Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (!tty)
 185		return;
 186	if (tty->dev)
 187		put_device(tty->dev);
 188	kfree(tty->write_buf);
 189	tty->magic = 0xDEADDEAD;
 190	kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195	return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 206	file->private_data = priv;
 207
 208	return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214	struct tty_file_private *priv = file->private_data;
 215
 216	priv->tty = tty;
 217	priv->file = file;
 218
 219	spin_lock(&tty_files_lock);
 220	list_add(&priv->list, &tty->tty_files);
 221	spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232	struct tty_file_private *priv = file->private_data;
 233
 234	file->private_data = NULL;
 235	kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241	struct tty_file_private *priv = file->private_data;
 
 242
 243	spin_lock(&tty_files_lock);
 244	list_del(&priv->list);
 245	spin_unlock(&tty_files_lock);
 246	tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *	tty_name	-	return tty naming
 254 *	@tty: tty structure
 255 *	@buf: buffer for output
 256 *
 257 *	Convert a tty structure into a name. The name reflects the kernel
 258 *	naming policy and if udev is in use may not reflect user space
 259 *
 260 *	Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266		strcpy(buf, "NULL tty");
 267	else
 268		strcpy(buf, tty->name);
 269	return buf;
 270}
 271
 272EXPORT_SYMBOL(tty_name);
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 275			      const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278	if (!tty) {
 279		printk(KERN_WARNING
 280			"null TTY for (%d:%d) in %s\n",
 281			imajor(inode), iminor(inode), routine);
 282		return 1;
 283	}
 284	if (tty->magic != TTY_MAGIC) {
 285		printk(KERN_WARNING
 286			"bad magic number for tty struct (%d:%d) in %s\n",
 287			imajor(inode), iminor(inode), routine);
 288		return 1;
 289	}
 290#endif
 291	return 0;
 292}
 293
 
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 295{
 296#ifdef CHECK_TTY_COUNT
 297	struct list_head *p;
 298	int count = 0;
 299
 300	spin_lock(&tty_files_lock);
 301	list_for_each(p, &tty->tty_files) {
 302		count++;
 303	}
 304	spin_unlock(&tty_files_lock);
 305	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 307	    tty->link && tty->link->count)
 308		count++;
 309	if (tty->count != count) {
 310		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311				    "!= #fd's(%d) in %s\n",
 312		       tty->name, tty->count, count, routine);
 313		return count;
 
 314	}
 315#endif
 316	return 0;
 317}
 318
 319/**
 320 *	get_tty_driver		-	find device of a tty
 321 *	@dev_t: device identifier
 322 *	@index: returns the index of the tty
 323 *
 324 *	This routine returns a tty driver structure, given a device number
 325 *	and also passes back the index number.
 326 *
 327 *	Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332	struct tty_driver *p;
 333
 334	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335		dev_t base = MKDEV(p->major, p->minor_start);
 336		if (device < base || device >= base + p->num)
 337			continue;
 338		*index = device - base;
 339		return tty_driver_kref_get(p);
 340	}
 341	return NULL;
 342}
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *	tty_find_polling_driver	-	find device of a polled tty
 348 *	@name: name string to match
 349 *	@line: pointer to resulting tty line nr
 350 *
 351 *	This routine returns a tty driver structure, given a name
 352 *	and the condition that the tty driver is capable of polled
 353 *	operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357	struct tty_driver *p, *res = NULL;
 358	int tty_line = 0;
 359	int len;
 360	char *str, *stp;
 361
 362	for (str = name; *str; str++)
 363		if ((*str >= '0' && *str <= '9') || *str == ',')
 364			break;
 365	if (!*str)
 366		return NULL;
 367
 368	len = str - name;
 369	tty_line = simple_strtoul(str, &str, 10);
 370
 371	mutex_lock(&tty_mutex);
 372	/* Search through the tty devices to look for a match */
 373	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374		if (strncmp(name, p->name, len) != 0)
 375			continue;
 376		stp = str;
 377		if (*stp == ',')
 378			stp++;
 379		if (*stp == '\0')
 380			stp = NULL;
 381
 382		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384			res = tty_driver_kref_get(p);
 385			*line = tty_line;
 386			break;
 387		}
 388	}
 389	mutex_unlock(&tty_mutex);
 390
 391	return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 396/**
 397 *	tty_check_change	-	check for POSIX terminal changes
 398 *	@tty: tty to check
 399 *
 400 *	If we try to write to, or set the state of, a terminal and we're
 401 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *	Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409	unsigned long flags;
 410	int ret = 0;
 411
 412	if (current->signal->tty != tty)
 413		return 0;
 414
 415	spin_lock_irqsave(&tty->ctrl_lock, flags);
 416
 417	if (!tty->pgrp) {
 418		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419		goto out_unlock;
 420	}
 421	if (task_pgrp(current) == tty->pgrp)
 422		goto out_unlock;
 423	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424	if (is_ignored(SIGTTOU))
 425		goto out;
 426	if (is_current_pgrp_orphaned()) {
 427		ret = -EIO;
 428		goto out;
 429	}
 430	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431	set_thread_flag(TIF_SIGPENDING);
 432	ret = -ERESTARTSYS;
 433out:
 434	return ret;
 435out_unlock:
 436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437	return ret;
 438}
 439
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443				size_t count, loff_t *ppos)
 444{
 445	return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449				 size_t count, loff_t *ppos)
 450{
 451	return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461		unsigned long arg)
 462{
 463	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467				     unsigned int cmd, unsigned long arg)
 468{
 469	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 
 
 
 
 
 
 
 
 
 
 
 
 
 472static const struct file_operations tty_fops = {
 473	.llseek		= no_llseek,
 474	.read		= tty_read,
 475	.write		= tty_write,
 476	.poll		= tty_poll,
 477	.unlocked_ioctl	= tty_ioctl,
 478	.compat_ioctl	= tty_compat_ioctl,
 479	.open		= tty_open,
 480	.release	= tty_release,
 481	.fasync		= tty_fasync,
 
 482};
 483
 484static const struct file_operations console_fops = {
 485	.llseek		= no_llseek,
 486	.read		= tty_read,
 487	.write		= redirected_tty_write,
 488	.poll		= tty_poll,
 489	.unlocked_ioctl	= tty_ioctl,
 490	.compat_ioctl	= tty_compat_ioctl,
 491	.open		= tty_open,
 492	.release	= tty_release,
 493	.fasync		= tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497	.llseek		= no_llseek,
 498	.read		= hung_up_tty_read,
 499	.write		= hung_up_tty_write,
 500	.poll		= hung_up_tty_poll,
 501	.unlocked_ioctl	= hung_up_tty_ioctl,
 502	.compat_ioctl	= hung_up_tty_compat_ioctl,
 503	.release	= tty_release,
 
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 509/**
 510 *	tty_wakeup	-	request more data
 511 *	@tty: terminal
 512 *
 513 *	Internal and external helper for wakeups of tty. This function
 514 *	informs the line discipline if present that the driver is ready
 515 *	to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520	struct tty_ldisc *ld;
 521
 522	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523		ld = tty_ldisc_ref(tty);
 524		if (ld) {
 525			if (ld->ops->write_wakeup)
 526				ld->ops->write_wakeup(tty);
 527			tty_ldisc_deref(ld);
 528		}
 529	}
 530	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *	tty_signal_session_leader	- sends SIGHUP to session leader
 537 *	@tty		controlling tty
 538 *	@exit_session	if non-zero, signal all foreground group processes
 539 *
 540 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *	Optionally, signal all processes in the foreground process group.
 542 *
 543 *	Returns the number of processes in the session with this tty
 544 *	as their controlling terminal. This value is used to drop
 545 *	tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549	struct task_struct *p;
 550	int refs = 0;
 551	struct pid *tty_pgrp = NULL;
 552
 553	read_lock(&tasklist_lock);
 554	if (tty->session) {
 555		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556			spin_lock_irq(&p->sighand->siglock);
 557			if (p->signal->tty == tty) {
 558				p->signal->tty = NULL;
 559				/* We defer the dereferences outside fo
 560				   the tasklist lock */
 561				refs++;
 562			}
 563			if (!p->signal->leader) {
 564				spin_unlock_irq(&p->sighand->siglock);
 565				continue;
 566			}
 567			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570			spin_lock(&tty->ctrl_lock);
 571			tty_pgrp = get_pid(tty->pgrp);
 572			if (tty->pgrp)
 573				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574			spin_unlock(&tty->ctrl_lock);
 575			spin_unlock_irq(&p->sighand->siglock);
 576		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577	}
 578	read_unlock(&tasklist_lock);
 579
 580	if (tty_pgrp) {
 581		if (exit_session)
 582			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583		put_pid(tty_pgrp);
 584	}
 585
 586	return refs;
 587}
 588
 589/**
 590 *	__tty_hangup		-	actual handler for hangup events
 591 *	@work: tty device
 592 *
 593 *	This can be called by a "kworker" kernel thread.  That is process
 594 *	synchronous but doesn't hold any locks, so we need to make sure we
 595 *	have the appropriate locks for what we're doing.
 596 *
 597 *	The hangup event clears any pending redirections onto the hung up
 598 *	device. It ensures future writes will error and it does the needed
 599 *	line discipline hangup and signal delivery. The tty object itself
 600 *	remains intact.
 601 *
 602 *	Locking:
 603 *		BTM
 604 *		  redirect lock for undoing redirection
 605 *		  file list lock for manipulating list of ttys
 606 *		  tty_ldiscs_lock from called functions
 607 *		  termios_rwsem resetting termios data
 608 *		  tasklist_lock to walk task list for hangup event
 609 *		    ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613	struct file *cons_filp = NULL;
 614	struct file *filp, *f = NULL;
 615	struct tty_file_private *priv;
 616	int    closecount = 0, n;
 617	int refs;
 618
 619	if (!tty)
 620		return;
 621
 622
 623	spin_lock(&redirect_lock);
 624	if (redirect && file_tty(redirect) == tty) {
 625		f = redirect;
 626		redirect = NULL;
 627	}
 628	spin_unlock(&redirect_lock);
 629
 630	tty_lock(tty);
 631
 632	if (test_bit(TTY_HUPPED, &tty->flags)) {
 633		tty_unlock(tty);
 634		return;
 635	}
 636
 637	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 638	set_bit(TTY_HUPPING, &tty->flags);
 639
 640	/* inuse_filps is protected by the single tty lock,
 641	   this really needs to change if we want to flush the
 642	   workqueue with the lock held */
 643	check_tty_count(tty, "tty_hangup");
 644
 645	spin_lock(&tty_files_lock);
 646	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 647	list_for_each_entry(priv, &tty->tty_files, list) {
 648		filp = priv->file;
 649		if (filp->f_op->write == redirected_tty_write)
 650			cons_filp = filp;
 651		if (filp->f_op->write != tty_write)
 652			continue;
 653		closecount++;
 654		__tty_fasync(-1, filp, 0);	/* can't block */
 655		filp->f_op = &hung_up_tty_fops;
 656	}
 657	spin_unlock(&tty_files_lock);
 658
 659	refs = tty_signal_session_leader(tty, exit_session);
 660	/* Account for the p->signal references we killed */
 661	while (refs--)
 662		tty_kref_put(tty);
 663
 664	/*
 665	 * it drops BTM and thus races with reopen
 666	 * we protect the race by TTY_HUPPING
 667	 */
 668	tty_ldisc_hangup(tty);
 669
 670	spin_lock_irq(&tty->ctrl_lock);
 671	clear_bit(TTY_THROTTLED, &tty->flags);
 672	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 673	put_pid(tty->session);
 674	put_pid(tty->pgrp);
 675	tty->session = NULL;
 676	tty->pgrp = NULL;
 677	tty->ctrl_status = 0;
 678	spin_unlock_irq(&tty->ctrl_lock);
 679
 680	/*
 681	 * If one of the devices matches a console pointer, we
 682	 * cannot just call hangup() because that will cause
 683	 * tty->count and state->count to go out of sync.
 684	 * So we just call close() the right number of times.
 685	 */
 686	if (cons_filp) {
 687		if (tty->ops->close)
 688			for (n = 0; n < closecount; n++)
 689				tty->ops->close(tty, cons_filp);
 690	} else if (tty->ops->hangup)
 691		(tty->ops->hangup)(tty);
 692	/*
 693	 * We don't want to have driver/ldisc interactions beyond
 694	 * the ones we did here. The driver layer expects no
 695	 * calls after ->hangup() from the ldisc side. However we
 696	 * can't yet guarantee all that.
 697	 */
 698	set_bit(TTY_HUPPED, &tty->flags);
 699	clear_bit(TTY_HUPPING, &tty->flags);
 700
 701	tty_unlock(tty);
 702
 703	if (f)
 704		fput(f);
 705}
 706
 707static void do_tty_hangup(struct work_struct *work)
 708{
 709	struct tty_struct *tty =
 710		container_of(work, struct tty_struct, hangup_work);
 711
 712	__tty_hangup(tty, 0);
 713}
 714
 715/**
 716 *	tty_hangup		-	trigger a hangup event
 717 *	@tty: tty to hangup
 718 *
 719 *	A carrier loss (virtual or otherwise) has occurred on this like
 720 *	schedule a hangup sequence to run after this event.
 721 */
 722
 723void tty_hangup(struct tty_struct *tty)
 724{
 725#ifdef TTY_DEBUG_HANGUP
 726	char	buf[64];
 727	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 728#endif
 729	schedule_work(&tty->hangup_work);
 730}
 731
 732EXPORT_SYMBOL(tty_hangup);
 733
 734/**
 735 *	tty_vhangup		-	process vhangup
 736 *	@tty: tty to hangup
 737 *
 738 *	The user has asked via system call for the terminal to be hung up.
 739 *	We do this synchronously so that when the syscall returns the process
 740 *	is complete. That guarantee is necessary for security reasons.
 741 */
 742
 743void tty_vhangup(struct tty_struct *tty)
 744{
 745#ifdef TTY_DEBUG_HANGUP
 746	char	buf[64];
 747
 748	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 749#endif
 750	__tty_hangup(tty, 0);
 751}
 752
 753EXPORT_SYMBOL(tty_vhangup);
 754
 755
 756/**
 757 *	tty_vhangup_self	-	process vhangup for own ctty
 758 *
 759 *	Perform a vhangup on the current controlling tty
 760 */
 761
 762void tty_vhangup_self(void)
 763{
 764	struct tty_struct *tty;
 765
 766	tty = get_current_tty();
 767	if (tty) {
 768		tty_vhangup(tty);
 769		tty_kref_put(tty);
 770	}
 771}
 772
 773/**
 774 *	tty_vhangup_session		-	hangup session leader exit
 775 *	@tty: tty to hangup
 776 *
 777 *	The session leader is exiting and hanging up its controlling terminal.
 778 *	Every process in the foreground process group is signalled SIGHUP.
 779 *
 780 *	We do this synchronously so that when the syscall returns the process
 781 *	is complete. That guarantee is necessary for security reasons.
 782 */
 783
 784static void tty_vhangup_session(struct tty_struct *tty)
 785{
 786#ifdef TTY_DEBUG_HANGUP
 787	char	buf[64];
 788
 789	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 790#endif
 791	__tty_hangup(tty, 1);
 792}
 793
 794/**
 795 *	tty_hung_up_p		-	was tty hung up
 796 *	@filp: file pointer of tty
 797 *
 798 *	Return true if the tty has been subject to a vhangup or a carrier
 799 *	loss
 800 */
 801
 802int tty_hung_up_p(struct file *filp)
 803{
 804	return (filp->f_op == &hung_up_tty_fops);
 805}
 806
 807EXPORT_SYMBOL(tty_hung_up_p);
 808
 809static void session_clear_tty(struct pid *session)
 810{
 811	struct task_struct *p;
 812	do_each_pid_task(session, PIDTYPE_SID, p) {
 813		proc_clear_tty(p);
 814	} while_each_pid_task(session, PIDTYPE_SID, p);
 815}
 816
 817/**
 818 *	disassociate_ctty	-	disconnect controlling tty
 819 *	@on_exit: true if exiting so need to "hang up" the session
 820 *
 821 *	This function is typically called only by the session leader, when
 822 *	it wants to disassociate itself from its controlling tty.
 823 *
 824 *	It performs the following functions:
 825 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 826 * 	(2)  Clears the tty from being controlling the session
 827 * 	(3)  Clears the controlling tty for all processes in the
 828 * 		session group.
 829 *
 830 *	The argument on_exit is set to 1 if called when a process is
 831 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 832 *
 833 *	Locking:
 834 *		BTM is taken for hysterical raisins, and held when
 835 *		  called from no_tty().
 836 *		  tty_mutex is taken to protect tty
 837 *		  ->siglock is taken to protect ->signal/->sighand
 838 *		  tasklist_lock is taken to walk process list for sessions
 839 *		    ->siglock is taken to protect ->signal/->sighand
 840 */
 841
 842void disassociate_ctty(int on_exit)
 843{
 844	struct tty_struct *tty;
 845
 846	if (!current->signal->leader)
 847		return;
 848
 849	tty = get_current_tty();
 850	if (tty) {
 851		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 852			tty_vhangup_session(tty);
 853		} else {
 854			struct pid *tty_pgrp = tty_get_pgrp(tty);
 855			if (tty_pgrp) {
 856				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 857				if (!on_exit)
 858					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 859				put_pid(tty_pgrp);
 860			}
 861		}
 862		tty_kref_put(tty);
 863
 864	} else if (on_exit) {
 865		struct pid *old_pgrp;
 866		spin_lock_irq(&current->sighand->siglock);
 867		old_pgrp = current->signal->tty_old_pgrp;
 868		current->signal->tty_old_pgrp = NULL;
 869		spin_unlock_irq(&current->sighand->siglock);
 870		if (old_pgrp) {
 871			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 872			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 873			put_pid(old_pgrp);
 874		}
 875		return;
 876	}
 877
 878	spin_lock_irq(&current->sighand->siglock);
 879	put_pid(current->signal->tty_old_pgrp);
 880	current->signal->tty_old_pgrp = NULL;
 881
 882	tty = tty_kref_get(current->signal->tty);
 883	if (tty) {
 884		unsigned long flags;
 885		spin_lock_irqsave(&tty->ctrl_lock, flags);
 886		put_pid(tty->session);
 887		put_pid(tty->pgrp);
 888		tty->session = NULL;
 889		tty->pgrp = NULL;
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		tty_kref_put(tty);
 892	} else {
 893#ifdef TTY_DEBUG_HANGUP
 894		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 895		       " = NULL", tty);
 896#endif
 897	}
 898
 899	spin_unlock_irq(&current->sighand->siglock);
 900	/* Now clear signal->tty under the lock */
 901	read_lock(&tasklist_lock);
 902	session_clear_tty(task_session(current));
 903	read_unlock(&tasklist_lock);
 904}
 905
 906/**
 907 *
 908 *	no_tty	- Ensure the current process does not have a controlling tty
 909 */
 910void no_tty(void)
 911{
 912	/* FIXME: Review locking here. The tty_lock never covered any race
 913	   between a new association and proc_clear_tty but possible we need
 914	   to protect against this anyway */
 915	struct task_struct *tsk = current;
 916	disassociate_ctty(0);
 917	proc_clear_tty(tsk);
 918}
 919
 920
 921/**
 922 *	stop_tty	-	propagate flow control
 923 *	@tty: tty to stop
 924 *
 925 *	Perform flow control to the driver. For PTY/TTY pairs we
 926 *	must also propagate the TIOCKPKT status. May be called
 927 *	on an already stopped device and will not re-call the driver
 928 *	method.
 929 *
 930 *	This functionality is used by both the line disciplines for
 931 *	halting incoming flow and by the driver. It may therefore be
 932 *	called from any context, may be under the tty atomic_write_lock
 933 *	but not always.
 934 *
 935 *	Locking:
 936 *		Uses the tty control lock internally
 937 */
 938
 939void stop_tty(struct tty_struct *tty)
 940{
 941	unsigned long flags;
 942	spin_lock_irqsave(&tty->ctrl_lock, flags);
 943	if (tty->stopped) {
 944		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 945		return;
 946	}
 947	tty->stopped = 1;
 948	if (tty->link && tty->link->packet) {
 949		tty->ctrl_status &= ~TIOCPKT_START;
 950		tty->ctrl_status |= TIOCPKT_STOP;
 951		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 952	}
 953	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 954	if (tty->ops->stop)
 955		(tty->ops->stop)(tty);
 956}
 957
 
 
 
 
 
 
 
 
 958EXPORT_SYMBOL(stop_tty);
 959
 960/**
 961 *	start_tty	-	propagate flow control
 962 *	@tty: tty to start
 963 *
 964 *	Start a tty that has been stopped if at all possible. Perform
 965 *	any necessary wakeups and propagate the TIOCPKT status. If this
 966 *	is the tty was previous stopped and is being started then the
 967 *	driver start method is invoked and the line discipline woken.
 968 *
 969 *	Locking:
 970 *		ctrl_lock
 971 */
 972
 973void start_tty(struct tty_struct *tty)
 974{
 975	unsigned long flags;
 976	spin_lock_irqsave(&tty->ctrl_lock, flags);
 977	if (!tty->stopped || tty->flow_stopped) {
 978		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 979		return;
 980	}
 981	tty->stopped = 0;
 982	if (tty->link && tty->link->packet) {
 983		tty->ctrl_status &= ~TIOCPKT_STOP;
 984		tty->ctrl_status |= TIOCPKT_START;
 985		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 986	}
 987	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 988	if (tty->ops->start)
 989		(tty->ops->start)(tty);
 990	/* If we have a running line discipline it may need kicking */
 991	tty_wakeup(tty);
 992}
 993
 
 
 
 
 
 
 
 
 994EXPORT_SYMBOL(start_tty);
 995
 996/* We limit tty time update visibility to every 8 seconds or so. */
 997static void tty_update_time(struct timespec *time)
 998{
 999	unsigned long sec = get_seconds() & ~7;
1000	if ((long)(sec - time->tv_sec) > 0)
 
 
 
 
 
 
 
1001		time->tv_sec = sec;
1002}
1003
1004/**
1005 *	tty_read	-	read method for tty device files
1006 *	@file: pointer to tty file
1007 *	@buf: user buffer
1008 *	@count: size of user buffer
1009 *	@ppos: unused
1010 *
1011 *	Perform the read system call function on this terminal device. Checks
1012 *	for hung up devices before calling the line discipline method.
1013 *
1014 *	Locking:
1015 *		Locks the line discipline internally while needed. Multiple
1016 *	read calls may be outstanding in parallel.
1017 */
1018
1019static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020			loff_t *ppos)
1021{
1022	int i;
1023	struct inode *inode = file_inode(file);
1024	struct tty_struct *tty = file_tty(file);
1025	struct tty_ldisc *ld;
1026
1027	if (tty_paranoia_check(tty, inode, "tty_read"))
1028		return -EIO;
1029	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030		return -EIO;
1031
1032	/* We want to wait for the line discipline to sort out in this
1033	   situation */
1034	ld = tty_ldisc_ref_wait(tty);
 
 
1035	if (ld->ops->read)
1036		i = (ld->ops->read)(tty, file, buf, count);
1037	else
1038		i = -EIO;
1039	tty_ldisc_deref(ld);
1040
1041	if (i > 0)
1042		tty_update_time(&inode->i_atime);
1043
1044	return i;
1045}
1046
1047void tty_write_unlock(struct tty_struct *tty)
1048	__releases(&tty->atomic_write_lock)
1049{
1050	mutex_unlock(&tty->atomic_write_lock);
1051	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052}
1053
1054int tty_write_lock(struct tty_struct *tty, int ndelay)
1055	__acquires(&tty->atomic_write_lock)
1056{
1057	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058		if (ndelay)
1059			return -EAGAIN;
1060		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061			return -ERESTARTSYS;
1062	}
1063	return 0;
1064}
1065
1066/*
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1069 */
1070static inline ssize_t do_tty_write(
1071	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072	struct tty_struct *tty,
1073	struct file *file,
1074	const char __user *buf,
1075	size_t count)
1076{
1077	ssize_t ret, written = 0;
1078	unsigned int chunk;
1079
1080	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081	if (ret < 0)
1082		return ret;
1083
1084	/*
1085	 * We chunk up writes into a temporary buffer. This
1086	 * simplifies low-level drivers immensely, since they
1087	 * don't have locking issues and user mode accesses.
1088	 *
1089	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090	 * big chunk-size..
1091	 *
1092	 * The default chunk-size is 2kB, because the NTTY
1093	 * layer has problems with bigger chunks. It will
1094	 * claim to be able to handle more characters than
1095	 * it actually does.
1096	 *
1097	 * FIXME: This can probably go away now except that 64K chunks
1098	 * are too likely to fail unless switched to vmalloc...
1099	 */
1100	chunk = 2048;
1101	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102		chunk = 65536;
1103	if (count < chunk)
1104		chunk = count;
1105
1106	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107	if (tty->write_cnt < chunk) {
1108		unsigned char *buf_chunk;
1109
1110		if (chunk < 1024)
1111			chunk = 1024;
1112
1113		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114		if (!buf_chunk) {
1115			ret = -ENOMEM;
1116			goto out;
1117		}
1118		kfree(tty->write_buf);
1119		tty->write_cnt = chunk;
1120		tty->write_buf = buf_chunk;
1121	}
1122
1123	/* Do the write .. */
1124	for (;;) {
1125		size_t size = count;
1126		if (size > chunk)
1127			size = chunk;
1128		ret = -EFAULT;
1129		if (copy_from_user(tty->write_buf, buf, size))
1130			break;
1131		ret = write(tty, file, tty->write_buf, size);
1132		if (ret <= 0)
1133			break;
1134		written += ret;
1135		buf += ret;
1136		count -= ret;
1137		if (!count)
1138			break;
1139		ret = -ERESTARTSYS;
1140		if (signal_pending(current))
1141			break;
1142		cond_resched();
1143	}
1144	if (written) {
1145		tty_update_time(&file_inode(file)->i_mtime);
1146		ret = written;
1147	}
1148out:
1149	tty_write_unlock(tty);
1150	return ret;
1151}
1152
1153/**
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1157 *
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1161 *
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1163 */
1164
1165void tty_write_message(struct tty_struct *tty, char *msg)
1166{
1167	if (tty) {
1168		mutex_lock(&tty->atomic_write_lock);
1169		tty_lock(tty);
1170		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171			tty_unlock(tty);
1172			tty->ops->write(tty, msg, strlen(msg));
1173		} else
1174			tty_unlock(tty);
1175		tty_write_unlock(tty);
1176	}
1177	return;
1178}
1179
1180
1181/**
1182 *	tty_write		-	write method for tty device file
1183 *	@file: tty file pointer
1184 *	@buf: user data to write
1185 *	@count: bytes to write
1186 *	@ppos: unused
1187 *
1188 *	Write data to a tty device via the line discipline.
1189 *
1190 *	Locking:
1191 *		Locks the line discipline as required
1192 *		Writes to the tty driver are serialized by the atomic_write_lock
1193 *	and are then processed in chunks to the device. The line discipline
1194 *	write method will not be invoked in parallel for each device.
1195 */
1196
1197static ssize_t tty_write(struct file *file, const char __user *buf,
1198						size_t count, loff_t *ppos)
1199{
1200	struct tty_struct *tty = file_tty(file);
1201 	struct tty_ldisc *ld;
1202	ssize_t ret;
1203
1204	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205		return -EIO;
1206	if (!tty || !tty->ops->write ||
1207		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208			return -EIO;
1209	/* Short term debug to catch buggy drivers */
1210	if (tty->ops->write_room == NULL)
1211		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212			tty->driver->name);
1213	ld = tty_ldisc_ref_wait(tty);
 
 
1214	if (!ld->ops->write)
1215		ret = -EIO;
1216	else
1217		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218	tty_ldisc_deref(ld);
1219	return ret;
1220}
1221
1222ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223						size_t count, loff_t *ppos)
1224{
1225	struct file *p = NULL;
1226
1227	spin_lock(&redirect_lock);
1228	if (redirect)
1229		p = get_file(redirect);
1230	spin_unlock(&redirect_lock);
1231
1232	if (p) {
1233		ssize_t res;
1234		res = vfs_write(p, buf, count, &p->f_pos);
1235		fput(p);
1236		return res;
1237	}
1238	return tty_write(file, buf, count, ppos);
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243/**
1244 *	pty_line_name	-	generate name for a pty
1245 *	@driver: the tty driver in use
1246 *	@index: the minor number
1247 *	@p: output buffer of at least 6 bytes
1248 *
1249 *	Generate a name from a driver reference and write it to the output
1250 *	buffer.
1251 *
1252 *	Locking: None
1253 */
1254static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255{
1256	int i = index + driver->name_base;
1257	/* ->name is initialized to "ttyp", but "tty" is expected */
1258	sprintf(p, "%s%c%x",
1259		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260		ptychar[i >> 4 & 0xf], i & 0xf);
1261}
1262
1263/**
1264 *	tty_line_name	-	generate name for a tty
1265 *	@driver: the tty driver in use
1266 *	@index: the minor number
1267 *	@p: output buffer of at least 7 bytes
1268 *
1269 *	Generate a name from a driver reference and write it to the output
1270 *	buffer.
1271 *
1272 *	Locking: None
1273 */
1274static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275{
1276	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277		return sprintf(p, "%s", driver->name);
1278	else
1279		return sprintf(p, "%s%d", driver->name,
1280			       index + driver->name_base);
1281}
1282
1283/**
1284 *	tty_driver_lookup_tty() - find an existing tty, if any
1285 *	@driver: the driver for the tty
1286 *	@idx:	 the minor number
1287 *
1288 *	Return the tty, if found or ERR_PTR() otherwise.
 
1289 *
1290 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291 *	be held until the 'fast-open' is also done. Will change once we
1292 *	have refcounting in the driver and per driver locking
1293 */
1294static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295		struct inode *inode, int idx)
1296{
 
 
1297	if (driver->ops->lookup)
1298		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1299
1300	return driver->ttys[idx];
 
 
1301}
1302
1303/**
1304 *	tty_init_termios	-  helper for termios setup
1305 *	@tty: the tty to set up
1306 *
1307 *	Initialise the termios structures for this tty. Thus runs under
1308 *	the tty_mutex currently so we can be relaxed about ordering.
1309 */
1310
1311int tty_init_termios(struct tty_struct *tty)
1312{
1313	struct ktermios *tp;
1314	int idx = tty->index;
1315
1316	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317		tty->termios = tty->driver->init_termios;
1318	else {
1319		/* Check for lazy saved data */
1320		tp = tty->driver->termios[idx];
1321		if (tp != NULL)
1322			tty->termios = *tp;
1323		else
 
1324			tty->termios = tty->driver->init_termios;
1325	}
1326	/* Compatibility until drivers always set this */
1327	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329	return 0;
1330}
1331EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334{
1335	int ret = tty_init_termios(tty);
1336	if (ret)
1337		return ret;
1338
1339	tty_driver_kref_get(driver);
1340	tty->count++;
1341	driver->ttys[tty->index] = tty;
1342	return 0;
1343}
1344EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346/**
1347 *	tty_driver_install_tty() - install a tty entry in the driver
1348 *	@driver: the driver for the tty
1349 *	@tty: the tty
1350 *
1351 *	Install a tty object into the driver tables. The tty->index field
1352 *	will be set by the time this is called. This method is responsible
1353 *	for ensuring any need additional structures are allocated and
1354 *	configured.
1355 *
1356 *	Locking: tty_mutex for now
1357 */
1358static int tty_driver_install_tty(struct tty_driver *driver,
1359						struct tty_struct *tty)
1360{
1361	return driver->ops->install ? driver->ops->install(driver, tty) :
1362		tty_standard_install(driver, tty);
1363}
1364
1365/**
1366 *	tty_driver_remove_tty() - remove a tty from the driver tables
1367 *	@driver: the driver for the tty
1368 *	@idx:	 the minor number
1369 *
1370 *	Remvoe a tty object from the driver tables. The tty->index field
1371 *	will be set by the time this is called.
1372 *
1373 *	Locking: tty_mutex for now
1374 */
1375void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376{
1377	if (driver->ops->remove)
1378		driver->ops->remove(driver, tty);
1379	else
1380		driver->ttys[tty->index] = NULL;
1381}
1382
1383/*
1384 * 	tty_reopen()	- fast re-open of an open tty
1385 * 	@tty	- the tty to open
1386 *
1387 *	Return 0 on success, -errno on error.
 
1388 *
1389 *	Locking: tty_mutex must be held from the time the tty was found
1390 *		 till this open completes.
1391 */
1392static int tty_reopen(struct tty_struct *tty)
1393{
1394	struct tty_driver *driver = tty->driver;
1395
1396	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397			test_bit(TTY_HUPPING, &tty->flags))
1398		return -EIO;
1399
1400	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401	    driver->subtype == PTY_TYPE_MASTER) {
1402		/*
1403		 * special case for PTY masters: only one open permitted,
1404		 * and the slave side open count is incremented as well.
1405		 */
1406		if (tty->count)
1407			return -EIO;
1408
1409		tty->link->count++;
1410	}
1411	tty->count++;
1412
1413	WARN_ON(!tty->ldisc);
 
1414
1415	return 0;
1416}
1417
1418/**
1419 *	tty_init_dev		-	initialise a tty device
1420 *	@driver: tty driver we are opening a device on
1421 *	@idx: device index
1422 *	@ret_tty: returned tty structure
1423 *
1424 *	Prepare a tty device. This may not be a "new" clean device but
1425 *	could also be an active device. The pty drivers require special
1426 *	handling because of this.
1427 *
1428 *	Locking:
1429 *		The function is called under the tty_mutex, which
1430 *	protects us from the tty struct or driver itself going away.
1431 *
1432 *	On exit the tty device has the line discipline attached and
1433 *	a reference count of 1. If a pair was created for pty/tty use
1434 *	and the other was a pty master then it too has a reference count of 1.
1435 *
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open.  The new code protects the open with a mutex, so it's
1438 * really quite straightforward.  The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1440 */
1441
1442struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443{
1444	struct tty_struct *tty;
1445	int retval;
1446
1447	/*
1448	 * First time open is complex, especially for PTY devices.
1449	 * This code guarantees that either everything succeeds and the
1450	 * TTY is ready for operation, or else the table slots are vacated
1451	 * and the allocated memory released.  (Except that the termios
1452	 * and locked termios may be retained.)
1453	 */
1454
1455	if (!try_module_get(driver->owner))
1456		return ERR_PTR(-ENODEV);
1457
1458	tty = alloc_tty_struct();
1459	if (!tty) {
1460		retval = -ENOMEM;
1461		goto err_module_put;
1462	}
1463	initialize_tty_struct(tty, driver, idx);
1464
1465	tty_lock(tty);
1466	retval = tty_driver_install_tty(driver, tty);
1467	if (retval < 0)
1468		goto err_deinit_tty;
1469
1470	if (!tty->port)
1471		tty->port = driver->ports[idx];
1472
1473	WARN_RATELIMIT(!tty->port,
1474			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475			__func__, tty->driver->name);
1476
 
 
 
1477	tty->port->itty = tty;
1478
1479	/*
1480	 * Structures all installed ... call the ldisc open routines.
1481	 * If we fail here just call release_tty to clean up.  No need
1482	 * to decrement the use counts, as release_tty doesn't care.
1483	 */
1484	retval = tty_ldisc_setup(tty, tty->link);
1485	if (retval)
1486		goto err_release_tty;
 
1487	/* Return the tty locked so that it cannot vanish under the caller */
1488	return tty;
1489
1490err_deinit_tty:
1491	tty_unlock(tty);
1492	deinitialize_tty_struct(tty);
1493	free_tty_struct(tty);
1494err_module_put:
1495	module_put(driver->owner);
1496	return ERR_PTR(retval);
1497
1498	/* call the tty release_tty routine to clean out this slot */
1499err_release_tty:
 
 
 
 
1500	tty_unlock(tty);
1501	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502				 "clearing slot %d\n", idx);
1503	release_tty(tty, idx);
1504	return ERR_PTR(retval);
1505}
1506
1507void tty_free_termios(struct tty_struct *tty)
1508{
1509	struct ktermios *tp;
1510	int idx = tty->index;
1511
1512	/* If the port is going to reset then it has no termios to save */
1513	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514		return;
1515
1516	/* Stash the termios data */
1517	tp = tty->driver->termios[idx];
1518	if (tp == NULL) {
1519		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520		if (tp == NULL) {
1521			pr_warn("tty: no memory to save termios state.\n");
1522			return;
1523		}
1524		tty->driver->termios[idx] = tp;
1525	}
1526	*tp = tty->termios;
1527}
1528EXPORT_SYMBOL(tty_free_termios);
1529
1530/**
1531 *	tty_flush_works		-	flush all works of a tty
1532 *	@tty: tty device to flush works for
1533 *
1534 *	Sync flush all works belonging to @tty.
1535 */
1536static void tty_flush_works(struct tty_struct *tty)
1537{
1538	flush_work(&tty->SAK_work);
1539	flush_work(&tty->hangup_work);
 
 
 
 
1540}
1541
1542/**
1543 *	release_one_tty		-	release tty structure memory
1544 *	@kref: kref of tty we are obliterating
1545 *
1546 *	Releases memory associated with a tty structure, and clears out the
1547 *	driver table slots. This function is called when a device is no longer
1548 *	in use. It also gets called when setup of a device fails.
1549 *
1550 *	Locking:
1551 *		takes the file list lock internally when working on the list
1552 *	of ttys that the driver keeps.
1553 *
1554 *	This method gets called from a work queue so that the driver private
1555 *	cleanup ops can sleep (needed for USB at least)
1556 */
1557static void release_one_tty(struct work_struct *work)
1558{
1559	struct tty_struct *tty =
1560		container_of(work, struct tty_struct, hangup_work);
1561	struct tty_driver *driver = tty->driver;
 
1562
1563	if (tty->ops->cleanup)
1564		tty->ops->cleanup(tty);
1565
1566	tty->magic = 0;
1567	tty_driver_kref_put(driver);
1568	module_put(driver->owner);
1569
1570	spin_lock(&tty_files_lock);
1571	list_del_init(&tty->tty_files);
1572	spin_unlock(&tty_files_lock);
1573
1574	put_pid(tty->pgrp);
1575	put_pid(tty->session);
1576	free_tty_struct(tty);
1577}
1578
1579static void queue_release_one_tty(struct kref *kref)
1580{
1581	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583	/* The hangup queue is now free so we can reuse it rather than
1584	   waste a chunk of memory for each port */
1585	INIT_WORK(&tty->hangup_work, release_one_tty);
1586	schedule_work(&tty->hangup_work);
1587}
1588
1589/**
1590 *	tty_kref_put		-	release a tty kref
1591 *	@tty: tty device
1592 *
1593 *	Release a reference to a tty device and if need be let the kref
1594 *	layer destruct the object for us
1595 */
1596
1597void tty_kref_put(struct tty_struct *tty)
1598{
1599	if (tty)
1600		kref_put(&tty->kref, queue_release_one_tty);
1601}
1602EXPORT_SYMBOL(tty_kref_put);
1603
1604/**
1605 *	release_tty		-	release tty structure memory
1606 *
1607 *	Release both @tty and a possible linked partner (think pty pair),
1608 *	and decrement the refcount of the backing module.
1609 *
1610 *	Locking:
1611 *		tty_mutex
1612 *		takes the file list lock internally when working on the list
1613 *	of ttys that the driver keeps.
1614 *
1615 */
1616static void release_tty(struct tty_struct *tty, int idx)
1617{
1618	/* This should always be true but check for the moment */
1619	WARN_ON(tty->index != idx);
1620	WARN_ON(!mutex_is_locked(&tty_mutex));
1621	if (tty->ops->shutdown)
1622		tty->ops->shutdown(tty);
1623	tty_free_termios(tty);
1624	tty_driver_remove_tty(tty->driver, tty);
1625	tty->port->itty = NULL;
1626	if (tty->link)
1627		tty->link->port->itty = NULL;
1628	cancel_work_sync(&tty->port->buf.work);
1629
1630	if (tty->link)
1631		tty_kref_put(tty->link);
 
 
1632	tty_kref_put(tty);
1633}
1634
1635/**
1636 *	tty_release_checks - check a tty before real release
1637 *	@tty: tty to check
1638 *	@o_tty: link of @tty (if any)
1639 *	@idx: index of the tty
1640 *
1641 *	Performs some paranoid checking before true release of the @tty.
1642 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643 */
1644static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645		int idx)
1646{
1647#ifdef TTY_PARANOIA_CHECK
1648	if (idx < 0 || idx >= tty->driver->num) {
1649		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650				__func__, tty->name);
1651		return -1;
1652	}
1653
1654	/* not much to check for devpts */
1655	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656		return 0;
1657
1658	if (tty != tty->driver->ttys[idx]) {
1659		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660				__func__, idx, tty->name);
1661		return -1;
1662	}
1663	if (tty->driver->other) {
 
 
1664		if (o_tty != tty->driver->other->ttys[idx]) {
1665			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666					__func__, idx, tty->name);
1667			return -1;
1668		}
1669		if (o_tty->link != tty) {
1670			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671			return -1;
1672		}
1673	}
1674#endif
1675	return 0;
1676}
1677
1678/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679 *	tty_release		-	vfs callback for close
1680 *	@inode: inode of tty
1681 *	@filp: file pointer for handle to tty
1682 *
1683 *	Called the last time each file handle is closed that references
1684 *	this tty. There may however be several such references.
1685 *
1686 *	Locking:
1687 *		Takes bkl. See tty_release_dev
1688 *
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1692 *
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1695 */
1696
1697int tty_release(struct inode *inode, struct file *filp)
1698{
1699	struct tty_struct *tty = file_tty(filp);
1700	struct tty_struct *o_tty;
1701	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1702	int	idx;
1703	char	buf[64];
 
1704
1705	if (tty_paranoia_check(tty, inode, __func__))
1706		return 0;
1707
1708	tty_lock(tty);
1709	check_tty_count(tty, __func__);
1710
1711	__tty_fasync(-1, filp, 0);
1712
1713	idx = tty->index;
1714	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715		      tty->driver->subtype == PTY_TYPE_MASTER);
1716	/* Review: parallel close */
1717	o_tty = tty->link;
1718
1719	if (tty_release_checks(tty, o_tty, idx)) {
1720		tty_unlock(tty);
1721		return 0;
1722	}
1723
1724#ifdef TTY_DEBUG_HANGUP
1725	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726			tty_name(tty, buf), tty->count);
1727#endif
1728
1729	if (tty->ops->close)
1730		tty->ops->close(tty, filp);
1731
1732	tty_unlock(tty);
 
 
1733	/*
1734	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736	 * wait queues and kick everyone out _before_ actually starting to
1737	 * close.  This ensures that we won't block while releasing the tty
1738	 * structure.
1739	 *
1740	 * The test for the o_tty closing is necessary, since the master and
1741	 * slave sides may close in any order.  If the slave side closes out
1742	 * first, its count will be one, since the master side holds an open.
1743	 * Thus this test wouldn't be triggered at the time the slave closes,
1744	 * so we do it now.
1745	 *
1746	 * Note that it's possible for the tty to be opened again while we're
1747	 * flushing out waiters.  By recalculating the closing flags before
1748	 * each iteration we avoid any problems.
1749	 */
1750	while (1) {
1751		/* Guard against races with tty->count changes elsewhere and
1752		   opens on /dev/tty */
1753
1754		mutex_lock(&tty_mutex);
1755		tty_lock_pair(tty, o_tty);
1756		tty_closing = tty->count <= 1;
1757		o_tty_closing = o_tty &&
1758			(o_tty->count <= (pty_master ? 1 : 0));
1759		do_sleep = 0;
1760
1761		if (tty_closing) {
1762			if (waitqueue_active(&tty->read_wait)) {
1763				wake_up_poll(&tty->read_wait, POLLIN);
1764				do_sleep++;
1765			}
1766			if (waitqueue_active(&tty->write_wait)) {
1767				wake_up_poll(&tty->write_wait, POLLOUT);
1768				do_sleep++;
1769			}
1770		}
1771		if (o_tty_closing) {
1772			if (waitqueue_active(&o_tty->read_wait)) {
1773				wake_up_poll(&o_tty->read_wait, POLLIN);
1774				do_sleep++;
1775			}
1776			if (waitqueue_active(&o_tty->write_wait)) {
1777				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778				do_sleep++;
1779			}
1780		}
1781		if (!do_sleep)
1782			break;
1783
1784		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785				__func__, tty_name(tty, buf));
1786		tty_unlock_pair(tty, o_tty);
1787		mutex_unlock(&tty_mutex);
1788		schedule();
 
 
 
 
1789	}
1790
1791	/*
1792	 * The closing flags are now consistent with the open counts on
1793	 * both sides, and we've completed the last operation that could
1794	 * block, so it's safe to proceed with closing.
1795	 *
1796	 * We must *not* drop the tty_mutex until we ensure that a further
1797	 * entry into tty_open can not pick up this tty.
1798	 */
1799	if (pty_master) {
1800		if (--o_tty->count < 0) {
1801			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802				__func__, o_tty->count, tty_name(o_tty, buf));
1803			o_tty->count = 0;
1804		}
1805	}
1806	if (--tty->count < 0) {
1807		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808				__func__, tty->count, tty_name(tty, buf));
1809		tty->count = 0;
1810	}
1811
1812	/*
1813	 * We've decremented tty->count, so we need to remove this file
1814	 * descriptor off the tty->tty_files list; this serves two
1815	 * purposes:
1816	 *  - check_tty_count sees the correct number of file descriptors
1817	 *    associated with this tty.
1818	 *  - do_tty_hangup no longer sees this file descriptor as
1819	 *    something that needs to be handled for hangups.
1820	 */
1821	tty_del_file(filp);
1822
1823	/*
1824	 * Perform some housekeeping before deciding whether to return.
1825	 *
1826	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827	 * case of a pty we may have to wait around for the other side
1828	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829	 */
1830	if (tty_closing)
1831		set_bit(TTY_CLOSING, &tty->flags);
1832	if (o_tty_closing)
1833		set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835	/*
1836	 * If _either_ side is closing, make sure there aren't any
1837	 * processes that still think tty or o_tty is their controlling
1838	 * tty.
1839	 */
1840	if (tty_closing || o_tty_closing) {
1841		read_lock(&tasklist_lock);
1842		session_clear_tty(tty->session);
1843		if (o_tty)
1844			session_clear_tty(o_tty->session);
1845		read_unlock(&tasklist_lock);
1846	}
1847
1848	mutex_unlock(&tty_mutex);
1849	tty_unlock_pair(tty, o_tty);
1850	/* At this point the TTY_CLOSING flag should ensure a dead tty
1851	   cannot be re-opened by a racing opener */
1852
1853	/* check whether both sides are closing ... */
1854	if (!tty_closing || (o_tty && !o_tty_closing))
1855		return 0;
1856
1857#ifdef TTY_DEBUG_HANGUP
1858	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859#endif
1860	/*
1861	 * Ask the line discipline code to release its structures
1862	 */
1863	tty_ldisc_release(tty, o_tty);
1864
1865	/* Wait for pending work before tty destruction commmences */
1866	tty_flush_works(tty);
1867	if (o_tty)
1868		tty_flush_works(o_tty);
1869
1870#ifdef TTY_DEBUG_HANGUP
1871	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872#endif
1873	/*
1874	 * The release_tty function takes care of the details of clearing
1875	 * the slots and preserving the termios structure. The tty_unlock_pair
1876	 * should be safe as we keep a kref while the tty is locked (so the
1877	 * unlock never unlocks a freed tty).
1878	 */
1879	mutex_lock(&tty_mutex);
1880	release_tty(tty, idx);
1881	mutex_unlock(&tty_mutex);
1882
 
1883	return 0;
1884}
1885
1886/**
1887 *	tty_open_current_tty - get tty of current task for open
1888 *	@device: device number
1889 *	@filp: file pointer to tty
1890 *	@return: tty of the current task iff @device is /dev/tty
 
 
1891 *
1892 *	We cannot return driver and index like for the other nodes because
1893 *	devpts will not work then. It expects inodes to be from devpts FS.
1894 *
1895 *	We need to move to returning a refcounted object from all the lookup
1896 *	paths including this one.
1897 */
1898static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899{
1900	struct tty_struct *tty;
 
1901
1902	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903		return NULL;
1904
1905	tty = get_current_tty();
1906	if (!tty)
1907		return ERR_PTR(-ENXIO);
1908
1909	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910	/* noctty = 1; */
1911	tty_kref_put(tty);
1912	/* FIXME: we put a reference and return a TTY! */
1913	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1914	return tty;
1915}
1916
1917/**
1918 *	tty_lookup_driver - lookup a tty driver for a given device file
1919 *	@device: device number
1920 *	@filp: file pointer to tty
1921 *	@noctty: set if the device should not become a controlling tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 * 	If @return is not erroneous, the caller is responsible to decrement the
1926 * 	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *noctty, int *index)
1932{
1933	struct tty_driver *driver;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939		driver = tty_driver_kref_get(console_driver);
1940		*index = fg_console;
1941		*noctty = 1;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947		if (console_driver) {
1948			driver = tty_driver_kref_get(console_driver);
1949			if (driver) {
1950				/* Don't let /dev/console block */
1951				filp->f_flags |= O_NONBLOCK;
1952				*noctty = 1;
1953				break;
1954			}
1955		}
1956		return ERR_PTR(-ENODEV);
1957	}
1958	default:
1959		driver = get_tty_driver(device, index);
1960		if (!driver)
1961			return ERR_PTR(-ENODEV);
1962		break;
1963	}
1964	return driver;
1965}
1966
1967/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	struct tty_driver *driver = NULL;
1996	int index;
1997	dev_t device = inode->i_rdev;
1998	unsigned saved_flags = filp->f_flags;
1999
2000	nonseekable_open(inode, filp);
2001
2002retry_open:
2003	retval = tty_alloc_file(filp);
2004	if (retval)
2005		return -ENOMEM;
2006
2007	noctty = filp->f_flags & O_NOCTTY;
2008	index  = -1;
2009	retval = 0;
2010
2011	mutex_lock(&tty_mutex);
2012	/* This is protected by the tty_mutex */
2013	tty = tty_open_current_tty(device, filp);
2014	if (IS_ERR(tty)) {
2015		retval = PTR_ERR(tty);
2016		goto err_unlock;
2017	} else if (!tty) {
2018		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019		if (IS_ERR(driver)) {
2020			retval = PTR_ERR(driver);
2021			goto err_unlock;
2022		}
2023
2024		/* check whether we're reopening an existing tty */
2025		tty = tty_driver_lookup_tty(driver, inode, index);
2026		if (IS_ERR(tty)) {
2027			retval = PTR_ERR(tty);
2028			goto err_unlock;
2029		}
2030	}
2031
2032	if (tty) {
2033		tty_lock(tty);
2034		retval = tty_reopen(tty);
2035		if (retval < 0) {
2036			tty_unlock(tty);
2037			tty = ERR_PTR(retval);
2038		}
2039	} else	/* Returns with the tty_lock held for now */
2040		tty = tty_init_dev(driver, index);
2041
2042	mutex_unlock(&tty_mutex);
2043	if (driver)
2044		tty_driver_kref_put(driver);
2045	if (IS_ERR(tty)) {
 
2046		retval = PTR_ERR(tty);
2047		goto err_file;
 
 
 
2048	}
2049
2050	tty_add_file(tty, filp);
2051
2052	check_tty_count(tty, __func__);
2053	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054	    tty->driver->subtype == PTY_TYPE_MASTER)
2055		noctty = 1;
2056#ifdef TTY_DEBUG_HANGUP
2057	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058#endif
2059	if (tty->ops->open)
2060		retval = tty->ops->open(tty, filp);
2061	else
2062		retval = -ENODEV;
2063	filp->f_flags = saved_flags;
2064
2065	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066						!capable(CAP_SYS_ADMIN))
2067		retval = -EBUSY;
2068
2069	if (retval) {
2070#ifdef TTY_DEBUG_HANGUP
2071		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072				retval, tty->name);
2073#endif
2074		tty_unlock(tty); /* need to call tty_release without BTM */
2075		tty_release(inode, filp);
2076		if (retval != -ERESTARTSYS)
2077			return retval;
2078
2079		if (signal_pending(current))
2080			return retval;
2081
2082		schedule();
2083		/*
2084		 * Need to reset f_op in case a hangup happened.
2085		 */
2086		if (filp->f_op == &hung_up_tty_fops)
2087			filp->f_op = &tty_fops;
2088		goto retry_open;
2089	}
2090	clear_bit(TTY_HUPPED, &tty->flags);
2091	tty_unlock(tty);
2092
2093
2094	mutex_lock(&tty_mutex);
2095	tty_lock(tty);
2096	spin_lock_irq(&current->sighand->siglock);
2097	if (!noctty &&
2098	    current->signal->leader &&
2099	    !current->signal->tty &&
2100	    tty->session == NULL)
2101		__proc_set_tty(current, tty);
2102	spin_unlock_irq(&current->sighand->siglock);
2103	tty_unlock(tty);
2104	mutex_unlock(&tty_mutex);
2105	return 0;
2106err_unlock:
2107	mutex_unlock(&tty_mutex);
2108	/* after locks to avoid deadlock */
2109	if (!IS_ERR_OR_NULL(driver))
2110		tty_driver_kref_put(driver);
2111err_file:
2112	tty_free_file(filp);
2113	return retval;
2114}
2115
2116
2117
2118/**
2119 *	tty_poll	-	check tty status
2120 *	@filp: file being polled
2121 *	@wait: poll wait structures to update
2122 *
2123 *	Call the line discipline polling method to obtain the poll
2124 *	status of the device.
2125 *
2126 *	Locking: locks called line discipline but ldisc poll method
2127 *	may be re-entered freely by other callers.
2128 */
2129
2130static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131{
2132	struct tty_struct *tty = file_tty(filp);
2133	struct tty_ldisc *ld;
2134	int ret = 0;
2135
2136	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137		return 0;
2138
2139	ld = tty_ldisc_ref_wait(tty);
 
 
2140	if (ld->ops->poll)
2141		ret = (ld->ops->poll)(tty, filp, wait);
2142	tty_ldisc_deref(ld);
2143	return ret;
2144}
2145
2146static int __tty_fasync(int fd, struct file *filp, int on)
2147{
2148	struct tty_struct *tty = file_tty(filp);
2149	struct tty_ldisc *ldisc;
2150	unsigned long flags;
2151	int retval = 0;
2152
2153	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154		goto out;
2155
2156	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157	if (retval <= 0)
2158		goto out;
2159
2160	ldisc = tty_ldisc_ref(tty);
2161	if (ldisc) {
2162		if (ldisc->ops->fasync)
2163			ldisc->ops->fasync(tty, on);
2164		tty_ldisc_deref(ldisc);
2165	}
2166
2167	if (on) {
2168		enum pid_type type;
2169		struct pid *pid;
2170
2171		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172		if (tty->pgrp) {
2173			pid = tty->pgrp;
2174			type = PIDTYPE_PGID;
2175		} else {
2176			pid = task_pid(current);
2177			type = PIDTYPE_PID;
2178		}
2179		get_pid(pid);
2180		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181		retval = __f_setown(filp, pid, type, 0);
2182		put_pid(pid);
 
2183	}
2184out:
2185	return retval;
2186}
2187
2188static int tty_fasync(int fd, struct file *filp, int on)
2189{
2190	struct tty_struct *tty = file_tty(filp);
2191	int retval;
2192
2193	tty_lock(tty);
2194	retval = __tty_fasync(fd, filp, on);
 
2195	tty_unlock(tty);
2196
2197	return retval;
2198}
2199
2200/**
2201 *	tiocsti			-	fake input character
2202 *	@tty: tty to fake input into
2203 *	@p: pointer to character
2204 *
2205 *	Fake input to a tty device. Does the necessary locking and
2206 *	input management.
2207 *
2208 *	FIXME: does not honour flow control ??
2209 *
2210 *	Locking:
2211 *		Called functions take tty_ldiscs_lock
2212 *		current->signal->tty check is safe without locks
2213 *
2214 *	FIXME: may race normal receive processing
2215 */
2216
2217static int tiocsti(struct tty_struct *tty, char __user *p)
2218{
2219	char ch, mbz = 0;
2220	struct tty_ldisc *ld;
2221
2222	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223		return -EPERM;
2224	if (get_user(ch, p))
2225		return -EFAULT;
2226	tty_audit_tiocsti(tty, ch);
2227	ld = tty_ldisc_ref_wait(tty);
 
 
2228	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229	tty_ldisc_deref(ld);
2230	return 0;
2231}
2232
2233/**
2234 *	tiocgwinsz		-	implement window query ioctl
2235 *	@tty; tty
2236 *	@arg: user buffer for result
2237 *
2238 *	Copies the kernel idea of the window size into the user buffer.
2239 *
2240 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241 *		is consistent.
2242 */
2243
2244static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245{
2246	int err;
2247
2248	mutex_lock(&tty->winsize_mutex);
2249	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250	mutex_unlock(&tty->winsize_mutex);
2251
2252	return err ? -EFAULT: 0;
2253}
2254
2255/**
2256 *	tty_do_resize		-	resize event
2257 *	@tty: tty being resized
2258 *	@rows: rows (character)
2259 *	@cols: cols (character)
2260 *
2261 *	Update the termios variables and send the necessary signals to
2262 *	peform a terminal resize correctly
2263 */
2264
2265int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266{
2267	struct pid *pgrp;
2268	unsigned long flags;
2269
2270	/* Lock the tty */
2271	mutex_lock(&tty->winsize_mutex);
2272	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273		goto done;
2274	/* Get the PID values and reference them so we can
2275	   avoid holding the tty ctrl lock while sending signals */
2276	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277	pgrp = get_pid(tty->pgrp);
2278	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
 
 
2280	if (pgrp)
2281		kill_pgrp(pgrp, SIGWINCH, 1);
2282	put_pid(pgrp);
2283
2284	tty->winsize = *ws;
2285done:
2286	mutex_unlock(&tty->winsize_mutex);
2287	return 0;
2288}
2289EXPORT_SYMBOL(tty_do_resize);
2290
2291/**
2292 *	tiocswinsz		-	implement window size set ioctl
2293 *	@tty; tty side of tty
2294 *	@arg: user buffer for result
2295 *
2296 *	Copies the user idea of the window size to the kernel. Traditionally
2297 *	this is just advisory information but for the Linux console it
2298 *	actually has driver level meaning and triggers a VC resize.
2299 *
2300 *	Locking:
2301 *		Driver dependent. The default do_resize method takes the
2302 *	tty termios mutex and ctrl_lock. The console takes its own lock
2303 *	then calls into the default method.
2304 */
2305
2306static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	struct winsize tmp_ws;
2309	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310		return -EFAULT;
2311
2312	if (tty->ops->resize)
2313		return tty->ops->resize(tty, &tmp_ws);
2314	else
2315		return tty_do_resize(tty, &tmp_ws);
2316}
2317
2318/**
2319 *	tioccons	-	allow admin to move logical console
2320 *	@file: the file to become console
2321 *
2322 *	Allow the administrator to move the redirected console device
2323 *
2324 *	Locking: uses redirect_lock to guard the redirect information
2325 */
2326
2327static int tioccons(struct file *file)
2328{
2329	if (!capable(CAP_SYS_ADMIN))
2330		return -EPERM;
2331	if (file->f_op->write == redirected_tty_write) {
2332		struct file *f;
2333		spin_lock(&redirect_lock);
2334		f = redirect;
2335		redirect = NULL;
2336		spin_unlock(&redirect_lock);
2337		if (f)
2338			fput(f);
2339		return 0;
2340	}
2341	spin_lock(&redirect_lock);
2342	if (redirect) {
2343		spin_unlock(&redirect_lock);
2344		return -EBUSY;
2345	}
2346	redirect = get_file(file);
2347	spin_unlock(&redirect_lock);
2348	return 0;
2349}
2350
2351/**
2352 *	fionbio		-	non blocking ioctl
2353 *	@file: file to set blocking value
2354 *	@p: user parameter
2355 *
2356 *	Historical tty interfaces had a blocking control ioctl before
2357 *	the generic functionality existed. This piece of history is preserved
2358 *	in the expected tty API of posix OS's.
2359 *
2360 *	Locking: none, the open file handle ensures it won't go away.
2361 */
2362
2363static int fionbio(struct file *file, int __user *p)
2364{
2365	int nonblock;
2366
2367	if (get_user(nonblock, p))
2368		return -EFAULT;
2369
2370	spin_lock(&file->f_lock);
2371	if (nonblock)
2372		file->f_flags |= O_NONBLOCK;
2373	else
2374		file->f_flags &= ~O_NONBLOCK;
2375	spin_unlock(&file->f_lock);
2376	return 0;
2377}
2378
2379/**
2380 *	tiocsctty	-	set controlling tty
2381 *	@tty: tty structure
2382 *	@arg: user argument
2383 *
2384 *	This ioctl is used to manage job control. It permits a session
2385 *	leader to set this tty as the controlling tty for the session.
2386 *
2387 *	Locking:
2388 *		Takes tty_mutex() to protect tty instance
2389 *		Takes tasklist_lock internally to walk sessions
2390 *		Takes ->siglock() when updating signal->tty
2391 */
2392
2393static int tiocsctty(struct tty_struct *tty, int arg)
2394{
2395	int ret = 0;
2396	if (current->signal->leader && (task_session(current) == tty->session))
2397		return ret;
2398
2399	mutex_lock(&tty_mutex);
2400	/*
2401	 * The process must be a session leader and
2402	 * not have a controlling tty already.
2403	 */
2404	if (!current->signal->leader || current->signal->tty) {
2405		ret = -EPERM;
2406		goto unlock;
2407	}
2408
2409	if (tty->session) {
2410		/*
2411		 * This tty is already the controlling
2412		 * tty for another session group!
2413		 */
2414		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415			/*
2416			 * Steal it away
2417			 */
2418			read_lock(&tasklist_lock);
2419			session_clear_tty(tty->session);
2420			read_unlock(&tasklist_lock);
2421		} else {
2422			ret = -EPERM;
2423			goto unlock;
2424		}
2425	}
2426	proc_set_tty(current, tty);
2427unlock:
2428	mutex_unlock(&tty_mutex);
2429	return ret;
2430}
2431
2432/**
2433 *	tty_get_pgrp	-	return a ref counted pgrp pid
2434 *	@tty: tty to read
2435 *
2436 *	Returns a refcounted instance of the pid struct for the process
2437 *	group controlling the tty.
2438 */
2439
2440struct pid *tty_get_pgrp(struct tty_struct *tty)
2441{
2442	unsigned long flags;
2443	struct pid *pgrp;
2444
2445	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446	pgrp = get_pid(tty->pgrp);
2447	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449	return pgrp;
2450}
2451EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
2453/**
2454 *	tiocgpgrp		-	get process group
2455 *	@tty: tty passed by user
2456 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457 *	@p: returned pid
2458 *
2459 *	Obtain the process group of the tty. If there is no process group
2460 *	return an error.
2461 *
2462 *	Locking: none. Reference to current->signal->tty is safe.
2463 */
2464
2465static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466{
2467	struct pid *pid;
2468	int ret;
2469	/*
2470	 * (tty == real_tty) is a cheap way of
2471	 * testing if the tty is NOT a master pty.
2472	 */
2473	if (tty == real_tty && current->signal->tty != real_tty)
2474		return -ENOTTY;
2475	pid = tty_get_pgrp(real_tty);
2476	ret =  put_user(pid_vnr(pid), p);
2477	put_pid(pid);
2478	return ret;
2479}
2480
2481/**
2482 *	tiocspgrp		-	attempt to set process group
2483 *	@tty: tty passed by user
2484 *	@real_tty: tty side device matching tty passed by user
2485 *	@p: pid pointer
2486 *
2487 *	Set the process group of the tty to the session passed. Only
2488 *	permitted where the tty session is our session.
2489 *
2490 *	Locking: RCU, ctrl lock
2491 */
2492
2493static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494{
2495	struct pid *pgrp;
2496	pid_t pgrp_nr;
2497	int retval = tty_check_change(real_tty);
2498	unsigned long flags;
2499
2500	if (retval == -EIO)
2501		return -ENOTTY;
2502	if (retval)
2503		return retval;
2504	if (!current->signal->tty ||
2505	    (current->signal->tty != real_tty) ||
2506	    (real_tty->session != task_session(current)))
2507		return -ENOTTY;
2508	if (get_user(pgrp_nr, p))
2509		return -EFAULT;
2510	if (pgrp_nr < 0)
2511		return -EINVAL;
2512	rcu_read_lock();
2513	pgrp = find_vpid(pgrp_nr);
2514	retval = -ESRCH;
2515	if (!pgrp)
2516		goto out_unlock;
2517	retval = -EPERM;
2518	if (session_of_pgrp(pgrp) != task_session(current))
2519		goto out_unlock;
2520	retval = 0;
2521	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522	put_pid(real_tty->pgrp);
2523	real_tty->pgrp = get_pid(pgrp);
2524	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525out_unlock:
2526	rcu_read_unlock();
2527	return retval;
2528}
2529
2530/**
2531 *	tiocgsid		-	get session id
2532 *	@tty: tty passed by user
2533 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534 *	@p: pointer to returned session id
2535 *
2536 *	Obtain the session id of the tty. If there is no session
2537 *	return an error.
2538 *
2539 *	Locking: none. Reference to current->signal->tty is safe.
2540 */
2541
2542static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543{
2544	/*
2545	 * (tty == real_tty) is a cheap way of
2546	 * testing if the tty is NOT a master pty.
2547	*/
2548	if (tty == real_tty && current->signal->tty != real_tty)
2549		return -ENOTTY;
2550	if (!real_tty->session)
2551		return -ENOTTY;
2552	return put_user(pid_vnr(real_tty->session), p);
2553}
2554
2555/**
2556 *	tiocsetd	-	set line discipline
2557 *	@tty: tty device
2558 *	@p: pointer to user data
2559 *
2560 *	Set the line discipline according to user request.
2561 *
2562 *	Locking: see tty_set_ldisc, this function is just a helper
 
2563 */
2564
2565static int tiocsetd(struct tty_struct *tty, int __user *p)
2566{
2567	int ldisc;
2568	int ret;
2569
2570	if (get_user(ldisc, p))
2571		return -EFAULT;
2572
2573	ret = tty_set_ldisc(tty, ldisc);
2574
2575	return ret;
2576}
2577
2578/**
2579 *	send_break	-	performed time break
2580 *	@tty: device to break on
2581 *	@duration: timeout in mS
2582 *
2583 *	Perform a timed break on hardware that lacks its own driver level
2584 *	timed break functionality.
2585 *
2586 *	Locking:
2587 *		atomic_write_lock serializes
2588 *
2589 */
2590
2591static int send_break(struct tty_struct *tty, unsigned int duration)
2592{
2593	int retval;
2594
2595	if (tty->ops->break_ctl == NULL)
2596		return 0;
2597
2598	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599		retval = tty->ops->break_ctl(tty, duration);
2600	else {
2601		/* Do the work ourselves */
2602		if (tty_write_lock(tty, 0) < 0)
2603			return -EINTR;
2604		retval = tty->ops->break_ctl(tty, -1);
2605		if (retval)
2606			goto out;
2607		if (!signal_pending(current))
2608			msleep_interruptible(duration);
2609		retval = tty->ops->break_ctl(tty, 0);
2610out:
2611		tty_write_unlock(tty);
2612		if (signal_pending(current))
2613			retval = -EINTR;
2614	}
2615	return retval;
2616}
2617
2618/**
2619 *	tty_tiocmget		-	get modem status
2620 *	@tty: tty device
2621 *	@file: user file pointer
2622 *	@p: pointer to result
2623 *
2624 *	Obtain the modem status bits from the tty driver if the feature
2625 *	is supported. Return -EINVAL if it is not available.
2626 *
2627 *	Locking: none (up to the driver)
2628 */
2629
2630static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631{
2632	int retval = -EINVAL;
2633
2634	if (tty->ops->tiocmget) {
2635		retval = tty->ops->tiocmget(tty);
2636
2637		if (retval >= 0)
2638			retval = put_user(retval, p);
2639	}
2640	return retval;
2641}
2642
2643/**
2644 *	tty_tiocmset		-	set modem status
2645 *	@tty: tty device
2646 *	@cmd: command - clear bits, set bits or set all
2647 *	@p: pointer to desired bits
2648 *
2649 *	Set the modem status bits from the tty driver if the feature
2650 *	is supported. Return -EINVAL if it is not available.
2651 *
2652 *	Locking: none (up to the driver)
2653 */
2654
2655static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656	     unsigned __user *p)
2657{
2658	int retval;
2659	unsigned int set, clear, val;
2660
2661	if (tty->ops->tiocmset == NULL)
2662		return -EINVAL;
2663
2664	retval = get_user(val, p);
2665	if (retval)
2666		return retval;
2667	set = clear = 0;
2668	switch (cmd) {
2669	case TIOCMBIS:
2670		set = val;
2671		break;
2672	case TIOCMBIC:
2673		clear = val;
2674		break;
2675	case TIOCMSET:
2676		set = val;
2677		clear = ~val;
2678		break;
2679	}
2680	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682	return tty->ops->tiocmset(tty, set, clear);
2683}
2684
2685static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686{
2687	int retval = -EINVAL;
2688	struct serial_icounter_struct icount;
2689	memset(&icount, 0, sizeof(icount));
2690	if (tty->ops->get_icount)
2691		retval = tty->ops->get_icount(tty, &icount);
2692	if (retval != 0)
2693		return retval;
2694	if (copy_to_user(arg, &icount, sizeof(icount)))
2695		return -EFAULT;
2696	return 0;
2697}
2698
2699struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700{
2701	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702	    tty->driver->subtype == PTY_TYPE_MASTER)
2703		tty = tty->link;
2704	return tty;
 
 
 
 
 
 
 
 
 
 
2705}
2706EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2709{
2710	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711	    tty->driver->subtype == PTY_TYPE_MASTER)
2712	    return tty;
2713	return tty->link;
2714}
2715EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717/*
2718 * Split this up, as gcc can choke on it otherwise..
2719 */
2720long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721{
2722	struct tty_struct *tty = file_tty(file);
2723	struct tty_struct *real_tty;
2724	void __user *p = (void __user *)arg;
2725	int retval;
2726	struct tty_ldisc *ld;
2727
2728	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729		return -EINVAL;
2730
2731	real_tty = tty_pair_get_tty(tty);
2732
2733	/*
2734	 * Factor out some common prep work
2735	 */
2736	switch (cmd) {
2737	case TIOCSETD:
2738	case TIOCSBRK:
2739	case TIOCCBRK:
2740	case TCSBRK:
2741	case TCSBRKP:
2742		retval = tty_check_change(tty);
2743		if (retval)
2744			return retval;
2745		if (cmd != TIOCCBRK) {
2746			tty_wait_until_sent(tty, 0);
2747			if (signal_pending(current))
2748				return -EINTR;
2749		}
2750		break;
2751	}
2752
2753	/*
2754	 *	Now do the stuff.
2755	 */
2756	switch (cmd) {
2757	case TIOCSTI:
2758		return tiocsti(tty, p);
2759	case TIOCGWINSZ:
2760		return tiocgwinsz(real_tty, p);
2761	case TIOCSWINSZ:
2762		return tiocswinsz(real_tty, p);
2763	case TIOCCONS:
2764		return real_tty != tty ? -EINVAL : tioccons(file);
2765	case FIONBIO:
2766		return fionbio(file, p);
2767	case TIOCEXCL:
2768		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769		return 0;
2770	case TIOCNXCL:
2771		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772		return 0;
2773	case TIOCGEXCL:
2774	{
2775		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776		return put_user(excl, (int __user *)p);
2777	}
2778	case TIOCNOTTY:
2779		if (current->signal->tty != tty)
2780			return -ENOTTY;
2781		no_tty();
2782		return 0;
2783	case TIOCSCTTY:
2784		return tiocsctty(tty, arg);
2785	case TIOCGPGRP:
2786		return tiocgpgrp(tty, real_tty, p);
2787	case TIOCSPGRP:
2788		return tiocspgrp(tty, real_tty, p);
2789	case TIOCGSID:
2790		return tiocgsid(tty, real_tty, p);
2791	case TIOCGETD:
2792		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793	case TIOCSETD:
2794		return tiocsetd(tty, p);
2795	case TIOCVHANGUP:
2796		if (!capable(CAP_SYS_ADMIN))
2797			return -EPERM;
2798		tty_vhangup(tty);
2799		return 0;
2800	case TIOCGDEV:
2801	{
2802		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803		return put_user(ret, (unsigned int __user *)p);
2804	}
2805	/*
2806	 * Break handling
2807	 */
2808	case TIOCSBRK:	/* Turn break on, unconditionally */
2809		if (tty->ops->break_ctl)
2810			return tty->ops->break_ctl(tty, -1);
2811		return 0;
2812	case TIOCCBRK:	/* Turn break off, unconditionally */
2813		if (tty->ops->break_ctl)
2814			return tty->ops->break_ctl(tty, 0);
2815		return 0;
2816	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817		/* non-zero arg means wait for all output data
2818		 * to be sent (performed above) but don't send break.
2819		 * This is used by the tcdrain() termios function.
2820		 */
2821		if (!arg)
2822			return send_break(tty, 250);
2823		return 0;
2824	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825		return send_break(tty, arg ? arg*100 : 250);
2826
2827	case TIOCMGET:
2828		return tty_tiocmget(tty, p);
2829	case TIOCMSET:
2830	case TIOCMBIC:
2831	case TIOCMBIS:
2832		return tty_tiocmset(tty, cmd, p);
2833	case TIOCGICOUNT:
2834		retval = tty_tiocgicount(tty, p);
2835		/* For the moment allow fall through to the old method */
2836        	if (retval != -EINVAL)
2837			return retval;
2838		break;
2839	case TCFLSH:
2840		switch (arg) {
2841		case TCIFLUSH:
2842		case TCIOFLUSH:
2843		/* flush tty buffer and allow ldisc to process ioctl */
2844			tty_buffer_flush(tty);
2845			break;
2846		}
2847		break;
 
 
 
 
 
 
 
 
 
 
2848	}
2849	if (tty->ops->ioctl) {
2850		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851		if (retval != -ENOIOCTLCMD)
2852			return retval;
2853	}
2854	ld = tty_ldisc_ref_wait(tty);
 
 
2855	retval = -EINVAL;
2856	if (ld->ops->ioctl) {
2857		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858		if (retval == -ENOIOCTLCMD)
2859			retval = -ENOTTY;
2860	}
2861	tty_ldisc_deref(ld);
2862	return retval;
2863}
2864
2865#ifdef CONFIG_COMPAT
2866static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867				unsigned long arg)
2868{
2869	struct tty_struct *tty = file_tty(file);
2870	struct tty_ldisc *ld;
2871	int retval = -ENOIOCTLCMD;
2872
2873	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874		return -EINVAL;
2875
2876	if (tty->ops->compat_ioctl) {
2877		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878		if (retval != -ENOIOCTLCMD)
2879			return retval;
2880	}
2881
2882	ld = tty_ldisc_ref_wait(tty);
 
 
2883	if (ld->ops->compat_ioctl)
2884		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885	else
2886		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887	tty_ldisc_deref(ld);
2888
2889	return retval;
2890}
2891#endif
2892
2893static int this_tty(const void *t, struct file *file, unsigned fd)
2894{
2895	if (likely(file->f_op->read != tty_read))
2896		return 0;
2897	return file_tty(file) != t ? 0 : fd + 1;
2898}
2899	
2900/*
2901 * This implements the "Secure Attention Key" ---  the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key".  Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2905 *
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal.  But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2911 *
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915 *
2916 * Nasty bug: do_SAK is being called in interrupt context.  This can
2917 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918 */
2919void __do_SAK(struct tty_struct *tty)
2920{
2921#ifdef TTY_SOFT_SAK
2922	tty_hangup(tty);
2923#else
2924	struct task_struct *g, *p;
2925	struct pid *session;
2926	int		i;
2927
2928	if (!tty)
2929		return;
2930	session = tty->session;
2931
2932	tty_ldisc_flush(tty);
2933
2934	tty_driver_flush_buffer(tty);
2935
2936	read_lock(&tasklist_lock);
2937	/* Kill the entire session */
2938	do_each_pid_task(session, PIDTYPE_SID, p) {
2939		printk(KERN_NOTICE "SAK: killed process %d"
2940			" (%s): task_session(p)==tty->session\n",
2941			task_pid_nr(p), p->comm);
2942		send_sig(SIGKILL, p, 1);
2943	} while_each_pid_task(session, PIDTYPE_SID, p);
2944	/* Now kill any processes that happen to have the
2945	 * tty open.
2946	 */
2947	do_each_thread(g, p) {
2948		if (p->signal->tty == tty) {
2949			printk(KERN_NOTICE "SAK: killed process %d"
2950			    " (%s): task_session(p)==tty->session\n",
2951			    task_pid_nr(p), p->comm);
2952			send_sig(SIGKILL, p, 1);
2953			continue;
2954		}
2955		task_lock(p);
2956		i = iterate_fd(p->files, 0, this_tty, tty);
2957		if (i != 0) {
2958			printk(KERN_NOTICE "SAK: killed process %d"
2959			    " (%s): fd#%d opened to the tty\n",
2960				    task_pid_nr(p), p->comm, i - 1);
2961			force_sig(SIGKILL, p);
2962		}
2963		task_unlock(p);
2964	} while_each_thread(g, p);
2965	read_unlock(&tasklist_lock);
2966#endif
2967}
2968
2969static void do_SAK_work(struct work_struct *work)
2970{
2971	struct tty_struct *tty =
2972		container_of(work, struct tty_struct, SAK_work);
2973	__do_SAK(tty);
2974}
2975
2976/*
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2981 */
2982void do_SAK(struct tty_struct *tty)
2983{
2984	if (!tty)
2985		return;
2986	schedule_work(&tty->SAK_work);
2987}
2988
2989EXPORT_SYMBOL(do_SAK);
2990
2991static int dev_match_devt(struct device *dev, const void *data)
2992{
2993	const dev_t *devt = data;
2994	return dev->devt == *devt;
2995}
2996
2997/* Must put_device() after it's unused! */
2998static struct device *tty_get_device(struct tty_struct *tty)
2999{
3000	dev_t devt = tty_devnum(tty);
3001	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002}
3003
3004
3005/**
3006 *	initialize_tty_struct
3007 *	@tty: tty to initialize
3008 *
3009 *	This subroutine initializes a tty structure that has been newly
3010 *	allocated.
3011 *
3012 *	Locking: none - tty in question must not be exposed at this point
3013 */
3014
3015void initialize_tty_struct(struct tty_struct *tty,
3016		struct tty_driver *driver, int idx)
3017{
3018	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
3019	kref_init(&tty->kref);
3020	tty->magic = TTY_MAGIC;
3021	tty_ldisc_init(tty);
 
 
 
3022	tty->session = NULL;
3023	tty->pgrp = NULL;
3024	mutex_init(&tty->legacy_mutex);
3025	mutex_init(&tty->throttle_mutex);
3026	init_rwsem(&tty->termios_rwsem);
3027	mutex_init(&tty->winsize_mutex);
3028	init_ldsem(&tty->ldisc_sem);
3029	init_waitqueue_head(&tty->write_wait);
3030	init_waitqueue_head(&tty->read_wait);
3031	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032	mutex_init(&tty->atomic_write_lock);
3033	spin_lock_init(&tty->ctrl_lock);
 
 
3034	INIT_LIST_HEAD(&tty->tty_files);
3035	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037	tty->driver = driver;
3038	tty->ops = driver->ops;
3039	tty->index = idx;
3040	tty_line_name(driver, idx, tty->name);
3041	tty->dev = tty_get_device(tty);
3042}
3043
3044/**
3045 *	deinitialize_tty_struct
3046 *	@tty: tty to deinitialize
3047 *
3048 *	This subroutine deinitializes a tty structure that has been newly
3049 *	allocated but tty_release cannot be called on that yet.
3050 *
3051 *	Locking: none - tty in question must not be exposed at this point
3052 */
3053void deinitialize_tty_struct(struct tty_struct *tty)
3054{
3055	tty_ldisc_deinit(tty);
3056}
3057
3058/**
3059 *	tty_put_char	-	write one character to a tty
3060 *	@tty: tty
3061 *	@ch: character
3062 *
3063 *	Write one byte to the tty using the provided put_char method
3064 *	if present. Returns the number of characters successfully output.
3065 *
3066 *	Note: the specific put_char operation in the driver layer may go
3067 *	away soon. Don't call it directly, use this method
3068 */
3069
3070int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071{
3072	if (tty->ops->put_char)
3073		return tty->ops->put_char(tty, ch);
3074	return tty->ops->write(tty, &ch, 1);
3075}
3076EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078struct class *tty_class;
3079
3080static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081		unsigned int index, unsigned int count)
3082{
 
 
3083	/* init here, since reused cdevs cause crashes */
3084	cdev_init(&driver->cdevs[index], &tty_fops);
3085	driver->cdevs[index].owner = driver->owner;
3086	return cdev_add(&driver->cdevs[index], dev, count);
 
 
 
 
 
 
3087}
3088
3089/**
3090 *	tty_register_device - register a tty device
3091 *	@driver: the tty driver that describes the tty device
3092 *	@index: the index in the tty driver for this tty device
3093 *	@device: a struct device that is associated with this tty device.
3094 *		This field is optional, if there is no known struct device
3095 *		for this tty device it can be set to NULL safely.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
3106 */
3107
3108struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109				   struct device *device)
3110{
3111	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112}
3113EXPORT_SYMBOL(tty_register_device);
3114
3115static void tty_device_create_release(struct device *dev)
3116{
3117	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118	kfree(dev);
3119}
3120
3121/**
3122 *	tty_register_device_attr - register a tty device
3123 *	@driver: the tty driver that describes the tty device
3124 *	@index: the index in the tty driver for this tty device
3125 *	@device: a struct device that is associated with this tty device.
3126 *		This field is optional, if there is no known struct device
3127 *		for this tty device it can be set to NULL safely.
3128 *	@drvdata: Driver data to be set to device.
3129 *	@attr_grp: Attribute group to be set on device.
3130 *
3131 *	Returns a pointer to the struct device for this tty device
3132 *	(or ERR_PTR(-EFOO) on error).
3133 *
3134 *	This call is required to be made to register an individual tty device
3135 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136 *	that bit is not set, this function should not be called by a tty
3137 *	driver.
3138 *
3139 *	Locking: ??
3140 */
3141struct device *tty_register_device_attr(struct tty_driver *driver,
3142				   unsigned index, struct device *device,
3143				   void *drvdata,
3144				   const struct attribute_group **attr_grp)
3145{
3146	char name[64];
3147	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148	struct device *dev = NULL;
3149	int retval = -ENODEV;
3150	bool cdev = false;
3151
3152	if (index >= driver->num) {
3153		printk(KERN_ERR "Attempt to register invalid tty line number "
3154		       " (%d).\n", index);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159		pty_line_name(driver, index, name);
3160	else
3161		tty_line_name(driver, index, name);
3162
3163	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164		retval = tty_cdev_add(driver, devt, index, 1);
3165		if (retval)
3166			goto error;
3167		cdev = true;
3168	}
3169
3170	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171	if (!dev) {
3172		retval = -ENOMEM;
3173		goto error;
3174	}
3175
3176	dev->devt = devt;
3177	dev->class = tty_class;
3178	dev->parent = device;
3179	dev->release = tty_device_create_release;
3180	dev_set_name(dev, "%s", name);
3181	dev->groups = attr_grp;
3182	dev_set_drvdata(dev, drvdata);
3183
 
 
3184	retval = device_register(dev);
3185	if (retval)
3186		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	return dev;
3189
3190error:
 
 
3191	put_device(dev);
3192	if (cdev)
3193		cdev_del(&driver->cdevs[index]);
3194	return ERR_PTR(retval);
3195}
3196EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198/**
3199 * 	tty_unregister_device - unregister a tty device
3200 * 	@driver: the tty driver that describes the tty device
3201 * 	@index: the index in the tty driver for this tty device
3202 *
3203 * 	If a tty device is registered with a call to tty_register_device() then
3204 *	this function must be called when the tty device is gone.
3205 *
3206 *	Locking: ??
3207 */
3208
3209void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210{
3211	device_destroy(tty_class,
3212		MKDEV(driver->major, driver->minor_start) + index);
3213	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214		cdev_del(&driver->cdevs[index]);
 
 
3215}
3216EXPORT_SYMBOL(tty_unregister_device);
3217
3218/**
3219 * __tty_alloc_driver -- allocate tty driver
3220 * @lines: count of lines this driver can handle at most
3221 * @owner: module which is repsonsible for this driver
3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223 *
3224 * This should not be called directly, some of the provided macros should be
3225 * used instead. Use IS_ERR and friends on @retval.
3226 */
3227struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228		unsigned long flags)
3229{
3230	struct tty_driver *driver;
3231	unsigned int cdevs = 1;
3232	int err;
3233
3234	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235		return ERR_PTR(-EINVAL);
3236
3237	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238	if (!driver)
3239		return ERR_PTR(-ENOMEM);
3240
3241	kref_init(&driver->kref);
3242	driver->magic = TTY_DRIVER_MAGIC;
3243	driver->num = lines;
3244	driver->owner = owner;
3245	driver->flags = flags;
3246
3247	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249				GFP_KERNEL);
3250		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251				GFP_KERNEL);
3252		if (!driver->ttys || !driver->termios) {
3253			err = -ENOMEM;
3254			goto err_free_all;
3255		}
3256	}
3257
3258	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260				GFP_KERNEL);
3261		if (!driver->ports) {
3262			err = -ENOMEM;
3263			goto err_free_all;
3264		}
3265		cdevs = lines;
3266	}
3267
3268	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269	if (!driver->cdevs) {
3270		err = -ENOMEM;
3271		goto err_free_all;
3272	}
3273
3274	return driver;
3275err_free_all:
3276	kfree(driver->ports);
3277	kfree(driver->ttys);
3278	kfree(driver->termios);
 
3279	kfree(driver);
3280	return ERR_PTR(err);
3281}
3282EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284static void destruct_tty_driver(struct kref *kref)
3285{
3286	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287	int i;
3288	struct ktermios *tp;
3289
3290	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291		/*
3292		 * Free the termios and termios_locked structures because
3293		 * we don't want to get memory leaks when modular tty
3294		 * drivers are removed from the kernel.
3295		 */
3296		for (i = 0; i < driver->num; i++) {
3297			tp = driver->termios[i];
3298			if (tp) {
3299				driver->termios[i] = NULL;
3300				kfree(tp);
3301			}
3302			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303				tty_unregister_device(driver, i);
3304		}
3305		proc_tty_unregister_driver(driver);
3306		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307			cdev_del(&driver->cdevs[0]);
3308	}
3309	kfree(driver->cdevs);
3310	kfree(driver->ports);
3311	kfree(driver->termios);
3312	kfree(driver->ttys);
3313	kfree(driver);
3314}
3315
3316void tty_driver_kref_put(struct tty_driver *driver)
3317{
3318	kref_put(&driver->kref, destruct_tty_driver);
3319}
3320EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322void tty_set_operations(struct tty_driver *driver,
3323			const struct tty_operations *op)
3324{
3325	driver->ops = op;
3326};
3327EXPORT_SYMBOL(tty_set_operations);
3328
3329void put_tty_driver(struct tty_driver *d)
3330{
3331	tty_driver_kref_put(d);
3332}
3333EXPORT_SYMBOL(put_tty_driver);
3334
3335/*
3336 * Called by a tty driver to register itself.
3337 */
3338int tty_register_driver(struct tty_driver *driver)
3339{
3340	int error;
3341	int i;
3342	dev_t dev;
3343	struct device *d;
3344
3345	if (!driver->major) {
3346		error = alloc_chrdev_region(&dev, driver->minor_start,
3347						driver->num, driver->name);
3348		if (!error) {
3349			driver->major = MAJOR(dev);
3350			driver->minor_start = MINOR(dev);
3351		}
3352	} else {
3353		dev = MKDEV(driver->major, driver->minor_start);
3354		error = register_chrdev_region(dev, driver->num, driver->name);
3355	}
3356	if (error < 0)
3357		goto err;
3358
3359	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360		error = tty_cdev_add(driver, dev, 0, driver->num);
3361		if (error)
3362			goto err_unreg_char;
3363	}
3364
3365	mutex_lock(&tty_mutex);
3366	list_add(&driver->tty_drivers, &tty_drivers);
3367	mutex_unlock(&tty_mutex);
3368
3369	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370		for (i = 0; i < driver->num; i++) {
3371			d = tty_register_device(driver, i, NULL);
3372			if (IS_ERR(d)) {
3373				error = PTR_ERR(d);
3374				goto err_unreg_devs;
3375			}
3376		}
3377	}
3378	proc_tty_register_driver(driver);
3379	driver->flags |= TTY_DRIVER_INSTALLED;
3380	return 0;
3381
3382err_unreg_devs:
3383	for (i--; i >= 0; i--)
3384		tty_unregister_device(driver, i);
3385
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389
3390err_unreg_char:
3391	unregister_chrdev_region(dev, driver->num);
3392err:
3393	return error;
3394}
3395EXPORT_SYMBOL(tty_register_driver);
3396
3397/*
3398 * Called by a tty driver to unregister itself.
3399 */
3400int tty_unregister_driver(struct tty_driver *driver)
3401{
3402#if 0
3403	/* FIXME */
3404	if (driver->refcount)
3405		return -EBUSY;
3406#endif
3407	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408				driver->num);
3409	mutex_lock(&tty_mutex);
3410	list_del(&driver->tty_drivers);
3411	mutex_unlock(&tty_mutex);
3412	return 0;
3413}
3414
3415EXPORT_SYMBOL(tty_unregister_driver);
3416
3417dev_t tty_devnum(struct tty_struct *tty)
3418{
3419	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420}
3421EXPORT_SYMBOL(tty_devnum);
3422
3423void proc_clear_tty(struct task_struct *p)
3424{
3425	unsigned long flags;
3426	struct tty_struct *tty;
3427	spin_lock_irqsave(&p->sighand->siglock, flags);
3428	tty = p->signal->tty;
3429	p->signal->tty = NULL;
3430	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431	tty_kref_put(tty);
3432}
3433
3434/* Called under the sighand lock */
3435
3436static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437{
3438	if (tty) {
3439		unsigned long flags;
3440		/* We should not have a session or pgrp to put here but.... */
3441		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442		put_pid(tty->session);
3443		put_pid(tty->pgrp);
3444		tty->pgrp = get_pid(task_pgrp(tsk));
3445		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446		tty->session = get_pid(task_session(tsk));
3447		if (tsk->signal->tty) {
3448			printk(KERN_DEBUG "tty not NULL!!\n");
3449			tty_kref_put(tsk->signal->tty);
3450		}
3451	}
3452	put_pid(tsk->signal->tty_old_pgrp);
3453	tsk->signal->tty = tty_kref_get(tty);
3454	tsk->signal->tty_old_pgrp = NULL;
3455}
3456
3457static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458{
3459	spin_lock_irq(&tsk->sighand->siglock);
3460	__proc_set_tty(tsk, tty);
3461	spin_unlock_irq(&tsk->sighand->siglock);
3462}
3463
3464struct tty_struct *get_current_tty(void)
3465{
3466	struct tty_struct *tty;
3467	unsigned long flags;
3468
3469	spin_lock_irqsave(&current->sighand->siglock, flags);
3470	tty = tty_kref_get(current->signal->tty);
3471	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472	return tty;
3473}
3474EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476void tty_default_fops(struct file_operations *fops)
3477{
3478	*fops = tty_fops;
3479}
3480
3481/*
3482 * Initialize the console device. This is called *early*, so
3483 * we can't necessarily depend on lots of kernel help here.
3484 * Just do some early initializations, and do the complex setup
3485 * later.
3486 */
3487void __init console_init(void)
3488{
3489	initcall_t *call;
3490
3491	/* Setup the default TTY line discipline. */
3492	tty_ldisc_begin();
3493
3494	/*
3495	 * set up the console device so that later boot sequences can
3496	 * inform about problems etc..
3497	 */
3498	call = __con_initcall_start;
3499	while (call < __con_initcall_end) {
3500		(*call)();
3501		call++;
3502	}
3503}
3504
3505static char *tty_devnode(struct device *dev, umode_t *mode)
3506{
3507	if (!mode)
3508		return NULL;
3509	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511		*mode = 0666;
3512	return NULL;
3513}
3514
3515static int __init tty_class_init(void)
3516{
3517	tty_class = class_create(THIS_MODULE, "tty");
3518	if (IS_ERR(tty_class))
3519		return PTR_ERR(tty_class);
3520	tty_class->devnode = tty_devnode;
3521	return 0;
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530				struct device_attribute *attr, char *buf)
3531{
3532	struct console *cs[16];
3533	int i = 0;
3534	struct console *c;
3535	ssize_t count = 0;
3536
3537	console_lock();
3538	for_each_console(c) {
3539		if (!c->device)
3540			continue;
3541		if (!c->write)
3542			continue;
3543		if ((c->flags & CON_ENABLED) == 0)
3544			continue;
3545		cs[i++] = c;
3546		if (i >= ARRAY_SIZE(cs))
3547			break;
3548	}
3549	while (i--) {
3550		int index = cs[i]->index;
3551		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553		/* don't resolve tty0 as some programs depend on it */
3554		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555			count += tty_line_name(drv, index, buf + count);
3556		else
3557			count += sprintf(buf + count, "%s%d",
3558					 cs[i]->name, cs[i]->index);
3559
3560		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561	}
3562	console_unlock();
3563
3564	return count;
3565}
3566static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
 
 
 
 
 
 
 
3568static struct device *consdev;
3569
3570void console_sysfs_notify(void)
3571{
3572	if (consdev)
3573		sysfs_notify(&consdev->kobj, NULL, "active");
3574}
3575
3576/*
3577 * Ok, now we can initialize the rest of the tty devices and can count
3578 * on memory allocations, interrupts etc..
3579 */
3580int __init tty_init(void)
3581{
3582	cdev_init(&tty_cdev, &tty_fops);
3583	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585		panic("Couldn't register /dev/tty driver\n");
3586	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588	cdev_init(&console_cdev, &console_fops);
3589	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591		panic("Couldn't register /dev/console driver\n");
3592	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593			      "console");
 
3594	if (IS_ERR(consdev))
3595		consdev = NULL;
3596	else
3597		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599#ifdef CONFIG_VT
3600	vty_init(&console_fops);
3601#endif
3602	return 0;
3603}
3604
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100
 101#include <linux/uaccess.h>
 102
 103#include <linux/kbd_kern.h>
 104#include <linux/vt_kern.h>
 105#include <linux/selection.h>
 106
 107#include <linux/kmod.h>
 108#include <linux/nsproxy.h>
 109
 110#undef TTY_DEBUG_HANGUP
 111#ifdef TTY_DEBUG_HANGUP
 112# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 113#else
 114# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 115#endif
 116
 117#define TTY_PARANOIA_CHECK 1
 118#define CHECK_TTY_COUNT 1
 119
 120struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 121	.c_iflag = ICRNL | IXON,
 122	.c_oflag = OPOST | ONLCR,
 123	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 124	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 125		   ECHOCTL | ECHOKE | IEXTEN,
 126	.c_cc = INIT_C_CC,
 127	.c_ispeed = 38400,
 128	.c_ospeed = 38400,
 129	/* .c_line = N_TTY, */
 130};
 131
 132EXPORT_SYMBOL(tty_std_termios);
 133
 134/* This list gets poked at by procfs and various bits of boot up code. This
 135   could do with some rationalisation such as pulling the tty proc function
 136   into this file */
 137
 138LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 139
 140/* Mutex to protect creating and releasing a tty */
 
 141DEFINE_MUTEX(tty_mutex);
 
 
 
 
 142
 143static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 144static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 145ssize_t redirected_tty_write(struct file *, const char __user *,
 146							size_t, loff_t *);
 147static __poll_t tty_poll(struct file *, poll_table *);
 148static int tty_open(struct inode *, struct file *);
 149long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 
 
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 207}
 208
 209/**
 210 * tty_free_file - free file->private_data
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 
 
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254const char *tty_driver_name(const struct tty_struct *tty)
 255{
 256	if (!tty || !tty->driver)
 257		return "";
 258	return tty->driver->name;
 259}
 260
 261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 262			      const char *routine)
 263{
 264#ifdef TTY_PARANOIA_CHECK
 265	if (!tty) {
 266		pr_warn("(%d:%d): %s: NULL tty\n",
 
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270	if (tty->magic != TTY_MAGIC) {
 271		pr_warn("(%d:%d): %s: bad magic number\n",
 
 272			imajor(inode), iminor(inode), routine);
 273		return 1;
 274	}
 275#endif
 276	return 0;
 277}
 278
 279/* Caller must hold tty_lock */
 280static int check_tty_count(struct tty_struct *tty, const char *routine)
 281{
 282#ifdef CHECK_TTY_COUNT
 283	struct list_head *p;
 284	int count = 0, kopen_count = 0;
 285
 286	spin_lock(&tty->files_lock);
 287	list_for_each(p, &tty->tty_files) {
 288		count++;
 289	}
 290	spin_unlock(&tty->files_lock);
 291	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 292	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 293	    tty->link && tty->link->count)
 294		count++;
 295	if (tty_port_kopened(tty->port))
 296		kopen_count++;
 297	if (tty->count != (count + kopen_count)) {
 298		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 299			 routine, tty->count, count, kopen_count);
 300		return (count + kopen_count);
 301	}
 302#endif
 303	return 0;
 304}
 305
 306/**
 307 *	get_tty_driver		-	find device of a tty
 308 *	@dev_t: device identifier
 309 *	@index: returns the index of the tty
 310 *
 311 *	This routine returns a tty driver structure, given a device number
 312 *	and also passes back the index number.
 313 *
 314 *	Locking: caller must hold tty_mutex
 315 */
 316
 317static struct tty_driver *get_tty_driver(dev_t device, int *index)
 318{
 319	struct tty_driver *p;
 320
 321	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 322		dev_t base = MKDEV(p->major, p->minor_start);
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 434				size_t count, loff_t *ppos)
 435{
 436	return 0;
 437}
 438
 439static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 440				 size_t count, loff_t *ppos)
 441{
 442	return -EIO;
 443}
 444
 445/* No kernel lock held - none needed ;) */
 446static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 447{
 448	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 449}
 450
 451static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 452		unsigned long arg)
 453{
 454	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 455}
 456
 457static long hung_up_tty_compat_ioctl(struct file *file,
 458				     unsigned int cmd, unsigned long arg)
 459{
 460	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 461}
 462
 463static int hung_up_tty_fasync(int fd, struct file *file, int on)
 464{
 465	return -ENOTTY;
 466}
 467
 468static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 469{
 470	struct tty_struct *tty = file_tty(file);
 471
 472	if (tty && tty->ops && tty->ops->show_fdinfo)
 473		tty->ops->show_fdinfo(tty, m);
 474}
 475
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read		= tty_read,
 492	.write		= redirected_tty_write,
 493	.poll		= tty_poll,
 494	.unlocked_ioctl	= tty_ioctl,
 495	.compat_ioctl	= tty_compat_ioctl,
 496	.open		= tty_open,
 497	.release	= tty_release,
 498	.fasync		= tty_fasync,
 499};
 500
 501static const struct file_operations hung_up_tty_fops = {
 502	.llseek		= no_llseek,
 503	.read		= hung_up_tty_read,
 504	.write		= hung_up_tty_write,
 505	.poll		= hung_up_tty_poll,
 506	.unlocked_ioctl	= hung_up_tty_ioctl,
 507	.compat_ioctl	= hung_up_tty_compat_ioctl,
 508	.release	= tty_release,
 509	.fasync		= hung_up_tty_fasync,
 510};
 511
 512static DEFINE_SPINLOCK(redirect_lock);
 513static struct file *redirect;
 514
 515/**
 516 *	tty_wakeup	-	request more data
 517 *	@tty: terminal
 518 *
 519 *	Internal and external helper for wakeups of tty. This function
 520 *	informs the line discipline if present that the driver is ready
 521 *	to receive more output data.
 522 */
 523
 524void tty_wakeup(struct tty_struct *tty)
 525{
 526	struct tty_ldisc *ld;
 527
 528	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 529		ld = tty_ldisc_ref(tty);
 530		if (ld) {
 531			if (ld->ops->write_wakeup)
 532				ld->ops->write_wakeup(tty);
 533			tty_ldisc_deref(ld);
 534		}
 535	}
 536	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 537}
 538
 539EXPORT_SYMBOL_GPL(tty_wakeup);
 540
 541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542 *	__tty_hangup		-	actual handler for hangup events
 543 *	@work: tty device
 544 *
 545 *	This can be called by a "kworker" kernel thread.  That is process
 546 *	synchronous but doesn't hold any locks, so we need to make sure we
 547 *	have the appropriate locks for what we're doing.
 548 *
 549 *	The hangup event clears any pending redirections onto the hung up
 550 *	device. It ensures future writes will error and it does the needed
 551 *	line discipline hangup and signal delivery. The tty object itself
 552 *	remains intact.
 553 *
 554 *	Locking:
 555 *		BTM
 556 *		  redirect lock for undoing redirection
 557 *		  file list lock for manipulating list of ttys
 558 *		  tty_ldiscs_lock from called functions
 559 *		  termios_rwsem resetting termios data
 560 *		  tasklist_lock to walk task list for hangup event
 561 *		    ->siglock to protect ->signal/->sighand
 562 */
 563static void __tty_hangup(struct tty_struct *tty, int exit_session)
 564{
 565	struct file *cons_filp = NULL;
 566	struct file *filp, *f = NULL;
 567	struct tty_file_private *priv;
 568	int    closecount = 0, n;
 569	int refs;
 570
 571	if (!tty)
 572		return;
 573
 574
 575	spin_lock(&redirect_lock);
 576	if (redirect && file_tty(redirect) == tty) {
 577		f = redirect;
 578		redirect = NULL;
 579	}
 580	spin_unlock(&redirect_lock);
 581
 582	tty_lock(tty);
 583
 584	if (test_bit(TTY_HUPPED, &tty->flags)) {
 585		tty_unlock(tty);
 586		return;
 587	}
 588
 589	/*
 590	 * Some console devices aren't actually hung up for technical and
 591	 * historical reasons, which can lead to indefinite interruptible
 592	 * sleep in n_tty_read().  The following explicitly tells
 593	 * n_tty_read() to abort readers.
 594	 */
 595	set_bit(TTY_HUPPING, &tty->flags);
 596
 597	/* inuse_filps is protected by the single tty lock,
 598	   this really needs to change if we want to flush the
 599	   workqueue with the lock held */
 600	check_tty_count(tty, "tty_hangup");
 601
 602	spin_lock(&tty->files_lock);
 603	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 604	list_for_each_entry(priv, &tty->tty_files, list) {
 605		filp = priv->file;
 606		if (filp->f_op->write == redirected_tty_write)
 607			cons_filp = filp;
 608		if (filp->f_op->write != tty_write)
 609			continue;
 610		closecount++;
 611		__tty_fasync(-1, filp, 0);	/* can't block */
 612		filp->f_op = &hung_up_tty_fops;
 613	}
 614	spin_unlock(&tty->files_lock);
 615
 616	refs = tty_signal_session_leader(tty, exit_session);
 617	/* Account for the p->signal references we killed */
 618	while (refs--)
 619		tty_kref_put(tty);
 620
 621	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 622
 623	spin_lock_irq(&tty->ctrl_lock);
 624	clear_bit(TTY_THROTTLED, &tty->flags);
 625	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 626	put_pid(tty->session);
 627	put_pid(tty->pgrp);
 628	tty->session = NULL;
 629	tty->pgrp = NULL;
 630	tty->ctrl_status = 0;
 631	spin_unlock_irq(&tty->ctrl_lock);
 632
 633	/*
 634	 * If one of the devices matches a console pointer, we
 635	 * cannot just call hangup() because that will cause
 636	 * tty->count and state->count to go out of sync.
 637	 * So we just call close() the right number of times.
 638	 */
 639	if (cons_filp) {
 640		if (tty->ops->close)
 641			for (n = 0; n < closecount; n++)
 642				tty->ops->close(tty, cons_filp);
 643	} else if (tty->ops->hangup)
 644		tty->ops->hangup(tty);
 645	/*
 646	 * We don't want to have driver/ldisc interactions beyond the ones
 647	 * we did here. The driver layer expects no calls after ->hangup()
 648	 * from the ldisc side, which is now guaranteed.
 
 649	 */
 650	set_bit(TTY_HUPPED, &tty->flags);
 651	clear_bit(TTY_HUPPING, &tty->flags);
 
 652	tty_unlock(tty);
 653
 654	if (f)
 655		fput(f);
 656}
 657
 658static void do_tty_hangup(struct work_struct *work)
 659{
 660	struct tty_struct *tty =
 661		container_of(work, struct tty_struct, hangup_work);
 662
 663	__tty_hangup(tty, 0);
 664}
 665
 666/**
 667 *	tty_hangup		-	trigger a hangup event
 668 *	@tty: tty to hangup
 669 *
 670 *	A carrier loss (virtual or otherwise) has occurred on this like
 671 *	schedule a hangup sequence to run after this event.
 672 */
 673
 674void tty_hangup(struct tty_struct *tty)
 675{
 676	tty_debug_hangup(tty, "hangup\n");
 
 
 
 677	schedule_work(&tty->hangup_work);
 678}
 679
 680EXPORT_SYMBOL(tty_hangup);
 681
 682/**
 683 *	tty_vhangup		-	process vhangup
 684 *	@tty: tty to hangup
 685 *
 686 *	The user has asked via system call for the terminal to be hung up.
 687 *	We do this synchronously so that when the syscall returns the process
 688 *	is complete. That guarantee is necessary for security reasons.
 689 */
 690
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 
 
 
 
 694	__tty_hangup(tty, 0);
 695}
 696
 697EXPORT_SYMBOL(tty_vhangup);
 698
 699
 700/**
 701 *	tty_vhangup_self	-	process vhangup for own ctty
 702 *
 703 *	Perform a vhangup on the current controlling tty
 704 */
 705
 706void tty_vhangup_self(void)
 707{
 708	struct tty_struct *tty;
 709
 710	tty = get_current_tty();
 711	if (tty) {
 712		tty_vhangup(tty);
 713		tty_kref_put(tty);
 714	}
 715}
 716
 717/**
 718 *	tty_vhangup_session		-	hangup session leader exit
 719 *	@tty: tty to hangup
 720 *
 721 *	The session leader is exiting and hanging up its controlling terminal.
 722 *	Every process in the foreground process group is signalled SIGHUP.
 723 *
 724 *	We do this synchronously so that when the syscall returns the process
 725 *	is complete. That guarantee is necessary for security reasons.
 726 */
 727
 728void tty_vhangup_session(struct tty_struct *tty)
 729{
 730	tty_debug_hangup(tty, "session hangup\n");
 
 
 
 
 731	__tty_hangup(tty, 1);
 732}
 733
 734/**
 735 *	tty_hung_up_p		-	was tty hung up
 736 *	@filp: file pointer of tty
 737 *
 738 *	Return true if the tty has been subject to a vhangup or a carrier
 739 *	loss
 740 */
 741
 742int tty_hung_up_p(struct file *filp)
 743{
 744	return (filp && filp->f_op == &hung_up_tty_fops);
 745}
 746
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749/**
 750 *	stop_tty	-	propagate flow control
 751 *	@tty: tty to stop
 752 *
 753 *	Perform flow control to the driver. May be called
 
 754 *	on an already stopped device and will not re-call the driver
 755 *	method.
 756 *
 757 *	This functionality is used by both the line disciplines for
 758 *	halting incoming flow and by the driver. It may therefore be
 759 *	called from any context, may be under the tty atomic_write_lock
 760 *	but not always.
 761 *
 762 *	Locking:
 763 *		flow_lock
 764 */
 765
 766void __stop_tty(struct tty_struct *tty)
 767{
 768	if (tty->stopped)
 
 
 
 769		return;
 
 770	tty->stopped = 1;
 
 
 
 
 
 
 771	if (tty->ops->stop)
 772		tty->ops->stop(tty);
 773}
 774
 775void stop_tty(struct tty_struct *tty)
 776{
 777	unsigned long flags;
 778
 779	spin_lock_irqsave(&tty->flow_lock, flags);
 780	__stop_tty(tty);
 781	spin_unlock_irqrestore(&tty->flow_lock, flags);
 782}
 783EXPORT_SYMBOL(stop_tty);
 784
 785/**
 786 *	start_tty	-	propagate flow control
 787 *	@tty: tty to start
 788 *
 789 *	Start a tty that has been stopped if at all possible. If this
 790 *	tty was previous stopped and is now being started, the driver
 791 *	start method is invoked and the line discipline woken.
 
 792 *
 793 *	Locking:
 794 *		flow_lock
 795 */
 796
 797void __start_tty(struct tty_struct *tty)
 798{
 799	if (!tty->stopped || tty->flow_stopped)
 
 
 
 800		return;
 
 801	tty->stopped = 0;
 
 
 
 
 
 
 802	if (tty->ops->start)
 803		tty->ops->start(tty);
 
 804	tty_wakeup(tty);
 805}
 806
 807void start_tty(struct tty_struct *tty)
 808{
 809	unsigned long flags;
 810
 811	spin_lock_irqsave(&tty->flow_lock, flags);
 812	__start_tty(tty);
 813	spin_unlock_irqrestore(&tty->flow_lock, flags);
 814}
 815EXPORT_SYMBOL(start_tty);
 816
 
 817static void tty_update_time(struct timespec *time)
 818{
 819	unsigned long sec = get_seconds();
 820
 821	/*
 822	 * We only care if the two values differ in anything other than the
 823	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 824	 * the time of the tty device, otherwise it could be construded as a
 825	 * security leak to let userspace know the exact timing of the tty.
 826	 */
 827	if ((sec ^ time->tv_sec) & ~7)
 828		time->tv_sec = sec;
 829}
 830
 831/**
 832 *	tty_read	-	read method for tty device files
 833 *	@file: pointer to tty file
 834 *	@buf: user buffer
 835 *	@count: size of user buffer
 836 *	@ppos: unused
 837 *
 838 *	Perform the read system call function on this terminal device. Checks
 839 *	for hung up devices before calling the line discipline method.
 840 *
 841 *	Locking:
 842 *		Locks the line discipline internally while needed. Multiple
 843 *	read calls may be outstanding in parallel.
 844 */
 845
 846static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 847			loff_t *ppos)
 848{
 849	int i;
 850	struct inode *inode = file_inode(file);
 851	struct tty_struct *tty = file_tty(file);
 852	struct tty_ldisc *ld;
 853
 854	if (tty_paranoia_check(tty, inode, "tty_read"))
 855		return -EIO;
 856	if (!tty || tty_io_error(tty))
 857		return -EIO;
 858
 859	/* We want to wait for the line discipline to sort out in this
 860	   situation */
 861	ld = tty_ldisc_ref_wait(tty);
 862	if (!ld)
 863		return hung_up_tty_read(file, buf, count, ppos);
 864	if (ld->ops->read)
 865		i = ld->ops->read(tty, file, buf, count);
 866	else
 867		i = -EIO;
 868	tty_ldisc_deref(ld);
 869
 870	if (i > 0)
 871		tty_update_time(&inode->i_atime);
 872
 873	return i;
 874}
 875
 876static void tty_write_unlock(struct tty_struct *tty)
 
 877{
 878	mutex_unlock(&tty->atomic_write_lock);
 879	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 880}
 881
 882static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 883{
 884	if (!mutex_trylock(&tty->atomic_write_lock)) {
 885		if (ndelay)
 886			return -EAGAIN;
 887		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 888			return -ERESTARTSYS;
 889	}
 890	return 0;
 891}
 892
 893/*
 894 * Split writes up in sane blocksizes to avoid
 895 * denial-of-service type attacks
 896 */
 897static inline ssize_t do_tty_write(
 898	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 899	struct tty_struct *tty,
 900	struct file *file,
 901	const char __user *buf,
 902	size_t count)
 903{
 904	ssize_t ret, written = 0;
 905	unsigned int chunk;
 906
 907	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 908	if (ret < 0)
 909		return ret;
 910
 911	/*
 912	 * We chunk up writes into a temporary buffer. This
 913	 * simplifies low-level drivers immensely, since they
 914	 * don't have locking issues and user mode accesses.
 915	 *
 916	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 917	 * big chunk-size..
 918	 *
 919	 * The default chunk-size is 2kB, because the NTTY
 920	 * layer has problems with bigger chunks. It will
 921	 * claim to be able to handle more characters than
 922	 * it actually does.
 923	 *
 924	 * FIXME: This can probably go away now except that 64K chunks
 925	 * are too likely to fail unless switched to vmalloc...
 926	 */
 927	chunk = 2048;
 928	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 929		chunk = 65536;
 930	if (count < chunk)
 931		chunk = count;
 932
 933	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 934	if (tty->write_cnt < chunk) {
 935		unsigned char *buf_chunk;
 936
 937		if (chunk < 1024)
 938			chunk = 1024;
 939
 940		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 941		if (!buf_chunk) {
 942			ret = -ENOMEM;
 943			goto out;
 944		}
 945		kfree(tty->write_buf);
 946		tty->write_cnt = chunk;
 947		tty->write_buf = buf_chunk;
 948	}
 949
 950	/* Do the write .. */
 951	for (;;) {
 952		size_t size = count;
 953		if (size > chunk)
 954			size = chunk;
 955		ret = -EFAULT;
 956		if (copy_from_user(tty->write_buf, buf, size))
 957			break;
 958		ret = write(tty, file, tty->write_buf, size);
 959		if (ret <= 0)
 960			break;
 961		written += ret;
 962		buf += ret;
 963		count -= ret;
 964		if (!count)
 965			break;
 966		ret = -ERESTARTSYS;
 967		if (signal_pending(current))
 968			break;
 969		cond_resched();
 970	}
 971	if (written) {
 972		tty_update_time(&file_inode(file)->i_mtime);
 973		ret = written;
 974	}
 975out:
 976	tty_write_unlock(tty);
 977	return ret;
 978}
 979
 980/**
 981 * tty_write_message - write a message to a certain tty, not just the console.
 982 * @tty: the destination tty_struct
 983 * @msg: the message to write
 984 *
 985 * This is used for messages that need to be redirected to a specific tty.
 986 * We don't put it into the syslog queue right now maybe in the future if
 987 * really needed.
 988 *
 989 * We must still hold the BTM and test the CLOSING flag for the moment.
 990 */
 991
 992void tty_write_message(struct tty_struct *tty, char *msg)
 993{
 994	if (tty) {
 995		mutex_lock(&tty->atomic_write_lock);
 996		tty_lock(tty);
 997		if (tty->ops->write && tty->count > 0)
 
 998			tty->ops->write(tty, msg, strlen(msg));
 999		tty_unlock(tty);
 
1000		tty_write_unlock(tty);
1001	}
1002	return;
1003}
1004
1005
1006/**
1007 *	tty_write		-	write method for tty device file
1008 *	@file: tty file pointer
1009 *	@buf: user data to write
1010 *	@count: bytes to write
1011 *	@ppos: unused
1012 *
1013 *	Write data to a tty device via the line discipline.
1014 *
1015 *	Locking:
1016 *		Locks the line discipline as required
1017 *		Writes to the tty driver are serialized by the atomic_write_lock
1018 *	and are then processed in chunks to the device. The line discipline
1019 *	write method will not be invoked in parallel for each device.
1020 */
1021
1022static ssize_t tty_write(struct file *file, const char __user *buf,
1023						size_t count, loff_t *ppos)
1024{
1025	struct tty_struct *tty = file_tty(file);
1026 	struct tty_ldisc *ld;
1027	ssize_t ret;
1028
1029	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030		return -EIO;
1031	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1032			return -EIO;
1033	/* Short term debug to catch buggy drivers */
1034	if (tty->ops->write_room == NULL)
1035		tty_err(tty, "missing write_room method\n");
 
1036	ld = tty_ldisc_ref_wait(tty);
1037	if (!ld)
1038		return hung_up_tty_write(file, buf, count, ppos);
1039	if (!ld->ops->write)
1040		ret = -EIO;
1041	else
1042		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043	tty_ldisc_deref(ld);
1044	return ret;
1045}
1046
1047ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048						size_t count, loff_t *ppos)
1049{
1050	struct file *p = NULL;
1051
1052	spin_lock(&redirect_lock);
1053	if (redirect)
1054		p = get_file(redirect);
1055	spin_unlock(&redirect_lock);
1056
1057	if (p) {
1058		ssize_t res;
1059		res = vfs_write(p, buf, count, &p->f_pos);
1060		fput(p);
1061		return res;
1062	}
1063	return tty_write(file, buf, count, ppos);
1064}
1065
1066/**
1067 *	tty_send_xchar	-	send priority character
1068 *
1069 *	Send a high priority character to the tty even if stopped
1070 *
1071 *	Locking: none for xchar method, write ordering for write method.
1072 */
1073
1074int tty_send_xchar(struct tty_struct *tty, char ch)
1075{
1076	int	was_stopped = tty->stopped;
1077
1078	if (tty->ops->send_xchar) {
1079		down_read(&tty->termios_rwsem);
1080		tty->ops->send_xchar(tty, ch);
1081		up_read(&tty->termios_rwsem);
1082		return 0;
1083	}
1084
1085	if (tty_write_lock(tty, 0) < 0)
1086		return -ERESTARTSYS;
1087
1088	down_read(&tty->termios_rwsem);
1089	if (was_stopped)
1090		start_tty(tty);
1091	tty->ops->write(tty, &ch, 1);
1092	if (was_stopped)
1093		stop_tty(tty);
1094	up_read(&tty->termios_rwsem);
1095	tty_write_unlock(tty);
1096	return 0;
1097}
1098
1099static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101/**
1102 *	pty_line_name	-	generate name for a pty
1103 *	@driver: the tty driver in use
1104 *	@index: the minor number
1105 *	@p: output buffer of at least 6 bytes
1106 *
1107 *	Generate a name from a driver reference and write it to the output
1108 *	buffer.
1109 *
1110 *	Locking: None
1111 */
1112static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113{
1114	int i = index + driver->name_base;
1115	/* ->name is initialized to "ttyp", but "tty" is expected */
1116	sprintf(p, "%s%c%x",
1117		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118		ptychar[i >> 4 & 0xf], i & 0xf);
1119}
1120
1121/**
1122 *	tty_line_name	-	generate name for a tty
1123 *	@driver: the tty driver in use
1124 *	@index: the minor number
1125 *	@p: output buffer of at least 7 bytes
1126 *
1127 *	Generate a name from a driver reference and write it to the output
1128 *	buffer.
1129 *
1130 *	Locking: None
1131 */
1132static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133{
1134	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135		return sprintf(p, "%s", driver->name);
1136	else
1137		return sprintf(p, "%s%d", driver->name,
1138			       index + driver->name_base);
1139}
1140
1141/**
1142 *	tty_driver_lookup_tty() - find an existing tty, if any
1143 *	@driver: the driver for the tty
1144 *	@idx:	 the minor number
1145 *
1146 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 *	driver lookup() method returns an error.
1148 *
1149 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1150 */
1151static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152		struct file *file, int idx)
1153{
1154	struct tty_struct *tty;
1155
1156	if (driver->ops->lookup)
1157		if (!file)
1158			tty = ERR_PTR(-EIO);
1159		else
1160			tty = driver->ops->lookup(driver, file, idx);
1161	else
1162		tty = driver->ttys[idx];
1163
1164	if (!IS_ERR(tty))
1165		tty_kref_get(tty);
1166	return tty;
1167}
1168
1169/**
1170 *	tty_init_termios	-  helper for termios setup
1171 *	@tty: the tty to set up
1172 *
1173 *	Initialise the termios structures for this tty. Thus runs under
1174 *	the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
1177void tty_init_termios(struct tty_struct *tty)
1178{
1179	struct ktermios *tp;
1180	int idx = tty->index;
1181
1182	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183		tty->termios = tty->driver->init_termios;
1184	else {
1185		/* Check for lazy saved data */
1186		tp = tty->driver->termios[idx];
1187		if (tp != NULL) {
1188			tty->termios = *tp;
1189			tty->termios.c_line  = tty->driver->init_termios.c_line;
1190		} else
1191			tty->termios = tty->driver->init_termios;
1192	}
1193	/* Compatibility until drivers always set this */
1194	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1196}
1197EXPORT_SYMBOL_GPL(tty_init_termios);
1198
1199int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200{
1201	tty_init_termios(tty);
 
 
 
1202	tty_driver_kref_get(driver);
1203	tty->count++;
1204	driver->ttys[tty->index] = tty;
1205	return 0;
1206}
1207EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209/**
1210 *	tty_driver_install_tty() - install a tty entry in the driver
1211 *	@driver: the driver for the tty
1212 *	@tty: the tty
1213 *
1214 *	Install a tty object into the driver tables. The tty->index field
1215 *	will be set by the time this is called. This method is responsible
1216 *	for ensuring any need additional structures are allocated and
1217 *	configured.
1218 *
1219 *	Locking: tty_mutex for now
1220 */
1221static int tty_driver_install_tty(struct tty_driver *driver,
1222						struct tty_struct *tty)
1223{
1224	return driver->ops->install ? driver->ops->install(driver, tty) :
1225		tty_standard_install(driver, tty);
1226}
1227
1228/**
1229 *	tty_driver_remove_tty() - remove a tty from the driver tables
1230 *	@driver: the driver for the tty
1231 *	@idx:	 the minor number
1232 *
1233 *	Remvoe a tty object from the driver tables. The tty->index field
1234 *	will be set by the time this is called.
1235 *
1236 *	Locking: tty_mutex for now
1237 */
1238static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239{
1240	if (driver->ops->remove)
1241		driver->ops->remove(driver, tty);
1242	else
1243		driver->ttys[tty->index] = NULL;
1244}
1245
1246/*
1247 * 	tty_reopen()	- fast re-open of an open tty
1248 * 	@tty	- the tty to open
1249 *
1250 *	Return 0 on success, -errno on error.
1251 *	Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 *	Locking: Caller must hold tty_lock
 
1254 */
1255static int tty_reopen(struct tty_struct *tty)
1256{
1257	struct tty_driver *driver = tty->driver;
1258
1259	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1260	    driver->subtype == PTY_TYPE_MASTER)
1261		return -EIO;
1262
1263	if (!tty->count)
1264		return -EAGAIN;
1265
1266	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1267		return -EBUSY;
 
 
 
1268
 
 
1269	tty->count++;
1270
1271	if (!tty->ldisc)
1272		return tty_ldisc_reinit(tty, tty->termios.c_line);
1273
1274	return 0;
1275}
1276
1277/**
1278 *	tty_init_dev		-	initialise a tty device
1279 *	@driver: tty driver we are opening a device on
1280 *	@idx: device index
1281 *	@ret_tty: returned tty structure
1282 *
1283 *	Prepare a tty device. This may not be a "new" clean device but
1284 *	could also be an active device. The pty drivers require special
1285 *	handling because of this.
1286 *
1287 *	Locking:
1288 *		The function is called under the tty_mutex, which
1289 *	protects us from the tty struct or driver itself going away.
1290 *
1291 *	On exit the tty device has the line discipline attached and
1292 *	a reference count of 1. If a pair was created for pty/tty use
1293 *	and the other was a pty master then it too has a reference count of 1.
1294 *
1295 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1296 * failed open.  The new code protects the open with a mutex, so it's
1297 * really quite straightforward.  The mutex locking can probably be
1298 * relaxed for the (most common) case of reopening a tty.
1299 */
1300
1301struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1302{
1303	struct tty_struct *tty;
1304	int retval;
1305
1306	/*
1307	 * First time open is complex, especially for PTY devices.
1308	 * This code guarantees that either everything succeeds and the
1309	 * TTY is ready for operation, or else the table slots are vacated
1310	 * and the allocated memory released.  (Except that the termios
1311	 * may be retained.)
1312	 */
1313
1314	if (!try_module_get(driver->owner))
1315		return ERR_PTR(-ENODEV);
1316
1317	tty = alloc_tty_struct(driver, idx);
1318	if (!tty) {
1319		retval = -ENOMEM;
1320		goto err_module_put;
1321	}
 
1322
1323	tty_lock(tty);
1324	retval = tty_driver_install_tty(driver, tty);
1325	if (retval < 0)
1326		goto err_free_tty;
1327
1328	if (!tty->port)
1329		tty->port = driver->ports[idx];
1330
1331	WARN_RATELIMIT(!tty->port,
1332			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1333			__func__, tty->driver->name);
1334
1335	retval = tty_ldisc_lock(tty, 5 * HZ);
1336	if (retval)
1337		goto err_release_lock;
1338	tty->port->itty = tty;
1339
1340	/*
1341	 * Structures all installed ... call the ldisc open routines.
1342	 * If we fail here just call release_tty to clean up.  No need
1343	 * to decrement the use counts, as release_tty doesn't care.
1344	 */
1345	retval = tty_ldisc_setup(tty, tty->link);
1346	if (retval)
1347		goto err_release_tty;
1348	tty_ldisc_unlock(tty);
1349	/* Return the tty locked so that it cannot vanish under the caller */
1350	return tty;
1351
1352err_free_tty:
1353	tty_unlock(tty);
 
1354	free_tty_struct(tty);
1355err_module_put:
1356	module_put(driver->owner);
1357	return ERR_PTR(retval);
1358
1359	/* call the tty release_tty routine to clean out this slot */
1360err_release_tty:
1361	tty_ldisc_unlock(tty);
1362	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1363			     retval, idx);
1364err_release_lock:
1365	tty_unlock(tty);
 
 
1366	release_tty(tty, idx);
1367	return ERR_PTR(retval);
1368}
1369
1370static void tty_free_termios(struct tty_struct *tty)
1371{
1372	struct ktermios *tp;
1373	int idx = tty->index;
1374
1375	/* If the port is going to reset then it has no termios to save */
1376	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1377		return;
1378
1379	/* Stash the termios data */
1380	tp = tty->driver->termios[idx];
1381	if (tp == NULL) {
1382		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1383		if (tp == NULL)
 
1384			return;
 
1385		tty->driver->termios[idx] = tp;
1386	}
1387	*tp = tty->termios;
1388}
 
1389
1390/**
1391 *	tty_flush_works		-	flush all works of a tty/pty pair
1392 *	@tty: tty device to flush works for (or either end of a pty pair)
1393 *
1394 *	Sync flush all works belonging to @tty (and the 'other' tty).
1395 */
1396static void tty_flush_works(struct tty_struct *tty)
1397{
1398	flush_work(&tty->SAK_work);
1399	flush_work(&tty->hangup_work);
1400	if (tty->link) {
1401		flush_work(&tty->link->SAK_work);
1402		flush_work(&tty->link->hangup_work);
1403	}
1404}
1405
1406/**
1407 *	release_one_tty		-	release tty structure memory
1408 *	@kref: kref of tty we are obliterating
1409 *
1410 *	Releases memory associated with a tty structure, and clears out the
1411 *	driver table slots. This function is called when a device is no longer
1412 *	in use. It also gets called when setup of a device fails.
1413 *
1414 *	Locking:
1415 *		takes the file list lock internally when working on the list
1416 *	of ttys that the driver keeps.
1417 *
1418 *	This method gets called from a work queue so that the driver private
1419 *	cleanup ops can sleep (needed for USB at least)
1420 */
1421static void release_one_tty(struct work_struct *work)
1422{
1423	struct tty_struct *tty =
1424		container_of(work, struct tty_struct, hangup_work);
1425	struct tty_driver *driver = tty->driver;
1426	struct module *owner = driver->owner;
1427
1428	if (tty->ops->cleanup)
1429		tty->ops->cleanup(tty);
1430
1431	tty->magic = 0;
1432	tty_driver_kref_put(driver);
1433	module_put(owner);
1434
1435	spin_lock(&tty->files_lock);
1436	list_del_init(&tty->tty_files);
1437	spin_unlock(&tty->files_lock);
1438
1439	put_pid(tty->pgrp);
1440	put_pid(tty->session);
1441	free_tty_struct(tty);
1442}
1443
1444static void queue_release_one_tty(struct kref *kref)
1445{
1446	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1447
1448	/* The hangup queue is now free so we can reuse it rather than
1449	   waste a chunk of memory for each port */
1450	INIT_WORK(&tty->hangup_work, release_one_tty);
1451	schedule_work(&tty->hangup_work);
1452}
1453
1454/**
1455 *	tty_kref_put		-	release a tty kref
1456 *	@tty: tty device
1457 *
1458 *	Release a reference to a tty device and if need be let the kref
1459 *	layer destruct the object for us
1460 */
1461
1462void tty_kref_put(struct tty_struct *tty)
1463{
1464	if (tty)
1465		kref_put(&tty->kref, queue_release_one_tty);
1466}
1467EXPORT_SYMBOL(tty_kref_put);
1468
1469/**
1470 *	release_tty		-	release tty structure memory
1471 *
1472 *	Release both @tty and a possible linked partner (think pty pair),
1473 *	and decrement the refcount of the backing module.
1474 *
1475 *	Locking:
1476 *		tty_mutex
1477 *		takes the file list lock internally when working on the list
1478 *	of ttys that the driver keeps.
1479 *
1480 */
1481static void release_tty(struct tty_struct *tty, int idx)
1482{
1483	/* This should always be true but check for the moment */
1484	WARN_ON(tty->index != idx);
1485	WARN_ON(!mutex_is_locked(&tty_mutex));
1486	if (tty->ops->shutdown)
1487		tty->ops->shutdown(tty);
1488	tty_free_termios(tty);
1489	tty_driver_remove_tty(tty->driver, tty);
1490	tty->port->itty = NULL;
1491	if (tty->link)
1492		tty->link->port->itty = NULL;
1493	tty_buffer_cancel_work(tty->port);
 
1494	if (tty->link)
1495		tty_buffer_cancel_work(tty->link->port);
1496
1497	tty_kref_put(tty->link);
1498	tty_kref_put(tty);
1499}
1500
1501/**
1502 *	tty_release_checks - check a tty before real release
1503 *	@tty: tty to check
1504 *	@o_tty: link of @tty (if any)
1505 *	@idx: index of the tty
1506 *
1507 *	Performs some paranoid checking before true release of the @tty.
1508 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1509 */
1510static int tty_release_checks(struct tty_struct *tty, int idx)
 
1511{
1512#ifdef TTY_PARANOIA_CHECK
1513	if (idx < 0 || idx >= tty->driver->num) {
1514		tty_debug(tty, "bad idx %d\n", idx);
 
1515		return -1;
1516	}
1517
1518	/* not much to check for devpts */
1519	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1520		return 0;
1521
1522	if (tty != tty->driver->ttys[idx]) {
1523		tty_debug(tty, "bad driver table[%d] = %p\n",
1524			  idx, tty->driver->ttys[idx]);
1525		return -1;
1526	}
1527	if (tty->driver->other) {
1528		struct tty_struct *o_tty = tty->link;
1529
1530		if (o_tty != tty->driver->other->ttys[idx]) {
1531			tty_debug(tty, "bad other table[%d] = %p\n",
1532				  idx, tty->driver->other->ttys[idx]);
1533			return -1;
1534		}
1535		if (o_tty->link != tty) {
1536			tty_debug(tty, "bad link = %p\n", o_tty->link);
1537			return -1;
1538		}
1539	}
1540#endif
1541	return 0;
1542}
1543
1544/**
1545 *      tty_kclose      -       closes tty opened by tty_kopen
1546 *      @tty: tty device
1547 *
1548 *      Performs the final steps to release and free a tty device. It is the
1549 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1550 *      flag on tty->port.
1551 */
1552void tty_kclose(struct tty_struct *tty)
1553{
1554	/*
1555	 * Ask the line discipline code to release its structures
1556	 */
1557	tty_ldisc_release(tty);
1558
1559	/* Wait for pending work before tty destruction commmences */
1560	tty_flush_works(tty);
1561
1562	tty_debug_hangup(tty, "freeing structure\n");
1563	/*
1564	 * The release_tty function takes care of the details of clearing
1565	 * the slots and preserving the termios structure. The tty_unlock_pair
1566	 * should be safe as we keep a kref while the tty is locked (so the
1567	 * unlock never unlocks a freed tty).
1568	 */
1569	mutex_lock(&tty_mutex);
1570	tty_port_set_kopened(tty->port, 0);
1571	release_tty(tty, tty->index);
1572	mutex_unlock(&tty_mutex);
1573}
1574EXPORT_SYMBOL_GPL(tty_kclose);
1575
1576/**
1577 *	tty_release_struct	-	release a tty struct
1578 *	@tty: tty device
1579 *	@idx: index of the tty
1580 *
1581 *	Performs the final steps to release and free a tty device. It is
1582 *	roughly the reverse of tty_init_dev.
1583 */
1584void tty_release_struct(struct tty_struct *tty, int idx)
1585{
1586	/*
1587	 * Ask the line discipline code to release its structures
1588	 */
1589	tty_ldisc_release(tty);
1590
1591	/* Wait for pending work before tty destruction commmences */
1592	tty_flush_works(tty);
1593
1594	tty_debug_hangup(tty, "freeing structure\n");
1595	/*
1596	 * The release_tty function takes care of the details of clearing
1597	 * the slots and preserving the termios structure. The tty_unlock_pair
1598	 * should be safe as we keep a kref while the tty is locked (so the
1599	 * unlock never unlocks a freed tty).
1600	 */
1601	mutex_lock(&tty_mutex);
1602	release_tty(tty, idx);
1603	mutex_unlock(&tty_mutex);
1604}
1605EXPORT_SYMBOL_GPL(tty_release_struct);
1606
1607/**
1608 *	tty_release		-	vfs callback for close
1609 *	@inode: inode of tty
1610 *	@filp: file pointer for handle to tty
1611 *
1612 *	Called the last time each file handle is closed that references
1613 *	this tty. There may however be several such references.
1614 *
1615 *	Locking:
1616 *		Takes bkl. See tty_release_dev
1617 *
1618 * Even releasing the tty structures is a tricky business.. We have
1619 * to be very careful that the structures are all released at the
1620 * same time, as interrupts might otherwise get the wrong pointers.
1621 *
1622 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1623 * lead to double frees or releasing memory still in use.
1624 */
1625
1626int tty_release(struct inode *inode, struct file *filp)
1627{
1628	struct tty_struct *tty = file_tty(filp);
1629	struct tty_struct *o_tty = NULL;
1630	int	do_sleep, final;
1631	int	idx;
1632	long	timeout = 0;
1633	int	once = 1;
1634
1635	if (tty_paranoia_check(tty, inode, __func__))
1636		return 0;
1637
1638	tty_lock(tty);
1639	check_tty_count(tty, __func__);
1640
1641	__tty_fasync(-1, filp, 0);
1642
1643	idx = tty->index;
1644	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645	    tty->driver->subtype == PTY_TYPE_MASTER)
1646		o_tty = tty->link;
 
1647
1648	if (tty_release_checks(tty, idx)) {
1649		tty_unlock(tty);
1650		return 0;
1651	}
1652
1653	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1654
1655	if (tty->ops->close)
1656		tty->ops->close(tty, filp);
1657
1658	/* If tty is pty master, lock the slave pty (stable lock order) */
1659	tty_lock_slave(o_tty);
1660
1661	/*
1662	 * Sanity check: if tty->count is going to zero, there shouldn't be
1663	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1664	 * wait queues and kick everyone out _before_ actually starting to
1665	 * close.  This ensures that we won't block while releasing the tty
1666	 * structure.
1667	 *
1668	 * The test for the o_tty closing is necessary, since the master and
1669	 * slave sides may close in any order.  If the slave side closes out
1670	 * first, its count will be one, since the master side holds an open.
1671	 * Thus this test wouldn't be triggered at the time the slave closed,
1672	 * so we do it now.
 
 
 
 
1673	 */
1674	while (1) {
 
 
 
 
 
 
 
 
1675		do_sleep = 0;
1676
1677		if (tty->count <= 1) {
1678			if (waitqueue_active(&tty->read_wait)) {
1679				wake_up_poll(&tty->read_wait, EPOLLIN);
1680				do_sleep++;
1681			}
1682			if (waitqueue_active(&tty->write_wait)) {
1683				wake_up_poll(&tty->write_wait, EPOLLOUT);
1684				do_sleep++;
1685			}
1686		}
1687		if (o_tty && o_tty->count <= 1) {
1688			if (waitqueue_active(&o_tty->read_wait)) {
1689				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1690				do_sleep++;
1691			}
1692			if (waitqueue_active(&o_tty->write_wait)) {
1693				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1694				do_sleep++;
1695			}
1696		}
1697		if (!do_sleep)
1698			break;
1699
1700		if (once) {
1701			once = 0;
1702			tty_warn(tty, "read/write wait queue active!\n");
1703		}
1704		schedule_timeout_killable(timeout);
1705		if (timeout < 120 * HZ)
1706			timeout = 2 * timeout + 1;
1707		else
1708			timeout = MAX_SCHEDULE_TIMEOUT;
1709	}
1710
1711	if (o_tty) {
 
 
 
 
 
 
 
 
1712		if (--o_tty->count < 0) {
1713			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1714			o_tty->count = 0;
1715		}
1716	}
1717	if (--tty->count < 0) {
1718		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1719		tty->count = 0;
1720	}
1721
1722	/*
1723	 * We've decremented tty->count, so we need to remove this file
1724	 * descriptor off the tty->tty_files list; this serves two
1725	 * purposes:
1726	 *  - check_tty_count sees the correct number of file descriptors
1727	 *    associated with this tty.
1728	 *  - do_tty_hangup no longer sees this file descriptor as
1729	 *    something that needs to be handled for hangups.
1730	 */
1731	tty_del_file(filp);
1732
1733	/*
1734	 * Perform some housekeeping before deciding whether to return.
1735	 *
 
 
 
 
 
 
 
 
 
 
1736	 * If _either_ side is closing, make sure there aren't any
1737	 * processes that still think tty or o_tty is their controlling
1738	 * tty.
1739	 */
1740	if (!tty->count) {
1741		read_lock(&tasklist_lock);
1742		session_clear_tty(tty->session);
1743		if (o_tty)
1744			session_clear_tty(o_tty->session);
1745		read_unlock(&tasklist_lock);
1746	}
1747
 
 
 
 
 
1748	/* check whether both sides are closing ... */
1749	final = !tty->count && !(o_tty && o_tty->count);
 
1750
1751	tty_unlock_slave(o_tty);
1752	tty_unlock(tty);
 
 
 
 
 
1753
1754	/* At this point, the tty->count == 0 should ensure a dead tty
1755	   cannot be re-opened by a racing opener */
 
 
1756
1757	if (!final)
1758		return 0;
1759
1760	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
1761
1762	tty_release_struct(tty, idx);
1763	return 0;
1764}
1765
1766/**
1767 *	tty_open_current_tty - get locked tty of current task
1768 *	@device: device number
1769 *	@filp: file pointer to tty
1770 *	@return: locked tty of the current task iff @device is /dev/tty
1771 *
1772 *	Performs a re-open of the current task's controlling tty.
1773 *
1774 *	We cannot return driver and index like for the other nodes because
1775 *	devpts will not work then. It expects inodes to be from devpts FS.
 
 
 
1776 */
1777static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1778{
1779	struct tty_struct *tty;
1780	int retval;
1781
1782	if (device != MKDEV(TTYAUX_MAJOR, 0))
1783		return NULL;
1784
1785	tty = get_current_tty();
1786	if (!tty)
1787		return ERR_PTR(-ENXIO);
1788
1789	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1790	/* noctty = 1; */
1791	tty_lock(tty);
1792	tty_kref_put(tty);	/* safe to drop the kref now */
1793
1794	retval = tty_reopen(tty);
1795	if (retval < 0) {
1796		tty_unlock(tty);
1797		tty = ERR_PTR(retval);
1798	}
1799	return tty;
1800}
1801
1802/**
1803 *	tty_lookup_driver - lookup a tty driver for a given device file
1804 *	@device: device number
1805 *	@filp: file pointer to tty
 
1806 *	@index: index for the device in the @return driver
1807 *	@return: driver for this inode (with increased refcount)
1808 *
1809 * 	If @return is not erroneous, the caller is responsible to decrement the
1810 * 	refcount by tty_driver_kref_put.
1811 *
1812 *	Locking: tty_mutex protects get_tty_driver
1813 */
1814static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1815		int *index)
1816{
1817	struct tty_driver *driver;
1818
1819	switch (device) {
1820#ifdef CONFIG_VT
1821	case MKDEV(TTY_MAJOR, 0): {
1822		extern struct tty_driver *console_driver;
1823		driver = tty_driver_kref_get(console_driver);
1824		*index = fg_console;
 
1825		break;
1826	}
1827#endif
1828	case MKDEV(TTYAUX_MAJOR, 1): {
1829		struct tty_driver *console_driver = console_device(index);
1830		if (console_driver) {
1831			driver = tty_driver_kref_get(console_driver);
1832			if (driver && filp) {
1833				/* Don't let /dev/console block */
1834				filp->f_flags |= O_NONBLOCK;
 
1835				break;
1836			}
1837		}
1838		return ERR_PTR(-ENODEV);
1839	}
1840	default:
1841		driver = get_tty_driver(device, index);
1842		if (!driver)
1843			return ERR_PTR(-ENODEV);
1844		break;
1845	}
1846	return driver;
1847}
1848
1849/**
1850 *	tty_kopen	-	open a tty device for kernel
1851 *	@device: dev_t of device to open
1852 *
1853 *	Opens tty exclusively for kernel. Performs the driver lookup,
1854 *	makes sure it's not already opened and performs the first-time
1855 *	tty initialization.
1856 *
1857 *	Returns the locked initialized &tty_struct
1858 *
1859 *	Claims the global tty_mutex to serialize:
1860 *	  - concurrent first-time tty initialization
1861 *	  - concurrent tty driver removal w/ lookup
1862 *	  - concurrent tty removal from driver table
1863 */
1864struct tty_struct *tty_kopen(dev_t device)
1865{
1866	struct tty_struct *tty;
1867	struct tty_driver *driver = NULL;
1868	int index = -1;
1869
1870	mutex_lock(&tty_mutex);
1871	driver = tty_lookup_driver(device, NULL, &index);
1872	if (IS_ERR(driver)) {
1873		mutex_unlock(&tty_mutex);
1874		return ERR_CAST(driver);
1875	}
1876
1877	/* check whether we're reopening an existing tty */
1878	tty = tty_driver_lookup_tty(driver, NULL, index);
1879	if (IS_ERR(tty))
1880		goto out;
1881
1882	if (tty) {
1883		/* drop kref from tty_driver_lookup_tty() */
1884		tty_kref_put(tty);
1885		tty = ERR_PTR(-EBUSY);
1886	} else { /* tty_init_dev returns tty with the tty_lock held */
1887		tty = tty_init_dev(driver, index);
1888		if (IS_ERR(tty))
1889			goto out;
1890		tty_port_set_kopened(tty->port, 1);
1891	}
1892out:
1893	mutex_unlock(&tty_mutex);
1894	tty_driver_kref_put(driver);
1895	return tty;
1896}
1897EXPORT_SYMBOL_GPL(tty_kopen);
1898
1899/**
1900 *	tty_open_by_driver	-	open a tty device
1901 *	@device: dev_t of device to open
1902 *	@inode: inode of device file
1903 *	@filp: file pointer to tty
1904 *
1905 *	Performs the driver lookup, checks for a reopen, or otherwise
1906 *	performs the first-time tty initialization.
1907 *
1908 *	Returns the locked initialized or re-opened &tty_struct
1909 *
1910 *	Claims the global tty_mutex to serialize:
1911 *	  - concurrent first-time tty initialization
1912 *	  - concurrent tty driver removal w/ lookup
1913 *	  - concurrent tty removal from driver table
1914 */
1915static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1916					     struct file *filp)
1917{
1918	struct tty_struct *tty;
1919	struct tty_driver *driver = NULL;
1920	int index = -1;
1921	int retval;
1922
1923	mutex_lock(&tty_mutex);
1924	driver = tty_lookup_driver(device, filp, &index);
1925	if (IS_ERR(driver)) {
1926		mutex_unlock(&tty_mutex);
1927		return ERR_CAST(driver);
1928	}
1929
1930	/* check whether we're reopening an existing tty */
1931	tty = tty_driver_lookup_tty(driver, filp, index);
1932	if (IS_ERR(tty)) {
1933		mutex_unlock(&tty_mutex);
1934		goto out;
1935	}
1936
1937	if (tty) {
1938		if (tty_port_kopened(tty->port)) {
1939			tty_kref_put(tty);
1940			mutex_unlock(&tty_mutex);
1941			tty = ERR_PTR(-EBUSY);
1942			goto out;
1943		}
1944		mutex_unlock(&tty_mutex);
1945		retval = tty_lock_interruptible(tty);
1946		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1947		if (retval) {
1948			if (retval == -EINTR)
1949				retval = -ERESTARTSYS;
1950			tty = ERR_PTR(retval);
1951			goto out;
1952		}
1953		retval = tty_reopen(tty);
1954		if (retval < 0) {
1955			tty_unlock(tty);
1956			tty = ERR_PTR(retval);
1957		}
1958	} else { /* Returns with the tty_lock held for now */
1959		tty = tty_init_dev(driver, index);
1960		mutex_unlock(&tty_mutex);
1961	}
1962out:
1963	tty_driver_kref_put(driver);
1964	return tty;
1965}
1966
1967/**
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
 
 
1995	dev_t device = inode->i_rdev;
1996	unsigned saved_flags = filp->f_flags;
1997
1998	nonseekable_open(inode, filp);
1999
2000retry_open:
2001	retval = tty_alloc_file(filp);
2002	if (retval)
2003		return -ENOMEM;
2004
 
 
 
 
 
 
2005	tty = tty_open_current_tty(device, filp);
2006	if (!tty)
2007		tty = tty_open_by_driver(device, inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008
 
 
 
2009	if (IS_ERR(tty)) {
2010		tty_free_file(filp);
2011		retval = PTR_ERR(tty);
2012		if (retval != -EAGAIN || signal_pending(current))
2013			return retval;
2014		schedule();
2015		goto retry_open;
2016	}
2017
2018	tty_add_file(tty, filp);
2019
2020	check_tty_count(tty, __func__);
2021	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2022
 
 
 
 
2023	if (tty->ops->open)
2024		retval = tty->ops->open(tty, filp);
2025	else
2026		retval = -ENODEV;
2027	filp->f_flags = saved_flags;
2028
 
 
 
 
2029	if (retval) {
2030		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2031
 
 
2032		tty_unlock(tty); /* need to call tty_release without BTM */
2033		tty_release(inode, filp);
2034		if (retval != -ERESTARTSYS)
2035			return retval;
2036
2037		if (signal_pending(current))
2038			return retval;
2039
2040		schedule();
2041		/*
2042		 * Need to reset f_op in case a hangup happened.
2043		 */
2044		if (tty_hung_up_p(filp))
2045			filp->f_op = &tty_fops;
2046		goto retry_open;
2047	}
2048	clear_bit(TTY_HUPPED, &tty->flags);
 
 
2049
2050	noctty = (filp->f_flags & O_NOCTTY) ||
2051		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2052		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2053		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054		  tty->driver->subtype == PTY_TYPE_MASTER);
2055	if (!noctty)
2056		tty_open_proc_set_tty(filp, tty);
 
 
2057	tty_unlock(tty);
 
2058	return 0;
 
 
 
 
 
 
 
 
2059}
2060
2061
2062
2063/**
2064 *	tty_poll	-	check tty status
2065 *	@filp: file being polled
2066 *	@wait: poll wait structures to update
2067 *
2068 *	Call the line discipline polling method to obtain the poll
2069 *	status of the device.
2070 *
2071 *	Locking: locks called line discipline but ldisc poll method
2072 *	may be re-entered freely by other callers.
2073 */
2074
2075static __poll_t tty_poll(struct file *filp, poll_table *wait)
2076{
2077	struct tty_struct *tty = file_tty(filp);
2078	struct tty_ldisc *ld;
2079	__poll_t ret = 0;
2080
2081	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2082		return 0;
2083
2084	ld = tty_ldisc_ref_wait(tty);
2085	if (!ld)
2086		return hung_up_tty_poll(filp, wait);
2087	if (ld->ops->poll)
2088		ret = ld->ops->poll(tty, filp, wait);
2089	tty_ldisc_deref(ld);
2090	return ret;
2091}
2092
2093static int __tty_fasync(int fd, struct file *filp, int on)
2094{
2095	struct tty_struct *tty = file_tty(filp);
 
2096	unsigned long flags;
2097	int retval = 0;
2098
2099	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2100		goto out;
2101
2102	retval = fasync_helper(fd, filp, on, &tty->fasync);
2103	if (retval <= 0)
2104		goto out;
2105
 
 
 
 
 
 
 
2106	if (on) {
2107		enum pid_type type;
2108		struct pid *pid;
2109
2110		spin_lock_irqsave(&tty->ctrl_lock, flags);
2111		if (tty->pgrp) {
2112			pid = tty->pgrp;
2113			type = PIDTYPE_PGID;
2114		} else {
2115			pid = task_pid(current);
2116			type = PIDTYPE_PID;
2117		}
2118		get_pid(pid);
2119		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2120		__f_setown(filp, pid, type, 0);
2121		put_pid(pid);
2122		retval = 0;
2123	}
2124out:
2125	return retval;
2126}
2127
2128static int tty_fasync(int fd, struct file *filp, int on)
2129{
2130	struct tty_struct *tty = file_tty(filp);
2131	int retval = -ENOTTY;
2132
2133	tty_lock(tty);
2134	if (!tty_hung_up_p(filp))
2135		retval = __tty_fasync(fd, filp, on);
2136	tty_unlock(tty);
2137
2138	return retval;
2139}
2140
2141/**
2142 *	tiocsti			-	fake input character
2143 *	@tty: tty to fake input into
2144 *	@p: pointer to character
2145 *
2146 *	Fake input to a tty device. Does the necessary locking and
2147 *	input management.
2148 *
2149 *	FIXME: does not honour flow control ??
2150 *
2151 *	Locking:
2152 *		Called functions take tty_ldiscs_lock
2153 *		current->signal->tty check is safe without locks
2154 *
2155 *	FIXME: may race normal receive processing
2156 */
2157
2158static int tiocsti(struct tty_struct *tty, char __user *p)
2159{
2160	char ch, mbz = 0;
2161	struct tty_ldisc *ld;
2162
2163	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2164		return -EPERM;
2165	if (get_user(ch, p))
2166		return -EFAULT;
2167	tty_audit_tiocsti(tty, ch);
2168	ld = tty_ldisc_ref_wait(tty);
2169	if (!ld)
2170		return -EIO;
2171	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2172	tty_ldisc_deref(ld);
2173	return 0;
2174}
2175
2176/**
2177 *	tiocgwinsz		-	implement window query ioctl
2178 *	@tty; tty
2179 *	@arg: user buffer for result
2180 *
2181 *	Copies the kernel idea of the window size into the user buffer.
2182 *
2183 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2184 *		is consistent.
2185 */
2186
2187static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2188{
2189	int err;
2190
2191	mutex_lock(&tty->winsize_mutex);
2192	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2193	mutex_unlock(&tty->winsize_mutex);
2194
2195	return err ? -EFAULT: 0;
2196}
2197
2198/**
2199 *	tty_do_resize		-	resize event
2200 *	@tty: tty being resized
2201 *	@rows: rows (character)
2202 *	@cols: cols (character)
2203 *
2204 *	Update the termios variables and send the necessary signals to
2205 *	peform a terminal resize correctly
2206 */
2207
2208int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2209{
2210	struct pid *pgrp;
 
2211
2212	/* Lock the tty */
2213	mutex_lock(&tty->winsize_mutex);
2214	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2215		goto done;
 
 
 
 
 
2216
2217	/* Signal the foreground process group */
2218	pgrp = tty_get_pgrp(tty);
2219	if (pgrp)
2220		kill_pgrp(pgrp, SIGWINCH, 1);
2221	put_pid(pgrp);
2222
2223	tty->winsize = *ws;
2224done:
2225	mutex_unlock(&tty->winsize_mutex);
2226	return 0;
2227}
2228EXPORT_SYMBOL(tty_do_resize);
2229
2230/**
2231 *	tiocswinsz		-	implement window size set ioctl
2232 *	@tty; tty side of tty
2233 *	@arg: user buffer for result
2234 *
2235 *	Copies the user idea of the window size to the kernel. Traditionally
2236 *	this is just advisory information but for the Linux console it
2237 *	actually has driver level meaning and triggers a VC resize.
2238 *
2239 *	Locking:
2240 *		Driver dependent. The default do_resize method takes the
2241 *	tty termios mutex and ctrl_lock. The console takes its own lock
2242 *	then calls into the default method.
2243 */
2244
2245static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2246{
2247	struct winsize tmp_ws;
2248	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2249		return -EFAULT;
2250
2251	if (tty->ops->resize)
2252		return tty->ops->resize(tty, &tmp_ws);
2253	else
2254		return tty_do_resize(tty, &tmp_ws);
2255}
2256
2257/**
2258 *	tioccons	-	allow admin to move logical console
2259 *	@file: the file to become console
2260 *
2261 *	Allow the administrator to move the redirected console device
2262 *
2263 *	Locking: uses redirect_lock to guard the redirect information
2264 */
2265
2266static int tioccons(struct file *file)
2267{
2268	if (!capable(CAP_SYS_ADMIN))
2269		return -EPERM;
2270	if (file->f_op->write == redirected_tty_write) {
2271		struct file *f;
2272		spin_lock(&redirect_lock);
2273		f = redirect;
2274		redirect = NULL;
2275		spin_unlock(&redirect_lock);
2276		if (f)
2277			fput(f);
2278		return 0;
2279	}
2280	spin_lock(&redirect_lock);
2281	if (redirect) {
2282		spin_unlock(&redirect_lock);
2283		return -EBUSY;
2284	}
2285	redirect = get_file(file);
2286	spin_unlock(&redirect_lock);
2287	return 0;
2288}
2289
2290/**
2291 *	fionbio		-	non blocking ioctl
2292 *	@file: file to set blocking value
2293 *	@p: user parameter
2294 *
2295 *	Historical tty interfaces had a blocking control ioctl before
2296 *	the generic functionality existed. This piece of history is preserved
2297 *	in the expected tty API of posix OS's.
2298 *
2299 *	Locking: none, the open file handle ensures it won't go away.
2300 */
2301
2302static int fionbio(struct file *file, int __user *p)
2303{
2304	int nonblock;
2305
2306	if (get_user(nonblock, p))
2307		return -EFAULT;
2308
2309	spin_lock(&file->f_lock);
2310	if (nonblock)
2311		file->f_flags |= O_NONBLOCK;
2312	else
2313		file->f_flags &= ~O_NONBLOCK;
2314	spin_unlock(&file->f_lock);
2315	return 0;
2316}
2317
2318/**
2319 *	tiocsetd	-	set line discipline
2320 *	@tty: tty device
2321 *	@p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322 *
2323 *	Set the line discipline according to user request.
 
2324 *
2325 *	Locking: see tty_set_ldisc, this function is just a helper
2326 */
2327
2328static int tiocsetd(struct tty_struct *tty, int __user *p)
2329{
2330	int disc;
2331	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333	if (get_user(disc, p))
 
 
 
 
 
 
 
 
2334		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335
2336	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
2337
2338	return ret;
 
 
 
 
 
 
 
 
 
 
2339}
2340
2341/**
2342 *	tiocgetd	-	get line discipline
2343 *	@tty: tty device
2344 *	@p: pointer to user data
2345 *
2346 *	Retrieves the line discipline id directly from the ldisc.
2347 *
2348 *	Locking: waits for ldisc reference (in case the line discipline
2349 *		is changing or the tty is being hungup)
2350 */
2351
2352static int tiocgetd(struct tty_struct *tty, int __user *p)
2353{
2354	struct tty_ldisc *ld;
2355	int ret;
2356
2357	ld = tty_ldisc_ref_wait(tty);
2358	if (!ld)
2359		return -EIO;
2360	ret = put_user(ld->ops->num, p);
2361	tty_ldisc_deref(ld);
2362	return ret;
2363}
2364
2365/**
2366 *	send_break	-	performed time break
2367 *	@tty: device to break on
2368 *	@duration: timeout in mS
2369 *
2370 *	Perform a timed break on hardware that lacks its own driver level
2371 *	timed break functionality.
2372 *
2373 *	Locking:
2374 *		atomic_write_lock serializes
2375 *
2376 */
2377
2378static int send_break(struct tty_struct *tty, unsigned int duration)
2379{
2380	int retval;
2381
2382	if (tty->ops->break_ctl == NULL)
2383		return 0;
2384
2385	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2386		retval = tty->ops->break_ctl(tty, duration);
2387	else {
2388		/* Do the work ourselves */
2389		if (tty_write_lock(tty, 0) < 0)
2390			return -EINTR;
2391		retval = tty->ops->break_ctl(tty, -1);
2392		if (retval)
2393			goto out;
2394		if (!signal_pending(current))
2395			msleep_interruptible(duration);
2396		retval = tty->ops->break_ctl(tty, 0);
2397out:
2398		tty_write_unlock(tty);
2399		if (signal_pending(current))
2400			retval = -EINTR;
2401	}
2402	return retval;
2403}
2404
2405/**
2406 *	tty_tiocmget		-	get modem status
2407 *	@tty: tty device
2408 *	@file: user file pointer
2409 *	@p: pointer to result
2410 *
2411 *	Obtain the modem status bits from the tty driver if the feature
2412 *	is supported. Return -EINVAL if it is not available.
2413 *
2414 *	Locking: none (up to the driver)
2415 */
2416
2417static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2418{
2419	int retval = -EINVAL;
2420
2421	if (tty->ops->tiocmget) {
2422		retval = tty->ops->tiocmget(tty);
2423
2424		if (retval >= 0)
2425			retval = put_user(retval, p);
2426	}
2427	return retval;
2428}
2429
2430/**
2431 *	tty_tiocmset		-	set modem status
2432 *	@tty: tty device
2433 *	@cmd: command - clear bits, set bits or set all
2434 *	@p: pointer to desired bits
2435 *
2436 *	Set the modem status bits from the tty driver if the feature
2437 *	is supported. Return -EINVAL if it is not available.
2438 *
2439 *	Locking: none (up to the driver)
2440 */
2441
2442static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2443	     unsigned __user *p)
2444{
2445	int retval;
2446	unsigned int set, clear, val;
2447
2448	if (tty->ops->tiocmset == NULL)
2449		return -EINVAL;
2450
2451	retval = get_user(val, p);
2452	if (retval)
2453		return retval;
2454	set = clear = 0;
2455	switch (cmd) {
2456	case TIOCMBIS:
2457		set = val;
2458		break;
2459	case TIOCMBIC:
2460		clear = val;
2461		break;
2462	case TIOCMSET:
2463		set = val;
2464		clear = ~val;
2465		break;
2466	}
2467	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469	return tty->ops->tiocmset(tty, set, clear);
2470}
2471
2472static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2473{
2474	int retval = -EINVAL;
2475	struct serial_icounter_struct icount;
2476	memset(&icount, 0, sizeof(icount));
2477	if (tty->ops->get_icount)
2478		retval = tty->ops->get_icount(tty, &icount);
2479	if (retval != 0)
2480		return retval;
2481	if (copy_to_user(arg, &icount, sizeof(icount)))
2482		return -EFAULT;
2483	return 0;
2484}
2485
2486static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2487{
2488	static DEFINE_RATELIMIT_STATE(depr_flags,
2489			DEFAULT_RATELIMIT_INTERVAL,
2490			DEFAULT_RATELIMIT_BURST);
2491	char comm[TASK_COMM_LEN];
2492	int flags;
2493
2494	if (get_user(flags, &ss->flags))
2495		return;
2496
2497	flags &= ASYNC_DEPRECATED;
2498
2499	if (flags && __ratelimit(&depr_flags))
2500		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2501			__func__, get_task_comm(comm, current), flags);
2502}
 
2503
2504/*
2505 * if pty, return the slave side (real_tty)
2506 * otherwise, return self
2507 */
2508static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2509{
2510	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2511	    tty->driver->subtype == PTY_TYPE_MASTER)
2512		tty = tty->link;
2513	return tty;
2514}
 
2515
2516/*
2517 * Split this up, as gcc can choke on it otherwise..
2518 */
2519long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2520{
2521	struct tty_struct *tty = file_tty(file);
2522	struct tty_struct *real_tty;
2523	void __user *p = (void __user *)arg;
2524	int retval;
2525	struct tty_ldisc *ld;
2526
2527	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2528		return -EINVAL;
2529
2530	real_tty = tty_pair_get_tty(tty);
2531
2532	/*
2533	 * Factor out some common prep work
2534	 */
2535	switch (cmd) {
2536	case TIOCSETD:
2537	case TIOCSBRK:
2538	case TIOCCBRK:
2539	case TCSBRK:
2540	case TCSBRKP:
2541		retval = tty_check_change(tty);
2542		if (retval)
2543			return retval;
2544		if (cmd != TIOCCBRK) {
2545			tty_wait_until_sent(tty, 0);
2546			if (signal_pending(current))
2547				return -EINTR;
2548		}
2549		break;
2550	}
2551
2552	/*
2553	 *	Now do the stuff.
2554	 */
2555	switch (cmd) {
2556	case TIOCSTI:
2557		return tiocsti(tty, p);
2558	case TIOCGWINSZ:
2559		return tiocgwinsz(real_tty, p);
2560	case TIOCSWINSZ:
2561		return tiocswinsz(real_tty, p);
2562	case TIOCCONS:
2563		return real_tty != tty ? -EINVAL : tioccons(file);
2564	case FIONBIO:
2565		return fionbio(file, p);
2566	case TIOCEXCL:
2567		set_bit(TTY_EXCLUSIVE, &tty->flags);
2568		return 0;
2569	case TIOCNXCL:
2570		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2571		return 0;
2572	case TIOCGEXCL:
2573	{
2574		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2575		return put_user(excl, (int __user *)p);
2576	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	case TIOCGETD:
2578		return tiocgetd(tty, p);
2579	case TIOCSETD:
2580		return tiocsetd(tty, p);
2581	case TIOCVHANGUP:
2582		if (!capable(CAP_SYS_ADMIN))
2583			return -EPERM;
2584		tty_vhangup(tty);
2585		return 0;
2586	case TIOCGDEV:
2587	{
2588		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2589		return put_user(ret, (unsigned int __user *)p);
2590	}
2591	/*
2592	 * Break handling
2593	 */
2594	case TIOCSBRK:	/* Turn break on, unconditionally */
2595		if (tty->ops->break_ctl)
2596			return tty->ops->break_ctl(tty, -1);
2597		return 0;
2598	case TIOCCBRK:	/* Turn break off, unconditionally */
2599		if (tty->ops->break_ctl)
2600			return tty->ops->break_ctl(tty, 0);
2601		return 0;
2602	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2603		/* non-zero arg means wait for all output data
2604		 * to be sent (performed above) but don't send break.
2605		 * This is used by the tcdrain() termios function.
2606		 */
2607		if (!arg)
2608			return send_break(tty, 250);
2609		return 0;
2610	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2611		return send_break(tty, arg ? arg*100 : 250);
2612
2613	case TIOCMGET:
2614		return tty_tiocmget(tty, p);
2615	case TIOCMSET:
2616	case TIOCMBIC:
2617	case TIOCMBIS:
2618		return tty_tiocmset(tty, cmd, p);
2619	case TIOCGICOUNT:
2620		retval = tty_tiocgicount(tty, p);
2621		/* For the moment allow fall through to the old method */
2622        	if (retval != -EINVAL)
2623			return retval;
2624		break;
2625	case TCFLSH:
2626		switch (arg) {
2627		case TCIFLUSH:
2628		case TCIOFLUSH:
2629		/* flush tty buffer and allow ldisc to process ioctl */
2630			tty_buffer_flush(tty, NULL);
2631			break;
2632		}
2633		break;
2634	case TIOCSSERIAL:
2635		tty_warn_deprecated_flags(p);
2636		break;
2637	case TIOCGPTPEER:
2638		/* Special because the struct file is needed */
2639		return ptm_open_peer(file, tty, (int)arg);
2640	default:
2641		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2642		if (retval != -ENOIOCTLCMD)
2643			return retval;
2644	}
2645	if (tty->ops->ioctl) {
2646		retval = tty->ops->ioctl(tty, cmd, arg);
2647		if (retval != -ENOIOCTLCMD)
2648			return retval;
2649	}
2650	ld = tty_ldisc_ref_wait(tty);
2651	if (!ld)
2652		return hung_up_tty_ioctl(file, cmd, arg);
2653	retval = -EINVAL;
2654	if (ld->ops->ioctl) {
2655		retval = ld->ops->ioctl(tty, file, cmd, arg);
2656		if (retval == -ENOIOCTLCMD)
2657			retval = -ENOTTY;
2658	}
2659	tty_ldisc_deref(ld);
2660	return retval;
2661}
2662
2663#ifdef CONFIG_COMPAT
2664static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2665				unsigned long arg)
2666{
2667	struct tty_struct *tty = file_tty(file);
2668	struct tty_ldisc *ld;
2669	int retval = -ENOIOCTLCMD;
2670
2671	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2672		return -EINVAL;
2673
2674	if (tty->ops->compat_ioctl) {
2675		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2676		if (retval != -ENOIOCTLCMD)
2677			return retval;
2678	}
2679
2680	ld = tty_ldisc_ref_wait(tty);
2681	if (!ld)
2682		return hung_up_tty_compat_ioctl(file, cmd, arg);
2683	if (ld->ops->compat_ioctl)
2684		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2685	else
2686		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2687	tty_ldisc_deref(ld);
2688
2689	return retval;
2690}
2691#endif
2692
2693static int this_tty(const void *t, struct file *file, unsigned fd)
2694{
2695	if (likely(file->f_op->read != tty_read))
2696		return 0;
2697	return file_tty(file) != t ? 0 : fd + 1;
2698}
2699	
2700/*
2701 * This implements the "Secure Attention Key" ---  the idea is to
2702 * prevent trojan horses by killing all processes associated with this
2703 * tty when the user hits the "Secure Attention Key".  Required for
2704 * super-paranoid applications --- see the Orange Book for more details.
2705 *
2706 * This code could be nicer; ideally it should send a HUP, wait a few
2707 * seconds, then send a INT, and then a KILL signal.  But you then
2708 * have to coordinate with the init process, since all processes associated
2709 * with the current tty must be dead before the new getty is allowed
2710 * to spawn.
2711 *
2712 * Now, if it would be correct ;-/ The current code has a nasty hole -
2713 * it doesn't catch files in flight. We may send the descriptor to ourselves
2714 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2715 *
2716 * Nasty bug: do_SAK is being called in interrupt context.  This can
2717 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2718 */
2719void __do_SAK(struct tty_struct *tty)
2720{
2721#ifdef TTY_SOFT_SAK
2722	tty_hangup(tty);
2723#else
2724	struct task_struct *g, *p;
2725	struct pid *session;
2726	int		i;
2727
2728	if (!tty)
2729		return;
2730	session = tty->session;
2731
2732	tty_ldisc_flush(tty);
2733
2734	tty_driver_flush_buffer(tty);
2735
2736	read_lock(&tasklist_lock);
2737	/* Kill the entire session */
2738	do_each_pid_task(session, PIDTYPE_SID, p) {
2739		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2740			   task_pid_nr(p), p->comm);
 
2741		send_sig(SIGKILL, p, 1);
2742	} while_each_pid_task(session, PIDTYPE_SID, p);
2743
2744	/* Now kill any processes that happen to have the tty open */
 
2745	do_each_thread(g, p) {
2746		if (p->signal->tty == tty) {
2747			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2748				   task_pid_nr(p), p->comm);
 
2749			send_sig(SIGKILL, p, 1);
2750			continue;
2751		}
2752		task_lock(p);
2753		i = iterate_fd(p->files, 0, this_tty, tty);
2754		if (i != 0) {
2755			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2756				   task_pid_nr(p), p->comm, i - 1);
 
2757			force_sig(SIGKILL, p);
2758		}
2759		task_unlock(p);
2760	} while_each_thread(g, p);
2761	read_unlock(&tasklist_lock);
2762#endif
2763}
2764
2765static void do_SAK_work(struct work_struct *work)
2766{
2767	struct tty_struct *tty =
2768		container_of(work, struct tty_struct, SAK_work);
2769	__do_SAK(tty);
2770}
2771
2772/*
2773 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2774 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2775 * the values which we write to it will be identical to the values which it
2776 * already has. --akpm
2777 */
2778void do_SAK(struct tty_struct *tty)
2779{
2780	if (!tty)
2781		return;
2782	schedule_work(&tty->SAK_work);
2783}
2784
2785EXPORT_SYMBOL(do_SAK);
2786
2787static int dev_match_devt(struct device *dev, const void *data)
2788{
2789	const dev_t *devt = data;
2790	return dev->devt == *devt;
2791}
2792
2793/* Must put_device() after it's unused! */
2794static struct device *tty_get_device(struct tty_struct *tty)
2795{
2796	dev_t devt = tty_devnum(tty);
2797	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2798}
2799
2800
2801/**
2802 *	alloc_tty_struct
 
2803 *
2804 *	This subroutine allocates and initializes a tty structure.
 
2805 *
2806 *	Locking: none - tty in question is not exposed at this point
2807 */
2808
2809struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
2810{
2811	struct tty_struct *tty;
2812
2813	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2814	if (!tty)
2815		return NULL;
2816
2817	kref_init(&tty->kref);
2818	tty->magic = TTY_MAGIC;
2819	if (tty_ldisc_init(tty)) {
2820		kfree(tty);
2821		return NULL;
2822	}
2823	tty->session = NULL;
2824	tty->pgrp = NULL;
2825	mutex_init(&tty->legacy_mutex);
2826	mutex_init(&tty->throttle_mutex);
2827	init_rwsem(&tty->termios_rwsem);
2828	mutex_init(&tty->winsize_mutex);
2829	init_ldsem(&tty->ldisc_sem);
2830	init_waitqueue_head(&tty->write_wait);
2831	init_waitqueue_head(&tty->read_wait);
2832	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2833	mutex_init(&tty->atomic_write_lock);
2834	spin_lock_init(&tty->ctrl_lock);
2835	spin_lock_init(&tty->flow_lock);
2836	spin_lock_init(&tty->files_lock);
2837	INIT_LIST_HEAD(&tty->tty_files);
2838	INIT_WORK(&tty->SAK_work, do_SAK_work);
2839
2840	tty->driver = driver;
2841	tty->ops = driver->ops;
2842	tty->index = idx;
2843	tty_line_name(driver, idx, tty->name);
2844	tty->dev = tty_get_device(tty);
 
2845
2846	return tty;
 
 
 
 
 
 
 
 
 
 
 
2847}
2848
2849/**
2850 *	tty_put_char	-	write one character to a tty
2851 *	@tty: tty
2852 *	@ch: character
2853 *
2854 *	Write one byte to the tty using the provided put_char method
2855 *	if present. Returns the number of characters successfully output.
2856 *
2857 *	Note: the specific put_char operation in the driver layer may go
2858 *	away soon. Don't call it directly, use this method
2859 */
2860
2861int tty_put_char(struct tty_struct *tty, unsigned char ch)
2862{
2863	if (tty->ops->put_char)
2864		return tty->ops->put_char(tty, ch);
2865	return tty->ops->write(tty, &ch, 1);
2866}
2867EXPORT_SYMBOL_GPL(tty_put_char);
2868
2869struct class *tty_class;
2870
2871static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2872		unsigned int index, unsigned int count)
2873{
2874	int err;
2875
2876	/* init here, since reused cdevs cause crashes */
2877	driver->cdevs[index] = cdev_alloc();
2878	if (!driver->cdevs[index])
2879		return -ENOMEM;
2880	driver->cdevs[index]->ops = &tty_fops;
2881	driver->cdevs[index]->owner = driver->owner;
2882	err = cdev_add(driver->cdevs[index], dev, count);
2883	if (err)
2884		kobject_put(&driver->cdevs[index]->kobj);
2885	return err;
2886}
2887
2888/**
2889 *	tty_register_device - register a tty device
2890 *	@driver: the tty driver that describes the tty device
2891 *	@index: the index in the tty driver for this tty device
2892 *	@device: a struct device that is associated with this tty device.
2893 *		This field is optional, if there is no known struct device
2894 *		for this tty device it can be set to NULL safely.
2895 *
2896 *	Returns a pointer to the struct device for this tty device
2897 *	(or ERR_PTR(-EFOO) on error).
2898 *
2899 *	This call is required to be made to register an individual tty device
2900 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2901 *	that bit is not set, this function should not be called by a tty
2902 *	driver.
2903 *
2904 *	Locking: ??
2905 */
2906
2907struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2908				   struct device *device)
2909{
2910	return tty_register_device_attr(driver, index, device, NULL, NULL);
2911}
2912EXPORT_SYMBOL(tty_register_device);
2913
2914static void tty_device_create_release(struct device *dev)
2915{
2916	dev_dbg(dev, "releasing...\n");
2917	kfree(dev);
2918}
2919
2920/**
2921 *	tty_register_device_attr - register a tty device
2922 *	@driver: the tty driver that describes the tty device
2923 *	@index: the index in the tty driver for this tty device
2924 *	@device: a struct device that is associated with this tty device.
2925 *		This field is optional, if there is no known struct device
2926 *		for this tty device it can be set to NULL safely.
2927 *	@drvdata: Driver data to be set to device.
2928 *	@attr_grp: Attribute group to be set on device.
2929 *
2930 *	Returns a pointer to the struct device for this tty device
2931 *	(or ERR_PTR(-EFOO) on error).
2932 *
2933 *	This call is required to be made to register an individual tty device
2934 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2935 *	that bit is not set, this function should not be called by a tty
2936 *	driver.
2937 *
2938 *	Locking: ??
2939 */
2940struct device *tty_register_device_attr(struct tty_driver *driver,
2941				   unsigned index, struct device *device,
2942				   void *drvdata,
2943				   const struct attribute_group **attr_grp)
2944{
2945	char name[64];
2946	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2947	struct ktermios *tp;
2948	struct device *dev;
2949	int retval;
2950
2951	if (index >= driver->num) {
2952		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2953		       driver->name, index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
 
 
 
 
 
 
 
2962	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2963	if (!dev)
2964		return ERR_PTR(-ENOMEM);
 
 
2965
2966	dev->devt = devt;
2967	dev->class = tty_class;
2968	dev->parent = device;
2969	dev->release = tty_device_create_release;
2970	dev_set_name(dev, "%s", name);
2971	dev->groups = attr_grp;
2972	dev_set_drvdata(dev, drvdata);
2973
2974	dev_set_uevent_suppress(dev, 1);
2975
2976	retval = device_register(dev);
2977	if (retval)
2978		goto err_put;
2979
2980	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2981		/*
2982		 * Free any saved termios data so that the termios state is
2983		 * reset when reusing a minor number.
2984		 */
2985		tp = driver->termios[index];
2986		if (tp) {
2987			driver->termios[index] = NULL;
2988			kfree(tp);
2989		}
2990
2991		retval = tty_cdev_add(driver, devt, index, 1);
2992		if (retval)
2993			goto err_del;
2994	}
2995
2996	dev_set_uevent_suppress(dev, 0);
2997	kobject_uevent(&dev->kobj, KOBJ_ADD);
2998
2999	return dev;
3000
3001err_del:
3002	device_del(dev);
3003err_put:
3004	put_device(dev);
3005
 
3006	return ERR_PTR(retval);
3007}
3008EXPORT_SYMBOL_GPL(tty_register_device_attr);
3009
3010/**
3011 * 	tty_unregister_device - unregister a tty device
3012 * 	@driver: the tty driver that describes the tty device
3013 * 	@index: the index in the tty driver for this tty device
3014 *
3015 * 	If a tty device is registered with a call to tty_register_device() then
3016 *	this function must be called when the tty device is gone.
3017 *
3018 *	Locking: ??
3019 */
3020
3021void tty_unregister_device(struct tty_driver *driver, unsigned index)
3022{
3023	device_destroy(tty_class,
3024		MKDEV(driver->major, driver->minor_start) + index);
3025	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3026		cdev_del(driver->cdevs[index]);
3027		driver->cdevs[index] = NULL;
3028	}
3029}
3030EXPORT_SYMBOL(tty_unregister_device);
3031
3032/**
3033 * __tty_alloc_driver -- allocate tty driver
3034 * @lines: count of lines this driver can handle at most
3035 * @owner: module which is responsible for this driver
3036 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3037 *
3038 * This should not be called directly, some of the provided macros should be
3039 * used instead. Use IS_ERR and friends on @retval.
3040 */
3041struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3042		unsigned long flags)
3043{
3044	struct tty_driver *driver;
3045	unsigned int cdevs = 1;
3046	int err;
3047
3048	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3049		return ERR_PTR(-EINVAL);
3050
3051	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052	if (!driver)
3053		return ERR_PTR(-ENOMEM);
3054
3055	kref_init(&driver->kref);
3056	driver->magic = TTY_DRIVER_MAGIC;
3057	driver->num = lines;
3058	driver->owner = owner;
3059	driver->flags = flags;
3060
3061	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3062		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3063				GFP_KERNEL);
3064		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3065				GFP_KERNEL);
3066		if (!driver->ttys || !driver->termios) {
3067			err = -ENOMEM;
3068			goto err_free_all;
3069		}
3070	}
3071
3072	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3074				GFP_KERNEL);
3075		if (!driver->ports) {
3076			err = -ENOMEM;
3077			goto err_free_all;
3078		}
3079		cdevs = lines;
3080	}
3081
3082	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3083	if (!driver->cdevs) {
3084		err = -ENOMEM;
3085		goto err_free_all;
3086	}
3087
3088	return driver;
3089err_free_all:
3090	kfree(driver->ports);
3091	kfree(driver->ttys);
3092	kfree(driver->termios);
3093	kfree(driver->cdevs);
3094	kfree(driver);
3095	return ERR_PTR(err);
3096}
3097EXPORT_SYMBOL(__tty_alloc_driver);
3098
3099static void destruct_tty_driver(struct kref *kref)
3100{
3101	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3102	int i;
3103	struct ktermios *tp;
3104
3105	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3106		for (i = 0; i < driver->num; i++) {
3107			tp = driver->termios[i];
3108			if (tp) {
3109				driver->termios[i] = NULL;
3110				kfree(tp);
3111			}
3112			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3113				tty_unregister_device(driver, i);
3114		}
3115		proc_tty_unregister_driver(driver);
3116		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3117			cdev_del(driver->cdevs[0]);
3118	}
3119	kfree(driver->cdevs);
3120	kfree(driver->ports);
3121	kfree(driver->termios);
3122	kfree(driver->ttys);
3123	kfree(driver);
3124}
3125
3126void tty_driver_kref_put(struct tty_driver *driver)
3127{
3128	kref_put(&driver->kref, destruct_tty_driver);
3129}
3130EXPORT_SYMBOL(tty_driver_kref_put);
3131
3132void tty_set_operations(struct tty_driver *driver,
3133			const struct tty_operations *op)
3134{
3135	driver->ops = op;
3136};
3137EXPORT_SYMBOL(tty_set_operations);
3138
3139void put_tty_driver(struct tty_driver *d)
3140{
3141	tty_driver_kref_put(d);
3142}
3143EXPORT_SYMBOL(put_tty_driver);
3144
3145/*
3146 * Called by a tty driver to register itself.
3147 */
3148int tty_register_driver(struct tty_driver *driver)
3149{
3150	int error;
3151	int i;
3152	dev_t dev;
3153	struct device *d;
3154
3155	if (!driver->major) {
3156		error = alloc_chrdev_region(&dev, driver->minor_start,
3157						driver->num, driver->name);
3158		if (!error) {
3159			driver->major = MAJOR(dev);
3160			driver->minor_start = MINOR(dev);
3161		}
3162	} else {
3163		dev = MKDEV(driver->major, driver->minor_start);
3164		error = register_chrdev_region(dev, driver->num, driver->name);
3165	}
3166	if (error < 0)
3167		goto err;
3168
3169	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3170		error = tty_cdev_add(driver, dev, 0, driver->num);
3171		if (error)
3172			goto err_unreg_char;
3173	}
3174
3175	mutex_lock(&tty_mutex);
3176	list_add(&driver->tty_drivers, &tty_drivers);
3177	mutex_unlock(&tty_mutex);
3178
3179	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3180		for (i = 0; i < driver->num; i++) {
3181			d = tty_register_device(driver, i, NULL);
3182			if (IS_ERR(d)) {
3183				error = PTR_ERR(d);
3184				goto err_unreg_devs;
3185			}
3186		}
3187	}
3188	proc_tty_register_driver(driver);
3189	driver->flags |= TTY_DRIVER_INSTALLED;
3190	return 0;
3191
3192err_unreg_devs:
3193	for (i--; i >= 0; i--)
3194		tty_unregister_device(driver, i);
3195
3196	mutex_lock(&tty_mutex);
3197	list_del(&driver->tty_drivers);
3198	mutex_unlock(&tty_mutex);
3199
3200err_unreg_char:
3201	unregister_chrdev_region(dev, driver->num);
3202err:
3203	return error;
3204}
3205EXPORT_SYMBOL(tty_register_driver);
3206
3207/*
3208 * Called by a tty driver to unregister itself.
3209 */
3210int tty_unregister_driver(struct tty_driver *driver)
3211{
3212#if 0
3213	/* FIXME */
3214	if (driver->refcount)
3215		return -EBUSY;
3216#endif
3217	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3218				driver->num);
3219	mutex_lock(&tty_mutex);
3220	list_del(&driver->tty_drivers);
3221	mutex_unlock(&tty_mutex);
3222	return 0;
3223}
3224
3225EXPORT_SYMBOL(tty_unregister_driver);
3226
3227dev_t tty_devnum(struct tty_struct *tty)
3228{
3229	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3230}
3231EXPORT_SYMBOL(tty_devnum);
3232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233void tty_default_fops(struct file_operations *fops)
3234{
3235	*fops = tty_fops;
3236}
3237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238static char *tty_devnode(struct device *dev, umode_t *mode)
3239{
3240	if (!mode)
3241		return NULL;
3242	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3243	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3244		*mode = 0666;
3245	return NULL;
3246}
3247
3248static int __init tty_class_init(void)
3249{
3250	tty_class = class_create(THIS_MODULE, "tty");
3251	if (IS_ERR(tty_class))
3252		return PTR_ERR(tty_class);
3253	tty_class->devnode = tty_devnode;
3254	return 0;
3255}
3256
3257postcore_initcall(tty_class_init);
3258
3259/* 3/2004 jmc: why do these devices exist? */
3260static struct cdev tty_cdev, console_cdev;
3261
3262static ssize_t show_cons_active(struct device *dev,
3263				struct device_attribute *attr, char *buf)
3264{
3265	struct console *cs[16];
3266	int i = 0;
3267	struct console *c;
3268	ssize_t count = 0;
3269
3270	console_lock();
3271	for_each_console(c) {
3272		if (!c->device)
3273			continue;
3274		if (!c->write)
3275			continue;
3276		if ((c->flags & CON_ENABLED) == 0)
3277			continue;
3278		cs[i++] = c;
3279		if (i >= ARRAY_SIZE(cs))
3280			break;
3281	}
3282	while (i--) {
3283		int index = cs[i]->index;
3284		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3285
3286		/* don't resolve tty0 as some programs depend on it */
3287		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3288			count += tty_line_name(drv, index, buf + count);
3289		else
3290			count += sprintf(buf + count, "%s%d",
3291					 cs[i]->name, cs[i]->index);
3292
3293		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3294	}
3295	console_unlock();
3296
3297	return count;
3298}
3299static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3300
3301static struct attribute *cons_dev_attrs[] = {
3302	&dev_attr_active.attr,
3303	NULL
3304};
3305
3306ATTRIBUTE_GROUPS(cons_dev);
3307
3308static struct device *consdev;
3309
3310void console_sysfs_notify(void)
3311{
3312	if (consdev)
3313		sysfs_notify(&consdev->kobj, NULL, "active");
3314}
3315
3316/*
3317 * Ok, now we can initialize the rest of the tty devices and can count
3318 * on memory allocations, interrupts etc..
3319 */
3320int __init tty_init(void)
3321{
3322	cdev_init(&tty_cdev, &tty_fops);
3323	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3324	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3325		panic("Couldn't register /dev/tty driver\n");
3326	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3327
3328	cdev_init(&console_cdev, &console_fops);
3329	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3330	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3331		panic("Couldn't register /dev/console driver\n");
3332	consdev = device_create_with_groups(tty_class, NULL,
3333					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3334					    cons_dev_groups, "console");
3335	if (IS_ERR(consdev))
3336		consdev = NULL;
 
 
3337
3338#ifdef CONFIG_VT
3339	vty_init(&console_fops);
3340#endif
3341	return 0;
3342}
3343