file)
2328{
2329	if (!capable(CAP_SYS_ADMIN))
2330		return -EPERM;
2331	if (file->f_op->write == redirected_tty_write) {
2332		struct file *f;
2333		spin_lock(&redirect_lock);
2334		f = redirect;
2335		redirect = NULL;
2336		spin_unlock(&redirect_lock);
2337		if (f)
2338			fput(f);
2339		return 0;
2340	}
2341	spin_lock(&redirect_lock);
2342	if (redirect) {
2343		spin_unlock(&redirect_lock);
2344		return -EBUSY;
2345	}
2346	redirect = get_file(file);
2347	spin_unlock(&redirect_lock);
2348	return 0;
2349}
2350
2351/**
2352 *	fionbio		-	non blocking ioctl
2353 *	@file: file to set blocking value
2354 *	@p: user parameter
2355 *
2356 *	Historical tty interfaces had a blocking control ioctl before
2357 *	the generic functionality existed. This piece of history is preserved
2358 *	in the expected tty API of posix OS's.
2359 *
2360 *	Locking: none, the open file handle ensures it won't go away.
2361 */
2362
2363static int fionbio(struct file *file, int __user *p)
2364{
2365	int nonblock;
2366
2367	if (get_user(nonblock, p))
2368		return -EFAULT;
2369
2370	spin_lock(&file->f_lock);
2371	if (nonblock)
2372		file->f_flags |= O_NONBLOCK;
2373	else
2374		file->f_flags &= ~O_NONBLOCK;
2375	spin_unlock(&file->f_lock);
2376	return 0;
2377}
2378
2379/**
2380 *	tiocsctty	-	set controlling tty
2381 *	@tty: tty structure
2382 *	@arg: user argument
2383 *
2384 *	This ioctl is used to manage job control. It permits a session
2385 *	leader to set this tty as the controlling tty for the session.
2386 *
2387 *	Locking:
2388 *		Takes tty_mutex() to protect tty instance
2389 *		Takes tasklist_lock internally to walk sessions
2390 *		Takes ->siglock() when updating signal->tty
2391 */
2392
2393static int tiocsctty(struct tty_struct *tty, int arg)
2394{
2395	int ret = 0;
 
 
 
 
2396	if (current->signal->leader && (task_session(current) == tty->session))
2397		return ret;
2398
2399	mutex_lock(&tty_mutex);
2400	/*
2401	 * The process must be a session leader and
2402	 * not have a controlling tty already.
2403	 */
2404	if (!current->signal->leader || current->signal->tty) {
2405		ret = -EPERM;
2406		goto unlock;
2407	}
2408
2409	if (tty->session) {
2410		/*
2411		 * This tty is already the controlling
2412		 * tty for another session group!
2413		 */
2414		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415			/*
2416			 * Steal it away
2417			 */
2418			read_lock(&tasklist_lock);
2419			session_clear_tty(tty->session);
2420			read_unlock(&tasklist_lock);
2421		} else {
2422			ret = -EPERM;
2423			goto unlock;
2424		}
2425	}
2426	proc_set_tty(current, tty);
 
 
 
 
 
 
 
2427unlock:
2428	mutex_unlock(&tty_mutex);
 
2429	return ret;
2430}
2431
2432/**
2433 *	tty_get_pgrp	-	return a ref counted pgrp pid
2434 *	@tty: tty to read
2435 *
2436 *	Returns a refcounted instance of the pid struct for the process
2437 *	group controlling the tty.
2438 */
2439
2440struct pid *tty_get_pgrp(struct tty_struct *tty)
2441{
2442	unsigned long flags;
2443	struct pid *pgrp;
2444
2445	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446	pgrp = get_pid(tty->pgrp);
2447	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449	return pgrp;
2450}
2451EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2453/**
2454 *	tiocgpgrp		-	get process group
2455 *	@tty: tty passed by user
2456 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457 *	@p: returned pid
2458 *
2459 *	Obtain the process group of the tty. If there is no process group
2460 *	return an error.
2461 *
2462 *	Locking: none. Reference to current->signal->tty is safe.
2463 */
2464
2465static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466{
2467	struct pid *pid;
2468	int ret;
2469	/*
2470	 * (tty == real_tty) is a cheap way of
2471	 * testing if the tty is NOT a master pty.
2472	 */
2473	if (tty == real_tty && current->signal->tty != real_tty)
2474		return -ENOTTY;
2475	pid = tty_get_pgrp(real_tty);
2476	ret =  put_user(pid_vnr(pid), p);
2477	put_pid(pid);
2478	return ret;
2479}
2480
2481/**
2482 *	tiocspgrp		-	attempt to set process group
2483 *	@tty: tty passed by user
2484 *	@real_tty: tty side device matching tty passed by user
2485 *	@p: pid pointer
2486 *
2487 *	Set the process group of the tty to the session passed. Only
2488 *	permitted where the tty session is our session.
2489 *
2490 *	Locking: RCU, ctrl lock
2491 */
2492
2493static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494{
2495	struct pid *pgrp;
2496	pid_t pgrp_nr;
2497	int retval = tty_check_change(real_tty);
2498	unsigned long flags;
2499
2500	if (retval == -EIO)
2501		return -ENOTTY;
2502	if (retval)
2503		return retval;
2504	if (!current->signal->tty ||
2505	    (current->signal->tty != real_tty) ||
2506	    (real_tty->session != task_session(current)))
2507		return -ENOTTY;
2508	if (get_user(pgrp_nr, p))
2509		return -EFAULT;
2510	if (pgrp_nr < 0)
2511		return -EINVAL;
2512	rcu_read_lock();
2513	pgrp = find_vpid(pgrp_nr);
2514	retval = -ESRCH;
2515	if (!pgrp)
2516		goto out_unlock;
2517	retval = -EPERM;
2518	if (session_of_pgrp(pgrp) != task_session(current))
2519		goto out_unlock;
2520	retval = 0;
2521	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522	put_pid(real_tty->pgrp);
2523	real_tty->pgrp = get_pid(pgrp);
2524	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525out_unlock:
2526	rcu_read_unlock();
2527	return retval;
2528}
2529
2530/**
2531 *	tiocgsid		-	get session id
2532 *	@tty: tty passed by user
2533 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534 *	@p: pointer to returned session id
2535 *
2536 *	Obtain the session id of the tty. If there is no session
2537 *	return an error.
2538 *
2539 *	Locking: none. Reference to current->signal->tty is safe.
2540 */
2541
2542static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543{
2544	/*
2545	 * (tty == real_tty) is a cheap way of
2546	 * testing if the tty is NOT a master pty.
2547	*/
2548	if (tty == real_tty && current->signal->tty != real_tty)
2549		return -ENOTTY;
2550	if (!real_tty->session)
2551		return -ENOTTY;
2552	return put_user(pid_vnr(real_tty->session), p);
2553}
2554
2555/**
2556 *	tiocsetd	-	set line discipline
2557 *	@tty: tty device
2558 *	@p: pointer to user data
2559 *
2560 *	Set the line discipline according to user request.
2561 *
2562 *	Locking: see tty_set_ldisc, this function is just a helper
2563 */
2564
2565static int tiocsetd(struct tty_struct *tty, int __user *p)
2566{
2567	int ldisc;
2568	int ret;
2569
2570	if (get_user(ldisc, p))
2571		return -EFAULT;
2572
2573	ret = tty_set_ldisc(tty, ldisc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
 
 
 
 
 
2575	return ret;
2576}
2577
2578/**
2579 *	send_break	-	performed time break
2580 *	@tty: device to break on
2581 *	@duration: timeout in mS
2582 *
2583 *	Perform a timed break on hardware that lacks its own driver level
2584 *	timed break functionality.
2585 *
2586 *	Locking:
2587 *		atomic_write_lock serializes
2588 *
2589 */
2590
2591static int send_break(struct tty_struct *tty, unsigned int duration)
2592{
2593	int retval;
2594
2595	if (tty->ops->break_ctl == NULL)
2596		return 0;
2597
2598	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599		retval = tty->ops->break_ctl(tty, duration);
2600	else {
2601		/* Do the work ourselves */
2602		if (tty_write_lock(tty, 0) < 0)
2603			return -EINTR;
2604		retval = tty->ops->break_ctl(tty, -1);
2605		if (retval)
2606			goto out;
2607		if (!signal_pending(current))
2608			msleep_interruptible(duration);
2609		retval = tty->ops->break_ctl(tty, 0);
2610out:
2611		tty_write_unlock(tty);
2612		if (signal_pending(current))
2613			retval = -EINTR;
2614	}
2615	return retval;
2616}
2617
2618/**
2619 *	tty_tiocmget		-	get modem status
2620 *	@tty: tty device
2621 *	@file: user file pointer
2622 *	@p: pointer to result
2623 *
2624 *	Obtain the modem status bits from the tty driver if the feature
2625 *	is supported. Return -EINVAL if it is not available.
2626 *
2627 *	Locking: none (up to the driver)
2628 */
2629
2630static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631{
2632	int retval = -EINVAL;
2633
2634	if (tty->ops->tiocmget) {
2635		retval = tty->ops->tiocmget(tty);
2636
2637		if (retval >= 0)
2638			retval = put_user(retval, p);
2639	}
2640	return retval;
2641}
2642
2643/**
2644 *	tty_tiocmset		-	set modem status
2645 *	@tty: tty device
2646 *	@cmd: command - clear bits, set bits or set all
2647 *	@p: pointer to desired bits
2648 *
2649 *	Set the modem status bits from the tty driver if the feature
2650 *	is supported. Return -EINVAL if it is not available.
2651 *
2652 *	Locking: none (up to the driver)
2653 */
2654
2655static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656	     unsigned __user *p)
2657{
2658	int retval;
2659	unsigned int set, clear, val;
2660
2661	if (tty->ops->tiocmset == NULL)
2662		return -EINVAL;
2663
2664	retval = get_user(val, p);
2665	if (retval)
2666		return retval;
2667	set = clear = 0;
2668	switch (cmd) {
2669	case TIOCMBIS:
2670		set = val;
2671		break;
2672	case TIOCMBIC:
2673		clear = val;
2674		break;
2675	case TIOCMSET:
2676		set = val;
2677		clear = ~val;
2678		break;
2679	}
2680	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682	return tty->ops->tiocmset(tty, set, clear);
2683}
2684
2685static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686{
2687	int retval = -EINVAL;
2688	struct serial_icounter_struct icount;
2689	memset(&icount, 0, sizeof(icount));
2690	if (tty->ops->get_icount)
2691		retval = tty->ops->get_icount(tty, &icount);
2692	if (retval != 0)
2693		return retval;
2694	if (copy_to_user(arg, &icount, sizeof(icount)))
2695		return -EFAULT;
2696	return 0;
2697}
2698
2699struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700{
2701	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702	    tty->driver->subtype == PTY_TYPE_MASTER)
2703		tty = tty->link;
2704	return tty;
 
 
 
 
 
 
 
 
 
 
2705}
2706EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2709{
2710	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711	    tty->driver->subtype == PTY_TYPE_MASTER)
2712	    return tty;
2713	return tty->link;
2714}
2715EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717/*
2718 * Split this up, as gcc can choke on it otherwise..
2719 */
2720long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721{
2722	struct tty_struct *tty = file_tty(file);
2723	struct tty_struct *real_tty;
2724	void __user *p = (void __user *)arg;
2725	int retval;
2726	struct tty_ldisc *ld;
2727
2728	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729		return -EINVAL;
2730
2731	real_tty = tty_pair_get_tty(tty);
2732
2733	/*
2734	 * Factor out some common prep work
2735	 */
2736	switch (cmd) {
2737	case TIOCSETD:
2738	case TIOCSBRK:
2739	case TIOCCBRK:
2740	case TCSBRK:
2741	case TCSBRKP:
2742		retval = tty_check_change(tty);
2743		if (retval)
2744			return retval;
2745		if (cmd != TIOCCBRK) {
2746			tty_wait_until_sent(tty, 0);
2747			if (signal_pending(current))
2748				return -EINTR;
2749		}
2750		break;
2751	}
2752
2753	/*
2754	 *	Now do the stuff.
2755	 */
2756	switch (cmd) {
2757	case TIOCSTI:
2758		return tiocsti(tty, p);
2759	case TIOCGWINSZ:
2760		return tiocgwinsz(real_tty, p);
2761	case TIOCSWINSZ:
2762		return tiocswinsz(real_tty, p);
2763	case TIOCCONS:
2764		return real_tty != tty ? -EINVAL : tioccons(file);
2765	case FIONBIO:
2766		return fionbio(file, p);
2767	case TIOCEXCL:
2768		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769		return 0;
2770	case TIOCNXCL:
2771		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772		return 0;
2773	case TIOCGEXCL:
2774	{
2775		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776		return put_user(excl, (int __user *)p);
2777	}
2778	case TIOCNOTTY:
2779		if (current->signal->tty != tty)
2780			return -ENOTTY;
2781		no_tty();
2782		return 0;
2783	case TIOCSCTTY:
2784		return tiocsctty(tty, arg);
2785	case TIOCGPGRP:
2786		return tiocgpgrp(tty, real_tty, p);
2787	case TIOCSPGRP:
2788		return tiocspgrp(tty, real_tty, p);
2789	case TIOCGSID:
2790		return tiocgsid(tty, real_tty, p);
2791	case TIOCGETD:
2792		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793	case TIOCSETD:
2794		return tiocsetd(tty, p);
2795	case TIOCVHANGUP:
2796		if (!capable(CAP_SYS_ADMIN))
2797			return -EPERM;
2798		tty_vhangup(tty);
2799		return 0;
2800	case TIOCGDEV:
2801	{
2802		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803		return put_user(ret, (unsigned int __user *)p);
2804	}
2805	/*
2806	 * Break handling
2807	 */
2808	case TIOCSBRK:	/* Turn break on, unconditionally */
2809		if (tty->ops->break_ctl)
2810			return tty->ops->break_ctl(tty, -1);
2811		return 0;
2812	case TIOCCBRK:	/* Turn break off, unconditionally */
2813		if (tty->ops->break_ctl)
2814			return tty->ops->break_ctl(tty, 0);
2815		return 0;
2816	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817		/* non-zero arg means wait for all output data
2818		 * to be sent (performed above) but don't send break.
2819		 * This is used by the tcdrain() termios function.
2820		 */
2821		if (!arg)
2822			return send_break(tty, 250);
2823		return 0;
2824	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825		return send_break(tty, arg ? arg*100 : 250);
2826
2827	case TIOCMGET:
2828		return tty_tiocmget(tty, p);
2829	case TIOCMSET:
2830	case TIOCMBIC:
2831	case TIOCMBIS:
2832		return tty_tiocmset(tty, cmd, p);
2833	case TIOCGICOUNT:
2834		retval = tty_tiocgicount(tty, p);
2835		/* For the moment allow fall through to the old method */
2836        	if (retval != -EINVAL)
2837			return retval;
2838		break;
2839	case TCFLSH:
2840		switch (arg) {
2841		case TCIFLUSH:
2842		case TCIOFLUSH:
2843		/* flush tty buffer and allow ldisc to process ioctl */
2844			tty_buffer_flush(tty);
2845			break;
2846		}
2847		break;
 
 
 
2848	}
2849	if (tty->ops->ioctl) {
2850		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851		if (retval != -ENOIOCTLCMD)
2852			return retval;
2853	}
2854	ld = tty_ldisc_ref_wait(tty);
 
 
2855	retval = -EINVAL;
2856	if (ld->ops->ioctl) {
2857		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858		if (retval == -ENOIOCTLCMD)
2859			retval = -ENOTTY;
2860	}
2861	tty_ldisc_deref(ld);
2862	return retval;
2863}
2864
2865#ifdef CONFIG_COMPAT
2866static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867				unsigned long arg)
2868{
2869	struct tty_struct *tty = file_tty(file);
2870	struct tty_ldisc *ld;
2871	int retval = -ENOIOCTLCMD;
2872
2873	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874		return -EINVAL;
2875
2876	if (tty->ops->compat_ioctl) {
2877		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878		if (retval != -ENOIOCTLCMD)
2879			return retval;
2880	}
2881
2882	ld = tty_ldisc_ref_wait(tty);
 
 
2883	if (ld->ops->compat_ioctl)
2884		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885	else
2886		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887	tty_ldisc_deref(ld);
2888
2889	return retval;
2890}
2891#endif
2892
2893static int this_tty(const void *t, struct file *file, unsigned fd)
2894{
2895	if (likely(file->f_op->read != tty_read))
2896		return 0;
2897	return file_tty(file) != t ? 0 : fd + 1;
2898}
2899	
2900/*
2901 * This implements the "Secure Attention Key" ---  the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key".  Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2905 *
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal.  But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2911 *
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915 *
2916 * Nasty bug: do_SAK is being called in interrupt context.  This can
2917 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918 */
2919void __do_SAK(struct tty_struct *tty)
2920{
2921#ifdef TTY_SOFT_SAK
2922	tty_hangup(tty);
2923#else
2924	struct task_struct *g, *p;
2925	struct pid *session;
2926	int		i;
2927
2928	if (!tty)
2929		return;
2930	session = tty->session;
2931
2932	tty_ldisc_flush(tty);
2933
2934	tty_driver_flush_buffer(tty);
2935
2936	read_lock(&tasklist_lock);
2937	/* Kill the entire session */
2938	do_each_pid_task(session, PIDTYPE_SID, p) {
2939		printk(KERN_NOTICE "SAK: killed process %d"
2940			" (%s): task_session(p)==tty->session\n",
2941			task_pid_nr(p), p->comm);
2942		send_sig(SIGKILL, p, 1);
2943	} while_each_pid_task(session, PIDTYPE_SID, p);
2944	/* Now kill any processes that happen to have the
2945	 * tty open.
2946	 */
2947	do_each_thread(g, p) {
2948		if (p->signal->tty == tty) {
2949			printk(KERN_NOTICE "SAK: killed process %d"
2950			    " (%s): task_session(p)==tty->session\n",
2951			    task_pid_nr(p), p->comm);
2952			send_sig(SIGKILL, p, 1);
2953			continue;
2954		}
2955		task_lock(p);
2956		i = iterate_fd(p->files, 0, this_tty, tty);
2957		if (i != 0) {
2958			printk(KERN_NOTICE "SAK: killed process %d"
2959			    " (%s): fd#%d opened to the tty\n",
2960				    task_pid_nr(p), p->comm, i - 1);
2961			force_sig(SIGKILL, p);
2962		}
2963		task_unlock(p);
2964	} while_each_thread(g, p);
2965	read_unlock(&tasklist_lock);
2966#endif
2967}
2968
2969static void do_SAK_work(struct work_struct *work)
2970{
2971	struct tty_struct *tty =
2972		container_of(work, struct tty_struct, SAK_work);
2973	__do_SAK(tty);
2974}
2975
2976/*
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2981 */
2982void do_SAK(struct tty_struct *tty)
2983{
2984	if (!tty)
2985		return;
2986	schedule_work(&tty->SAK_work);
2987}
2988
2989EXPORT_SYMBOL(do_SAK);
2990
2991static int dev_match_devt(struct device *dev, const void *data)
2992{
2993	const dev_t *devt = data;
2994	return dev->devt == *devt;
2995}
2996
2997/* Must put_device() after it's unused! */
2998static struct device *tty_get_device(struct tty_struct *tty)
2999{
3000	dev_t devt = tty_devnum(tty);
3001	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002}
3003
3004
3005/**
3006 *	initialize_tty_struct
3007 *	@tty: tty to initialize
3008 *
3009 *	This subroutine initializes a tty structure that has been newly
3010 *	allocated.
3011 *
3012 *	Locking: none - tty in question must not be exposed at this point
3013 */
3014
3015void initialize_tty_struct(struct tty_struct *tty,
3016		struct tty_driver *driver, int idx)
3017{
3018	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
3019	kref_init(&tty->kref);
3020	tty->magic = TTY_MAGIC;
3021	tty_ldisc_init(tty);
3022	tty->session = NULL;
3023	tty->pgrp = NULL;
3024	mutex_init(&tty->legacy_mutex);
3025	mutex_init(&tty->throttle_mutex);
3026	init_rwsem(&tty->termios_rwsem);
3027	mutex_init(&tty->winsize_mutex);
3028	init_ldsem(&tty->ldisc_sem);
3029	init_waitqueue_head(&tty->write_wait);
3030	init_waitqueue_head(&tty->read_wait);
3031	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032	mutex_init(&tty->atomic_write_lock);
3033	spin_lock_init(&tty->ctrl_lock);
 
 
3034	INIT_LIST_HEAD(&tty->tty_files);
3035	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037	tty->driver = driver;
3038	tty->ops = driver->ops;
3039	tty->index = idx;
3040	tty_line_name(driver, idx, tty->name);
3041	tty->dev = tty_get_device(tty);
3042}
3043
3044/**
3045 *	deinitialize_tty_struct
3046 *	@tty: tty to deinitialize
3047 *
3048 *	This subroutine deinitializes a tty structure that has been newly
3049 *	allocated but tty_release cannot be called on that yet.
3050 *
3051 *	Locking: none - tty in question must not be exposed at this point
3052 */
3053void deinitialize_tty_struct(struct tty_struct *tty)
3054{
3055	tty_ldisc_deinit(tty);
3056}
3057
3058/**
3059 *	tty_put_char	-	write one character to a tty
3060 *	@tty: tty
3061 *	@ch: character
3062 *
3063 *	Write one byte to the tty using the provided put_char method
3064 *	if present. Returns the number of characters successfully output.
3065 *
3066 *	Note: the specific put_char operation in the driver layer may go
3067 *	away soon. Don't call it directly, use this method
3068 */
3069
3070int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071{
3072	if (tty->ops->put_char)
3073		return tty->ops->put_char(tty, ch);
3074	return tty->ops->write(tty, &ch, 1);
3075}
3076EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078struct class *tty_class;
3079
3080static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081		unsigned int index, unsigned int count)
3082{
 
 
3083	/* init here, since reused cdevs cause crashes */
3084	cdev_init(&driver->cdevs[index], &tty_fops);
3085	driver->cdevs[index].owner = driver->owner;
3086	return cdev_add(&driver->cdevs[index], dev, count);
 
 
 
 
 
 
3087}
3088
3089/**
3090 *	tty_register_device - register a tty device
3091 *	@driver: the tty driver that describes the tty device
3092 *	@index: the index in the tty driver for this tty device
3093 *	@device: a struct device that is associated with this tty device.
3094 *		This field is optional, if there is no known struct device
3095 *		for this tty device it can be set to NULL safely.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
3106 */
3107
3108struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109				   struct device *device)
3110{
3111	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112}
3113EXPORT_SYMBOL(tty_register_device);
3114
3115static void tty_device_create_release(struct device *dev)
3116{
3117	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118	kfree(dev);
3119}
3120
3121/**
3122 *	tty_register_device_attr - register a tty device
3123 *	@driver: the tty driver that describes the tty device
3124 *	@index: the index in the tty driver for this tty device
3125 *	@device: a struct device that is associated with this tty device.
3126 *		This field is optional, if there is no known struct device
3127 *		for this tty device it can be set to NULL safely.
3128 *	@drvdata: Driver data to be set to device.
3129 *	@attr_grp: Attribute group to be set on device.
3130 *
3131 *	Returns a pointer to the struct device for this tty device
3132 *	(or ERR_PTR(-EFOO) on error).
3133 *
3134 *	This call is required to be made to register an individual tty device
3135 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136 *	that bit is not set, this function should not be called by a tty
3137 *	driver.
3138 *
3139 *	Locking: ??
3140 */
3141struct device *tty_register_device_attr(struct tty_driver *driver,
3142				   unsigned index, struct device *device,
3143				   void *drvdata,
3144				   const struct attribute_group **attr_grp)
3145{
3146	char name[64];
3147	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148	struct device *dev = NULL;
3149	int retval = -ENODEV;
3150	bool cdev = false;
3151
3152	if (index >= driver->num) {
3153		printk(KERN_ERR "Attempt to register invalid tty line number "
3154		       " (%d).\n", index);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159		pty_line_name(driver, index, name);
3160	else
3161		tty_line_name(driver, index, name);
3162
3163	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164		retval = tty_cdev_add(driver, devt, index, 1);
3165		if (retval)
3166			goto error;
3167		cdev = true;
3168	}
3169
3170	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171	if (!dev) {
3172		retval = -ENOMEM;
3173		goto error;
3174	}
3175
3176	dev->devt = devt;
3177	dev->class = tty_class;
3178	dev->parent = device;
3179	dev->release = tty_device_create_release;
3180	dev_set_name(dev, "%s", name);
3181	dev->groups = attr_grp;
3182	dev_set_drvdata(dev, drvdata);
3183
3184	retval = device_register(dev);
3185	if (retval)
3186		goto error;
3187
3188	return dev;
3189
3190error:
3191	put_device(dev);
3192	if (cdev)
3193		cdev_del(&driver->cdevs[index]);
 
 
3194	return ERR_PTR(retval);
3195}
3196EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198/**
3199 * 	tty_unregister_device - unregister a tty device
3200 * 	@driver: the tty driver that describes the tty device
3201 * 	@index: the index in the tty driver for this tty device
3202 *
3203 * 	If a tty device is registered with a call to tty_register_device() then
3204 *	this function must be called when the tty device is gone.
3205 *
3206 *	Locking: ??
3207 */
3208
3209void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210{
3211	device_destroy(tty_class,
3212		MKDEV(driver->major, driver->minor_start) + index);
3213	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214		cdev_del(&driver->cdevs[index]);
 
 
3215}
3216EXPORT_SYMBOL(tty_unregister_device);
3217
3218/**
3219 * __tty_alloc_driver -- allocate tty driver
3220 * @lines: count of lines this driver can handle at most
3221 * @owner: module which is repsonsible for this driver
3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223 *
3224 * This should not be called directly, some of the provided macros should be
3225 * used instead. Use IS_ERR and friends on @retval.
3226 */
3227struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228		unsigned long flags)
3229{
3230	struct tty_driver *driver;
3231	unsigned int cdevs = 1;
3232	int err;
3233
3234	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235		return ERR_PTR(-EINVAL);
3236
3237	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238	if (!driver)
3239		return ERR_PTR(-ENOMEM);
3240
3241	kref_init(&driver->kref);
3242	driver->magic = TTY_DRIVER_MAGIC;
3243	driver->num = lines;
3244	driver->owner = owner;
3245	driver->flags = flags;
3246
3247	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249				GFP_KERNEL);
3250		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251				GFP_KERNEL);
3252		if (!driver->ttys || !driver->termios) {
3253			err = -ENOMEM;
3254			goto err_free_all;
3255		}
3256	}
3257
3258	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260				GFP_KERNEL);
3261		if (!driver->ports) {
3262			err = -ENOMEM;
3263			goto err_free_all;
3264		}
3265		cdevs = lines;
3266	}
3267
3268	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269	if (!driver->cdevs) {
3270		err = -ENOMEM;
3271		goto err_free_all;
3272	}
3273
3274	return driver;
3275err_free_all:
3276	kfree(driver->ports);
3277	kfree(driver->ttys);
3278	kfree(driver->termios);
 
3279	kfree(driver);
3280	return ERR_PTR(err);
3281}
3282EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284static void destruct_tty_driver(struct kref *kref)
3285{
3286	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287	int i;
3288	struct ktermios *tp;
3289
3290	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291		/*
3292		 * Free the termios and termios_locked structures because
3293		 * we don't want to get memory leaks when modular tty
3294		 * drivers are removed from the kernel.
3295		 */
3296		for (i = 0; i < driver->num; i++) {
3297			tp = driver->termios[i];
3298			if (tp) {
3299				driver->termios[i] = NULL;
3300				kfree(tp);
3301			}
3302			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303				tty_unregister_device(driver, i);
3304		}
3305		proc_tty_unregister_driver(driver);
3306		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307			cdev_del(&driver->cdevs[0]);
3308	}
3309	kfree(driver->cdevs);
3310	kfree(driver->ports);
3311	kfree(driver->termios);
3312	kfree(driver->ttys);
3313	kfree(driver);
3314}
3315
3316void tty_driver_kref_put(struct tty_driver *driver)
3317{
3318	kref_put(&driver->kref, destruct_tty_driver);
3319}
3320EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322void tty_set_operations(struct tty_driver *driver,
3323			const struct tty_operations *op)
3324{
3325	driver->ops = op;
3326};
3327EXPORT_SYMBOL(tty_set_operations);
3328
3329void put_tty_driver(struct tty_driver *d)
3330{
3331	tty_driver_kref_put(d);
3332}
3333EXPORT_SYMBOL(put_tty_driver);
3334
3335/*
3336 * Called by a tty driver to register itself.
3337 */
3338int tty_register_driver(struct tty_driver *driver)
3339{
3340	int error;
3341	int i;
3342	dev_t dev;
3343	struct device *d;
3344
3345	if (!driver->major) {
3346		error = alloc_chrdev_region(&dev, driver->minor_start,
3347						driver->num, driver->name);
3348		if (!error) {
3349			driver->major = MAJOR(dev);
3350			driver->minor_start = MINOR(dev);
3351		}
3352	} else {
3353		dev = MKDEV(driver->major, driver->minor_start);
3354		error = register_chrdev_region(dev, driver->num, driver->name);
3355	}
3356	if (error < 0)
3357		goto err;
3358
3359	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360		error = tty_cdev_add(driver, dev, 0, driver->num);
3361		if (error)
3362			goto err_unreg_char;
3363	}
3364
3365	mutex_lock(&tty_mutex);
3366	list_add(&driver->tty_drivers, &tty_drivers);
3367	mutex_unlock(&tty_mutex);
3368
3369	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370		for (i = 0; i < driver->num; i++) {
3371			d = tty_register_device(driver, i, NULL);
3372			if (IS_ERR(d)) {
3373				error = PTR_ERR(d);
3374				goto err_unreg_devs;
3375			}
3376		}
3377	}
3378	proc_tty_register_driver(driver);
3379	driver->flags |= TTY_DRIVER_INSTALLED;
3380	return 0;
3381
3382err_unreg_devs:
3383	for (i--; i >= 0; i--)
3384		tty_unregister_device(driver, i);
3385
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389
3390err_unreg_char:
3391	unregister_chrdev_region(dev, driver->num);
3392err:
3393	return error;
3394}
3395EXPORT_SYMBOL(tty_register_driver);
3396
3397/*
3398 * Called by a tty driver to unregister itself.
3399 */
3400int tty_unregister_driver(struct tty_driver *driver)
3401{
3402#if 0
3403	/* FIXME */
3404	if (driver->refcount)
3405		return -EBUSY;
3406#endif
3407	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408				driver->num);
3409	mutex_lock(&tty_mutex);
3410	list_del(&driver->tty_drivers);
3411	mutex_unlock(&tty_mutex);
3412	return 0;
3413}
3414
3415EXPORT_SYMBOL(tty_unregister_driver);
3416
3417dev_t tty_devnum(struct tty_struct *tty)
3418{
3419	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420}
3421EXPORT_SYMBOL(tty_devnum);
3422
3423void proc_clear_tty(struct task_struct *p)
3424{
3425	unsigned long flags;
3426	struct tty_struct *tty;
3427	spin_lock_irqsave(&p->sighand->siglock, flags);
3428	tty = p->signal->tty;
3429	p->signal->tty = NULL;
3430	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431	tty_kref_put(tty);
3432}
3433
3434/* Called under the sighand lock */
3435
3436static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437{
3438	if (tty) {
3439		unsigned long flags;
3440		/* We should not have a session or pgrp to put here but.... */
3441		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442		put_pid(tty->session);
3443		put_pid(tty->pgrp);
3444		tty->pgrp = get_pid(task_pgrp(tsk));
3445		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446		tty->session = get_pid(task_session(tsk));
3447		if (tsk->signal->tty) {
3448			printk(KERN_DEBUG "tty not NULL!!\n");
3449			tty_kref_put(tsk->signal->tty);
3450		}
3451	}
3452	put_pid(tsk->signal->tty_old_pgrp);
3453	tsk->signal->tty = tty_kref_get(tty);
3454	tsk->signal->tty_old_pgrp = NULL;
3455}
3456
3457static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458{
3459	spin_lock_irq(&tsk->sighand->siglock);
3460	__proc_set_tty(tsk, tty);
3461	spin_unlock_irq(&tsk->sighand->siglock);
3462}
3463
3464struct tty_struct *get_current_tty(void)
3465{
3466	struct tty_struct *tty;
3467	unsigned long flags;
3468
3469	spin_lock_irqsave(&current->sighand->siglock, flags);
3470	tty = tty_kref_get(current->signal->tty);
3471	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472	return tty;
3473}
3474EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476void tty_default_fops(struct file_operations *fops)
3477{
3478	*fops = tty_fops;
3479}
3480
3481/*
3482 * Initialize the console device. This is called *early*, so
3483 * we can't necessarily depend on lots of kernel help here.
3484 * Just do some early initializations, and do the complex setup
3485 * later.
3486 */
3487void __init console_init(void)
3488{
3489	initcall_t *call;
3490
3491	/* Setup the default TTY line discipline. */
3492	tty_ldisc_begin();
3493
3494	/*
3495	 * set up the console device so that later boot sequences can
3496	 * inform about problems etc..
3497	 */
3498	call = __con_initcall_start;
3499	while (call < __con_initcall_end) {
3500		(*call)();
3501		call++;
3502	}
3503}
3504
3505static char *tty_devnode(struct device *dev, umode_t *mode)
3506{
3507	if (!mode)
3508		return NULL;
3509	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511		*mode = 0666;
3512	return NULL;
3513}
3514
3515static int __init tty_class_init(void)
3516{
3517	tty_class = class_create(THIS_MODULE, "tty");
3518	if (IS_ERR(tty_class))
3519		return PTR_ERR(tty_class);
3520	tty_class->devnode = tty_devnode;
3521	return 0;
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530				struct device_attribute *attr, char *buf)
3531{
3532	struct console *cs[16];
3533	int i = 0;
3534	struct console *c;
3535	ssize_t count = 0;
3536
3537	console_lock();
3538	for_each_console(c) {
3539		if (!c->device)
3540			continue;
3541		if (!c->write)
3542			continue;
3543		if ((c->flags & CON_ENABLED) == 0)
3544			continue;
3545		cs[i++] = c;
3546		if (i >= ARRAY_SIZE(cs))
3547			break;
3548	}
3549	while (i--) {
3550		int index = cs[i]->index;
3551		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553		/* don't resolve tty0 as some programs depend on it */
3554		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555			count += tty_line_name(drv, index, buf + count);
3556		else
3557			count += sprintf(buf + count, "%s%d",
3558					 cs[i]->name, cs[i]->index);
3559
3560		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561	}
3562	console_unlock();
3563
3564	return count;
3565}
3566static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
 
 
 
 
 
 
 
3568static struct device *consdev;
3569
3570void console_sysfs_notify(void)
3571{
3572	if (consdev)
3573		sysfs_notify(&consdev->kobj, NULL, "active");
3574}
3575
3576/*
3577 * Ok, now we can initialize the rest of the tty devices and can count
3578 * on memory allocations, interrupts etc..
3579 */
3580int __init tty_init(void)
3581{
3582	cdev_init(&tty_cdev, &tty_fops);
3583	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585		panic("Couldn't register /dev/tty driver\n");
3586	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588	cdev_init(&console_cdev, &console_fops);
3589	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591		panic("Couldn't register /dev/console driver\n");
3592	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593			      "console");
 
3594	if (IS_ERR(consdev))
3595		consdev = NULL;
3596	else
3597		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599#ifdef CONFIG_VT
3600	vty_init(&console_fops);
3601#endif
3602	return 0;
3603}
3604
v4.6
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 
 139DEFINE_MUTEX(tty_mutex);
 
 
 
 
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 
 
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 
 
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 
 299		return count;
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 
 
 
 
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 
 
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 
 
 
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 
 
 769	tty_unlock(tty);
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 
 
 
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 
 
 
 
 811	__tty_hangup(tty, 0);
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 
 
 
 
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 
 
 
 
 
 
 
 
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 
 
 
 
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 961	disassociate_ctty(0);
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 
 
 
 986		return;
 
 987	tty->stopped = 1;
 
 
 
 
 
 
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
 
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
 
 
 
1017		return;
 
1018	tty->stopped = 0;
 
 
 
 
 
 
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
 
1021	tty_wakeup(tty);
1022}
1023
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
 
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
 
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
1170		if (size > chunk)
1171			size = chunk;
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
1175		ret = write(tty, file, tty->write_buf, size);
1176		if (ret <= 0)
1177			break;
1178		written += ret;
1179		buf += ret;
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
 
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
 
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
 
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
1273	spin_unlock(&redirect_lock);
1274
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
1362 *	@idx:	 the minor number
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
1376	else
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
 
 
 
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
 
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
 
 
 
1483
 
 
1484	tty->count++;
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
1488
1489	return 0;
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
 
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
1549
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
 
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
 
1593			return;
 
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
1688 *
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
1703
1704	tty_kref_put(tty->link);
 
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
 
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
 
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
 
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
1794		return 0;
1795	}
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1798
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
 
 
 
 
1817	 */
1818	while (1) {
 
 
 
 
 
 
 
 
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
 
 
 
 
 
 
 
 
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
 
 
 
 
 
 
 
 
 
 
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
1900
1901	if (!final)
 
1902		return 0;
1903
1904	tty_debug_hangup(tty, "final close\n");
 
 
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
 
 
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
 
 
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
 
 
 
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940	struct tty_struct *tty;
1941	int retval;
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
 
1987		break;
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
 
1997				break;
1998			}
1999		}
2000		return ERR_PTR(-ENODEV);
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
2011/**
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
 
 
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
 
 
 
 
 
 
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114
 
 
 
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
 
 
 
 
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
 
 
 
 
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
 
 
2138		tty_unlock(tty); /* need to call tty_release without BTM */
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
2151			filp->f_op = &tty_fops;
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
 
2155
2156
2157	read_lock(&tasklist_lock);
 
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
 
2189	return 0;
 
 
 
 
 
 
 
 
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
 
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
 
 
 
 
 
 
 
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
2254	}
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
2293
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
 
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
 
 
 
 
 
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
 
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
 
2491			session_clear_tty(tty->session);
 
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
 
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
2738	return retval;
2739}
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
2832
2833	flags &= ASYNC_DEPRECATED;
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
2838}
 
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
 
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
 
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
 
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
 
3091			send_sig(SIGKILL, p, 1);
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
 
3099			force_sig(SIGKILL, p);
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
 
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
 
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172	mutex_init(&tty->atomic_write_lock);
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
 
3184
3185	return tty;
 
 
 
 
 
 
 
 
 
 
 
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
3325
3326	return dev;
3327
3328error:
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
3486	struct device *d;
3487
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
3536	return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
 
 
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700