Loading...
1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20#include <linux/cache.h>
21#include <linux/dma-mapping.h>
22#include <linux/mm.h>
23#include <linux/export.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/swiotlb.h>
27#include <linux/pfn.h>
28#include <linux/types.h>
29#include <linux/ctype.h>
30#include <linux/highmem.h>
31#include <linux/gfp.h>
32
33#include <asm/io.h>
34#include <asm/dma.h>
35#include <asm/scatterlist.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
39#include <linux/iommu-helper.h>
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/swiotlb.h>
43
44#define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
56int swiotlb_force;
57
58/*
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61 * API.
62 */
63static phys_addr_t io_tlb_start, io_tlb_end;
64
65/*
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
76static phys_addr_t io_tlb_overflow_buffer;
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
85/*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
89static phys_addr_t *io_tlb_orig_addr;
90
91/*
92 * Protect the above data structures in the map and unmap calls
93 */
94static DEFINE_SPINLOCK(io_tlb_lock);
95
96static int late_alloc;
97
98static int __init
99setup_io_tlb_npages(char *str)
100{
101 if (isdigit(*str)) {
102 io_tlb_nslabs = simple_strtoul(str, &str, 0);
103 /* avoid tail segment of size < IO_TLB_SEGSIZE */
104 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105 }
106 if (*str == ',')
107 ++str;
108 if (!strcmp(str, "force"))
109 swiotlb_force = 1;
110
111 return 0;
112}
113early_param("swiotlb", setup_io_tlb_npages);
114/* make io_tlb_overflow tunable too? */
115
116unsigned long swiotlb_nr_tbl(void)
117{
118 return io_tlb_nslabs;
119}
120EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
121
122/* default to 64MB */
123#define IO_TLB_DEFAULT_SIZE (64UL<<20)
124unsigned long swiotlb_size_or_default(void)
125{
126 unsigned long size;
127
128 size = io_tlb_nslabs << IO_TLB_SHIFT;
129
130 return size ? size : (IO_TLB_DEFAULT_SIZE);
131}
132
133/* Note that this doesn't work with highmem page */
134static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135 volatile void *address)
136{
137 return phys_to_dma(hwdev, virt_to_phys(address));
138}
139
140static bool no_iotlb_memory;
141
142void swiotlb_print_info(void)
143{
144 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145 unsigned char *vstart, *vend;
146
147 if (no_iotlb_memory) {
148 pr_warn("software IO TLB: No low mem\n");
149 return;
150 }
151
152 vstart = phys_to_virt(io_tlb_start);
153 vend = phys_to_virt(io_tlb_end);
154
155 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156 (unsigned long long)io_tlb_start,
157 (unsigned long long)io_tlb_end,
158 bytes >> 20, vstart, vend - 1);
159}
160
161int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
162{
163 void *v_overflow_buffer;
164 unsigned long i, bytes;
165
166 bytes = nslabs << IO_TLB_SHIFT;
167
168 io_tlb_nslabs = nslabs;
169 io_tlb_start = __pa(tlb);
170 io_tlb_end = io_tlb_start + bytes;
171
172 /*
173 * Get the overflow emergency buffer
174 */
175 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
176 PAGE_ALIGN(io_tlb_overflow),
177 PAGE_SIZE);
178 if (!v_overflow_buffer)
179 return -ENOMEM;
180
181 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182
183 /*
184 * Allocate and initialize the free list array. This array is used
185 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186 * between io_tlb_start and io_tlb_end.
187 */
188 io_tlb_list = memblock_virt_alloc(
189 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
190 PAGE_SIZE);
191 for (i = 0; i < io_tlb_nslabs; i++)
192 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
193 io_tlb_index = 0;
194 io_tlb_orig_addr = memblock_virt_alloc(
195 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196 PAGE_SIZE);
197
198 if (verbose)
199 swiotlb_print_info();
200
201 return 0;
202}
203
204/*
205 * Statically reserve bounce buffer space and initialize bounce buffer data
206 * structures for the software IO TLB used to implement the DMA API.
207 */
208void __init
209swiotlb_init(int verbose)
210{
211 size_t default_size = IO_TLB_DEFAULT_SIZE;
212 unsigned char *vstart;
213 unsigned long bytes;
214
215 if (!io_tlb_nslabs) {
216 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
217 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
218 }
219
220 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
221
222 /* Get IO TLB memory from the low pages */
223 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
224 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
225 return;
226
227 if (io_tlb_start)
228 memblock_free_early(io_tlb_start,
229 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
230 pr_warn("Cannot allocate SWIOTLB buffer");
231 no_iotlb_memory = true;
232}
233
234/*
235 * Systems with larger DMA zones (those that don't support ISA) can
236 * initialize the swiotlb later using the slab allocator if needed.
237 * This should be just like above, but with some error catching.
238 */
239int
240swiotlb_late_init_with_default_size(size_t default_size)
241{
242 unsigned long bytes, req_nslabs = io_tlb_nslabs;
243 unsigned char *vstart = NULL;
244 unsigned int order;
245 int rc = 0;
246
247 if (!io_tlb_nslabs) {
248 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
250 }
251
252 /*
253 * Get IO TLB memory from the low pages
254 */
255 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
256 io_tlb_nslabs = SLABS_PER_PAGE << order;
257 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
261 order);
262 if (vstart)
263 break;
264 order--;
265 }
266
267 if (!vstart) {
268 io_tlb_nslabs = req_nslabs;
269 return -ENOMEM;
270 }
271 if (order != get_order(bytes)) {
272 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
273 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
274 io_tlb_nslabs = SLABS_PER_PAGE << order;
275 }
276 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
277 if (rc)
278 free_pages((unsigned long)vstart, order);
279 return rc;
280}
281
282int
283swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
284{
285 unsigned long i, bytes;
286 unsigned char *v_overflow_buffer;
287
288 bytes = nslabs << IO_TLB_SHIFT;
289
290 io_tlb_nslabs = nslabs;
291 io_tlb_start = virt_to_phys(tlb);
292 io_tlb_end = io_tlb_start + bytes;
293
294 memset(tlb, 0, bytes);
295
296 /*
297 * Get the overflow emergency buffer
298 */
299 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
300 get_order(io_tlb_overflow));
301 if (!v_overflow_buffer)
302 goto cleanup2;
303
304 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
305
306 /*
307 * Allocate and initialize the free list array. This array is used
308 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309 * between io_tlb_start and io_tlb_end.
310 */
311 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
312 get_order(io_tlb_nslabs * sizeof(int)));
313 if (!io_tlb_list)
314 goto cleanup3;
315
316 for (i = 0; i < io_tlb_nslabs; i++)
317 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
318 io_tlb_index = 0;
319
320 io_tlb_orig_addr = (phys_addr_t *)
321 __get_free_pages(GFP_KERNEL,
322 get_order(io_tlb_nslabs *
323 sizeof(phys_addr_t)));
324 if (!io_tlb_orig_addr)
325 goto cleanup4;
326
327 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
328
329 swiotlb_print_info();
330
331 late_alloc = 1;
332
333 return 0;
334
335cleanup4:
336 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
337 sizeof(int)));
338 io_tlb_list = NULL;
339cleanup3:
340 free_pages((unsigned long)v_overflow_buffer,
341 get_order(io_tlb_overflow));
342 io_tlb_overflow_buffer = 0;
343cleanup2:
344 io_tlb_end = 0;
345 io_tlb_start = 0;
346 io_tlb_nslabs = 0;
347 return -ENOMEM;
348}
349
350void __init swiotlb_free(void)
351{
352 if (!io_tlb_orig_addr)
353 return;
354
355 if (late_alloc) {
356 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
357 get_order(io_tlb_overflow));
358 free_pages((unsigned long)io_tlb_orig_addr,
359 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
360 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
361 sizeof(int)));
362 free_pages((unsigned long)phys_to_virt(io_tlb_start),
363 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
364 } else {
365 memblock_free_late(io_tlb_overflow_buffer,
366 PAGE_ALIGN(io_tlb_overflow));
367 memblock_free_late(__pa(io_tlb_orig_addr),
368 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
369 memblock_free_late(__pa(io_tlb_list),
370 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
371 memblock_free_late(io_tlb_start,
372 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
373 }
374 io_tlb_nslabs = 0;
375}
376
377static int is_swiotlb_buffer(phys_addr_t paddr)
378{
379 return paddr >= io_tlb_start && paddr < io_tlb_end;
380}
381
382/*
383 * Bounce: copy the swiotlb buffer back to the original dma location
384 */
385static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
386 size_t size, enum dma_data_direction dir)
387{
388 unsigned long pfn = PFN_DOWN(orig_addr);
389 unsigned char *vaddr = phys_to_virt(tlb_addr);
390
391 if (PageHighMem(pfn_to_page(pfn))) {
392 /* The buffer does not have a mapping. Map it in and copy */
393 unsigned int offset = orig_addr & ~PAGE_MASK;
394 char *buffer;
395 unsigned int sz = 0;
396 unsigned long flags;
397
398 while (size) {
399 sz = min_t(size_t, PAGE_SIZE - offset, size);
400
401 local_irq_save(flags);
402 buffer = kmap_atomic(pfn_to_page(pfn));
403 if (dir == DMA_TO_DEVICE)
404 memcpy(vaddr, buffer + offset, sz);
405 else
406 memcpy(buffer + offset, vaddr, sz);
407 kunmap_atomic(buffer);
408 local_irq_restore(flags);
409
410 size -= sz;
411 pfn++;
412 vaddr += sz;
413 offset = 0;
414 }
415 } else if (dir == DMA_TO_DEVICE) {
416 memcpy(vaddr, phys_to_virt(orig_addr), size);
417 } else {
418 memcpy(phys_to_virt(orig_addr), vaddr, size);
419 }
420}
421
422phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
423 dma_addr_t tbl_dma_addr,
424 phys_addr_t orig_addr, size_t size,
425 enum dma_data_direction dir)
426{
427 unsigned long flags;
428 phys_addr_t tlb_addr;
429 unsigned int nslots, stride, index, wrap;
430 int i;
431 unsigned long mask;
432 unsigned long offset_slots;
433 unsigned long max_slots;
434
435 if (no_iotlb_memory)
436 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
437
438 mask = dma_get_seg_boundary(hwdev);
439
440 tbl_dma_addr &= mask;
441
442 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
443
444 /*
445 * Carefully handle integer overflow which can occur when mask == ~0UL.
446 */
447 max_slots = mask + 1
448 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
449 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450
451 /*
452 * For mappings greater than a page, we limit the stride (and
453 * hence alignment) to a page size.
454 */
455 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
456 if (size > PAGE_SIZE)
457 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
458 else
459 stride = 1;
460
461 BUG_ON(!nslots);
462
463 /*
464 * Find suitable number of IO TLB entries size that will fit this
465 * request and allocate a buffer from that IO TLB pool.
466 */
467 spin_lock_irqsave(&io_tlb_lock, flags);
468 index = ALIGN(io_tlb_index, stride);
469 if (index >= io_tlb_nslabs)
470 index = 0;
471 wrap = index;
472
473 do {
474 while (iommu_is_span_boundary(index, nslots, offset_slots,
475 max_slots)) {
476 index += stride;
477 if (index >= io_tlb_nslabs)
478 index = 0;
479 if (index == wrap)
480 goto not_found;
481 }
482
483 /*
484 * If we find a slot that indicates we have 'nslots' number of
485 * contiguous buffers, we allocate the buffers from that slot
486 * and mark the entries as '0' indicating unavailable.
487 */
488 if (io_tlb_list[index] >= nslots) {
489 int count = 0;
490
491 for (i = index; i < (int) (index + nslots); i++)
492 io_tlb_list[i] = 0;
493 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
494 io_tlb_list[i] = ++count;
495 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
496
497 /*
498 * Update the indices to avoid searching in the next
499 * round.
500 */
501 io_tlb_index = ((index + nslots) < io_tlb_nslabs
502 ? (index + nslots) : 0);
503
504 goto found;
505 }
506 index += stride;
507 if (index >= io_tlb_nslabs)
508 index = 0;
509 } while (index != wrap);
510
511not_found:
512 spin_unlock_irqrestore(&io_tlb_lock, flags);
513 if (printk_ratelimit())
514 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
515 return SWIOTLB_MAP_ERROR;
516found:
517 spin_unlock_irqrestore(&io_tlb_lock, flags);
518
519 /*
520 * Save away the mapping from the original address to the DMA address.
521 * This is needed when we sync the memory. Then we sync the buffer if
522 * needed.
523 */
524 for (i = 0; i < nslots; i++)
525 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
526 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
527 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
528
529 return tlb_addr;
530}
531EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
532
533/*
534 * Allocates bounce buffer and returns its kernel virtual address.
535 */
536
537phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
538 enum dma_data_direction dir)
539{
540 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
541
542 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
543}
544
545/*
546 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
547 */
548void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
549 size_t size, enum dma_data_direction dir)
550{
551 unsigned long flags;
552 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
553 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
554 phys_addr_t orig_addr = io_tlb_orig_addr[index];
555
556 /*
557 * First, sync the memory before unmapping the entry
558 */
559 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
560 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
561
562 /*
563 * Return the buffer to the free list by setting the corresponding
564 * entries to indicate the number of contiguous entries available.
565 * While returning the entries to the free list, we merge the entries
566 * with slots below and above the pool being returned.
567 */
568 spin_lock_irqsave(&io_tlb_lock, flags);
569 {
570 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
571 io_tlb_list[index + nslots] : 0);
572 /*
573 * Step 1: return the slots to the free list, merging the
574 * slots with superceeding slots
575 */
576 for (i = index + nslots - 1; i >= index; i--)
577 io_tlb_list[i] = ++count;
578 /*
579 * Step 2: merge the returned slots with the preceding slots,
580 * if available (non zero)
581 */
582 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
583 io_tlb_list[i] = ++count;
584 }
585 spin_unlock_irqrestore(&io_tlb_lock, flags);
586}
587EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
588
589void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
590 size_t size, enum dma_data_direction dir,
591 enum dma_sync_target target)
592{
593 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
594 phys_addr_t orig_addr = io_tlb_orig_addr[index];
595
596 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
597
598 switch (target) {
599 case SYNC_FOR_CPU:
600 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
601 swiotlb_bounce(orig_addr, tlb_addr,
602 size, DMA_FROM_DEVICE);
603 else
604 BUG_ON(dir != DMA_TO_DEVICE);
605 break;
606 case SYNC_FOR_DEVICE:
607 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
608 swiotlb_bounce(orig_addr, tlb_addr,
609 size, DMA_TO_DEVICE);
610 else
611 BUG_ON(dir != DMA_FROM_DEVICE);
612 break;
613 default:
614 BUG();
615 }
616}
617EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
618
619void *
620swiotlb_alloc_coherent(struct device *hwdev, size_t size,
621 dma_addr_t *dma_handle, gfp_t flags)
622{
623 dma_addr_t dev_addr;
624 void *ret;
625 int order = get_order(size);
626 u64 dma_mask = DMA_BIT_MASK(32);
627
628 if (hwdev && hwdev->coherent_dma_mask)
629 dma_mask = hwdev->coherent_dma_mask;
630
631 ret = (void *)__get_free_pages(flags, order);
632 if (ret) {
633 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
634 if (dev_addr + size - 1 > dma_mask) {
635 /*
636 * The allocated memory isn't reachable by the device.
637 */
638 free_pages((unsigned long) ret, order);
639 ret = NULL;
640 }
641 }
642 if (!ret) {
643 /*
644 * We are either out of memory or the device can't DMA to
645 * GFP_DMA memory; fall back on map_single(), which
646 * will grab memory from the lowest available address range.
647 */
648 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
649 if (paddr == SWIOTLB_MAP_ERROR)
650 return NULL;
651
652 ret = phys_to_virt(paddr);
653 dev_addr = phys_to_dma(hwdev, paddr);
654
655 /* Confirm address can be DMA'd by device */
656 if (dev_addr + size - 1 > dma_mask) {
657 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658 (unsigned long long)dma_mask,
659 (unsigned long long)dev_addr);
660
661 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
662 swiotlb_tbl_unmap_single(hwdev, paddr,
663 size, DMA_TO_DEVICE);
664 return NULL;
665 }
666 }
667
668 *dma_handle = dev_addr;
669 memset(ret, 0, size);
670
671 return ret;
672}
673EXPORT_SYMBOL(swiotlb_alloc_coherent);
674
675void
676swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
677 dma_addr_t dev_addr)
678{
679 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
680
681 WARN_ON(irqs_disabled());
682 if (!is_swiotlb_buffer(paddr))
683 free_pages((unsigned long)vaddr, get_order(size));
684 else
685 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
687}
688EXPORT_SYMBOL(swiotlb_free_coherent);
689
690static void
691swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
692 int do_panic)
693{
694 /*
695 * Ran out of IOMMU space for this operation. This is very bad.
696 * Unfortunately the drivers cannot handle this operation properly.
697 * unless they check for dma_mapping_error (most don't)
698 * When the mapping is small enough return a static buffer to limit
699 * the damage, or panic when the transfer is too big.
700 */
701 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
702 "device %s\n", size, dev ? dev_name(dev) : "?");
703
704 if (size <= io_tlb_overflow || !do_panic)
705 return;
706
707 if (dir == DMA_BIDIRECTIONAL)
708 panic("DMA: Random memory could be DMA accessed\n");
709 if (dir == DMA_FROM_DEVICE)
710 panic("DMA: Random memory could be DMA written\n");
711 if (dir == DMA_TO_DEVICE)
712 panic("DMA: Random memory could be DMA read\n");
713}
714
715/*
716 * Map a single buffer of the indicated size for DMA in streaming mode. The
717 * physical address to use is returned.
718 *
719 * Once the device is given the dma address, the device owns this memory until
720 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
721 */
722dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
723 unsigned long offset, size_t size,
724 enum dma_data_direction dir,
725 struct dma_attrs *attrs)
726{
727 phys_addr_t map, phys = page_to_phys(page) + offset;
728 dma_addr_t dev_addr = phys_to_dma(dev, phys);
729
730 BUG_ON(dir == DMA_NONE);
731 /*
732 * If the address happens to be in the device's DMA window,
733 * we can safely return the device addr and not worry about bounce
734 * buffering it.
735 */
736 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
737 return dev_addr;
738
739 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
740
741 /* Oh well, have to allocate and map a bounce buffer. */
742 map = map_single(dev, phys, size, dir);
743 if (map == SWIOTLB_MAP_ERROR) {
744 swiotlb_full(dev, size, dir, 1);
745 return phys_to_dma(dev, io_tlb_overflow_buffer);
746 }
747
748 dev_addr = phys_to_dma(dev, map);
749
750 /* Ensure that the address returned is DMA'ble */
751 if (!dma_capable(dev, dev_addr, size)) {
752 swiotlb_tbl_unmap_single(dev, map, size, dir);
753 return phys_to_dma(dev, io_tlb_overflow_buffer);
754 }
755
756 return dev_addr;
757}
758EXPORT_SYMBOL_GPL(swiotlb_map_page);
759
760/*
761 * Unmap a single streaming mode DMA translation. The dma_addr and size must
762 * match what was provided for in a previous swiotlb_map_page call. All
763 * other usages are undefined.
764 *
765 * After this call, reads by the cpu to the buffer are guaranteed to see
766 * whatever the device wrote there.
767 */
768static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
769 size_t size, enum dma_data_direction dir)
770{
771 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
772
773 BUG_ON(dir == DMA_NONE);
774
775 if (is_swiotlb_buffer(paddr)) {
776 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
777 return;
778 }
779
780 if (dir != DMA_FROM_DEVICE)
781 return;
782
783 /*
784 * phys_to_virt doesn't work with hihgmem page but we could
785 * call dma_mark_clean() with hihgmem page here. However, we
786 * are fine since dma_mark_clean() is null on POWERPC. We can
787 * make dma_mark_clean() take a physical address if necessary.
788 */
789 dma_mark_clean(phys_to_virt(paddr), size);
790}
791
792void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
793 size_t size, enum dma_data_direction dir,
794 struct dma_attrs *attrs)
795{
796 unmap_single(hwdev, dev_addr, size, dir);
797}
798EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
799
800/*
801 * Make physical memory consistent for a single streaming mode DMA translation
802 * after a transfer.
803 *
804 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 * using the cpu, yet do not wish to teardown the dma mapping, you must
806 * call this function before doing so. At the next point you give the dma
807 * address back to the card, you must first perform a
808 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
809 */
810static void
811swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
812 size_t size, enum dma_data_direction dir,
813 enum dma_sync_target target)
814{
815 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
816
817 BUG_ON(dir == DMA_NONE);
818
819 if (is_swiotlb_buffer(paddr)) {
820 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
821 return;
822 }
823
824 if (dir != DMA_FROM_DEVICE)
825 return;
826
827 dma_mark_clean(phys_to_virt(paddr), size);
828}
829
830void
831swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
832 size_t size, enum dma_data_direction dir)
833{
834 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
835}
836EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
837
838void
839swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
840 size_t size, enum dma_data_direction dir)
841{
842 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
843}
844EXPORT_SYMBOL(swiotlb_sync_single_for_device);
845
846/*
847 * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 * This is the scatter-gather version of the above swiotlb_map_page
849 * interface. Here the scatter gather list elements are each tagged with the
850 * appropriate dma address and length. They are obtained via
851 * sg_dma_{address,length}(SG).
852 *
853 * NOTE: An implementation may be able to use a smaller number of
854 * DMA address/length pairs than there are SG table elements.
855 * (for example via virtual mapping capabilities)
856 * The routine returns the number of addr/length pairs actually
857 * used, at most nents.
858 *
859 * Device ownership issues as mentioned above for swiotlb_map_page are the
860 * same here.
861 */
862int
863swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
864 enum dma_data_direction dir, struct dma_attrs *attrs)
865{
866 struct scatterlist *sg;
867 int i;
868
869 BUG_ON(dir == DMA_NONE);
870
871 for_each_sg(sgl, sg, nelems, i) {
872 phys_addr_t paddr = sg_phys(sg);
873 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
874
875 if (swiotlb_force ||
876 !dma_capable(hwdev, dev_addr, sg->length)) {
877 phys_addr_t map = map_single(hwdev, sg_phys(sg),
878 sg->length, dir);
879 if (map == SWIOTLB_MAP_ERROR) {
880 /* Don't panic here, we expect map_sg users
881 to do proper error handling. */
882 swiotlb_full(hwdev, sg->length, dir, 0);
883 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
884 attrs);
885 sg_dma_len(sgl) = 0;
886 return 0;
887 }
888 sg->dma_address = phys_to_dma(hwdev, map);
889 } else
890 sg->dma_address = dev_addr;
891 sg_dma_len(sg) = sg->length;
892 }
893 return nelems;
894}
895EXPORT_SYMBOL(swiotlb_map_sg_attrs);
896
897int
898swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
899 enum dma_data_direction dir)
900{
901 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
902}
903EXPORT_SYMBOL(swiotlb_map_sg);
904
905/*
906 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
907 * concerning calls here are the same as for swiotlb_unmap_page() above.
908 */
909void
910swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
911 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
912{
913 struct scatterlist *sg;
914 int i;
915
916 BUG_ON(dir == DMA_NONE);
917
918 for_each_sg(sgl, sg, nelems, i)
919 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
920
921}
922EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
923
924void
925swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
926 enum dma_data_direction dir)
927{
928 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
929}
930EXPORT_SYMBOL(swiotlb_unmap_sg);
931
932/*
933 * Make physical memory consistent for a set of streaming mode DMA translations
934 * after a transfer.
935 *
936 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
937 * and usage.
938 */
939static void
940swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
941 int nelems, enum dma_data_direction dir,
942 enum dma_sync_target target)
943{
944 struct scatterlist *sg;
945 int i;
946
947 for_each_sg(sgl, sg, nelems, i)
948 swiotlb_sync_single(hwdev, sg->dma_address,
949 sg_dma_len(sg), dir, target);
950}
951
952void
953swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
954 int nelems, enum dma_data_direction dir)
955{
956 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
957}
958EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
959
960void
961swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
962 int nelems, enum dma_data_direction dir)
963{
964 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
965}
966EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
967
968int
969swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
970{
971 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
972}
973EXPORT_SYMBOL(swiotlb_dma_mapping_error);
974
975/*
976 * Return whether the given device DMA address mask can be supported
977 * properly. For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask to
979 * this function.
980 */
981int
982swiotlb_dma_supported(struct device *hwdev, u64 mask)
983{
984 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
985}
986EXPORT_SYMBOL(swiotlb_dma_supported);
1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20#include <linux/cache.h>
21#include <linux/dma-direct.h>
22#include <linux/mm.h>
23#include <linux/export.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/swiotlb.h>
27#include <linux/pfn.h>
28#include <linux/types.h>
29#include <linux/ctype.h>
30#include <linux/highmem.h>
31#include <linux/gfp.h>
32#include <linux/scatterlist.h>
33#include <linux/mem_encrypt.h>
34#include <linux/set_memory.h>
35
36#include <asm/io.h>
37#include <asm/dma.h>
38
39#include <linux/init.h>
40#include <linux/bootmem.h>
41#include <linux/iommu-helper.h>
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/swiotlb.h>
45
46#define OFFSET(val,align) ((unsigned long) \
47 ( (val) & ( (align) - 1)))
48
49#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50
51/*
52 * Minimum IO TLB size to bother booting with. Systems with mainly
53 * 64bit capable cards will only lightly use the swiotlb. If we can't
54 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 */
56#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57
58enum swiotlb_force swiotlb_force;
59
60/*
61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63 * API.
64 */
65static phys_addr_t io_tlb_start, io_tlb_end;
66
67/*
68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 */
71static unsigned long io_tlb_nslabs;
72
73/*
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 */
76static unsigned long io_tlb_overflow = 32*1024;
77
78static phys_addr_t io_tlb_overflow_buffer;
79
80/*
81 * This is a free list describing the number of free entries available from
82 * each index
83 */
84static unsigned int *io_tlb_list;
85static unsigned int io_tlb_index;
86
87/*
88 * Max segment that we can provide which (if pages are contingous) will
89 * not be bounced (unless SWIOTLB_FORCE is set).
90 */
91unsigned int max_segment;
92
93/*
94 * We need to save away the original address corresponding to a mapped entry
95 * for the sync operations.
96 */
97#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
98static phys_addr_t *io_tlb_orig_addr;
99
100/*
101 * Protect the above data structures in the map and unmap calls
102 */
103static DEFINE_SPINLOCK(io_tlb_lock);
104
105static int late_alloc;
106
107static int __init
108setup_io_tlb_npages(char *str)
109{
110 if (isdigit(*str)) {
111 io_tlb_nslabs = simple_strtoul(str, &str, 0);
112 /* avoid tail segment of size < IO_TLB_SEGSIZE */
113 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
114 }
115 if (*str == ',')
116 ++str;
117 if (!strcmp(str, "force")) {
118 swiotlb_force = SWIOTLB_FORCE;
119 } else if (!strcmp(str, "noforce")) {
120 swiotlb_force = SWIOTLB_NO_FORCE;
121 io_tlb_nslabs = 1;
122 }
123
124 return 0;
125}
126early_param("swiotlb", setup_io_tlb_npages);
127/* make io_tlb_overflow tunable too? */
128
129unsigned long swiotlb_nr_tbl(void)
130{
131 return io_tlb_nslabs;
132}
133EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
134
135unsigned int swiotlb_max_segment(void)
136{
137 return max_segment;
138}
139EXPORT_SYMBOL_GPL(swiotlb_max_segment);
140
141void swiotlb_set_max_segment(unsigned int val)
142{
143 if (swiotlb_force == SWIOTLB_FORCE)
144 max_segment = 1;
145 else
146 max_segment = rounddown(val, PAGE_SIZE);
147}
148
149/* default to 64MB */
150#define IO_TLB_DEFAULT_SIZE (64UL<<20)
151unsigned long swiotlb_size_or_default(void)
152{
153 unsigned long size;
154
155 size = io_tlb_nslabs << IO_TLB_SHIFT;
156
157 return size ? size : (IO_TLB_DEFAULT_SIZE);
158}
159
160static bool no_iotlb_memory;
161
162void swiotlb_print_info(void)
163{
164 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
165 unsigned char *vstart, *vend;
166
167 if (no_iotlb_memory) {
168 pr_warn("software IO TLB: No low mem\n");
169 return;
170 }
171
172 vstart = phys_to_virt(io_tlb_start);
173 vend = phys_to_virt(io_tlb_end);
174
175 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
176 (unsigned long long)io_tlb_start,
177 (unsigned long long)io_tlb_end,
178 bytes >> 20, vstart, vend - 1);
179}
180
181/*
182 * Early SWIOTLB allocation may be too early to allow an architecture to
183 * perform the desired operations. This function allows the architecture to
184 * call SWIOTLB when the operations are possible. It needs to be called
185 * before the SWIOTLB memory is used.
186 */
187void __init swiotlb_update_mem_attributes(void)
188{
189 void *vaddr;
190 unsigned long bytes;
191
192 if (no_iotlb_memory || late_alloc)
193 return;
194
195 vaddr = phys_to_virt(io_tlb_start);
196 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198 memset(vaddr, 0, bytes);
199
200 vaddr = phys_to_virt(io_tlb_overflow_buffer);
201 bytes = PAGE_ALIGN(io_tlb_overflow);
202 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
203 memset(vaddr, 0, bytes);
204}
205
206int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
207{
208 void *v_overflow_buffer;
209 unsigned long i, bytes;
210
211 bytes = nslabs << IO_TLB_SHIFT;
212
213 io_tlb_nslabs = nslabs;
214 io_tlb_start = __pa(tlb);
215 io_tlb_end = io_tlb_start + bytes;
216
217 /*
218 * Get the overflow emergency buffer
219 */
220 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
221 PAGE_ALIGN(io_tlb_overflow),
222 PAGE_SIZE);
223 if (!v_overflow_buffer)
224 return -ENOMEM;
225
226 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
227
228 /*
229 * Allocate and initialize the free list array. This array is used
230 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
231 * between io_tlb_start and io_tlb_end.
232 */
233 io_tlb_list = memblock_virt_alloc(
234 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
235 PAGE_SIZE);
236 io_tlb_orig_addr = memblock_virt_alloc(
237 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
238 PAGE_SIZE);
239 for (i = 0; i < io_tlb_nslabs; i++) {
240 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
241 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
242 }
243 io_tlb_index = 0;
244
245 if (verbose)
246 swiotlb_print_info();
247
248 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
249 return 0;
250}
251
252/*
253 * Statically reserve bounce buffer space and initialize bounce buffer data
254 * structures for the software IO TLB used to implement the DMA API.
255 */
256void __init
257swiotlb_init(int verbose)
258{
259 size_t default_size = IO_TLB_DEFAULT_SIZE;
260 unsigned char *vstart;
261 unsigned long bytes;
262
263 if (!io_tlb_nslabs) {
264 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
265 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
266 }
267
268 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
269
270 /* Get IO TLB memory from the low pages */
271 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
272 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
273 return;
274
275 if (io_tlb_start)
276 memblock_free_early(io_tlb_start,
277 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
278 pr_warn("Cannot allocate SWIOTLB buffer");
279 no_iotlb_memory = true;
280}
281
282/*
283 * Systems with larger DMA zones (those that don't support ISA) can
284 * initialize the swiotlb later using the slab allocator if needed.
285 * This should be just like above, but with some error catching.
286 */
287int
288swiotlb_late_init_with_default_size(size_t default_size)
289{
290 unsigned long bytes, req_nslabs = io_tlb_nslabs;
291 unsigned char *vstart = NULL;
292 unsigned int order;
293 int rc = 0;
294
295 if (!io_tlb_nslabs) {
296 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
297 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
298 }
299
300 /*
301 * Get IO TLB memory from the low pages
302 */
303 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
304 io_tlb_nslabs = SLABS_PER_PAGE << order;
305 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
306
307 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
308 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
309 order);
310 if (vstart)
311 break;
312 order--;
313 }
314
315 if (!vstart) {
316 io_tlb_nslabs = req_nslabs;
317 return -ENOMEM;
318 }
319 if (order != get_order(bytes)) {
320 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
321 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
322 io_tlb_nslabs = SLABS_PER_PAGE << order;
323 }
324 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
325 if (rc)
326 free_pages((unsigned long)vstart, order);
327
328 return rc;
329}
330
331int
332swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
333{
334 unsigned long i, bytes;
335 unsigned char *v_overflow_buffer;
336
337 bytes = nslabs << IO_TLB_SHIFT;
338
339 io_tlb_nslabs = nslabs;
340 io_tlb_start = virt_to_phys(tlb);
341 io_tlb_end = io_tlb_start + bytes;
342
343 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
344 memset(tlb, 0, bytes);
345
346 /*
347 * Get the overflow emergency buffer
348 */
349 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
350 get_order(io_tlb_overflow));
351 if (!v_overflow_buffer)
352 goto cleanup2;
353
354 set_memory_decrypted((unsigned long)v_overflow_buffer,
355 io_tlb_overflow >> PAGE_SHIFT);
356 memset(v_overflow_buffer, 0, io_tlb_overflow);
357 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
358
359 /*
360 * Allocate and initialize the free list array. This array is used
361 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
362 * between io_tlb_start and io_tlb_end.
363 */
364 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
365 get_order(io_tlb_nslabs * sizeof(int)));
366 if (!io_tlb_list)
367 goto cleanup3;
368
369 io_tlb_orig_addr = (phys_addr_t *)
370 __get_free_pages(GFP_KERNEL,
371 get_order(io_tlb_nslabs *
372 sizeof(phys_addr_t)));
373 if (!io_tlb_orig_addr)
374 goto cleanup4;
375
376 for (i = 0; i < io_tlb_nslabs; i++) {
377 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
378 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
379 }
380 io_tlb_index = 0;
381
382 swiotlb_print_info();
383
384 late_alloc = 1;
385
386 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
387
388 return 0;
389
390cleanup4:
391 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
392 sizeof(int)));
393 io_tlb_list = NULL;
394cleanup3:
395 free_pages((unsigned long)v_overflow_buffer,
396 get_order(io_tlb_overflow));
397 io_tlb_overflow_buffer = 0;
398cleanup2:
399 io_tlb_end = 0;
400 io_tlb_start = 0;
401 io_tlb_nslabs = 0;
402 max_segment = 0;
403 return -ENOMEM;
404}
405
406void __init swiotlb_exit(void)
407{
408 if (!io_tlb_orig_addr)
409 return;
410
411 if (late_alloc) {
412 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
413 get_order(io_tlb_overflow));
414 free_pages((unsigned long)io_tlb_orig_addr,
415 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
416 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
417 sizeof(int)));
418 free_pages((unsigned long)phys_to_virt(io_tlb_start),
419 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
420 } else {
421 memblock_free_late(io_tlb_overflow_buffer,
422 PAGE_ALIGN(io_tlb_overflow));
423 memblock_free_late(__pa(io_tlb_orig_addr),
424 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
425 memblock_free_late(__pa(io_tlb_list),
426 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
427 memblock_free_late(io_tlb_start,
428 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
429 }
430 io_tlb_nslabs = 0;
431 max_segment = 0;
432}
433
434int is_swiotlb_buffer(phys_addr_t paddr)
435{
436 return paddr >= io_tlb_start && paddr < io_tlb_end;
437}
438
439/*
440 * Bounce: copy the swiotlb buffer back to the original dma location
441 */
442static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
443 size_t size, enum dma_data_direction dir)
444{
445 unsigned long pfn = PFN_DOWN(orig_addr);
446 unsigned char *vaddr = phys_to_virt(tlb_addr);
447
448 if (PageHighMem(pfn_to_page(pfn))) {
449 /* The buffer does not have a mapping. Map it in and copy */
450 unsigned int offset = orig_addr & ~PAGE_MASK;
451 char *buffer;
452 unsigned int sz = 0;
453 unsigned long flags;
454
455 while (size) {
456 sz = min_t(size_t, PAGE_SIZE - offset, size);
457
458 local_irq_save(flags);
459 buffer = kmap_atomic(pfn_to_page(pfn));
460 if (dir == DMA_TO_DEVICE)
461 memcpy(vaddr, buffer + offset, sz);
462 else
463 memcpy(buffer + offset, vaddr, sz);
464 kunmap_atomic(buffer);
465 local_irq_restore(flags);
466
467 size -= sz;
468 pfn++;
469 vaddr += sz;
470 offset = 0;
471 }
472 } else if (dir == DMA_TO_DEVICE) {
473 memcpy(vaddr, phys_to_virt(orig_addr), size);
474 } else {
475 memcpy(phys_to_virt(orig_addr), vaddr, size);
476 }
477}
478
479phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
480 dma_addr_t tbl_dma_addr,
481 phys_addr_t orig_addr, size_t size,
482 enum dma_data_direction dir,
483 unsigned long attrs)
484{
485 unsigned long flags;
486 phys_addr_t tlb_addr;
487 unsigned int nslots, stride, index, wrap;
488 int i;
489 unsigned long mask;
490 unsigned long offset_slots;
491 unsigned long max_slots;
492
493 if (no_iotlb_memory)
494 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
495
496 if (mem_encrypt_active())
497 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
498 sme_active() ? "SME" : "SEV");
499
500 mask = dma_get_seg_boundary(hwdev);
501
502 tbl_dma_addr &= mask;
503
504 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
505
506 /*
507 * Carefully handle integer overflow which can occur when mask == ~0UL.
508 */
509 max_slots = mask + 1
510 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
511 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
512
513 /*
514 * For mappings greater than or equal to a page, we limit the stride
515 * (and hence alignment) to a page size.
516 */
517 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
518 if (size >= PAGE_SIZE)
519 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
520 else
521 stride = 1;
522
523 BUG_ON(!nslots);
524
525 /*
526 * Find suitable number of IO TLB entries size that will fit this
527 * request and allocate a buffer from that IO TLB pool.
528 */
529 spin_lock_irqsave(&io_tlb_lock, flags);
530 index = ALIGN(io_tlb_index, stride);
531 if (index >= io_tlb_nslabs)
532 index = 0;
533 wrap = index;
534
535 do {
536 while (iommu_is_span_boundary(index, nslots, offset_slots,
537 max_slots)) {
538 index += stride;
539 if (index >= io_tlb_nslabs)
540 index = 0;
541 if (index == wrap)
542 goto not_found;
543 }
544
545 /*
546 * If we find a slot that indicates we have 'nslots' number of
547 * contiguous buffers, we allocate the buffers from that slot
548 * and mark the entries as '0' indicating unavailable.
549 */
550 if (io_tlb_list[index] >= nslots) {
551 int count = 0;
552
553 for (i = index; i < (int) (index + nslots); i++)
554 io_tlb_list[i] = 0;
555 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
556 io_tlb_list[i] = ++count;
557 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
558
559 /*
560 * Update the indices to avoid searching in the next
561 * round.
562 */
563 io_tlb_index = ((index + nslots) < io_tlb_nslabs
564 ? (index + nslots) : 0);
565
566 goto found;
567 }
568 index += stride;
569 if (index >= io_tlb_nslabs)
570 index = 0;
571 } while (index != wrap);
572
573not_found:
574 spin_unlock_irqrestore(&io_tlb_lock, flags);
575 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
576 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
577 return SWIOTLB_MAP_ERROR;
578found:
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
580
581 /*
582 * Save away the mapping from the original address to the DMA address.
583 * This is needed when we sync the memory. Then we sync the buffer if
584 * needed.
585 */
586 for (i = 0; i < nslots; i++)
587 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
588 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
589 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
590 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
591
592 return tlb_addr;
593}
594
595/*
596 * Allocates bounce buffer and returns its kernel virtual address.
597 */
598
599static phys_addr_t
600map_single(struct device *hwdev, phys_addr_t phys, size_t size,
601 enum dma_data_direction dir, unsigned long attrs)
602{
603 dma_addr_t start_dma_addr;
604
605 if (swiotlb_force == SWIOTLB_NO_FORCE) {
606 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
607 &phys);
608 return SWIOTLB_MAP_ERROR;
609 }
610
611 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
612 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
613 dir, attrs);
614}
615
616/*
617 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
618 */
619void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
620 size_t size, enum dma_data_direction dir,
621 unsigned long attrs)
622{
623 unsigned long flags;
624 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
625 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
626 phys_addr_t orig_addr = io_tlb_orig_addr[index];
627
628 /*
629 * First, sync the memory before unmapping the entry
630 */
631 if (orig_addr != INVALID_PHYS_ADDR &&
632 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
633 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
634 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
635
636 /*
637 * Return the buffer to the free list by setting the corresponding
638 * entries to indicate the number of contiguous entries available.
639 * While returning the entries to the free list, we merge the entries
640 * with slots below and above the pool being returned.
641 */
642 spin_lock_irqsave(&io_tlb_lock, flags);
643 {
644 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
645 io_tlb_list[index + nslots] : 0);
646 /*
647 * Step 1: return the slots to the free list, merging the
648 * slots with superceeding slots
649 */
650 for (i = index + nslots - 1; i >= index; i--) {
651 io_tlb_list[i] = ++count;
652 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
653 }
654 /*
655 * Step 2: merge the returned slots with the preceding slots,
656 * if available (non zero)
657 */
658 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
659 io_tlb_list[i] = ++count;
660 }
661 spin_unlock_irqrestore(&io_tlb_lock, flags);
662}
663
664void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
665 size_t size, enum dma_data_direction dir,
666 enum dma_sync_target target)
667{
668 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
669 phys_addr_t orig_addr = io_tlb_orig_addr[index];
670
671 if (orig_addr == INVALID_PHYS_ADDR)
672 return;
673 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
674
675 switch (target) {
676 case SYNC_FOR_CPU:
677 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
678 swiotlb_bounce(orig_addr, tlb_addr,
679 size, DMA_FROM_DEVICE);
680 else
681 BUG_ON(dir != DMA_TO_DEVICE);
682 break;
683 case SYNC_FOR_DEVICE:
684 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
685 swiotlb_bounce(orig_addr, tlb_addr,
686 size, DMA_TO_DEVICE);
687 else
688 BUG_ON(dir != DMA_FROM_DEVICE);
689 break;
690 default:
691 BUG();
692 }
693}
694
695#ifdef CONFIG_DMA_DIRECT_OPS
696static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
697 size_t size)
698{
699 u64 mask = DMA_BIT_MASK(32);
700
701 if (dev && dev->coherent_dma_mask)
702 mask = dev->coherent_dma_mask;
703 return addr + size - 1 <= mask;
704}
705
706static void *
707swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
708 unsigned long attrs)
709{
710 phys_addr_t phys_addr;
711
712 if (swiotlb_force == SWIOTLB_NO_FORCE)
713 goto out_warn;
714
715 phys_addr = swiotlb_tbl_map_single(dev,
716 __phys_to_dma(dev, io_tlb_start),
717 0, size, DMA_FROM_DEVICE, attrs);
718 if (phys_addr == SWIOTLB_MAP_ERROR)
719 goto out_warn;
720
721 *dma_handle = __phys_to_dma(dev, phys_addr);
722 if (!dma_coherent_ok(dev, *dma_handle, size))
723 goto out_unmap;
724
725 memset(phys_to_virt(phys_addr), 0, size);
726 return phys_to_virt(phys_addr);
727
728out_unmap:
729 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
730 (unsigned long long)(dev ? dev->coherent_dma_mask : 0),
731 (unsigned long long)*dma_handle);
732
733 /*
734 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
735 * DMA_ATTR_SKIP_CPU_SYNC is optional.
736 */
737 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
738 DMA_ATTR_SKIP_CPU_SYNC);
739out_warn:
740 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
741 dev_warn(dev,
742 "swiotlb: coherent allocation failed, size=%zu\n",
743 size);
744 dump_stack();
745 }
746 return NULL;
747}
748
749static bool swiotlb_free_buffer(struct device *dev, size_t size,
750 dma_addr_t dma_addr)
751{
752 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
753
754 WARN_ON_ONCE(irqs_disabled());
755
756 if (!is_swiotlb_buffer(phys_addr))
757 return false;
758
759 /*
760 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
761 * DMA_ATTR_SKIP_CPU_SYNC is optional.
762 */
763 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
764 DMA_ATTR_SKIP_CPU_SYNC);
765 return true;
766}
767#endif
768
769static void
770swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
771 int do_panic)
772{
773 if (swiotlb_force == SWIOTLB_NO_FORCE)
774 return;
775
776 /*
777 * Ran out of IOMMU space for this operation. This is very bad.
778 * Unfortunately the drivers cannot handle this operation properly.
779 * unless they check for dma_mapping_error (most don't)
780 * When the mapping is small enough return a static buffer to limit
781 * the damage, or panic when the transfer is too big.
782 */
783 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
784 size);
785
786 if (size <= io_tlb_overflow || !do_panic)
787 return;
788
789 if (dir == DMA_BIDIRECTIONAL)
790 panic("DMA: Random memory could be DMA accessed\n");
791 if (dir == DMA_FROM_DEVICE)
792 panic("DMA: Random memory could be DMA written\n");
793 if (dir == DMA_TO_DEVICE)
794 panic("DMA: Random memory could be DMA read\n");
795}
796
797/*
798 * Map a single buffer of the indicated size for DMA in streaming mode. The
799 * physical address to use is returned.
800 *
801 * Once the device is given the dma address, the device owns this memory until
802 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
803 */
804dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
805 unsigned long offset, size_t size,
806 enum dma_data_direction dir,
807 unsigned long attrs)
808{
809 phys_addr_t map, phys = page_to_phys(page) + offset;
810 dma_addr_t dev_addr = phys_to_dma(dev, phys);
811
812 BUG_ON(dir == DMA_NONE);
813 /*
814 * If the address happens to be in the device's DMA window,
815 * we can safely return the device addr and not worry about bounce
816 * buffering it.
817 */
818 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
819 return dev_addr;
820
821 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
822
823 /* Oh well, have to allocate and map a bounce buffer. */
824 map = map_single(dev, phys, size, dir, attrs);
825 if (map == SWIOTLB_MAP_ERROR) {
826 swiotlb_full(dev, size, dir, 1);
827 return __phys_to_dma(dev, io_tlb_overflow_buffer);
828 }
829
830 dev_addr = __phys_to_dma(dev, map);
831
832 /* Ensure that the address returned is DMA'ble */
833 if (dma_capable(dev, dev_addr, size))
834 return dev_addr;
835
836 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
837 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
838
839 return __phys_to_dma(dev, io_tlb_overflow_buffer);
840}
841
842/*
843 * Unmap a single streaming mode DMA translation. The dma_addr and size must
844 * match what was provided for in a previous swiotlb_map_page call. All
845 * other usages are undefined.
846 *
847 * After this call, reads by the cpu to the buffer are guaranteed to see
848 * whatever the device wrote there.
849 */
850static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
851 size_t size, enum dma_data_direction dir,
852 unsigned long attrs)
853{
854 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
855
856 BUG_ON(dir == DMA_NONE);
857
858 if (is_swiotlb_buffer(paddr)) {
859 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
860 return;
861 }
862
863 if (dir != DMA_FROM_DEVICE)
864 return;
865
866 /*
867 * phys_to_virt doesn't work with hihgmem page but we could
868 * call dma_mark_clean() with hihgmem page here. However, we
869 * are fine since dma_mark_clean() is null on POWERPC. We can
870 * make dma_mark_clean() take a physical address if necessary.
871 */
872 dma_mark_clean(phys_to_virt(paddr), size);
873}
874
875void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
876 size_t size, enum dma_data_direction dir,
877 unsigned long attrs)
878{
879 unmap_single(hwdev, dev_addr, size, dir, attrs);
880}
881
882/*
883 * Make physical memory consistent for a single streaming mode DMA translation
884 * after a transfer.
885 *
886 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
887 * using the cpu, yet do not wish to teardown the dma mapping, you must
888 * call this function before doing so. At the next point you give the dma
889 * address back to the card, you must first perform a
890 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
891 */
892static void
893swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
894 size_t size, enum dma_data_direction dir,
895 enum dma_sync_target target)
896{
897 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
898
899 BUG_ON(dir == DMA_NONE);
900
901 if (is_swiotlb_buffer(paddr)) {
902 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
903 return;
904 }
905
906 if (dir != DMA_FROM_DEVICE)
907 return;
908
909 dma_mark_clean(phys_to_virt(paddr), size);
910}
911
912void
913swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
914 size_t size, enum dma_data_direction dir)
915{
916 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
917}
918
919void
920swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
921 size_t size, enum dma_data_direction dir)
922{
923 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
924}
925
926/*
927 * Map a set of buffers described by scatterlist in streaming mode for DMA.
928 * This is the scatter-gather version of the above swiotlb_map_page
929 * interface. Here the scatter gather list elements are each tagged with the
930 * appropriate dma address and length. They are obtained via
931 * sg_dma_{address,length}(SG).
932 *
933 * NOTE: An implementation may be able to use a smaller number of
934 * DMA address/length pairs than there are SG table elements.
935 * (for example via virtual mapping capabilities)
936 * The routine returns the number of addr/length pairs actually
937 * used, at most nents.
938 *
939 * Device ownership issues as mentioned above for swiotlb_map_page are the
940 * same here.
941 */
942int
943swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
944 enum dma_data_direction dir, unsigned long attrs)
945{
946 struct scatterlist *sg;
947 int i;
948
949 BUG_ON(dir == DMA_NONE);
950
951 for_each_sg(sgl, sg, nelems, i) {
952 phys_addr_t paddr = sg_phys(sg);
953 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
954
955 if (swiotlb_force == SWIOTLB_FORCE ||
956 !dma_capable(hwdev, dev_addr, sg->length)) {
957 phys_addr_t map = map_single(hwdev, sg_phys(sg),
958 sg->length, dir, attrs);
959 if (map == SWIOTLB_MAP_ERROR) {
960 /* Don't panic here, we expect map_sg users
961 to do proper error handling. */
962 swiotlb_full(hwdev, sg->length, dir, 0);
963 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
964 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
965 attrs);
966 sg_dma_len(sgl) = 0;
967 return 0;
968 }
969 sg->dma_address = __phys_to_dma(hwdev, map);
970 } else
971 sg->dma_address = dev_addr;
972 sg_dma_len(sg) = sg->length;
973 }
974 return nelems;
975}
976
977/*
978 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
979 * concerning calls here are the same as for swiotlb_unmap_page() above.
980 */
981void
982swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
983 int nelems, enum dma_data_direction dir,
984 unsigned long attrs)
985{
986 struct scatterlist *sg;
987 int i;
988
989 BUG_ON(dir == DMA_NONE);
990
991 for_each_sg(sgl, sg, nelems, i)
992 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
993 attrs);
994}
995
996/*
997 * Make physical memory consistent for a set of streaming mode DMA translations
998 * after a transfer.
999 *
1000 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1001 * and usage.
1002 */
1003static void
1004swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1005 int nelems, enum dma_data_direction dir,
1006 enum dma_sync_target target)
1007{
1008 struct scatterlist *sg;
1009 int i;
1010
1011 for_each_sg(sgl, sg, nelems, i)
1012 swiotlb_sync_single(hwdev, sg->dma_address,
1013 sg_dma_len(sg), dir, target);
1014}
1015
1016void
1017swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1018 int nelems, enum dma_data_direction dir)
1019{
1020 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1021}
1022
1023void
1024swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1025 int nelems, enum dma_data_direction dir)
1026{
1027 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1028}
1029
1030int
1031swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1032{
1033 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1034}
1035
1036/*
1037 * Return whether the given device DMA address mask can be supported
1038 * properly. For example, if your device can only drive the low 24-bits
1039 * during bus mastering, then you would pass 0x00ffffff as the mask to
1040 * this function.
1041 */
1042int
1043swiotlb_dma_supported(struct device *hwdev, u64 mask)
1044{
1045 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1046}
1047
1048#ifdef CONFIG_DMA_DIRECT_OPS
1049void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1050 gfp_t gfp, unsigned long attrs)
1051{
1052 void *vaddr;
1053
1054 /* temporary workaround: */
1055 if (gfp & __GFP_NOWARN)
1056 attrs |= DMA_ATTR_NO_WARN;
1057
1058 /*
1059 * Don't print a warning when the first allocation attempt fails.
1060 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1061 * allocation ultimately failed.
1062 */
1063 gfp |= __GFP_NOWARN;
1064
1065 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1066 if (!vaddr)
1067 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1068 return vaddr;
1069}
1070
1071void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1072 dma_addr_t dma_addr, unsigned long attrs)
1073{
1074 if (!swiotlb_free_buffer(dev, size, dma_addr))
1075 dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1076}
1077
1078const struct dma_map_ops swiotlb_dma_ops = {
1079 .mapping_error = swiotlb_dma_mapping_error,
1080 .alloc = swiotlb_alloc,
1081 .free = swiotlb_free,
1082 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
1083 .sync_single_for_device = swiotlb_sync_single_for_device,
1084 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
1085 .sync_sg_for_device = swiotlb_sync_sg_for_device,
1086 .map_sg = swiotlb_map_sg_attrs,
1087 .unmap_sg = swiotlb_unmap_sg_attrs,
1088 .map_page = swiotlb_map_page,
1089 .unmap_page = swiotlb_unmap_page,
1090 .dma_supported = dma_direct_supported,
1091};
1092#endif /* CONFIG_DMA_DIRECT_OPS */