Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (!tty)
 185		return;
 186	if (tty->dev)
 187		put_device(tty->dev);
 188	kfree(tty->write_buf);
 189	tty->magic = 0xDEADDEAD;
 190	kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195	return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 206	file->private_data = priv;
 207
 208	return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214	struct tty_file_private *priv = file->private_data;
 215
 216	priv->tty = tty;
 217	priv->file = file;
 218
 219	spin_lock(&tty_files_lock);
 220	list_add(&priv->list, &tty->tty_files);
 221	spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232	struct tty_file_private *priv = file->private_data;
 233
 234	file->private_data = NULL;
 235	kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241	struct tty_file_private *priv = file->private_data;
 
 242
 243	spin_lock(&tty_files_lock);
 244	list_del(&priv->list);
 245	spin_unlock(&tty_files_lock);
 246	tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *	tty_name	-	return tty naming
 254 *	@tty: tty structure
 255 *	@buf: buffer for output
 256 *
 257 *	Convert a tty structure into a name. The name reflects the kernel
 258 *	naming policy and if udev is in use may not reflect user space
 259 *
 260 *	Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266		strcpy(buf, "NULL tty");
 267	else
 268		strcpy(buf, tty->name);
 269	return buf;
 270}
 271
 272EXPORT_SYMBOL(tty_name);
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 275			      const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278	if (!tty) {
 279		printk(KERN_WARNING
 280			"null TTY for (%d:%d) in %s\n",
 281			imajor(inode), iminor(inode), routine);
 282		return 1;
 283	}
 284	if (tty->magic != TTY_MAGIC) {
 285		printk(KERN_WARNING
 286			"bad magic number for tty struct (%d:%d) in %s\n",
 287			imajor(inode), iminor(inode), routine);
 288		return 1;
 289	}
 290#endif
 291	return 0;
 292}
 293
 
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 295{
 296#ifdef CHECK_TTY_COUNT
 297	struct list_head *p;
 298	int count = 0;
 299
 300	spin_lock(&tty_files_lock);
 301	list_for_each(p, &tty->tty_files) {
 302		count++;
 303	}
 304	spin_unlock(&tty_files_lock);
 305	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 307	    tty->link && tty->link->count)
 308		count++;
 309	if (tty->count != count) {
 310		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311				    "!= #fd's(%d) in %s\n",
 312		       tty->name, tty->count, count, routine);
 313		return count;
 314	}
 315#endif
 316	return 0;
 317}
 318
 319/**
 320 *	get_tty_driver		-	find device of a tty
 321 *	@dev_t: device identifier
 322 *	@index: returns the index of the tty
 323 *
 324 *	This routine returns a tty driver structure, given a device number
 325 *	and also passes back the index number.
 326 *
 327 *	Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332	struct tty_driver *p;
 333
 334	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335		dev_t base = MKDEV(p->major, p->minor_start);
 336		if (device < base || device >= base + p->num)
 337			continue;
 338		*index = device - base;
 339		return tty_driver_kref_get(p);
 340	}
 341	return NULL;
 342}
 343
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *	tty_find_polling_driver	-	find device of a polled tty
 348 *	@name: name string to match
 349 *	@line: pointer to resulting tty line nr
 350 *
 351 *	This routine returns a tty driver structure, given a name
 352 *	and the condition that the tty driver is capable of polled
 353 *	operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357	struct tty_driver *p, *res = NULL;
 358	int tty_line = 0;
 359	int len;
 360	char *str, *stp;
 361
 362	for (str = name; *str; str++)
 363		if ((*str >= '0' && *str <= '9') || *str == ',')
 364			break;
 365	if (!*str)
 366		return NULL;
 367
 368	len = str - name;
 369	tty_line = simple_strtoul(str, &str, 10);
 370
 371	mutex_lock(&tty_mutex);
 372	/* Search through the tty devices to look for a match */
 373	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374		if (strncmp(name, p->name, len) != 0)
 375			continue;
 376		stp = str;
 377		if (*stp == ',')
 378			stp++;
 379		if (*stp == '\0')
 380			stp = NULL;
 381
 382		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384			res = tty_driver_kref_get(p);
 385			*line = tty_line;
 386			break;
 387		}
 388	}
 389	mutex_unlock(&tty_mutex);
 390
 391	return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 
 
 
 
 
 
 396/**
 397 *	tty_check_change	-	check for POSIX terminal changes
 398 *	@tty: tty to check
 399 *
 400 *	If we try to write to, or set the state of, a terminal and we're
 401 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *	Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409	unsigned long flags;
 
 410	int ret = 0;
 411
 412	if (current->signal->tty != tty)
 413		return 0;
 414
 415	spin_lock_irqsave(&tty->ctrl_lock, flags);
 
 416
 417	if (!tty->pgrp) {
 418		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419		goto out_unlock;
 420	}
 421	if (task_pgrp(current) == tty->pgrp)
 422		goto out_unlock;
 423	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424	if (is_ignored(SIGTTOU))
 425		goto out;
 426	if (is_current_pgrp_orphaned()) {
 427		ret = -EIO;
 428		goto out;
 
 
 
 
 
 
 
 429	}
 430	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431	set_thread_flag(TIF_SIGPENDING);
 432	ret = -ERESTARTSYS;
 433out:
 434	return ret;
 435out_unlock:
 436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437	return ret;
 438}
 439
 
 
 
 
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443				size_t count, loff_t *ppos)
 444{
 445	return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449				 size_t count, loff_t *ppos)
 450{
 451	return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461		unsigned long arg)
 462{
 463	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467				     unsigned int cmd, unsigned long arg)
 468{
 469	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 
 
 
 
 
 472static const struct file_operations tty_fops = {
 473	.llseek		= no_llseek,
 474	.read		= tty_read,
 475	.write		= tty_write,
 476	.poll		= tty_poll,
 477	.unlocked_ioctl	= tty_ioctl,
 478	.compat_ioctl	= tty_compat_ioctl,
 479	.open		= tty_open,
 480	.release	= tty_release,
 481	.fasync		= tty_fasync,
 482};
 483
 484static const struct file_operations console_fops = {
 485	.llseek		= no_llseek,
 486	.read		= tty_read,
 487	.write		= redirected_tty_write,
 488	.poll		= tty_poll,
 489	.unlocked_ioctl	= tty_ioctl,
 490	.compat_ioctl	= tty_compat_ioctl,
 491	.open		= tty_open,
 492	.release	= tty_release,
 493	.fasync		= tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497	.llseek		= no_llseek,
 498	.read		= hung_up_tty_read,
 499	.write		= hung_up_tty_write,
 500	.poll		= hung_up_tty_poll,
 501	.unlocked_ioctl	= hung_up_tty_ioctl,
 502	.compat_ioctl	= hung_up_tty_compat_ioctl,
 503	.release	= tty_release,
 
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509/**
 510 *	tty_wakeup	-	request more data
 511 *	@tty: terminal
 512 *
 513 *	Internal and external helper for wakeups of tty. This function
 514 *	informs the line discipline if present that the driver is ready
 515 *	to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520	struct tty_ldisc *ld;
 521
 522	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523		ld = tty_ldisc_ref(tty);
 524		if (ld) {
 525			if (ld->ops->write_wakeup)
 526				ld->ops->write_wakeup(tty);
 527			tty_ldisc_deref(ld);
 528		}
 529	}
 530	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *	tty_signal_session_leader	- sends SIGHUP to session leader
 537 *	@tty		controlling tty
 538 *	@exit_session	if non-zero, signal all foreground group processes
 539 *
 540 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *	Optionally, signal all processes in the foreground process group.
 542 *
 543 *	Returns the number of processes in the session with this tty
 544 *	as their controlling terminal. This value is used to drop
 545 *	tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549	struct task_struct *p;
 550	int refs = 0;
 551	struct pid *tty_pgrp = NULL;
 552
 553	read_lock(&tasklist_lock);
 554	if (tty->session) {
 555		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556			spin_lock_irq(&p->sighand->siglock);
 557			if (p->signal->tty == tty) {
 558				p->signal->tty = NULL;
 559				/* We defer the dereferences outside fo
 560				   the tasklist lock */
 561				refs++;
 562			}
 563			if (!p->signal->leader) {
 564				spin_unlock_irq(&p->sighand->siglock);
 565				continue;
 566			}
 567			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570			spin_lock(&tty->ctrl_lock);
 571			tty_pgrp = get_pid(tty->pgrp);
 572			if (tty->pgrp)
 573				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574			spin_unlock(&tty->ctrl_lock);
 575			spin_unlock_irq(&p->sighand->siglock);
 576		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577	}
 578	read_unlock(&tasklist_lock);
 579
 580	if (tty_pgrp) {
 581		if (exit_session)
 582			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583		put_pid(tty_pgrp);
 584	}
 585
 586	return refs;
 587}
 588
 589/**
 590 *	__tty_hangup		-	actual handler for hangup events
 591 *	@work: tty device
 592 *
 593 *	This can be called by a "kworker" kernel thread.  That is process
 594 *	synchronous but doesn't hold any locks, so we need to make sure we
 595 *	have the appropriate locks for what we're doing.
 596 *
 597 *	The hangup event clears any pending redirections onto the hung up
 598 *	device. It ensures future writes will error and it does the needed
 599 *	line discipline hangup and signal delivery. The tty object itself
 600 *	remains intact.
 601 *
 602 *	Locking:
 603 *		BTM
 604 *		  redirect lock for undoing redirection
 605 *		  file list lock for manipulating list of ttys
 606 *		  tty_ldiscs_lock from called functions
 607 *		  termios_rwsem resetting termios data
 608 *		  tasklist_lock to walk task list for hangup event
 609 *		    ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613	struct file *cons_filp = NULL;
 614	struct file *filp, *f = NULL;
 615	struct tty_file_private *priv;
 616	int    closecount = 0, n;
 617	int refs;
 618
 619	if (!tty)
 620		return;
 621
 622
 623	spin_lock(&redirect_lock);
 624	if (redirect && file_tty(redirect) == tty) {
 625		f = redirect;
 626		redirect = NULL;
 627	}
 628	spin_unlock(&redirect_lock);
 629
 630	tty_lock(tty);
 631
 632	if (test_bit(TTY_HUPPED, &tty->flags)) {
 633		tty_unlock(tty);
 634		return;
 635	}
 636
 637	/* some functions below drop BTM, so we need this bit */
 638	set_bit(TTY_HUPPING, &tty->flags);
 639
 640	/* inuse_filps is protected by the single tty lock,
 641	   this really needs to change if we want to flush the
 642	   workqueue with the lock held */
 643	check_tty_count(tty, "tty_hangup");
 644
 645	spin_lock(&tty_files_lock);
 646	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 647	list_for_each_entry(priv, &tty->tty_files, list) {
 648		filp = priv->file;
 649		if (filp->f_op->write == redirected_tty_write)
 650			cons_filp = filp;
 651		if (filp->f_op->write != tty_write)
 652			continue;
 653		closecount++;
 654		__tty_fasync(-1, filp, 0);	/* can't block */
 655		filp->f_op = &hung_up_tty_fops;
 656	}
 657	spin_unlock(&tty_files_lock);
 658
 659	refs = tty_signal_session_leader(tty, exit_session);
 660	/* Account for the p->signal references we killed */
 661	while (refs--)
 662		tty_kref_put(tty);
 663
 664	/*
 665	 * it drops BTM and thus races with reopen
 666	 * we protect the race by TTY_HUPPING
 667	 */
 668	tty_ldisc_hangup(tty);
 669
 670	spin_lock_irq(&tty->ctrl_lock);
 671	clear_bit(TTY_THROTTLED, &tty->flags);
 672	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 673	put_pid(tty->session);
 674	put_pid(tty->pgrp);
 675	tty->session = NULL;
 676	tty->pgrp = NULL;
 677	tty->ctrl_status = 0;
 678	spin_unlock_irq(&tty->ctrl_lock);
 679
 680	/*
 681	 * If one of the devices matches a console pointer, we
 682	 * cannot just call hangup() because that will cause
 683	 * tty->count and state->count to go out of sync.
 684	 * So we just call close() the right number of times.
 685	 */
 686	if (cons_filp) {
 687		if (tty->ops->close)
 688			for (n = 0; n < closecount; n++)
 689				tty->ops->close(tty, cons_filp);
 690	} else if (tty->ops->hangup)
 691		(tty->ops->hangup)(tty);
 692	/*
 693	 * We don't want to have driver/ldisc interactions beyond
 694	 * the ones we did here. The driver layer expects no
 695	 * calls after ->hangup() from the ldisc side. However we
 696	 * can't yet guarantee all that.
 697	 */
 698	set_bit(TTY_HUPPED, &tty->flags);
 699	clear_bit(TTY_HUPPING, &tty->flags);
 700
 701	tty_unlock(tty);
 702
 703	if (f)
 704		fput(f);
 705}
 706
 707static void do_tty_hangup(struct work_struct *work)
 708{
 709	struct tty_struct *tty =
 710		container_of(work, struct tty_struct, hangup_work);
 711
 712	__tty_hangup(tty, 0);
 713}
 714
 715/**
 716 *	tty_hangup		-	trigger a hangup event
 717 *	@tty: tty to hangup
 718 *
 719 *	A carrier loss (virtual or otherwise) has occurred on this like
 720 *	schedule a hangup sequence to run after this event.
 721 */
 722
 723void tty_hangup(struct tty_struct *tty)
 724{
 725#ifdef TTY_DEBUG_HANGUP
 726	char	buf[64];
 727	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 728#endif
 729	schedule_work(&tty->hangup_work);
 730}
 731
 732EXPORT_SYMBOL(tty_hangup);
 733
 734/**
 735 *	tty_vhangup		-	process vhangup
 736 *	@tty: tty to hangup
 737 *
 738 *	The user has asked via system call for the terminal to be hung up.
 739 *	We do this synchronously so that when the syscall returns the process
 740 *	is complete. That guarantee is necessary for security reasons.
 741 */
 742
 743void tty_vhangup(struct tty_struct *tty)
 744{
 745#ifdef TTY_DEBUG_HANGUP
 746	char	buf[64];
 747
 748	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 749#endif
 750	__tty_hangup(tty, 0);
 751}
 752
 753EXPORT_SYMBOL(tty_vhangup);
 754
 755
 756/**
 757 *	tty_vhangup_self	-	process vhangup for own ctty
 758 *
 759 *	Perform a vhangup on the current controlling tty
 760 */
 761
 762void tty_vhangup_self(void)
 763{
 764	struct tty_struct *tty;
 765
 766	tty = get_current_tty();
 767	if (tty) {
 768		tty_vhangup(tty);
 769		tty_kref_put(tty);
 770	}
 771}
 772
 773/**
 774 *	tty_vhangup_session		-	hangup session leader exit
 775 *	@tty: tty to hangup
 776 *
 777 *	The session leader is exiting and hanging up its controlling terminal.
 778 *	Every process in the foreground process group is signalled SIGHUP.
 779 *
 780 *	We do this synchronously so that when the syscall returns the process
 781 *	is complete. That guarantee is necessary for security reasons.
 782 */
 783
 784static void tty_vhangup_session(struct tty_struct *tty)
 785{
 786#ifdef TTY_DEBUG_HANGUP
 787	char	buf[64];
 788
 789	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 790#endif
 791	__tty_hangup(tty, 1);
 792}
 793
 794/**
 795 *	tty_hung_up_p		-	was tty hung up
 796 *	@filp: file pointer of tty
 797 *
 798 *	Return true if the tty has been subject to a vhangup or a carrier
 799 *	loss
 800 */
 801
 802int tty_hung_up_p(struct file *filp)
 803{
 804	return (filp->f_op == &hung_up_tty_fops);
 805}
 806
 807EXPORT_SYMBOL(tty_hung_up_p);
 808
 809static void session_clear_tty(struct pid *session)
 810{
 811	struct task_struct *p;
 812	do_each_pid_task(session, PIDTYPE_SID, p) {
 813		proc_clear_tty(p);
 814	} while_each_pid_task(session, PIDTYPE_SID, p);
 815}
 816
 817/**
 818 *	disassociate_ctty	-	disconnect controlling tty
 819 *	@on_exit: true if exiting so need to "hang up" the session
 820 *
 821 *	This function is typically called only by the session leader, when
 822 *	it wants to disassociate itself from its controlling tty.
 823 *
 824 *	It performs the following functions:
 825 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 826 * 	(2)  Clears the tty from being controlling the session
 827 * 	(3)  Clears the controlling tty for all processes in the
 828 * 		session group.
 829 *
 830 *	The argument on_exit is set to 1 if called when a process is
 831 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 832 *
 833 *	Locking:
 834 *		BTM is taken for hysterical raisins, and held when
 835 *		  called from no_tty().
 836 *		  tty_mutex is taken to protect tty
 837 *		  ->siglock is taken to protect ->signal/->sighand
 838 *		  tasklist_lock is taken to walk process list for sessions
 839 *		    ->siglock is taken to protect ->signal/->sighand
 840 */
 841
 842void disassociate_ctty(int on_exit)
 843{
 844	struct tty_struct *tty;
 845
 846	if (!current->signal->leader)
 847		return;
 848
 849	tty = get_current_tty();
 850	if (tty) {
 851		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 852			tty_vhangup_session(tty);
 853		} else {
 854			struct pid *tty_pgrp = tty_get_pgrp(tty);
 855			if (tty_pgrp) {
 856				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 857				if (!on_exit)
 858					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 859				put_pid(tty_pgrp);
 860			}
 861		}
 862		tty_kref_put(tty);
 863
 864	} else if (on_exit) {
 865		struct pid *old_pgrp;
 866		spin_lock_irq(&current->sighand->siglock);
 867		old_pgrp = current->signal->tty_old_pgrp;
 868		current->signal->tty_old_pgrp = NULL;
 869		spin_unlock_irq(&current->sighand->siglock);
 870		if (old_pgrp) {
 871			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 872			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 873			put_pid(old_pgrp);
 874		}
 875		return;
 876	}
 877
 878	spin_lock_irq(&current->sighand->siglock);
 879	put_pid(current->signal->tty_old_pgrp);
 880	current->signal->tty_old_pgrp = NULL;
 881
 882	tty = tty_kref_get(current->signal->tty);
 883	if (tty) {
 884		unsigned long flags;
 885		spin_lock_irqsave(&tty->ctrl_lock, flags);
 886		put_pid(tty->session);
 887		put_pid(tty->pgrp);
 888		tty->session = NULL;
 889		tty->pgrp = NULL;
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		tty_kref_put(tty);
 892	} else {
 893#ifdef TTY_DEBUG_HANGUP
 894		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 895		       " = NULL", tty);
 896#endif
 897	}
 898
 899	spin_unlock_irq(&current->sighand->siglock);
 900	/* Now clear signal->tty under the lock */
 901	read_lock(&tasklist_lock);
 902	session_clear_tty(task_session(current));
 903	read_unlock(&tasklist_lock);
 904}
 905
 906/**
 907 *
 908 *	no_tty	- Ensure the current process does not have a controlling tty
 909 */
 910void no_tty(void)
 911{
 912	/* FIXME: Review locking here. The tty_lock never covered any race
 913	   between a new association and proc_clear_tty but possible we need
 914	   to protect against this anyway */
 915	struct task_struct *tsk = current;
 916	disassociate_ctty(0);
 917	proc_clear_tty(tsk);
 918}
 919
 920
 921/**
 922 *	stop_tty	-	propagate flow control
 923 *	@tty: tty to stop
 924 *
 925 *	Perform flow control to the driver. For PTY/TTY pairs we
 926 *	must also propagate the TIOCKPKT status. May be called
 927 *	on an already stopped device and will not re-call the driver
 928 *	method.
 929 *
 930 *	This functionality is used by both the line disciplines for
 931 *	halting incoming flow and by the driver. It may therefore be
 932 *	called from any context, may be under the tty atomic_write_lock
 933 *	but not always.
 934 *
 935 *	Locking:
 936 *		Uses the tty control lock internally
 937 */
 938
 939void stop_tty(struct tty_struct *tty)
 940{
 941	unsigned long flags;
 942	spin_lock_irqsave(&tty->ctrl_lock, flags);
 943	if (tty->stopped) {
 944		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 945		return;
 946	}
 947	tty->stopped = 1;
 948	if (tty->link && tty->link->packet) {
 949		tty->ctrl_status &= ~TIOCPKT_START;
 950		tty->ctrl_status |= TIOCPKT_STOP;
 951		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 952	}
 953	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 954	if (tty->ops->stop)
 955		(tty->ops->stop)(tty);
 956}
 957
 
 
 
 
 
 
 
 
 958EXPORT_SYMBOL(stop_tty);
 959
 960/**
 961 *	start_tty	-	propagate flow control
 962 *	@tty: tty to start
 963 *
 964 *	Start a tty that has been stopped if at all possible. Perform
 965 *	any necessary wakeups and propagate the TIOCPKT status. If this
 966 *	is the tty was previous stopped and is being started then the
 967 *	driver start method is invoked and the line discipline woken.
 968 *
 969 *	Locking:
 970 *		ctrl_lock
 971 */
 972
 973void start_tty(struct tty_struct *tty)
 974{
 975	unsigned long flags;
 976	spin_lock_irqsave(&tty->ctrl_lock, flags);
 977	if (!tty->stopped || tty->flow_stopped) {
 978		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 979		return;
 980	}
 981	tty->stopped = 0;
 982	if (tty->link && tty->link->packet) {
 983		tty->ctrl_status &= ~TIOCPKT_STOP;
 984		tty->ctrl_status |= TIOCPKT_START;
 985		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 986	}
 987	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 988	if (tty->ops->start)
 989		(tty->ops->start)(tty);
 990	/* If we have a running line discipline it may need kicking */
 991	tty_wakeup(tty);
 992}
 993
 
 
 
 
 
 
 
 
 994EXPORT_SYMBOL(start_tty);
 995
 996/* We limit tty time update visibility to every 8 seconds or so. */
 997static void tty_update_time(struct timespec *time)
 998{
 999	unsigned long sec = get_seconds() & ~7;
1000	if ((long)(sec - time->tv_sec) > 0)
 
 
 
 
 
 
 
1001		time->tv_sec = sec;
1002}
1003
1004/**
1005 *	tty_read	-	read method for tty device files
1006 *	@file: pointer to tty file
1007 *	@buf: user buffer
1008 *	@count: size of user buffer
1009 *	@ppos: unused
1010 *
1011 *	Perform the read system call function on this terminal device. Checks
1012 *	for hung up devices before calling the line discipline method.
1013 *
1014 *	Locking:
1015 *		Locks the line discipline internally while needed. Multiple
1016 *	read calls may be outstanding in parallel.
1017 */
1018
1019static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020			loff_t *ppos)
1021{
1022	int i;
1023	struct inode *inode = file_inode(file);
1024	struct tty_struct *tty = file_tty(file);
1025	struct tty_ldisc *ld;
1026
1027	if (tty_paranoia_check(tty, inode, "tty_read"))
1028		return -EIO;
1029	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030		return -EIO;
1031
1032	/* We want to wait for the line discipline to sort out in this
1033	   situation */
1034	ld = tty_ldisc_ref_wait(tty);
 
 
1035	if (ld->ops->read)
1036		i = (ld->ops->read)(tty, file, buf, count);
1037	else
1038		i = -EIO;
1039	tty_ldisc_deref(ld);
1040
1041	if (i > 0)
1042		tty_update_time(&inode->i_atime);
1043
1044	return i;
1045}
1046
1047void tty_write_unlock(struct tty_struct *tty)
1048	__releases(&tty->atomic_write_lock)
1049{
1050	mutex_unlock(&tty->atomic_write_lock);
1051	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052}
1053
1054int tty_write_lock(struct tty_struct *tty, int ndelay)
1055	__acquires(&tty->atomic_write_lock)
1056{
1057	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058		if (ndelay)
1059			return -EAGAIN;
1060		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061			return -ERESTARTSYS;
1062	}
1063	return 0;
1064}
1065
1066/*
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1069 */
1070static inline ssize_t do_tty_write(
1071	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072	struct tty_struct *tty,
1073	struct file *file,
1074	const char __user *buf,
1075	size_t count)
1076{
1077	ssize_t ret, written = 0;
1078	unsigned int chunk;
1079
1080	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081	if (ret < 0)
1082		return ret;
1083
1084	/*
1085	 * We chunk up writes into a temporary buffer. This
1086	 * simplifies low-level drivers immensely, since they
1087	 * don't have locking issues and user mode accesses.
1088	 *
1089	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090	 * big chunk-size..
1091	 *
1092	 * The default chunk-size is 2kB, because the NTTY
1093	 * layer has problems with bigger chunks. It will
1094	 * claim to be able to handle more characters than
1095	 * it actually does.
1096	 *
1097	 * FIXME: This can probably go away now except that 64K chunks
1098	 * are too likely to fail unless switched to vmalloc...
1099	 */
1100	chunk = 2048;
1101	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102		chunk = 65536;
1103	if (count < chunk)
1104		chunk = count;
1105
1106	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107	if (tty->write_cnt < chunk) {
1108		unsigned char *buf_chunk;
1109
1110		if (chunk < 1024)
1111			chunk = 1024;
1112
1113		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114		if (!buf_chunk) {
1115			ret = -ENOMEM;
1116			goto out;
1117		}
1118		kfree(tty->write_buf);
1119		tty->write_cnt = chunk;
1120		tty->write_buf = buf_chunk;
1121	}
1122
1123	/* Do the write .. */
1124	for (;;) {
1125		size_t size = count;
1126		if (size > chunk)
1127			size = chunk;
1128		ret = -EFAULT;
1129		if (copy_from_user(tty->write_buf, buf, size))
1130			break;
1131		ret = write(tty, file, tty->write_buf, size);
1132		if (ret <= 0)
1133			break;
1134		written += ret;
1135		buf += ret;
1136		count -= ret;
1137		if (!count)
1138			break;
1139		ret = -ERESTARTSYS;
1140		if (signal_pending(current))
1141			break;
1142		cond_resched();
1143	}
1144	if (written) {
1145		tty_update_time(&file_inode(file)->i_mtime);
1146		ret = written;
1147	}
1148out:
1149	tty_write_unlock(tty);
1150	return ret;
1151}
1152
1153/**
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1157 *
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1161 *
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1163 */
1164
1165void tty_write_message(struct tty_struct *tty, char *msg)
1166{
1167	if (tty) {
1168		mutex_lock(&tty->atomic_write_lock);
1169		tty_lock(tty);
1170		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171			tty_unlock(tty);
1172			tty->ops->write(tty, msg, strlen(msg));
1173		} else
1174			tty_unlock(tty);
1175		tty_write_unlock(tty);
1176	}
1177	return;
1178}
1179
1180
1181/**
1182 *	tty_write		-	write method for tty device file
1183 *	@file: tty file pointer
1184 *	@buf: user data to write
1185 *	@count: bytes to write
1186 *	@ppos: unused
1187 *
1188 *	Write data to a tty device via the line discipline.
1189 *
1190 *	Locking:
1191 *		Locks the line discipline as required
1192 *		Writes to the tty driver are serialized by the atomic_write_lock
1193 *	and are then processed in chunks to the device. The line discipline
1194 *	write method will not be invoked in parallel for each device.
1195 */
1196
1197static ssize_t tty_write(struct file *file, const char __user *buf,
1198						size_t count, loff_t *ppos)
1199{
1200	struct tty_struct *tty = file_tty(file);
1201 	struct tty_ldisc *ld;
1202	ssize_t ret;
1203
1204	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205		return -EIO;
1206	if (!tty || !tty->ops->write ||
1207		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208			return -EIO;
1209	/* Short term debug to catch buggy drivers */
1210	if (tty->ops->write_room == NULL)
1211		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212			tty->driver->name);
1213	ld = tty_ldisc_ref_wait(tty);
 
 
1214	if (!ld->ops->write)
1215		ret = -EIO;
1216	else
1217		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218	tty_ldisc_deref(ld);
1219	return ret;
1220}
1221
1222ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223						size_t count, loff_t *ppos)
1224{
1225	struct file *p = NULL;
1226
1227	spin_lock(&redirect_lock);
1228	if (redirect)
1229		p = get_file(redirect);
1230	spin_unlock(&redirect_lock);
1231
1232	if (p) {
1233		ssize_t res;
1234		res = vfs_write(p, buf, count, &p->f_pos);
1235		fput(p);
1236		return res;
1237	}
1238	return tty_write(file, buf, count, ppos);
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243/**
1244 *	pty_line_name	-	generate name for a pty
1245 *	@driver: the tty driver in use
1246 *	@index: the minor number
1247 *	@p: output buffer of at least 6 bytes
1248 *
1249 *	Generate a name from a driver reference and write it to the output
1250 *	buffer.
1251 *
1252 *	Locking: None
1253 */
1254static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255{
1256	int i = index + driver->name_base;
1257	/* ->name is initialized to "ttyp", but "tty" is expected */
1258	sprintf(p, "%s%c%x",
1259		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260		ptychar[i >> 4 & 0xf], i & 0xf);
1261}
1262
1263/**
1264 *	tty_line_name	-	generate name for a tty
1265 *	@driver: the tty driver in use
1266 *	@index: the minor number
1267 *	@p: output buffer of at least 7 bytes
1268 *
1269 *	Generate a name from a driver reference and write it to the output
1270 *	buffer.
1271 *
1272 *	Locking: None
1273 */
1274static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275{
1276	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277		return sprintf(p, "%s", driver->name);
1278	else
1279		return sprintf(p, "%s%d", driver->name,
1280			       index + driver->name_base);
1281}
1282
1283/**
1284 *	tty_driver_lookup_tty() - find an existing tty, if any
1285 *	@driver: the driver for the tty
1286 *	@idx:	 the minor number
1287 *
1288 *	Return the tty, if found or ERR_PTR() otherwise.
 
1289 *
1290 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291 *	be held until the 'fast-open' is also done. Will change once we
1292 *	have refcounting in the driver and per driver locking
1293 */
1294static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295		struct inode *inode, int idx)
1296{
 
 
1297	if (driver->ops->lookup)
1298		return driver->ops->lookup(driver, inode, idx);
 
 
1299
1300	return driver->ttys[idx];
 
 
1301}
1302
1303/**
1304 *	tty_init_termios	-  helper for termios setup
1305 *	@tty: the tty to set up
1306 *
1307 *	Initialise the termios structures for this tty. Thus runs under
1308 *	the tty_mutex currently so we can be relaxed about ordering.
1309 */
1310
1311int tty_init_termios(struct tty_struct *tty)
1312{
1313	struct ktermios *tp;
1314	int idx = tty->index;
1315
1316	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317		tty->termios = tty->driver->init_termios;
1318	else {
1319		/* Check for lazy saved data */
1320		tp = tty->driver->termios[idx];
1321		if (tp != NULL)
1322			tty->termios = *tp;
1323		else
 
1324			tty->termios = tty->driver->init_termios;
1325	}
1326	/* Compatibility until drivers always set this */
1327	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329	return 0;
1330}
1331EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334{
1335	int ret = tty_init_termios(tty);
1336	if (ret)
1337		return ret;
1338
1339	tty_driver_kref_get(driver);
1340	tty->count++;
1341	driver->ttys[tty->index] = tty;
1342	return 0;
1343}
1344EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346/**
1347 *	tty_driver_install_tty() - install a tty entry in the driver
1348 *	@driver: the driver for the tty
1349 *	@tty: the tty
1350 *
1351 *	Install a tty object into the driver tables. The tty->index field
1352 *	will be set by the time this is called. This method is responsible
1353 *	for ensuring any need additional structures are allocated and
1354 *	configured.
1355 *
1356 *	Locking: tty_mutex for now
1357 */
1358static int tty_driver_install_tty(struct tty_driver *driver,
1359						struct tty_struct *tty)
1360{
1361	return driver->ops->install ? driver->ops->install(driver, tty) :
1362		tty_standard_install(driver, tty);
1363}
1364
1365/**
1366 *	tty_driver_remove_tty() - remove a tty from the driver tables
1367 *	@driver: the driver for the tty
1368 *	@idx:	 the minor number
1369 *
1370 *	Remvoe a tty object from the driver tables. The tty->index field
1371 *	will be set by the time this is called.
1372 *
1373 *	Locking: tty_mutex for now
1374 */
1375void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376{
1377	if (driver->ops->remove)
1378		driver->ops->remove(driver, tty);
1379	else
1380		driver->ttys[tty->index] = NULL;
1381}
1382
1383/*
1384 * 	tty_reopen()	- fast re-open of an open tty
1385 * 	@tty	- the tty to open
1386 *
1387 *	Return 0 on success, -errno on error.
 
1388 *
1389 *	Locking: tty_mutex must be held from the time the tty was found
1390 *		 till this open completes.
1391 */
1392static int tty_reopen(struct tty_struct *tty)
1393{
1394	struct tty_driver *driver = tty->driver;
1395
1396	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397			test_bit(TTY_HUPPING, &tty->flags))
1398		return -EIO;
1399
1400	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401	    driver->subtype == PTY_TYPE_MASTER) {
1402		/*
1403		 * special case for PTY masters: only one open permitted,
1404		 * and the slave side open count is incremented as well.
1405		 */
1406		if (tty->count)
1407			return -EIO;
1408
1409		tty->link->count++;
1410	}
1411	tty->count++;
1412
1413	WARN_ON(!tty->ldisc);
 
1414
1415	return 0;
1416}
1417
1418/**
1419 *	tty_init_dev		-	initialise a tty device
1420 *	@driver: tty driver we are opening a device on
1421 *	@idx: device index
1422 *	@ret_tty: returned tty structure
1423 *
1424 *	Prepare a tty device. This may not be a "new" clean device but
1425 *	could also be an active device. The pty drivers require special
1426 *	handling because of this.
1427 *
1428 *	Locking:
1429 *		The function is called under the tty_mutex, which
1430 *	protects us from the tty struct or driver itself going away.
1431 *
1432 *	On exit the tty device has the line discipline attached and
1433 *	a reference count of 1. If a pair was created for pty/tty use
1434 *	and the other was a pty master then it too has a reference count of 1.
1435 *
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open.  The new code protects the open with a mutex, so it's
1438 * really quite straightforward.  The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1440 */
1441
1442struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443{
1444	struct tty_struct *tty;
1445	int retval;
1446
1447	/*
1448	 * First time open is complex, especially for PTY devices.
1449	 * This code guarantees that either everything succeeds and the
1450	 * TTY is ready for operation, or else the table slots are vacated
1451	 * and the allocated memory released.  (Except that the termios
1452	 * and locked termios may be retained.)
1453	 */
1454
1455	if (!try_module_get(driver->owner))
1456		return ERR_PTR(-ENODEV);
1457
1458	tty = alloc_tty_struct();
1459	if (!tty) {
1460		retval = -ENOMEM;
1461		goto err_module_put;
1462	}
1463	initialize_tty_struct(tty, driver, idx);
1464
1465	tty_lock(tty);
1466	retval = tty_driver_install_tty(driver, tty);
1467	if (retval < 0)
1468		goto err_deinit_tty;
1469
1470	if (!tty->port)
1471		tty->port = driver->ports[idx];
1472
1473	WARN_RATELIMIT(!tty->port,
1474			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475			__func__, tty->driver->name);
1476
1477	tty->port->itty = tty;
1478
1479	/*
1480	 * Structures all installed ... call the ldisc open routines.
1481	 * If we fail here just call release_tty to clean up.  No need
1482	 * to decrement the use counts, as release_tty doesn't care.
1483	 */
1484	retval = tty_ldisc_setup(tty, tty->link);
1485	if (retval)
1486		goto err_release_tty;
1487	/* Return the tty locked so that it cannot vanish under the caller */
1488	return tty;
1489
1490err_deinit_tty:
1491	tty_unlock(tty);
1492	deinitialize_tty_struct(tty);
1493	free_tty_struct(tty);
1494err_module_put:
1495	module_put(driver->owner);
1496	return ERR_PTR(retval);
1497
1498	/* call the tty release_tty routine to clean out this slot */
1499err_release_tty:
1500	tty_unlock(tty);
1501	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502				 "clearing slot %d\n", idx);
1503	release_tty(tty, idx);
1504	return ERR_PTR(retval);
1505}
1506
1507void tty_free_termios(struct tty_struct *tty)
1508{
1509	struct ktermios *tp;
1510	int idx = tty->index;
1511
1512	/* If the port is going to reset then it has no termios to save */
1513	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514		return;
1515
1516	/* Stash the termios data */
1517	tp = tty->driver->termios[idx];
1518	if (tp == NULL) {
1519		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520		if (tp == NULL) {
1521			pr_warn("tty: no memory to save termios state.\n");
1522			return;
1523		}
1524		tty->driver->termios[idx] = tp;
1525	}
1526	*tp = tty->termios;
1527}
1528EXPORT_SYMBOL(tty_free_termios);
1529
1530/**
1531 *	tty_flush_works		-	flush all works of a tty
1532 *	@tty: tty device to flush works for
1533 *
1534 *	Sync flush all works belonging to @tty.
1535 */
1536static void tty_flush_works(struct tty_struct *tty)
1537{
1538	flush_work(&tty->SAK_work);
1539	flush_work(&tty->hangup_work);
 
 
 
 
1540}
1541
1542/**
1543 *	release_one_tty		-	release tty structure memory
1544 *	@kref: kref of tty we are obliterating
1545 *
1546 *	Releases memory associated with a tty structure, and clears out the
1547 *	driver table slots. This function is called when a device is no longer
1548 *	in use. It also gets called when setup of a device fails.
1549 *
1550 *	Locking:
1551 *		takes the file list lock internally when working on the list
1552 *	of ttys that the driver keeps.
1553 *
1554 *	This method gets called from a work queue so that the driver private
1555 *	cleanup ops can sleep (needed for USB at least)
1556 */
1557static void release_one_tty(struct work_struct *work)
1558{
1559	struct tty_struct *tty =
1560		container_of(work, struct tty_struct, hangup_work);
1561	struct tty_driver *driver = tty->driver;
 
1562
1563	if (tty->ops->cleanup)
1564		tty->ops->cleanup(tty);
1565
1566	tty->magic = 0;
1567	tty_driver_kref_put(driver);
1568	module_put(driver->owner);
1569
1570	spin_lock(&tty_files_lock);
1571	list_del_init(&tty->tty_files);
1572	spin_unlock(&tty_files_lock);
1573
1574	put_pid(tty->pgrp);
1575	put_pid(tty->session);
1576	free_tty_struct(tty);
1577}
1578
1579static void queue_release_one_tty(struct kref *kref)
1580{
1581	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583	/* The hangup queue is now free so we can reuse it rather than
1584	   waste a chunk of memory for each port */
1585	INIT_WORK(&tty->hangup_work, release_one_tty);
1586	schedule_work(&tty->hangup_work);
1587}
1588
1589/**
1590 *	tty_kref_put		-	release a tty kref
1591 *	@tty: tty device
1592 *
1593 *	Release a reference to a tty device and if need be let the kref
1594 *	layer destruct the object for us
1595 */
1596
1597void tty_kref_put(struct tty_struct *tty)
1598{
1599	if (tty)
1600		kref_put(&tty->kref, queue_release_one_tty);
1601}
1602EXPORT_SYMBOL(tty_kref_put);
1603
1604/**
1605 *	release_tty		-	release tty structure memory
1606 *
1607 *	Release both @tty and a possible linked partner (think pty pair),
1608 *	and decrement the refcount of the backing module.
1609 *
1610 *	Locking:
1611 *		tty_mutex
1612 *		takes the file list lock internally when working on the list
1613 *	of ttys that the driver keeps.
1614 *
1615 */
1616static void release_tty(struct tty_struct *tty, int idx)
1617{
1618	/* This should always be true but check for the moment */
1619	WARN_ON(tty->index != idx);
1620	WARN_ON(!mutex_is_locked(&tty_mutex));
1621	if (tty->ops->shutdown)
1622		tty->ops->shutdown(tty);
1623	tty_free_termios(tty);
1624	tty_driver_remove_tty(tty->driver, tty);
1625	tty->port->itty = NULL;
1626	if (tty->link)
1627		tty->link->port->itty = NULL;
1628	cancel_work_sync(&tty->port->buf.work);
1629
1630	if (tty->link)
1631		tty_kref_put(tty->link);
1632	tty_kref_put(tty);
1633}
1634
1635/**
1636 *	tty_release_checks - check a tty before real release
1637 *	@tty: tty to check
1638 *	@o_tty: link of @tty (if any)
1639 *	@idx: index of the tty
1640 *
1641 *	Performs some paranoid checking before true release of the @tty.
1642 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643 */
1644static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645		int idx)
1646{
1647#ifdef TTY_PARANOIA_CHECK
1648	if (idx < 0 || idx >= tty->driver->num) {
1649		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650				__func__, tty->name);
1651		return -1;
1652	}
1653
1654	/* not much to check for devpts */
1655	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656		return 0;
1657
1658	if (tty != tty->driver->ttys[idx]) {
1659		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660				__func__, idx, tty->name);
1661		return -1;
1662	}
1663	if (tty->driver->other) {
 
 
1664		if (o_tty != tty->driver->other->ttys[idx]) {
1665			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666					__func__, idx, tty->name);
1667			return -1;
1668		}
1669		if (o_tty->link != tty) {
1670			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671			return -1;
1672		}
1673	}
1674#endif
1675	return 0;
1676}
1677
1678/**
1679 *	tty_release		-	vfs callback for close
1680 *	@inode: inode of tty
1681 *	@filp: file pointer for handle to tty
1682 *
1683 *	Called the last time each file handle is closed that references
1684 *	this tty. There may however be several such references.
1685 *
1686 *	Locking:
1687 *		Takes bkl. See tty_release_dev
1688 *
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1692 *
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1695 */
1696
1697int tty_release(struct inode *inode, struct file *filp)
1698{
1699	struct tty_struct *tty = file_tty(filp);
1700	struct tty_struct *o_tty;
1701	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1702	int	idx;
1703	char	buf[64];
 
1704
1705	if (tty_paranoia_check(tty, inode, __func__))
1706		return 0;
1707
1708	tty_lock(tty);
1709	check_tty_count(tty, __func__);
1710
1711	__tty_fasync(-1, filp, 0);
1712
1713	idx = tty->index;
1714	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715		      tty->driver->subtype == PTY_TYPE_MASTER);
1716	/* Review: parallel close */
1717	o_tty = tty->link;
1718
1719	if (tty_release_checks(tty, o_tty, idx)) {
1720		tty_unlock(tty);
1721		return 0;
1722	}
1723
1724#ifdef TTY_DEBUG_HANGUP
1725	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726			tty_name(tty, buf), tty->count);
1727#endif
1728
1729	if (tty->ops->close)
1730		tty->ops->close(tty, filp);
1731
1732	tty_unlock(tty);
 
 
1733	/*
1734	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736	 * wait queues and kick everyone out _before_ actually starting to
1737	 * close.  This ensures that we won't block while releasing the tty
1738	 * structure.
1739	 *
1740	 * The test for the o_tty closing is necessary, since the master and
1741	 * slave sides may close in any order.  If the slave side closes out
1742	 * first, its count will be one, since the master side holds an open.
1743	 * Thus this test wouldn't be triggered at the time the slave closes,
1744	 * so we do it now.
1745	 *
1746	 * Note that it's possible for the tty to be opened again while we're
1747	 * flushing out waiters.  By recalculating the closing flags before
1748	 * each iteration we avoid any problems.
1749	 */
1750	while (1) {
1751		/* Guard against races with tty->count changes elsewhere and
1752		   opens on /dev/tty */
1753
1754		mutex_lock(&tty_mutex);
1755		tty_lock_pair(tty, o_tty);
1756		tty_closing = tty->count <= 1;
1757		o_tty_closing = o_tty &&
1758			(o_tty->count <= (pty_master ? 1 : 0));
1759		do_sleep = 0;
1760
1761		if (tty_closing) {
1762			if (waitqueue_active(&tty->read_wait)) {
1763				wake_up_poll(&tty->read_wait, POLLIN);
1764				do_sleep++;
1765			}
1766			if (waitqueue_active(&tty->write_wait)) {
1767				wake_up_poll(&tty->write_wait, POLLOUT);
1768				do_sleep++;
1769			}
1770		}
1771		if (o_tty_closing) {
1772			if (waitqueue_active(&o_tty->read_wait)) {
1773				wake_up_poll(&o_tty->read_wait, POLLIN);
1774				do_sleep++;
1775			}
1776			if (waitqueue_active(&o_tty->write_wait)) {
1777				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778				do_sleep++;
1779			}
1780		}
1781		if (!do_sleep)
1782			break;
1783
1784		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785				__func__, tty_name(tty, buf));
1786		tty_unlock_pair(tty, o_tty);
1787		mutex_unlock(&tty_mutex);
1788		schedule();
 
 
 
 
1789	}
1790
1791	/*
1792	 * The closing flags are now consistent with the open counts on
1793	 * both sides, and we've completed the last operation that could
1794	 * block, so it's safe to proceed with closing.
1795	 *
1796	 * We must *not* drop the tty_mutex until we ensure that a further
1797	 * entry into tty_open can not pick up this tty.
1798	 */
1799	if (pty_master) {
1800		if (--o_tty->count < 0) {
1801			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802				__func__, o_tty->count, tty_name(o_tty, buf));
1803			o_tty->count = 0;
1804		}
1805	}
1806	if (--tty->count < 0) {
1807		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808				__func__, tty->count, tty_name(tty, buf));
1809		tty->count = 0;
1810	}
1811
1812	/*
1813	 * We've decremented tty->count, so we need to remove this file
1814	 * descriptor off the tty->tty_files list; this serves two
1815	 * purposes:
1816	 *  - check_tty_count sees the correct number of file descriptors
1817	 *    associated with this tty.
1818	 *  - do_tty_hangup no longer sees this file descriptor as
1819	 *    something that needs to be handled for hangups.
1820	 */
1821	tty_del_file(filp);
1822
1823	/*
1824	 * Perform some housekeeping before deciding whether to return.
1825	 *
1826	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827	 * case of a pty we may have to wait around for the other side
1828	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829	 */
1830	if (tty_closing)
1831		set_bit(TTY_CLOSING, &tty->flags);
1832	if (o_tty_closing)
1833		set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835	/*
1836	 * If _either_ side is closing, make sure there aren't any
1837	 * processes that still think tty or o_tty is their controlling
1838	 * tty.
1839	 */
1840	if (tty_closing || o_tty_closing) {
1841		read_lock(&tasklist_lock);
1842		session_clear_tty(tty->session);
1843		if (o_tty)
1844			session_clear_tty(o_tty->session);
1845		read_unlock(&tasklist_lock);
1846	}
1847
1848	mutex_unlock(&tty_mutex);
1849	tty_unlock_pair(tty, o_tty);
1850	/* At this point the TTY_CLOSING flag should ensure a dead tty
 
 
 
 
1851	   cannot be re-opened by a racing opener */
1852
1853	/* check whether both sides are closing ... */
1854	if (!tty_closing || (o_tty && !o_tty_closing))
1855		return 0;
1856
1857#ifdef TTY_DEBUG_HANGUP
1858	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859#endif
1860	/*
1861	 * Ask the line discipline code to release its structures
1862	 */
1863	tty_ldisc_release(tty, o_tty);
1864
1865	/* Wait for pending work before tty destruction commmences */
1866	tty_flush_works(tty);
1867	if (o_tty)
1868		tty_flush_works(o_tty);
1869
1870#ifdef TTY_DEBUG_HANGUP
1871	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872#endif
1873	/*
1874	 * The release_tty function takes care of the details of clearing
1875	 * the slots and preserving the termios structure. The tty_unlock_pair
1876	 * should be safe as we keep a kref while the tty is locked (so the
1877	 * unlock never unlocks a freed tty).
1878	 */
1879	mutex_lock(&tty_mutex);
1880	release_tty(tty, idx);
1881	mutex_unlock(&tty_mutex);
1882
1883	return 0;
1884}
1885
1886/**
1887 *	tty_open_current_tty - get tty of current task for open
1888 *	@device: device number
1889 *	@filp: file pointer to tty
1890 *	@return: tty of the current task iff @device is /dev/tty
 
 
1891 *
1892 *	We cannot return driver and index like for the other nodes because
1893 *	devpts will not work then. It expects inodes to be from devpts FS.
1894 *
1895 *	We need to move to returning a refcounted object from all the lookup
1896 *	paths including this one.
1897 */
1898static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899{
1900	struct tty_struct *tty;
 
1901
1902	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903		return NULL;
1904
1905	tty = get_current_tty();
1906	if (!tty)
1907		return ERR_PTR(-ENXIO);
1908
1909	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910	/* noctty = 1; */
1911	tty_kref_put(tty);
1912	/* FIXME: we put a reference and return a TTY! */
1913	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1914	return tty;
1915}
1916
1917/**
1918 *	tty_lookup_driver - lookup a tty driver for a given device file
1919 *	@device: device number
1920 *	@filp: file pointer to tty
1921 *	@noctty: set if the device should not become a controlling tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 * 	If @return is not erroneous, the caller is responsible to decrement the
1926 * 	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *noctty, int *index)
1932{
1933	struct tty_driver *driver;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939		driver = tty_driver_kref_get(console_driver);
1940		*index = fg_console;
1941		*noctty = 1;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947		if (console_driver) {
1948			driver = tty_driver_kref_get(console_driver);
1949			if (driver) {
1950				/* Don't let /dev/console block */
1951				filp->f_flags |= O_NONBLOCK;
1952				*noctty = 1;
1953				break;
1954			}
1955		}
1956		return ERR_PTR(-ENODEV);
1957	}
1958	default:
1959		driver = get_tty_driver(device, index);
1960		if (!driver)
1961			return ERR_PTR(-ENODEV);
1962		break;
1963	}
1964	return driver;
1965}
1966
1967/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	struct tty_driver *driver = NULL;
1996	int index;
1997	dev_t device = inode->i_rdev;
1998	unsigned saved_flags = filp->f_flags;
1999
2000	nonseekable_open(inode, filp);
2001
2002retry_open:
2003	retval = tty_alloc_file(filp);
2004	if (retval)
2005		return -ENOMEM;
2006
2007	noctty = filp->f_flags & O_NOCTTY;
2008	index  = -1;
2009	retval = 0;
2010
2011	mutex_lock(&tty_mutex);
2012	/* This is protected by the tty_mutex */
2013	tty = tty_open_current_tty(device, filp);
2014	if (IS_ERR(tty)) {
2015		retval = PTR_ERR(tty);
2016		goto err_unlock;
2017	} else if (!tty) {
2018		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019		if (IS_ERR(driver)) {
2020			retval = PTR_ERR(driver);
2021			goto err_unlock;
2022		}
2023
2024		/* check whether we're reopening an existing tty */
2025		tty = tty_driver_lookup_tty(driver, inode, index);
2026		if (IS_ERR(tty)) {
2027			retval = PTR_ERR(tty);
2028			goto err_unlock;
2029		}
2030	}
2031
2032	if (tty) {
2033		tty_lock(tty);
2034		retval = tty_reopen(tty);
2035		if (retval < 0) {
2036			tty_unlock(tty);
2037			tty = ERR_PTR(retval);
2038		}
2039	} else	/* Returns with the tty_lock held for now */
2040		tty = tty_init_dev(driver, index);
2041
2042	mutex_unlock(&tty_mutex);
2043	if (driver)
2044		tty_driver_kref_put(driver);
2045	if (IS_ERR(tty)) {
 
2046		retval = PTR_ERR(tty);
2047		goto err_file;
 
 
 
2048	}
2049
2050	tty_add_file(tty, filp);
2051
2052	check_tty_count(tty, __func__);
2053	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054	    tty->driver->subtype == PTY_TYPE_MASTER)
2055		noctty = 1;
2056#ifdef TTY_DEBUG_HANGUP
2057	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058#endif
2059	if (tty->ops->open)
2060		retval = tty->ops->open(tty, filp);
2061	else
2062		retval = -ENODEV;
2063	filp->f_flags = saved_flags;
2064
2065	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066						!capable(CAP_SYS_ADMIN))
2067		retval = -EBUSY;
2068
2069	if (retval) {
2070#ifdef TTY_DEBUG_HANGUP
2071		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072				retval, tty->name);
2073#endif
2074		tty_unlock(tty); /* need to call tty_release without BTM */
2075		tty_release(inode, filp);
2076		if (retval != -ERESTARTSYS)
2077			return retval;
2078
2079		if (signal_pending(current))
2080			return retval;
2081
2082		schedule();
2083		/*
2084		 * Need to reset f_op in case a hangup happened.
2085		 */
2086		if (filp->f_op == &hung_up_tty_fops)
2087			filp->f_op = &tty_fops;
2088		goto retry_open;
2089	}
2090	clear_bit(TTY_HUPPED, &tty->flags);
2091	tty_unlock(tty);
2092
2093
2094	mutex_lock(&tty_mutex);
2095	tty_lock(tty);
2096	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
 
 
2097	if (!noctty &&
2098	    current->signal->leader &&
2099	    !current->signal->tty &&
2100	    tty->session == NULL)
2101		__proc_set_tty(current, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102	spin_unlock_irq(&current->sighand->siglock);
 
2103	tty_unlock(tty);
2104	mutex_unlock(&tty_mutex);
2105	return 0;
2106err_unlock:
2107	mutex_unlock(&tty_mutex);
2108	/* after locks to avoid deadlock */
2109	if (!IS_ERR_OR_NULL(driver))
2110		tty_driver_kref_put(driver);
2111err_file:
2112	tty_free_file(filp);
2113	return retval;
2114}
2115
2116
2117
2118/**
2119 *	tty_poll	-	check tty status
2120 *	@filp: file being polled
2121 *	@wait: poll wait structures to update
2122 *
2123 *	Call the line discipline polling method to obtain the poll
2124 *	status of the device.
2125 *
2126 *	Locking: locks called line discipline but ldisc poll method
2127 *	may be re-entered freely by other callers.
2128 */
2129
2130static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131{
2132	struct tty_struct *tty = file_tty(filp);
2133	struct tty_ldisc *ld;
2134	int ret = 0;
2135
2136	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137		return 0;
2138
2139	ld = tty_ldisc_ref_wait(tty);
 
 
2140	if (ld->ops->poll)
2141		ret = (ld->ops->poll)(tty, filp, wait);
2142	tty_ldisc_deref(ld);
2143	return ret;
2144}
2145
2146static int __tty_fasync(int fd, struct file *filp, int on)
2147{
2148	struct tty_struct *tty = file_tty(filp);
2149	struct tty_ldisc *ldisc;
2150	unsigned long flags;
2151	int retval = 0;
2152
2153	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154		goto out;
2155
2156	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157	if (retval <= 0)
2158		goto out;
2159
2160	ldisc = tty_ldisc_ref(tty);
2161	if (ldisc) {
2162		if (ldisc->ops->fasync)
2163			ldisc->ops->fasync(tty, on);
2164		tty_ldisc_deref(ldisc);
2165	}
2166
2167	if (on) {
2168		enum pid_type type;
2169		struct pid *pid;
2170
2171		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172		if (tty->pgrp) {
2173			pid = tty->pgrp;
2174			type = PIDTYPE_PGID;
2175		} else {
2176			pid = task_pid(current);
2177			type = PIDTYPE_PID;
2178		}
2179		get_pid(pid);
2180		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181		retval = __f_setown(filp, pid, type, 0);
2182		put_pid(pid);
 
2183	}
2184out:
2185	return retval;
2186}
2187
2188static int tty_fasync(int fd, struct file *filp, int on)
2189{
2190	struct tty_struct *tty = file_tty(filp);
2191	int retval;
2192
2193	tty_lock(tty);
2194	retval = __tty_fasync(fd, filp, on);
 
2195	tty_unlock(tty);
2196
2197	return retval;
2198}
2199
2200/**
2201 *	tiocsti			-	fake input character
2202 *	@tty: tty to fake input into
2203 *	@p: pointer to character
2204 *
2205 *	Fake input to a tty device. Does the necessary locking and
2206 *	input management.
2207 *
2208 *	FIXME: does not honour flow control ??
2209 *
2210 *	Locking:
2211 *		Called functions take tty_ldiscs_lock
2212 *		current->signal->tty check is safe without locks
2213 *
2214 *	FIXME: may race normal receive processing
2215 */
2216
2217static int tiocsti(struct tty_struct *tty, char __user *p)
2218{
2219	char ch, mbz = 0;
2220	struct tty_ldisc *ld;
2221
2222	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223		return -EPERM;
2224	if (get_user(ch, p))
2225		return -EFAULT;
2226	tty_audit_tiocsti(tty, ch);
2227	ld = tty_ldisc_ref_wait(tty);
 
 
2228	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229	tty_ldisc_deref(ld);
2230	return 0;
2231}
2232
2233/**
2234 *	tiocgwinsz		-	implement window query ioctl
2235 *	@tty; tty
2236 *	@arg: user buffer for result
2237 *
2238 *	Copies the kernel idea of the window size into the user buffer.
2239 *
2240 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241 *		is consistent.
2242 */
2243
2244static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245{
2246	int err;
2247
2248	mutex_lock(&tty->winsize_mutex);
2249	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250	mutex_unlock(&tty->winsize_mutex);
2251
2252	return err ? -EFAULT: 0;
2253}
2254
2255/**
2256 *	tty_do_resize		-	resize event
2257 *	@tty: tty being resized
2258 *	@rows: rows (character)
2259 *	@cols: cols (character)
2260 *
2261 *	Update the termios variables and send the necessary signals to
2262 *	peform a terminal resize correctly
2263 */
2264
2265int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266{
2267	struct pid *pgrp;
2268	unsigned long flags;
2269
2270	/* Lock the tty */
2271	mutex_lock(&tty->winsize_mutex);
2272	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273		goto done;
2274	/* Get the PID values and reference them so we can
2275	   avoid holding the tty ctrl lock while sending signals */
2276	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277	pgrp = get_pid(tty->pgrp);
2278	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
 
 
2280	if (pgrp)
2281		kill_pgrp(pgrp, SIGWINCH, 1);
2282	put_pid(pgrp);
2283
2284	tty->winsize = *ws;
2285done:
2286	mutex_unlock(&tty->winsize_mutex);
2287	return 0;
2288}
2289EXPORT_SYMBOL(tty_do_resize);
2290
2291/**
2292 *	tiocswinsz		-	implement window size set ioctl
2293 *	@tty; tty side of tty
2294 *	@arg: user buffer for result
2295 *
2296 *	Copies the user idea of the window size to the kernel. Traditionally
2297 *	this is just advisory information but for the Linux console it
2298 *	actually has driver level meaning and triggers a VC resize.
2299 *
2300 *	Locking:
2301 *		Driver dependent. The default do_resize method takes the
2302 *	tty termios mutex and ctrl_lock. The console takes its own lock
2303 *	then calls into the default method.
2304 */
2305
2306static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	struct winsize tmp_ws;
2309	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310		return -EFAULT;
2311
2312	if (tty->ops->resize)
2313		return tty->ops->resize(tty, &tmp_ws);
2314	else
2315		return tty_do_resize(tty, &tmp_ws);
2316}
2317
2318/**
2319 *	tioccons	-	allow admin to move logical console
2320 *	@file: the file to become console
2321 *
2322 *	Allow the administrator to move the redirected console device
2323 *
2324 *	Locking: uses redirect_lock to guard the redirect information
2325 */
2326
2327static int tioccons(struct file *file)
2328{
2329	if (!capable(CAP_SYS_ADMIN))
2330		return -EPERM;
2331	if (file->f_op->write == redirected_tty_write) {
2332		struct file *f;
2333		spin_lock(&redirect_lock);
2334		f = redirect;
2335		redirect = NULL;
2336		spin_unlock(&redirect_lock);
2337		if (f)
2338			fput(f);
2339		return 0;
2340	}
2341	spin_lock(&redirect_lock);
2342	if (redirect) {
2343		spin_unlock(&redirect_lock);
2344		return -EBUSY;
2345	}
2346	redirect = get_file(file);
2347	spin_unlock(&redirect_lock);
2348	return 0;
2349}
2350
2351/**
2352 *	fionbio		-	non blocking ioctl
2353 *	@file: file to set blocking value
2354 *	@p: user parameter
2355 *
2356 *	Historical tty interfaces had a blocking control ioctl before
2357 *	the generic functionality existed. This piece of history is preserved
2358 *	in the expected tty API of posix OS's.
2359 *
2360 *	Locking: none, the open file handle ensures it won't go away.
2361 */
2362
2363static int fionbio(struct file *file, int __user *p)
2364{
2365	int nonblock;
2366
2367	if (get_user(nonblock, p))
2368		return -EFAULT;
2369
2370	spin_lock(&file->f_lock);
2371	if (nonblock)
2372		file->f_flags |= O_NONBLOCK;
2373	else
2374		file->f_flags &= ~O_NONBLOCK;
2375	spin_unlock(&file->f_lock);
2376	return 0;
2377}
2378
2379/**
2380 *	tiocsctty	-	set controlling tty
2381 *	@tty: tty structure
2382 *	@arg: user argument
2383 *
2384 *	This ioctl is used to manage job control. It permits a session
2385 *	leader to set this tty as the controlling tty for the session.
2386 *
2387 *	Locking:
2388 *		Takes tty_mutex() to protect tty instance
2389 *		Takes tasklist_lock internally to walk sessions
2390 *		Takes ->siglock() when updating signal->tty
2391 */
2392
2393static int tiocsctty(struct tty_struct *tty, int arg)
2394{
2395	int ret = 0;
 
 
 
 
2396	if (current->signal->leader && (task_session(current) == tty->session))
2397		return ret;
2398
2399	mutex_lock(&tty_mutex);
2400	/*
2401	 * The process must be a session leader and
2402	 * not have a controlling tty already.
2403	 */
2404	if (!current->signal->leader || current->signal->tty) {
2405		ret = -EPERM;
2406		goto unlock;
2407	}
2408
2409	if (tty->session) {
2410		/*
2411		 * This tty is already the controlling
2412		 * tty for another session group!
2413		 */
2414		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415			/*
2416			 * Steal it away
2417			 */
2418			read_lock(&tasklist_lock);
2419			session_clear_tty(tty->session);
2420			read_unlock(&tasklist_lock);
2421		} else {
2422			ret = -EPERM;
2423			goto unlock;
2424		}
2425	}
2426	proc_set_tty(current, tty);
 
 
 
 
 
 
 
2427unlock:
2428	mutex_unlock(&tty_mutex);
 
2429	return ret;
2430}
2431
2432/**
2433 *	tty_get_pgrp	-	return a ref counted pgrp pid
2434 *	@tty: tty to read
2435 *
2436 *	Returns a refcounted instance of the pid struct for the process
2437 *	group controlling the tty.
2438 */
2439
2440struct pid *tty_get_pgrp(struct tty_struct *tty)
2441{
2442	unsigned long flags;
2443	struct pid *pgrp;
2444
2445	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446	pgrp = get_pid(tty->pgrp);
2447	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449	return pgrp;
2450}
2451EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2453/**
2454 *	tiocgpgrp		-	get process group
2455 *	@tty: tty passed by user
2456 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457 *	@p: returned pid
2458 *
2459 *	Obtain the process group of the tty. If there is no process group
2460 *	return an error.
2461 *
2462 *	Locking: none. Reference to current->signal->tty is safe.
2463 */
2464
2465static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466{
2467	struct pid *pid;
2468	int ret;
2469	/*
2470	 * (tty == real_tty) is a cheap way of
2471	 * testing if the tty is NOT a master pty.
2472	 */
2473	if (tty == real_tty && current->signal->tty != real_tty)
2474		return -ENOTTY;
2475	pid = tty_get_pgrp(real_tty);
2476	ret =  put_user(pid_vnr(pid), p);
2477	put_pid(pid);
2478	return ret;
2479}
2480
2481/**
2482 *	tiocspgrp		-	attempt to set process group
2483 *	@tty: tty passed by user
2484 *	@real_tty: tty side device matching tty passed by user
2485 *	@p: pid pointer
2486 *
2487 *	Set the process group of the tty to the session passed. Only
2488 *	permitted where the tty session is our session.
2489 *
2490 *	Locking: RCU, ctrl lock
2491 */
2492
2493static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494{
2495	struct pid *pgrp;
2496	pid_t pgrp_nr;
2497	int retval = tty_check_change(real_tty);
2498	unsigned long flags;
2499
2500	if (retval == -EIO)
2501		return -ENOTTY;
2502	if (retval)
2503		return retval;
2504	if (!current->signal->tty ||
2505	    (current->signal->tty != real_tty) ||
2506	    (real_tty->session != task_session(current)))
2507		return -ENOTTY;
2508	if (get_user(pgrp_nr, p))
2509		return -EFAULT;
2510	if (pgrp_nr < 0)
2511		return -EINVAL;
2512	rcu_read_lock();
2513	pgrp = find_vpid(pgrp_nr);
2514	retval = -ESRCH;
2515	if (!pgrp)
2516		goto out_unlock;
2517	retval = -EPERM;
2518	if (session_of_pgrp(pgrp) != task_session(current))
2519		goto out_unlock;
2520	retval = 0;
2521	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522	put_pid(real_tty->pgrp);
2523	real_tty->pgrp = get_pid(pgrp);
2524	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525out_unlock:
2526	rcu_read_unlock();
2527	return retval;
2528}
2529
2530/**
2531 *	tiocgsid		-	get session id
2532 *	@tty: tty passed by user
2533 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534 *	@p: pointer to returned session id
2535 *
2536 *	Obtain the session id of the tty. If there is no session
2537 *	return an error.
2538 *
2539 *	Locking: none. Reference to current->signal->tty is safe.
2540 */
2541
2542static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543{
2544	/*
2545	 * (tty == real_tty) is a cheap way of
2546	 * testing if the tty is NOT a master pty.
2547	*/
2548	if (tty == real_tty && current->signal->tty != real_tty)
2549		return -ENOTTY;
2550	if (!real_tty->session)
2551		return -ENOTTY;
2552	return put_user(pid_vnr(real_tty->session), p);
2553}
2554
2555/**
2556 *	tiocsetd	-	set line discipline
2557 *	@tty: tty device
2558 *	@p: pointer to user data
2559 *
2560 *	Set the line discipline according to user request.
2561 *
2562 *	Locking: see tty_set_ldisc, this function is just a helper
2563 */
2564
2565static int tiocsetd(struct tty_struct *tty, int __user *p)
2566{
2567	int ldisc;
2568	int ret;
2569
2570	if (get_user(ldisc, p))
2571		return -EFAULT;
2572
2573	ret = tty_set_ldisc(tty, ldisc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
 
 
 
 
 
2575	return ret;
2576}
2577
2578/**
2579 *	send_break	-	performed time break
2580 *	@tty: device to break on
2581 *	@duration: timeout in mS
2582 *
2583 *	Perform a timed break on hardware that lacks its own driver level
2584 *	timed break functionality.
2585 *
2586 *	Locking:
2587 *		atomic_write_lock serializes
2588 *
2589 */
2590
2591static int send_break(struct tty_struct *tty, unsigned int duration)
2592{
2593	int retval;
2594
2595	if (tty->ops->break_ctl == NULL)
2596		return 0;
2597
2598	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599		retval = tty->ops->break_ctl(tty, duration);
2600	else {
2601		/* Do the work ourselves */
2602		if (tty_write_lock(tty, 0) < 0)
2603			return -EINTR;
2604		retval = tty->ops->break_ctl(tty, -1);
2605		if (retval)
2606			goto out;
2607		if (!signal_pending(current))
2608			msleep_interruptible(duration);
2609		retval = tty->ops->break_ctl(tty, 0);
2610out:
2611		tty_write_unlock(tty);
2612		if (signal_pending(current))
2613			retval = -EINTR;
2614	}
2615	return retval;
2616}
2617
2618/**
2619 *	tty_tiocmget		-	get modem status
2620 *	@tty: tty device
2621 *	@file: user file pointer
2622 *	@p: pointer to result
2623 *
2624 *	Obtain the modem status bits from the tty driver if the feature
2625 *	is supported. Return -EINVAL if it is not available.
2626 *
2627 *	Locking: none (up to the driver)
2628 */
2629
2630static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631{
2632	int retval = -EINVAL;
2633
2634	if (tty->ops->tiocmget) {
2635		retval = tty->ops->tiocmget(tty);
2636
2637		if (retval >= 0)
2638			retval = put_user(retval, p);
2639	}
2640	return retval;
2641}
2642
2643/**
2644 *	tty_tiocmset		-	set modem status
2645 *	@tty: tty device
2646 *	@cmd: command - clear bits, set bits or set all
2647 *	@p: pointer to desired bits
2648 *
2649 *	Set the modem status bits from the tty driver if the feature
2650 *	is supported. Return -EINVAL if it is not available.
2651 *
2652 *	Locking: none (up to the driver)
2653 */
2654
2655static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656	     unsigned __user *p)
2657{
2658	int retval;
2659	unsigned int set, clear, val;
2660
2661	if (tty->ops->tiocmset == NULL)
2662		return -EINVAL;
2663
2664	retval = get_user(val, p);
2665	if (retval)
2666		return retval;
2667	set = clear = 0;
2668	switch (cmd) {
2669	case TIOCMBIS:
2670		set = val;
2671		break;
2672	case TIOCMBIC:
2673		clear = val;
2674		break;
2675	case TIOCMSET:
2676		set = val;
2677		clear = ~val;
2678		break;
2679	}
2680	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682	return tty->ops->tiocmset(tty, set, clear);
2683}
2684
2685static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686{
2687	int retval = -EINVAL;
2688	struct serial_icounter_struct icount;
2689	memset(&icount, 0, sizeof(icount));
2690	if (tty->ops->get_icount)
2691		retval = tty->ops->get_icount(tty, &icount);
2692	if (retval != 0)
2693		return retval;
2694	if (copy_to_user(arg, &icount, sizeof(icount)))
2695		return -EFAULT;
2696	return 0;
2697}
2698
2699struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700{
2701	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702	    tty->driver->subtype == PTY_TYPE_MASTER)
2703		tty = tty->link;
2704	return tty;
 
 
 
 
 
 
 
 
 
 
2705}
2706EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2709{
2710	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711	    tty->driver->subtype == PTY_TYPE_MASTER)
2712	    return tty;
2713	return tty->link;
2714}
2715EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717/*
2718 * Split this up, as gcc can choke on it otherwise..
2719 */
2720long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721{
2722	struct tty_struct *tty = file_tty(file);
2723	struct tty_struct *real_tty;
2724	void __user *p = (void __user *)arg;
2725	int retval;
2726	struct tty_ldisc *ld;
2727
2728	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729		return -EINVAL;
2730
2731	real_tty = tty_pair_get_tty(tty);
2732
2733	/*
2734	 * Factor out some common prep work
2735	 */
2736	switch (cmd) {
2737	case TIOCSETD:
2738	case TIOCSBRK:
2739	case TIOCCBRK:
2740	case TCSBRK:
2741	case TCSBRKP:
2742		retval = tty_check_change(tty);
2743		if (retval)
2744			return retval;
2745		if (cmd != TIOCCBRK) {
2746			tty_wait_until_sent(tty, 0);
2747			if (signal_pending(current))
2748				return -EINTR;
2749		}
2750		break;
2751	}
2752
2753	/*
2754	 *	Now do the stuff.
2755	 */
2756	switch (cmd) {
2757	case TIOCSTI:
2758		return tiocsti(tty, p);
2759	case TIOCGWINSZ:
2760		return tiocgwinsz(real_tty, p);
2761	case TIOCSWINSZ:
2762		return tiocswinsz(real_tty, p);
2763	case TIOCCONS:
2764		return real_tty != tty ? -EINVAL : tioccons(file);
2765	case FIONBIO:
2766		return fionbio(file, p);
2767	case TIOCEXCL:
2768		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769		return 0;
2770	case TIOCNXCL:
2771		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772		return 0;
2773	case TIOCGEXCL:
2774	{
2775		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776		return put_user(excl, (int __user *)p);
2777	}
2778	case TIOCNOTTY:
2779		if (current->signal->tty != tty)
2780			return -ENOTTY;
2781		no_tty();
2782		return 0;
2783	case TIOCSCTTY:
2784		return tiocsctty(tty, arg);
2785	case TIOCGPGRP:
2786		return tiocgpgrp(tty, real_tty, p);
2787	case TIOCSPGRP:
2788		return tiocspgrp(tty, real_tty, p);
2789	case TIOCGSID:
2790		return tiocgsid(tty, real_tty, p);
2791	case TIOCGETD:
2792		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793	case TIOCSETD:
2794		return tiocsetd(tty, p);
2795	case TIOCVHANGUP:
2796		if (!capable(CAP_SYS_ADMIN))
2797			return -EPERM;
2798		tty_vhangup(tty);
2799		return 0;
2800	case TIOCGDEV:
2801	{
2802		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803		return put_user(ret, (unsigned int __user *)p);
2804	}
2805	/*
2806	 * Break handling
2807	 */
2808	case TIOCSBRK:	/* Turn break on, unconditionally */
2809		if (tty->ops->break_ctl)
2810			return tty->ops->break_ctl(tty, -1);
2811		return 0;
2812	case TIOCCBRK:	/* Turn break off, unconditionally */
2813		if (tty->ops->break_ctl)
2814			return tty->ops->break_ctl(tty, 0);
2815		return 0;
2816	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817		/* non-zero arg means wait for all output data
2818		 * to be sent (performed above) but don't send break.
2819		 * This is used by the tcdrain() termios function.
2820		 */
2821		if (!arg)
2822			return send_break(tty, 250);
2823		return 0;
2824	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825		return send_break(tty, arg ? arg*100 : 250);
2826
2827	case TIOCMGET:
2828		return tty_tiocmget(tty, p);
2829	case TIOCMSET:
2830	case TIOCMBIC:
2831	case TIOCMBIS:
2832		return tty_tiocmset(tty, cmd, p);
2833	case TIOCGICOUNT:
2834		retval = tty_tiocgicount(tty, p);
2835		/* For the moment allow fall through to the old method */
2836        	if (retval != -EINVAL)
2837			return retval;
2838		break;
2839	case TCFLSH:
2840		switch (arg) {
2841		case TCIFLUSH:
2842		case TCIOFLUSH:
2843		/* flush tty buffer and allow ldisc to process ioctl */
2844			tty_buffer_flush(tty);
2845			break;
2846		}
2847		break;
 
 
 
2848	}
2849	if (tty->ops->ioctl) {
2850		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851		if (retval != -ENOIOCTLCMD)
2852			return retval;
2853	}
2854	ld = tty_ldisc_ref_wait(tty);
 
 
2855	retval = -EINVAL;
2856	if (ld->ops->ioctl) {
2857		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858		if (retval == -ENOIOCTLCMD)
2859			retval = -ENOTTY;
2860	}
2861	tty_ldisc_deref(ld);
2862	return retval;
2863}
2864
2865#ifdef CONFIG_COMPAT
2866static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867				unsigned long arg)
2868{
2869	struct tty_struct *tty = file_tty(file);
2870	struct tty_ldisc *ld;
2871	int retval = -ENOIOCTLCMD;
2872
2873	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874		return -EINVAL;
2875
2876	if (tty->ops->compat_ioctl) {
2877		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878		if (retval != -ENOIOCTLCMD)
2879			return retval;
2880	}
2881
2882	ld = tty_ldisc_ref_wait(tty);
 
 
2883	if (ld->ops->compat_ioctl)
2884		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885	else
2886		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887	tty_ldisc_deref(ld);
2888
2889	return retval;
2890}
2891#endif
2892
2893static int this_tty(const void *t, struct file *file, unsigned fd)
2894{
2895	if (likely(file->f_op->read != tty_read))
2896		return 0;
2897	return file_tty(file) != t ? 0 : fd + 1;
2898}
2899	
2900/*
2901 * This implements the "Secure Attention Key" ---  the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key".  Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2905 *
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal.  But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2911 *
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915 *
2916 * Nasty bug: do_SAK is being called in interrupt context.  This can
2917 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918 */
2919void __do_SAK(struct tty_struct *tty)
2920{
2921#ifdef TTY_SOFT_SAK
2922	tty_hangup(tty);
2923#else
2924	struct task_struct *g, *p;
2925	struct pid *session;
2926	int		i;
2927
2928	if (!tty)
2929		return;
2930	session = tty->session;
2931
2932	tty_ldisc_flush(tty);
2933
2934	tty_driver_flush_buffer(tty);
2935
2936	read_lock(&tasklist_lock);
2937	/* Kill the entire session */
2938	do_each_pid_task(session, PIDTYPE_SID, p) {
2939		printk(KERN_NOTICE "SAK: killed process %d"
2940			" (%s): task_session(p)==tty->session\n",
2941			task_pid_nr(p), p->comm);
2942		send_sig(SIGKILL, p, 1);
2943	} while_each_pid_task(session, PIDTYPE_SID, p);
2944	/* Now kill any processes that happen to have the
2945	 * tty open.
2946	 */
2947	do_each_thread(g, p) {
2948		if (p->signal->tty == tty) {
2949			printk(KERN_NOTICE "SAK: killed process %d"
2950			    " (%s): task_session(p)==tty->session\n",
2951			    task_pid_nr(p), p->comm);
2952			send_sig(SIGKILL, p, 1);
2953			continue;
2954		}
2955		task_lock(p);
2956		i = iterate_fd(p->files, 0, this_tty, tty);
2957		if (i != 0) {
2958			printk(KERN_NOTICE "SAK: killed process %d"
2959			    " (%s): fd#%d opened to the tty\n",
2960				    task_pid_nr(p), p->comm, i - 1);
2961			force_sig(SIGKILL, p);
2962		}
2963		task_unlock(p);
2964	} while_each_thread(g, p);
2965	read_unlock(&tasklist_lock);
2966#endif
2967}
2968
2969static void do_SAK_work(struct work_struct *work)
2970{
2971	struct tty_struct *tty =
2972		container_of(work, struct tty_struct, SAK_work);
2973	__do_SAK(tty);
2974}
2975
2976/*
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2981 */
2982void do_SAK(struct tty_struct *tty)
2983{
2984	if (!tty)
2985		return;
2986	schedule_work(&tty->SAK_work);
2987}
2988
2989EXPORT_SYMBOL(do_SAK);
2990
2991static int dev_match_devt(struct device *dev, const void *data)
2992{
2993	const dev_t *devt = data;
2994	return dev->devt == *devt;
2995}
2996
2997/* Must put_device() after it's unused! */
2998static struct device *tty_get_device(struct tty_struct *tty)
2999{
3000	dev_t devt = tty_devnum(tty);
3001	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002}
3003
3004
3005/**
3006 *	initialize_tty_struct
3007 *	@tty: tty to initialize
3008 *
3009 *	This subroutine initializes a tty structure that has been newly
3010 *	allocated.
3011 *
3012 *	Locking: none - tty in question must not be exposed at this point
3013 */
3014
3015void initialize_tty_struct(struct tty_struct *tty,
3016		struct tty_driver *driver, int idx)
3017{
3018	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
3019	kref_init(&tty->kref);
3020	tty->magic = TTY_MAGIC;
3021	tty_ldisc_init(tty);
3022	tty->session = NULL;
3023	tty->pgrp = NULL;
3024	mutex_init(&tty->legacy_mutex);
3025	mutex_init(&tty->throttle_mutex);
3026	init_rwsem(&tty->termios_rwsem);
3027	mutex_init(&tty->winsize_mutex);
3028	init_ldsem(&tty->ldisc_sem);
3029	init_waitqueue_head(&tty->write_wait);
3030	init_waitqueue_head(&tty->read_wait);
3031	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032	mutex_init(&tty->atomic_write_lock);
3033	spin_lock_init(&tty->ctrl_lock);
 
 
3034	INIT_LIST_HEAD(&tty->tty_files);
3035	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037	tty->driver = driver;
3038	tty->ops = driver->ops;
3039	tty->index = idx;
3040	tty_line_name(driver, idx, tty->name);
3041	tty->dev = tty_get_device(tty);
3042}
3043
3044/**
3045 *	deinitialize_tty_struct
3046 *	@tty: tty to deinitialize
3047 *
3048 *	This subroutine deinitializes a tty structure that has been newly
3049 *	allocated but tty_release cannot be called on that yet.
3050 *
3051 *	Locking: none - tty in question must not be exposed at this point
3052 */
3053void deinitialize_tty_struct(struct tty_struct *tty)
3054{
3055	tty_ldisc_deinit(tty);
3056}
3057
3058/**
3059 *	tty_put_char	-	write one character to a tty
3060 *	@tty: tty
3061 *	@ch: character
3062 *
3063 *	Write one byte to the tty using the provided put_char method
3064 *	if present. Returns the number of characters successfully output.
3065 *
3066 *	Note: the specific put_char operation in the driver layer may go
3067 *	away soon. Don't call it directly, use this method
3068 */
3069
3070int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071{
3072	if (tty->ops->put_char)
3073		return tty->ops->put_char(tty, ch);
3074	return tty->ops->write(tty, &ch, 1);
3075}
3076EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078struct class *tty_class;
3079
3080static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081		unsigned int index, unsigned int count)
3082{
 
 
3083	/* init here, since reused cdevs cause crashes */
3084	cdev_init(&driver->cdevs[index], &tty_fops);
3085	driver->cdevs[index].owner = driver->owner;
3086	return cdev_add(&driver->cdevs[index], dev, count);
 
 
 
 
 
 
3087}
3088
3089/**
3090 *	tty_register_device - register a tty device
3091 *	@driver: the tty driver that describes the tty device
3092 *	@index: the index in the tty driver for this tty device
3093 *	@device: a struct device that is associated with this tty device.
3094 *		This field is optional, if there is no known struct device
3095 *		for this tty device it can be set to NULL safely.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
3106 */
3107
3108struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109				   struct device *device)
3110{
3111	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112}
3113EXPORT_SYMBOL(tty_register_device);
3114
3115static void tty_device_create_release(struct device *dev)
3116{
3117	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118	kfree(dev);
3119}
3120
3121/**
3122 *	tty_register_device_attr - register a tty device
3123 *	@driver: the tty driver that describes the tty device
3124 *	@index: the index in the tty driver for this tty device
3125 *	@device: a struct device that is associated with this tty device.
3126 *		This field is optional, if there is no known struct device
3127 *		for this tty device it can be set to NULL safely.
3128 *	@drvdata: Driver data to be set to device.
3129 *	@attr_grp: Attribute group to be set on device.
3130 *
3131 *	Returns a pointer to the struct device for this tty device
3132 *	(or ERR_PTR(-EFOO) on error).
3133 *
3134 *	This call is required to be made to register an individual tty device
3135 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136 *	that bit is not set, this function should not be called by a tty
3137 *	driver.
3138 *
3139 *	Locking: ??
3140 */
3141struct device *tty_register_device_attr(struct tty_driver *driver,
3142				   unsigned index, struct device *device,
3143				   void *drvdata,
3144				   const struct attribute_group **attr_grp)
3145{
3146	char name[64];
3147	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148	struct device *dev = NULL;
3149	int retval = -ENODEV;
3150	bool cdev = false;
3151
3152	if (index >= driver->num) {
3153		printk(KERN_ERR "Attempt to register invalid tty line number "
3154		       " (%d).\n", index);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159		pty_line_name(driver, index, name);
3160	else
3161		tty_line_name(driver, index, name);
3162
3163	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164		retval = tty_cdev_add(driver, devt, index, 1);
3165		if (retval)
3166			goto error;
3167		cdev = true;
3168	}
3169
3170	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171	if (!dev) {
3172		retval = -ENOMEM;
3173		goto error;
3174	}
3175
3176	dev->devt = devt;
3177	dev->class = tty_class;
3178	dev->parent = device;
3179	dev->release = tty_device_create_release;
3180	dev_set_name(dev, "%s", name);
3181	dev->groups = attr_grp;
3182	dev_set_drvdata(dev, drvdata);
3183
3184	retval = device_register(dev);
3185	if (retval)
3186		goto error;
3187
3188	return dev;
3189
3190error:
3191	put_device(dev);
3192	if (cdev)
3193		cdev_del(&driver->cdevs[index]);
 
 
3194	return ERR_PTR(retval);
3195}
3196EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198/**
3199 * 	tty_unregister_device - unregister a tty device
3200 * 	@driver: the tty driver that describes the tty device
3201 * 	@index: the index in the tty driver for this tty device
3202 *
3203 * 	If a tty device is registered with a call to tty_register_device() then
3204 *	this function must be called when the tty device is gone.
3205 *
3206 *	Locking: ??
3207 */
3208
3209void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210{
3211	device_destroy(tty_class,
3212		MKDEV(driver->major, driver->minor_start) + index);
3213	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214		cdev_del(&driver->cdevs[index]);
 
 
3215}
3216EXPORT_SYMBOL(tty_unregister_device);
3217
3218/**
3219 * __tty_alloc_driver -- allocate tty driver
3220 * @lines: count of lines this driver can handle at most
3221 * @owner: module which is repsonsible for this driver
3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223 *
3224 * This should not be called directly, some of the provided macros should be
3225 * used instead. Use IS_ERR and friends on @retval.
3226 */
3227struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228		unsigned long flags)
3229{
3230	struct tty_driver *driver;
3231	unsigned int cdevs = 1;
3232	int err;
3233
3234	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235		return ERR_PTR(-EINVAL);
3236
3237	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238	if (!driver)
3239		return ERR_PTR(-ENOMEM);
3240
3241	kref_init(&driver->kref);
3242	driver->magic = TTY_DRIVER_MAGIC;
3243	driver->num = lines;
3244	driver->owner = owner;
3245	driver->flags = flags;
3246
3247	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249				GFP_KERNEL);
3250		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251				GFP_KERNEL);
3252		if (!driver->ttys || !driver->termios) {
3253			err = -ENOMEM;
3254			goto err_free_all;
3255		}
3256	}
3257
3258	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260				GFP_KERNEL);
3261		if (!driver->ports) {
3262			err = -ENOMEM;
3263			goto err_free_all;
3264		}
3265		cdevs = lines;
3266	}
3267
3268	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269	if (!driver->cdevs) {
3270		err = -ENOMEM;
3271		goto err_free_all;
3272	}
3273
3274	return driver;
3275err_free_all:
3276	kfree(driver->ports);
3277	kfree(driver->ttys);
3278	kfree(driver->termios);
 
3279	kfree(driver);
3280	return ERR_PTR(err);
3281}
3282EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284static void destruct_tty_driver(struct kref *kref)
3285{
3286	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287	int i;
3288	struct ktermios *tp;
3289
3290	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291		/*
3292		 * Free the termios and termios_locked structures because
3293		 * we don't want to get memory leaks when modular tty
3294		 * drivers are removed from the kernel.
3295		 */
3296		for (i = 0; i < driver->num; i++) {
3297			tp = driver->termios[i];
3298			if (tp) {
3299				driver->termios[i] = NULL;
3300				kfree(tp);
3301			}
3302			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303				tty_unregister_device(driver, i);
3304		}
3305		proc_tty_unregister_driver(driver);
3306		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307			cdev_del(&driver->cdevs[0]);
3308	}
3309	kfree(driver->cdevs);
3310	kfree(driver->ports);
3311	kfree(driver->termios);
3312	kfree(driver->ttys);
3313	kfree(driver);
3314}
3315
3316void tty_driver_kref_put(struct tty_driver *driver)
3317{
3318	kref_put(&driver->kref, destruct_tty_driver);
3319}
3320EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322void tty_set_operations(struct tty_driver *driver,
3323			const struct tty_operations *op)
3324{
3325	driver->ops = op;
3326};
3327EXPORT_SYMBOL(tty_set_operations);
3328
3329void put_tty_driver(struct tty_driver *d)
3330{
3331	tty_driver_kref_put(d);
3332}
3333EXPORT_SYMBOL(put_tty_driver);
3334
3335/*
3336 * Called by a tty driver to register itself.
3337 */
3338int tty_register_driver(struct tty_driver *driver)
3339{
3340	int error;
3341	int i;
3342	dev_t dev;
3343	struct device *d;
3344
3345	if (!driver->major) {
3346		error = alloc_chrdev_region(&dev, driver->minor_start,
3347						driver->num, driver->name);
3348		if (!error) {
3349			driver->major = MAJOR(dev);
3350			driver->minor_start = MINOR(dev);
3351		}
3352	} else {
3353		dev = MKDEV(driver->major, driver->minor_start);
3354		error = register_chrdev_region(dev, driver->num, driver->name);
3355	}
3356	if (error < 0)
3357		goto err;
3358
3359	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360		error = tty_cdev_add(driver, dev, 0, driver->num);
3361		if (error)
3362			goto err_unreg_char;
3363	}
3364
3365	mutex_lock(&tty_mutex);
3366	list_add(&driver->tty_drivers, &tty_drivers);
3367	mutex_unlock(&tty_mutex);
3368
3369	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370		for (i = 0; i < driver->num; i++) {
3371			d = tty_register_device(driver, i, NULL);
3372			if (IS_ERR(d)) {
3373				error = PTR_ERR(d);
3374				goto err_unreg_devs;
3375			}
3376		}
3377	}
3378	proc_tty_register_driver(driver);
3379	driver->flags |= TTY_DRIVER_INSTALLED;
3380	return 0;
3381
3382err_unreg_devs:
3383	for (i--; i >= 0; i--)
3384		tty_unregister_device(driver, i);
3385
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389
3390err_unreg_char:
3391	unregister_chrdev_region(dev, driver->num);
3392err:
3393	return error;
3394}
3395EXPORT_SYMBOL(tty_register_driver);
3396
3397/*
3398 * Called by a tty driver to unregister itself.
3399 */
3400int tty_unregister_driver(struct tty_driver *driver)
3401{
3402#if 0
3403	/* FIXME */
3404	if (driver->refcount)
3405		return -EBUSY;
3406#endif
3407	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408				driver->num);
3409	mutex_lock(&tty_mutex);
3410	list_del(&driver->tty_drivers);
3411	mutex_unlock(&tty_mutex);
3412	return 0;
3413}
3414
3415EXPORT_SYMBOL(tty_unregister_driver);
3416
3417dev_t tty_devnum(struct tty_struct *tty)
3418{
3419	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420}
3421EXPORT_SYMBOL(tty_devnum);
3422
3423void proc_clear_tty(struct task_struct *p)
3424{
3425	unsigned long flags;
3426	struct tty_struct *tty;
3427	spin_lock_irqsave(&p->sighand->siglock, flags);
3428	tty = p->signal->tty;
3429	p->signal->tty = NULL;
3430	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431	tty_kref_put(tty);
3432}
3433
3434/* Called under the sighand lock */
3435
3436static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437{
3438	if (tty) {
3439		unsigned long flags;
3440		/* We should not have a session or pgrp to put here but.... */
3441		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442		put_pid(tty->session);
3443		put_pid(tty->pgrp);
3444		tty->pgrp = get_pid(task_pgrp(tsk));
3445		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446		tty->session = get_pid(task_session(tsk));
3447		if (tsk->signal->tty) {
3448			printk(KERN_DEBUG "tty not NULL!!\n");
3449			tty_kref_put(tsk->signal->tty);
3450		}
3451	}
3452	put_pid(tsk->signal->tty_old_pgrp);
3453	tsk->signal->tty = tty_kref_get(tty);
3454	tsk->signal->tty_old_pgrp = NULL;
3455}
3456
3457static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458{
3459	spin_lock_irq(&tsk->sighand->siglock);
3460	__proc_set_tty(tsk, tty);
3461	spin_unlock_irq(&tsk->sighand->siglock);
3462}
3463
3464struct tty_struct *get_current_tty(void)
3465{
3466	struct tty_struct *tty;
3467	unsigned long flags;
3468
3469	spin_lock_irqsave(&current->sighand->siglock, flags);
3470	tty = tty_kref_get(current->signal->tty);
3471	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472	return tty;
3473}
3474EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476void tty_default_fops(struct file_operations *fops)
3477{
3478	*fops = tty_fops;
3479}
3480
3481/*
3482 * Initialize the console device. This is called *early*, so
3483 * we can't necessarily depend on lots of kernel help here.
3484 * Just do some early initializations, and do the complex setup
3485 * later.
3486 */
3487void __init console_init(void)
3488{
3489	initcall_t *call;
3490
3491	/* Setup the default TTY line discipline. */
3492	tty_ldisc_begin();
3493
3494	/*
3495	 * set up the console device so that later boot sequences can
3496	 * inform about problems etc..
3497	 */
3498	call = __con_initcall_start;
3499	while (call < __con_initcall_end) {
3500		(*call)();
3501		call++;
3502	}
3503}
3504
3505static char *tty_devnode(struct device *dev, umode_t *mode)
3506{
3507	if (!mode)
3508		return NULL;
3509	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511		*mode = 0666;
3512	return NULL;
3513}
3514
3515static int __init tty_class_init(void)
3516{
3517	tty_class = class_create(THIS_MODULE, "tty");
3518	if (IS_ERR(tty_class))
3519		return PTR_ERR(tty_class);
3520	tty_class->devnode = tty_devnode;
3521	return 0;
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530				struct device_attribute *attr, char *buf)
3531{
3532	struct console *cs[16];
3533	int i = 0;
3534	struct console *c;
3535	ssize_t count = 0;
3536
3537	console_lock();
3538	for_each_console(c) {
3539		if (!c->device)
3540			continue;
3541		if (!c->write)
3542			continue;
3543		if ((c->flags & CON_ENABLED) == 0)
3544			continue;
3545		cs[i++] = c;
3546		if (i >= ARRAY_SIZE(cs))
3547			break;
3548	}
3549	while (i--) {
3550		int index = cs[i]->index;
3551		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553		/* don't resolve tty0 as some programs depend on it */
3554		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555			count += tty_line_name(drv, index, buf + count);
3556		else
3557			count += sprintf(buf + count, "%s%d",
3558					 cs[i]->name, cs[i]->index);
3559
3560		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561	}
3562	console_unlock();
3563
3564	return count;
3565}
3566static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
 
 
 
 
 
 
 
3568static struct device *consdev;
3569
3570void console_sysfs_notify(void)
3571{
3572	if (consdev)
3573		sysfs_notify(&consdev->kobj, NULL, "active");
3574}
3575
3576/*
3577 * Ok, now we can initialize the rest of the tty devices and can count
3578 * on memory allocations, interrupts etc..
3579 */
3580int __init tty_init(void)
3581{
3582	cdev_init(&tty_cdev, &tty_fops);
3583	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585		panic("Couldn't register /dev/tty driver\n");
3586	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588	cdev_init(&console_cdev, &console_fops);
3589	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591		panic("Couldn't register /dev/console driver\n");
3592	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593			      "console");
 
3594	if (IS_ERR(consdev))
3595		consdev = NULL;
3596	else
3597		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599#ifdef CONFIG_VT
3600	vty_init(&console_fops);
3601#endif
3602	return 0;
3603}
3604
v4.10.11
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 
 139DEFINE_MUTEX(tty_mutex);
 
 
 
 
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 
 
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 
 
 
 233/**
 234 *	tty_name	-	return tty naming
 235 *	@tty: tty structure
 
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 
 
 248}
 249
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268	if (tty->magic != TTY_MAGIC) {
 269		pr_warn("(%d:%d): %s: bad magic number\n",
 
 270			imajor(inode), iminor(inode), routine);
 271		return 1;
 272	}
 273#endif
 274	return 0;
 275}
 276
 277/* Caller must hold tty_lock */
 278static int check_tty_count(struct tty_struct *tty, const char *routine)
 279{
 280#ifdef CHECK_TTY_COUNT
 281	struct list_head *p;
 282	int count = 0;
 283
 284	spin_lock(&tty->files_lock);
 285	list_for_each(p, &tty->tty_files) {
 286		count++;
 287	}
 288	spin_unlock(&tty->files_lock);
 289	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 290	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 291	    tty->link && tty->link->count)
 292		count++;
 293	if (tty->count != count) {
 294		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 295			 routine, tty->count, count);
 
 296		return count;
 297	}
 298#endif
 299	return 0;
 300}
 301
 302/**
 303 *	get_tty_driver		-	find device of a tty
 304 *	@dev_t: device identifier
 305 *	@index: returns the index of the tty
 306 *
 307 *	This routine returns a tty driver structure, given a device number
 308 *	and also passes back the index number.
 309 *
 310 *	Locking: caller must hold tty_mutex
 311 */
 312
 313static struct tty_driver *get_tty_driver(dev_t device, int *index)
 314{
 315	struct tty_driver *p;
 316
 317	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 318		dev_t base = MKDEV(p->major, p->minor_start);
 319		if (device < base || device >= base + p->num)
 320			continue;
 321		*index = device - base;
 322		return tty_driver_kref_get(p);
 323	}
 324	return NULL;
 325}
 326
 327#ifdef CONFIG_CONSOLE_POLL
 328
 329/**
 330 *	tty_find_polling_driver	-	find device of a polled tty
 331 *	@name: name string to match
 332 *	@line: pointer to resulting tty line nr
 333 *
 334 *	This routine returns a tty driver structure, given a name
 335 *	and the condition that the tty driver is capable of polled
 336 *	operation.
 337 */
 338struct tty_driver *tty_find_polling_driver(char *name, int *line)
 339{
 340	struct tty_driver *p, *res = NULL;
 341	int tty_line = 0;
 342	int len;
 343	char *str, *stp;
 344
 345	for (str = name; *str; str++)
 346		if ((*str >= '0' && *str <= '9') || *str == ',')
 347			break;
 348	if (!*str)
 349		return NULL;
 350
 351	len = str - name;
 352	tty_line = simple_strtoul(str, &str, 10);
 353
 354	mutex_lock(&tty_mutex);
 355	/* Search through the tty devices to look for a match */
 356	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 357		if (strncmp(name, p->name, len) != 0)
 358			continue;
 359		stp = str;
 360		if (*stp == ',')
 361			stp++;
 362		if (*stp == '\0')
 363			stp = NULL;
 364
 365		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 366		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 367			res = tty_driver_kref_get(p);
 368			*line = tty_line;
 369			break;
 370		}
 371	}
 372	mutex_unlock(&tty_mutex);
 373
 374	return res;
 375}
 376EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 377#endif
 378
 379static int is_ignored(int sig)
 380{
 381	return (sigismember(&current->blocked, sig) ||
 382		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 383}
 384
 385/**
 386 *	tty_check_change	-	check for POSIX terminal changes
 387 *	@tty: tty to check
 388 *
 389 *	If we try to write to, or set the state of, a terminal and we're
 390 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 391 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 392 *
 393 *	Locking: ctrl_lock
 394 */
 395
 396int __tty_check_change(struct tty_struct *tty, int sig)
 397{
 398	unsigned long flags;
 399	struct pid *pgrp, *tty_pgrp;
 400	int ret = 0;
 401
 402	if (current->signal->tty != tty)
 403		return 0;
 404
 405	rcu_read_lock();
 406	pgrp = task_pgrp(current);
 407
 408	spin_lock_irqsave(&tty->ctrl_lock, flags);
 409	tty_pgrp = tty->pgrp;
 
 
 
 
 410	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 411
 412	if (tty_pgrp && pgrp != tty->pgrp) {
 413		if (is_ignored(sig)) {
 414			if (sig == SIGTTIN)
 415				ret = -EIO;
 416		} else if (is_current_pgrp_orphaned())
 417			ret = -EIO;
 418		else {
 419			kill_pgrp(pgrp, sig, 1);
 420			set_thread_flag(TIF_SIGPENDING);
 421			ret = -ERESTARTSYS;
 422		}
 423	}
 424	rcu_read_unlock();
 425
 426	if (!tty_pgrp)
 427		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 428
 
 
 429	return ret;
 430}
 431
 432int tty_check_change(struct tty_struct *tty)
 433{
 434	return __tty_check_change(tty, SIGTTOU);
 435}
 436EXPORT_SYMBOL(tty_check_change);
 437
 438static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 439				size_t count, loff_t *ppos)
 440{
 441	return 0;
 442}
 443
 444static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 445				 size_t count, loff_t *ppos)
 446{
 447	return -EIO;
 448}
 449
 450/* No kernel lock held - none needed ;) */
 451static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 452{
 453	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 454}
 455
 456static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 457		unsigned long arg)
 458{
 459	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 460}
 461
 462static long hung_up_tty_compat_ioctl(struct file *file,
 463				     unsigned int cmd, unsigned long arg)
 464{
 465	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 466}
 467
 468static int hung_up_tty_fasync(int fd, struct file *file, int on)
 469{
 470	return -ENOTTY;
 471}
 472
 473static const struct file_operations tty_fops = {
 474	.llseek		= no_llseek,
 475	.read		= tty_read,
 476	.write		= tty_write,
 477	.poll		= tty_poll,
 478	.unlocked_ioctl	= tty_ioctl,
 479	.compat_ioctl	= tty_compat_ioctl,
 480	.open		= tty_open,
 481	.release	= tty_release,
 482	.fasync		= tty_fasync,
 483};
 484
 485static const struct file_operations console_fops = {
 486	.llseek		= no_llseek,
 487	.read		= tty_read,
 488	.write		= redirected_tty_write,
 489	.poll		= tty_poll,
 490	.unlocked_ioctl	= tty_ioctl,
 491	.compat_ioctl	= tty_compat_ioctl,
 492	.open		= tty_open,
 493	.release	= tty_release,
 494	.fasync		= tty_fasync,
 495};
 496
 497static const struct file_operations hung_up_tty_fops = {
 498	.llseek		= no_llseek,
 499	.read		= hung_up_tty_read,
 500	.write		= hung_up_tty_write,
 501	.poll		= hung_up_tty_poll,
 502	.unlocked_ioctl	= hung_up_tty_ioctl,
 503	.compat_ioctl	= hung_up_tty_compat_ioctl,
 504	.release	= tty_release,
 505	.fasync		= hung_up_tty_fasync,
 506};
 507
 508static DEFINE_SPINLOCK(redirect_lock);
 509static struct file *redirect;
 510
 511
 512void proc_clear_tty(struct task_struct *p)
 513{
 514	unsigned long flags;
 515	struct tty_struct *tty;
 516	spin_lock_irqsave(&p->sighand->siglock, flags);
 517	tty = p->signal->tty;
 518	p->signal->tty = NULL;
 519	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 520	tty_kref_put(tty);
 521}
 522
 523/**
 524 * proc_set_tty -  set the controlling terminal
 525 *
 526 * Only callable by the session leader and only if it does not already have
 527 * a controlling terminal.
 528 *
 529 * Caller must hold:  tty_lock()
 530 *		      a readlock on tasklist_lock
 531 *		      sighand lock
 532 */
 533static void __proc_set_tty(struct tty_struct *tty)
 534{
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&tty->ctrl_lock, flags);
 538	/*
 539	 * The session and fg pgrp references will be non-NULL if
 540	 * tiocsctty() is stealing the controlling tty
 541	 */
 542	put_pid(tty->session);
 543	put_pid(tty->pgrp);
 544	tty->pgrp = get_pid(task_pgrp(current));
 545	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 546	tty->session = get_pid(task_session(current));
 547	if (current->signal->tty) {
 548		tty_debug(tty, "current tty %s not NULL!!\n",
 549			  current->signal->tty->name);
 550		tty_kref_put(current->signal->tty);
 551	}
 552	put_pid(current->signal->tty_old_pgrp);
 553	current->signal->tty = tty_kref_get(tty);
 554	current->signal->tty_old_pgrp = NULL;
 555}
 556
 557static void proc_set_tty(struct tty_struct *tty)
 558{
 559	spin_lock_irq(&current->sighand->siglock);
 560	__proc_set_tty(tty);
 561	spin_unlock_irq(&current->sighand->siglock);
 562}
 563
 564struct tty_struct *get_current_tty(void)
 565{
 566	struct tty_struct *tty;
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(&current->sighand->siglock, flags);
 570	tty = tty_kref_get(current->signal->tty);
 571	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 572	return tty;
 573}
 574EXPORT_SYMBOL_GPL(get_current_tty);
 575
 576static void session_clear_tty(struct pid *session)
 577{
 578	struct task_struct *p;
 579	do_each_pid_task(session, PIDTYPE_SID, p) {
 580		proc_clear_tty(p);
 581	} while_each_pid_task(session, PIDTYPE_SID, p);
 582}
 583
 584/**
 585 *	tty_wakeup	-	request more data
 586 *	@tty: terminal
 587 *
 588 *	Internal and external helper for wakeups of tty. This function
 589 *	informs the line discipline if present that the driver is ready
 590 *	to receive more output data.
 591 */
 592
 593void tty_wakeup(struct tty_struct *tty)
 594{
 595	struct tty_ldisc *ld;
 596
 597	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 598		ld = tty_ldisc_ref(tty);
 599		if (ld) {
 600			if (ld->ops->write_wakeup)
 601				ld->ops->write_wakeup(tty);
 602			tty_ldisc_deref(ld);
 603		}
 604	}
 605	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 606}
 607
 608EXPORT_SYMBOL_GPL(tty_wakeup);
 609
 610/**
 611 *	tty_signal_session_leader	- sends SIGHUP to session leader
 612 *	@tty		controlling tty
 613 *	@exit_session	if non-zero, signal all foreground group processes
 614 *
 615 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 616 *	Optionally, signal all processes in the foreground process group.
 617 *
 618 *	Returns the number of processes in the session with this tty
 619 *	as their controlling terminal. This value is used to drop
 620 *	tty references for those processes.
 621 */
 622static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 623{
 624	struct task_struct *p;
 625	int refs = 0;
 626	struct pid *tty_pgrp = NULL;
 627
 628	read_lock(&tasklist_lock);
 629	if (tty->session) {
 630		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 631			spin_lock_irq(&p->sighand->siglock);
 632			if (p->signal->tty == tty) {
 633				p->signal->tty = NULL;
 634				/* We defer the dereferences outside fo
 635				   the tasklist lock */
 636				refs++;
 637			}
 638			if (!p->signal->leader) {
 639				spin_unlock_irq(&p->sighand->siglock);
 640				continue;
 641			}
 642			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 643			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 644			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 645			spin_lock(&tty->ctrl_lock);
 646			tty_pgrp = get_pid(tty->pgrp);
 647			if (tty->pgrp)
 648				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 649			spin_unlock(&tty->ctrl_lock);
 650			spin_unlock_irq(&p->sighand->siglock);
 651		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 652	}
 653	read_unlock(&tasklist_lock);
 654
 655	if (tty_pgrp) {
 656		if (exit_session)
 657			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 658		put_pid(tty_pgrp);
 659	}
 660
 661	return refs;
 662}
 663
 664/**
 665 *	__tty_hangup		-	actual handler for hangup events
 666 *	@work: tty device
 667 *
 668 *	This can be called by a "kworker" kernel thread.  That is process
 669 *	synchronous but doesn't hold any locks, so we need to make sure we
 670 *	have the appropriate locks for what we're doing.
 671 *
 672 *	The hangup event clears any pending redirections onto the hung up
 673 *	device. It ensures future writes will error and it does the needed
 674 *	line discipline hangup and signal delivery. The tty object itself
 675 *	remains intact.
 676 *
 677 *	Locking:
 678 *		BTM
 679 *		  redirect lock for undoing redirection
 680 *		  file list lock for manipulating list of ttys
 681 *		  tty_ldiscs_lock from called functions
 682 *		  termios_rwsem resetting termios data
 683 *		  tasklist_lock to walk task list for hangup event
 684 *		    ->siglock to protect ->signal/->sighand
 685 */
 686static void __tty_hangup(struct tty_struct *tty, int exit_session)
 687{
 688	struct file *cons_filp = NULL;
 689	struct file *filp, *f = NULL;
 690	struct tty_file_private *priv;
 691	int    closecount = 0, n;
 692	int refs;
 693
 694	if (!tty)
 695		return;
 696
 697
 698	spin_lock(&redirect_lock);
 699	if (redirect && file_tty(redirect) == tty) {
 700		f = redirect;
 701		redirect = NULL;
 702	}
 703	spin_unlock(&redirect_lock);
 704
 705	tty_lock(tty);
 706
 707	if (test_bit(TTY_HUPPED, &tty->flags)) {
 708		tty_unlock(tty);
 709		return;
 710	}
 711
 
 
 
 712	/* inuse_filps is protected by the single tty lock,
 713	   this really needs to change if we want to flush the
 714	   workqueue with the lock held */
 715	check_tty_count(tty, "tty_hangup");
 716
 717	spin_lock(&tty->files_lock);
 718	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 719	list_for_each_entry(priv, &tty->tty_files, list) {
 720		filp = priv->file;
 721		if (filp->f_op->write == redirected_tty_write)
 722			cons_filp = filp;
 723		if (filp->f_op->write != tty_write)
 724			continue;
 725		closecount++;
 726		__tty_fasync(-1, filp, 0);	/* can't block */
 727		filp->f_op = &hung_up_tty_fops;
 728	}
 729	spin_unlock(&tty->files_lock);
 730
 731	refs = tty_signal_session_leader(tty, exit_session);
 732	/* Account for the p->signal references we killed */
 733	while (refs--)
 734		tty_kref_put(tty);
 735
 736	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 737
 738	spin_lock_irq(&tty->ctrl_lock);
 739	clear_bit(TTY_THROTTLED, &tty->flags);
 740	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 741	put_pid(tty->session);
 742	put_pid(tty->pgrp);
 743	tty->session = NULL;
 744	tty->pgrp = NULL;
 745	tty->ctrl_status = 0;
 746	spin_unlock_irq(&tty->ctrl_lock);
 747
 748	/*
 749	 * If one of the devices matches a console pointer, we
 750	 * cannot just call hangup() because that will cause
 751	 * tty->count and state->count to go out of sync.
 752	 * So we just call close() the right number of times.
 753	 */
 754	if (cons_filp) {
 755		if (tty->ops->close)
 756			for (n = 0; n < closecount; n++)
 757				tty->ops->close(tty, cons_filp);
 758	} else if (tty->ops->hangup)
 759		tty->ops->hangup(tty);
 760	/*
 761	 * We don't want to have driver/ldisc interactions beyond the ones
 762	 * we did here. The driver layer expects no calls after ->hangup()
 763	 * from the ldisc side, which is now guaranteed.
 
 764	 */
 765	set_bit(TTY_HUPPED, &tty->flags);
 
 
 766	tty_unlock(tty);
 767
 768	if (f)
 769		fput(f);
 770}
 771
 772static void do_tty_hangup(struct work_struct *work)
 773{
 774	struct tty_struct *tty =
 775		container_of(work, struct tty_struct, hangup_work);
 776
 777	__tty_hangup(tty, 0);
 778}
 779
 780/**
 781 *	tty_hangup		-	trigger a hangup event
 782 *	@tty: tty to hangup
 783 *
 784 *	A carrier loss (virtual or otherwise) has occurred on this like
 785 *	schedule a hangup sequence to run after this event.
 786 */
 787
 788void tty_hangup(struct tty_struct *tty)
 789{
 790	tty_debug_hangup(tty, "hangup\n");
 
 
 
 791	schedule_work(&tty->hangup_work);
 792}
 793
 794EXPORT_SYMBOL(tty_hangup);
 795
 796/**
 797 *	tty_vhangup		-	process vhangup
 798 *	@tty: tty to hangup
 799 *
 800 *	The user has asked via system call for the terminal to be hung up.
 801 *	We do this synchronously so that when the syscall returns the process
 802 *	is complete. That guarantee is necessary for security reasons.
 803 */
 804
 805void tty_vhangup(struct tty_struct *tty)
 806{
 807	tty_debug_hangup(tty, "vhangup\n");
 
 
 
 
 808	__tty_hangup(tty, 0);
 809}
 810
 811EXPORT_SYMBOL(tty_vhangup);
 812
 813
 814/**
 815 *	tty_vhangup_self	-	process vhangup for own ctty
 816 *
 817 *	Perform a vhangup on the current controlling tty
 818 */
 819
 820void tty_vhangup_self(void)
 821{
 822	struct tty_struct *tty;
 823
 824	tty = get_current_tty();
 825	if (tty) {
 826		tty_vhangup(tty);
 827		tty_kref_put(tty);
 828	}
 829}
 830
 831/**
 832 *	tty_vhangup_session		-	hangup session leader exit
 833 *	@tty: tty to hangup
 834 *
 835 *	The session leader is exiting and hanging up its controlling terminal.
 836 *	Every process in the foreground process group is signalled SIGHUP.
 837 *
 838 *	We do this synchronously so that when the syscall returns the process
 839 *	is complete. That guarantee is necessary for security reasons.
 840 */
 841
 842static void tty_vhangup_session(struct tty_struct *tty)
 843{
 844	tty_debug_hangup(tty, "session hangup\n");
 
 
 
 
 845	__tty_hangup(tty, 1);
 846}
 847
 848/**
 849 *	tty_hung_up_p		-	was tty hung up
 850 *	@filp: file pointer of tty
 851 *
 852 *	Return true if the tty has been subject to a vhangup or a carrier
 853 *	loss
 854 */
 855
 856int tty_hung_up_p(struct file *filp)
 857{
 858	return (filp->f_op == &hung_up_tty_fops);
 859}
 860
 861EXPORT_SYMBOL(tty_hung_up_p);
 862
 
 
 
 
 
 
 
 
 863/**
 864 *	disassociate_ctty	-	disconnect controlling tty
 865 *	@on_exit: true if exiting so need to "hang up" the session
 866 *
 867 *	This function is typically called only by the session leader, when
 868 *	it wants to disassociate itself from its controlling tty.
 869 *
 870 *	It performs the following functions:
 871 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 872 * 	(2)  Clears the tty from being controlling the session
 873 * 	(3)  Clears the controlling tty for all processes in the
 874 * 		session group.
 875 *
 876 *	The argument on_exit is set to 1 if called when a process is
 877 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 878 *
 879 *	Locking:
 880 *		BTM is taken for hysterical raisins, and held when
 881 *		  called from no_tty().
 882 *		  tty_mutex is taken to protect tty
 883 *		  ->siglock is taken to protect ->signal/->sighand
 884 *		  tasklist_lock is taken to walk process list for sessions
 885 *		    ->siglock is taken to protect ->signal/->sighand
 886 */
 887
 888void disassociate_ctty(int on_exit)
 889{
 890	struct tty_struct *tty;
 891
 892	if (!current->signal->leader)
 893		return;
 894
 895	tty = get_current_tty();
 896	if (tty) {
 897		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 898			tty_vhangup_session(tty);
 899		} else {
 900			struct pid *tty_pgrp = tty_get_pgrp(tty);
 901			if (tty_pgrp) {
 902				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 903				if (!on_exit)
 904					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 905				put_pid(tty_pgrp);
 906			}
 907		}
 908		tty_kref_put(tty);
 909
 910	} else if (on_exit) {
 911		struct pid *old_pgrp;
 912		spin_lock_irq(&current->sighand->siglock);
 913		old_pgrp = current->signal->tty_old_pgrp;
 914		current->signal->tty_old_pgrp = NULL;
 915		spin_unlock_irq(&current->sighand->siglock);
 916		if (old_pgrp) {
 917			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 918			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 919			put_pid(old_pgrp);
 920		}
 921		return;
 922	}
 923
 924	spin_lock_irq(&current->sighand->siglock);
 925	put_pid(current->signal->tty_old_pgrp);
 926	current->signal->tty_old_pgrp = NULL;
 927
 928	tty = tty_kref_get(current->signal->tty);
 929	if (tty) {
 930		unsigned long flags;
 931		spin_lock_irqsave(&tty->ctrl_lock, flags);
 932		put_pid(tty->session);
 933		put_pid(tty->pgrp);
 934		tty->session = NULL;
 935		tty->pgrp = NULL;
 936		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 937		tty_kref_put(tty);
 938	} else
 939		tty_debug_hangup(tty, "no current tty\n");
 
 
 
 
 940
 941	spin_unlock_irq(&current->sighand->siglock);
 942	/* Now clear signal->tty under the lock */
 943	read_lock(&tasklist_lock);
 944	session_clear_tty(task_session(current));
 945	read_unlock(&tasklist_lock);
 946}
 947
 948/**
 949 *
 950 *	no_tty	- Ensure the current process does not have a controlling tty
 951 */
 952void no_tty(void)
 953{
 954	/* FIXME: Review locking here. The tty_lock never covered any race
 955	   between a new association and proc_clear_tty but possible we need
 956	   to protect against this anyway */
 957	struct task_struct *tsk = current;
 958	disassociate_ctty(0);
 959	proc_clear_tty(tsk);
 960}
 961
 962
 963/**
 964 *	stop_tty	-	propagate flow control
 965 *	@tty: tty to stop
 966 *
 967 *	Perform flow control to the driver. May be called
 
 968 *	on an already stopped device and will not re-call the driver
 969 *	method.
 970 *
 971 *	This functionality is used by both the line disciplines for
 972 *	halting incoming flow and by the driver. It may therefore be
 973 *	called from any context, may be under the tty atomic_write_lock
 974 *	but not always.
 975 *
 976 *	Locking:
 977 *		flow_lock
 978 */
 979
 980void __stop_tty(struct tty_struct *tty)
 981{
 982	if (tty->stopped)
 
 
 
 983		return;
 
 984	tty->stopped = 1;
 
 
 
 
 
 
 985	if (tty->ops->stop)
 986		tty->ops->stop(tty);
 987}
 988
 989void stop_tty(struct tty_struct *tty)
 990{
 991	unsigned long flags;
 992
 993	spin_lock_irqsave(&tty->flow_lock, flags);
 994	__stop_tty(tty);
 995	spin_unlock_irqrestore(&tty->flow_lock, flags);
 996}
 997EXPORT_SYMBOL(stop_tty);
 998
 999/**
1000 *	start_tty	-	propagate flow control
1001 *	@tty: tty to start
1002 *
1003 *	Start a tty that has been stopped if at all possible. If this
1004 *	tty was previous stopped and is now being started, the driver
1005 *	start method is invoked and the line discipline woken.
 
1006 *
1007 *	Locking:
1008 *		flow_lock
1009 */
1010
1011void __start_tty(struct tty_struct *tty)
1012{
1013	if (!tty->stopped || tty->flow_stopped)
 
 
 
1014		return;
 
1015	tty->stopped = 0;
 
 
 
 
 
 
1016	if (tty->ops->start)
1017		tty->ops->start(tty);
 
1018	tty_wakeup(tty);
1019}
1020
1021void start_tty(struct tty_struct *tty)
1022{
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tty->flow_lock, flags);
1026	__start_tty(tty);
1027	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028}
1029EXPORT_SYMBOL(start_tty);
1030
 
1031static void tty_update_time(struct timespec *time)
1032{
1033	unsigned long sec = get_seconds();
1034
1035	/*
1036	 * We only care if the two values differ in anything other than the
1037	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038	 * the time of the tty device, otherwise it could be construded as a
1039	 * security leak to let userspace know the exact timing of the tty.
1040	 */
1041	if ((sec ^ time->tv_sec) & ~7)
1042		time->tv_sec = sec;
1043}
1044
1045/**
1046 *	tty_read	-	read method for tty device files
1047 *	@file: pointer to tty file
1048 *	@buf: user buffer
1049 *	@count: size of user buffer
1050 *	@ppos: unused
1051 *
1052 *	Perform the read system call function on this terminal device. Checks
1053 *	for hung up devices before calling the line discipline method.
1054 *
1055 *	Locking:
1056 *		Locks the line discipline internally while needed. Multiple
1057 *	read calls may be outstanding in parallel.
1058 */
1059
1060static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061			loff_t *ppos)
1062{
1063	int i;
1064	struct inode *inode = file_inode(file);
1065	struct tty_struct *tty = file_tty(file);
1066	struct tty_ldisc *ld;
1067
1068	if (tty_paranoia_check(tty, inode, "tty_read"))
1069		return -EIO;
1070	if (!tty || tty_io_error(tty))
1071		return -EIO;
1072
1073	/* We want to wait for the line discipline to sort out in this
1074	   situation */
1075	ld = tty_ldisc_ref_wait(tty);
1076	if (!ld)
1077		return hung_up_tty_read(file, buf, count, ppos);
1078	if (ld->ops->read)
1079		i = ld->ops->read(tty, file, buf, count);
1080	else
1081		i = -EIO;
1082	tty_ldisc_deref(ld);
1083
1084	if (i > 0)
1085		tty_update_time(&inode->i_atime);
1086
1087	return i;
1088}
1089
1090static void tty_write_unlock(struct tty_struct *tty)
 
1091{
1092	mutex_unlock(&tty->atomic_write_lock);
1093	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094}
1095
1096static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
1097{
1098	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099		if (ndelay)
1100			return -EAGAIN;
1101		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102			return -ERESTARTSYS;
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Split writes up in sane blocksizes to avoid
1109 * denial-of-service type attacks
1110 */
1111static inline ssize_t do_tty_write(
1112	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113	struct tty_struct *tty,
1114	struct file *file,
1115	const char __user *buf,
1116	size_t count)
1117{
1118	ssize_t ret, written = 0;
1119	unsigned int chunk;
1120
1121	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122	if (ret < 0)
1123		return ret;
1124
1125	/*
1126	 * We chunk up writes into a temporary buffer. This
1127	 * simplifies low-level drivers immensely, since they
1128	 * don't have locking issues and user mode accesses.
1129	 *
1130	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131	 * big chunk-size..
1132	 *
1133	 * The default chunk-size is 2kB, because the NTTY
1134	 * layer has problems with bigger chunks. It will
1135	 * claim to be able to handle more characters than
1136	 * it actually does.
1137	 *
1138	 * FIXME: This can probably go away now except that 64K chunks
1139	 * are too likely to fail unless switched to vmalloc...
1140	 */
1141	chunk = 2048;
1142	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143		chunk = 65536;
1144	if (count < chunk)
1145		chunk = count;
1146
1147	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148	if (tty->write_cnt < chunk) {
1149		unsigned char *buf_chunk;
1150
1151		if (chunk < 1024)
1152			chunk = 1024;
1153
1154		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155		if (!buf_chunk) {
1156			ret = -ENOMEM;
1157			goto out;
1158		}
1159		kfree(tty->write_buf);
1160		tty->write_cnt = chunk;
1161		tty->write_buf = buf_chunk;
1162	}
1163
1164	/* Do the write .. */
1165	for (;;) {
1166		size_t size = count;
1167		if (size > chunk)
1168			size = chunk;
1169		ret = -EFAULT;
1170		if (copy_from_user(tty->write_buf, buf, size))
1171			break;
1172		ret = write(tty, file, tty->write_buf, size);
1173		if (ret <= 0)
1174			break;
1175		written += ret;
1176		buf += ret;
1177		count -= ret;
1178		if (!count)
1179			break;
1180		ret = -ERESTARTSYS;
1181		if (signal_pending(current))
1182			break;
1183		cond_resched();
1184	}
1185	if (written) {
1186		tty_update_time(&file_inode(file)->i_mtime);
1187		ret = written;
1188	}
1189out:
1190	tty_write_unlock(tty);
1191	return ret;
1192}
1193
1194/**
1195 * tty_write_message - write a message to a certain tty, not just the console.
1196 * @tty: the destination tty_struct
1197 * @msg: the message to write
1198 *
1199 * This is used for messages that need to be redirected to a specific tty.
1200 * We don't put it into the syslog queue right now maybe in the future if
1201 * really needed.
1202 *
1203 * We must still hold the BTM and test the CLOSING flag for the moment.
1204 */
1205
1206void tty_write_message(struct tty_struct *tty, char *msg)
1207{
1208	if (tty) {
1209		mutex_lock(&tty->atomic_write_lock);
1210		tty_lock(tty);
1211		if (tty->ops->write && tty->count > 0)
 
1212			tty->ops->write(tty, msg, strlen(msg));
1213		tty_unlock(tty);
 
1214		tty_write_unlock(tty);
1215	}
1216	return;
1217}
1218
1219
1220/**
1221 *	tty_write		-	write method for tty device file
1222 *	@file: tty file pointer
1223 *	@buf: user data to write
1224 *	@count: bytes to write
1225 *	@ppos: unused
1226 *
1227 *	Write data to a tty device via the line discipline.
1228 *
1229 *	Locking:
1230 *		Locks the line discipline as required
1231 *		Writes to the tty driver are serialized by the atomic_write_lock
1232 *	and are then processed in chunks to the device. The line discipline
1233 *	write method will not be invoked in parallel for each device.
1234 */
1235
1236static ssize_t tty_write(struct file *file, const char __user *buf,
1237						size_t count, loff_t *ppos)
1238{
1239	struct tty_struct *tty = file_tty(file);
1240 	struct tty_ldisc *ld;
1241	ssize_t ret;
1242
1243	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244		return -EIO;
1245	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1246			return -EIO;
1247	/* Short term debug to catch buggy drivers */
1248	if (tty->ops->write_room == NULL)
1249		tty_err(tty, "missing write_room method\n");
 
1250	ld = tty_ldisc_ref_wait(tty);
1251	if (!ld)
1252		return hung_up_tty_write(file, buf, count, ppos);
1253	if (!ld->ops->write)
1254		ret = -EIO;
1255	else
1256		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257	tty_ldisc_deref(ld);
1258	return ret;
1259}
1260
1261ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262						size_t count, loff_t *ppos)
1263{
1264	struct file *p = NULL;
1265
1266	spin_lock(&redirect_lock);
1267	if (redirect)
1268		p = get_file(redirect);
1269	spin_unlock(&redirect_lock);
1270
1271	if (p) {
1272		ssize_t res;
1273		res = vfs_write(p, buf, count, &p->f_pos);
1274		fput(p);
1275		return res;
1276	}
1277	return tty_write(file, buf, count, ppos);
1278}
1279
1280/**
1281 *	tty_send_xchar	-	send priority character
1282 *
1283 *	Send a high priority character to the tty even if stopped
1284 *
1285 *	Locking: none for xchar method, write ordering for write method.
1286 */
1287
1288int tty_send_xchar(struct tty_struct *tty, char ch)
1289{
1290	int	was_stopped = tty->stopped;
1291
1292	if (tty->ops->send_xchar) {
1293		down_read(&tty->termios_rwsem);
1294		tty->ops->send_xchar(tty, ch);
1295		up_read(&tty->termios_rwsem);
1296		return 0;
1297	}
1298
1299	if (tty_write_lock(tty, 0) < 0)
1300		return -ERESTARTSYS;
1301
1302	down_read(&tty->termios_rwsem);
1303	if (was_stopped)
1304		start_tty(tty);
1305	tty->ops->write(tty, &ch, 1);
1306	if (was_stopped)
1307		stop_tty(tty);
1308	up_read(&tty->termios_rwsem);
1309	tty_write_unlock(tty);
1310	return 0;
1311}
1312
1313static char ptychar[] = "pqrstuvwxyzabcde";
1314
1315/**
1316 *	pty_line_name	-	generate name for a pty
1317 *	@driver: the tty driver in use
1318 *	@index: the minor number
1319 *	@p: output buffer of at least 6 bytes
1320 *
1321 *	Generate a name from a driver reference and write it to the output
1322 *	buffer.
1323 *
1324 *	Locking: None
1325 */
1326static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327{
1328	int i = index + driver->name_base;
1329	/* ->name is initialized to "ttyp", but "tty" is expected */
1330	sprintf(p, "%s%c%x",
1331		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332		ptychar[i >> 4 & 0xf], i & 0xf);
1333}
1334
1335/**
1336 *	tty_line_name	-	generate name for a tty
1337 *	@driver: the tty driver in use
1338 *	@index: the minor number
1339 *	@p: output buffer of at least 7 bytes
1340 *
1341 *	Generate a name from a driver reference and write it to the output
1342 *	buffer.
1343 *
1344 *	Locking: None
1345 */
1346static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347{
1348	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349		return sprintf(p, "%s", driver->name);
1350	else
1351		return sprintf(p, "%s%d", driver->name,
1352			       index + driver->name_base);
1353}
1354
1355/**
1356 *	tty_driver_lookup_tty() - find an existing tty, if any
1357 *	@driver: the driver for the tty
1358 *	@idx:	 the minor number
1359 *
1360 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361 *	driver lookup() method returns an error.
1362 *
1363 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1364 */
1365static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366		struct file *file, int idx)
1367{
1368	struct tty_struct *tty;
1369
1370	if (driver->ops->lookup)
1371		tty = driver->ops->lookup(driver, file, idx);
1372	else
1373		tty = driver->ttys[idx];
1374
1375	if (!IS_ERR(tty))
1376		tty_kref_get(tty);
1377	return tty;
1378}
1379
1380/**
1381 *	tty_init_termios	-  helper for termios setup
1382 *	@tty: the tty to set up
1383 *
1384 *	Initialise the termios structures for this tty. Thus runs under
1385 *	the tty_mutex currently so we can be relaxed about ordering.
1386 */
1387
1388void tty_init_termios(struct tty_struct *tty)
1389{
1390	struct ktermios *tp;
1391	int idx = tty->index;
1392
1393	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394		tty->termios = tty->driver->init_termios;
1395	else {
1396		/* Check for lazy saved data */
1397		tp = tty->driver->termios[idx];
1398		if (tp != NULL) {
1399			tty->termios = *tp;
1400			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401		} else
1402			tty->termios = tty->driver->init_termios;
1403	}
1404	/* Compatibility until drivers always set this */
1405	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1407}
1408EXPORT_SYMBOL_GPL(tty_init_termios);
1409
1410int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411{
1412	tty_init_termios(tty);
 
 
 
1413	tty_driver_kref_get(driver);
1414	tty->count++;
1415	driver->ttys[tty->index] = tty;
1416	return 0;
1417}
1418EXPORT_SYMBOL_GPL(tty_standard_install);
1419
1420/**
1421 *	tty_driver_install_tty() - install a tty entry in the driver
1422 *	@driver: the driver for the tty
1423 *	@tty: the tty
1424 *
1425 *	Install a tty object into the driver tables. The tty->index field
1426 *	will be set by the time this is called. This method is responsible
1427 *	for ensuring any need additional structures are allocated and
1428 *	configured.
1429 *
1430 *	Locking: tty_mutex for now
1431 */
1432static int tty_driver_install_tty(struct tty_driver *driver,
1433						struct tty_struct *tty)
1434{
1435	return driver->ops->install ? driver->ops->install(driver, tty) :
1436		tty_standard_install(driver, tty);
1437}
1438
1439/**
1440 *	tty_driver_remove_tty() - remove a tty from the driver tables
1441 *	@driver: the driver for the tty
1442 *	@idx:	 the minor number
1443 *
1444 *	Remvoe a tty object from the driver tables. The tty->index field
1445 *	will be set by the time this is called.
1446 *
1447 *	Locking: tty_mutex for now
1448 */
1449static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450{
1451	if (driver->ops->remove)
1452		driver->ops->remove(driver, tty);
1453	else
1454		driver->ttys[tty->index] = NULL;
1455}
1456
1457/*
1458 * 	tty_reopen()	- fast re-open of an open tty
1459 * 	@tty	- the tty to open
1460 *
1461 *	Return 0 on success, -errno on error.
1462 *	Re-opens on master ptys are not allowed and return -EIO.
1463 *
1464 *	Locking: Caller must hold tty_lock
 
1465 */
1466static int tty_reopen(struct tty_struct *tty)
1467{
1468	struct tty_driver *driver = tty->driver;
1469
1470	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471	    driver->subtype == PTY_TYPE_MASTER)
1472		return -EIO;
1473
1474	if (!tty->count)
1475		return -EAGAIN;
1476
1477	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478		return -EBUSY;
 
 
 
1479
 
 
1480	tty->count++;
1481
1482	if (!tty->ldisc)
1483		return tty_ldisc_reinit(tty, tty->termios.c_line);
1484
1485	return 0;
1486}
1487
1488/**
1489 *	tty_init_dev		-	initialise a tty device
1490 *	@driver: tty driver we are opening a device on
1491 *	@idx: device index
1492 *	@ret_tty: returned tty structure
1493 *
1494 *	Prepare a tty device. This may not be a "new" clean device but
1495 *	could also be an active device. The pty drivers require special
1496 *	handling because of this.
1497 *
1498 *	Locking:
1499 *		The function is called under the tty_mutex, which
1500 *	protects us from the tty struct or driver itself going away.
1501 *
1502 *	On exit the tty device has the line discipline attached and
1503 *	a reference count of 1. If a pair was created for pty/tty use
1504 *	and the other was a pty master then it too has a reference count of 1.
1505 *
1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507 * failed open.  The new code protects the open with a mutex, so it's
1508 * really quite straightforward.  The mutex locking can probably be
1509 * relaxed for the (most common) case of reopening a tty.
1510 */
1511
1512struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513{
1514	struct tty_struct *tty;
1515	int retval;
1516
1517	/*
1518	 * First time open is complex, especially for PTY devices.
1519	 * This code guarantees that either everything succeeds and the
1520	 * TTY is ready for operation, or else the table slots are vacated
1521	 * and the allocated memory released.  (Except that the termios
1522	 * and locked termios may be retained.)
1523	 */
1524
1525	if (!try_module_get(driver->owner))
1526		return ERR_PTR(-ENODEV);
1527
1528	tty = alloc_tty_struct(driver, idx);
1529	if (!tty) {
1530		retval = -ENOMEM;
1531		goto err_module_put;
1532	}
 
1533
1534	tty_lock(tty);
1535	retval = tty_driver_install_tty(driver, tty);
1536	if (retval < 0)
1537		goto err_free_tty;
1538
1539	if (!tty->port)
1540		tty->port = driver->ports[idx];
1541
1542	WARN_RATELIMIT(!tty->port,
1543			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544			__func__, tty->driver->name);
1545
1546	tty->port->itty = tty;
1547
1548	/*
1549	 * Structures all installed ... call the ldisc open routines.
1550	 * If we fail here just call release_tty to clean up.  No need
1551	 * to decrement the use counts, as release_tty doesn't care.
1552	 */
1553	retval = tty_ldisc_setup(tty, tty->link);
1554	if (retval)
1555		goto err_release_tty;
1556	/* Return the tty locked so that it cannot vanish under the caller */
1557	return tty;
1558
1559err_free_tty:
1560	tty_unlock(tty);
 
1561	free_tty_struct(tty);
1562err_module_put:
1563	module_put(driver->owner);
1564	return ERR_PTR(retval);
1565
1566	/* call the tty release_tty routine to clean out this slot */
1567err_release_tty:
1568	tty_unlock(tty);
1569	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570			     retval, idx);
1571	release_tty(tty, idx);
1572	return ERR_PTR(retval);
1573}
1574
1575static void tty_free_termios(struct tty_struct *tty)
1576{
1577	struct ktermios *tp;
1578	int idx = tty->index;
1579
1580	/* If the port is going to reset then it has no termios to save */
1581	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582		return;
1583
1584	/* Stash the termios data */
1585	tp = tty->driver->termios[idx];
1586	if (tp == NULL) {
1587		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588		if (tp == NULL)
 
1589			return;
 
1590		tty->driver->termios[idx] = tp;
1591	}
1592	*tp = tty->termios;
1593}
 
1594
1595/**
1596 *	tty_flush_works		-	flush all works of a tty/pty pair
1597 *	@tty: tty device to flush works for (or either end of a pty pair)
1598 *
1599 *	Sync flush all works belonging to @tty (and the 'other' tty).
1600 */
1601static void tty_flush_works(struct tty_struct *tty)
1602{
1603	flush_work(&tty->SAK_work);
1604	flush_work(&tty->hangup_work);
1605	if (tty->link) {
1606		flush_work(&tty->link->SAK_work);
1607		flush_work(&tty->link->hangup_work);
1608	}
1609}
1610
1611/**
1612 *	release_one_tty		-	release tty structure memory
1613 *	@kref: kref of tty we are obliterating
1614 *
1615 *	Releases memory associated with a tty structure, and clears out the
1616 *	driver table slots. This function is called when a device is no longer
1617 *	in use. It also gets called when setup of a device fails.
1618 *
1619 *	Locking:
1620 *		takes the file list lock internally when working on the list
1621 *	of ttys that the driver keeps.
1622 *
1623 *	This method gets called from a work queue so that the driver private
1624 *	cleanup ops can sleep (needed for USB at least)
1625 */
1626static void release_one_tty(struct work_struct *work)
1627{
1628	struct tty_struct *tty =
1629		container_of(work, struct tty_struct, hangup_work);
1630	struct tty_driver *driver = tty->driver;
1631	struct module *owner = driver->owner;
1632
1633	if (tty->ops->cleanup)
1634		tty->ops->cleanup(tty);
1635
1636	tty->magic = 0;
1637	tty_driver_kref_put(driver);
1638	module_put(owner);
1639
1640	spin_lock(&tty->files_lock);
1641	list_del_init(&tty->tty_files);
1642	spin_unlock(&tty->files_lock);
1643
1644	put_pid(tty->pgrp);
1645	put_pid(tty->session);
1646	free_tty_struct(tty);
1647}
1648
1649static void queue_release_one_tty(struct kref *kref)
1650{
1651	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652
1653	/* The hangup queue is now free so we can reuse it rather than
1654	   waste a chunk of memory for each port */
1655	INIT_WORK(&tty->hangup_work, release_one_tty);
1656	schedule_work(&tty->hangup_work);
1657}
1658
1659/**
1660 *	tty_kref_put		-	release a tty kref
1661 *	@tty: tty device
1662 *
1663 *	Release a reference to a tty device and if need be let the kref
1664 *	layer destruct the object for us
1665 */
1666
1667void tty_kref_put(struct tty_struct *tty)
1668{
1669	if (tty)
1670		kref_put(&tty->kref, queue_release_one_tty);
1671}
1672EXPORT_SYMBOL(tty_kref_put);
1673
1674/**
1675 *	release_tty		-	release tty structure memory
1676 *
1677 *	Release both @tty and a possible linked partner (think pty pair),
1678 *	and decrement the refcount of the backing module.
1679 *
1680 *	Locking:
1681 *		tty_mutex
1682 *		takes the file list lock internally when working on the list
1683 *	of ttys that the driver keeps.
1684 *
1685 */
1686static void release_tty(struct tty_struct *tty, int idx)
1687{
1688	/* This should always be true but check for the moment */
1689	WARN_ON(tty->index != idx);
1690	WARN_ON(!mutex_is_locked(&tty_mutex));
1691	if (tty->ops->shutdown)
1692		tty->ops->shutdown(tty);
1693	tty_free_termios(tty);
1694	tty_driver_remove_tty(tty->driver, tty);
1695	tty->port->itty = NULL;
1696	if (tty->link)
1697		tty->link->port->itty = NULL;
1698	tty_buffer_cancel_work(tty->port);
1699
1700	tty_kref_put(tty->link);
 
1701	tty_kref_put(tty);
1702}
1703
1704/**
1705 *	tty_release_checks - check a tty before real release
1706 *	@tty: tty to check
1707 *	@o_tty: link of @tty (if any)
1708 *	@idx: index of the tty
1709 *
1710 *	Performs some paranoid checking before true release of the @tty.
1711 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712 */
1713static int tty_release_checks(struct tty_struct *tty, int idx)
 
1714{
1715#ifdef TTY_PARANOIA_CHECK
1716	if (idx < 0 || idx >= tty->driver->num) {
1717		tty_debug(tty, "bad idx %d\n", idx);
 
1718		return -1;
1719	}
1720
1721	/* not much to check for devpts */
1722	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723		return 0;
1724
1725	if (tty != tty->driver->ttys[idx]) {
1726		tty_debug(tty, "bad driver table[%d] = %p\n",
1727			  idx, tty->driver->ttys[idx]);
1728		return -1;
1729	}
1730	if (tty->driver->other) {
1731		struct tty_struct *o_tty = tty->link;
1732
1733		if (o_tty != tty->driver->other->ttys[idx]) {
1734			tty_debug(tty, "bad other table[%d] = %p\n",
1735				  idx, tty->driver->other->ttys[idx]);
1736			return -1;
1737		}
1738		if (o_tty->link != tty) {
1739			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740			return -1;
1741		}
1742	}
1743#endif
1744	return 0;
1745}
1746
1747/**
1748 *	tty_release		-	vfs callback for close
1749 *	@inode: inode of tty
1750 *	@filp: file pointer for handle to tty
1751 *
1752 *	Called the last time each file handle is closed that references
1753 *	this tty. There may however be several such references.
1754 *
1755 *	Locking:
1756 *		Takes bkl. See tty_release_dev
1757 *
1758 * Even releasing the tty structures is a tricky business.. We have
1759 * to be very careful that the structures are all released at the
1760 * same time, as interrupts might otherwise get the wrong pointers.
1761 *
1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763 * lead to double frees or releasing memory still in use.
1764 */
1765
1766int tty_release(struct inode *inode, struct file *filp)
1767{
1768	struct tty_struct *tty = file_tty(filp);
1769	struct tty_struct *o_tty = NULL;
1770	int	do_sleep, final;
1771	int	idx;
1772	long	timeout = 0;
1773	int	once = 1;
1774
1775	if (tty_paranoia_check(tty, inode, __func__))
1776		return 0;
1777
1778	tty_lock(tty);
1779	check_tty_count(tty, __func__);
1780
1781	__tty_fasync(-1, filp, 0);
1782
1783	idx = tty->index;
1784	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785	    tty->driver->subtype == PTY_TYPE_MASTER)
1786		o_tty = tty->link;
 
1787
1788	if (tty_release_checks(tty, idx)) {
1789		tty_unlock(tty);
1790		return 0;
1791	}
1792
1793	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1794
1795	if (tty->ops->close)
1796		tty->ops->close(tty, filp);
1797
1798	/* If tty is pty master, lock the slave pty (stable lock order) */
1799	tty_lock_slave(o_tty);
1800
1801	/*
1802	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804	 * wait queues and kick everyone out _before_ actually starting to
1805	 * close.  This ensures that we won't block while releasing the tty
1806	 * structure.
1807	 *
1808	 * The test for the o_tty closing is necessary, since the master and
1809	 * slave sides may close in any order.  If the slave side closes out
1810	 * first, its count will be one, since the master side holds an open.
1811	 * Thus this test wouldn't be triggered at the time the slave closed,
1812	 * so we do it now.
 
 
 
 
1813	 */
1814	while (1) {
 
 
 
 
 
 
 
 
1815		do_sleep = 0;
1816
1817		if (tty->count <= 1) {
1818			if (waitqueue_active(&tty->read_wait)) {
1819				wake_up_poll(&tty->read_wait, POLLIN);
1820				do_sleep++;
1821			}
1822			if (waitqueue_active(&tty->write_wait)) {
1823				wake_up_poll(&tty->write_wait, POLLOUT);
1824				do_sleep++;
1825			}
1826		}
1827		if (o_tty && o_tty->count <= 1) {
1828			if (waitqueue_active(&o_tty->read_wait)) {
1829				wake_up_poll(&o_tty->read_wait, POLLIN);
1830				do_sleep++;
1831			}
1832			if (waitqueue_active(&o_tty->write_wait)) {
1833				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834				do_sleep++;
1835			}
1836		}
1837		if (!do_sleep)
1838			break;
1839
1840		if (once) {
1841			once = 0;
1842			tty_warn(tty, "read/write wait queue active!\n");
1843		}
1844		schedule_timeout_killable(timeout);
1845		if (timeout < 120 * HZ)
1846			timeout = 2 * timeout + 1;
1847		else
1848			timeout = MAX_SCHEDULE_TIMEOUT;
1849	}
1850
1851	if (o_tty) {
 
 
 
 
 
 
 
 
1852		if (--o_tty->count < 0) {
1853			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1854			o_tty->count = 0;
1855		}
1856	}
1857	if (--tty->count < 0) {
1858		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1859		tty->count = 0;
1860	}
1861
1862	/*
1863	 * We've decremented tty->count, so we need to remove this file
1864	 * descriptor off the tty->tty_files list; this serves two
1865	 * purposes:
1866	 *  - check_tty_count sees the correct number of file descriptors
1867	 *    associated with this tty.
1868	 *  - do_tty_hangup no longer sees this file descriptor as
1869	 *    something that needs to be handled for hangups.
1870	 */
1871	tty_del_file(filp);
1872
1873	/*
1874	 * Perform some housekeeping before deciding whether to return.
1875	 *
 
 
 
 
 
 
 
 
 
 
1876	 * If _either_ side is closing, make sure there aren't any
1877	 * processes that still think tty or o_tty is their controlling
1878	 * tty.
1879	 */
1880	if (!tty->count) {
1881		read_lock(&tasklist_lock);
1882		session_clear_tty(tty->session);
1883		if (o_tty)
1884			session_clear_tty(o_tty->session);
1885		read_unlock(&tasklist_lock);
1886	}
1887
1888	/* check whether both sides are closing ... */
1889	final = !tty->count && !(o_tty && o_tty->count);
1890
1891	tty_unlock_slave(o_tty);
1892	tty_unlock(tty);
1893
1894	/* At this point, the tty->count == 0 should ensure a dead tty
1895	   cannot be re-opened by a racing opener */
1896
1897	if (!final)
 
1898		return 0;
1899
1900	tty_debug_hangup(tty, "final close\n");
 
 
1901	/*
1902	 * Ask the line discipline code to release its structures
1903	 */
1904	tty_ldisc_release(tty);
1905
1906	/* Wait for pending work before tty destruction commmences */
1907	tty_flush_works(tty);
 
 
1908
1909	tty_debug_hangup(tty, "freeing structure\n");
 
 
1910	/*
1911	 * The release_tty function takes care of the details of clearing
1912	 * the slots and preserving the termios structure. The tty_unlock_pair
1913	 * should be safe as we keep a kref while the tty is locked (so the
1914	 * unlock never unlocks a freed tty).
1915	 */
1916	mutex_lock(&tty_mutex);
1917	release_tty(tty, idx);
1918	mutex_unlock(&tty_mutex);
1919
1920	return 0;
1921}
1922
1923/**
1924 *	tty_open_current_tty - get locked tty of current task
1925 *	@device: device number
1926 *	@filp: file pointer to tty
1927 *	@return: locked tty of the current task iff @device is /dev/tty
1928 *
1929 *	Performs a re-open of the current task's controlling tty.
1930 *
1931 *	We cannot return driver and index like for the other nodes because
1932 *	devpts will not work then. It expects inodes to be from devpts FS.
 
 
 
1933 */
1934static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1935{
1936	struct tty_struct *tty;
1937	int retval;
1938
1939	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940		return NULL;
1941
1942	tty = get_current_tty();
1943	if (!tty)
1944		return ERR_PTR(-ENXIO);
1945
1946	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947	/* noctty = 1; */
1948	tty_lock(tty);
1949	tty_kref_put(tty);	/* safe to drop the kref now */
1950
1951	retval = tty_reopen(tty);
1952	if (retval < 0) {
1953		tty_unlock(tty);
1954		tty = ERR_PTR(retval);
1955	}
1956	return tty;
1957}
1958
1959/**
1960 *	tty_lookup_driver - lookup a tty driver for a given device file
1961 *	@device: device number
1962 *	@filp: file pointer to tty
 
1963 *	@index: index for the device in the @return driver
1964 *	@return: driver for this inode (with increased refcount)
1965 *
1966 * 	If @return is not erroneous, the caller is responsible to decrement the
1967 * 	refcount by tty_driver_kref_put.
1968 *
1969 *	Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972		int *index)
1973{
1974	struct tty_driver *driver;
1975
1976	switch (device) {
1977#ifdef CONFIG_VT
1978	case MKDEV(TTY_MAJOR, 0): {
1979		extern struct tty_driver *console_driver;
1980		driver = tty_driver_kref_get(console_driver);
1981		*index = fg_console;
 
1982		break;
1983	}
1984#endif
1985	case MKDEV(TTYAUX_MAJOR, 1): {
1986		struct tty_driver *console_driver = console_device(index);
1987		if (console_driver) {
1988			driver = tty_driver_kref_get(console_driver);
1989			if (driver) {
1990				/* Don't let /dev/console block */
1991				filp->f_flags |= O_NONBLOCK;
 
1992				break;
1993			}
1994		}
1995		return ERR_PTR(-ENODEV);
1996	}
1997	default:
1998		driver = get_tty_driver(device, index);
1999		if (!driver)
2000			return ERR_PTR(-ENODEV);
2001		break;
2002	}
2003	return driver;
2004}
2005
2006/**
2007 *	tty_open_by_driver	-	open a tty device
2008 *	@device: dev_t of device to open
2009 *	@inode: inode of device file
2010 *	@filp: file pointer to tty
2011 *
2012 *	Performs the driver lookup, checks for a reopen, or otherwise
2013 *	performs the first-time tty initialization.
2014 *
2015 *	Returns the locked initialized or re-opened &tty_struct
2016 *
2017 *	Claims the global tty_mutex to serialize:
2018 *	  - concurrent first-time tty initialization
2019 *	  - concurrent tty driver removal w/ lookup
2020 *	  - concurrent tty removal from driver table
2021 */
2022static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023					     struct file *filp)
2024{
2025	struct tty_struct *tty;
2026	struct tty_driver *driver = NULL;
2027	int index = -1;
2028	int retval;
2029
2030	mutex_lock(&tty_mutex);
2031	driver = tty_lookup_driver(device, filp, &index);
2032	if (IS_ERR(driver)) {
2033		mutex_unlock(&tty_mutex);
2034		return ERR_CAST(driver);
2035	}
2036
2037	/* check whether we're reopening an existing tty */
2038	tty = tty_driver_lookup_tty(driver, filp, index);
2039	if (IS_ERR(tty)) {
2040		mutex_unlock(&tty_mutex);
2041		goto out;
2042	}
2043
2044	if (tty) {
2045		mutex_unlock(&tty_mutex);
2046		retval = tty_lock_interruptible(tty);
2047		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048		if (retval) {
2049			if (retval == -EINTR)
2050				retval = -ERESTARTSYS;
2051			tty = ERR_PTR(retval);
2052			goto out;
2053		}
2054		retval = tty_reopen(tty);
2055		if (retval < 0) {
2056			tty_unlock(tty);
2057			tty = ERR_PTR(retval);
2058		}
2059	} else { /* Returns with the tty_lock held for now */
2060		tty = tty_init_dev(driver, index);
2061		mutex_unlock(&tty_mutex);
2062	}
2063out:
2064	tty_driver_kref_put(driver);
2065	return tty;
2066}
2067
2068/**
2069 *	tty_open		-	open a tty device
2070 *	@inode: inode of device file
2071 *	@filp: file pointer to tty
2072 *
2073 *	tty_open and tty_release keep up the tty count that contains the
2074 *	number of opens done on a tty. We cannot use the inode-count, as
2075 *	different inodes might point to the same tty.
2076 *
2077 *	Open-counting is needed for pty masters, as well as for keeping
2078 *	track of serial lines: DTR is dropped when the last close happens.
2079 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080 *
2081 *	The termios state of a pty is reset on first open so that
2082 *	settings don't persist across reuse.
2083 *
2084 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085 *		 tty->count should protect the rest.
2086 *		 ->siglock protects ->signal/->sighand
2087 *
2088 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089 *	tty_mutex
2090 */
2091
2092static int tty_open(struct inode *inode, struct file *filp)
2093{
2094	struct tty_struct *tty;
2095	int noctty, retval;
 
 
2096	dev_t device = inode->i_rdev;
2097	unsigned saved_flags = filp->f_flags;
2098
2099	nonseekable_open(inode, filp);
2100
2101retry_open:
2102	retval = tty_alloc_file(filp);
2103	if (retval)
2104		return -ENOMEM;
2105
 
 
 
 
 
 
2106	tty = tty_open_current_tty(device, filp);
2107	if (!tty)
2108		tty = tty_open_by_driver(device, inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109
 
 
 
2110	if (IS_ERR(tty)) {
2111		tty_free_file(filp);
2112		retval = PTR_ERR(tty);
2113		if (retval != -EAGAIN || signal_pending(current))
2114			return retval;
2115		schedule();
2116		goto retry_open;
2117	}
2118
2119	tty_add_file(tty, filp);
2120
2121	check_tty_count(tty, __func__);
2122	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2123
 
 
 
 
2124	if (tty->ops->open)
2125		retval = tty->ops->open(tty, filp);
2126	else
2127		retval = -ENODEV;
2128	filp->f_flags = saved_flags;
2129
 
 
 
 
2130	if (retval) {
2131		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132
 
 
2133		tty_unlock(tty); /* need to call tty_release without BTM */
2134		tty_release(inode, filp);
2135		if (retval != -ERESTARTSYS)
2136			return retval;
2137
2138		if (signal_pending(current))
2139			return retval;
2140
2141		schedule();
2142		/*
2143		 * Need to reset f_op in case a hangup happened.
2144		 */
2145		if (tty_hung_up_p(filp))
2146			filp->f_op = &tty_fops;
2147		goto retry_open;
2148	}
2149	clear_bit(TTY_HUPPED, &tty->flags);
 
2150
2151
2152	read_lock(&tasklist_lock);
 
2153	spin_lock_irq(&current->sighand->siglock);
2154	noctty = (filp->f_flags & O_NOCTTY) ||
2155			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158			 tty->driver->subtype == PTY_TYPE_MASTER);
2159
2160	if (!noctty &&
2161	    current->signal->leader &&
2162	    !current->signal->tty &&
2163	    tty->session == NULL) {
2164		/*
2165		 * Don't let a process that only has write access to the tty
2166		 * obtain the privileges associated with having a tty as
2167		 * controlling terminal (being able to reopen it with full
2168		 * access through /dev/tty, being able to perform pushback).
2169		 * Many distributions set the group of all ttys to "tty" and
2170		 * grant write-only access to all terminals for setgid tty
2171		 * binaries, which should not imply full privileges on all ttys.
2172		 *
2173		 * This could theoretically break old code that performs open()
2174		 * on a write-only file descriptor. In that case, it might be
2175		 * necessary to also permit this if
2176		 * inode_permission(inode, MAY_READ) == 0.
2177		 */
2178		if (filp->f_mode & FMODE_READ)
2179			__proc_set_tty(tty);
2180	}
2181	spin_unlock_irq(&current->sighand->siglock);
2182	read_unlock(&tasklist_lock);
2183	tty_unlock(tty);
 
2184	return 0;
 
 
 
 
 
 
 
 
2185}
2186
2187
2188
2189/**
2190 *	tty_poll	-	check tty status
2191 *	@filp: file being polled
2192 *	@wait: poll wait structures to update
2193 *
2194 *	Call the line discipline polling method to obtain the poll
2195 *	status of the device.
2196 *
2197 *	Locking: locks called line discipline but ldisc poll method
2198 *	may be re-entered freely by other callers.
2199 */
2200
2201static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	int ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
 
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
 
 
 
 
 
 
 
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237		if (tty->pgrp) {
2238			pid = tty->pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_PID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267/**
2268 *	tiocsti			-	fake input character
2269 *	@tty: tty to fake input into
2270 *	@p: pointer to character
2271 *
2272 *	Fake input to a tty device. Does the necessary locking and
2273 *	input management.
2274 *
2275 *	FIXME: does not honour flow control ??
2276 *
2277 *	Locking:
2278 *		Called functions take tty_ldiscs_lock
2279 *		current->signal->tty check is safe without locks
2280 *
2281 *	FIXME: may race normal receive processing
2282 */
2283
2284static int tiocsti(struct tty_struct *tty, char __user *p)
2285{
2286	char ch, mbz = 0;
2287	struct tty_ldisc *ld;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2298	tty_ldisc_deref(ld);
2299	return 0;
2300}
2301
2302/**
2303 *	tiocgwinsz		-	implement window query ioctl
2304 *	@tty; tty
2305 *	@arg: user buffer for result
2306 *
2307 *	Copies the kernel idea of the window size into the user buffer.
2308 *
2309 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310 *		is consistent.
2311 */
2312
2313static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314{
2315	int err;
2316
2317	mutex_lock(&tty->winsize_mutex);
2318	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319	mutex_unlock(&tty->winsize_mutex);
2320
2321	return err ? -EFAULT: 0;
2322}
2323
2324/**
2325 *	tty_do_resize		-	resize event
2326 *	@tty: tty being resized
2327 *	@rows: rows (character)
2328 *	@cols: cols (character)
2329 *
2330 *	Update the termios variables and send the necessary signals to
2331 *	peform a terminal resize correctly
2332 */
2333
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 *	tiocswinsz		-	implement window size set ioctl
2358 *	@tty; tty side of tty
2359 *	@arg: user buffer for result
2360 *
2361 *	Copies the user idea of the window size to the kernel. Traditionally
2362 *	this is just advisory information but for the Linux console it
2363 *	actually has driver level meaning and triggers a VC resize.
2364 *
2365 *	Locking:
2366 *		Driver dependent. The default do_resize method takes the
2367 *	tty termios mutex and ctrl_lock. The console takes its own lock
2368 *	then calls into the default method.
2369 */
2370
2371static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372{
2373	struct winsize tmp_ws;
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 *	tioccons	-	allow admin to move logical console
2385 *	@file: the file to become console
2386 *
2387 *	Allow the administrator to move the redirected console device
2388 *
2389 *	Locking: uses redirect_lock to guard the redirect information
2390 */
2391
2392static int tioccons(struct file *file)
2393{
2394	if (!capable(CAP_SYS_ADMIN))
2395		return -EPERM;
2396	if (file->f_op->write == redirected_tty_write) {
2397		struct file *f;
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	spin_lock(&redirect_lock);
2407	if (redirect) {
2408		spin_unlock(&redirect_lock);
2409		return -EBUSY;
2410	}
2411	redirect = get_file(file);
2412	spin_unlock(&redirect_lock);
2413	return 0;
2414}
2415
2416/**
2417 *	fionbio		-	non blocking ioctl
2418 *	@file: file to set blocking value
2419 *	@p: user parameter
2420 *
2421 *	Historical tty interfaces had a blocking control ioctl before
2422 *	the generic functionality existed. This piece of history is preserved
2423 *	in the expected tty API of posix OS's.
2424 *
2425 *	Locking: none, the open file handle ensures it won't go away.
2426 */
2427
2428static int fionbio(struct file *file, int __user *p)
2429{
2430	int nonblock;
2431
2432	if (get_user(nonblock, p))
2433		return -EFAULT;
2434
2435	spin_lock(&file->f_lock);
2436	if (nonblock)
2437		file->f_flags |= O_NONBLOCK;
2438	else
2439		file->f_flags &= ~O_NONBLOCK;
2440	spin_unlock(&file->f_lock);
2441	return 0;
2442}
2443
2444/**
2445 *	tiocsctty	-	set controlling tty
2446 *	@tty: tty structure
2447 *	@arg: user argument
2448 *
2449 *	This ioctl is used to manage job control. It permits a session
2450 *	leader to set this tty as the controlling tty for the session.
2451 *
2452 *	Locking:
2453 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454 *		Takes tasklist_lock internally to walk sessions
2455 *		Takes ->siglock() when updating signal->tty
2456 */
2457
2458static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459{
2460	int ret = 0;
2461
2462	tty_lock(tty);
2463	read_lock(&tasklist_lock);
2464
2465	if (current->signal->leader && (task_session(current) == tty->session))
2466		goto unlock;
2467
 
2468	/*
2469	 * The process must be a session leader and
2470	 * not have a controlling tty already.
2471	 */
2472	if (!current->signal->leader || current->signal->tty) {
2473		ret = -EPERM;
2474		goto unlock;
2475	}
2476
2477	if (tty->session) {
2478		/*
2479		 * This tty is already the controlling
2480		 * tty for another session group!
2481		 */
2482		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483			/*
2484			 * Steal it away
2485			 */
 
2486			session_clear_tty(tty->session);
 
2487		} else {
2488			ret = -EPERM;
2489			goto unlock;
2490		}
2491	}
2492
2493	/* See the comment in tty_open(). */
2494	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495		ret = -EPERM;
2496		goto unlock;
2497	}
2498
2499	proc_set_tty(tty);
2500unlock:
2501	read_unlock(&tasklist_lock);
2502	tty_unlock(tty);
2503	return ret;
2504}
2505
2506/**
2507 *	tty_get_pgrp	-	return a ref counted pgrp pid
2508 *	@tty: tty to read
2509 *
2510 *	Returns a refcounted instance of the pid struct for the process
2511 *	group controlling the tty.
2512 */
2513
2514struct pid *tty_get_pgrp(struct tty_struct *tty)
2515{
2516	unsigned long flags;
2517	struct pid *pgrp;
2518
2519	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520	pgrp = get_pid(tty->pgrp);
2521	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522
2523	return pgrp;
2524}
2525EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526
2527/*
2528 * This checks not only the pgrp, but falls back on the pid if no
2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530 * without this...
2531 *
2532 * The caller must hold rcu lock or the tasklist lock.
2533 */
2534static struct pid *session_of_pgrp(struct pid *pgrp)
2535{
2536	struct task_struct *p;
2537	struct pid *sid = NULL;
2538
2539	p = pid_task(pgrp, PIDTYPE_PGID);
2540	if (p == NULL)
2541		p = pid_task(pgrp, PIDTYPE_PID);
2542	if (p != NULL)
2543		sid = task_session(p);
2544
2545	return sid;
2546}
2547
2548/**
2549 *	tiocgpgrp		-	get process group
2550 *	@tty: tty passed by user
2551 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552 *	@p: returned pid
2553 *
2554 *	Obtain the process group of the tty. If there is no process group
2555 *	return an error.
2556 *
2557 *	Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
2560static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561{
2562	struct pid *pid;
2563	int ret;
2564	/*
2565	 * (tty == real_tty) is a cheap way of
2566	 * testing if the tty is NOT a master pty.
2567	 */
2568	if (tty == real_tty && current->signal->tty != real_tty)
2569		return -ENOTTY;
2570	pid = tty_get_pgrp(real_tty);
2571	ret =  put_user(pid_vnr(pid), p);
2572	put_pid(pid);
2573	return ret;
2574}
2575
2576/**
2577 *	tiocspgrp		-	attempt to set process group
2578 *	@tty: tty passed by user
2579 *	@real_tty: tty side device matching tty passed by user
2580 *	@p: pid pointer
2581 *
2582 *	Set the process group of the tty to the session passed. Only
2583 *	permitted where the tty session is our session.
2584 *
2585 *	Locking: RCU, ctrl lock
2586 */
2587
2588static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589{
2590	struct pid *pgrp;
2591	pid_t pgrp_nr;
2592	int retval = tty_check_change(real_tty);
 
2593
2594	if (retval == -EIO)
2595		return -ENOTTY;
2596	if (retval)
2597		return retval;
2598	if (!current->signal->tty ||
2599	    (current->signal->tty != real_tty) ||
2600	    (real_tty->session != task_session(current)))
2601		return -ENOTTY;
2602	if (get_user(pgrp_nr, p))
2603		return -EFAULT;
2604	if (pgrp_nr < 0)
2605		return -EINVAL;
2606	rcu_read_lock();
2607	pgrp = find_vpid(pgrp_nr);
2608	retval = -ESRCH;
2609	if (!pgrp)
2610		goto out_unlock;
2611	retval = -EPERM;
2612	if (session_of_pgrp(pgrp) != task_session(current))
2613		goto out_unlock;
2614	retval = 0;
2615	spin_lock_irq(&tty->ctrl_lock);
2616	put_pid(real_tty->pgrp);
2617	real_tty->pgrp = get_pid(pgrp);
2618	spin_unlock_irq(&tty->ctrl_lock);
2619out_unlock:
2620	rcu_read_unlock();
2621	return retval;
2622}
2623
2624/**
2625 *	tiocgsid		-	get session id
2626 *	@tty: tty passed by user
2627 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628 *	@p: pointer to returned session id
2629 *
2630 *	Obtain the session id of the tty. If there is no session
2631 *	return an error.
2632 *
2633 *	Locking: none. Reference to current->signal->tty is safe.
2634 */
2635
2636static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637{
2638	/*
2639	 * (tty == real_tty) is a cheap way of
2640	 * testing if the tty is NOT a master pty.
2641	*/
2642	if (tty == real_tty && current->signal->tty != real_tty)
2643		return -ENOTTY;
2644	if (!real_tty->session)
2645		return -ENOTTY;
2646	return put_user(pid_vnr(real_tty->session), p);
2647}
2648
2649/**
2650 *	tiocsetd	-	set line discipline
2651 *	@tty: tty device
2652 *	@p: pointer to user data
2653 *
2654 *	Set the line discipline according to user request.
2655 *
2656 *	Locking: see tty_set_ldisc, this function is just a helper
2657 */
2658
2659static int tiocsetd(struct tty_struct *tty, int __user *p)
2660{
2661	int disc;
2662	int ret;
2663
2664	if (get_user(disc, p))
2665		return -EFAULT;
2666
2667	ret = tty_set_ldisc(tty, disc);
2668
2669	return ret;
2670}
2671
2672/**
2673 *	tiocgetd	-	get line discipline
2674 *	@tty: tty device
2675 *	@p: pointer to user data
2676 *
2677 *	Retrieves the line discipline id directly from the ldisc.
2678 *
2679 *	Locking: waits for ldisc reference (in case the line discipline
2680 *		is changing or the tty is being hungup)
2681 */
2682
2683static int tiocgetd(struct tty_struct *tty, int __user *p)
2684{
2685	struct tty_ldisc *ld;
2686	int ret;
2687
2688	ld = tty_ldisc_ref_wait(tty);
2689	if (!ld)
2690		return -EIO;
2691	ret = put_user(ld->ops->num, p);
2692	tty_ldisc_deref(ld);
2693	return ret;
2694}
2695
2696/**
2697 *	send_break	-	performed time break
2698 *	@tty: device to break on
2699 *	@duration: timeout in mS
2700 *
2701 *	Perform a timed break on hardware that lacks its own driver level
2702 *	timed break functionality.
2703 *
2704 *	Locking:
2705 *		atomic_write_lock serializes
2706 *
2707 */
2708
2709static int send_break(struct tty_struct *tty, unsigned int duration)
2710{
2711	int retval;
2712
2713	if (tty->ops->break_ctl == NULL)
2714		return 0;
2715
2716	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717		retval = tty->ops->break_ctl(tty, duration);
2718	else {
2719		/* Do the work ourselves */
2720		if (tty_write_lock(tty, 0) < 0)
2721			return -EINTR;
2722		retval = tty->ops->break_ctl(tty, -1);
2723		if (retval)
2724			goto out;
2725		if (!signal_pending(current))
2726			msleep_interruptible(duration);
2727		retval = tty->ops->break_ctl(tty, 0);
2728out:
2729		tty_write_unlock(tty);
2730		if (signal_pending(current))
2731			retval = -EINTR;
2732	}
2733	return retval;
2734}
2735
2736/**
2737 *	tty_tiocmget		-	get modem status
2738 *	@tty: tty device
2739 *	@file: user file pointer
2740 *	@p: pointer to result
2741 *
2742 *	Obtain the modem status bits from the tty driver if the feature
2743 *	is supported. Return -EINVAL if it is not available.
2744 *
2745 *	Locking: none (up to the driver)
2746 */
2747
2748static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749{
2750	int retval = -EINVAL;
2751
2752	if (tty->ops->tiocmget) {
2753		retval = tty->ops->tiocmget(tty);
2754
2755		if (retval >= 0)
2756			retval = put_user(retval, p);
2757	}
2758	return retval;
2759}
2760
2761/**
2762 *	tty_tiocmset		-	set modem status
2763 *	@tty: tty device
2764 *	@cmd: command - clear bits, set bits or set all
2765 *	@p: pointer to desired bits
2766 *
2767 *	Set the modem status bits from the tty driver if the feature
2768 *	is supported. Return -EINVAL if it is not available.
2769 *
2770 *	Locking: none (up to the driver)
2771 */
2772
2773static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774	     unsigned __user *p)
2775{
2776	int retval;
2777	unsigned int set, clear, val;
2778
2779	if (tty->ops->tiocmset == NULL)
2780		return -EINVAL;
2781
2782	retval = get_user(val, p);
2783	if (retval)
2784		return retval;
2785	set = clear = 0;
2786	switch (cmd) {
2787	case TIOCMBIS:
2788		set = val;
2789		break;
2790	case TIOCMBIC:
2791		clear = val;
2792		break;
2793	case TIOCMSET:
2794		set = val;
2795		clear = ~val;
2796		break;
2797	}
2798	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800	return tty->ops->tiocmset(tty, set, clear);
2801}
2802
2803static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804{
2805	int retval = -EINVAL;
2806	struct serial_icounter_struct icount;
2807	memset(&icount, 0, sizeof(icount));
2808	if (tty->ops->get_icount)
2809		retval = tty->ops->get_icount(tty, &icount);
2810	if (retval != 0)
2811		return retval;
2812	if (copy_to_user(arg, &icount, sizeof(icount)))
2813		return -EFAULT;
2814	return 0;
2815}
2816
2817static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818{
2819	static DEFINE_RATELIMIT_STATE(depr_flags,
2820			DEFAULT_RATELIMIT_INTERVAL,
2821			DEFAULT_RATELIMIT_BURST);
2822	char comm[TASK_COMM_LEN];
2823	int flags;
2824
2825	if (get_user(flags, &ss->flags))
2826		return;
2827
2828	flags &= ASYNC_DEPRECATED;
2829
2830	if (flags && __ratelimit(&depr_flags))
2831		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832				__func__, get_task_comm(comm, current), flags);
2833}
 
2834
2835/*
2836 * if pty, return the slave side (real_tty)
2837 * otherwise, return self
2838 */
2839static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840{
2841	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842	    tty->driver->subtype == PTY_TYPE_MASTER)
2843		tty = tty->link;
2844	return tty;
2845}
 
2846
2847/*
2848 * Split this up, as gcc can choke on it otherwise..
2849 */
2850long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851{
2852	struct tty_struct *tty = file_tty(file);
2853	struct tty_struct *real_tty;
2854	void __user *p = (void __user *)arg;
2855	int retval;
2856	struct tty_ldisc *ld;
2857
2858	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859		return -EINVAL;
2860
2861	real_tty = tty_pair_get_tty(tty);
2862
2863	/*
2864	 * Factor out some common prep work
2865	 */
2866	switch (cmd) {
2867	case TIOCSETD:
2868	case TIOCSBRK:
2869	case TIOCCBRK:
2870	case TCSBRK:
2871	case TCSBRKP:
2872		retval = tty_check_change(tty);
2873		if (retval)
2874			return retval;
2875		if (cmd != TIOCCBRK) {
2876			tty_wait_until_sent(tty, 0);
2877			if (signal_pending(current))
2878				return -EINTR;
2879		}
2880		break;
2881	}
2882
2883	/*
2884	 *	Now do the stuff.
2885	 */
2886	switch (cmd) {
2887	case TIOCSTI:
2888		return tiocsti(tty, p);
2889	case TIOCGWINSZ:
2890		return tiocgwinsz(real_tty, p);
2891	case TIOCSWINSZ:
2892		return tiocswinsz(real_tty, p);
2893	case TIOCCONS:
2894		return real_tty != tty ? -EINVAL : tioccons(file);
2895	case FIONBIO:
2896		return fionbio(file, p);
2897	case TIOCEXCL:
2898		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899		return 0;
2900	case TIOCNXCL:
2901		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902		return 0;
2903	case TIOCGEXCL:
2904	{
2905		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2906		return put_user(excl, (int __user *)p);
2907	}
2908	case TIOCNOTTY:
2909		if (current->signal->tty != tty)
2910			return -ENOTTY;
2911		no_tty();
2912		return 0;
2913	case TIOCSCTTY:
2914		return tiocsctty(real_tty, file, arg);
2915	case TIOCGPGRP:
2916		return tiocgpgrp(tty, real_tty, p);
2917	case TIOCSPGRP:
2918		return tiocspgrp(tty, real_tty, p);
2919	case TIOCGSID:
2920		return tiocgsid(tty, real_tty, p);
2921	case TIOCGETD:
2922		return tiocgetd(tty, p);
2923	case TIOCSETD:
2924		return tiocsetd(tty, p);
2925	case TIOCVHANGUP:
2926		if (!capable(CAP_SYS_ADMIN))
2927			return -EPERM;
2928		tty_vhangup(tty);
2929		return 0;
2930	case TIOCGDEV:
2931	{
2932		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2933		return put_user(ret, (unsigned int __user *)p);
2934	}
2935	/*
2936	 * Break handling
2937	 */
2938	case TIOCSBRK:	/* Turn break on, unconditionally */
2939		if (tty->ops->break_ctl)
2940			return tty->ops->break_ctl(tty, -1);
2941		return 0;
2942	case TIOCCBRK:	/* Turn break off, unconditionally */
2943		if (tty->ops->break_ctl)
2944			return tty->ops->break_ctl(tty, 0);
2945		return 0;
2946	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947		/* non-zero arg means wait for all output data
2948		 * to be sent (performed above) but don't send break.
2949		 * This is used by the tcdrain() termios function.
2950		 */
2951		if (!arg)
2952			return send_break(tty, 250);
2953		return 0;
2954	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955		return send_break(tty, arg ? arg*100 : 250);
2956
2957	case TIOCMGET:
2958		return tty_tiocmget(tty, p);
2959	case TIOCMSET:
2960	case TIOCMBIC:
2961	case TIOCMBIS:
2962		return tty_tiocmset(tty, cmd, p);
2963	case TIOCGICOUNT:
2964		retval = tty_tiocgicount(tty, p);
2965		/* For the moment allow fall through to the old method */
2966        	if (retval != -EINVAL)
2967			return retval;
2968		break;
2969	case TCFLSH:
2970		switch (arg) {
2971		case TCIFLUSH:
2972		case TCIOFLUSH:
2973		/* flush tty buffer and allow ldisc to process ioctl */
2974			tty_buffer_flush(tty, NULL);
2975			break;
2976		}
2977		break;
2978	case TIOCSSERIAL:
2979		tty_warn_deprecated_flags(p);
2980		break;
2981	}
2982	if (tty->ops->ioctl) {
2983		retval = tty->ops->ioctl(tty, cmd, arg);
2984		if (retval != -ENOIOCTLCMD)
2985			return retval;
2986	}
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_ioctl(file, cmd, arg);
2990	retval = -EINVAL;
2991	if (ld->ops->ioctl) {
2992		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993		if (retval == -ENOIOCTLCMD)
2994			retval = -ENOTTY;
2995	}
2996	tty_ldisc_deref(ld);
2997	return retval;
2998}
2999
3000#ifdef CONFIG_COMPAT
3001static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002				unsigned long arg)
3003{
3004	struct tty_struct *tty = file_tty(file);
3005	struct tty_ldisc *ld;
3006	int retval = -ENOIOCTLCMD;
3007
3008	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009		return -EINVAL;
3010
3011	if (tty->ops->compat_ioctl) {
3012		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013		if (retval != -ENOIOCTLCMD)
3014			return retval;
3015	}
3016
3017	ld = tty_ldisc_ref_wait(tty);
3018	if (!ld)
3019		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020	if (ld->ops->compat_ioctl)
3021		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022	else
3023		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3024	tty_ldisc_deref(ld);
3025
3026	return retval;
3027}
3028#endif
3029
3030static int this_tty(const void *t, struct file *file, unsigned fd)
3031{
3032	if (likely(file->f_op->read != tty_read))
3033		return 0;
3034	return file_tty(file) != t ? 0 : fd + 1;
3035}
3036	
3037/*
3038 * This implements the "Secure Attention Key" ---  the idea is to
3039 * prevent trojan horses by killing all processes associated with this
3040 * tty when the user hits the "Secure Attention Key".  Required for
3041 * super-paranoid applications --- see the Orange Book for more details.
3042 *
3043 * This code could be nicer; ideally it should send a HUP, wait a few
3044 * seconds, then send a INT, and then a KILL signal.  But you then
3045 * have to coordinate with the init process, since all processes associated
3046 * with the current tty must be dead before the new getty is allowed
3047 * to spawn.
3048 *
3049 * Now, if it would be correct ;-/ The current code has a nasty hole -
3050 * it doesn't catch files in flight. We may send the descriptor to ourselves
3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052 *
3053 * Nasty bug: do_SAK is being called in interrupt context.  This can
3054 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055 */
3056void __do_SAK(struct tty_struct *tty)
3057{
3058#ifdef TTY_SOFT_SAK
3059	tty_hangup(tty);
3060#else
3061	struct task_struct *g, *p;
3062	struct pid *session;
3063	int		i;
3064
3065	if (!tty)
3066		return;
3067	session = tty->session;
3068
3069	tty_ldisc_flush(tty);
3070
3071	tty_driver_flush_buffer(tty);
3072
3073	read_lock(&tasklist_lock);
3074	/* Kill the entire session */
3075	do_each_pid_task(session, PIDTYPE_SID, p) {
3076		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077			   task_pid_nr(p), p->comm);
 
3078		send_sig(SIGKILL, p, 1);
3079	} while_each_pid_task(session, PIDTYPE_SID, p);
3080
3081	/* Now kill any processes that happen to have the tty open */
 
3082	do_each_thread(g, p) {
3083		if (p->signal->tty == tty) {
3084			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085				   task_pid_nr(p), p->comm);
 
3086			send_sig(SIGKILL, p, 1);
3087			continue;
3088		}
3089		task_lock(p);
3090		i = iterate_fd(p->files, 0, this_tty, tty);
3091		if (i != 0) {
3092			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093				   task_pid_nr(p), p->comm, i - 1);
 
3094			force_sig(SIGKILL, p);
3095		}
3096		task_unlock(p);
3097	} while_each_thread(g, p);
3098	read_unlock(&tasklist_lock);
3099#endif
3100}
3101
3102static void do_SAK_work(struct work_struct *work)
3103{
3104	struct tty_struct *tty =
3105		container_of(work, struct tty_struct, SAK_work);
3106	__do_SAK(tty);
3107}
3108
3109/*
3110 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112 * the values which we write to it will be identical to the values which it
3113 * already has. --akpm
3114 */
3115void do_SAK(struct tty_struct *tty)
3116{
3117	if (!tty)
3118		return;
3119	schedule_work(&tty->SAK_work);
3120}
3121
3122EXPORT_SYMBOL(do_SAK);
3123
3124static int dev_match_devt(struct device *dev, const void *data)
3125{
3126	const dev_t *devt = data;
3127	return dev->devt == *devt;
3128}
3129
3130/* Must put_device() after it's unused! */
3131static struct device *tty_get_device(struct tty_struct *tty)
3132{
3133	dev_t devt = tty_devnum(tty);
3134	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3135}
3136
3137
3138/**
3139 *	alloc_tty_struct
 
3140 *
3141 *	This subroutine allocates and initializes a tty structure.
 
3142 *
3143 *	Locking: none - tty in question is not exposed at this point
3144 */
3145
3146struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
3147{
3148	struct tty_struct *tty;
3149
3150	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151	if (!tty)
3152		return NULL;
3153
3154	kref_init(&tty->kref);
3155	tty->magic = TTY_MAGIC;
3156	tty_ldisc_init(tty);
3157	tty->session = NULL;
3158	tty->pgrp = NULL;
3159	mutex_init(&tty->legacy_mutex);
3160	mutex_init(&tty->throttle_mutex);
3161	init_rwsem(&tty->termios_rwsem);
3162	mutex_init(&tty->winsize_mutex);
3163	init_ldsem(&tty->ldisc_sem);
3164	init_waitqueue_head(&tty->write_wait);
3165	init_waitqueue_head(&tty->read_wait);
3166	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3167	mutex_init(&tty->atomic_write_lock);
3168	spin_lock_init(&tty->ctrl_lock);
3169	spin_lock_init(&tty->flow_lock);
3170	spin_lock_init(&tty->files_lock);
3171	INIT_LIST_HEAD(&tty->tty_files);
3172	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173
3174	tty->driver = driver;
3175	tty->ops = driver->ops;
3176	tty->index = idx;
3177	tty_line_name(driver, idx, tty->name);
3178	tty->dev = tty_get_device(tty);
 
3179
3180	return tty;
 
 
 
 
 
 
 
 
 
 
 
3181}
3182
3183/**
3184 *	tty_put_char	-	write one character to a tty
3185 *	@tty: tty
3186 *	@ch: character
3187 *
3188 *	Write one byte to the tty using the provided put_char method
3189 *	if present. Returns the number of characters successfully output.
3190 *
3191 *	Note: the specific put_char operation in the driver layer may go
3192 *	away soon. Don't call it directly, use this method
3193 */
3194
3195int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196{
3197	if (tty->ops->put_char)
3198		return tty->ops->put_char(tty, ch);
3199	return tty->ops->write(tty, &ch, 1);
3200}
3201EXPORT_SYMBOL_GPL(tty_put_char);
3202
3203struct class *tty_class;
3204
3205static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206		unsigned int index, unsigned int count)
3207{
3208	int err;
3209
3210	/* init here, since reused cdevs cause crashes */
3211	driver->cdevs[index] = cdev_alloc();
3212	if (!driver->cdevs[index])
3213		return -ENOMEM;
3214	driver->cdevs[index]->ops = &tty_fops;
3215	driver->cdevs[index]->owner = driver->owner;
3216	err = cdev_add(driver->cdevs[index], dev, count);
3217	if (err)
3218		kobject_put(&driver->cdevs[index]->kobj);
3219	return err;
3220}
3221
3222/**
3223 *	tty_register_device - register a tty device
3224 *	@driver: the tty driver that describes the tty device
3225 *	@index: the index in the tty driver for this tty device
3226 *	@device: a struct device that is associated with this tty device.
3227 *		This field is optional, if there is no known struct device
3228 *		for this tty device it can be set to NULL safely.
3229 *
3230 *	Returns a pointer to the struct device for this tty device
3231 *	(or ERR_PTR(-EFOO) on error).
3232 *
3233 *	This call is required to be made to register an individual tty device
3234 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235 *	that bit is not set, this function should not be called by a tty
3236 *	driver.
3237 *
3238 *	Locking: ??
3239 */
3240
3241struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242				   struct device *device)
3243{
3244	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245}
3246EXPORT_SYMBOL(tty_register_device);
3247
3248static void tty_device_create_release(struct device *dev)
3249{
3250	dev_dbg(dev, "releasing...\n");
3251	kfree(dev);
3252}
3253
3254/**
3255 *	tty_register_device_attr - register a tty device
3256 *	@driver: the tty driver that describes the tty device
3257 *	@index: the index in the tty driver for this tty device
3258 *	@device: a struct device that is associated with this tty device.
3259 *		This field is optional, if there is no known struct device
3260 *		for this tty device it can be set to NULL safely.
3261 *	@drvdata: Driver data to be set to device.
3262 *	@attr_grp: Attribute group to be set on device.
3263 *
3264 *	Returns a pointer to the struct device for this tty device
3265 *	(or ERR_PTR(-EFOO) on error).
3266 *
3267 *	This call is required to be made to register an individual tty device
3268 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269 *	that bit is not set, this function should not be called by a tty
3270 *	driver.
3271 *
3272 *	Locking: ??
3273 */
3274struct device *tty_register_device_attr(struct tty_driver *driver,
3275				   unsigned index, struct device *device,
3276				   void *drvdata,
3277				   const struct attribute_group **attr_grp)
3278{
3279	char name[64];
3280	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281	struct device *dev = NULL;
3282	int retval = -ENODEV;
3283	bool cdev = false;
3284
3285	if (index >= driver->num) {
3286		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287		       driver->name, index);
3288		return ERR_PTR(-EINVAL);
3289	}
3290
3291	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292		pty_line_name(driver, index, name);
3293	else
3294		tty_line_name(driver, index, name);
3295
3296	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297		retval = tty_cdev_add(driver, devt, index, 1);
3298		if (retval)
3299			goto error;
3300		cdev = true;
3301	}
3302
3303	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304	if (!dev) {
3305		retval = -ENOMEM;
3306		goto error;
3307	}
3308
3309	dev->devt = devt;
3310	dev->class = tty_class;
3311	dev->parent = device;
3312	dev->release = tty_device_create_release;
3313	dev_set_name(dev, "%s", name);
3314	dev->groups = attr_grp;
3315	dev_set_drvdata(dev, drvdata);
3316
3317	retval = device_register(dev);
3318	if (retval)
3319		goto error;
3320
3321	return dev;
3322
3323error:
3324	put_device(dev);
3325	if (cdev) {
3326		cdev_del(driver->cdevs[index]);
3327		driver->cdevs[index] = NULL;
3328	}
3329	return ERR_PTR(retval);
3330}
3331EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332
3333/**
3334 * 	tty_unregister_device - unregister a tty device
3335 * 	@driver: the tty driver that describes the tty device
3336 * 	@index: the index in the tty driver for this tty device
3337 *
3338 * 	If a tty device is registered with a call to tty_register_device() then
3339 *	this function must be called when the tty device is gone.
3340 *
3341 *	Locking: ??
3342 */
3343
3344void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345{
3346	device_destroy(tty_class,
3347		MKDEV(driver->major, driver->minor_start) + index);
3348	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349		cdev_del(driver->cdevs[index]);
3350		driver->cdevs[index] = NULL;
3351	}
3352}
3353EXPORT_SYMBOL(tty_unregister_device);
3354
3355/**
3356 * __tty_alloc_driver -- allocate tty driver
3357 * @lines: count of lines this driver can handle at most
3358 * @owner: module which is repsonsible for this driver
3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360 *
3361 * This should not be called directly, some of the provided macros should be
3362 * used instead. Use IS_ERR and friends on @retval.
3363 */
3364struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365		unsigned long flags)
3366{
3367	struct tty_driver *driver;
3368	unsigned int cdevs = 1;
3369	int err;
3370
3371	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372		return ERR_PTR(-EINVAL);
3373
3374	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375	if (!driver)
3376		return ERR_PTR(-ENOMEM);
3377
3378	kref_init(&driver->kref);
3379	driver->magic = TTY_DRIVER_MAGIC;
3380	driver->num = lines;
3381	driver->owner = owner;
3382	driver->flags = flags;
3383
3384	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386				GFP_KERNEL);
3387		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388				GFP_KERNEL);
3389		if (!driver->ttys || !driver->termios) {
3390			err = -ENOMEM;
3391			goto err_free_all;
3392		}
3393	}
3394
3395	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397				GFP_KERNEL);
3398		if (!driver->ports) {
3399			err = -ENOMEM;
3400			goto err_free_all;
3401		}
3402		cdevs = lines;
3403	}
3404
3405	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406	if (!driver->cdevs) {
3407		err = -ENOMEM;
3408		goto err_free_all;
3409	}
3410
3411	return driver;
3412err_free_all:
3413	kfree(driver->ports);
3414	kfree(driver->ttys);
3415	kfree(driver->termios);
3416	kfree(driver->cdevs);
3417	kfree(driver);
3418	return ERR_PTR(err);
3419}
3420EXPORT_SYMBOL(__tty_alloc_driver);
3421
3422static void destruct_tty_driver(struct kref *kref)
3423{
3424	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425	int i;
3426	struct ktermios *tp;
3427
3428	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429		/*
3430		 * Free the termios and termios_locked structures because
3431		 * we don't want to get memory leaks when modular tty
3432		 * drivers are removed from the kernel.
3433		 */
3434		for (i = 0; i < driver->num; i++) {
3435			tp = driver->termios[i];
3436			if (tp) {
3437				driver->termios[i] = NULL;
3438				kfree(tp);
3439			}
3440			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441				tty_unregister_device(driver, i);
3442		}
3443		proc_tty_unregister_driver(driver);
3444		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445			cdev_del(driver->cdevs[0]);
3446	}
3447	kfree(driver->cdevs);
3448	kfree(driver->ports);
3449	kfree(driver->termios);
3450	kfree(driver->ttys);
3451	kfree(driver);
3452}
3453
3454void tty_driver_kref_put(struct tty_driver *driver)
3455{
3456	kref_put(&driver->kref, destruct_tty_driver);
3457}
3458EXPORT_SYMBOL(tty_driver_kref_put);
3459
3460void tty_set_operations(struct tty_driver *driver,
3461			const struct tty_operations *op)
3462{
3463	driver->ops = op;
3464};
3465EXPORT_SYMBOL(tty_set_operations);
3466
3467void put_tty_driver(struct tty_driver *d)
3468{
3469	tty_driver_kref_put(d);
3470}
3471EXPORT_SYMBOL(put_tty_driver);
3472
3473/*
3474 * Called by a tty driver to register itself.
3475 */
3476int tty_register_driver(struct tty_driver *driver)
3477{
3478	int error;
3479	int i;
3480	dev_t dev;
3481	struct device *d;
3482
3483	if (!driver->major) {
3484		error = alloc_chrdev_region(&dev, driver->minor_start,
3485						driver->num, driver->name);
3486		if (!error) {
3487			driver->major = MAJOR(dev);
3488			driver->minor_start = MINOR(dev);
3489		}
3490	} else {
3491		dev = MKDEV(driver->major, driver->minor_start);
3492		error = register_chrdev_region(dev, driver->num, driver->name);
3493	}
3494	if (error < 0)
3495		goto err;
3496
3497	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498		error = tty_cdev_add(driver, dev, 0, driver->num);
3499		if (error)
3500			goto err_unreg_char;
3501	}
3502
3503	mutex_lock(&tty_mutex);
3504	list_add(&driver->tty_drivers, &tty_drivers);
3505	mutex_unlock(&tty_mutex);
3506
3507	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508		for (i = 0; i < driver->num; i++) {
3509			d = tty_register_device(driver, i, NULL);
3510			if (IS_ERR(d)) {
3511				error = PTR_ERR(d);
3512				goto err_unreg_devs;
3513			}
3514		}
3515	}
3516	proc_tty_register_driver(driver);
3517	driver->flags |= TTY_DRIVER_INSTALLED;
3518	return 0;
3519
3520err_unreg_devs:
3521	for (i--; i >= 0; i--)
3522		tty_unregister_device(driver, i);
3523
3524	mutex_lock(&tty_mutex);
3525	list_del(&driver->tty_drivers);
3526	mutex_unlock(&tty_mutex);
3527
3528err_unreg_char:
3529	unregister_chrdev_region(dev, driver->num);
3530err:
3531	return error;
3532}
3533EXPORT_SYMBOL(tty_register_driver);
3534
3535/*
3536 * Called by a tty driver to unregister itself.
3537 */
3538int tty_unregister_driver(struct tty_driver *driver)
3539{
3540#if 0
3541	/* FIXME */
3542	if (driver->refcount)
3543		return -EBUSY;
3544#endif
3545	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546				driver->num);
3547	mutex_lock(&tty_mutex);
3548	list_del(&driver->tty_drivers);
3549	mutex_unlock(&tty_mutex);
3550	return 0;
3551}
3552
3553EXPORT_SYMBOL(tty_unregister_driver);
3554
3555dev_t tty_devnum(struct tty_struct *tty)
3556{
3557	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558}
3559EXPORT_SYMBOL(tty_devnum);
3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561void tty_default_fops(struct file_operations *fops)
3562{
3563	*fops = tty_fops;
3564}
3565
3566/*
3567 * Initialize the console device. This is called *early*, so
3568 * we can't necessarily depend on lots of kernel help here.
3569 * Just do some early initializations, and do the complex setup
3570 * later.
3571 */
3572void __init console_init(void)
3573{
3574	initcall_t *call;
3575
3576	/* Setup the default TTY line discipline. */
3577	n_tty_init();
3578
3579	/*
3580	 * set up the console device so that later boot sequences can
3581	 * inform about problems etc..
3582	 */
3583	call = __con_initcall_start;
3584	while (call < __con_initcall_end) {
3585		(*call)();
3586		call++;
3587	}
3588}
3589
3590static char *tty_devnode(struct device *dev, umode_t *mode)
3591{
3592	if (!mode)
3593		return NULL;
3594	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596		*mode = 0666;
3597	return NULL;
3598}
3599
3600static int __init tty_class_init(void)
3601{
3602	tty_class = class_create(THIS_MODULE, "tty");
3603	if (IS_ERR(tty_class))
3604		return PTR_ERR(tty_class);
3605	tty_class->devnode = tty_devnode;
3606	return 0;
3607}
3608
3609postcore_initcall(tty_class_init);
3610
3611/* 3/2004 jmc: why do these devices exist? */
3612static struct cdev tty_cdev, console_cdev;
3613
3614static ssize_t show_cons_active(struct device *dev,
3615				struct device_attribute *attr, char *buf)
3616{
3617	struct console *cs[16];
3618	int i = 0;
3619	struct console *c;
3620	ssize_t count = 0;
3621
3622	console_lock();
3623	for_each_console(c) {
3624		if (!c->device)
3625			continue;
3626		if (!c->write)
3627			continue;
3628		if ((c->flags & CON_ENABLED) == 0)
3629			continue;
3630		cs[i++] = c;
3631		if (i >= ARRAY_SIZE(cs))
3632			break;
3633	}
3634	while (i--) {
3635		int index = cs[i]->index;
3636		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637
3638		/* don't resolve tty0 as some programs depend on it */
3639		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640			count += tty_line_name(drv, index, buf + count);
3641		else
3642			count += sprintf(buf + count, "%s%d",
3643					 cs[i]->name, cs[i]->index);
3644
3645		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646	}
3647	console_unlock();
3648
3649	return count;
3650}
3651static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652
3653static struct attribute *cons_dev_attrs[] = {
3654	&dev_attr_active.attr,
3655	NULL
3656};
3657
3658ATTRIBUTE_GROUPS(cons_dev);
3659
3660static struct device *consdev;
3661
3662void console_sysfs_notify(void)
3663{
3664	if (consdev)
3665		sysfs_notify(&consdev->kobj, NULL, "active");
3666}
3667
3668/*
3669 * Ok, now we can initialize the rest of the tty devices and can count
3670 * on memory allocations, interrupts etc..
3671 */
3672int __init tty_init(void)
3673{
3674	cdev_init(&tty_cdev, &tty_fops);
3675	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677		panic("Couldn't register /dev/tty driver\n");
3678	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679
3680	cdev_init(&console_cdev, &console_fops);
3681	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683		panic("Couldn't register /dev/console driver\n");
3684	consdev = device_create_with_groups(tty_class, NULL,
3685					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686					    cons_dev_groups, "console");
3687	if (IS_ERR(consdev))
3688		consdev = NULL;
 
 
3689
3690#ifdef CONFIG_VT
3691	vty_init(&console_fops);
3692#endif
3693	return 0;
3694}
3695