Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (!tty)
 185		return;
 186	if (tty->dev)
 187		put_device(tty->dev);
 188	kfree(tty->write_buf);
 189	tty->magic = 0xDEADDEAD;
 190	kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195	return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 206	file->private_data = priv;
 207
 208	return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214	struct tty_file_private *priv = file->private_data;
 215
 216	priv->tty = tty;
 217	priv->file = file;
 218
 219	spin_lock(&tty_files_lock);
 220	list_add(&priv->list, &tty->tty_files);
 221	spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232	struct tty_file_private *priv = file->private_data;
 233
 234	file->private_data = NULL;
 235	kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241	struct tty_file_private *priv = file->private_data;
 242
 243	spin_lock(&tty_files_lock);
 244	list_del(&priv->list);
 245	spin_unlock(&tty_files_lock);
 246	tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *	tty_name	-	return tty naming
 254 *	@tty: tty structure
 255 *	@buf: buffer for output
 256 *
 257 *	Convert a tty structure into a name. The name reflects the kernel
 258 *	naming policy and if udev is in use may not reflect user space
 259 *
 260 *	Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266		strcpy(buf, "NULL tty");
 267	else
 268		strcpy(buf, tty->name);
 269	return buf;
 270}
 271
 272EXPORT_SYMBOL(tty_name);
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 275			      const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278	if (!tty) {
 279		printk(KERN_WARNING
 280			"null TTY for (%d:%d) in %s\n",
 281			imajor(inode), iminor(inode), routine);
 282		return 1;
 283	}
 284	if (tty->magic != TTY_MAGIC) {
 285		printk(KERN_WARNING
 286			"bad magic number for tty struct (%d:%d) in %s\n",
 287			imajor(inode), iminor(inode), routine);
 288		return 1;
 289	}
 290#endif
 291	return 0;
 292}
 293
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 295{
 296#ifdef CHECK_TTY_COUNT
 297	struct list_head *p;
 298	int count = 0;
 299
 300	spin_lock(&tty_files_lock);
 301	list_for_each(p, &tty->tty_files) {
 302		count++;
 303	}
 304	spin_unlock(&tty_files_lock);
 305	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 307	    tty->link && tty->link->count)
 308		count++;
 309	if (tty->count != count) {
 310		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311				    "!= #fd's(%d) in %s\n",
 312		       tty->name, tty->count, count, routine);
 313		return count;
 314	}
 315#endif
 316	return 0;
 317}
 318
 319/**
 320 *	get_tty_driver		-	find device of a tty
 321 *	@dev_t: device identifier
 322 *	@index: returns the index of the tty
 323 *
 324 *	This routine returns a tty driver structure, given a device number
 325 *	and also passes back the index number.
 326 *
 327 *	Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332	struct tty_driver *p;
 333
 334	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335		dev_t base = MKDEV(p->major, p->minor_start);
 336		if (device < base || device >= base + p->num)
 337			continue;
 338		*index = device - base;
 339		return tty_driver_kref_get(p);
 340	}
 341	return NULL;
 342}
 343
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *	tty_find_polling_driver	-	find device of a polled tty
 348 *	@name: name string to match
 349 *	@line: pointer to resulting tty line nr
 350 *
 351 *	This routine returns a tty driver structure, given a name
 352 *	and the condition that the tty driver is capable of polled
 353 *	operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357	struct tty_driver *p, *res = NULL;
 358	int tty_line = 0;
 359	int len;
 360	char *str, *stp;
 361
 362	for (str = name; *str; str++)
 363		if ((*str >= '0' && *str <= '9') || *str == ',')
 364			break;
 365	if (!*str)
 366		return NULL;
 367
 368	len = str - name;
 369	tty_line = simple_strtoul(str, &str, 10);
 370
 371	mutex_lock(&tty_mutex);
 372	/* Search through the tty devices to look for a match */
 373	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374		if (strncmp(name, p->name, len) != 0)
 375			continue;
 376		stp = str;
 377		if (*stp == ',')
 378			stp++;
 379		if (*stp == '\0')
 380			stp = NULL;
 381
 382		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384			res = tty_driver_kref_get(p);
 385			*line = tty_line;
 386			break;
 387		}
 388	}
 389	mutex_unlock(&tty_mutex);
 390
 391	return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 396/**
 397 *	tty_check_change	-	check for POSIX terminal changes
 398 *	@tty: tty to check
 399 *
 400 *	If we try to write to, or set the state of, a terminal and we're
 401 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *	Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409	unsigned long flags;
 410	int ret = 0;
 411
 412	if (current->signal->tty != tty)
 413		return 0;
 414
 415	spin_lock_irqsave(&tty->ctrl_lock, flags);
 416
 417	if (!tty->pgrp) {
 418		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419		goto out_unlock;
 420	}
 421	if (task_pgrp(current) == tty->pgrp)
 422		goto out_unlock;
 423	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424	if (is_ignored(SIGTTOU))
 425		goto out;
 426	if (is_current_pgrp_orphaned()) {
 427		ret = -EIO;
 428		goto out;
 429	}
 430	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431	set_thread_flag(TIF_SIGPENDING);
 432	ret = -ERESTARTSYS;
 433out:
 434	return ret;
 435out_unlock:
 436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437	return ret;
 438}
 439
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443				size_t count, loff_t *ppos)
 444{
 445	return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449				 size_t count, loff_t *ppos)
 450{
 451	return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461		unsigned long arg)
 462{
 463	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467				     unsigned int cmd, unsigned long arg)
 468{
 469	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 472static const struct file_operations tty_fops = {
 473	.llseek		= no_llseek,
 474	.read		= tty_read,
 475	.write		= tty_write,
 476	.poll		= tty_poll,
 477	.unlocked_ioctl	= tty_ioctl,
 478	.compat_ioctl	= tty_compat_ioctl,
 479	.open		= tty_open,
 480	.release	= tty_release,
 481	.fasync		= tty_fasync,
 482};
 483
 484static const struct file_operations console_fops = {
 485	.llseek		= no_llseek,
 486	.read		= tty_read,
 487	.write		= redirected_tty_write,
 488	.poll		= tty_poll,
 489	.unlocked_ioctl	= tty_ioctl,
 490	.compat_ioctl	= tty_compat_ioctl,
 491	.open		= tty_open,
 492	.release	= tty_release,
 493	.fasync		= tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497	.llseek		= no_llseek,
 498	.read		= hung_up_tty_read,
 499	.write		= hung_up_tty_write,
 500	.poll		= hung_up_tty_poll,
 501	.unlocked_ioctl	= hung_up_tty_ioctl,
 502	.compat_ioctl	= hung_up_tty_compat_ioctl,
 503	.release	= tty_release,
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 509/**
 510 *	tty_wakeup	-	request more data
 511 *	@tty: terminal
 512 *
 513 *	Internal and external helper for wakeups of tty. This function
 514 *	informs the line discipline if present that the driver is ready
 515 *	to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520	struct tty_ldisc *ld;
 521
 522	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523		ld = tty_ldisc_ref(tty);
 524		if (ld) {
 525			if (ld->ops->write_wakeup)
 526				ld->ops->write_wakeup(tty);
 527			tty_ldisc_deref(ld);
 528		}
 529	}
 530	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *	tty_signal_session_leader	- sends SIGHUP to session leader
 537 *	@tty		controlling tty
 538 *	@exit_session	if non-zero, signal all foreground group processes
 539 *
 540 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *	Optionally, signal all processes in the foreground process group.
 542 *
 543 *	Returns the number of processes in the session with this tty
 544 *	as their controlling terminal. This value is used to drop
 545 *	tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549	struct task_struct *p;
 550	int refs = 0;
 551	struct pid *tty_pgrp = NULL;
 552
 553	read_lock(&tasklist_lock);
 554	if (tty->session) {
 555		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556			spin_lock_irq(&p->sighand->siglock);
 557			if (p->signal->tty == tty) {
 558				p->signal->tty = NULL;
 559				/* We defer the dereferences outside fo
 560				   the tasklist lock */
 561				refs++;
 562			}
 563			if (!p->signal->leader) {
 564				spin_unlock_irq(&p->sighand->siglock);
 565				continue;
 566			}
 567			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570			spin_lock(&tty->ctrl_lock);
 571			tty_pgrp = get_pid(tty->pgrp);
 572			if (tty->pgrp)
 573				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574			spin_unlock(&tty->ctrl_lock);
 575			spin_unlock_irq(&p->sighand->siglock);
 576		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577	}
 578	read_unlock(&tasklist_lock);
 579
 580	if (tty_pgrp) {
 581		if (exit_session)
 582			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583		put_pid(tty_pgrp);
 584	}
 585
 586	return refs;
 587}
 588
 589/**
 590 *	__tty_hangup		-	actual handler for hangup events
 591 *	@work: tty device
 592 *
 593 *	This can be called by a "kworker" kernel thread.  That is process
 594 *	synchronous but doesn't hold any locks, so we need to make sure we
 595 *	have the appropriate locks for what we're doing.
 596 *
 597 *	The hangup event clears any pending redirections onto the hung up
 598 *	device. It ensures future writes will error and it does the needed
 599 *	line discipline hangup and signal delivery. The tty object itself
 600 *	remains intact.
 601 *
 602 *	Locking:
 603 *		BTM
 604 *		  redirect lock for undoing redirection
 605 *		  file list lock for manipulating list of ttys
 606 *		  tty_ldiscs_lock from called functions
 607 *		  termios_rwsem resetting termios data
 608 *		  tasklist_lock to walk task list for hangup event
 609 *		    ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613	struct file *cons_filp = NULL;
 614	struct file *filp, *f = NULL;
 
 615	struct tty_file_private *priv;
 616	int    closecount = 0, n;
 617	int refs;
 
 618
 619	if (!tty)
 620		return;
 621
 622
 623	spin_lock(&redirect_lock);
 624	if (redirect && file_tty(redirect) == tty) {
 625		f = redirect;
 626		redirect = NULL;
 627	}
 628	spin_unlock(&redirect_lock);
 629
 630	tty_lock(tty);
 631
 632	if (test_bit(TTY_HUPPED, &tty->flags)) {
 633		tty_unlock(tty);
 634		return;
 635	}
 636
 637	/* some functions below drop BTM, so we need this bit */
 638	set_bit(TTY_HUPPING, &tty->flags);
 639
 640	/* inuse_filps is protected by the single tty lock,
 641	   this really needs to change if we want to flush the
 642	   workqueue with the lock held */
 643	check_tty_count(tty, "tty_hangup");
 644
 645	spin_lock(&tty_files_lock);
 646	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 647	list_for_each_entry(priv, &tty->tty_files, list) {
 648		filp = priv->file;
 649		if (filp->f_op->write == redirected_tty_write)
 650			cons_filp = filp;
 651		if (filp->f_op->write != tty_write)
 652			continue;
 653		closecount++;
 654		__tty_fasync(-1, filp, 0);	/* can't block */
 655		filp->f_op = &hung_up_tty_fops;
 656	}
 657	spin_unlock(&tty_files_lock);
 658
 659	refs = tty_signal_session_leader(tty, exit_session);
 660	/* Account for the p->signal references we killed */
 661	while (refs--)
 662		tty_kref_put(tty);
 663
 664	/*
 665	 * it drops BTM and thus races with reopen
 666	 * we protect the race by TTY_HUPPING
 667	 */
 668	tty_ldisc_hangup(tty);
 669
 670	spin_lock_irq(&tty->ctrl_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	clear_bit(TTY_THROTTLED, &tty->flags);
 
 672	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 673	put_pid(tty->session);
 674	put_pid(tty->pgrp);
 675	tty->session = NULL;
 676	tty->pgrp = NULL;
 677	tty->ctrl_status = 0;
 678	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 679
 680	/*
 681	 * If one of the devices matches a console pointer, we
 682	 * cannot just call hangup() because that will cause
 683	 * tty->count and state->count to go out of sync.
 684	 * So we just call close() the right number of times.
 685	 */
 686	if (cons_filp) {
 687		if (tty->ops->close)
 688			for (n = 0; n < closecount; n++)
 689				tty->ops->close(tty, cons_filp);
 690	} else if (tty->ops->hangup)
 691		(tty->ops->hangup)(tty);
 692	/*
 693	 * We don't want to have driver/ldisc interactions beyond
 694	 * the ones we did here. The driver layer expects no
 695	 * calls after ->hangup() from the ldisc side. However we
 696	 * can't yet guarantee all that.
 697	 */
 698	set_bit(TTY_HUPPED, &tty->flags);
 699	clear_bit(TTY_HUPPING, &tty->flags);
 
 700
 701	tty_unlock(tty);
 702
 703	if (f)
 704		fput(f);
 705}
 706
 707static void do_tty_hangup(struct work_struct *work)
 708{
 709	struct tty_struct *tty =
 710		container_of(work, struct tty_struct, hangup_work);
 711
 712	__tty_hangup(tty, 0);
 713}
 714
 715/**
 716 *	tty_hangup		-	trigger a hangup event
 717 *	@tty: tty to hangup
 718 *
 719 *	A carrier loss (virtual or otherwise) has occurred on this like
 720 *	schedule a hangup sequence to run after this event.
 721 */
 722
 723void tty_hangup(struct tty_struct *tty)
 724{
 725#ifdef TTY_DEBUG_HANGUP
 726	char	buf[64];
 727	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 728#endif
 729	schedule_work(&tty->hangup_work);
 730}
 731
 732EXPORT_SYMBOL(tty_hangup);
 733
 734/**
 735 *	tty_vhangup		-	process vhangup
 736 *	@tty: tty to hangup
 737 *
 738 *	The user has asked via system call for the terminal to be hung up.
 739 *	We do this synchronously so that when the syscall returns the process
 740 *	is complete. That guarantee is necessary for security reasons.
 741 */
 742
 743void tty_vhangup(struct tty_struct *tty)
 744{
 745#ifdef TTY_DEBUG_HANGUP
 746	char	buf[64];
 747
 748	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 749#endif
 750	__tty_hangup(tty, 0);
 751}
 752
 753EXPORT_SYMBOL(tty_vhangup);
 754
 755
 756/**
 757 *	tty_vhangup_self	-	process vhangup for own ctty
 758 *
 759 *	Perform a vhangup on the current controlling tty
 760 */
 761
 762void tty_vhangup_self(void)
 763{
 764	struct tty_struct *tty;
 765
 766	tty = get_current_tty();
 767	if (tty) {
 768		tty_vhangup(tty);
 769		tty_kref_put(tty);
 770	}
 771}
 772
 773/**
 774 *	tty_vhangup_session		-	hangup session leader exit
 775 *	@tty: tty to hangup
 776 *
 777 *	The session leader is exiting and hanging up its controlling terminal.
 778 *	Every process in the foreground process group is signalled SIGHUP.
 779 *
 780 *	We do this synchronously so that when the syscall returns the process
 781 *	is complete. That guarantee is necessary for security reasons.
 782 */
 783
 784static void tty_vhangup_session(struct tty_struct *tty)
 785{
 786#ifdef TTY_DEBUG_HANGUP
 787	char	buf[64];
 788
 789	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 790#endif
 791	__tty_hangup(tty, 1);
 792}
 793
 794/**
 795 *	tty_hung_up_p		-	was tty hung up
 796 *	@filp: file pointer of tty
 797 *
 798 *	Return true if the tty has been subject to a vhangup or a carrier
 799 *	loss
 800 */
 801
 802int tty_hung_up_p(struct file *filp)
 803{
 804	return (filp->f_op == &hung_up_tty_fops);
 805}
 806
 807EXPORT_SYMBOL(tty_hung_up_p);
 808
 809static void session_clear_tty(struct pid *session)
 810{
 811	struct task_struct *p;
 812	do_each_pid_task(session, PIDTYPE_SID, p) {
 813		proc_clear_tty(p);
 814	} while_each_pid_task(session, PIDTYPE_SID, p);
 815}
 816
 817/**
 818 *	disassociate_ctty	-	disconnect controlling tty
 819 *	@on_exit: true if exiting so need to "hang up" the session
 820 *
 821 *	This function is typically called only by the session leader, when
 822 *	it wants to disassociate itself from its controlling tty.
 823 *
 824 *	It performs the following functions:
 825 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 826 * 	(2)  Clears the tty from being controlling the session
 827 * 	(3)  Clears the controlling tty for all processes in the
 828 * 		session group.
 829 *
 830 *	The argument on_exit is set to 1 if called when a process is
 831 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 832 *
 833 *	Locking:
 834 *		BTM is taken for hysterical raisins, and held when
 835 *		  called from no_tty().
 836 *		  tty_mutex is taken to protect tty
 837 *		  ->siglock is taken to protect ->signal/->sighand
 838 *		  tasklist_lock is taken to walk process list for sessions
 839 *		    ->siglock is taken to protect ->signal/->sighand
 840 */
 841
 842void disassociate_ctty(int on_exit)
 843{
 844	struct tty_struct *tty;
 845
 846	if (!current->signal->leader)
 847		return;
 848
 849	tty = get_current_tty();
 850	if (tty) {
 851		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 852			tty_vhangup_session(tty);
 853		} else {
 854			struct pid *tty_pgrp = tty_get_pgrp(tty);
 855			if (tty_pgrp) {
 856				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 857				if (!on_exit)
 858					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 859				put_pid(tty_pgrp);
 860			}
 861		}
 862		tty_kref_put(tty);
 863
 
 
 
 
 
 864	} else if (on_exit) {
 865		struct pid *old_pgrp;
 866		spin_lock_irq(&current->sighand->siglock);
 867		old_pgrp = current->signal->tty_old_pgrp;
 868		current->signal->tty_old_pgrp = NULL;
 869		spin_unlock_irq(&current->sighand->siglock);
 870		if (old_pgrp) {
 871			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 872			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 873			put_pid(old_pgrp);
 874		}
 875		return;
 876	}
 877
 878	spin_lock_irq(&current->sighand->siglock);
 879	put_pid(current->signal->tty_old_pgrp);
 880	current->signal->tty_old_pgrp = NULL;
 
 881
 882	tty = tty_kref_get(current->signal->tty);
 883	if (tty) {
 884		unsigned long flags;
 885		spin_lock_irqsave(&tty->ctrl_lock, flags);
 886		put_pid(tty->session);
 887		put_pid(tty->pgrp);
 888		tty->session = NULL;
 889		tty->pgrp = NULL;
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		tty_kref_put(tty);
 892	} else {
 893#ifdef TTY_DEBUG_HANGUP
 894		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 895		       " = NULL", tty);
 896#endif
 897	}
 898
 899	spin_unlock_irq(&current->sighand->siglock);
 900	/* Now clear signal->tty under the lock */
 901	read_lock(&tasklist_lock);
 902	session_clear_tty(task_session(current));
 903	read_unlock(&tasklist_lock);
 904}
 905
 906/**
 907 *
 908 *	no_tty	- Ensure the current process does not have a controlling tty
 909 */
 910void no_tty(void)
 911{
 912	/* FIXME: Review locking here. The tty_lock never covered any race
 913	   between a new association and proc_clear_tty but possible we need
 914	   to protect against this anyway */
 915	struct task_struct *tsk = current;
 916	disassociate_ctty(0);
 917	proc_clear_tty(tsk);
 918}
 919
 920
 921/**
 922 *	stop_tty	-	propagate flow control
 923 *	@tty: tty to stop
 924 *
 925 *	Perform flow control to the driver. For PTY/TTY pairs we
 926 *	must also propagate the TIOCKPKT status. May be called
 927 *	on an already stopped device and will not re-call the driver
 928 *	method.
 929 *
 930 *	This functionality is used by both the line disciplines for
 931 *	halting incoming flow and by the driver. It may therefore be
 932 *	called from any context, may be under the tty atomic_write_lock
 933 *	but not always.
 934 *
 935 *	Locking:
 936 *		Uses the tty control lock internally
 937 */
 938
 939void stop_tty(struct tty_struct *tty)
 940{
 941	unsigned long flags;
 942	spin_lock_irqsave(&tty->ctrl_lock, flags);
 943	if (tty->stopped) {
 944		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 945		return;
 946	}
 947	tty->stopped = 1;
 948	if (tty->link && tty->link->packet) {
 949		tty->ctrl_status &= ~TIOCPKT_START;
 950		tty->ctrl_status |= TIOCPKT_STOP;
 951		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 952	}
 953	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 954	if (tty->ops->stop)
 955		(tty->ops->stop)(tty);
 956}
 957
 958EXPORT_SYMBOL(stop_tty);
 959
 960/**
 961 *	start_tty	-	propagate flow control
 962 *	@tty: tty to start
 963 *
 964 *	Start a tty that has been stopped if at all possible. Perform
 965 *	any necessary wakeups and propagate the TIOCPKT status. If this
 966 *	is the tty was previous stopped and is being started then the
 967 *	driver start method is invoked and the line discipline woken.
 968 *
 969 *	Locking:
 970 *		ctrl_lock
 971 */
 972
 973void start_tty(struct tty_struct *tty)
 974{
 975	unsigned long flags;
 976	spin_lock_irqsave(&tty->ctrl_lock, flags);
 977	if (!tty->stopped || tty->flow_stopped) {
 978		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 979		return;
 980	}
 981	tty->stopped = 0;
 982	if (tty->link && tty->link->packet) {
 983		tty->ctrl_status &= ~TIOCPKT_STOP;
 984		tty->ctrl_status |= TIOCPKT_START;
 985		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 986	}
 987	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 988	if (tty->ops->start)
 989		(tty->ops->start)(tty);
 990	/* If we have a running line discipline it may need kicking */
 991	tty_wakeup(tty);
 992}
 993
 994EXPORT_SYMBOL(start_tty);
 995
 996/* We limit tty time update visibility to every 8 seconds or so. */
 997static void tty_update_time(struct timespec *time)
 998{
 999	unsigned long sec = get_seconds() & ~7;
1000	if ((long)(sec - time->tv_sec) > 0)
1001		time->tv_sec = sec;
1002}
1003
1004/**
1005 *	tty_read	-	read method for tty device files
1006 *	@file: pointer to tty file
1007 *	@buf: user buffer
1008 *	@count: size of user buffer
1009 *	@ppos: unused
1010 *
1011 *	Perform the read system call function on this terminal device. Checks
1012 *	for hung up devices before calling the line discipline method.
1013 *
1014 *	Locking:
1015 *		Locks the line discipline internally while needed. Multiple
1016 *	read calls may be outstanding in parallel.
1017 */
1018
1019static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020			loff_t *ppos)
1021{
1022	int i;
1023	struct inode *inode = file_inode(file);
1024	struct tty_struct *tty = file_tty(file);
1025	struct tty_ldisc *ld;
1026
1027	if (tty_paranoia_check(tty, inode, "tty_read"))
1028		return -EIO;
1029	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030		return -EIO;
1031
1032	/* We want to wait for the line discipline to sort out in this
1033	   situation */
1034	ld = tty_ldisc_ref_wait(tty);
1035	if (ld->ops->read)
1036		i = (ld->ops->read)(tty, file, buf, count);
1037	else
1038		i = -EIO;
1039	tty_ldisc_deref(ld);
1040
1041	if (i > 0)
1042		tty_update_time(&inode->i_atime);
1043
1044	return i;
1045}
1046
1047void tty_write_unlock(struct tty_struct *tty)
1048	__releases(&tty->atomic_write_lock)
1049{
1050	mutex_unlock(&tty->atomic_write_lock);
1051	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052}
1053
1054int tty_write_lock(struct tty_struct *tty, int ndelay)
1055	__acquires(&tty->atomic_write_lock)
1056{
1057	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058		if (ndelay)
1059			return -EAGAIN;
1060		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061			return -ERESTARTSYS;
1062	}
1063	return 0;
1064}
1065
1066/*
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1069 */
1070static inline ssize_t do_tty_write(
1071	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072	struct tty_struct *tty,
1073	struct file *file,
1074	const char __user *buf,
1075	size_t count)
1076{
1077	ssize_t ret, written = 0;
1078	unsigned int chunk;
1079
1080	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081	if (ret < 0)
1082		return ret;
1083
1084	/*
1085	 * We chunk up writes into a temporary buffer. This
1086	 * simplifies low-level drivers immensely, since they
1087	 * don't have locking issues and user mode accesses.
1088	 *
1089	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090	 * big chunk-size..
1091	 *
1092	 * The default chunk-size is 2kB, because the NTTY
1093	 * layer has problems with bigger chunks. It will
1094	 * claim to be able to handle more characters than
1095	 * it actually does.
1096	 *
1097	 * FIXME: This can probably go away now except that 64K chunks
1098	 * are too likely to fail unless switched to vmalloc...
1099	 */
1100	chunk = 2048;
1101	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102		chunk = 65536;
1103	if (count < chunk)
1104		chunk = count;
1105
1106	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107	if (tty->write_cnt < chunk) {
1108		unsigned char *buf_chunk;
1109
1110		if (chunk < 1024)
1111			chunk = 1024;
1112
1113		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114		if (!buf_chunk) {
1115			ret = -ENOMEM;
1116			goto out;
1117		}
1118		kfree(tty->write_buf);
1119		tty->write_cnt = chunk;
1120		tty->write_buf = buf_chunk;
1121	}
1122
1123	/* Do the write .. */
1124	for (;;) {
1125		size_t size = count;
1126		if (size > chunk)
1127			size = chunk;
1128		ret = -EFAULT;
1129		if (copy_from_user(tty->write_buf, buf, size))
1130			break;
1131		ret = write(tty, file, tty->write_buf, size);
1132		if (ret <= 0)
1133			break;
1134		written += ret;
1135		buf += ret;
1136		count -= ret;
1137		if (!count)
1138			break;
1139		ret = -ERESTARTSYS;
1140		if (signal_pending(current))
1141			break;
1142		cond_resched();
1143	}
1144	if (written) {
1145		tty_update_time(&file_inode(file)->i_mtime);
 
1146		ret = written;
1147	}
1148out:
1149	tty_write_unlock(tty);
1150	return ret;
1151}
1152
1153/**
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1157 *
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1161 *
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1163 */
1164
1165void tty_write_message(struct tty_struct *tty, char *msg)
1166{
1167	if (tty) {
1168		mutex_lock(&tty->atomic_write_lock);
1169		tty_lock(tty);
1170		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171			tty_unlock(tty);
1172			tty->ops->write(tty, msg, strlen(msg));
1173		} else
1174			tty_unlock(tty);
1175		tty_write_unlock(tty);
1176	}
1177	return;
1178}
1179
1180
1181/**
1182 *	tty_write		-	write method for tty device file
1183 *	@file: tty file pointer
1184 *	@buf: user data to write
1185 *	@count: bytes to write
1186 *	@ppos: unused
1187 *
1188 *	Write data to a tty device via the line discipline.
1189 *
1190 *	Locking:
1191 *		Locks the line discipline as required
1192 *		Writes to the tty driver are serialized by the atomic_write_lock
1193 *	and are then processed in chunks to the device. The line discipline
1194 *	write method will not be invoked in parallel for each device.
1195 */
1196
1197static ssize_t tty_write(struct file *file, const char __user *buf,
1198						size_t count, loff_t *ppos)
1199{
 
1200	struct tty_struct *tty = file_tty(file);
1201 	struct tty_ldisc *ld;
1202	ssize_t ret;
1203
1204	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205		return -EIO;
1206	if (!tty || !tty->ops->write ||
1207		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208			return -EIO;
1209	/* Short term debug to catch buggy drivers */
1210	if (tty->ops->write_room == NULL)
1211		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212			tty->driver->name);
1213	ld = tty_ldisc_ref_wait(tty);
1214	if (!ld->ops->write)
1215		ret = -EIO;
1216	else
1217		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218	tty_ldisc_deref(ld);
1219	return ret;
1220}
1221
1222ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223						size_t count, loff_t *ppos)
1224{
1225	struct file *p = NULL;
1226
1227	spin_lock(&redirect_lock);
1228	if (redirect)
1229		p = get_file(redirect);
 
 
1230	spin_unlock(&redirect_lock);
1231
1232	if (p) {
1233		ssize_t res;
1234		res = vfs_write(p, buf, count, &p->f_pos);
1235		fput(p);
1236		return res;
1237	}
1238	return tty_write(file, buf, count, ppos);
1239}
1240
1241static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243/**
1244 *	pty_line_name	-	generate name for a pty
1245 *	@driver: the tty driver in use
1246 *	@index: the minor number
1247 *	@p: output buffer of at least 6 bytes
1248 *
1249 *	Generate a name from a driver reference and write it to the output
1250 *	buffer.
1251 *
1252 *	Locking: None
1253 */
1254static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255{
1256	int i = index + driver->name_base;
1257	/* ->name is initialized to "ttyp", but "tty" is expected */
1258	sprintf(p, "%s%c%x",
1259		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260		ptychar[i >> 4 & 0xf], i & 0xf);
1261}
1262
1263/**
1264 *	tty_line_name	-	generate name for a tty
1265 *	@driver: the tty driver in use
1266 *	@index: the minor number
1267 *	@p: output buffer of at least 7 bytes
1268 *
1269 *	Generate a name from a driver reference and write it to the output
1270 *	buffer.
1271 *
1272 *	Locking: None
1273 */
1274static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275{
1276	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277		return sprintf(p, "%s", driver->name);
1278	else
1279		return sprintf(p, "%s%d", driver->name,
1280			       index + driver->name_base);
1281}
1282
1283/**
1284 *	tty_driver_lookup_tty() - find an existing tty, if any
1285 *	@driver: the driver for the tty
1286 *	@idx:	 the minor number
1287 *
1288 *	Return the tty, if found or ERR_PTR() otherwise.
1289 *
1290 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291 *	be held until the 'fast-open' is also done. Will change once we
1292 *	have refcounting in the driver and per driver locking
1293 */
1294static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295		struct inode *inode, int idx)
1296{
1297	if (driver->ops->lookup)
1298		return driver->ops->lookup(driver, inode, idx);
1299
1300	return driver->ttys[idx];
1301}
1302
1303/**
1304 *	tty_init_termios	-  helper for termios setup
1305 *	@tty: the tty to set up
1306 *
1307 *	Initialise the termios structures for this tty. Thus runs under
1308 *	the tty_mutex currently so we can be relaxed about ordering.
1309 */
1310
1311int tty_init_termios(struct tty_struct *tty)
1312{
1313	struct ktermios *tp;
1314	int idx = tty->index;
1315
1316	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317		tty->termios = tty->driver->init_termios;
1318	else {
1319		/* Check for lazy saved data */
1320		tp = tty->driver->termios[idx];
1321		if (tp != NULL)
1322			tty->termios = *tp;
1323		else
1324			tty->termios = tty->driver->init_termios;
1325	}
 
 
 
1326	/* Compatibility until drivers always set this */
1327	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329	return 0;
1330}
1331EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334{
1335	int ret = tty_init_termios(tty);
1336	if (ret)
1337		return ret;
1338
1339	tty_driver_kref_get(driver);
1340	tty->count++;
1341	driver->ttys[tty->index] = tty;
1342	return 0;
1343}
1344EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346/**
1347 *	tty_driver_install_tty() - install a tty entry in the driver
1348 *	@driver: the driver for the tty
1349 *	@tty: the tty
1350 *
1351 *	Install a tty object into the driver tables. The tty->index field
1352 *	will be set by the time this is called. This method is responsible
1353 *	for ensuring any need additional structures are allocated and
1354 *	configured.
1355 *
1356 *	Locking: tty_mutex for now
1357 */
1358static int tty_driver_install_tty(struct tty_driver *driver,
1359						struct tty_struct *tty)
1360{
1361	return driver->ops->install ? driver->ops->install(driver, tty) :
1362		tty_standard_install(driver, tty);
1363}
1364
1365/**
1366 *	tty_driver_remove_tty() - remove a tty from the driver tables
1367 *	@driver: the driver for the tty
1368 *	@idx:	 the minor number
1369 *
1370 *	Remvoe a tty object from the driver tables. The tty->index field
1371 *	will be set by the time this is called.
1372 *
1373 *	Locking: tty_mutex for now
1374 */
1375void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376{
1377	if (driver->ops->remove)
1378		driver->ops->remove(driver, tty);
1379	else
1380		driver->ttys[tty->index] = NULL;
1381}
1382
1383/*
1384 * 	tty_reopen()	- fast re-open of an open tty
1385 * 	@tty	- the tty to open
1386 *
1387 *	Return 0 on success, -errno on error.
1388 *
1389 *	Locking: tty_mutex must be held from the time the tty was found
1390 *		 till this open completes.
1391 */
1392static int tty_reopen(struct tty_struct *tty)
1393{
1394	struct tty_driver *driver = tty->driver;
1395
1396	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397			test_bit(TTY_HUPPING, &tty->flags))
 
1398		return -EIO;
1399
1400	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401	    driver->subtype == PTY_TYPE_MASTER) {
1402		/*
1403		 * special case for PTY masters: only one open permitted,
1404		 * and the slave side open count is incremented as well.
1405		 */
1406		if (tty->count)
1407			return -EIO;
1408
1409		tty->link->count++;
1410	}
1411	tty->count++;
1412
1413	WARN_ON(!tty->ldisc);
 
 
1414
1415	return 0;
1416}
1417
1418/**
1419 *	tty_init_dev		-	initialise a tty device
1420 *	@driver: tty driver we are opening a device on
1421 *	@idx: device index
1422 *	@ret_tty: returned tty structure
1423 *
1424 *	Prepare a tty device. This may not be a "new" clean device but
1425 *	could also be an active device. The pty drivers require special
1426 *	handling because of this.
1427 *
1428 *	Locking:
1429 *		The function is called under the tty_mutex, which
1430 *	protects us from the tty struct or driver itself going away.
1431 *
1432 *	On exit the tty device has the line discipline attached and
1433 *	a reference count of 1. If a pair was created for pty/tty use
1434 *	and the other was a pty master then it too has a reference count of 1.
1435 *
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open.  The new code protects the open with a mutex, so it's
1438 * really quite straightforward.  The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1440 */
1441
1442struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443{
1444	struct tty_struct *tty;
1445	int retval;
1446
1447	/*
1448	 * First time open is complex, especially for PTY devices.
1449	 * This code guarantees that either everything succeeds and the
1450	 * TTY is ready for operation, or else the table slots are vacated
1451	 * and the allocated memory released.  (Except that the termios
1452	 * and locked termios may be retained.)
1453	 */
1454
1455	if (!try_module_get(driver->owner))
1456		return ERR_PTR(-ENODEV);
1457
1458	tty = alloc_tty_struct();
1459	if (!tty) {
1460		retval = -ENOMEM;
1461		goto err_module_put;
1462	}
1463	initialize_tty_struct(tty, driver, idx);
1464
1465	tty_lock(tty);
1466	retval = tty_driver_install_tty(driver, tty);
1467	if (retval < 0)
1468		goto err_deinit_tty;
1469
1470	if (!tty->port)
1471		tty->port = driver->ports[idx];
1472
1473	WARN_RATELIMIT(!tty->port,
1474			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475			__func__, tty->driver->name);
1476
1477	tty->port->itty = tty;
1478
1479	/*
1480	 * Structures all installed ... call the ldisc open routines.
1481	 * If we fail here just call release_tty to clean up.  No need
1482	 * to decrement the use counts, as release_tty doesn't care.
1483	 */
1484	retval = tty_ldisc_setup(tty, tty->link);
1485	if (retval)
1486		goto err_release_tty;
1487	/* Return the tty locked so that it cannot vanish under the caller */
1488	return tty;
1489
1490err_deinit_tty:
1491	tty_unlock(tty);
1492	deinitialize_tty_struct(tty);
1493	free_tty_struct(tty);
1494err_module_put:
1495	module_put(driver->owner);
1496	return ERR_PTR(retval);
1497
1498	/* call the tty release_tty routine to clean out this slot */
1499err_release_tty:
1500	tty_unlock(tty);
1501	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502				 "clearing slot %d\n", idx);
1503	release_tty(tty, idx);
1504	return ERR_PTR(retval);
1505}
1506
1507void tty_free_termios(struct tty_struct *tty)
1508{
1509	struct ktermios *tp;
1510	int idx = tty->index;
1511
1512	/* If the port is going to reset then it has no termios to save */
1513	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514		return;
1515
1516	/* Stash the termios data */
1517	tp = tty->driver->termios[idx];
1518	if (tp == NULL) {
1519		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520		if (tp == NULL) {
1521			pr_warn("tty: no memory to save termios state.\n");
1522			return;
1523		}
1524		tty->driver->termios[idx] = tp;
1525	}
1526	*tp = tty->termios;
1527}
1528EXPORT_SYMBOL(tty_free_termios);
1529
1530/**
1531 *	tty_flush_works		-	flush all works of a tty
1532 *	@tty: tty device to flush works for
1533 *
1534 *	Sync flush all works belonging to @tty.
1535 */
1536static void tty_flush_works(struct tty_struct *tty)
1537{
1538	flush_work(&tty->SAK_work);
1539	flush_work(&tty->hangup_work);
1540}
 
1541
1542/**
1543 *	release_one_tty		-	release tty structure memory
1544 *	@kref: kref of tty we are obliterating
1545 *
1546 *	Releases memory associated with a tty structure, and clears out the
1547 *	driver table slots. This function is called when a device is no longer
1548 *	in use. It also gets called when setup of a device fails.
1549 *
1550 *	Locking:
 
1551 *		takes the file list lock internally when working on the list
1552 *	of ttys that the driver keeps.
1553 *
1554 *	This method gets called from a work queue so that the driver private
1555 *	cleanup ops can sleep (needed for USB at least)
1556 */
1557static void release_one_tty(struct work_struct *work)
1558{
1559	struct tty_struct *tty =
1560		container_of(work, struct tty_struct, hangup_work);
1561	struct tty_driver *driver = tty->driver;
1562
1563	if (tty->ops->cleanup)
1564		tty->ops->cleanup(tty);
1565
1566	tty->magic = 0;
1567	tty_driver_kref_put(driver);
1568	module_put(driver->owner);
1569
1570	spin_lock(&tty_files_lock);
1571	list_del_init(&tty->tty_files);
1572	spin_unlock(&tty_files_lock);
1573
1574	put_pid(tty->pgrp);
1575	put_pid(tty->session);
1576	free_tty_struct(tty);
1577}
1578
1579static void queue_release_one_tty(struct kref *kref)
1580{
1581	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
 
 
 
 
 
1583	/* The hangup queue is now free so we can reuse it rather than
1584	   waste a chunk of memory for each port */
1585	INIT_WORK(&tty->hangup_work, release_one_tty);
1586	schedule_work(&tty->hangup_work);
1587}
1588
1589/**
1590 *	tty_kref_put		-	release a tty kref
1591 *	@tty: tty device
1592 *
1593 *	Release a reference to a tty device and if need be let the kref
1594 *	layer destruct the object for us
1595 */
1596
1597void tty_kref_put(struct tty_struct *tty)
1598{
1599	if (tty)
1600		kref_put(&tty->kref, queue_release_one_tty);
1601}
1602EXPORT_SYMBOL(tty_kref_put);
1603
1604/**
1605 *	release_tty		-	release tty structure memory
1606 *
1607 *	Release both @tty and a possible linked partner (think pty pair),
1608 *	and decrement the refcount of the backing module.
1609 *
1610 *	Locking:
1611 *		tty_mutex
1612 *		takes the file list lock internally when working on the list
1613 *	of ttys that the driver keeps.
 
1614 *
1615 */
1616static void release_tty(struct tty_struct *tty, int idx)
1617{
1618	/* This should always be true but check for the moment */
1619	WARN_ON(tty->index != idx);
1620	WARN_ON(!mutex_is_locked(&tty_mutex));
1621	if (tty->ops->shutdown)
1622		tty->ops->shutdown(tty);
1623	tty_free_termios(tty);
1624	tty_driver_remove_tty(tty->driver, tty);
1625	tty->port->itty = NULL;
1626	if (tty->link)
1627		tty->link->port->itty = NULL;
1628	cancel_work_sync(&tty->port->buf.work);
1629
1630	if (tty->link)
1631		tty_kref_put(tty->link);
1632	tty_kref_put(tty);
1633}
1634
1635/**
1636 *	tty_release_checks - check a tty before real release
1637 *	@tty: tty to check
1638 *	@o_tty: link of @tty (if any)
1639 *	@idx: index of the tty
1640 *
1641 *	Performs some paranoid checking before true release of the @tty.
1642 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643 */
1644static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645		int idx)
1646{
1647#ifdef TTY_PARANOIA_CHECK
1648	if (idx < 0 || idx >= tty->driver->num) {
1649		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650				__func__, tty->name);
1651		return -1;
1652	}
1653
1654	/* not much to check for devpts */
1655	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656		return 0;
1657
1658	if (tty != tty->driver->ttys[idx]) {
1659		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660				__func__, idx, tty->name);
1661		return -1;
1662	}
 
 
 
 
 
1663	if (tty->driver->other) {
1664		if (o_tty != tty->driver->other->ttys[idx]) {
1665			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666					__func__, idx, tty->name);
1667			return -1;
1668		}
 
 
 
 
 
1669		if (o_tty->link != tty) {
1670			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671			return -1;
1672		}
1673	}
1674#endif
1675	return 0;
1676}
1677
1678/**
1679 *	tty_release		-	vfs callback for close
1680 *	@inode: inode of tty
1681 *	@filp: file pointer for handle to tty
1682 *
1683 *	Called the last time each file handle is closed that references
1684 *	this tty. There may however be several such references.
1685 *
1686 *	Locking:
1687 *		Takes bkl. See tty_release_dev
1688 *
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1692 *
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1695 */
1696
1697int tty_release(struct inode *inode, struct file *filp)
1698{
1699	struct tty_struct *tty = file_tty(filp);
1700	struct tty_struct *o_tty;
1701	int	pty_master, tty_closing, o_tty_closing, do_sleep;
 
1702	int	idx;
1703	char	buf[64];
1704
1705	if (tty_paranoia_check(tty, inode, __func__))
1706		return 0;
1707
1708	tty_lock(tty);
1709	check_tty_count(tty, __func__);
1710
1711	__tty_fasync(-1, filp, 0);
1712
1713	idx = tty->index;
1714	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715		      tty->driver->subtype == PTY_TYPE_MASTER);
1716	/* Review: parallel close */
1717	o_tty = tty->link;
1718
1719	if (tty_release_checks(tty, o_tty, idx)) {
1720		tty_unlock(tty);
1721		return 0;
1722	}
1723
1724#ifdef TTY_DEBUG_HANGUP
1725	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726			tty_name(tty, buf), tty->count);
1727#endif
1728
1729	if (tty->ops->close)
1730		tty->ops->close(tty, filp);
1731
1732	tty_unlock(tty);
1733	/*
1734	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736	 * wait queues and kick everyone out _before_ actually starting to
1737	 * close.  This ensures that we won't block while releasing the tty
1738	 * structure.
1739	 *
1740	 * The test for the o_tty closing is necessary, since the master and
1741	 * slave sides may close in any order.  If the slave side closes out
1742	 * first, its count will be one, since the master side holds an open.
1743	 * Thus this test wouldn't be triggered at the time the slave closes,
1744	 * so we do it now.
1745	 *
1746	 * Note that it's possible for the tty to be opened again while we're
1747	 * flushing out waiters.  By recalculating the closing flags before
1748	 * each iteration we avoid any problems.
1749	 */
1750	while (1) {
1751		/* Guard against races with tty->count changes elsewhere and
1752		   opens on /dev/tty */
1753
1754		mutex_lock(&tty_mutex);
1755		tty_lock_pair(tty, o_tty);
1756		tty_closing = tty->count <= 1;
1757		o_tty_closing = o_tty &&
1758			(o_tty->count <= (pty_master ? 1 : 0));
1759		do_sleep = 0;
1760
1761		if (tty_closing) {
1762			if (waitqueue_active(&tty->read_wait)) {
1763				wake_up_poll(&tty->read_wait, POLLIN);
1764				do_sleep++;
1765			}
1766			if (waitqueue_active(&tty->write_wait)) {
1767				wake_up_poll(&tty->write_wait, POLLOUT);
1768				do_sleep++;
1769			}
1770		}
1771		if (o_tty_closing) {
1772			if (waitqueue_active(&o_tty->read_wait)) {
1773				wake_up_poll(&o_tty->read_wait, POLLIN);
1774				do_sleep++;
1775			}
1776			if (waitqueue_active(&o_tty->write_wait)) {
1777				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778				do_sleep++;
1779			}
1780		}
1781		if (!do_sleep)
1782			break;
1783
1784		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785				__func__, tty_name(tty, buf));
1786		tty_unlock_pair(tty, o_tty);
1787		mutex_unlock(&tty_mutex);
1788		schedule();
1789	}
1790
1791	/*
1792	 * The closing flags are now consistent with the open counts on
1793	 * both sides, and we've completed the last operation that could
1794	 * block, so it's safe to proceed with closing.
1795	 *
1796	 * We must *not* drop the tty_mutex until we ensure that a further
1797	 * entry into tty_open can not pick up this tty.
1798	 */
1799	if (pty_master) {
1800		if (--o_tty->count < 0) {
1801			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802				__func__, o_tty->count, tty_name(o_tty, buf));
1803			o_tty->count = 0;
1804		}
1805	}
1806	if (--tty->count < 0) {
1807		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808				__func__, tty->count, tty_name(tty, buf));
1809		tty->count = 0;
1810	}
1811
1812	/*
1813	 * We've decremented tty->count, so we need to remove this file
1814	 * descriptor off the tty->tty_files list; this serves two
1815	 * purposes:
1816	 *  - check_tty_count sees the correct number of file descriptors
1817	 *    associated with this tty.
1818	 *  - do_tty_hangup no longer sees this file descriptor as
1819	 *    something that needs to be handled for hangups.
1820	 */
1821	tty_del_file(filp);
1822
1823	/*
1824	 * Perform some housekeeping before deciding whether to return.
1825	 *
1826	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827	 * case of a pty we may have to wait around for the other side
1828	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829	 */
1830	if (tty_closing)
1831		set_bit(TTY_CLOSING, &tty->flags);
1832	if (o_tty_closing)
1833		set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835	/*
1836	 * If _either_ side is closing, make sure there aren't any
1837	 * processes that still think tty or o_tty is their controlling
1838	 * tty.
1839	 */
1840	if (tty_closing || o_tty_closing) {
1841		read_lock(&tasklist_lock);
1842		session_clear_tty(tty->session);
1843		if (o_tty)
1844			session_clear_tty(o_tty->session);
1845		read_unlock(&tasklist_lock);
1846	}
1847
1848	mutex_unlock(&tty_mutex);
1849	tty_unlock_pair(tty, o_tty);
1850	/* At this point the TTY_CLOSING flag should ensure a dead tty
1851	   cannot be re-opened by a racing opener */
1852
1853	/* check whether both sides are closing ... */
1854	if (!tty_closing || (o_tty && !o_tty_closing))
 
1855		return 0;
 
1856
1857#ifdef TTY_DEBUG_HANGUP
1858	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859#endif
1860	/*
1861	 * Ask the line discipline code to release its structures
1862	 */
1863	tty_ldisc_release(tty, o_tty);
1864
1865	/* Wait for pending work before tty destruction commmences */
1866	tty_flush_works(tty);
1867	if (o_tty)
1868		tty_flush_works(o_tty);
1869
1870#ifdef TTY_DEBUG_HANGUP
1871	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872#endif
1873	/*
1874	 * The release_tty function takes care of the details of clearing
1875	 * the slots and preserving the termios structure. The tty_unlock_pair
1876	 * should be safe as we keep a kref while the tty is locked (so the
1877	 * unlock never unlocks a freed tty).
1878	 */
1879	mutex_lock(&tty_mutex);
1880	release_tty(tty, idx);
1881	mutex_unlock(&tty_mutex);
1882
 
 
 
 
1883	return 0;
1884}
1885
1886/**
1887 *	tty_open_current_tty - get tty of current task for open
1888 *	@device: device number
1889 *	@filp: file pointer to tty
1890 *	@return: tty of the current task iff @device is /dev/tty
1891 *
1892 *	We cannot return driver and index like for the other nodes because
1893 *	devpts will not work then. It expects inodes to be from devpts FS.
1894 *
1895 *	We need to move to returning a refcounted object from all the lookup
1896 *	paths including this one.
1897 */
1898static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901
1902	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903		return NULL;
1904
1905	tty = get_current_tty();
1906	if (!tty)
1907		return ERR_PTR(-ENXIO);
1908
1909	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910	/* noctty = 1; */
1911	tty_kref_put(tty);
1912	/* FIXME: we put a reference and return a TTY! */
1913	/* This is only safe because the caller holds tty_mutex */
1914	return tty;
1915}
1916
1917/**
1918 *	tty_lookup_driver - lookup a tty driver for a given device file
1919 *	@device: device number
1920 *	@filp: file pointer to tty
1921 *	@noctty: set if the device should not become a controlling tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 * 	If @return is not erroneous, the caller is responsible to decrement the
1926 * 	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *noctty, int *index)
1932{
1933	struct tty_driver *driver;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939		driver = tty_driver_kref_get(console_driver);
1940		*index = fg_console;
1941		*noctty = 1;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947		if (console_driver) {
1948			driver = tty_driver_kref_get(console_driver);
1949			if (driver) {
1950				/* Don't let /dev/console block */
1951				filp->f_flags |= O_NONBLOCK;
1952				*noctty = 1;
1953				break;
1954			}
1955		}
1956		return ERR_PTR(-ENODEV);
1957	}
1958	default:
1959		driver = get_tty_driver(device, index);
1960		if (!driver)
1961			return ERR_PTR(-ENODEV);
1962		break;
1963	}
1964	return driver;
1965}
1966
1967/**
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	struct tty_driver *driver = NULL;
1996	int index;
1997	dev_t device = inode->i_rdev;
1998	unsigned saved_flags = filp->f_flags;
1999
2000	nonseekable_open(inode, filp);
2001
2002retry_open:
2003	retval = tty_alloc_file(filp);
2004	if (retval)
2005		return -ENOMEM;
2006
2007	noctty = filp->f_flags & O_NOCTTY;
2008	index  = -1;
2009	retval = 0;
2010
2011	mutex_lock(&tty_mutex);
2012	/* This is protected by the tty_mutex */
 
2013	tty = tty_open_current_tty(device, filp);
2014	if (IS_ERR(tty)) {
2015		retval = PTR_ERR(tty);
2016		goto err_unlock;
2017	} else if (!tty) {
2018		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019		if (IS_ERR(driver)) {
2020			retval = PTR_ERR(driver);
2021			goto err_unlock;
2022		}
2023
2024		/* check whether we're reopening an existing tty */
2025		tty = tty_driver_lookup_tty(driver, inode, index);
2026		if (IS_ERR(tty)) {
2027			retval = PTR_ERR(tty);
2028			goto err_unlock;
2029		}
2030	}
2031
2032	if (tty) {
2033		tty_lock(tty);
2034		retval = tty_reopen(tty);
2035		if (retval < 0) {
2036			tty_unlock(tty);
2037			tty = ERR_PTR(retval);
2038		}
2039	} else	/* Returns with the tty_lock held for now */
2040		tty = tty_init_dev(driver, index);
2041
2042	mutex_unlock(&tty_mutex);
2043	if (driver)
2044		tty_driver_kref_put(driver);
2045	if (IS_ERR(tty)) {
 
2046		retval = PTR_ERR(tty);
2047		goto err_file;
2048	}
2049
2050	tty_add_file(tty, filp);
2051
2052	check_tty_count(tty, __func__);
2053	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054	    tty->driver->subtype == PTY_TYPE_MASTER)
2055		noctty = 1;
2056#ifdef TTY_DEBUG_HANGUP
2057	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058#endif
2059	if (tty->ops->open)
2060		retval = tty->ops->open(tty, filp);
2061	else
2062		retval = -ENODEV;
2063	filp->f_flags = saved_flags;
2064
2065	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066						!capable(CAP_SYS_ADMIN))
2067		retval = -EBUSY;
2068
2069	if (retval) {
2070#ifdef TTY_DEBUG_HANGUP
2071		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072				retval, tty->name);
2073#endif
2074		tty_unlock(tty); /* need to call tty_release without BTM */
2075		tty_release(inode, filp);
2076		if (retval != -ERESTARTSYS)
2077			return retval;
2078
2079		if (signal_pending(current))
2080			return retval;
2081
2082		schedule();
2083		/*
2084		 * Need to reset f_op in case a hangup happened.
2085		 */
 
2086		if (filp->f_op == &hung_up_tty_fops)
2087			filp->f_op = &tty_fops;
 
2088		goto retry_open;
2089	}
2090	clear_bit(TTY_HUPPED, &tty->flags);
2091	tty_unlock(tty);
2092
2093
2094	mutex_lock(&tty_mutex);
2095	tty_lock(tty);
2096	spin_lock_irq(&current->sighand->siglock);
2097	if (!noctty &&
2098	    current->signal->leader &&
2099	    !current->signal->tty &&
2100	    tty->session == NULL)
2101		__proc_set_tty(current, tty);
2102	spin_unlock_irq(&current->sighand->siglock);
2103	tty_unlock(tty);
2104	mutex_unlock(&tty_mutex);
2105	return 0;
2106err_unlock:
 
2107	mutex_unlock(&tty_mutex);
2108	/* after locks to avoid deadlock */
2109	if (!IS_ERR_OR_NULL(driver))
2110		tty_driver_kref_put(driver);
2111err_file:
2112	tty_free_file(filp);
2113	return retval;
2114}
2115
2116
2117
2118/**
2119 *	tty_poll	-	check tty status
2120 *	@filp: file being polled
2121 *	@wait: poll wait structures to update
2122 *
2123 *	Call the line discipline polling method to obtain the poll
2124 *	status of the device.
2125 *
2126 *	Locking: locks called line discipline but ldisc poll method
2127 *	may be re-entered freely by other callers.
2128 */
2129
2130static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131{
2132	struct tty_struct *tty = file_tty(filp);
2133	struct tty_ldisc *ld;
2134	int ret = 0;
2135
2136	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137		return 0;
2138
2139	ld = tty_ldisc_ref_wait(tty);
2140	if (ld->ops->poll)
2141		ret = (ld->ops->poll)(tty, filp, wait);
2142	tty_ldisc_deref(ld);
2143	return ret;
2144}
2145
2146static int __tty_fasync(int fd, struct file *filp, int on)
2147{
2148	struct tty_struct *tty = file_tty(filp);
2149	struct tty_ldisc *ldisc;
2150	unsigned long flags;
2151	int retval = 0;
2152
2153	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154		goto out;
2155
2156	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157	if (retval <= 0)
2158		goto out;
2159
2160	ldisc = tty_ldisc_ref(tty);
2161	if (ldisc) {
2162		if (ldisc->ops->fasync)
2163			ldisc->ops->fasync(tty, on);
2164		tty_ldisc_deref(ldisc);
2165	}
2166
2167	if (on) {
2168		enum pid_type type;
2169		struct pid *pid;
2170
 
2171		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172		if (tty->pgrp) {
2173			pid = tty->pgrp;
2174			type = PIDTYPE_PGID;
2175		} else {
2176			pid = task_pid(current);
2177			type = PIDTYPE_PID;
2178		}
2179		get_pid(pid);
2180		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181		retval = __f_setown(filp, pid, type, 0);
2182		put_pid(pid);
 
 
 
 
 
2183	}
 
2184out:
2185	return retval;
2186}
2187
2188static int tty_fasync(int fd, struct file *filp, int on)
2189{
2190	struct tty_struct *tty = file_tty(filp);
2191	int retval;
2192
2193	tty_lock(tty);
2194	retval = __tty_fasync(fd, filp, on);
2195	tty_unlock(tty);
2196
2197	return retval;
2198}
2199
2200/**
2201 *	tiocsti			-	fake input character
2202 *	@tty: tty to fake input into
2203 *	@p: pointer to character
2204 *
2205 *	Fake input to a tty device. Does the necessary locking and
2206 *	input management.
2207 *
2208 *	FIXME: does not honour flow control ??
2209 *
2210 *	Locking:
2211 *		Called functions take tty_ldiscs_lock
2212 *		current->signal->tty check is safe without locks
2213 *
2214 *	FIXME: may race normal receive processing
2215 */
2216
2217static int tiocsti(struct tty_struct *tty, char __user *p)
2218{
2219	char ch, mbz = 0;
2220	struct tty_ldisc *ld;
2221
2222	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223		return -EPERM;
2224	if (get_user(ch, p))
2225		return -EFAULT;
2226	tty_audit_tiocsti(tty, ch);
2227	ld = tty_ldisc_ref_wait(tty);
2228	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229	tty_ldisc_deref(ld);
2230	return 0;
2231}
2232
2233/**
2234 *	tiocgwinsz		-	implement window query ioctl
2235 *	@tty; tty
2236 *	@arg: user buffer for result
2237 *
2238 *	Copies the kernel idea of the window size into the user buffer.
2239 *
2240 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241 *		is consistent.
2242 */
2243
2244static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245{
2246	int err;
2247
2248	mutex_lock(&tty->winsize_mutex);
2249	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250	mutex_unlock(&tty->winsize_mutex);
2251
2252	return err ? -EFAULT: 0;
2253}
2254
2255/**
2256 *	tty_do_resize		-	resize event
2257 *	@tty: tty being resized
2258 *	@rows: rows (character)
2259 *	@cols: cols (character)
2260 *
2261 *	Update the termios variables and send the necessary signals to
2262 *	peform a terminal resize correctly
2263 */
2264
2265int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266{
2267	struct pid *pgrp;
2268	unsigned long flags;
2269
2270	/* Lock the tty */
2271	mutex_lock(&tty->winsize_mutex);
2272	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273		goto done;
2274	/* Get the PID values and reference them so we can
2275	   avoid holding the tty ctrl lock while sending signals */
2276	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277	pgrp = get_pid(tty->pgrp);
2278	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
2280	if (pgrp)
2281		kill_pgrp(pgrp, SIGWINCH, 1);
2282	put_pid(pgrp);
2283
2284	tty->winsize = *ws;
2285done:
2286	mutex_unlock(&tty->winsize_mutex);
2287	return 0;
2288}
2289EXPORT_SYMBOL(tty_do_resize);
2290
2291/**
2292 *	tiocswinsz		-	implement window size set ioctl
2293 *	@tty; tty side of tty
2294 *	@arg: user buffer for result
2295 *
2296 *	Copies the user idea of the window size to the kernel. Traditionally
2297 *	this is just advisory information but for the Linux console it
2298 *	actually has driver level meaning and triggers a VC resize.
2299 *
2300 *	Locking:
2301 *		Driver dependent. The default do_resize method takes the
2302 *	tty termios mutex and ctrl_lock. The console takes its own lock
2303 *	then calls into the default method.
2304 */
2305
2306static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	struct winsize tmp_ws;
2309	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310		return -EFAULT;
2311
2312	if (tty->ops->resize)
2313		return tty->ops->resize(tty, &tmp_ws);
2314	else
2315		return tty_do_resize(tty, &tmp_ws);
2316}
2317
2318/**
2319 *	tioccons	-	allow admin to move logical console
2320 *	@file: the file to become console
2321 *
2322 *	Allow the administrator to move the redirected console device
2323 *
2324 *	Locking: uses redirect_lock to guard the redirect information
2325 */
2326
2327static int tioccons(struct file *file)
2328{
2329	if (!capable(CAP_SYS_ADMIN))
2330		return -EPERM;
2331	if (file->f_op->write == redirected_tty_write) {
2332		struct file *f;
2333		spin_lock(&redirect_lock);
2334		f = redirect;
2335		redirect = NULL;
2336		spin_unlock(&redirect_lock);
2337		if (f)
2338			fput(f);
2339		return 0;
2340	}
2341	spin_lock(&redirect_lock);
2342	if (redirect) {
2343		spin_unlock(&redirect_lock);
2344		return -EBUSY;
2345	}
2346	redirect = get_file(file);
 
2347	spin_unlock(&redirect_lock);
2348	return 0;
2349}
2350
2351/**
2352 *	fionbio		-	non blocking ioctl
2353 *	@file: file to set blocking value
2354 *	@p: user parameter
2355 *
2356 *	Historical tty interfaces had a blocking control ioctl before
2357 *	the generic functionality existed. This piece of history is preserved
2358 *	in the expected tty API of posix OS's.
2359 *
2360 *	Locking: none, the open file handle ensures it won't go away.
2361 */
2362
2363static int fionbio(struct file *file, int __user *p)
2364{
2365	int nonblock;
2366
2367	if (get_user(nonblock, p))
2368		return -EFAULT;
2369
2370	spin_lock(&file->f_lock);
2371	if (nonblock)
2372		file->f_flags |= O_NONBLOCK;
2373	else
2374		file->f_flags &= ~O_NONBLOCK;
2375	spin_unlock(&file->f_lock);
2376	return 0;
2377}
2378
2379/**
2380 *	tiocsctty	-	set controlling tty
2381 *	@tty: tty structure
2382 *	@arg: user argument
2383 *
2384 *	This ioctl is used to manage job control. It permits a session
2385 *	leader to set this tty as the controlling tty for the session.
2386 *
2387 *	Locking:
2388 *		Takes tty_mutex() to protect tty instance
2389 *		Takes tasklist_lock internally to walk sessions
2390 *		Takes ->siglock() when updating signal->tty
2391 */
2392
2393static int tiocsctty(struct tty_struct *tty, int arg)
2394{
2395	int ret = 0;
2396	if (current->signal->leader && (task_session(current) == tty->session))
2397		return ret;
2398
2399	mutex_lock(&tty_mutex);
2400	/*
2401	 * The process must be a session leader and
2402	 * not have a controlling tty already.
2403	 */
2404	if (!current->signal->leader || current->signal->tty) {
2405		ret = -EPERM;
2406		goto unlock;
2407	}
2408
2409	if (tty->session) {
2410		/*
2411		 * This tty is already the controlling
2412		 * tty for another session group!
2413		 */
2414		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415			/*
2416			 * Steal it away
2417			 */
2418			read_lock(&tasklist_lock);
2419			session_clear_tty(tty->session);
2420			read_unlock(&tasklist_lock);
2421		} else {
2422			ret = -EPERM;
2423			goto unlock;
2424		}
2425	}
2426	proc_set_tty(current, tty);
2427unlock:
2428	mutex_unlock(&tty_mutex);
2429	return ret;
2430}
2431
2432/**
2433 *	tty_get_pgrp	-	return a ref counted pgrp pid
2434 *	@tty: tty to read
2435 *
2436 *	Returns a refcounted instance of the pid struct for the process
2437 *	group controlling the tty.
2438 */
2439
2440struct pid *tty_get_pgrp(struct tty_struct *tty)
2441{
2442	unsigned long flags;
2443	struct pid *pgrp;
2444
2445	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446	pgrp = get_pid(tty->pgrp);
2447	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449	return pgrp;
2450}
2451EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
2453/**
2454 *	tiocgpgrp		-	get process group
2455 *	@tty: tty passed by user
2456 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457 *	@p: returned pid
2458 *
2459 *	Obtain the process group of the tty. If there is no process group
2460 *	return an error.
2461 *
2462 *	Locking: none. Reference to current->signal->tty is safe.
2463 */
2464
2465static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466{
2467	struct pid *pid;
2468	int ret;
2469	/*
2470	 * (tty == real_tty) is a cheap way of
2471	 * testing if the tty is NOT a master pty.
2472	 */
2473	if (tty == real_tty && current->signal->tty != real_tty)
2474		return -ENOTTY;
2475	pid = tty_get_pgrp(real_tty);
2476	ret =  put_user(pid_vnr(pid), p);
2477	put_pid(pid);
2478	return ret;
2479}
2480
2481/**
2482 *	tiocspgrp		-	attempt to set process group
2483 *	@tty: tty passed by user
2484 *	@real_tty: tty side device matching tty passed by user
2485 *	@p: pid pointer
2486 *
2487 *	Set the process group of the tty to the session passed. Only
2488 *	permitted where the tty session is our session.
2489 *
2490 *	Locking: RCU, ctrl lock
2491 */
2492
2493static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494{
2495	struct pid *pgrp;
2496	pid_t pgrp_nr;
2497	int retval = tty_check_change(real_tty);
2498	unsigned long flags;
2499
2500	if (retval == -EIO)
2501		return -ENOTTY;
2502	if (retval)
2503		return retval;
2504	if (!current->signal->tty ||
2505	    (current->signal->tty != real_tty) ||
2506	    (real_tty->session != task_session(current)))
2507		return -ENOTTY;
2508	if (get_user(pgrp_nr, p))
2509		return -EFAULT;
2510	if (pgrp_nr < 0)
2511		return -EINVAL;
2512	rcu_read_lock();
2513	pgrp = find_vpid(pgrp_nr);
2514	retval = -ESRCH;
2515	if (!pgrp)
2516		goto out_unlock;
2517	retval = -EPERM;
2518	if (session_of_pgrp(pgrp) != task_session(current))
2519		goto out_unlock;
2520	retval = 0;
2521	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522	put_pid(real_tty->pgrp);
2523	real_tty->pgrp = get_pid(pgrp);
2524	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525out_unlock:
2526	rcu_read_unlock();
2527	return retval;
2528}
2529
2530/**
2531 *	tiocgsid		-	get session id
2532 *	@tty: tty passed by user
2533 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534 *	@p: pointer to returned session id
2535 *
2536 *	Obtain the session id of the tty. If there is no session
2537 *	return an error.
2538 *
2539 *	Locking: none. Reference to current->signal->tty is safe.
2540 */
2541
2542static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543{
2544	/*
2545	 * (tty == real_tty) is a cheap way of
2546	 * testing if the tty is NOT a master pty.
2547	*/
2548	if (tty == real_tty && current->signal->tty != real_tty)
2549		return -ENOTTY;
2550	if (!real_tty->session)
2551		return -ENOTTY;
2552	return put_user(pid_vnr(real_tty->session), p);
2553}
2554
2555/**
2556 *	tiocsetd	-	set line discipline
2557 *	@tty: tty device
2558 *	@p: pointer to user data
2559 *
2560 *	Set the line discipline according to user request.
2561 *
2562 *	Locking: see tty_set_ldisc, this function is just a helper
2563 */
2564
2565static int tiocsetd(struct tty_struct *tty, int __user *p)
2566{
2567	int ldisc;
2568	int ret;
2569
2570	if (get_user(ldisc, p))
2571		return -EFAULT;
2572
2573	ret = tty_set_ldisc(tty, ldisc);
2574
2575	return ret;
2576}
2577
2578/**
2579 *	send_break	-	performed time break
2580 *	@tty: device to break on
2581 *	@duration: timeout in mS
2582 *
2583 *	Perform a timed break on hardware that lacks its own driver level
2584 *	timed break functionality.
2585 *
2586 *	Locking:
2587 *		atomic_write_lock serializes
2588 *
2589 */
2590
2591static int send_break(struct tty_struct *tty, unsigned int duration)
2592{
2593	int retval;
2594
2595	if (tty->ops->break_ctl == NULL)
2596		return 0;
2597
2598	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599		retval = tty->ops->break_ctl(tty, duration);
2600	else {
2601		/* Do the work ourselves */
2602		if (tty_write_lock(tty, 0) < 0)
2603			return -EINTR;
2604		retval = tty->ops->break_ctl(tty, -1);
2605		if (retval)
2606			goto out;
2607		if (!signal_pending(current))
2608			msleep_interruptible(duration);
2609		retval = tty->ops->break_ctl(tty, 0);
2610out:
2611		tty_write_unlock(tty);
2612		if (signal_pending(current))
2613			retval = -EINTR;
2614	}
2615	return retval;
2616}
2617
2618/**
2619 *	tty_tiocmget		-	get modem status
2620 *	@tty: tty device
2621 *	@file: user file pointer
2622 *	@p: pointer to result
2623 *
2624 *	Obtain the modem status bits from the tty driver if the feature
2625 *	is supported. Return -EINVAL if it is not available.
2626 *
2627 *	Locking: none (up to the driver)
2628 */
2629
2630static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631{
2632	int retval = -EINVAL;
2633
2634	if (tty->ops->tiocmget) {
2635		retval = tty->ops->tiocmget(tty);
2636
2637		if (retval >= 0)
2638			retval = put_user(retval, p);
2639	}
2640	return retval;
2641}
2642
2643/**
2644 *	tty_tiocmset		-	set modem status
2645 *	@tty: tty device
2646 *	@cmd: command - clear bits, set bits or set all
2647 *	@p: pointer to desired bits
2648 *
2649 *	Set the modem status bits from the tty driver if the feature
2650 *	is supported. Return -EINVAL if it is not available.
2651 *
2652 *	Locking: none (up to the driver)
2653 */
2654
2655static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656	     unsigned __user *p)
2657{
2658	int retval;
2659	unsigned int set, clear, val;
2660
2661	if (tty->ops->tiocmset == NULL)
2662		return -EINVAL;
2663
2664	retval = get_user(val, p);
2665	if (retval)
2666		return retval;
2667	set = clear = 0;
2668	switch (cmd) {
2669	case TIOCMBIS:
2670		set = val;
2671		break;
2672	case TIOCMBIC:
2673		clear = val;
2674		break;
2675	case TIOCMSET:
2676		set = val;
2677		clear = ~val;
2678		break;
2679	}
2680	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682	return tty->ops->tiocmset(tty, set, clear);
2683}
2684
2685static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686{
2687	int retval = -EINVAL;
2688	struct serial_icounter_struct icount;
2689	memset(&icount, 0, sizeof(icount));
2690	if (tty->ops->get_icount)
2691		retval = tty->ops->get_icount(tty, &icount);
2692	if (retval != 0)
2693		return retval;
2694	if (copy_to_user(arg, &icount, sizeof(icount)))
2695		return -EFAULT;
2696	return 0;
2697}
2698
2699struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700{
2701	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702	    tty->driver->subtype == PTY_TYPE_MASTER)
2703		tty = tty->link;
2704	return tty;
2705}
2706EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2709{
2710	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711	    tty->driver->subtype == PTY_TYPE_MASTER)
2712	    return tty;
2713	return tty->link;
2714}
2715EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717/*
2718 * Split this up, as gcc can choke on it otherwise..
2719 */
2720long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721{
2722	struct tty_struct *tty = file_tty(file);
2723	struct tty_struct *real_tty;
2724	void __user *p = (void __user *)arg;
2725	int retval;
2726	struct tty_ldisc *ld;
 
2727
2728	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729		return -EINVAL;
2730
2731	real_tty = tty_pair_get_tty(tty);
2732
2733	/*
2734	 * Factor out some common prep work
2735	 */
2736	switch (cmd) {
2737	case TIOCSETD:
2738	case TIOCSBRK:
2739	case TIOCCBRK:
2740	case TCSBRK:
2741	case TCSBRKP:
2742		retval = tty_check_change(tty);
2743		if (retval)
2744			return retval;
2745		if (cmd != TIOCCBRK) {
2746			tty_wait_until_sent(tty, 0);
2747			if (signal_pending(current))
2748				return -EINTR;
2749		}
2750		break;
2751	}
2752
2753	/*
2754	 *	Now do the stuff.
2755	 */
2756	switch (cmd) {
2757	case TIOCSTI:
2758		return tiocsti(tty, p);
2759	case TIOCGWINSZ:
2760		return tiocgwinsz(real_tty, p);
2761	case TIOCSWINSZ:
2762		return tiocswinsz(real_tty, p);
2763	case TIOCCONS:
2764		return real_tty != tty ? -EINVAL : tioccons(file);
2765	case FIONBIO:
2766		return fionbio(file, p);
2767	case TIOCEXCL:
2768		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769		return 0;
2770	case TIOCNXCL:
2771		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772		return 0;
2773	case TIOCGEXCL:
2774	{
2775		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776		return put_user(excl, (int __user *)p);
2777	}
2778	case TIOCNOTTY:
2779		if (current->signal->tty != tty)
2780			return -ENOTTY;
2781		no_tty();
2782		return 0;
2783	case TIOCSCTTY:
2784		return tiocsctty(tty, arg);
2785	case TIOCGPGRP:
2786		return tiocgpgrp(tty, real_tty, p);
2787	case TIOCSPGRP:
2788		return tiocspgrp(tty, real_tty, p);
2789	case TIOCGSID:
2790		return tiocgsid(tty, real_tty, p);
2791	case TIOCGETD:
2792		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793	case TIOCSETD:
2794		return tiocsetd(tty, p);
2795	case TIOCVHANGUP:
2796		if (!capable(CAP_SYS_ADMIN))
2797			return -EPERM;
2798		tty_vhangup(tty);
2799		return 0;
2800	case TIOCGDEV:
2801	{
2802		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803		return put_user(ret, (unsigned int __user *)p);
2804	}
2805	/*
2806	 * Break handling
2807	 */
2808	case TIOCSBRK:	/* Turn break on, unconditionally */
2809		if (tty->ops->break_ctl)
2810			return tty->ops->break_ctl(tty, -1);
2811		return 0;
2812	case TIOCCBRK:	/* Turn break off, unconditionally */
2813		if (tty->ops->break_ctl)
2814			return tty->ops->break_ctl(tty, 0);
2815		return 0;
2816	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817		/* non-zero arg means wait for all output data
2818		 * to be sent (performed above) but don't send break.
2819		 * This is used by the tcdrain() termios function.
2820		 */
2821		if (!arg)
2822			return send_break(tty, 250);
2823		return 0;
2824	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825		return send_break(tty, arg ? arg*100 : 250);
2826
2827	case TIOCMGET:
2828		return tty_tiocmget(tty, p);
2829	case TIOCMSET:
2830	case TIOCMBIC:
2831	case TIOCMBIS:
2832		return tty_tiocmset(tty, cmd, p);
2833	case TIOCGICOUNT:
2834		retval = tty_tiocgicount(tty, p);
2835		/* For the moment allow fall through to the old method */
2836        	if (retval != -EINVAL)
2837			return retval;
2838		break;
2839	case TCFLSH:
2840		switch (arg) {
2841		case TCIFLUSH:
2842		case TCIOFLUSH:
2843		/* flush tty buffer and allow ldisc to process ioctl */
2844			tty_buffer_flush(tty);
2845			break;
2846		}
2847		break;
2848	}
2849	if (tty->ops->ioctl) {
2850		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851		if (retval != -ENOIOCTLCMD)
2852			return retval;
2853	}
2854	ld = tty_ldisc_ref_wait(tty);
2855	retval = -EINVAL;
2856	if (ld->ops->ioctl) {
2857		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858		if (retval == -ENOIOCTLCMD)
2859			retval = -ENOTTY;
2860	}
2861	tty_ldisc_deref(ld);
2862	return retval;
2863}
2864
2865#ifdef CONFIG_COMPAT
2866static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867				unsigned long arg)
2868{
 
2869	struct tty_struct *tty = file_tty(file);
2870	struct tty_ldisc *ld;
2871	int retval = -ENOIOCTLCMD;
2872
2873	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874		return -EINVAL;
2875
2876	if (tty->ops->compat_ioctl) {
2877		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878		if (retval != -ENOIOCTLCMD)
2879			return retval;
2880	}
2881
2882	ld = tty_ldisc_ref_wait(tty);
2883	if (ld->ops->compat_ioctl)
2884		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885	else
2886		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887	tty_ldisc_deref(ld);
2888
2889	return retval;
2890}
2891#endif
2892
2893static int this_tty(const void *t, struct file *file, unsigned fd)
2894{
2895	if (likely(file->f_op->read != tty_read))
2896		return 0;
2897	return file_tty(file) != t ? 0 : fd + 1;
2898}
2899	
2900/*
2901 * This implements the "Secure Attention Key" ---  the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key".  Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2905 *
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal.  But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2911 *
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915 *
2916 * Nasty bug: do_SAK is being called in interrupt context.  This can
2917 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918 */
2919void __do_SAK(struct tty_struct *tty)
2920{
2921#ifdef TTY_SOFT_SAK
2922	tty_hangup(tty);
2923#else
2924	struct task_struct *g, *p;
2925	struct pid *session;
2926	int		i;
 
 
2927
2928	if (!tty)
2929		return;
2930	session = tty->session;
2931
2932	tty_ldisc_flush(tty);
2933
2934	tty_driver_flush_buffer(tty);
2935
2936	read_lock(&tasklist_lock);
2937	/* Kill the entire session */
2938	do_each_pid_task(session, PIDTYPE_SID, p) {
2939		printk(KERN_NOTICE "SAK: killed process %d"
2940			" (%s): task_session(p)==tty->session\n",
2941			task_pid_nr(p), p->comm);
2942		send_sig(SIGKILL, p, 1);
2943	} while_each_pid_task(session, PIDTYPE_SID, p);
2944	/* Now kill any processes that happen to have the
2945	 * tty open.
2946	 */
2947	do_each_thread(g, p) {
2948		if (p->signal->tty == tty) {
2949			printk(KERN_NOTICE "SAK: killed process %d"
2950			    " (%s): task_session(p)==tty->session\n",
2951			    task_pid_nr(p), p->comm);
2952			send_sig(SIGKILL, p, 1);
2953			continue;
2954		}
2955		task_lock(p);
2956		i = iterate_fd(p->files, 0, this_tty, tty);
2957		if (i != 0) {
2958			printk(KERN_NOTICE "SAK: killed process %d"
2959			    " (%s): fd#%d opened to the tty\n",
2960				    task_pid_nr(p), p->comm, i - 1);
2961			force_sig(SIGKILL, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962		}
2963		task_unlock(p);
2964	} while_each_thread(g, p);
2965	read_unlock(&tasklist_lock);
2966#endif
2967}
2968
2969static void do_SAK_work(struct work_struct *work)
2970{
2971	struct tty_struct *tty =
2972		container_of(work, struct tty_struct, SAK_work);
2973	__do_SAK(tty);
2974}
2975
2976/*
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2981 */
2982void do_SAK(struct tty_struct *tty)
2983{
2984	if (!tty)
2985		return;
2986	schedule_work(&tty->SAK_work);
2987}
2988
2989EXPORT_SYMBOL(do_SAK);
2990
2991static int dev_match_devt(struct device *dev, const void *data)
2992{
2993	const dev_t *devt = data;
2994	return dev->devt == *devt;
2995}
2996
2997/* Must put_device() after it's unused! */
2998static struct device *tty_get_device(struct tty_struct *tty)
2999{
3000	dev_t devt = tty_devnum(tty);
3001	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002}
3003
3004
3005/**
3006 *	initialize_tty_struct
3007 *	@tty: tty to initialize
3008 *
3009 *	This subroutine initializes a tty structure that has been newly
3010 *	allocated.
3011 *
3012 *	Locking: none - tty in question must not be exposed at this point
3013 */
3014
3015void initialize_tty_struct(struct tty_struct *tty,
3016		struct tty_driver *driver, int idx)
3017{
3018	memset(tty, 0, sizeof(struct tty_struct));
3019	kref_init(&tty->kref);
3020	tty->magic = TTY_MAGIC;
3021	tty_ldisc_init(tty);
3022	tty->session = NULL;
3023	tty->pgrp = NULL;
3024	mutex_init(&tty->legacy_mutex);
3025	mutex_init(&tty->throttle_mutex);
3026	init_rwsem(&tty->termios_rwsem);
3027	mutex_init(&tty->winsize_mutex);
3028	init_ldsem(&tty->ldisc_sem);
3029	init_waitqueue_head(&tty->write_wait);
3030	init_waitqueue_head(&tty->read_wait);
3031	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3032	mutex_init(&tty->atomic_write_lock);
 
 
 
3033	spin_lock_init(&tty->ctrl_lock);
3034	INIT_LIST_HEAD(&tty->tty_files);
3035	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037	tty->driver = driver;
3038	tty->ops = driver->ops;
3039	tty->index = idx;
3040	tty_line_name(driver, idx, tty->name);
3041	tty->dev = tty_get_device(tty);
3042}
3043
3044/**
3045 *	deinitialize_tty_struct
3046 *	@tty: tty to deinitialize
3047 *
3048 *	This subroutine deinitializes a tty structure that has been newly
3049 *	allocated but tty_release cannot be called on that yet.
3050 *
3051 *	Locking: none - tty in question must not be exposed at this point
3052 */
3053void deinitialize_tty_struct(struct tty_struct *tty)
3054{
3055	tty_ldisc_deinit(tty);
3056}
3057
3058/**
3059 *	tty_put_char	-	write one character to a tty
3060 *	@tty: tty
3061 *	@ch: character
3062 *
3063 *	Write one byte to the tty using the provided put_char method
3064 *	if present. Returns the number of characters successfully output.
3065 *
3066 *	Note: the specific put_char operation in the driver layer may go
3067 *	away soon. Don't call it directly, use this method
3068 */
3069
3070int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071{
3072	if (tty->ops->put_char)
3073		return tty->ops->put_char(tty, ch);
3074	return tty->ops->write(tty, &ch, 1);
3075}
3076EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078struct class *tty_class;
3079
3080static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081		unsigned int index, unsigned int count)
3082{
3083	/* init here, since reused cdevs cause crashes */
3084	cdev_init(&driver->cdevs[index], &tty_fops);
3085	driver->cdevs[index].owner = driver->owner;
3086	return cdev_add(&driver->cdevs[index], dev, count);
3087}
3088
3089/**
3090 *	tty_register_device - register a tty device
3091 *	@driver: the tty driver that describes the tty device
3092 *	@index: the index in the tty driver for this tty device
3093 *	@device: a struct device that is associated with this tty device.
3094 *		This field is optional, if there is no known struct device
3095 *		for this tty device it can be set to NULL safely.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
3106 */
3107
3108struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109				   struct device *device)
3110{
3111	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112}
3113EXPORT_SYMBOL(tty_register_device);
3114
3115static void tty_device_create_release(struct device *dev)
3116{
3117	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118	kfree(dev);
3119}
3120
3121/**
3122 *	tty_register_device_attr - register a tty device
3123 *	@driver: the tty driver that describes the tty device
3124 *	@index: the index in the tty driver for this tty device
3125 *	@device: a struct device that is associated with this tty device.
3126 *		This field is optional, if there is no known struct device
3127 *		for this tty device it can be set to NULL safely.
3128 *	@drvdata: Driver data to be set to device.
3129 *	@attr_grp: Attribute group to be set on device.
3130 *
3131 *	Returns a pointer to the struct device for this tty device
3132 *	(or ERR_PTR(-EFOO) on error).
3133 *
3134 *	This call is required to be made to register an individual tty device
3135 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136 *	that bit is not set, this function should not be called by a tty
3137 *	driver.
3138 *
3139 *	Locking: ??
3140 */
3141struct device *tty_register_device_attr(struct tty_driver *driver,
3142				   unsigned index, struct device *device,
3143				   void *drvdata,
3144				   const struct attribute_group **attr_grp)
3145{
3146	char name[64];
3147	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148	struct device *dev = NULL;
3149	int retval = -ENODEV;
3150	bool cdev = false;
3151
3152	if (index >= driver->num) {
3153		printk(KERN_ERR "Attempt to register invalid tty line number "
3154		       " (%d).\n", index);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159		pty_line_name(driver, index, name);
3160	else
3161		tty_line_name(driver, index, name);
3162
3163	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164		retval = tty_cdev_add(driver, devt, index, 1);
3165		if (retval)
3166			goto error;
3167		cdev = true;
3168	}
3169
3170	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171	if (!dev) {
3172		retval = -ENOMEM;
3173		goto error;
3174	}
3175
3176	dev->devt = devt;
3177	dev->class = tty_class;
3178	dev->parent = device;
3179	dev->release = tty_device_create_release;
3180	dev_set_name(dev, "%s", name);
3181	dev->groups = attr_grp;
3182	dev_set_drvdata(dev, drvdata);
3183
3184	retval = device_register(dev);
3185	if (retval)
3186		goto error;
3187
3188	return dev;
3189
3190error:
3191	put_device(dev);
3192	if (cdev)
3193		cdev_del(&driver->cdevs[index]);
3194	return ERR_PTR(retval);
3195}
3196EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198/**
3199 * 	tty_unregister_device - unregister a tty device
3200 * 	@driver: the tty driver that describes the tty device
3201 * 	@index: the index in the tty driver for this tty device
3202 *
3203 * 	If a tty device is registered with a call to tty_register_device() then
3204 *	this function must be called when the tty device is gone.
3205 *
3206 *	Locking: ??
3207 */
3208
3209void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210{
3211	device_destroy(tty_class,
3212		MKDEV(driver->major, driver->minor_start) + index);
3213	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214		cdev_del(&driver->cdevs[index]);
3215}
3216EXPORT_SYMBOL(tty_unregister_device);
3217
3218/**
3219 * __tty_alloc_driver -- allocate tty driver
3220 * @lines: count of lines this driver can handle at most
3221 * @owner: module which is repsonsible for this driver
3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223 *
3224 * This should not be called directly, some of the provided macros should be
3225 * used instead. Use IS_ERR and friends on @retval.
3226 */
3227struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228		unsigned long flags)
3229{
3230	struct tty_driver *driver;
3231	unsigned int cdevs = 1;
3232	int err;
3233
3234	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235		return ERR_PTR(-EINVAL);
3236
3237	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238	if (!driver)
3239		return ERR_PTR(-ENOMEM);
3240
3241	kref_init(&driver->kref);
3242	driver->magic = TTY_DRIVER_MAGIC;
3243	driver->num = lines;
3244	driver->owner = owner;
3245	driver->flags = flags;
3246
3247	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249				GFP_KERNEL);
3250		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251				GFP_KERNEL);
3252		if (!driver->ttys || !driver->termios) {
3253			err = -ENOMEM;
3254			goto err_free_all;
3255		}
3256	}
3257
3258	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260				GFP_KERNEL);
3261		if (!driver->ports) {
3262			err = -ENOMEM;
3263			goto err_free_all;
3264		}
3265		cdevs = lines;
3266	}
3267
3268	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269	if (!driver->cdevs) {
3270		err = -ENOMEM;
3271		goto err_free_all;
3272	}
3273
3274	return driver;
3275err_free_all:
3276	kfree(driver->ports);
3277	kfree(driver->ttys);
3278	kfree(driver->termios);
3279	kfree(driver);
3280	return ERR_PTR(err);
3281}
3282EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284static void destruct_tty_driver(struct kref *kref)
3285{
3286	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287	int i;
3288	struct ktermios *tp;
 
3289
3290	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291		/*
3292		 * Free the termios and termios_locked structures because
3293		 * we don't want to get memory leaks when modular tty
3294		 * drivers are removed from the kernel.
3295		 */
3296		for (i = 0; i < driver->num; i++) {
3297			tp = driver->termios[i];
3298			if (tp) {
3299				driver->termios[i] = NULL;
3300				kfree(tp);
3301			}
3302			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303				tty_unregister_device(driver, i);
3304		}
 
3305		proc_tty_unregister_driver(driver);
3306		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307			cdev_del(&driver->cdevs[0]);
 
 
3308	}
3309	kfree(driver->cdevs);
3310	kfree(driver->ports);
3311	kfree(driver->termios);
3312	kfree(driver->ttys);
3313	kfree(driver);
3314}
3315
3316void tty_driver_kref_put(struct tty_driver *driver)
3317{
3318	kref_put(&driver->kref, destruct_tty_driver);
3319}
3320EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322void tty_set_operations(struct tty_driver *driver,
3323			const struct tty_operations *op)
3324{
3325	driver->ops = op;
3326};
3327EXPORT_SYMBOL(tty_set_operations);
3328
3329void put_tty_driver(struct tty_driver *d)
3330{
3331	tty_driver_kref_put(d);
3332}
3333EXPORT_SYMBOL(put_tty_driver);
3334
3335/*
3336 * Called by a tty driver to register itself.
3337 */
3338int tty_register_driver(struct tty_driver *driver)
3339{
3340	int error;
3341	int i;
3342	dev_t dev;
 
3343	struct device *d;
3344
 
 
 
 
 
 
3345	if (!driver->major) {
3346		error = alloc_chrdev_region(&dev, driver->minor_start,
3347						driver->num, driver->name);
3348		if (!error) {
3349			driver->major = MAJOR(dev);
3350			driver->minor_start = MINOR(dev);
3351		}
3352	} else {
3353		dev = MKDEV(driver->major, driver->minor_start);
3354		error = register_chrdev_region(dev, driver->num, driver->name);
3355	}
3356	if (error < 0)
3357		goto err;
 
 
 
 
 
 
 
 
 
 
3358
3359	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360		error = tty_cdev_add(driver, dev, 0, driver->num);
3361		if (error)
3362			goto err_unreg_char;
 
 
 
 
 
3363	}
3364
3365	mutex_lock(&tty_mutex);
3366	list_add(&driver->tty_drivers, &tty_drivers);
3367	mutex_unlock(&tty_mutex);
3368
3369	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370		for (i = 0; i < driver->num; i++) {
3371			d = tty_register_device(driver, i, NULL);
3372			if (IS_ERR(d)) {
3373				error = PTR_ERR(d);
3374				goto err_unreg_devs;
3375			}
3376		}
3377	}
3378	proc_tty_register_driver(driver);
3379	driver->flags |= TTY_DRIVER_INSTALLED;
3380	return 0;
3381
3382err_unreg_devs:
3383	for (i--; i >= 0; i--)
3384		tty_unregister_device(driver, i);
3385
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389
3390err_unreg_char:
3391	unregister_chrdev_region(dev, driver->num);
3392err:
 
 
3393	return error;
3394}
 
3395EXPORT_SYMBOL(tty_register_driver);
3396
3397/*
3398 * Called by a tty driver to unregister itself.
3399 */
3400int tty_unregister_driver(struct tty_driver *driver)
3401{
3402#if 0
3403	/* FIXME */
3404	if (driver->refcount)
3405		return -EBUSY;
3406#endif
3407	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408				driver->num);
3409	mutex_lock(&tty_mutex);
3410	list_del(&driver->tty_drivers);
3411	mutex_unlock(&tty_mutex);
3412	return 0;
3413}
3414
3415EXPORT_SYMBOL(tty_unregister_driver);
3416
3417dev_t tty_devnum(struct tty_struct *tty)
3418{
3419	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420}
3421EXPORT_SYMBOL(tty_devnum);
3422
3423void proc_clear_tty(struct task_struct *p)
3424{
3425	unsigned long flags;
3426	struct tty_struct *tty;
3427	spin_lock_irqsave(&p->sighand->siglock, flags);
3428	tty = p->signal->tty;
3429	p->signal->tty = NULL;
3430	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431	tty_kref_put(tty);
3432}
3433
3434/* Called under the sighand lock */
3435
3436static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437{
3438	if (tty) {
3439		unsigned long flags;
3440		/* We should not have a session or pgrp to put here but.... */
3441		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442		put_pid(tty->session);
3443		put_pid(tty->pgrp);
3444		tty->pgrp = get_pid(task_pgrp(tsk));
3445		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446		tty->session = get_pid(task_session(tsk));
3447		if (tsk->signal->tty) {
3448			printk(KERN_DEBUG "tty not NULL!!\n");
3449			tty_kref_put(tsk->signal->tty);
3450		}
3451	}
3452	put_pid(tsk->signal->tty_old_pgrp);
3453	tsk->signal->tty = tty_kref_get(tty);
3454	tsk->signal->tty_old_pgrp = NULL;
3455}
3456
3457static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458{
3459	spin_lock_irq(&tsk->sighand->siglock);
3460	__proc_set_tty(tsk, tty);
3461	spin_unlock_irq(&tsk->sighand->siglock);
3462}
3463
3464struct tty_struct *get_current_tty(void)
3465{
3466	struct tty_struct *tty;
3467	unsigned long flags;
3468
3469	spin_lock_irqsave(&current->sighand->siglock, flags);
3470	tty = tty_kref_get(current->signal->tty);
3471	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472	return tty;
3473}
3474EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476void tty_default_fops(struct file_operations *fops)
3477{
3478	*fops = tty_fops;
3479}
3480
3481/*
3482 * Initialize the console device. This is called *early*, so
3483 * we can't necessarily depend on lots of kernel help here.
3484 * Just do some early initializations, and do the complex setup
3485 * later.
3486 */
3487void __init console_init(void)
3488{
3489	initcall_t *call;
3490
3491	/* Setup the default TTY line discipline. */
3492	tty_ldisc_begin();
3493
3494	/*
3495	 * set up the console device so that later boot sequences can
3496	 * inform about problems etc..
3497	 */
3498	call = __con_initcall_start;
3499	while (call < __con_initcall_end) {
3500		(*call)();
3501		call++;
3502	}
3503}
3504
3505static char *tty_devnode(struct device *dev, umode_t *mode)
3506{
3507	if (!mode)
3508		return NULL;
3509	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511		*mode = 0666;
3512	return NULL;
3513}
3514
3515static int __init tty_class_init(void)
3516{
3517	tty_class = class_create(THIS_MODULE, "tty");
3518	if (IS_ERR(tty_class))
3519		return PTR_ERR(tty_class);
3520	tty_class->devnode = tty_devnode;
3521	return 0;
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530				struct device_attribute *attr, char *buf)
3531{
3532	struct console *cs[16];
3533	int i = 0;
3534	struct console *c;
3535	ssize_t count = 0;
3536
3537	console_lock();
3538	for_each_console(c) {
3539		if (!c->device)
3540			continue;
3541		if (!c->write)
3542			continue;
3543		if ((c->flags & CON_ENABLED) == 0)
3544			continue;
3545		cs[i++] = c;
3546		if (i >= ARRAY_SIZE(cs))
3547			break;
3548	}
3549	while (i--) {
3550		int index = cs[i]->index;
3551		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553		/* don't resolve tty0 as some programs depend on it */
3554		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555			count += tty_line_name(drv, index, buf + count);
3556		else
3557			count += sprintf(buf + count, "%s%d",
3558					 cs[i]->name, cs[i]->index);
3559
3560		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561	}
3562	console_unlock();
3563
3564	return count;
3565}
3566static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
3568static struct device *consdev;
3569
3570void console_sysfs_notify(void)
3571{
3572	if (consdev)
3573		sysfs_notify(&consdev->kobj, NULL, "active");
3574}
3575
3576/*
3577 * Ok, now we can initialize the rest of the tty devices and can count
3578 * on memory allocations, interrupts etc..
3579 */
3580int __init tty_init(void)
3581{
3582	cdev_init(&tty_cdev, &tty_fops);
3583	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585		panic("Couldn't register /dev/tty driver\n");
3586	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588	cdev_init(&console_cdev, &console_fops);
3589	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591		panic("Couldn't register /dev/console driver\n");
3592	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593			      "console");
3594	if (IS_ERR(consdev))
3595		consdev = NULL;
3596	else
3597		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599#ifdef CONFIG_VT
3600	vty_init(&console_fops);
3601#endif
3602	return 0;
3603}
3604
v3.5.6
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 
 
 184	if (tty->dev)
 185		put_device(tty->dev);
 186	kfree(tty->write_buf);
 187	tty_buffer_free_all(tty);
 188	kfree(tty);
 189}
 190
 191static inline struct tty_struct *file_tty(struct file *file)
 192{
 193	return ((struct tty_file_private *)file->private_data)->tty;
 194}
 195
 196int tty_alloc_file(struct file *file)
 197{
 198	struct tty_file_private *priv;
 199
 200	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 201	if (!priv)
 202		return -ENOMEM;
 203
 204	file->private_data = priv;
 205
 206	return 0;
 207}
 208
 209/* Associate a new file with the tty structure */
 210void tty_add_file(struct tty_struct *tty, struct file *file)
 211{
 212	struct tty_file_private *priv = file->private_data;
 213
 214	priv->tty = tty;
 215	priv->file = file;
 216
 217	spin_lock(&tty_files_lock);
 218	list_add(&priv->list, &tty->tty_files);
 219	spin_unlock(&tty_files_lock);
 220}
 221
 222/**
 223 * tty_free_file - free file->private_data
 224 *
 225 * This shall be used only for fail path handling when tty_add_file was not
 226 * called yet.
 227 */
 228void tty_free_file(struct file *file)
 229{
 230	struct tty_file_private *priv = file->private_data;
 231
 232	file->private_data = NULL;
 233	kfree(priv);
 234}
 235
 236/* Delete file from its tty */
 237void tty_del_file(struct file *file)
 238{
 239	struct tty_file_private *priv = file->private_data;
 240
 241	spin_lock(&tty_files_lock);
 242	list_del(&priv->list);
 243	spin_unlock(&tty_files_lock);
 244	tty_free_file(file);
 245}
 246
 247
 248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 249
 250/**
 251 *	tty_name	-	return tty naming
 252 *	@tty: tty structure
 253 *	@buf: buffer for output
 254 *
 255 *	Convert a tty structure into a name. The name reflects the kernel
 256 *	naming policy and if udev is in use may not reflect user space
 257 *
 258 *	Locking: none
 259 */
 260
 261char *tty_name(struct tty_struct *tty, char *buf)
 262{
 263	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 264		strcpy(buf, "NULL tty");
 265	else
 266		strcpy(buf, tty->name);
 267	return buf;
 268}
 269
 270EXPORT_SYMBOL(tty_name);
 271
 272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 273			      const char *routine)
 274{
 275#ifdef TTY_PARANOIA_CHECK
 276	if (!tty) {
 277		printk(KERN_WARNING
 278			"null TTY for (%d:%d) in %s\n",
 279			imajor(inode), iminor(inode), routine);
 280		return 1;
 281	}
 282	if (tty->magic != TTY_MAGIC) {
 283		printk(KERN_WARNING
 284			"bad magic number for tty struct (%d:%d) in %s\n",
 285			imajor(inode), iminor(inode), routine);
 286		return 1;
 287	}
 288#endif
 289	return 0;
 290}
 291
 292static int check_tty_count(struct tty_struct *tty, const char *routine)
 293{
 294#ifdef CHECK_TTY_COUNT
 295	struct list_head *p;
 296	int count = 0;
 297
 298	spin_lock(&tty_files_lock);
 299	list_for_each(p, &tty->tty_files) {
 300		count++;
 301	}
 302	spin_unlock(&tty_files_lock);
 303	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 304	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 305	    tty->link && tty->link->count)
 306		count++;
 307	if (tty->count != count) {
 308		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 309				    "!= #fd's(%d) in %s\n",
 310		       tty->name, tty->count, count, routine);
 311		return count;
 312	}
 313#endif
 314	return 0;
 315}
 316
 317/**
 318 *	get_tty_driver		-	find device of a tty
 319 *	@dev_t: device identifier
 320 *	@index: returns the index of the tty
 321 *
 322 *	This routine returns a tty driver structure, given a device number
 323 *	and also passes back the index number.
 324 *
 325 *	Locking: caller must hold tty_mutex
 326 */
 327
 328static struct tty_driver *get_tty_driver(dev_t device, int *index)
 329{
 330	struct tty_driver *p;
 331
 332	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 333		dev_t base = MKDEV(p->major, p->minor_start);
 334		if (device < base || device >= base + p->num)
 335			continue;
 336		*index = device - base;
 337		return tty_driver_kref_get(p);
 338	}
 339	return NULL;
 340}
 341
 342#ifdef CONFIG_CONSOLE_POLL
 343
 344/**
 345 *	tty_find_polling_driver	-	find device of a polled tty
 346 *	@name: name string to match
 347 *	@line: pointer to resulting tty line nr
 348 *
 349 *	This routine returns a tty driver structure, given a name
 350 *	and the condition that the tty driver is capable of polled
 351 *	operation.
 352 */
 353struct tty_driver *tty_find_polling_driver(char *name, int *line)
 354{
 355	struct tty_driver *p, *res = NULL;
 356	int tty_line = 0;
 357	int len;
 358	char *str, *stp;
 359
 360	for (str = name; *str; str++)
 361		if ((*str >= '0' && *str <= '9') || *str == ',')
 362			break;
 363	if (!*str)
 364		return NULL;
 365
 366	len = str - name;
 367	tty_line = simple_strtoul(str, &str, 10);
 368
 369	mutex_lock(&tty_mutex);
 370	/* Search through the tty devices to look for a match */
 371	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 372		if (strncmp(name, p->name, len) != 0)
 373			continue;
 374		stp = str;
 375		if (*stp == ',')
 376			stp++;
 377		if (*stp == '\0')
 378			stp = NULL;
 379
 380		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 381		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 382			res = tty_driver_kref_get(p);
 383			*line = tty_line;
 384			break;
 385		}
 386	}
 387	mutex_unlock(&tty_mutex);
 388
 389	return res;
 390}
 391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 392#endif
 393
 394/**
 395 *	tty_check_change	-	check for POSIX terminal changes
 396 *	@tty: tty to check
 397 *
 398 *	If we try to write to, or set the state of, a terminal and we're
 399 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 400 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 401 *
 402 *	Locking: ctrl_lock
 403 */
 404
 405int tty_check_change(struct tty_struct *tty)
 406{
 407	unsigned long flags;
 408	int ret = 0;
 409
 410	if (current->signal->tty != tty)
 411		return 0;
 412
 413	spin_lock_irqsave(&tty->ctrl_lock, flags);
 414
 415	if (!tty->pgrp) {
 416		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 417		goto out_unlock;
 418	}
 419	if (task_pgrp(current) == tty->pgrp)
 420		goto out_unlock;
 421	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 422	if (is_ignored(SIGTTOU))
 423		goto out;
 424	if (is_current_pgrp_orphaned()) {
 425		ret = -EIO;
 426		goto out;
 427	}
 428	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 429	set_thread_flag(TIF_SIGPENDING);
 430	ret = -ERESTARTSYS;
 431out:
 432	return ret;
 433out_unlock:
 434	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 435	return ret;
 436}
 437
 438EXPORT_SYMBOL(tty_check_change);
 439
 440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 441				size_t count, loff_t *ppos)
 442{
 443	return 0;
 444}
 445
 446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 447				 size_t count, loff_t *ppos)
 448{
 449	return -EIO;
 450}
 451
 452/* No kernel lock held - none needed ;) */
 453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 454{
 455	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 456}
 457
 458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 459		unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static long hung_up_tty_compat_ioctl(struct file *file,
 465				     unsigned int cmd, unsigned long arg)
 466{
 467	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 468}
 469
 470static const struct file_operations tty_fops = {
 471	.llseek		= no_llseek,
 472	.read		= tty_read,
 473	.write		= tty_write,
 474	.poll		= tty_poll,
 475	.unlocked_ioctl	= tty_ioctl,
 476	.compat_ioctl	= tty_compat_ioctl,
 477	.open		= tty_open,
 478	.release	= tty_release,
 479	.fasync		= tty_fasync,
 480};
 481
 482static const struct file_operations console_fops = {
 483	.llseek		= no_llseek,
 484	.read		= tty_read,
 485	.write		= redirected_tty_write,
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read		= hung_up_tty_read,
 497	.write		= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 *	tty_wakeup	-	request more data
 509 *	@tty: terminal
 510 *
 511 *	Internal and external helper for wakeups of tty. This function
 512 *	informs the line discipline if present that the driver is ready
 513 *	to receive more output data.
 514 */
 515
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 529}
 530
 531EXPORT_SYMBOL_GPL(tty_wakeup);
 532
 533/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534 *	__tty_hangup		-	actual handler for hangup events
 535 *	@work: tty device
 536 *
 537 *	This can be called by the "eventd" kernel thread.  That is process
 538 *	synchronous but doesn't hold any locks, so we need to make sure we
 539 *	have the appropriate locks for what we're doing.
 540 *
 541 *	The hangup event clears any pending redirections onto the hung up
 542 *	device. It ensures future writes will error and it does the needed
 543 *	line discipline hangup and signal delivery. The tty object itself
 544 *	remains intact.
 545 *
 546 *	Locking:
 547 *		BTM
 548 *		  redirect lock for undoing redirection
 549 *		  file list lock for manipulating list of ttys
 550 *		  tty_ldisc_lock from called functions
 551 *		  termios_mutex resetting termios data
 552 *		  tasklist_lock to walk task list for hangup event
 553 *		    ->siglock to protect ->signal/->sighand
 554 */
 555void __tty_hangup(struct tty_struct *tty)
 556{
 557	struct file *cons_filp = NULL;
 558	struct file *filp, *f = NULL;
 559	struct task_struct *p;
 560	struct tty_file_private *priv;
 561	int    closecount = 0, n;
 562	unsigned long flags;
 563	int refs = 0;
 564
 565	if (!tty)
 566		return;
 567
 568
 569	spin_lock(&redirect_lock);
 570	if (redirect && file_tty(redirect) == tty) {
 571		f = redirect;
 572		redirect = NULL;
 573	}
 574	spin_unlock(&redirect_lock);
 575
 576	tty_lock();
 
 
 
 
 
 577
 578	/* some functions below drop BTM, so we need this bit */
 579	set_bit(TTY_HUPPING, &tty->flags);
 580
 581	/* inuse_filps is protected by the single tty lock,
 582	   this really needs to change if we want to flush the
 583	   workqueue with the lock held */
 584	check_tty_count(tty, "tty_hangup");
 585
 586	spin_lock(&tty_files_lock);
 587	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 588	list_for_each_entry(priv, &tty->tty_files, list) {
 589		filp = priv->file;
 590		if (filp->f_op->write == redirected_tty_write)
 591			cons_filp = filp;
 592		if (filp->f_op->write != tty_write)
 593			continue;
 594		closecount++;
 595		__tty_fasync(-1, filp, 0);	/* can't block */
 596		filp->f_op = &hung_up_tty_fops;
 597	}
 598	spin_unlock(&tty_files_lock);
 599
 
 
 
 
 
 600	/*
 601	 * it drops BTM and thus races with reopen
 602	 * we protect the race by TTY_HUPPING
 603	 */
 604	tty_ldisc_hangup(tty);
 605
 606	read_lock(&tasklist_lock);
 607	if (tty->session) {
 608		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609			spin_lock_irq(&p->sighand->siglock);
 610			if (p->signal->tty == tty) {
 611				p->signal->tty = NULL;
 612				/* We defer the dereferences outside fo
 613				   the tasklist lock */
 614				refs++;
 615			}
 616			if (!p->signal->leader) {
 617				spin_unlock_irq(&p->sighand->siglock);
 618				continue;
 619			}
 620			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623			spin_lock_irqsave(&tty->ctrl_lock, flags);
 624			if (tty->pgrp)
 625				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 626			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 627			spin_unlock_irq(&p->sighand->siglock);
 628		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 629	}
 630	read_unlock(&tasklist_lock);
 631
 632	spin_lock_irqsave(&tty->ctrl_lock, flags);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_PUSH, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->session);
 637	put_pid(tty->pgrp);
 638	tty->session = NULL;
 639	tty->pgrp = NULL;
 640	tty->ctrl_status = 0;
 641	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 642
 643	/* Account for the p->signal references we killed */
 644	while (refs--)
 645		tty_kref_put(tty);
 646
 647	/*
 648	 * If one of the devices matches a console pointer, we
 649	 * cannot just call hangup() because that will cause
 650	 * tty->count and state->count to go out of sync.
 651	 * So we just call close() the right number of times.
 652	 */
 653	if (cons_filp) {
 654		if (tty->ops->close)
 655			for (n = 0; n < closecount; n++)
 656				tty->ops->close(tty, cons_filp);
 657	} else if (tty->ops->hangup)
 658		(tty->ops->hangup)(tty);
 659	/*
 660	 * We don't want to have driver/ldisc interactions beyond
 661	 * the ones we did here. The driver layer expects no
 662	 * calls after ->hangup() from the ldisc side. However we
 663	 * can't yet guarantee all that.
 664	 */
 665	set_bit(TTY_HUPPED, &tty->flags);
 666	clear_bit(TTY_HUPPING, &tty->flags);
 667	tty_ldisc_enable(tty);
 668
 669	tty_unlock();
 670
 671	if (f)
 672		fput(f);
 673}
 674
 675static void do_tty_hangup(struct work_struct *work)
 676{
 677	struct tty_struct *tty =
 678		container_of(work, struct tty_struct, hangup_work);
 679
 680	__tty_hangup(tty);
 681}
 682
 683/**
 684 *	tty_hangup		-	trigger a hangup event
 685 *	@tty: tty to hangup
 686 *
 687 *	A carrier loss (virtual or otherwise) has occurred on this like
 688 *	schedule a hangup sequence to run after this event.
 689 */
 690
 691void tty_hangup(struct tty_struct *tty)
 692{
 693#ifdef TTY_DEBUG_HANGUP
 694	char	buf[64];
 695	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 696#endif
 697	schedule_work(&tty->hangup_work);
 698}
 699
 700EXPORT_SYMBOL(tty_hangup);
 701
 702/**
 703 *	tty_vhangup		-	process vhangup
 704 *	@tty: tty to hangup
 705 *
 706 *	The user has asked via system call for the terminal to be hung up.
 707 *	We do this synchronously so that when the syscall returns the process
 708 *	is complete. That guarantee is necessary for security reasons.
 709 */
 710
 711void tty_vhangup(struct tty_struct *tty)
 712{
 713#ifdef TTY_DEBUG_HANGUP
 714	char	buf[64];
 715
 716	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 717#endif
 718	__tty_hangup(tty);
 719}
 720
 721EXPORT_SYMBOL(tty_vhangup);
 722
 723
 724/**
 725 *	tty_vhangup_self	-	process vhangup for own ctty
 726 *
 727 *	Perform a vhangup on the current controlling tty
 728 */
 729
 730void tty_vhangup_self(void)
 731{
 732	struct tty_struct *tty;
 733
 734	tty = get_current_tty();
 735	if (tty) {
 736		tty_vhangup(tty);
 737		tty_kref_put(tty);
 738	}
 739}
 740
 741/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742 *	tty_hung_up_p		-	was tty hung up
 743 *	@filp: file pointer of tty
 744 *
 745 *	Return true if the tty has been subject to a vhangup or a carrier
 746 *	loss
 747 */
 748
 749int tty_hung_up_p(struct file *filp)
 750{
 751	return (filp->f_op == &hung_up_tty_fops);
 752}
 753
 754EXPORT_SYMBOL(tty_hung_up_p);
 755
 756static void session_clear_tty(struct pid *session)
 757{
 758	struct task_struct *p;
 759	do_each_pid_task(session, PIDTYPE_SID, p) {
 760		proc_clear_tty(p);
 761	} while_each_pid_task(session, PIDTYPE_SID, p);
 762}
 763
 764/**
 765 *	disassociate_ctty	-	disconnect controlling tty
 766 *	@on_exit: true if exiting so need to "hang up" the session
 767 *
 768 *	This function is typically called only by the session leader, when
 769 *	it wants to disassociate itself from its controlling tty.
 770 *
 771 *	It performs the following functions:
 772 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 773 * 	(2)  Clears the tty from being controlling the session
 774 * 	(3)  Clears the controlling tty for all processes in the
 775 * 		session group.
 776 *
 777 *	The argument on_exit is set to 1 if called when a process is
 778 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 779 *
 780 *	Locking:
 781 *		BTM is taken for hysterical raisins, and held when
 782 *		  called from no_tty().
 783 *		  tty_mutex is taken to protect tty
 784 *		  ->siglock is taken to protect ->signal/->sighand
 785 *		  tasklist_lock is taken to walk process list for sessions
 786 *		    ->siglock is taken to protect ->signal/->sighand
 787 */
 788
 789void disassociate_ctty(int on_exit)
 790{
 791	struct tty_struct *tty;
 792
 793	if (!current->signal->leader)
 794		return;
 795
 796	tty = get_current_tty();
 797	if (tty) {
 798		struct pid *tty_pgrp = get_pid(tty->pgrp);
 799		if (on_exit) {
 800			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 801				tty_vhangup(tty);
 
 
 
 
 
 
 802		}
 803		tty_kref_put(tty);
 804		if (tty_pgrp) {
 805			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 806			if (!on_exit)
 807				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 808			put_pid(tty_pgrp);
 809		}
 810	} else if (on_exit) {
 811		struct pid *old_pgrp;
 812		spin_lock_irq(&current->sighand->siglock);
 813		old_pgrp = current->signal->tty_old_pgrp;
 814		current->signal->tty_old_pgrp = NULL;
 815		spin_unlock_irq(&current->sighand->siglock);
 816		if (old_pgrp) {
 817			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 818			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 819			put_pid(old_pgrp);
 820		}
 821		return;
 822	}
 823
 824	spin_lock_irq(&current->sighand->siglock);
 825	put_pid(current->signal->tty_old_pgrp);
 826	current->signal->tty_old_pgrp = NULL;
 827	spin_unlock_irq(&current->sighand->siglock);
 828
 829	tty = get_current_tty();
 830	if (tty) {
 831		unsigned long flags;
 832		spin_lock_irqsave(&tty->ctrl_lock, flags);
 833		put_pid(tty->session);
 834		put_pid(tty->pgrp);
 835		tty->session = NULL;
 836		tty->pgrp = NULL;
 837		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 838		tty_kref_put(tty);
 839	} else {
 840#ifdef TTY_DEBUG_HANGUP
 841		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 842		       " = NULL", tty);
 843#endif
 844	}
 845
 
 846	/* Now clear signal->tty under the lock */
 847	read_lock(&tasklist_lock);
 848	session_clear_tty(task_session(current));
 849	read_unlock(&tasklist_lock);
 850}
 851
 852/**
 853 *
 854 *	no_tty	- Ensure the current process does not have a controlling tty
 855 */
 856void no_tty(void)
 857{
 858	/* FIXME: Review locking here. The tty_lock never covered any race
 859	   between a new association and proc_clear_tty but possible we need
 860	   to protect against this anyway */
 861	struct task_struct *tsk = current;
 862	disassociate_ctty(0);
 863	proc_clear_tty(tsk);
 864}
 865
 866
 867/**
 868 *	stop_tty	-	propagate flow control
 869 *	@tty: tty to stop
 870 *
 871 *	Perform flow control to the driver. For PTY/TTY pairs we
 872 *	must also propagate the TIOCKPKT status. May be called
 873 *	on an already stopped device and will not re-call the driver
 874 *	method.
 875 *
 876 *	This functionality is used by both the line disciplines for
 877 *	halting incoming flow and by the driver. It may therefore be
 878 *	called from any context, may be under the tty atomic_write_lock
 879 *	but not always.
 880 *
 881 *	Locking:
 882 *		Uses the tty control lock internally
 883 */
 884
 885void stop_tty(struct tty_struct *tty)
 886{
 887	unsigned long flags;
 888	spin_lock_irqsave(&tty->ctrl_lock, flags);
 889	if (tty->stopped) {
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		return;
 892	}
 893	tty->stopped = 1;
 894	if (tty->link && tty->link->packet) {
 895		tty->ctrl_status &= ~TIOCPKT_START;
 896		tty->ctrl_status |= TIOCPKT_STOP;
 897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 898	}
 899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 900	if (tty->ops->stop)
 901		(tty->ops->stop)(tty);
 902}
 903
 904EXPORT_SYMBOL(stop_tty);
 905
 906/**
 907 *	start_tty	-	propagate flow control
 908 *	@tty: tty to start
 909 *
 910 *	Start a tty that has been stopped if at all possible. Perform
 911 *	any necessary wakeups and propagate the TIOCPKT status. If this
 912 *	is the tty was previous stopped and is being started then the
 913 *	driver start method is invoked and the line discipline woken.
 914 *
 915 *	Locking:
 916 *		ctrl_lock
 917 */
 918
 919void start_tty(struct tty_struct *tty)
 920{
 921	unsigned long flags;
 922	spin_lock_irqsave(&tty->ctrl_lock, flags);
 923	if (!tty->stopped || tty->flow_stopped) {
 924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 925		return;
 926	}
 927	tty->stopped = 0;
 928	if (tty->link && tty->link->packet) {
 929		tty->ctrl_status &= ~TIOCPKT_STOP;
 930		tty->ctrl_status |= TIOCPKT_START;
 931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 932	}
 933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 934	if (tty->ops->start)
 935		(tty->ops->start)(tty);
 936	/* If we have a running line discipline it may need kicking */
 937	tty_wakeup(tty);
 938}
 939
 940EXPORT_SYMBOL(start_tty);
 941
 
 
 
 
 
 
 
 
 942/**
 943 *	tty_read	-	read method for tty device files
 944 *	@file: pointer to tty file
 945 *	@buf: user buffer
 946 *	@count: size of user buffer
 947 *	@ppos: unused
 948 *
 949 *	Perform the read system call function on this terminal device. Checks
 950 *	for hung up devices before calling the line discipline method.
 951 *
 952 *	Locking:
 953 *		Locks the line discipline internally while needed. Multiple
 954 *	read calls may be outstanding in parallel.
 955 */
 956
 957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 958			loff_t *ppos)
 959{
 960	int i;
 961	struct inode *inode = file->f_path.dentry->d_inode;
 962	struct tty_struct *tty = file_tty(file);
 963	struct tty_ldisc *ld;
 964
 965	if (tty_paranoia_check(tty, inode, "tty_read"))
 966		return -EIO;
 967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 968		return -EIO;
 969
 970	/* We want to wait for the line discipline to sort out in this
 971	   situation */
 972	ld = tty_ldisc_ref_wait(tty);
 973	if (ld->ops->read)
 974		i = (ld->ops->read)(tty, file, buf, count);
 975	else
 976		i = -EIO;
 977	tty_ldisc_deref(ld);
 
 978	if (i > 0)
 979		inode->i_atime = current_fs_time(inode->i_sb);
 
 980	return i;
 981}
 982
 983void tty_write_unlock(struct tty_struct *tty)
 984	__releases(&tty->atomic_write_lock)
 985{
 986	mutex_unlock(&tty->atomic_write_lock);
 987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 988}
 989
 990int tty_write_lock(struct tty_struct *tty, int ndelay)
 991	__acquires(&tty->atomic_write_lock)
 992{
 993	if (!mutex_trylock(&tty->atomic_write_lock)) {
 994		if (ndelay)
 995			return -EAGAIN;
 996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 997			return -ERESTARTSYS;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
1062		if (size > chunk)
1063			size = chunk;
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
1067		ret = write(tty, file, tty->write_buf, size);
1068		if (ret <= 0)
1069			break;
1070		written += ret;
1071		buf += ret;
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
1233	if (driver->ops->lookup)
1234		return driver->ops->lookup(driver, inode, idx);
1235
1236	return driver->ttys[idx];
1237}
1238
1239/**
1240 *	tty_init_termios	-  helper for termios setup
1241 *	@tty: the tty to set up
1242 *
1243 *	Initialise the termios structures for this tty. Thus runs under
1244 *	the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	tp = tty->driver->termios[idx];
1253	if (tp == NULL) {
1254		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255		if (tp == NULL)
1256			return -ENOMEM;
1257		memcpy(tp, &tty->driver->init_termios,
1258						sizeof(struct ktermios));
1259		tty->driver->termios[idx] = tp;
 
1260	}
1261	tty->termios = tp;
1262	tty->termios_locked = tp + 1;
1263
1264	/* Compatibility until drivers always set this */
1265	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273	int ret = tty_init_termios(tty);
1274	if (ret)
1275		return ret;
1276
1277	tty_driver_kref_get(driver);
1278	tty->count++;
1279	driver->ttys[tty->index] = tty;
1280	return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 *	tty_driver_install_tty() - install a tty entry in the driver
1286 *	@driver: the driver for the tty
1287 *	@tty: the tty
1288 *
1289 *	Install a tty object into the driver tables. The tty->index field
1290 *	will be set by the time this is called. This method is responsible
1291 *	for ensuring any need additional structures are allocated and
1292 *	configured.
1293 *
1294 *	Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297						struct tty_struct *tty)
1298{
1299	return driver->ops->install ? driver->ops->install(driver, tty) :
1300		tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 *	tty_driver_remove_tty() - remove a tty from the driver tables
1305 *	@driver: the driver for the tty
1306 *	@idx:	 the minor number
1307 *
1308 *	Remvoe a tty object from the driver tables. The tty->index field
1309 *	will be set by the time this is called.
1310 *
1311 *	Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315	if (driver->ops->remove)
1316		driver->ops->remove(driver, tty);
1317	else
1318		driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * 	tty_reopen()	- fast re-open of an open tty
1323 * 	@tty	- the tty to open
1324 *
1325 *	Return 0 on success, -errno on error.
1326 *
1327 *	Locking: tty_mutex must be held from the time the tty was found
1328 *		 till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332	struct tty_driver *driver = tty->driver;
1333
1334	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335			test_bit(TTY_HUPPING, &tty->flags) ||
1336			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337		return -EIO;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER) {
1341		/*
1342		 * special case for PTY masters: only one open permitted,
1343		 * and the slave side open count is incremented as well.
1344		 */
1345		if (tty->count)
1346			return -EIO;
1347
1348		tty->link->count++;
1349	}
1350	tty->count++;
1351
1352	mutex_lock(&tty->ldisc_mutex);
1353	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354	mutex_unlock(&tty->ldisc_mutex);
1355
1356	return 0;
1357}
1358
1359/**
1360 *	tty_init_dev		-	initialise a tty device
1361 *	@driver: tty driver we are opening a device on
1362 *	@idx: device index
1363 *	@ret_tty: returned tty structure
1364 *
1365 *	Prepare a tty device. This may not be a "new" clean device but
1366 *	could also be an active device. The pty drivers require special
1367 *	handling because of this.
1368 *
1369 *	Locking:
1370 *		The function is called under the tty_mutex, which
1371 *	protects us from the tty struct or driver itself going away.
1372 *
1373 *	On exit the tty device has the line discipline attached and
1374 *	a reference count of 1. If a pair was created for pty/tty use
1375 *	and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open.  The new code protects the open with a mutex, so it's
1379 * really quite straightforward.  The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385	struct tty_struct *tty;
1386	int retval;
1387
1388	/*
1389	 * First time open is complex, especially for PTY devices.
1390	 * This code guarantees that either everything succeeds and the
1391	 * TTY is ready for operation, or else the table slots are vacated
1392	 * and the allocated memory released.  (Except that the termios
1393	 * and locked termios may be retained.)
1394	 */
1395
1396	if (!try_module_get(driver->owner))
1397		return ERR_PTR(-ENODEV);
1398
1399	tty = alloc_tty_struct();
1400	if (!tty) {
1401		retval = -ENOMEM;
1402		goto err_module_put;
1403	}
1404	initialize_tty_struct(tty, driver, idx);
1405
 
1406	retval = tty_driver_install_tty(driver, tty);
1407	if (retval < 0)
1408		goto err_deinit_tty;
1409
 
 
 
 
 
 
 
 
 
1410	/*
1411	 * Structures all installed ... call the ldisc open routines.
1412	 * If we fail here just call release_tty to clean up.  No need
1413	 * to decrement the use counts, as release_tty doesn't care.
1414	 */
1415	retval = tty_ldisc_setup(tty, tty->link);
1416	if (retval)
1417		goto err_release_tty;
 
1418	return tty;
1419
1420err_deinit_tty:
 
1421	deinitialize_tty_struct(tty);
1422	free_tty_struct(tty);
1423err_module_put:
1424	module_put(driver->owner);
1425	return ERR_PTR(retval);
1426
1427	/* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
 
1429	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430				 "clearing slot %d\n", idx);
1431	release_tty(tty, idx);
1432	return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
1436{
1437	struct ktermios *tp;
1438	int idx = tty->index;
1439	/* Kill this flag and push into drivers for locking etc */
1440	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441		/* FIXME: Locking on ->termios array */
1442		tp = tty->termios;
1443		tty->driver->termios[idx] = NULL;
1444		kfree(tp);
 
 
 
 
 
 
 
 
1445	}
 
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1450{
1451	tty_driver_remove_tty(tty->driver, tty);
1452	tty_free_termios(tty);
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 *	release_one_tty		-	release tty structure memory
1458 *	@kref: kref of tty we are obliterating
1459 *
1460 *	Releases memory associated with a tty structure, and clears out the
1461 *	driver table slots. This function is called when a device is no longer
1462 *	in use. It also gets called when setup of a device fails.
1463 *
1464 *	Locking:
1465 *		tty_mutex - sometimes only
1466 *		takes the file list lock internally when working on the list
1467 *	of ttys that the driver keeps.
1468 *
1469 *	This method gets called from a work queue so that the driver private
1470 *	cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474	struct tty_struct *tty =
1475		container_of(work, struct tty_struct, hangup_work);
1476	struct tty_driver *driver = tty->driver;
1477
1478	if (tty->ops->cleanup)
1479		tty->ops->cleanup(tty);
1480
1481	tty->magic = 0;
1482	tty_driver_kref_put(driver);
1483	module_put(driver->owner);
1484
1485	spin_lock(&tty_files_lock);
1486	list_del_init(&tty->tty_files);
1487	spin_unlock(&tty_files_lock);
1488
1489	put_pid(tty->pgrp);
1490	put_pid(tty->session);
1491	free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498	if (tty->ops->shutdown)
1499		tty->ops->shutdown(tty);
1500	else
1501		tty_shutdown(tty);
1502
1503	/* The hangup queue is now free so we can reuse it rather than
1504	   waste a chunk of memory for each port */
1505	INIT_WORK(&tty->hangup_work, release_one_tty);
1506	schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 *	tty_kref_put		-	release a tty kref
1511 *	@tty: tty device
1512 *
1513 *	Release a reference to a tty device and if need be let the kref
1514 *	layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519	if (tty)
1520		kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 *	release_tty		-	release tty structure memory
1526 *
1527 *	Release both @tty and a possible linked partner (think pty pair),
1528 *	and decrement the refcount of the backing module.
1529 *
1530 *	Locking:
1531 *		tty_mutex - sometimes only
1532 *		takes the file list lock internally when working on the list
1533 *	of ttys that the driver keeps.
1534 *		FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539	/* This should always be true but check for the moment */
1540	WARN_ON(tty->index != idx);
 
 
 
 
 
 
 
 
 
1541
1542	if (tty->link)
1543		tty_kref_put(tty->link);
1544	tty_kref_put(tty);
1545}
1546
1547/**
1548 *	tty_release_checks - check a tty before real release
1549 *	@tty: tty to check
1550 *	@o_tty: link of @tty (if any)
1551 *	@idx: index of the tty
1552 *
1553 *	Performs some paranoid checking before true release of the @tty.
1554 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557		int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560	if (idx < 0 || idx >= tty->driver->num) {
1561		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562				__func__, tty->name);
1563		return -1;
1564	}
1565
1566	/* not much to check for devpts */
1567	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568		return 0;
1569
1570	if (tty != tty->driver->ttys[idx]) {
1571		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572				__func__, idx, tty->name);
1573		return -1;
1574	}
1575	if (tty->termios != tty->driver->termios[idx]) {
1576		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577				__func__, idx, tty->name);
1578		return -1;
1579	}
1580	if (tty->driver->other) {
1581		if (o_tty != tty->driver->other->ttys[idx]) {
1582			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583					__func__, idx, tty->name);
1584			return -1;
1585		}
1586		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588					__func__, idx, tty->name);
1589			return -1;
1590		}
1591		if (o_tty->link != tty) {
1592			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593			return -1;
1594		}
1595	}
1596#endif
1597	return 0;
1598}
1599
1600/**
1601 *	tty_release		-	vfs callback for close
1602 *	@inode: inode of tty
1603 *	@filp: file pointer for handle to tty
1604 *
1605 *	Called the last time each file handle is closed that references
1606 *	this tty. There may however be several such references.
1607 *
1608 *	Locking:
1609 *		Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621	struct tty_struct *tty = file_tty(filp);
1622	struct tty_struct *o_tty;
1623	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624	int	devpts;
1625	int	idx;
1626	char	buf[64];
1627
1628	if (tty_paranoia_check(tty, inode, __func__))
1629		return 0;
1630
1631	tty_lock();
1632	check_tty_count(tty, __func__);
1633
1634	__tty_fasync(-1, filp, 0);
1635
1636	idx = tty->index;
1637	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638		      tty->driver->subtype == PTY_TYPE_MASTER);
1639	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640	o_tty = tty->link;
1641
1642	if (tty_release_checks(tty, o_tty, idx)) {
1643		tty_unlock();
1644		return 0;
1645	}
1646
1647#ifdef TTY_DEBUG_HANGUP
1648	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649			tty_name(tty, buf), tty->count);
1650#endif
1651
1652	if (tty->ops->close)
1653		tty->ops->close(tty, filp);
1654
1655	tty_unlock();
1656	/*
1657	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659	 * wait queues and kick everyone out _before_ actually starting to
1660	 * close.  This ensures that we won't block while releasing the tty
1661	 * structure.
1662	 *
1663	 * The test for the o_tty closing is necessary, since the master and
1664	 * slave sides may close in any order.  If the slave side closes out
1665	 * first, its count will be one, since the master side holds an open.
1666	 * Thus this test wouldn't be triggered at the time the slave closes,
1667	 * so we do it now.
1668	 *
1669	 * Note that it's possible for the tty to be opened again while we're
1670	 * flushing out waiters.  By recalculating the closing flags before
1671	 * each iteration we avoid any problems.
1672	 */
1673	while (1) {
1674		/* Guard against races with tty->count changes elsewhere and
1675		   opens on /dev/tty */
1676
1677		mutex_lock(&tty_mutex);
1678		tty_lock();
1679		tty_closing = tty->count <= 1;
1680		o_tty_closing = o_tty &&
1681			(o_tty->count <= (pty_master ? 1 : 0));
1682		do_sleep = 0;
1683
1684		if (tty_closing) {
1685			if (waitqueue_active(&tty->read_wait)) {
1686				wake_up_poll(&tty->read_wait, POLLIN);
1687				do_sleep++;
1688			}
1689			if (waitqueue_active(&tty->write_wait)) {
1690				wake_up_poll(&tty->write_wait, POLLOUT);
1691				do_sleep++;
1692			}
1693		}
1694		if (o_tty_closing) {
1695			if (waitqueue_active(&o_tty->read_wait)) {
1696				wake_up_poll(&o_tty->read_wait, POLLIN);
1697				do_sleep++;
1698			}
1699			if (waitqueue_active(&o_tty->write_wait)) {
1700				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701				do_sleep++;
1702			}
1703		}
1704		if (!do_sleep)
1705			break;
1706
1707		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708				__func__, tty_name(tty, buf));
1709		tty_unlock();
1710		mutex_unlock(&tty_mutex);
1711		schedule();
1712	}
1713
1714	/*
1715	 * The closing flags are now consistent with the open counts on
1716	 * both sides, and we've completed the last operation that could
1717	 * block, so it's safe to proceed with closing.
 
 
 
1718	 */
1719	if (pty_master) {
1720		if (--o_tty->count < 0) {
1721			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722				__func__, o_tty->count, tty_name(o_tty, buf));
1723			o_tty->count = 0;
1724		}
1725	}
1726	if (--tty->count < 0) {
1727		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728				__func__, tty->count, tty_name(tty, buf));
1729		tty->count = 0;
1730	}
1731
1732	/*
1733	 * We've decremented tty->count, so we need to remove this file
1734	 * descriptor off the tty->tty_files list; this serves two
1735	 * purposes:
1736	 *  - check_tty_count sees the correct number of file descriptors
1737	 *    associated with this tty.
1738	 *  - do_tty_hangup no longer sees this file descriptor as
1739	 *    something that needs to be handled for hangups.
1740	 */
1741	tty_del_file(filp);
1742
1743	/*
1744	 * Perform some housekeeping before deciding whether to return.
1745	 *
1746	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747	 * case of a pty we may have to wait around for the other side
1748	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749	 */
1750	if (tty_closing)
1751		set_bit(TTY_CLOSING, &tty->flags);
1752	if (o_tty_closing)
1753		set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755	/*
1756	 * If _either_ side is closing, make sure there aren't any
1757	 * processes that still think tty or o_tty is their controlling
1758	 * tty.
1759	 */
1760	if (tty_closing || o_tty_closing) {
1761		read_lock(&tasklist_lock);
1762		session_clear_tty(tty->session);
1763		if (o_tty)
1764			session_clear_tty(o_tty->session);
1765		read_unlock(&tasklist_lock);
1766	}
1767
1768	mutex_unlock(&tty_mutex);
 
 
 
1769
1770	/* check whether both sides are closing ... */
1771	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772		tty_unlock();
1773		return 0;
1774	}
1775
1776#ifdef TTY_DEBUG_HANGUP
1777	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779	/*
1780	 * Ask the line discipline code to release its structures
1781	 */
1782	tty_ldisc_release(tty, o_tty);
 
 
 
 
 
 
 
 
 
1783	/*
1784	 * The release_tty function takes care of the details of clearing
1785	 * the slots and preserving the termios structure.
 
 
1786	 */
 
1787	release_tty(tty, idx);
 
1788
1789	/* Make this pty number available for reallocation */
1790	if (devpts)
1791		devpts_kill_index(inode, idx);
1792	tty_unlock();
1793	return 0;
1794}
1795
1796/**
1797 *	tty_open_current_tty - get tty of current task for open
1798 *	@device: device number
1799 *	@filp: file pointer to tty
1800 *	@return: tty of the current task iff @device is /dev/tty
1801 *
1802 *	We cannot return driver and index like for the other nodes because
1803 *	devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 *	We need to move to returning a refcounted object from all the lookup
1806 *	paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810	struct tty_struct *tty;
1811
1812	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813		return NULL;
1814
1815	tty = get_current_tty();
1816	if (!tty)
1817		return ERR_PTR(-ENXIO);
1818
1819	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820	/* noctty = 1; */
1821	tty_kref_put(tty);
1822	/* FIXME: we put a reference and return a TTY! */
1823	/* This is only safe because the caller holds tty_mutex */
1824	return tty;
1825}
1826
1827/**
1828 *	tty_lookup_driver - lookup a tty driver for a given device file
1829 *	@device: device number
1830 *	@filp: file pointer to tty
1831 *	@noctty: set if the device should not become a controlling tty
1832 *	@index: index for the device in the @return driver
1833 *	@return: driver for this inode (with increased refcount)
1834 *
1835 * 	If @return is not erroneous, the caller is responsible to decrement the
1836 * 	refcount by tty_driver_kref_put.
1837 *
1838 *	Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841		int *noctty, int *index)
1842{
1843	struct tty_driver *driver;
1844
1845	switch (device) {
1846#ifdef CONFIG_VT
1847	case MKDEV(TTY_MAJOR, 0): {
1848		extern struct tty_driver *console_driver;
1849		driver = tty_driver_kref_get(console_driver);
1850		*index = fg_console;
1851		*noctty = 1;
1852		break;
1853	}
1854#endif
1855	case MKDEV(TTYAUX_MAJOR, 1): {
1856		struct tty_driver *console_driver = console_device(index);
1857		if (console_driver) {
1858			driver = tty_driver_kref_get(console_driver);
1859			if (driver) {
1860				/* Don't let /dev/console block */
1861				filp->f_flags |= O_NONBLOCK;
1862				*noctty = 1;
1863				break;
1864			}
1865		}
1866		return ERR_PTR(-ENODEV);
1867	}
1868	default:
1869		driver = get_tty_driver(device, index);
1870		if (!driver)
1871			return ERR_PTR(-ENODEV);
1872		break;
1873	}
1874	return driver;
1875}
1876
1877/**
1878 *	tty_open		-	open a tty device
1879 *	@inode: inode of device file
1880 *	@filp: file pointer to tty
1881 *
1882 *	tty_open and tty_release keep up the tty count that contains the
1883 *	number of opens done on a tty. We cannot use the inode-count, as
1884 *	different inodes might point to the same tty.
1885 *
1886 *	Open-counting is needed for pty masters, as well as for keeping
1887 *	track of serial lines: DTR is dropped when the last close happens.
1888 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889 *
1890 *	The termios state of a pty is reset on first open so that
1891 *	settings don't persist across reuse.
1892 *
1893 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 *		 tty->count should protect the rest.
1895 *		 ->siglock protects ->signal/->sighand
 
 
 
1896 */
1897
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901	int noctty, retval;
1902	struct tty_driver *driver = NULL;
1903	int index;
1904	dev_t device = inode->i_rdev;
1905	unsigned saved_flags = filp->f_flags;
1906
1907	nonseekable_open(inode, filp);
1908
1909retry_open:
1910	retval = tty_alloc_file(filp);
1911	if (retval)
1912		return -ENOMEM;
1913
1914	noctty = filp->f_flags & O_NOCTTY;
1915	index  = -1;
1916	retval = 0;
1917
1918	mutex_lock(&tty_mutex);
1919	tty_lock();
1920
1921	tty = tty_open_current_tty(device, filp);
1922	if (IS_ERR(tty)) {
1923		retval = PTR_ERR(tty);
1924		goto err_unlock;
1925	} else if (!tty) {
1926		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927		if (IS_ERR(driver)) {
1928			retval = PTR_ERR(driver);
1929			goto err_unlock;
1930		}
1931
1932		/* check whether we're reopening an existing tty */
1933		tty = tty_driver_lookup_tty(driver, inode, index);
1934		if (IS_ERR(tty)) {
1935			retval = PTR_ERR(tty);
1936			goto err_unlock;
1937		}
1938	}
1939
1940	if (tty) {
 
1941		retval = tty_reopen(tty);
1942		if (retval)
 
1943			tty = ERR_PTR(retval);
1944	} else
 
1945		tty = tty_init_dev(driver, index);
1946
1947	mutex_unlock(&tty_mutex);
1948	if (driver)
1949		tty_driver_kref_put(driver);
1950	if (IS_ERR(tty)) {
1951		tty_unlock();
1952		retval = PTR_ERR(tty);
1953		goto err_file;
1954	}
1955
1956	tty_add_file(tty, filp);
1957
1958	check_tty_count(tty, __func__);
1959	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960	    tty->driver->subtype == PTY_TYPE_MASTER)
1961		noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965	if (tty->ops->open)
1966		retval = tty->ops->open(tty, filp);
1967	else
1968		retval = -ENODEV;
1969	filp->f_flags = saved_flags;
1970
1971	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972						!capable(CAP_SYS_ADMIN))
1973		retval = -EBUSY;
1974
1975	if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978				retval, tty->name);
1979#endif
1980		tty_unlock(); /* need to call tty_release without BTM */
1981		tty_release(inode, filp);
1982		if (retval != -ERESTARTSYS)
1983			return retval;
1984
1985		if (signal_pending(current))
1986			return retval;
1987
1988		schedule();
1989		/*
1990		 * Need to reset f_op in case a hangup happened.
1991		 */
1992		tty_lock();
1993		if (filp->f_op == &hung_up_tty_fops)
1994			filp->f_op = &tty_fops;
1995		tty_unlock();
1996		goto retry_open;
1997	}
1998	tty_unlock();
 
1999
2000
2001	mutex_lock(&tty_mutex);
2002	tty_lock();
2003	spin_lock_irq(&current->sighand->siglock);
2004	if (!noctty &&
2005	    current->signal->leader &&
2006	    !current->signal->tty &&
2007	    tty->session == NULL)
2008		__proc_set_tty(current, tty);
2009	spin_unlock_irq(&current->sighand->siglock);
2010	tty_unlock();
2011	mutex_unlock(&tty_mutex);
2012	return 0;
2013err_unlock:
2014	tty_unlock();
2015	mutex_unlock(&tty_mutex);
2016	/* after locks to avoid deadlock */
2017	if (!IS_ERR_OR_NULL(driver))
2018		tty_driver_kref_put(driver);
2019err_file:
2020	tty_free_file(filp);
2021	return retval;
2022}
2023
2024
2025
2026/**
2027 *	tty_poll	-	check tty status
2028 *	@filp: file being polled
2029 *	@wait: poll wait structures to update
2030 *
2031 *	Call the line discipline polling method to obtain the poll
2032 *	status of the device.
2033 *
2034 *	Locking: locks called line discipline but ldisc poll method
2035 *	may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040	struct tty_struct *tty = file_tty(filp);
2041	struct tty_ldisc *ld;
2042	int ret = 0;
2043
2044	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045		return 0;
2046
2047	ld = tty_ldisc_ref_wait(tty);
2048	if (ld->ops->poll)
2049		ret = (ld->ops->poll)(tty, filp, wait);
2050	tty_ldisc_deref(ld);
2051	return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056	struct tty_struct *tty = file_tty(filp);
 
2057	unsigned long flags;
2058	int retval = 0;
2059
2060	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061		goto out;
2062
2063	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064	if (retval <= 0)
2065		goto out;
2066
 
 
 
 
 
 
 
2067	if (on) {
2068		enum pid_type type;
2069		struct pid *pid;
2070		if (!waitqueue_active(&tty->read_wait))
2071			tty->minimum_to_wake = 1;
2072		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073		if (tty->pgrp) {
2074			pid = tty->pgrp;
2075			type = PIDTYPE_PGID;
2076		} else {
2077			pid = task_pid(current);
2078			type = PIDTYPE_PID;
2079		}
2080		get_pid(pid);
2081		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082		retval = __f_setown(filp, pid, type, 0);
2083		put_pid(pid);
2084		if (retval)
2085			goto out;
2086	} else {
2087		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089	}
2090	retval = 0;
2091out:
2092	return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
 
2097	int retval;
2098	tty_lock();
 
2099	retval = __tty_fasync(fd, filp, on);
2100	tty_unlock();
 
2101	return retval;
2102}
2103
2104/**
2105 *	tiocsti			-	fake input character
2106 *	@tty: tty to fake input into
2107 *	@p: pointer to character
2108 *
2109 *	Fake input to a tty device. Does the necessary locking and
2110 *	input management.
2111 *
2112 *	FIXME: does not honour flow control ??
2113 *
2114 *	Locking:
2115 *		Called functions take tty_ldisc_lock
2116 *		current->signal->tty check is safe without locks
2117 *
2118 *	FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123	char ch, mbz = 0;
2124	struct tty_ldisc *ld;
2125
2126	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127		return -EPERM;
2128	if (get_user(ch, p))
2129		return -EFAULT;
2130	tty_audit_tiocsti(tty, ch);
2131	ld = tty_ldisc_ref_wait(tty);
2132	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133	tty_ldisc_deref(ld);
2134	return 0;
2135}
2136
2137/**
2138 *	tiocgwinsz		-	implement window query ioctl
2139 *	@tty; tty
2140 *	@arg: user buffer for result
2141 *
2142 *	Copies the kernel idea of the window size into the user buffer.
2143 *
2144 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145 *		is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150	int err;
2151
2152	mutex_lock(&tty->termios_mutex);
2153	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154	mutex_unlock(&tty->termios_mutex);
2155
2156	return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 *	tty_do_resize		-	resize event
2161 *	@tty: tty being resized
2162 *	@rows: rows (character)
2163 *	@cols: cols (character)
2164 *
2165 *	Update the termios variables and send the necessary signals to
2166 *	peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171	struct pid *pgrp;
2172	unsigned long flags;
2173
2174	/* Lock the tty */
2175	mutex_lock(&tty->termios_mutex);
2176	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177		goto done;
2178	/* Get the PID values and reference them so we can
2179	   avoid holding the tty ctrl lock while sending signals */
2180	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181	pgrp = get_pid(tty->pgrp);
2182	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184	if (pgrp)
2185		kill_pgrp(pgrp, SIGWINCH, 1);
2186	put_pid(pgrp);
2187
2188	tty->winsize = *ws;
2189done:
2190	mutex_unlock(&tty->termios_mutex);
2191	return 0;
2192}
 
2193
2194/**
2195 *	tiocswinsz		-	implement window size set ioctl
2196 *	@tty; tty side of tty
2197 *	@arg: user buffer for result
2198 *
2199 *	Copies the user idea of the window size to the kernel. Traditionally
2200 *	this is just advisory information but for the Linux console it
2201 *	actually has driver level meaning and triggers a VC resize.
2202 *
2203 *	Locking:
2204 *		Driver dependent. The default do_resize method takes the
2205 *	tty termios mutex and ctrl_lock. The console takes its own lock
2206 *	then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211	struct winsize tmp_ws;
2212	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213		return -EFAULT;
2214
2215	if (tty->ops->resize)
2216		return tty->ops->resize(tty, &tmp_ws);
2217	else
2218		return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 *	tioccons	-	allow admin to move logical console
2223 *	@file: the file to become console
2224 *
2225 *	Allow the administrator to move the redirected console device
2226 *
2227 *	Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234	if (file->f_op->write == redirected_tty_write) {
2235		struct file *f;
2236		spin_lock(&redirect_lock);
2237		f = redirect;
2238		redirect = NULL;
2239		spin_unlock(&redirect_lock);
2240		if (f)
2241			fput(f);
2242		return 0;
2243	}
2244	spin_lock(&redirect_lock);
2245	if (redirect) {
2246		spin_unlock(&redirect_lock);
2247		return -EBUSY;
2248	}
2249	get_file(file);
2250	redirect = file;
2251	spin_unlock(&redirect_lock);
2252	return 0;
2253}
2254
2255/**
2256 *	fionbio		-	non blocking ioctl
2257 *	@file: file to set blocking value
2258 *	@p: user parameter
2259 *
2260 *	Historical tty interfaces had a blocking control ioctl before
2261 *	the generic functionality existed. This piece of history is preserved
2262 *	in the expected tty API of posix OS's.
2263 *
2264 *	Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269	int nonblock;
2270
2271	if (get_user(nonblock, p))
2272		return -EFAULT;
2273
2274	spin_lock(&file->f_lock);
2275	if (nonblock)
2276		file->f_flags |= O_NONBLOCK;
2277	else
2278		file->f_flags &= ~O_NONBLOCK;
2279	spin_unlock(&file->f_lock);
2280	return 0;
2281}
2282
2283/**
2284 *	tiocsctty	-	set controlling tty
2285 *	@tty: tty structure
2286 *	@arg: user argument
2287 *
2288 *	This ioctl is used to manage job control. It permits a session
2289 *	leader to set this tty as the controlling tty for the session.
2290 *
2291 *	Locking:
2292 *		Takes tty_mutex() to protect tty instance
2293 *		Takes tasklist_lock internally to walk sessions
2294 *		Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299	int ret = 0;
2300	if (current->signal->leader && (task_session(current) == tty->session))
2301		return ret;
2302
2303	mutex_lock(&tty_mutex);
2304	/*
2305	 * The process must be a session leader and
2306	 * not have a controlling tty already.
2307	 */
2308	if (!current->signal->leader || current->signal->tty) {
2309		ret = -EPERM;
2310		goto unlock;
2311	}
2312
2313	if (tty->session) {
2314		/*
2315		 * This tty is already the controlling
2316		 * tty for another session group!
2317		 */
2318		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319			/*
2320			 * Steal it away
2321			 */
2322			read_lock(&tasklist_lock);
2323			session_clear_tty(tty->session);
2324			read_unlock(&tasklist_lock);
2325		} else {
2326			ret = -EPERM;
2327			goto unlock;
2328		}
2329	}
2330	proc_set_tty(current, tty);
2331unlock:
2332	mutex_unlock(&tty_mutex);
2333	return ret;
2334}
2335
2336/**
2337 *	tty_get_pgrp	-	return a ref counted pgrp pid
2338 *	@tty: tty to read
2339 *
2340 *	Returns a refcounted instance of the pid struct for the process
2341 *	group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346	unsigned long flags;
2347	struct pid *pgrp;
2348
2349	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350	pgrp = get_pid(tty->pgrp);
2351	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353	return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 *	tiocgpgrp		-	get process group
2359 *	@tty: tty passed by user
2360 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361 *	@p: returned pid
2362 *
2363 *	Obtain the process group of the tty. If there is no process group
2364 *	return an error.
2365 *
2366 *	Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371	struct pid *pid;
2372	int ret;
2373	/*
2374	 * (tty == real_tty) is a cheap way of
2375	 * testing if the tty is NOT a master pty.
2376	 */
2377	if (tty == real_tty && current->signal->tty != real_tty)
2378		return -ENOTTY;
2379	pid = tty_get_pgrp(real_tty);
2380	ret =  put_user(pid_vnr(pid), p);
2381	put_pid(pid);
2382	return ret;
2383}
2384
2385/**
2386 *	tiocspgrp		-	attempt to set process group
2387 *	@tty: tty passed by user
2388 *	@real_tty: tty side device matching tty passed by user
2389 *	@p: pid pointer
2390 *
2391 *	Set the process group of the tty to the session passed. Only
2392 *	permitted where the tty session is our session.
2393 *
2394 *	Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399	struct pid *pgrp;
2400	pid_t pgrp_nr;
2401	int retval = tty_check_change(real_tty);
2402	unsigned long flags;
2403
2404	if (retval == -EIO)
2405		return -ENOTTY;
2406	if (retval)
2407		return retval;
2408	if (!current->signal->tty ||
2409	    (current->signal->tty != real_tty) ||
2410	    (real_tty->session != task_session(current)))
2411		return -ENOTTY;
2412	if (get_user(pgrp_nr, p))
2413		return -EFAULT;
2414	if (pgrp_nr < 0)
2415		return -EINVAL;
2416	rcu_read_lock();
2417	pgrp = find_vpid(pgrp_nr);
2418	retval = -ESRCH;
2419	if (!pgrp)
2420		goto out_unlock;
2421	retval = -EPERM;
2422	if (session_of_pgrp(pgrp) != task_session(current))
2423		goto out_unlock;
2424	retval = 0;
2425	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426	put_pid(real_tty->pgrp);
2427	real_tty->pgrp = get_pid(pgrp);
2428	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430	rcu_read_unlock();
2431	return retval;
2432}
2433
2434/**
2435 *	tiocgsid		-	get session id
2436 *	@tty: tty passed by user
2437 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438 *	@p: pointer to returned session id
2439 *
2440 *	Obtain the session id of the tty. If there is no session
2441 *	return an error.
2442 *
2443 *	Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448	/*
2449	 * (tty == real_tty) is a cheap way of
2450	 * testing if the tty is NOT a master pty.
2451	*/
2452	if (tty == real_tty && current->signal->tty != real_tty)
2453		return -ENOTTY;
2454	if (!real_tty->session)
2455		return -ENOTTY;
2456	return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 *	tiocsetd	-	set line discipline
2461 *	@tty: tty device
2462 *	@p: pointer to user data
2463 *
2464 *	Set the line discipline according to user request.
2465 *
2466 *	Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471	int ldisc;
2472	int ret;
2473
2474	if (get_user(ldisc, p))
2475		return -EFAULT;
2476
2477	ret = tty_set_ldisc(tty, ldisc);
2478
2479	return ret;
2480}
2481
2482/**
2483 *	send_break	-	performed time break
2484 *	@tty: device to break on
2485 *	@duration: timeout in mS
2486 *
2487 *	Perform a timed break on hardware that lacks its own driver level
2488 *	timed break functionality.
2489 *
2490 *	Locking:
2491 *		atomic_write_lock serializes
2492 *
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497	int retval;
2498
2499	if (tty->ops->break_ctl == NULL)
2500		return 0;
2501
2502	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503		retval = tty->ops->break_ctl(tty, duration);
2504	else {
2505		/* Do the work ourselves */
2506		if (tty_write_lock(tty, 0) < 0)
2507			return -EINTR;
2508		retval = tty->ops->break_ctl(tty, -1);
2509		if (retval)
2510			goto out;
2511		if (!signal_pending(current))
2512			msleep_interruptible(duration);
2513		retval = tty->ops->break_ctl(tty, 0);
2514out:
2515		tty_write_unlock(tty);
2516		if (signal_pending(current))
2517			retval = -EINTR;
2518	}
2519	return retval;
2520}
2521
2522/**
2523 *	tty_tiocmget		-	get modem status
2524 *	@tty: tty device
2525 *	@file: user file pointer
2526 *	@p: pointer to result
2527 *
2528 *	Obtain the modem status bits from the tty driver if the feature
2529 *	is supported. Return -EINVAL if it is not available.
2530 *
2531 *	Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536	int retval = -EINVAL;
2537
2538	if (tty->ops->tiocmget) {
2539		retval = tty->ops->tiocmget(tty);
2540
2541		if (retval >= 0)
2542			retval = put_user(retval, p);
2543	}
2544	return retval;
2545}
2546
2547/**
2548 *	tty_tiocmset		-	set modem status
2549 *	@tty: tty device
2550 *	@cmd: command - clear bits, set bits or set all
2551 *	@p: pointer to desired bits
2552 *
2553 *	Set the modem status bits from the tty driver if the feature
2554 *	is supported. Return -EINVAL if it is not available.
2555 *
2556 *	Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560	     unsigned __user *p)
2561{
2562	int retval;
2563	unsigned int set, clear, val;
2564
2565	if (tty->ops->tiocmset == NULL)
2566		return -EINVAL;
2567
2568	retval = get_user(val, p);
2569	if (retval)
2570		return retval;
2571	set = clear = 0;
2572	switch (cmd) {
2573	case TIOCMBIS:
2574		set = val;
2575		break;
2576	case TIOCMBIC:
2577		clear = val;
2578		break;
2579	case TIOCMSET:
2580		set = val;
2581		clear = ~val;
2582		break;
2583	}
2584	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	return tty->ops->tiocmset(tty, set, clear);
2587}
2588
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591	int retval = -EINVAL;
2592	struct serial_icounter_struct icount;
2593	memset(&icount, 0, sizeof(icount));
2594	if (tty->ops->get_icount)
2595		retval = tty->ops->get_icount(tty, &icount);
2596	if (retval != 0)
2597		return retval;
2598	if (copy_to_user(arg, &icount, sizeof(icount)))
2599		return -EFAULT;
2600	return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606	    tty->driver->subtype == PTY_TYPE_MASTER)
2607		tty = tty->link;
2608	return tty;
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2613{
2614	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615	    tty->driver->subtype == PTY_TYPE_MASTER)
2616	    return tty;
2617	return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626	struct tty_struct *tty = file_tty(file);
2627	struct tty_struct *real_tty;
2628	void __user *p = (void __user *)arg;
2629	int retval;
2630	struct tty_ldisc *ld;
2631	struct inode *inode = file->f_dentry->d_inode;
2632
2633	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634		return -EINVAL;
2635
2636	real_tty = tty_pair_get_tty(tty);
2637
2638	/*
2639	 * Factor out some common prep work
2640	 */
2641	switch (cmd) {
2642	case TIOCSETD:
2643	case TIOCSBRK:
2644	case TIOCCBRK:
2645	case TCSBRK:
2646	case TCSBRKP:
2647		retval = tty_check_change(tty);
2648		if (retval)
2649			return retval;
2650		if (cmd != TIOCCBRK) {
2651			tty_wait_until_sent(tty, 0);
2652			if (signal_pending(current))
2653				return -EINTR;
2654		}
2655		break;
2656	}
2657
2658	/*
2659	 *	Now do the stuff.
2660	 */
2661	switch (cmd) {
2662	case TIOCSTI:
2663		return tiocsti(tty, p);
2664	case TIOCGWINSZ:
2665		return tiocgwinsz(real_tty, p);
2666	case TIOCSWINSZ:
2667		return tiocswinsz(real_tty, p);
2668	case TIOCCONS:
2669		return real_tty != tty ? -EINVAL : tioccons(file);
2670	case FIONBIO:
2671		return fionbio(file, p);
2672	case TIOCEXCL:
2673		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674		return 0;
2675	case TIOCNXCL:
2676		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677		return 0;
 
 
 
 
 
2678	case TIOCNOTTY:
2679		if (current->signal->tty != tty)
2680			return -ENOTTY;
2681		no_tty();
2682		return 0;
2683	case TIOCSCTTY:
2684		return tiocsctty(tty, arg);
2685	case TIOCGPGRP:
2686		return tiocgpgrp(tty, real_tty, p);
2687	case TIOCSPGRP:
2688		return tiocspgrp(tty, real_tty, p);
2689	case TIOCGSID:
2690		return tiocgsid(tty, real_tty, p);
2691	case TIOCGETD:
2692		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693	case TIOCSETD:
2694		return tiocsetd(tty, p);
2695	case TIOCVHANGUP:
2696		if (!capable(CAP_SYS_ADMIN))
2697			return -EPERM;
2698		tty_vhangup(tty);
2699		return 0;
2700	case TIOCGDEV:
2701	{
2702		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703		return put_user(ret, (unsigned int __user *)p);
2704	}
2705	/*
2706	 * Break handling
2707	 */
2708	case TIOCSBRK:	/* Turn break on, unconditionally */
2709		if (tty->ops->break_ctl)
2710			return tty->ops->break_ctl(tty, -1);
2711		return 0;
2712	case TIOCCBRK:	/* Turn break off, unconditionally */
2713		if (tty->ops->break_ctl)
2714			return tty->ops->break_ctl(tty, 0);
2715		return 0;
2716	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717		/* non-zero arg means wait for all output data
2718		 * to be sent (performed above) but don't send break.
2719		 * This is used by the tcdrain() termios function.
2720		 */
2721		if (!arg)
2722			return send_break(tty, 250);
2723		return 0;
2724	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725		return send_break(tty, arg ? arg*100 : 250);
2726
2727	case TIOCMGET:
2728		return tty_tiocmget(tty, p);
2729	case TIOCMSET:
2730	case TIOCMBIC:
2731	case TIOCMBIS:
2732		return tty_tiocmset(tty, cmd, p);
2733	case TIOCGICOUNT:
2734		retval = tty_tiocgicount(tty, p);
2735		/* For the moment allow fall through to the old method */
2736        	if (retval != -EINVAL)
2737			return retval;
2738		break;
2739	case TCFLSH:
2740		switch (arg) {
2741		case TCIFLUSH:
2742		case TCIOFLUSH:
2743		/* flush tty buffer and allow ldisc to process ioctl */
2744			tty_buffer_flush(tty);
2745			break;
2746		}
2747		break;
2748	}
2749	if (tty->ops->ioctl) {
2750		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751		if (retval != -ENOIOCTLCMD)
2752			return retval;
2753	}
2754	ld = tty_ldisc_ref_wait(tty);
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -EINVAL;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767				unsigned long arg)
2768{
2769	struct inode *inode = file->f_dentry->d_inode;
2770	struct tty_struct *tty = file_tty(file);
2771	struct tty_ldisc *ld;
2772	int retval = -ENOIOCTLCMD;
2773
2774	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775		return -EINVAL;
2776
2777	if (tty->ops->compat_ioctl) {
2778		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779		if (retval != -ENOIOCTLCMD)
2780			return retval;
2781	}
2782
2783	ld = tty_ldisc_ref_wait(tty);
2784	if (ld->ops->compat_ioctl)
2785		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786	else
2787		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788	tty_ldisc_deref(ld);
2789
2790	return retval;
2791}
2792#endif
2793
 
 
 
 
 
 
 
2794/*
2795 * This implements the "Secure Attention Key" ---  the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key".  Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal.  But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context.  This can
2811 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816	tty_hangup(tty);
2817#else
2818	struct task_struct *g, *p;
2819	struct pid *session;
2820	int		i;
2821	struct file	*filp;
2822	struct fdtable *fdt;
2823
2824	if (!tty)
2825		return;
2826	session = tty->session;
2827
2828	tty_ldisc_flush(tty);
2829
2830	tty_driver_flush_buffer(tty);
2831
2832	read_lock(&tasklist_lock);
2833	/* Kill the entire session */
2834	do_each_pid_task(session, PIDTYPE_SID, p) {
2835		printk(KERN_NOTICE "SAK: killed process %d"
2836			" (%s): task_session(p)==tty->session\n",
2837			task_pid_nr(p), p->comm);
2838		send_sig(SIGKILL, p, 1);
2839	} while_each_pid_task(session, PIDTYPE_SID, p);
2840	/* Now kill any processes that happen to have the
2841	 * tty open.
2842	 */
2843	do_each_thread(g, p) {
2844		if (p->signal->tty == tty) {
2845			printk(KERN_NOTICE "SAK: killed process %d"
2846			    " (%s): task_session(p)==tty->session\n",
2847			    task_pid_nr(p), p->comm);
2848			send_sig(SIGKILL, p, 1);
2849			continue;
2850		}
2851		task_lock(p);
2852		if (p->files) {
2853			/*
2854			 * We don't take a ref to the file, so we must
2855			 * hold ->file_lock instead.
2856			 */
2857			spin_lock(&p->files->file_lock);
2858			fdt = files_fdtable(p->files);
2859			for (i = 0; i < fdt->max_fds; i++) {
2860				filp = fcheck_files(p->files, i);
2861				if (!filp)
2862					continue;
2863				if (filp->f_op->read == tty_read &&
2864				    file_tty(filp) == tty) {
2865					printk(KERN_NOTICE "SAK: killed process %d"
2866					    " (%s): fd#%d opened to the tty\n",
2867					    task_pid_nr(p), p->comm, i);
2868					force_sig(SIGKILL, p);
2869					break;
2870				}
2871			}
2872			spin_unlock(&p->files->file_lock);
2873		}
2874		task_unlock(p);
2875	} while_each_thread(g, p);
2876	read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882	struct tty_struct *tty =
2883		container_of(work, struct tty_struct, SAK_work);
2884	__do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895	if (!tty)
2896		return;
2897	schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904	dev_t *devt = data;
2905	return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911	dev_t devt = tty_devnum(tty);
2912	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 *	initialize_tty_struct
2918 *	@tty: tty to initialize
2919 *
2920 *	This subroutine initializes a tty structure that has been newly
2921 *	allocated.
2922 *
2923 *	Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927		struct tty_driver *driver, int idx)
2928{
2929	memset(tty, 0, sizeof(struct tty_struct));
2930	kref_init(&tty->kref);
2931	tty->magic = TTY_MAGIC;
2932	tty_ldisc_init(tty);
2933	tty->session = NULL;
2934	tty->pgrp = NULL;
2935	tty->overrun_time = jiffies;
2936	tty_buffer_init(tty);
2937	mutex_init(&tty->termios_mutex);
2938	mutex_init(&tty->ldisc_mutex);
 
2939	init_waitqueue_head(&tty->write_wait);
2940	init_waitqueue_head(&tty->read_wait);
2941	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942	mutex_init(&tty->atomic_read_lock);
2943	mutex_init(&tty->atomic_write_lock);
2944	mutex_init(&tty->output_lock);
2945	mutex_init(&tty->echo_lock);
2946	spin_lock_init(&tty->read_lock);
2947	spin_lock_init(&tty->ctrl_lock);
2948	INIT_LIST_HEAD(&tty->tty_files);
2949	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951	tty->driver = driver;
2952	tty->ops = driver->ops;
2953	tty->index = idx;
2954	tty_line_name(driver, idx, tty->name);
2955	tty->dev = tty_get_device(tty);
2956}
2957
2958/**
2959 *	deinitialize_tty_struct
2960 *	@tty: tty to deinitialize
2961 *
2962 *	This subroutine deinitializes a tty structure that has been newly
2963 *	allocated but tty_release cannot be called on that yet.
2964 *
2965 *	Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969	tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 *	tty_put_char	-	write one character to a tty
2974 *	@tty: tty
2975 *	@ch: character
2976 *
2977 *	Write one byte to the tty using the provided put_char method
2978 *	if present. Returns the number of characters successfully output.
2979 *
2980 *	Note: the specific put_char operation in the driver layer may go
2981 *	away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986	if (tty->ops->put_char)
2987		return tty->ops->put_char(tty, ch);
2988	return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
 
 
 
 
 
 
 
 
 
2994/**
2995 *	tty_register_device - register a tty device
2996 *	@driver: the tty driver that describes the tty device
2997 *	@index: the index in the tty driver for this tty device
2998 *	@device: a struct device that is associated with this tty device.
2999 *		This field is optional, if there is no known struct device
3000 *		for this tty device it can be set to NULL safely.
3001 *
3002 *	Returns a pointer to the struct device for this tty device
3003 *	(or ERR_PTR(-EFOO) on error).
3004 *
3005 *	This call is required to be made to register an individual tty device
3006 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007 *	that bit is not set, this function should not be called by a tty
3008 *	driver.
3009 *
3010 *	Locking: ??
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014				   struct device *device)
3015{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016	char name[64];
3017	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
3018
3019	if (index >= driver->num) {
3020		printk(KERN_ERR "Attempt to register invalid tty line number "
3021		       " (%d).\n", index);
3022		return ERR_PTR(-EINVAL);
3023	}
3024
3025	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026		pty_line_name(driver, index, name);
3027	else
3028		tty_line_name(driver, index, name);
3029
3030	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * 	tty_unregister_device - unregister a tty device
3036 * 	@driver: the tty driver that describes the tty device
3037 * 	@index: the index in the tty driver for this tty device
3038 *
3039 * 	If a tty device is registered with a call to tty_register_device() then
3040 *	this function must be called when the tty device is gone.
3041 *
3042 *	Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047	device_destroy(tty_class,
3048		MKDEV(driver->major, driver->minor_start) + index);
 
 
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
 
 
 
 
 
 
 
 
 
 
3053{
3054	struct tty_driver *driver;
 
 
 
 
 
3055
3056	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057	if (driver) {
3058		kref_init(&driver->kref);
3059		driver->magic = TTY_DRIVER_MAGIC;
3060		driver->num = lines;
3061		driver->owner = owner;
3062		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063	}
 
3064	return driver;
 
 
 
 
 
 
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071	int i;
3072	struct ktermios *tp;
3073	void *p;
3074
3075	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076		/*
3077		 * Free the termios and termios_locked structures because
3078		 * we don't want to get memory leaks when modular tty
3079		 * drivers are removed from the kernel.
3080		 */
3081		for (i = 0; i < driver->num; i++) {
3082			tp = driver->termios[i];
3083			if (tp) {
3084				driver->termios[i] = NULL;
3085				kfree(tp);
3086			}
3087			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088				tty_unregister_device(driver, i);
3089		}
3090		p = driver->ttys;
3091		proc_tty_unregister_driver(driver);
3092		driver->ttys = NULL;
3093		driver->termios = NULL;
3094		kfree(p);
3095		cdev_del(&driver->cdev);
3096	}
 
 
 
 
3097	kfree(driver);
3098}
3099
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102	kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107			const struct tty_operations *op)
3108{
3109	driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115	tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124	int error;
3125	int i;
3126	dev_t dev;
3127	void **p = NULL;
3128	struct device *d;
3129
3130	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132		if (!p)
3133			return -ENOMEM;
3134	}
3135
3136	if (!driver->major) {
3137		error = alloc_chrdev_region(&dev, driver->minor_start,
3138						driver->num, driver->name);
3139		if (!error) {
3140			driver->major = MAJOR(dev);
3141			driver->minor_start = MINOR(dev);
3142		}
3143	} else {
3144		dev = MKDEV(driver->major, driver->minor_start);
3145		error = register_chrdev_region(dev, driver->num, driver->name);
3146	}
3147	if (error < 0) {
3148		kfree(p);
3149		return error;
3150	}
3151
3152	if (p) {
3153		driver->ttys = (struct tty_struct **)p;
3154		driver->termios = (struct ktermios **)(p + driver->num);
3155	} else {
3156		driver->ttys = NULL;
3157		driver->termios = NULL;
3158	}
3159
3160	cdev_init(&driver->cdev, &tty_fops);
3161	driver->cdev.owner = driver->owner;
3162	error = cdev_add(&driver->cdev, dev, driver->num);
3163	if (error) {
3164		unregister_chrdev_region(dev, driver->num);
3165		driver->ttys = NULL;
3166		driver->termios = NULL;
3167		kfree(p);
3168		return error;
3169	}
3170
3171	mutex_lock(&tty_mutex);
3172	list_add(&driver->tty_drivers, &tty_drivers);
3173	mutex_unlock(&tty_mutex);
3174
3175	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176		for (i = 0; i < driver->num; i++) {
3177			d = tty_register_device(driver, i, NULL);
3178			if (IS_ERR(d)) {
3179				error = PTR_ERR(d);
3180				goto err;
3181			}
3182		}
3183	}
3184	proc_tty_register_driver(driver);
3185	driver->flags |= TTY_DRIVER_INSTALLED;
3186	return 0;
3187
3188err:
3189	for (i--; i >= 0; i--)
3190		tty_unregister_device(driver, i);
3191
3192	mutex_lock(&tty_mutex);
3193	list_del(&driver->tty_drivers);
3194	mutex_unlock(&tty_mutex);
3195
 
3196	unregister_chrdev_region(dev, driver->num);
3197	driver->ttys = NULL;
3198	driver->termios = NULL;
3199	kfree(p);
3200	return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211	/* FIXME */
3212	if (driver->refcount)
3213		return -EBUSY;
3214#endif
3215	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216				driver->num);
3217	mutex_lock(&tty_mutex);
3218	list_del(&driver->tty_drivers);
3219	mutex_unlock(&tty_mutex);
3220	return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233	unsigned long flags;
3234	struct tty_struct *tty;
3235	spin_lock_irqsave(&p->sighand->siglock, flags);
3236	tty = p->signal->tty;
3237	p->signal->tty = NULL;
3238	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239	tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246	if (tty) {
3247		unsigned long flags;
3248		/* We should not have a session or pgrp to put here but.... */
3249		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250		put_pid(tty->session);
3251		put_pid(tty->pgrp);
3252		tty->pgrp = get_pid(task_pgrp(tsk));
3253		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254		tty->session = get_pid(task_session(tsk));
3255		if (tsk->signal->tty) {
3256			printk(KERN_DEBUG "tty not NULL!!\n");
3257			tty_kref_put(tsk->signal->tty);
3258		}
3259	}
3260	put_pid(tsk->signal->tty_old_pgrp);
3261	tsk->signal->tty = tty_kref_get(tty);
3262	tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267	spin_lock_irq(&tsk->sighand->siglock);
3268	__proc_set_tty(tsk, tty);
3269	spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274	struct tty_struct *tty;
3275	unsigned long flags;
3276
3277	spin_lock_irqsave(&current->sighand->siglock, flags);
3278	tty = tty_kref_get(current->signal->tty);
3279	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280	return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286	*fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297	initcall_t *call;
3298
3299	/* Setup the default TTY line discipline. */
3300	tty_ldisc_begin();
3301
3302	/*
3303	 * set up the console device so that later boot sequences can
3304	 * inform about problems etc..
3305	 */
3306	call = __con_initcall_start;
3307	while (call < __con_initcall_end) {
3308		(*call)();
3309		call++;
3310	}
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315	if (!mode)
3316		return NULL;
3317	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319		*mode = 0666;
3320	return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325	tty_class = class_create(THIS_MODULE, "tty");
3326	if (IS_ERR(tty_class))
3327		return PTR_ERR(tty_class);
3328	tty_class->devnode = tty_devnode;
3329	return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338				struct device_attribute *attr, char *buf)
3339{
3340	struct console *cs[16];
3341	int i = 0;
3342	struct console *c;
3343	ssize_t count = 0;
3344
3345	console_lock();
3346	for_each_console(c) {
3347		if (!c->device)
3348			continue;
3349		if (!c->write)
3350			continue;
3351		if ((c->flags & CON_ENABLED) == 0)
3352			continue;
3353		cs[i++] = c;
3354		if (i >= ARRAY_SIZE(cs))
3355			break;
3356	}
3357	while (i--)
3358		count += sprintf(buf + count, "%s%d%c",
3359				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3360	console_unlock();
3361
3362	return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370	if (consdev)
3371		sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
3380	cdev_init(&tty_cdev, &tty_fops);
3381	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383		panic("Couldn't register /dev/tty driver\n");
3384	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386	cdev_init(&console_cdev, &console_fops);
3387	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389		panic("Couldn't register /dev/console driver\n");
3390	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391			      "console");
3392	if (IS_ERR(consdev))
3393		consdev = NULL;
3394	else
3395		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398	vty_init(&console_fops);
3399#endif
3400	return 0;
3401}
3402