Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define CREATE_TRACE_POINTS
 42#include <trace/events/swiotlb.h>
 43
 44#define OFFSET(val,align) ((unsigned long)	\
 45	                   ( (val) & ( (align) - 1)))
 46
 47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 48
 49/*
 50 * Minimum IO TLB size to bother booting with.  Systems with mainly
 51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 52 * allocate a contiguous 1MB, we're probably in trouble anyway.
 53 */
 54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 55
 56int swiotlb_force;
 57
 58/*
 59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 61 * API.
 62 */
 63static phys_addr_t io_tlb_start, io_tlb_end;
 64
 65/*
 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 68 */
 69static unsigned long io_tlb_nslabs;
 70
 71/*
 72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 73 */
 74static unsigned long io_tlb_overflow = 32*1024;
 75
 76static phys_addr_t io_tlb_overflow_buffer;
 77
 78/*
 79 * This is a free list describing the number of free entries available from
 80 * each index
 81 */
 82static unsigned int *io_tlb_list;
 83static unsigned int io_tlb_index;
 84
 85/*
 
 
 
 
 
 
 86 * We need to save away the original address corresponding to a mapped entry
 87 * for the sync operations.
 88 */
 
 89static phys_addr_t *io_tlb_orig_addr;
 90
 91/*
 92 * Protect the above data structures in the map and unmap calls
 93 */
 94static DEFINE_SPINLOCK(io_tlb_lock);
 95
 96static int late_alloc;
 97
 98static int __init
 99setup_io_tlb_npages(char *str)
100{
101	if (isdigit(*str)) {
102		io_tlb_nslabs = simple_strtoul(str, &str, 0);
103		/* avoid tail segment of size < IO_TLB_SEGSIZE */
104		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105	}
106	if (*str == ',')
107		++str;
108	if (!strcmp(str, "force"))
109		swiotlb_force = 1;
 
 
 
 
110
111	return 0;
112}
113early_param("swiotlb", setup_io_tlb_npages);
114/* make io_tlb_overflow tunable too? */
115
116unsigned long swiotlb_nr_tbl(void)
117{
118	return io_tlb_nslabs;
119}
120EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122/* default to 64MB */
123#define IO_TLB_DEFAULT_SIZE (64UL<<20)
124unsigned long swiotlb_size_or_default(void)
125{
126	unsigned long size;
127
128	size = io_tlb_nslabs << IO_TLB_SHIFT;
129
130	return size ? size : (IO_TLB_DEFAULT_SIZE);
131}
132
133/* Note that this doesn't work with highmem page */
134static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135				      volatile void *address)
136{
137	return phys_to_dma(hwdev, virt_to_phys(address));
138}
139
140static bool no_iotlb_memory;
141
142void swiotlb_print_info(void)
143{
144	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145	unsigned char *vstart, *vend;
146
147	if (no_iotlb_memory) {
148		pr_warn("software IO TLB: No low mem\n");
149		return;
150	}
151
152	vstart = phys_to_virt(io_tlb_start);
153	vend = phys_to_virt(io_tlb_end);
154
155	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156	       (unsigned long long)io_tlb_start,
157	       (unsigned long long)io_tlb_end,
158	       bytes >> 20, vstart, vend - 1);
159}
160
161int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
162{
163	void *v_overflow_buffer;
164	unsigned long i, bytes;
165
166	bytes = nslabs << IO_TLB_SHIFT;
167
168	io_tlb_nslabs = nslabs;
169	io_tlb_start = __pa(tlb);
170	io_tlb_end = io_tlb_start + bytes;
171
172	/*
173	 * Get the overflow emergency buffer
174	 */
175	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
176						PAGE_ALIGN(io_tlb_overflow),
177						PAGE_SIZE);
178	if (!v_overflow_buffer)
179		return -ENOMEM;
180
181	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182
183	/*
184	 * Allocate and initialize the free list array.  This array is used
185	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186	 * between io_tlb_start and io_tlb_end.
187	 */
188	io_tlb_list = memblock_virt_alloc(
189				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
190				PAGE_SIZE);
191	for (i = 0; i < io_tlb_nslabs; i++)
192 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
193	io_tlb_index = 0;
194	io_tlb_orig_addr = memblock_virt_alloc(
195				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196				PAGE_SIZE);
 
 
 
 
 
197
198	if (verbose)
199		swiotlb_print_info();
200
 
201	return 0;
202}
203
204/*
205 * Statically reserve bounce buffer space and initialize bounce buffer data
206 * structures for the software IO TLB used to implement the DMA API.
207 */
208void  __init
209swiotlb_init(int verbose)
210{
211	size_t default_size = IO_TLB_DEFAULT_SIZE;
212	unsigned char *vstart;
213	unsigned long bytes;
214
215	if (!io_tlb_nslabs) {
216		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
217		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
218	}
219
220	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
221
222	/* Get IO TLB memory from the low pages */
223	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
224	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
225		return;
226
227	if (io_tlb_start)
228		memblock_free_early(io_tlb_start,
229				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
230	pr_warn("Cannot allocate SWIOTLB buffer");
231	no_iotlb_memory = true;
232}
233
234/*
235 * Systems with larger DMA zones (those that don't support ISA) can
236 * initialize the swiotlb later using the slab allocator if needed.
237 * This should be just like above, but with some error catching.
238 */
239int
240swiotlb_late_init_with_default_size(size_t default_size)
241{
242	unsigned long bytes, req_nslabs = io_tlb_nslabs;
243	unsigned char *vstart = NULL;
244	unsigned int order;
245	int rc = 0;
246
247	if (!io_tlb_nslabs) {
248		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
250	}
251
252	/*
253	 * Get IO TLB memory from the low pages
254	 */
255	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
256	io_tlb_nslabs = SLABS_PER_PAGE << order;
257	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
261						  order);
262		if (vstart)
263			break;
264		order--;
265	}
266
267	if (!vstart) {
268		io_tlb_nslabs = req_nslabs;
269		return -ENOMEM;
270	}
271	if (order != get_order(bytes)) {
272		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
273		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
274		io_tlb_nslabs = SLABS_PER_PAGE << order;
275	}
276	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
277	if (rc)
278		free_pages((unsigned long)vstart, order);
 
279	return rc;
280}
281
282int
283swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
284{
285	unsigned long i, bytes;
286	unsigned char *v_overflow_buffer;
287
288	bytes = nslabs << IO_TLB_SHIFT;
289
290	io_tlb_nslabs = nslabs;
291	io_tlb_start = virt_to_phys(tlb);
292	io_tlb_end = io_tlb_start + bytes;
293
294	memset(tlb, 0, bytes);
295
296	/*
297	 * Get the overflow emergency buffer
298	 */
299	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
300						     get_order(io_tlb_overflow));
301	if (!v_overflow_buffer)
302		goto cleanup2;
303
304	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
305
306	/*
307	 * Allocate and initialize the free list array.  This array is used
308	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309	 * between io_tlb_start and io_tlb_end.
310	 */
311	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
312	                              get_order(io_tlb_nslabs * sizeof(int)));
313	if (!io_tlb_list)
314		goto cleanup3;
315
316	for (i = 0; i < io_tlb_nslabs; i++)
317 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
318	io_tlb_index = 0;
319
320	io_tlb_orig_addr = (phys_addr_t *)
321		__get_free_pages(GFP_KERNEL,
322				 get_order(io_tlb_nslabs *
323					   sizeof(phys_addr_t)));
324	if (!io_tlb_orig_addr)
325		goto cleanup4;
326
327	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
 
 
 
 
328
329	swiotlb_print_info();
330
331	late_alloc = 1;
332
 
 
333	return 0;
334
335cleanup4:
336	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
337	                                                 sizeof(int)));
338	io_tlb_list = NULL;
339cleanup3:
340	free_pages((unsigned long)v_overflow_buffer,
341		   get_order(io_tlb_overflow));
342	io_tlb_overflow_buffer = 0;
343cleanup2:
344	io_tlb_end = 0;
345	io_tlb_start = 0;
346	io_tlb_nslabs = 0;
 
347	return -ENOMEM;
348}
349
350void __init swiotlb_free(void)
351{
352	if (!io_tlb_orig_addr)
353		return;
354
355	if (late_alloc) {
356		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
357			   get_order(io_tlb_overflow));
358		free_pages((unsigned long)io_tlb_orig_addr,
359			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
360		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
361								 sizeof(int)));
362		free_pages((unsigned long)phys_to_virt(io_tlb_start),
363			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
364	} else {
365		memblock_free_late(io_tlb_overflow_buffer,
366				   PAGE_ALIGN(io_tlb_overflow));
367		memblock_free_late(__pa(io_tlb_orig_addr),
368				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
369		memblock_free_late(__pa(io_tlb_list),
370				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
371		memblock_free_late(io_tlb_start,
372				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
373	}
374	io_tlb_nslabs = 0;
 
375}
376
377static int is_swiotlb_buffer(phys_addr_t paddr)
378{
379	return paddr >= io_tlb_start && paddr < io_tlb_end;
380}
381
382/*
383 * Bounce: copy the swiotlb buffer back to the original dma location
384 */
385static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
386			   size_t size, enum dma_data_direction dir)
387{
388	unsigned long pfn = PFN_DOWN(orig_addr);
389	unsigned char *vaddr = phys_to_virt(tlb_addr);
390
391	if (PageHighMem(pfn_to_page(pfn))) {
392		/* The buffer does not have a mapping.  Map it in and copy */
393		unsigned int offset = orig_addr & ~PAGE_MASK;
394		char *buffer;
395		unsigned int sz = 0;
396		unsigned long flags;
397
398		while (size) {
399			sz = min_t(size_t, PAGE_SIZE - offset, size);
400
401			local_irq_save(flags);
402			buffer = kmap_atomic(pfn_to_page(pfn));
403			if (dir == DMA_TO_DEVICE)
404				memcpy(vaddr, buffer + offset, sz);
405			else
406				memcpy(buffer + offset, vaddr, sz);
407			kunmap_atomic(buffer);
408			local_irq_restore(flags);
409
410			size -= sz;
411			pfn++;
412			vaddr += sz;
413			offset = 0;
414		}
415	} else if (dir == DMA_TO_DEVICE) {
416		memcpy(vaddr, phys_to_virt(orig_addr), size);
417	} else {
418		memcpy(phys_to_virt(orig_addr), vaddr, size);
419	}
420}
421
422phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
423				   dma_addr_t tbl_dma_addr,
424				   phys_addr_t orig_addr, size_t size,
425				   enum dma_data_direction dir)
 
426{
427	unsigned long flags;
428	phys_addr_t tlb_addr;
429	unsigned int nslots, stride, index, wrap;
430	int i;
431	unsigned long mask;
432	unsigned long offset_slots;
433	unsigned long max_slots;
434
435	if (no_iotlb_memory)
436		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
437
438	mask = dma_get_seg_boundary(hwdev);
439
440	tbl_dma_addr &= mask;
441
442	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
443
444	/*
445 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
446 	 */
447	max_slots = mask + 1
448		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
449		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450
451	/*
452	 * For mappings greater than a page, we limit the stride (and
453	 * hence alignment) to a page size.
454	 */
455	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
456	if (size > PAGE_SIZE)
457		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
458	else
459		stride = 1;
460
461	BUG_ON(!nslots);
462
463	/*
464	 * Find suitable number of IO TLB entries size that will fit this
465	 * request and allocate a buffer from that IO TLB pool.
466	 */
467	spin_lock_irqsave(&io_tlb_lock, flags);
468	index = ALIGN(io_tlb_index, stride);
469	if (index >= io_tlb_nslabs)
470		index = 0;
471	wrap = index;
472
473	do {
474		while (iommu_is_span_boundary(index, nslots, offset_slots,
475					      max_slots)) {
476			index += stride;
477			if (index >= io_tlb_nslabs)
478				index = 0;
479			if (index == wrap)
480				goto not_found;
481		}
482
483		/*
484		 * If we find a slot that indicates we have 'nslots' number of
485		 * contiguous buffers, we allocate the buffers from that slot
486		 * and mark the entries as '0' indicating unavailable.
487		 */
488		if (io_tlb_list[index] >= nslots) {
489			int count = 0;
490
491			for (i = index; i < (int) (index + nslots); i++)
492				io_tlb_list[i] = 0;
493			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
494				io_tlb_list[i] = ++count;
495			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
496
497			/*
498			 * Update the indices to avoid searching in the next
499			 * round.
500			 */
501			io_tlb_index = ((index + nslots) < io_tlb_nslabs
502					? (index + nslots) : 0);
503
504			goto found;
505		}
506		index += stride;
507		if (index >= io_tlb_nslabs)
508			index = 0;
509	} while (index != wrap);
510
511not_found:
512	spin_unlock_irqrestore(&io_tlb_lock, flags);
513	if (printk_ratelimit())
514		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
515	return SWIOTLB_MAP_ERROR;
516found:
517	spin_unlock_irqrestore(&io_tlb_lock, flags);
518
519	/*
520	 * Save away the mapping from the original address to the DMA address.
521	 * This is needed when we sync the memory.  Then we sync the buffer if
522	 * needed.
523	 */
524	for (i = 0; i < nslots; i++)
525		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
526	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 
527		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
528
529	return tlb_addr;
530}
531EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
532
533/*
534 * Allocates bounce buffer and returns its kernel virtual address.
535 */
536
537phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
538		       enum dma_data_direction dir)
 
539{
540	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
541
542	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
 
 
 
 
 
 
 
 
543}
544
545/*
546 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
547 */
548void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
549			      size_t size, enum dma_data_direction dir)
 
550{
551	unsigned long flags;
552	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
553	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
554	phys_addr_t orig_addr = io_tlb_orig_addr[index];
555
556	/*
557	 * First, sync the memory before unmapping the entry
558	 */
559	if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 
 
560		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
561
562	/*
563	 * Return the buffer to the free list by setting the corresponding
564	 * entries to indicate the number of contiguous entries available.
565	 * While returning the entries to the free list, we merge the entries
566	 * with slots below and above the pool being returned.
567	 */
568	spin_lock_irqsave(&io_tlb_lock, flags);
569	{
570		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
571			 io_tlb_list[index + nslots] : 0);
572		/*
573		 * Step 1: return the slots to the free list, merging the
574		 * slots with superceeding slots
575		 */
576		for (i = index + nslots - 1; i >= index; i--)
577			io_tlb_list[i] = ++count;
 
 
578		/*
579		 * Step 2: merge the returned slots with the preceding slots,
580		 * if available (non zero)
581		 */
582		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
583			io_tlb_list[i] = ++count;
584	}
585	spin_unlock_irqrestore(&io_tlb_lock, flags);
586}
587EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
588
589void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
590			     size_t size, enum dma_data_direction dir,
591			     enum dma_sync_target target)
592{
593	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
594	phys_addr_t orig_addr = io_tlb_orig_addr[index];
595
 
 
596	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
597
598	switch (target) {
599	case SYNC_FOR_CPU:
600		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
601			swiotlb_bounce(orig_addr, tlb_addr,
602				       size, DMA_FROM_DEVICE);
603		else
604			BUG_ON(dir != DMA_TO_DEVICE);
605		break;
606	case SYNC_FOR_DEVICE:
607		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
608			swiotlb_bounce(orig_addr, tlb_addr,
609				       size, DMA_TO_DEVICE);
610		else
611			BUG_ON(dir != DMA_FROM_DEVICE);
612		break;
613	default:
614		BUG();
615	}
616}
617EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
618
619void *
620swiotlb_alloc_coherent(struct device *hwdev, size_t size,
621		       dma_addr_t *dma_handle, gfp_t flags)
622{
623	dma_addr_t dev_addr;
624	void *ret;
625	int order = get_order(size);
626	u64 dma_mask = DMA_BIT_MASK(32);
627
628	if (hwdev && hwdev->coherent_dma_mask)
629		dma_mask = hwdev->coherent_dma_mask;
630
631	ret = (void *)__get_free_pages(flags, order);
632	if (ret) {
633		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
634		if (dev_addr + size - 1 > dma_mask) {
635			/*
636			 * The allocated memory isn't reachable by the device.
637			 */
638			free_pages((unsigned long) ret, order);
639			ret = NULL;
640		}
641	}
642	if (!ret) {
643		/*
644		 * We are either out of memory or the device can't DMA to
645		 * GFP_DMA memory; fall back on map_single(), which
646		 * will grab memory from the lowest available address range.
647		 */
648		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
 
649		if (paddr == SWIOTLB_MAP_ERROR)
650			return NULL;
651
652		ret = phys_to_virt(paddr);
653		dev_addr = phys_to_dma(hwdev, paddr);
654
655		/* Confirm address can be DMA'd by device */
656		if (dev_addr + size - 1 > dma_mask) {
657			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658			       (unsigned long long)dma_mask,
659			       (unsigned long long)dev_addr);
660
661			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 
 
 
662			swiotlb_tbl_unmap_single(hwdev, paddr,
663						 size, DMA_TO_DEVICE);
664			return NULL;
 
665		}
666	}
667
668	*dma_handle = dev_addr;
669	memset(ret, 0, size);
670
671	return ret;
 
 
 
 
 
 
 
672}
673EXPORT_SYMBOL(swiotlb_alloc_coherent);
674
675void
676swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
677		      dma_addr_t dev_addr)
678{
679	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
680
681	WARN_ON(irqs_disabled());
682	if (!is_swiotlb_buffer(paddr))
683		free_pages((unsigned long)vaddr, get_order(size));
684	else
685		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
 
 
 
 
687}
688EXPORT_SYMBOL(swiotlb_free_coherent);
689
690static void
691swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
692	     int do_panic)
693{
 
 
 
694	/*
695	 * Ran out of IOMMU space for this operation. This is very bad.
696	 * Unfortunately the drivers cannot handle this operation properly.
697	 * unless they check for dma_mapping_error (most don't)
698	 * When the mapping is small enough return a static buffer to limit
699	 * the damage, or panic when the transfer is too big.
700	 */
701	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
702	       "device %s\n", size, dev ? dev_name(dev) : "?");
703
704	if (size <= io_tlb_overflow || !do_panic)
705		return;
706
707	if (dir == DMA_BIDIRECTIONAL)
708		panic("DMA: Random memory could be DMA accessed\n");
709	if (dir == DMA_FROM_DEVICE)
710		panic("DMA: Random memory could be DMA written\n");
711	if (dir == DMA_TO_DEVICE)
712		panic("DMA: Random memory could be DMA read\n");
713}
714
715/*
716 * Map a single buffer of the indicated size for DMA in streaming mode.  The
717 * physical address to use is returned.
718 *
719 * Once the device is given the dma address, the device owns this memory until
720 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
721 */
722dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
723			    unsigned long offset, size_t size,
724			    enum dma_data_direction dir,
725			    struct dma_attrs *attrs)
726{
727	phys_addr_t map, phys = page_to_phys(page) + offset;
728	dma_addr_t dev_addr = phys_to_dma(dev, phys);
729
730	BUG_ON(dir == DMA_NONE);
731	/*
732	 * If the address happens to be in the device's DMA window,
733	 * we can safely return the device addr and not worry about bounce
734	 * buffering it.
735	 */
736	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
737		return dev_addr;
738
739	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
740
741	/* Oh well, have to allocate and map a bounce buffer. */
742	map = map_single(dev, phys, size, dir);
743	if (map == SWIOTLB_MAP_ERROR) {
744		swiotlb_full(dev, size, dir, 1);
745		return phys_to_dma(dev, io_tlb_overflow_buffer);
746	}
747
748	dev_addr = phys_to_dma(dev, map);
749
750	/* Ensure that the address returned is DMA'ble */
751	if (!dma_capable(dev, dev_addr, size)) {
752		swiotlb_tbl_unmap_single(dev, map, size, dir);
753		return phys_to_dma(dev, io_tlb_overflow_buffer);
754	}
 
755
756	return dev_addr;
757}
758EXPORT_SYMBOL_GPL(swiotlb_map_page);
759
760/*
761 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
762 * match what was provided for in a previous swiotlb_map_page call.  All
763 * other usages are undefined.
764 *
765 * After this call, reads by the cpu to the buffer are guaranteed to see
766 * whatever the device wrote there.
767 */
768static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
769			 size_t size, enum dma_data_direction dir)
 
770{
771	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
772
773	BUG_ON(dir == DMA_NONE);
774
775	if (is_swiotlb_buffer(paddr)) {
776		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
777		return;
778	}
779
780	if (dir != DMA_FROM_DEVICE)
781		return;
782
783	/*
784	 * phys_to_virt doesn't work with hihgmem page but we could
785	 * call dma_mark_clean() with hihgmem page here. However, we
786	 * are fine since dma_mark_clean() is null on POWERPC. We can
787	 * make dma_mark_clean() take a physical address if necessary.
788	 */
789	dma_mark_clean(phys_to_virt(paddr), size);
790}
791
792void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
793			size_t size, enum dma_data_direction dir,
794			struct dma_attrs *attrs)
795{
796	unmap_single(hwdev, dev_addr, size, dir);
797}
798EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
799
800/*
801 * Make physical memory consistent for a single streaming mode DMA translation
802 * after a transfer.
803 *
804 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 * using the cpu, yet do not wish to teardown the dma mapping, you must
806 * call this function before doing so.  At the next point you give the dma
807 * address back to the card, you must first perform a
808 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
809 */
810static void
811swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
812		    size_t size, enum dma_data_direction dir,
813		    enum dma_sync_target target)
814{
815	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
816
817	BUG_ON(dir == DMA_NONE);
818
819	if (is_swiotlb_buffer(paddr)) {
820		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
821		return;
822	}
823
824	if (dir != DMA_FROM_DEVICE)
825		return;
826
827	dma_mark_clean(phys_to_virt(paddr), size);
828}
829
830void
831swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
832			    size_t size, enum dma_data_direction dir)
833{
834	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
835}
836EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
837
838void
839swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
840			       size_t size, enum dma_data_direction dir)
841{
842	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
843}
844EXPORT_SYMBOL(swiotlb_sync_single_for_device);
845
846/*
847 * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 * This is the scatter-gather version of the above swiotlb_map_page
849 * interface.  Here the scatter gather list elements are each tagged with the
850 * appropriate dma address and length.  They are obtained via
851 * sg_dma_{address,length}(SG).
852 *
853 * NOTE: An implementation may be able to use a smaller number of
854 *       DMA address/length pairs than there are SG table elements.
855 *       (for example via virtual mapping capabilities)
856 *       The routine returns the number of addr/length pairs actually
857 *       used, at most nents.
858 *
859 * Device ownership issues as mentioned above for swiotlb_map_page are the
860 * same here.
861 */
862int
863swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
864		     enum dma_data_direction dir, struct dma_attrs *attrs)
865{
866	struct scatterlist *sg;
867	int i;
868
869	BUG_ON(dir == DMA_NONE);
870
871	for_each_sg(sgl, sg, nelems, i) {
872		phys_addr_t paddr = sg_phys(sg);
873		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
874
875		if (swiotlb_force ||
876		    !dma_capable(hwdev, dev_addr, sg->length)) {
877			phys_addr_t map = map_single(hwdev, sg_phys(sg),
878						     sg->length, dir);
879			if (map == SWIOTLB_MAP_ERROR) {
880				/* Don't panic here, we expect map_sg users
881				   to do proper error handling. */
882				swiotlb_full(hwdev, sg->length, dir, 0);
 
883				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
884						       attrs);
885				sg_dma_len(sgl) = 0;
886				return 0;
887			}
888			sg->dma_address = phys_to_dma(hwdev, map);
889		} else
890			sg->dma_address = dev_addr;
891		sg_dma_len(sg) = sg->length;
892	}
893	return nelems;
894}
895EXPORT_SYMBOL(swiotlb_map_sg_attrs);
896
897int
898swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
899	       enum dma_data_direction dir)
900{
901	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
902}
903EXPORT_SYMBOL(swiotlb_map_sg);
904
905/*
906 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
907 * concerning calls here are the same as for swiotlb_unmap_page() above.
908 */
909void
910swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
911		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
 
912{
913	struct scatterlist *sg;
914	int i;
915
916	BUG_ON(dir == DMA_NONE);
917
918	for_each_sg(sgl, sg, nelems, i)
919		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
920
921}
922EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
923
924void
925swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
926		 enum dma_data_direction dir)
927{
928	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
929}
930EXPORT_SYMBOL(swiotlb_unmap_sg);
931
932/*
933 * Make physical memory consistent for a set of streaming mode DMA translations
934 * after a transfer.
935 *
936 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
937 * and usage.
938 */
939static void
940swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
941		int nelems, enum dma_data_direction dir,
942		enum dma_sync_target target)
943{
944	struct scatterlist *sg;
945	int i;
946
947	for_each_sg(sgl, sg, nelems, i)
948		swiotlb_sync_single(hwdev, sg->dma_address,
949				    sg_dma_len(sg), dir, target);
950}
951
952void
953swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
954			int nelems, enum dma_data_direction dir)
955{
956	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
957}
958EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
959
960void
961swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
962			   int nelems, enum dma_data_direction dir)
963{
964	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
965}
966EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
967
968int
969swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
970{
971	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
972}
973EXPORT_SYMBOL(swiotlb_dma_mapping_error);
974
975/*
976 * Return whether the given device DMA address mask can be supported
977 * properly.  For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask to
979 * this function.
980 */
981int
982swiotlb_dma_supported(struct device *hwdev, u64 mask)
983{
984	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
985}
986EXPORT_SYMBOL(swiotlb_dma_supported);
v4.10.11
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
  13 *			unnecessary i-cache flushing.
  14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
  16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb	Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33
  34#include <asm/io.h>
  35#include <asm/dma.h>
 
  36
  37#include <linux/init.h>
  38#include <linux/bootmem.h>
  39#include <linux/iommu-helper.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/swiotlb.h>
  43
  44#define OFFSET(val,align) ((unsigned long)	\
  45	                   ( (val) & ( (align) - 1)))
  46
  47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  48
  49/*
  50 * Minimum IO TLB size to bother booting with.  Systems with mainly
  51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  52 * allocate a contiguous 1MB, we're probably in trouble anyway.
  53 */
  54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  55
  56enum swiotlb_force swiotlb_force;
  57
  58/*
  59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  61 * API.
  62 */
  63static phys_addr_t io_tlb_start, io_tlb_end;
  64
  65/*
  66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  68 */
  69static unsigned long io_tlb_nslabs;
  70
  71/*
  72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  73 */
  74static unsigned long io_tlb_overflow = 32*1024;
  75
  76static phys_addr_t io_tlb_overflow_buffer;
  77
  78/*
  79 * This is a free list describing the number of free entries available from
  80 * each index
  81 */
  82static unsigned int *io_tlb_list;
  83static unsigned int io_tlb_index;
  84
  85/*
  86 * Max segment that we can provide which (if pages are contingous) will
  87 * not be bounced (unless SWIOTLB_FORCE is set).
  88 */
  89unsigned int max_segment;
  90
  91/*
  92 * We need to save away the original address corresponding to a mapped entry
  93 * for the sync operations.
  94 */
  95#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  96static phys_addr_t *io_tlb_orig_addr;
  97
  98/*
  99 * Protect the above data structures in the map and unmap calls
 100 */
 101static DEFINE_SPINLOCK(io_tlb_lock);
 102
 103static int late_alloc;
 104
 105static int __init
 106setup_io_tlb_npages(char *str)
 107{
 108	if (isdigit(*str)) {
 109		io_tlb_nslabs = simple_strtoul(str, &str, 0);
 110		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 111		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 112	}
 113	if (*str == ',')
 114		++str;
 115	if (!strcmp(str, "force")) {
 116		swiotlb_force = SWIOTLB_FORCE;
 117	} else if (!strcmp(str, "noforce")) {
 118		swiotlb_force = SWIOTLB_NO_FORCE;
 119		io_tlb_nslabs = 1;
 120	}
 121
 122	return 0;
 123}
 124early_param("swiotlb", setup_io_tlb_npages);
 125/* make io_tlb_overflow tunable too? */
 126
 127unsigned long swiotlb_nr_tbl(void)
 128{
 129	return io_tlb_nslabs;
 130}
 131EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 132
 133unsigned int swiotlb_max_segment(void)
 134{
 135	return max_segment;
 136}
 137EXPORT_SYMBOL_GPL(swiotlb_max_segment);
 138
 139void swiotlb_set_max_segment(unsigned int val)
 140{
 141	if (swiotlb_force == SWIOTLB_FORCE)
 142		max_segment = 1;
 143	else
 144		max_segment = rounddown(val, PAGE_SIZE);
 145}
 146
 147/* default to 64MB */
 148#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 149unsigned long swiotlb_size_or_default(void)
 150{
 151	unsigned long size;
 152
 153	size = io_tlb_nslabs << IO_TLB_SHIFT;
 154
 155	return size ? size : (IO_TLB_DEFAULT_SIZE);
 156}
 157
 158/* Note that this doesn't work with highmem page */
 159static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 160				      volatile void *address)
 161{
 162	return phys_to_dma(hwdev, virt_to_phys(address));
 163}
 164
 165static bool no_iotlb_memory;
 166
 167void swiotlb_print_info(void)
 168{
 169	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 170	unsigned char *vstart, *vend;
 171
 172	if (no_iotlb_memory) {
 173		pr_warn("software IO TLB: No low mem\n");
 174		return;
 175	}
 176
 177	vstart = phys_to_virt(io_tlb_start);
 178	vend = phys_to_virt(io_tlb_end);
 179
 180	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 181	       (unsigned long long)io_tlb_start,
 182	       (unsigned long long)io_tlb_end,
 183	       bytes >> 20, vstart, vend - 1);
 184}
 185
 186int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 187{
 188	void *v_overflow_buffer;
 189	unsigned long i, bytes;
 190
 191	bytes = nslabs << IO_TLB_SHIFT;
 192
 193	io_tlb_nslabs = nslabs;
 194	io_tlb_start = __pa(tlb);
 195	io_tlb_end = io_tlb_start + bytes;
 196
 197	/*
 198	 * Get the overflow emergency buffer
 199	 */
 200	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 201						PAGE_ALIGN(io_tlb_overflow),
 202						PAGE_SIZE);
 203	if (!v_overflow_buffer)
 204		return -ENOMEM;
 205
 206	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 207
 208	/*
 209	 * Allocate and initialize the free list array.  This array is used
 210	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 211	 * between io_tlb_start and io_tlb_end.
 212	 */
 213	io_tlb_list = memblock_virt_alloc(
 214				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 215				PAGE_SIZE);
 
 
 
 216	io_tlb_orig_addr = memblock_virt_alloc(
 217				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 218				PAGE_SIZE);
 219	for (i = 0; i < io_tlb_nslabs; i++) {
 220		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 221		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 222	}
 223	io_tlb_index = 0;
 224
 225	if (verbose)
 226		swiotlb_print_info();
 227
 228	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 229	return 0;
 230}
 231
 232/*
 233 * Statically reserve bounce buffer space and initialize bounce buffer data
 234 * structures for the software IO TLB used to implement the DMA API.
 235 */
 236void  __init
 237swiotlb_init(int verbose)
 238{
 239	size_t default_size = IO_TLB_DEFAULT_SIZE;
 240	unsigned char *vstart;
 241	unsigned long bytes;
 242
 243	if (!io_tlb_nslabs) {
 244		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 245		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 246	}
 247
 248	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 249
 250	/* Get IO TLB memory from the low pages */
 251	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 252	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 253		return;
 254
 255	if (io_tlb_start)
 256		memblock_free_early(io_tlb_start,
 257				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 258	pr_warn("Cannot allocate SWIOTLB buffer");
 259	no_iotlb_memory = true;
 260}
 261
 262/*
 263 * Systems with larger DMA zones (those that don't support ISA) can
 264 * initialize the swiotlb later using the slab allocator if needed.
 265 * This should be just like above, but with some error catching.
 266 */
 267int
 268swiotlb_late_init_with_default_size(size_t default_size)
 269{
 270	unsigned long bytes, req_nslabs = io_tlb_nslabs;
 271	unsigned char *vstart = NULL;
 272	unsigned int order;
 273	int rc = 0;
 274
 275	if (!io_tlb_nslabs) {
 276		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 277		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 278	}
 279
 280	/*
 281	 * Get IO TLB memory from the low pages
 282	 */
 283	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 284	io_tlb_nslabs = SLABS_PER_PAGE << order;
 285	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 286
 287	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 288		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 289						  order);
 290		if (vstart)
 291			break;
 292		order--;
 293	}
 294
 295	if (!vstart) {
 296		io_tlb_nslabs = req_nslabs;
 297		return -ENOMEM;
 298	}
 299	if (order != get_order(bytes)) {
 300		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 301		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 302		io_tlb_nslabs = SLABS_PER_PAGE << order;
 303	}
 304	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 305	if (rc)
 306		free_pages((unsigned long)vstart, order);
 307
 308	return rc;
 309}
 310
 311int
 312swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 313{
 314	unsigned long i, bytes;
 315	unsigned char *v_overflow_buffer;
 316
 317	bytes = nslabs << IO_TLB_SHIFT;
 318
 319	io_tlb_nslabs = nslabs;
 320	io_tlb_start = virt_to_phys(tlb);
 321	io_tlb_end = io_tlb_start + bytes;
 322
 323	memset(tlb, 0, bytes);
 324
 325	/*
 326	 * Get the overflow emergency buffer
 327	 */
 328	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 329						     get_order(io_tlb_overflow));
 330	if (!v_overflow_buffer)
 331		goto cleanup2;
 332
 333	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 334
 335	/*
 336	 * Allocate and initialize the free list array.  This array is used
 337	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 338	 * between io_tlb_start and io_tlb_end.
 339	 */
 340	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 341	                              get_order(io_tlb_nslabs * sizeof(int)));
 342	if (!io_tlb_list)
 343		goto cleanup3;
 344
 
 
 
 
 345	io_tlb_orig_addr = (phys_addr_t *)
 346		__get_free_pages(GFP_KERNEL,
 347				 get_order(io_tlb_nslabs *
 348					   sizeof(phys_addr_t)));
 349	if (!io_tlb_orig_addr)
 350		goto cleanup4;
 351
 352	for (i = 0; i < io_tlb_nslabs; i++) {
 353		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 354		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 355	}
 356	io_tlb_index = 0;
 357
 358	swiotlb_print_info();
 359
 360	late_alloc = 1;
 361
 362	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 363
 364	return 0;
 365
 366cleanup4:
 367	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 368	                                                 sizeof(int)));
 369	io_tlb_list = NULL;
 370cleanup3:
 371	free_pages((unsigned long)v_overflow_buffer,
 372		   get_order(io_tlb_overflow));
 373	io_tlb_overflow_buffer = 0;
 374cleanup2:
 375	io_tlb_end = 0;
 376	io_tlb_start = 0;
 377	io_tlb_nslabs = 0;
 378	max_segment = 0;
 379	return -ENOMEM;
 380}
 381
 382void __init swiotlb_free(void)
 383{
 384	if (!io_tlb_orig_addr)
 385		return;
 386
 387	if (late_alloc) {
 388		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 389			   get_order(io_tlb_overflow));
 390		free_pages((unsigned long)io_tlb_orig_addr,
 391			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 392		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 393								 sizeof(int)));
 394		free_pages((unsigned long)phys_to_virt(io_tlb_start),
 395			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 396	} else {
 397		memblock_free_late(io_tlb_overflow_buffer,
 398				   PAGE_ALIGN(io_tlb_overflow));
 399		memblock_free_late(__pa(io_tlb_orig_addr),
 400				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 401		memblock_free_late(__pa(io_tlb_list),
 402				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 403		memblock_free_late(io_tlb_start,
 404				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 405	}
 406	io_tlb_nslabs = 0;
 407	max_segment = 0;
 408}
 409
 410int is_swiotlb_buffer(phys_addr_t paddr)
 411{
 412	return paddr >= io_tlb_start && paddr < io_tlb_end;
 413}
 414
 415/*
 416 * Bounce: copy the swiotlb buffer back to the original dma location
 417 */
 418static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 419			   size_t size, enum dma_data_direction dir)
 420{
 421	unsigned long pfn = PFN_DOWN(orig_addr);
 422	unsigned char *vaddr = phys_to_virt(tlb_addr);
 423
 424	if (PageHighMem(pfn_to_page(pfn))) {
 425		/* The buffer does not have a mapping.  Map it in and copy */
 426		unsigned int offset = orig_addr & ~PAGE_MASK;
 427		char *buffer;
 428		unsigned int sz = 0;
 429		unsigned long flags;
 430
 431		while (size) {
 432			sz = min_t(size_t, PAGE_SIZE - offset, size);
 433
 434			local_irq_save(flags);
 435			buffer = kmap_atomic(pfn_to_page(pfn));
 436			if (dir == DMA_TO_DEVICE)
 437				memcpy(vaddr, buffer + offset, sz);
 438			else
 439				memcpy(buffer + offset, vaddr, sz);
 440			kunmap_atomic(buffer);
 441			local_irq_restore(flags);
 442
 443			size -= sz;
 444			pfn++;
 445			vaddr += sz;
 446			offset = 0;
 447		}
 448	} else if (dir == DMA_TO_DEVICE) {
 449		memcpy(vaddr, phys_to_virt(orig_addr), size);
 450	} else {
 451		memcpy(phys_to_virt(orig_addr), vaddr, size);
 452	}
 453}
 454
 455phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 456				   dma_addr_t tbl_dma_addr,
 457				   phys_addr_t orig_addr, size_t size,
 458				   enum dma_data_direction dir,
 459				   unsigned long attrs)
 460{
 461	unsigned long flags;
 462	phys_addr_t tlb_addr;
 463	unsigned int nslots, stride, index, wrap;
 464	int i;
 465	unsigned long mask;
 466	unsigned long offset_slots;
 467	unsigned long max_slots;
 468
 469	if (no_iotlb_memory)
 470		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 471
 472	mask = dma_get_seg_boundary(hwdev);
 473
 474	tbl_dma_addr &= mask;
 475
 476	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 477
 478	/*
 479 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
 480 	 */
 481	max_slots = mask + 1
 482		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 483		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 484
 485	/*
 486	 * For mappings greater than or equal to a page, we limit the stride
 487	 * (and hence alignment) to a page size.
 488	 */
 489	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 490	if (size >= PAGE_SIZE)
 491		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 492	else
 493		stride = 1;
 494
 495	BUG_ON(!nslots);
 496
 497	/*
 498	 * Find suitable number of IO TLB entries size that will fit this
 499	 * request and allocate a buffer from that IO TLB pool.
 500	 */
 501	spin_lock_irqsave(&io_tlb_lock, flags);
 502	index = ALIGN(io_tlb_index, stride);
 503	if (index >= io_tlb_nslabs)
 504		index = 0;
 505	wrap = index;
 506
 507	do {
 508		while (iommu_is_span_boundary(index, nslots, offset_slots,
 509					      max_slots)) {
 510			index += stride;
 511			if (index >= io_tlb_nslabs)
 512				index = 0;
 513			if (index == wrap)
 514				goto not_found;
 515		}
 516
 517		/*
 518		 * If we find a slot that indicates we have 'nslots' number of
 519		 * contiguous buffers, we allocate the buffers from that slot
 520		 * and mark the entries as '0' indicating unavailable.
 521		 */
 522		if (io_tlb_list[index] >= nslots) {
 523			int count = 0;
 524
 525			for (i = index; i < (int) (index + nslots); i++)
 526				io_tlb_list[i] = 0;
 527			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 528				io_tlb_list[i] = ++count;
 529			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 530
 531			/*
 532			 * Update the indices to avoid searching in the next
 533			 * round.
 534			 */
 535			io_tlb_index = ((index + nslots) < io_tlb_nslabs
 536					? (index + nslots) : 0);
 537
 538			goto found;
 539		}
 540		index += stride;
 541		if (index >= io_tlb_nslabs)
 542			index = 0;
 543	} while (index != wrap);
 544
 545not_found:
 546	spin_unlock_irqrestore(&io_tlb_lock, flags);
 547	if (printk_ratelimit())
 548		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 549	return SWIOTLB_MAP_ERROR;
 550found:
 551	spin_unlock_irqrestore(&io_tlb_lock, flags);
 552
 553	/*
 554	 * Save away the mapping from the original address to the DMA address.
 555	 * This is needed when we sync the memory.  Then we sync the buffer if
 556	 * needed.
 557	 */
 558	for (i = 0; i < nslots; i++)
 559		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 560	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 561	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 562		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 563
 564	return tlb_addr;
 565}
 566EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 567
 568/*
 569 * Allocates bounce buffer and returns its kernel virtual address.
 570 */
 571
 572static phys_addr_t
 573map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 574	   enum dma_data_direction dir, unsigned long attrs)
 575{
 576	dma_addr_t start_dma_addr;
 577
 578	if (swiotlb_force == SWIOTLB_NO_FORCE) {
 579		dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
 580				     &phys);
 581		return SWIOTLB_MAP_ERROR;
 582	}
 583
 584	start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
 585	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
 586				      dir, attrs);
 587}
 588
 589/*
 590 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 591 */
 592void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 593			      size_t size, enum dma_data_direction dir,
 594			      unsigned long attrs)
 595{
 596	unsigned long flags;
 597	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 598	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 599	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 600
 601	/*
 602	 * First, sync the memory before unmapping the entry
 603	 */
 604	if (orig_addr != INVALID_PHYS_ADDR &&
 605	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 606	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 607		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 608
 609	/*
 610	 * Return the buffer to the free list by setting the corresponding
 611	 * entries to indicate the number of contiguous entries available.
 612	 * While returning the entries to the free list, we merge the entries
 613	 * with slots below and above the pool being returned.
 614	 */
 615	spin_lock_irqsave(&io_tlb_lock, flags);
 616	{
 617		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 618			 io_tlb_list[index + nslots] : 0);
 619		/*
 620		 * Step 1: return the slots to the free list, merging the
 621		 * slots with superceeding slots
 622		 */
 623		for (i = index + nslots - 1; i >= index; i--) {
 624			io_tlb_list[i] = ++count;
 625			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 626		}
 627		/*
 628		 * Step 2: merge the returned slots with the preceding slots,
 629		 * if available (non zero)
 630		 */
 631		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 632			io_tlb_list[i] = ++count;
 633	}
 634	spin_unlock_irqrestore(&io_tlb_lock, flags);
 635}
 636EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 637
 638void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 639			     size_t size, enum dma_data_direction dir,
 640			     enum dma_sync_target target)
 641{
 642	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 643	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 644
 645	if (orig_addr == INVALID_PHYS_ADDR)
 646		return;
 647	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 648
 649	switch (target) {
 650	case SYNC_FOR_CPU:
 651		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 652			swiotlb_bounce(orig_addr, tlb_addr,
 653				       size, DMA_FROM_DEVICE);
 654		else
 655			BUG_ON(dir != DMA_TO_DEVICE);
 656		break;
 657	case SYNC_FOR_DEVICE:
 658		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 659			swiotlb_bounce(orig_addr, tlb_addr,
 660				       size, DMA_TO_DEVICE);
 661		else
 662			BUG_ON(dir != DMA_FROM_DEVICE);
 663		break;
 664	default:
 665		BUG();
 666	}
 667}
 668EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 669
 670void *
 671swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 672		       dma_addr_t *dma_handle, gfp_t flags)
 673{
 674	dma_addr_t dev_addr;
 675	void *ret;
 676	int order = get_order(size);
 677	u64 dma_mask = DMA_BIT_MASK(32);
 678
 679	if (hwdev && hwdev->coherent_dma_mask)
 680		dma_mask = hwdev->coherent_dma_mask;
 681
 682	ret = (void *)__get_free_pages(flags, order);
 683	if (ret) {
 684		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 685		if (dev_addr + size - 1 > dma_mask) {
 686			/*
 687			 * The allocated memory isn't reachable by the device.
 688			 */
 689			free_pages((unsigned long) ret, order);
 690			ret = NULL;
 691		}
 692	}
 693	if (!ret) {
 694		/*
 695		 * We are either out of memory or the device can't DMA to
 696		 * GFP_DMA memory; fall back on map_single(), which
 697		 * will grab memory from the lowest available address range.
 698		 */
 699		phys_addr_t paddr = map_single(hwdev, 0, size,
 700					       DMA_FROM_DEVICE, 0);
 701		if (paddr == SWIOTLB_MAP_ERROR)
 702			goto err_warn;
 703
 704		ret = phys_to_virt(paddr);
 705		dev_addr = phys_to_dma(hwdev, paddr);
 706
 707		/* Confirm address can be DMA'd by device */
 708		if (dev_addr + size - 1 > dma_mask) {
 709			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 710			       (unsigned long long)dma_mask,
 711			       (unsigned long long)dev_addr);
 712
 713			/*
 714			 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
 715			 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
 716			 */
 717			swiotlb_tbl_unmap_single(hwdev, paddr,
 718						 size, DMA_TO_DEVICE,
 719						 DMA_ATTR_SKIP_CPU_SYNC);
 720			goto err_warn;
 721		}
 722	}
 723
 724	*dma_handle = dev_addr;
 725	memset(ret, 0, size);
 726
 727	return ret;
 728
 729err_warn:
 730	pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 731		dev_name(hwdev), size);
 732	dump_stack();
 733
 734	return NULL;
 735}
 736EXPORT_SYMBOL(swiotlb_alloc_coherent);
 737
 738void
 739swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 740		      dma_addr_t dev_addr)
 741{
 742	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 743
 744	WARN_ON(irqs_disabled());
 745	if (!is_swiotlb_buffer(paddr))
 746		free_pages((unsigned long)vaddr, get_order(size));
 747	else
 748		/*
 749		 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
 750		 * DMA_ATTR_SKIP_CPU_SYNC is optional.
 751		 */
 752		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
 753					 DMA_ATTR_SKIP_CPU_SYNC);
 754}
 755EXPORT_SYMBOL(swiotlb_free_coherent);
 756
 757static void
 758swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 759	     int do_panic)
 760{
 761	if (swiotlb_force == SWIOTLB_NO_FORCE)
 762		return;
 763
 764	/*
 765	 * Ran out of IOMMU space for this operation. This is very bad.
 766	 * Unfortunately the drivers cannot handle this operation properly.
 767	 * unless they check for dma_mapping_error (most don't)
 768	 * When the mapping is small enough return a static buffer to limit
 769	 * the damage, or panic when the transfer is too big.
 770	 */
 771	dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
 772			    size);
 773
 774	if (size <= io_tlb_overflow || !do_panic)
 775		return;
 776
 777	if (dir == DMA_BIDIRECTIONAL)
 778		panic("DMA: Random memory could be DMA accessed\n");
 779	if (dir == DMA_FROM_DEVICE)
 780		panic("DMA: Random memory could be DMA written\n");
 781	if (dir == DMA_TO_DEVICE)
 782		panic("DMA: Random memory could be DMA read\n");
 783}
 784
 785/*
 786 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 787 * physical address to use is returned.
 788 *
 789 * Once the device is given the dma address, the device owns this memory until
 790 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 791 */
 792dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 793			    unsigned long offset, size_t size,
 794			    enum dma_data_direction dir,
 795			    unsigned long attrs)
 796{
 797	phys_addr_t map, phys = page_to_phys(page) + offset;
 798	dma_addr_t dev_addr = phys_to_dma(dev, phys);
 799
 800	BUG_ON(dir == DMA_NONE);
 801	/*
 802	 * If the address happens to be in the device's DMA window,
 803	 * we can safely return the device addr and not worry about bounce
 804	 * buffering it.
 805	 */
 806	if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
 807		return dev_addr;
 808
 809	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 810
 811	/* Oh well, have to allocate and map a bounce buffer. */
 812	map = map_single(dev, phys, size, dir, attrs);
 813	if (map == SWIOTLB_MAP_ERROR) {
 814		swiotlb_full(dev, size, dir, 1);
 815		return phys_to_dma(dev, io_tlb_overflow_buffer);
 816	}
 817
 818	dev_addr = phys_to_dma(dev, map);
 819
 820	/* Ensure that the address returned is DMA'ble */
 821	if (dma_capable(dev, dev_addr, size))
 822		return dev_addr;
 823
 824	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 825	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
 826
 827	return phys_to_dma(dev, io_tlb_overflow_buffer);
 828}
 829EXPORT_SYMBOL_GPL(swiotlb_map_page);
 830
 831/*
 832 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 833 * match what was provided for in a previous swiotlb_map_page call.  All
 834 * other usages are undefined.
 835 *
 836 * After this call, reads by the cpu to the buffer are guaranteed to see
 837 * whatever the device wrote there.
 838 */
 839static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 840			 size_t size, enum dma_data_direction dir,
 841			 unsigned long attrs)
 842{
 843	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 844
 845	BUG_ON(dir == DMA_NONE);
 846
 847	if (is_swiotlb_buffer(paddr)) {
 848		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 849		return;
 850	}
 851
 852	if (dir != DMA_FROM_DEVICE)
 853		return;
 854
 855	/*
 856	 * phys_to_virt doesn't work with hihgmem page but we could
 857	 * call dma_mark_clean() with hihgmem page here. However, we
 858	 * are fine since dma_mark_clean() is null on POWERPC. We can
 859	 * make dma_mark_clean() take a physical address if necessary.
 860	 */
 861	dma_mark_clean(phys_to_virt(paddr), size);
 862}
 863
 864void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 865			size_t size, enum dma_data_direction dir,
 866			unsigned long attrs)
 867{
 868	unmap_single(hwdev, dev_addr, size, dir, attrs);
 869}
 870EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 871
 872/*
 873 * Make physical memory consistent for a single streaming mode DMA translation
 874 * after a transfer.
 875 *
 876 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 877 * using the cpu, yet do not wish to teardown the dma mapping, you must
 878 * call this function before doing so.  At the next point you give the dma
 879 * address back to the card, you must first perform a
 880 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 881 */
 882static void
 883swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 884		    size_t size, enum dma_data_direction dir,
 885		    enum dma_sync_target target)
 886{
 887	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 888
 889	BUG_ON(dir == DMA_NONE);
 890
 891	if (is_swiotlb_buffer(paddr)) {
 892		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 893		return;
 894	}
 895
 896	if (dir != DMA_FROM_DEVICE)
 897		return;
 898
 899	dma_mark_clean(phys_to_virt(paddr), size);
 900}
 901
 902void
 903swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 904			    size_t size, enum dma_data_direction dir)
 905{
 906	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 907}
 908EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 909
 910void
 911swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 912			       size_t size, enum dma_data_direction dir)
 913{
 914	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 915}
 916EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 917
 918/*
 919 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 920 * This is the scatter-gather version of the above swiotlb_map_page
 921 * interface.  Here the scatter gather list elements are each tagged with the
 922 * appropriate dma address and length.  They are obtained via
 923 * sg_dma_{address,length}(SG).
 924 *
 925 * NOTE: An implementation may be able to use a smaller number of
 926 *       DMA address/length pairs than there are SG table elements.
 927 *       (for example via virtual mapping capabilities)
 928 *       The routine returns the number of addr/length pairs actually
 929 *       used, at most nents.
 930 *
 931 * Device ownership issues as mentioned above for swiotlb_map_page are the
 932 * same here.
 933 */
 934int
 935swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 936		     enum dma_data_direction dir, unsigned long attrs)
 937{
 938	struct scatterlist *sg;
 939	int i;
 940
 941	BUG_ON(dir == DMA_NONE);
 942
 943	for_each_sg(sgl, sg, nelems, i) {
 944		phys_addr_t paddr = sg_phys(sg);
 945		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 946
 947		if (swiotlb_force == SWIOTLB_FORCE ||
 948		    !dma_capable(hwdev, dev_addr, sg->length)) {
 949			phys_addr_t map = map_single(hwdev, sg_phys(sg),
 950						     sg->length, dir, attrs);
 951			if (map == SWIOTLB_MAP_ERROR) {
 952				/* Don't panic here, we expect map_sg users
 953				   to do proper error handling. */
 954				swiotlb_full(hwdev, sg->length, dir, 0);
 955				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 956				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 957						       attrs);
 958				sg_dma_len(sgl) = 0;
 959				return 0;
 960			}
 961			sg->dma_address = phys_to_dma(hwdev, map);
 962		} else
 963			sg->dma_address = dev_addr;
 964		sg_dma_len(sg) = sg->length;
 965	}
 966	return nelems;
 967}
 968EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 969
 
 
 
 
 
 
 
 
 970/*
 971 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 972 * concerning calls here are the same as for swiotlb_unmap_page() above.
 973 */
 974void
 975swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 976		       int nelems, enum dma_data_direction dir,
 977		       unsigned long attrs)
 978{
 979	struct scatterlist *sg;
 980	int i;
 981
 982	BUG_ON(dir == DMA_NONE);
 983
 984	for_each_sg(sgl, sg, nelems, i)
 985		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
 986			     attrs);
 987}
 988EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 
 
 
 
 
 
 
 
 989
 990/*
 991 * Make physical memory consistent for a set of streaming mode DMA translations
 992 * after a transfer.
 993 *
 994 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 995 * and usage.
 996 */
 997static void
 998swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 999		int nelems, enum dma_data_direction dir,
1000		enum dma_sync_target target)
1001{
1002	struct scatterlist *sg;
1003	int i;
1004
1005	for_each_sg(sgl, sg, nelems, i)
1006		swiotlb_sync_single(hwdev, sg->dma_address,
1007				    sg_dma_len(sg), dir, target);
1008}
1009
1010void
1011swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1012			int nelems, enum dma_data_direction dir)
1013{
1014	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1015}
1016EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1017
1018void
1019swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1020			   int nelems, enum dma_data_direction dir)
1021{
1022	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1023}
1024EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1025
1026int
1027swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1028{
1029	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1030}
1031EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1032
1033/*
1034 * Return whether the given device DMA address mask can be supported
1035 * properly.  For example, if your device can only drive the low 24-bits
1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1037 * this function.
1038 */
1039int
1040swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041{
1042	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043}
1044EXPORT_SYMBOL(swiotlb_dma_supported);