Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define CREATE_TRACE_POINTS
 42#include <trace/events/swiotlb.h>
 43
 44#define OFFSET(val,align) ((unsigned long)	\
 45	                   ( (val) & ( (align) - 1)))
 46
 47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 48
 49/*
 50 * Minimum IO TLB size to bother booting with.  Systems with mainly
 51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 52 * allocate a contiguous 1MB, we're probably in trouble anyway.
 53 */
 54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 55
 56int swiotlb_force;
 57
 58/*
 59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 61 * API.
 62 */
 63static phys_addr_t io_tlb_start, io_tlb_end;
 64
 65/*
 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 68 */
 69static unsigned long io_tlb_nslabs;
 70
 71/*
 72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 73 */
 74static unsigned long io_tlb_overflow = 32*1024;
 75
 76static phys_addr_t io_tlb_overflow_buffer;
 77
 78/*
 79 * This is a free list describing the number of free entries available from
 80 * each index
 81 */
 82static unsigned int *io_tlb_list;
 83static unsigned int io_tlb_index;
 84
 85/*
 86 * We need to save away the original address corresponding to a mapped entry
 87 * for the sync operations.
 88 */
 89static phys_addr_t *io_tlb_orig_addr;
 90
 91/*
 92 * Protect the above data structures in the map and unmap calls
 93 */
 94static DEFINE_SPINLOCK(io_tlb_lock);
 95
 96static int late_alloc;
 97
 98static int __init
 99setup_io_tlb_npages(char *str)
100{
101	if (isdigit(*str)) {
102		io_tlb_nslabs = simple_strtoul(str, &str, 0);
103		/* avoid tail segment of size < IO_TLB_SEGSIZE */
104		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105	}
106	if (*str == ',')
107		++str;
108	if (!strcmp(str, "force"))
109		swiotlb_force = 1;
110
111	return 0;
112}
113early_param("swiotlb", setup_io_tlb_npages);
114/* make io_tlb_overflow tunable too? */
115
116unsigned long swiotlb_nr_tbl(void)
117{
118	return io_tlb_nslabs;
119}
120EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
121
122/* default to 64MB */
123#define IO_TLB_DEFAULT_SIZE (64UL<<20)
124unsigned long swiotlb_size_or_default(void)
125{
126	unsigned long size;
127
128	size = io_tlb_nslabs << IO_TLB_SHIFT;
129
130	return size ? size : (IO_TLB_DEFAULT_SIZE);
131}
132
133/* Note that this doesn't work with highmem page */
134static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135				      volatile void *address)
136{
137	return phys_to_dma(hwdev, virt_to_phys(address));
138}
139
140static bool no_iotlb_memory;
141
142void swiotlb_print_info(void)
143{
144	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145	unsigned char *vstart, *vend;
146
147	if (no_iotlb_memory) {
148		pr_warn("software IO TLB: No low mem\n");
149		return;
150	}
151
152	vstart = phys_to_virt(io_tlb_start);
153	vend = phys_to_virt(io_tlb_end);
154
155	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156	       (unsigned long long)io_tlb_start,
157	       (unsigned long long)io_tlb_end,
158	       bytes >> 20, vstart, vend - 1);
159}
160
161int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
162{
163	void *v_overflow_buffer;
164	unsigned long i, bytes;
165
166	bytes = nslabs << IO_TLB_SHIFT;
167
168	io_tlb_nslabs = nslabs;
169	io_tlb_start = __pa(tlb);
170	io_tlb_end = io_tlb_start + bytes;
171
172	/*
173	 * Get the overflow emergency buffer
174	 */
175	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
176						PAGE_ALIGN(io_tlb_overflow),
177						PAGE_SIZE);
178	if (!v_overflow_buffer)
179		return -ENOMEM;
180
181	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182
183	/*
184	 * Allocate and initialize the free list array.  This array is used
185	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186	 * between io_tlb_start and io_tlb_end.
187	 */
188	io_tlb_list = memblock_virt_alloc(
189				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
190				PAGE_SIZE);
191	for (i = 0; i < io_tlb_nslabs; i++)
192 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
193	io_tlb_index = 0;
194	io_tlb_orig_addr = memblock_virt_alloc(
195				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196				PAGE_SIZE);
197
 
 
 
 
 
 
198	if (verbose)
199		swiotlb_print_info();
200
201	return 0;
202}
203
204/*
205 * Statically reserve bounce buffer space and initialize bounce buffer data
206 * structures for the software IO TLB used to implement the DMA API.
207 */
208void  __init
209swiotlb_init(int verbose)
210{
211	size_t default_size = IO_TLB_DEFAULT_SIZE;
212	unsigned char *vstart;
213	unsigned long bytes;
214
215	if (!io_tlb_nslabs) {
216		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
217		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
218	}
219
220	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
221
222	/* Get IO TLB memory from the low pages */
223	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
224	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
225		return;
 
 
226
227	if (io_tlb_start)
228		memblock_free_early(io_tlb_start,
229				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
230	pr_warn("Cannot allocate SWIOTLB buffer");
231	no_iotlb_memory = true;
 
 
232}
233
234/*
235 * Systems with larger DMA zones (those that don't support ISA) can
236 * initialize the swiotlb later using the slab allocator if needed.
237 * This should be just like above, but with some error catching.
238 */
239int
240swiotlb_late_init_with_default_size(size_t default_size)
241{
242	unsigned long bytes, req_nslabs = io_tlb_nslabs;
243	unsigned char *vstart = NULL;
244	unsigned int order;
245	int rc = 0;
246
247	if (!io_tlb_nslabs) {
248		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
250	}
251
252	/*
253	 * Get IO TLB memory from the low pages
254	 */
255	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
256	io_tlb_nslabs = SLABS_PER_PAGE << order;
257	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
261						  order);
262		if (vstart)
263			break;
264		order--;
265	}
266
267	if (!vstart) {
268		io_tlb_nslabs = req_nslabs;
269		return -ENOMEM;
270	}
271	if (order != get_order(bytes)) {
272		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
273		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
274		io_tlb_nslabs = SLABS_PER_PAGE << order;
 
275	}
276	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
277	if (rc)
278		free_pages((unsigned long)vstart, order);
279	return rc;
280}
281
282int
283swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
284{
285	unsigned long i, bytes;
286	unsigned char *v_overflow_buffer;
287
288	bytes = nslabs << IO_TLB_SHIFT;
289
290	io_tlb_nslabs = nslabs;
291	io_tlb_start = virt_to_phys(tlb);
292	io_tlb_end = io_tlb_start + bytes;
293
294	memset(tlb, 0, bytes);
295
296	/*
297	 * Get the overflow emergency buffer
298	 */
299	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
300						     get_order(io_tlb_overflow));
301	if (!v_overflow_buffer)
302		goto cleanup2;
303
304	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
305
306	/*
307	 * Allocate and initialize the free list array.  This array is used
308	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309	 * between io_tlb_start and io_tlb_end.
310	 */
311	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
312	                              get_order(io_tlb_nslabs * sizeof(int)));
313	if (!io_tlb_list)
314		goto cleanup3;
315
316	for (i = 0; i < io_tlb_nslabs; i++)
317 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
318	io_tlb_index = 0;
319
320	io_tlb_orig_addr = (phys_addr_t *)
321		__get_free_pages(GFP_KERNEL,
322				 get_order(io_tlb_nslabs *
323					   sizeof(phys_addr_t)));
324	if (!io_tlb_orig_addr)
325		goto cleanup4;
326
327	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
328
 
 
 
 
 
 
 
 
329	swiotlb_print_info();
330
331	late_alloc = 1;
332
333	return 0;
334
335cleanup4:
 
 
 
 
336	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
337	                                                 sizeof(int)));
338	io_tlb_list = NULL;
339cleanup3:
340	free_pages((unsigned long)v_overflow_buffer,
341		   get_order(io_tlb_overflow));
342	io_tlb_overflow_buffer = 0;
343cleanup2:
344	io_tlb_end = 0;
345	io_tlb_start = 0;
346	io_tlb_nslabs = 0;
 
 
347	return -ENOMEM;
348}
349
350void __init swiotlb_free(void)
351{
352	if (!io_tlb_orig_addr)
353		return;
354
355	if (late_alloc) {
356		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
357			   get_order(io_tlb_overflow));
358		free_pages((unsigned long)io_tlb_orig_addr,
359			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
360		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
361								 sizeof(int)));
362		free_pages((unsigned long)phys_to_virt(io_tlb_start),
363			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
364	} else {
365		memblock_free_late(io_tlb_overflow_buffer,
366				   PAGE_ALIGN(io_tlb_overflow));
367		memblock_free_late(__pa(io_tlb_orig_addr),
368				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
369		memblock_free_late(__pa(io_tlb_list),
370				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
371		memblock_free_late(io_tlb_start,
372				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
373	}
374	io_tlb_nslabs = 0;
375}
376
377static int is_swiotlb_buffer(phys_addr_t paddr)
378{
379	return paddr >= io_tlb_start && paddr < io_tlb_end;
 
380}
381
382/*
383 * Bounce: copy the swiotlb buffer back to the original dma location
384 */
385static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
386			   size_t size, enum dma_data_direction dir)
387{
388	unsigned long pfn = PFN_DOWN(orig_addr);
389	unsigned char *vaddr = phys_to_virt(tlb_addr);
390
391	if (PageHighMem(pfn_to_page(pfn))) {
392		/* The buffer does not have a mapping.  Map it in and copy */
393		unsigned int offset = orig_addr & ~PAGE_MASK;
394		char *buffer;
395		unsigned int sz = 0;
396		unsigned long flags;
397
398		while (size) {
399			sz = min_t(size_t, PAGE_SIZE - offset, size);
400
401			local_irq_save(flags);
402			buffer = kmap_atomic(pfn_to_page(pfn));
403			if (dir == DMA_TO_DEVICE)
404				memcpy(vaddr, buffer + offset, sz);
405			else
406				memcpy(buffer + offset, vaddr, sz);
407			kunmap_atomic(buffer);
408			local_irq_restore(flags);
409
410			size -= sz;
411			pfn++;
412			vaddr += sz;
413			offset = 0;
414		}
415	} else if (dir == DMA_TO_DEVICE) {
416		memcpy(vaddr, phys_to_virt(orig_addr), size);
417	} else {
418		memcpy(phys_to_virt(orig_addr), vaddr, size);
 
 
 
419	}
420}
 
421
422phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
423				   dma_addr_t tbl_dma_addr,
424				   phys_addr_t orig_addr, size_t size,
425				   enum dma_data_direction dir)
426{
427	unsigned long flags;
428	phys_addr_t tlb_addr;
429	unsigned int nslots, stride, index, wrap;
430	int i;
431	unsigned long mask;
432	unsigned long offset_slots;
433	unsigned long max_slots;
434
435	if (no_iotlb_memory)
436		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
437
438	mask = dma_get_seg_boundary(hwdev);
439
440	tbl_dma_addr &= mask;
441
442	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
443
444	/*
445 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
446 	 */
447	max_slots = mask + 1
448		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
449		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450
451	/*
452	 * For mappings greater than a page, we limit the stride (and
453	 * hence alignment) to a page size.
454	 */
455	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
456	if (size > PAGE_SIZE)
457		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
458	else
459		stride = 1;
460
461	BUG_ON(!nslots);
462
463	/*
464	 * Find suitable number of IO TLB entries size that will fit this
465	 * request and allocate a buffer from that IO TLB pool.
466	 */
467	spin_lock_irqsave(&io_tlb_lock, flags);
468	index = ALIGN(io_tlb_index, stride);
469	if (index >= io_tlb_nslabs)
470		index = 0;
471	wrap = index;
472
473	do {
474		while (iommu_is_span_boundary(index, nslots, offset_slots,
475					      max_slots)) {
476			index += stride;
477			if (index >= io_tlb_nslabs)
478				index = 0;
479			if (index == wrap)
480				goto not_found;
481		}
482
483		/*
484		 * If we find a slot that indicates we have 'nslots' number of
485		 * contiguous buffers, we allocate the buffers from that slot
486		 * and mark the entries as '0' indicating unavailable.
487		 */
488		if (io_tlb_list[index] >= nslots) {
489			int count = 0;
490
491			for (i = index; i < (int) (index + nslots); i++)
492				io_tlb_list[i] = 0;
493			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
494				io_tlb_list[i] = ++count;
495			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
496
497			/*
498			 * Update the indices to avoid searching in the next
499			 * round.
500			 */
501			io_tlb_index = ((index + nslots) < io_tlb_nslabs
502					? (index + nslots) : 0);
503
504			goto found;
505		}
506		index += stride;
507		if (index >= io_tlb_nslabs)
508			index = 0;
509	} while (index != wrap);
510
511not_found:
512	spin_unlock_irqrestore(&io_tlb_lock, flags);
513	if (printk_ratelimit())
514		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
515	return SWIOTLB_MAP_ERROR;
516found:
517	spin_unlock_irqrestore(&io_tlb_lock, flags);
518
519	/*
520	 * Save away the mapping from the original address to the DMA address.
521	 * This is needed when we sync the memory.  Then we sync the buffer if
522	 * needed.
523	 */
524	for (i = 0; i < nslots; i++)
525		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
526	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
527		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
528
529	return tlb_addr;
530}
531EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
532
533/*
534 * Allocates bounce buffer and returns its kernel virtual address.
535 */
536
537phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
538		       enum dma_data_direction dir)
 
539{
540	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
541
542	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
543}
544
545/*
546 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
547 */
548void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
549			      size_t size, enum dma_data_direction dir)
 
550{
551	unsigned long flags;
552	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
553	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
554	phys_addr_t orig_addr = io_tlb_orig_addr[index];
555
556	/*
557	 * First, sync the memory before unmapping the entry
558	 */
559	if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
560		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
561
562	/*
563	 * Return the buffer to the free list by setting the corresponding
564	 * entries to indicate the number of contiguous entries available.
565	 * While returning the entries to the free list, we merge the entries
566	 * with slots below and above the pool being returned.
567	 */
568	spin_lock_irqsave(&io_tlb_lock, flags);
569	{
570		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
571			 io_tlb_list[index + nslots] : 0);
572		/*
573		 * Step 1: return the slots to the free list, merging the
574		 * slots with superceeding slots
575		 */
576		for (i = index + nslots - 1; i >= index; i--)
577			io_tlb_list[i] = ++count;
578		/*
579		 * Step 2: merge the returned slots with the preceding slots,
580		 * if available (non zero)
581		 */
582		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
583			io_tlb_list[i] = ++count;
584	}
585	spin_unlock_irqrestore(&io_tlb_lock, flags);
586}
587EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
588
589void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
590			     size_t size, enum dma_data_direction dir,
591			     enum dma_sync_target target)
 
592{
593	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
594	phys_addr_t orig_addr = io_tlb_orig_addr[index];
595
596	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
597
598	switch (target) {
599	case SYNC_FOR_CPU:
600		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
601			swiotlb_bounce(orig_addr, tlb_addr,
602				       size, DMA_FROM_DEVICE);
603		else
604			BUG_ON(dir != DMA_TO_DEVICE);
605		break;
606	case SYNC_FOR_DEVICE:
607		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
608			swiotlb_bounce(orig_addr, tlb_addr,
609				       size, DMA_TO_DEVICE);
610		else
611			BUG_ON(dir != DMA_FROM_DEVICE);
612		break;
613	default:
614		BUG();
615	}
616}
617EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
618
619void *
620swiotlb_alloc_coherent(struct device *hwdev, size_t size,
621		       dma_addr_t *dma_handle, gfp_t flags)
622{
623	dma_addr_t dev_addr;
624	void *ret;
625	int order = get_order(size);
626	u64 dma_mask = DMA_BIT_MASK(32);
627
628	if (hwdev && hwdev->coherent_dma_mask)
629		dma_mask = hwdev->coherent_dma_mask;
630
631	ret = (void *)__get_free_pages(flags, order);
632	if (ret) {
633		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
634		if (dev_addr + size - 1 > dma_mask) {
635			/*
636			 * The allocated memory isn't reachable by the device.
637			 */
638			free_pages((unsigned long) ret, order);
639			ret = NULL;
640		}
641	}
642	if (!ret) {
643		/*
644		 * We are either out of memory or the device can't DMA to
645		 * GFP_DMA memory; fall back on map_single(), which
646		 * will grab memory from the lowest available address range.
647		 */
648		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
649		if (paddr == SWIOTLB_MAP_ERROR)
650			return NULL;
651
652		ret = phys_to_virt(paddr);
653		dev_addr = phys_to_dma(hwdev, paddr);
654
655		/* Confirm address can be DMA'd by device */
656		if (dev_addr + size - 1 > dma_mask) {
657			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658			       (unsigned long long)dma_mask,
659			       (unsigned long long)dev_addr);
660
661			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
662			swiotlb_tbl_unmap_single(hwdev, paddr,
663						 size, DMA_TO_DEVICE);
664			return NULL;
665		}
666	}
667
668	*dma_handle = dev_addr;
669	memset(ret, 0, size);
 
670
 
 
 
 
 
 
 
 
 
 
 
671	return ret;
672}
673EXPORT_SYMBOL(swiotlb_alloc_coherent);
674
675void
676swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
677		      dma_addr_t dev_addr)
678{
679	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
680
681	WARN_ON(irqs_disabled());
682	if (!is_swiotlb_buffer(paddr))
683		free_pages((unsigned long)vaddr, get_order(size));
684	else
685		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
687}
688EXPORT_SYMBOL(swiotlb_free_coherent);
689
690static void
691swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
692	     int do_panic)
693{
694	/*
695	 * Ran out of IOMMU space for this operation. This is very bad.
696	 * Unfortunately the drivers cannot handle this operation properly.
697	 * unless they check for dma_mapping_error (most don't)
698	 * When the mapping is small enough return a static buffer to limit
699	 * the damage, or panic when the transfer is too big.
700	 */
701	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
702	       "device %s\n", size, dev ? dev_name(dev) : "?");
703
704	if (size <= io_tlb_overflow || !do_panic)
705		return;
706
707	if (dir == DMA_BIDIRECTIONAL)
708		panic("DMA: Random memory could be DMA accessed\n");
709	if (dir == DMA_FROM_DEVICE)
710		panic("DMA: Random memory could be DMA written\n");
711	if (dir == DMA_TO_DEVICE)
712		panic("DMA: Random memory could be DMA read\n");
713}
714
715/*
716 * Map a single buffer of the indicated size for DMA in streaming mode.  The
717 * physical address to use is returned.
718 *
719 * Once the device is given the dma address, the device owns this memory until
720 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
721 */
722dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
723			    unsigned long offset, size_t size,
724			    enum dma_data_direction dir,
725			    struct dma_attrs *attrs)
726{
727	phys_addr_t map, phys = page_to_phys(page) + offset;
728	dma_addr_t dev_addr = phys_to_dma(dev, phys);
 
729
730	BUG_ON(dir == DMA_NONE);
731	/*
732	 * If the address happens to be in the device's DMA window,
733	 * we can safely return the device addr and not worry about bounce
734	 * buffering it.
735	 */
736	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
737		return dev_addr;
738
739	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
740
741	/* Oh well, have to allocate and map a bounce buffer. */
742	map = map_single(dev, phys, size, dir);
743	if (map == SWIOTLB_MAP_ERROR) {
744		swiotlb_full(dev, size, dir, 1);
745		return phys_to_dma(dev, io_tlb_overflow_buffer);
746	}
747
748	dev_addr = phys_to_dma(dev, map);
749
750	/* Ensure that the address returned is DMA'ble */
 
 
751	if (!dma_capable(dev, dev_addr, size)) {
752		swiotlb_tbl_unmap_single(dev, map, size, dir);
753		return phys_to_dma(dev, io_tlb_overflow_buffer);
754	}
755
756	return dev_addr;
757}
758EXPORT_SYMBOL_GPL(swiotlb_map_page);
759
760/*
761 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
762 * match what was provided for in a previous swiotlb_map_page call.  All
763 * other usages are undefined.
764 *
765 * After this call, reads by the cpu to the buffer are guaranteed to see
766 * whatever the device wrote there.
767 */
768static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
769			 size_t size, enum dma_data_direction dir)
770{
771	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
772
773	BUG_ON(dir == DMA_NONE);
774
775	if (is_swiotlb_buffer(paddr)) {
776		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
777		return;
778	}
779
780	if (dir != DMA_FROM_DEVICE)
781		return;
782
783	/*
784	 * phys_to_virt doesn't work with hihgmem page but we could
785	 * call dma_mark_clean() with hihgmem page here. However, we
786	 * are fine since dma_mark_clean() is null on POWERPC. We can
787	 * make dma_mark_clean() take a physical address if necessary.
788	 */
789	dma_mark_clean(phys_to_virt(paddr), size);
790}
791
792void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
793			size_t size, enum dma_data_direction dir,
794			struct dma_attrs *attrs)
795{
796	unmap_single(hwdev, dev_addr, size, dir);
797}
798EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
799
800/*
801 * Make physical memory consistent for a single streaming mode DMA translation
802 * after a transfer.
803 *
804 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 * using the cpu, yet do not wish to teardown the dma mapping, you must
806 * call this function before doing so.  At the next point you give the dma
807 * address back to the card, you must first perform a
808 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
809 */
810static void
811swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
812		    size_t size, enum dma_data_direction dir,
813		    enum dma_sync_target target)
814{
815	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
816
817	BUG_ON(dir == DMA_NONE);
818
819	if (is_swiotlb_buffer(paddr)) {
820		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 
821		return;
822	}
823
824	if (dir != DMA_FROM_DEVICE)
825		return;
826
827	dma_mark_clean(phys_to_virt(paddr), size);
828}
829
830void
831swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
832			    size_t size, enum dma_data_direction dir)
833{
834	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
835}
836EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
837
838void
839swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
840			       size_t size, enum dma_data_direction dir)
841{
842	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
843}
844EXPORT_SYMBOL(swiotlb_sync_single_for_device);
845
846/*
847 * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 * This is the scatter-gather version of the above swiotlb_map_page
849 * interface.  Here the scatter gather list elements are each tagged with the
850 * appropriate dma address and length.  They are obtained via
851 * sg_dma_{address,length}(SG).
852 *
853 * NOTE: An implementation may be able to use a smaller number of
854 *       DMA address/length pairs than there are SG table elements.
855 *       (for example via virtual mapping capabilities)
856 *       The routine returns the number of addr/length pairs actually
857 *       used, at most nents.
858 *
859 * Device ownership issues as mentioned above for swiotlb_map_page are the
860 * same here.
861 */
862int
863swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
864		     enum dma_data_direction dir, struct dma_attrs *attrs)
865{
866	struct scatterlist *sg;
867	int i;
868
869	BUG_ON(dir == DMA_NONE);
870
871	for_each_sg(sgl, sg, nelems, i) {
872		phys_addr_t paddr = sg_phys(sg);
873		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
874
875		if (swiotlb_force ||
876		    !dma_capable(hwdev, dev_addr, sg->length)) {
877			phys_addr_t map = map_single(hwdev, sg_phys(sg),
878						     sg->length, dir);
879			if (map == SWIOTLB_MAP_ERROR) {
880				/* Don't panic here, we expect map_sg users
881				   to do proper error handling. */
882				swiotlb_full(hwdev, sg->length, dir, 0);
883				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
884						       attrs);
885				sg_dma_len(sgl) = 0;
886				return 0;
887			}
888			sg->dma_address = phys_to_dma(hwdev, map);
889		} else
890			sg->dma_address = dev_addr;
891		sg_dma_len(sg) = sg->length;
892	}
893	return nelems;
894}
895EXPORT_SYMBOL(swiotlb_map_sg_attrs);
896
897int
898swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
899	       enum dma_data_direction dir)
900{
901	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
902}
903EXPORT_SYMBOL(swiotlb_map_sg);
904
905/*
906 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
907 * concerning calls here are the same as for swiotlb_unmap_page() above.
908 */
909void
910swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
911		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
912{
913	struct scatterlist *sg;
914	int i;
915
916	BUG_ON(dir == DMA_NONE);
917
918	for_each_sg(sgl, sg, nelems, i)
919		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
920
921}
922EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
923
924void
925swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
926		 enum dma_data_direction dir)
927{
928	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
929}
930EXPORT_SYMBOL(swiotlb_unmap_sg);
931
932/*
933 * Make physical memory consistent for a set of streaming mode DMA translations
934 * after a transfer.
935 *
936 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
937 * and usage.
938 */
939static void
940swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
941		int nelems, enum dma_data_direction dir,
942		enum dma_sync_target target)
943{
944	struct scatterlist *sg;
945	int i;
946
947	for_each_sg(sgl, sg, nelems, i)
948		swiotlb_sync_single(hwdev, sg->dma_address,
949				    sg_dma_len(sg), dir, target);
950}
951
952void
953swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
954			int nelems, enum dma_data_direction dir)
955{
956	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
957}
958EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
959
960void
961swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
962			   int nelems, enum dma_data_direction dir)
963{
964	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
965}
966EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
967
968int
969swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
970{
971	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
972}
973EXPORT_SYMBOL(swiotlb_dma_mapping_error);
974
975/*
976 * Return whether the given device DMA address mask can be supported
977 * properly.  For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask to
979 * this function.
980 */
981int
982swiotlb_dma_supported(struct device *hwdev, u64 mask)
983{
984	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
985}
986EXPORT_SYMBOL(swiotlb_dma_supported);
v3.5.6
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 
 
 
 41#define OFFSET(val,align) ((unsigned long)	\
 42	                   ( (val) & ( (align) - 1)))
 43
 44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 45
 46/*
 47 * Minimum IO TLB size to bother booting with.  Systems with mainly
 48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 49 * allocate a contiguous 1MB, we're probably in trouble anyway.
 50 */
 51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 52
 53int swiotlb_force;
 54
 55/*
 56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 58 * API.
 59 */
 60static char *io_tlb_start, *io_tlb_end;
 61
 62/*
 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 64 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 65 */
 66static unsigned long io_tlb_nslabs;
 67
 68/*
 69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 70 */
 71static unsigned long io_tlb_overflow = 32*1024;
 72
 73static void *io_tlb_overflow_buffer;
 74
 75/*
 76 * This is a free list describing the number of free entries available from
 77 * each index
 78 */
 79static unsigned int *io_tlb_list;
 80static unsigned int io_tlb_index;
 81
 82/*
 83 * We need to save away the original address corresponding to a mapped entry
 84 * for the sync operations.
 85 */
 86static phys_addr_t *io_tlb_orig_addr;
 87
 88/*
 89 * Protect the above data structures in the map and unmap calls
 90 */
 91static DEFINE_SPINLOCK(io_tlb_lock);
 92
 93static int late_alloc;
 94
 95static int __init
 96setup_io_tlb_npages(char *str)
 97{
 98	if (isdigit(*str)) {
 99		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102	}
103	if (*str == ',')
104		++str;
105	if (!strcmp(str, "force"))
106		swiotlb_force = 1;
107
108	return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113unsigned long swiotlb_nr_tbl(void)
114{
115	return io_tlb_nslabs;
116}
117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 
 
 
 
 
 
 
 
 
 
 
 
118/* Note that this doesn't work with highmem page */
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120				      volatile void *address)
121{
122	return phys_to_dma(hwdev, virt_to_phys(address));
123}
124
 
 
125void swiotlb_print_info(void)
126{
127	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128	phys_addr_t pstart, pend;
129
130	pstart = virt_to_phys(io_tlb_start);
131	pend = virt_to_phys(io_tlb_end);
 
 
 
 
 
132
133	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
134	       (unsigned long long)pstart, (unsigned long long)pend - 1,
135	       bytes >> 20, io_tlb_start, io_tlb_end - 1);
 
136}
137
138void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
139{
 
140	unsigned long i, bytes;
141
142	bytes = nslabs << IO_TLB_SHIFT;
143
144	io_tlb_nslabs = nslabs;
145	io_tlb_start = tlb;
146	io_tlb_end = io_tlb_start + bytes;
147
148	/*
 
 
 
 
 
 
 
 
 
 
 
149	 * Allocate and initialize the free list array.  This array is used
150	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
151	 * between io_tlb_start and io_tlb_end.
152	 */
153	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 
 
154	for (i = 0; i < io_tlb_nslabs; i++)
155 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
156	io_tlb_index = 0;
157	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 
 
158
159	/*
160	 * Get the overflow emergency buffer
161	 */
162	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
163	if (!io_tlb_overflow_buffer)
164		panic("Cannot allocate SWIOTLB overflow buffer!\n");
165	if (verbose)
166		swiotlb_print_info();
 
 
167}
168
169/*
170 * Statically reserve bounce buffer space and initialize bounce buffer data
171 * structures for the software IO TLB used to implement the DMA API.
172 */
173void __init
174swiotlb_init_with_default_size(size_t default_size, int verbose)
175{
 
 
176	unsigned long bytes;
177
178	if (!io_tlb_nslabs) {
179		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
180		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
181	}
182
183	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
184
185	/*
186	 * Get IO TLB memory from the low pages
187	 */
188	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
189	if (!io_tlb_start)
190		panic("Cannot allocate SWIOTLB buffer");
191
192	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
193}
194
195void __init
196swiotlb_init(int verbose)
197{
198	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
199}
200
201/*
202 * Systems with larger DMA zones (those that don't support ISA) can
203 * initialize the swiotlb later using the slab allocator if needed.
204 * This should be just like above, but with some error catching.
205 */
206int
207swiotlb_late_init_with_default_size(size_t default_size)
208{
209	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
 
210	unsigned int order;
 
211
212	if (!io_tlb_nslabs) {
213		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
214		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
215	}
216
217	/*
218	 * Get IO TLB memory from the low pages
219	 */
220	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
221	io_tlb_nslabs = SLABS_PER_PAGE << order;
222	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
223
224	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
226							order);
227		if (io_tlb_start)
228			break;
229		order--;
230	}
231
232	if (!io_tlb_start)
233		goto cleanup1;
234
 
235	if (order != get_order(bytes)) {
236		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
237		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
238		io_tlb_nslabs = SLABS_PER_PAGE << order;
239		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
240	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	io_tlb_end = io_tlb_start + bytes;
242	memset(io_tlb_start, 0, bytes);
 
 
 
 
 
 
 
 
 
 
 
243
244	/*
245	 * Allocate and initialize the free list array.  This array is used
246	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
247	 * between io_tlb_start and io_tlb_end.
248	 */
249	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
250	                              get_order(io_tlb_nslabs * sizeof(int)));
251	if (!io_tlb_list)
252		goto cleanup2;
253
254	for (i = 0; i < io_tlb_nslabs; i++)
255 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256	io_tlb_index = 0;
257
258	io_tlb_orig_addr = (phys_addr_t *)
259		__get_free_pages(GFP_KERNEL,
260				 get_order(io_tlb_nslabs *
261					   sizeof(phys_addr_t)));
262	if (!io_tlb_orig_addr)
263		goto cleanup3;
264
265	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
266
267	/*
268	 * Get the overflow emergency buffer
269	 */
270	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
271	                                          get_order(io_tlb_overflow));
272	if (!io_tlb_overflow_buffer)
273		goto cleanup4;
274
275	swiotlb_print_info();
276
277	late_alloc = 1;
278
279	return 0;
280
281cleanup4:
282	free_pages((unsigned long)io_tlb_orig_addr,
283		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
284	io_tlb_orig_addr = NULL;
285cleanup3:
286	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
287	                                                 sizeof(int)));
288	io_tlb_list = NULL;
 
 
 
 
289cleanup2:
290	io_tlb_end = NULL;
291	free_pages((unsigned long)io_tlb_start, order);
292	io_tlb_start = NULL;
293cleanup1:
294	io_tlb_nslabs = req_nslabs;
295	return -ENOMEM;
296}
297
298void __init swiotlb_free(void)
299{
300	if (!io_tlb_overflow_buffer)
301		return;
302
303	if (late_alloc) {
304		free_pages((unsigned long)io_tlb_overflow_buffer,
305			   get_order(io_tlb_overflow));
306		free_pages((unsigned long)io_tlb_orig_addr,
307			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
308		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
309								 sizeof(int)));
310		free_pages((unsigned long)io_tlb_start,
311			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
312	} else {
313		free_bootmem_late(__pa(io_tlb_overflow_buffer),
314				  PAGE_ALIGN(io_tlb_overflow));
315		free_bootmem_late(__pa(io_tlb_orig_addr),
316				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
317		free_bootmem_late(__pa(io_tlb_list),
318				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
319		free_bootmem_late(__pa(io_tlb_start),
320				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
321	}
322	io_tlb_nslabs = 0;
323}
324
325static int is_swiotlb_buffer(phys_addr_t paddr)
326{
327	return paddr >= virt_to_phys(io_tlb_start) &&
328		paddr < virt_to_phys(io_tlb_end);
329}
330
331/*
332 * Bounce: copy the swiotlb buffer back to the original dma location
333 */
334void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
335		    enum dma_data_direction dir)
336{
337	unsigned long pfn = PFN_DOWN(phys);
 
338
339	if (PageHighMem(pfn_to_page(pfn))) {
340		/* The buffer does not have a mapping.  Map it in and copy */
341		unsigned int offset = phys & ~PAGE_MASK;
342		char *buffer;
343		unsigned int sz = 0;
344		unsigned long flags;
345
346		while (size) {
347			sz = min_t(size_t, PAGE_SIZE - offset, size);
348
349			local_irq_save(flags);
350			buffer = kmap_atomic(pfn_to_page(pfn));
351			if (dir == DMA_TO_DEVICE)
352				memcpy(dma_addr, buffer + offset, sz);
353			else
354				memcpy(buffer + offset, dma_addr, sz);
355			kunmap_atomic(buffer);
356			local_irq_restore(flags);
357
358			size -= sz;
359			pfn++;
360			dma_addr += sz;
361			offset = 0;
362		}
 
 
363	} else {
364		if (dir == DMA_TO_DEVICE)
365			memcpy(dma_addr, phys_to_virt(phys), size);
366		else
367			memcpy(phys_to_virt(phys), dma_addr, size);
368	}
369}
370EXPORT_SYMBOL_GPL(swiotlb_bounce);
371
372void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
373			     phys_addr_t phys, size_t size,
374			     enum dma_data_direction dir)
 
375{
376	unsigned long flags;
377	char *dma_addr;
378	unsigned int nslots, stride, index, wrap;
379	int i;
380	unsigned long mask;
381	unsigned long offset_slots;
382	unsigned long max_slots;
383
 
 
 
384	mask = dma_get_seg_boundary(hwdev);
385
386	tbl_dma_addr &= mask;
387
388	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
389
390	/*
391 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
392 	 */
393	max_slots = mask + 1
394		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
395		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
396
397	/*
398	 * For mappings greater than a page, we limit the stride (and
399	 * hence alignment) to a page size.
400	 */
401	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
402	if (size > PAGE_SIZE)
403		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
404	else
405		stride = 1;
406
407	BUG_ON(!nslots);
408
409	/*
410	 * Find suitable number of IO TLB entries size that will fit this
411	 * request and allocate a buffer from that IO TLB pool.
412	 */
413	spin_lock_irqsave(&io_tlb_lock, flags);
414	index = ALIGN(io_tlb_index, stride);
415	if (index >= io_tlb_nslabs)
416		index = 0;
417	wrap = index;
418
419	do {
420		while (iommu_is_span_boundary(index, nslots, offset_slots,
421					      max_slots)) {
422			index += stride;
423			if (index >= io_tlb_nslabs)
424				index = 0;
425			if (index == wrap)
426				goto not_found;
427		}
428
429		/*
430		 * If we find a slot that indicates we have 'nslots' number of
431		 * contiguous buffers, we allocate the buffers from that slot
432		 * and mark the entries as '0' indicating unavailable.
433		 */
434		if (io_tlb_list[index] >= nslots) {
435			int count = 0;
436
437			for (i = index; i < (int) (index + nslots); i++)
438				io_tlb_list[i] = 0;
439			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
440				io_tlb_list[i] = ++count;
441			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
442
443			/*
444			 * Update the indices to avoid searching in the next
445			 * round.
446			 */
447			io_tlb_index = ((index + nslots) < io_tlb_nslabs
448					? (index + nslots) : 0);
449
450			goto found;
451		}
452		index += stride;
453		if (index >= io_tlb_nslabs)
454			index = 0;
455	} while (index != wrap);
456
457not_found:
458	spin_unlock_irqrestore(&io_tlb_lock, flags);
459	return NULL;
 
 
460found:
461	spin_unlock_irqrestore(&io_tlb_lock, flags);
462
463	/*
464	 * Save away the mapping from the original address to the DMA address.
465	 * This is needed when we sync the memory.  Then we sync the buffer if
466	 * needed.
467	 */
468	for (i = 0; i < nslots; i++)
469		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
470	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
471		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
472
473	return dma_addr;
474}
475EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
476
477/*
478 * Allocates bounce buffer and returns its kernel virtual address.
479 */
480
481static void *
482map_single(struct device *hwdev, phys_addr_t phys, size_t size,
483	   enum dma_data_direction dir)
484{
485	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
486
487	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
488}
489
490/*
491 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
492 */
493void
494swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
495			enum dma_data_direction dir)
496{
497	unsigned long flags;
498	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
499	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
500	phys_addr_t phys = io_tlb_orig_addr[index];
501
502	/*
503	 * First, sync the memory before unmapping the entry
504	 */
505	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
506		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
507
508	/*
509	 * Return the buffer to the free list by setting the corresponding
510	 * entries to indicate the number of contiguous entries available.
511	 * While returning the entries to the free list, we merge the entries
512	 * with slots below and above the pool being returned.
513	 */
514	spin_lock_irqsave(&io_tlb_lock, flags);
515	{
516		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
517			 io_tlb_list[index + nslots] : 0);
518		/*
519		 * Step 1: return the slots to the free list, merging the
520		 * slots with superceeding slots
521		 */
522		for (i = index + nslots - 1; i >= index; i--)
523			io_tlb_list[i] = ++count;
524		/*
525		 * Step 2: merge the returned slots with the preceding slots,
526		 * if available (non zero)
527		 */
528		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
529			io_tlb_list[i] = ++count;
530	}
531	spin_unlock_irqrestore(&io_tlb_lock, flags);
532}
533EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
534
535void
536swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
537			enum dma_data_direction dir,
538			enum dma_sync_target target)
539{
540	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
541	phys_addr_t phys = io_tlb_orig_addr[index];
542
543	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
544
545	switch (target) {
546	case SYNC_FOR_CPU:
547		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
548			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
 
549		else
550			BUG_ON(dir != DMA_TO_DEVICE);
551		break;
552	case SYNC_FOR_DEVICE:
553		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
554			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
 
555		else
556			BUG_ON(dir != DMA_FROM_DEVICE);
557		break;
558	default:
559		BUG();
560	}
561}
562EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
563
564void *
565swiotlb_alloc_coherent(struct device *hwdev, size_t size,
566		       dma_addr_t *dma_handle, gfp_t flags)
567{
568	dma_addr_t dev_addr;
569	void *ret;
570	int order = get_order(size);
571	u64 dma_mask = DMA_BIT_MASK(32);
572
573	if (hwdev && hwdev->coherent_dma_mask)
574		dma_mask = hwdev->coherent_dma_mask;
575
576	ret = (void *)__get_free_pages(flags, order);
577	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
578		/*
579		 * The allocated memory isn't reachable by the device.
580		 */
581		free_pages((unsigned long) ret, order);
582		ret = NULL;
 
 
 
583	}
584	if (!ret) {
585		/*
586		 * We are either out of memory or the device can't DMA to
587		 * GFP_DMA memory; fall back on map_single(), which
588		 * will grab memory from the lowest available address range.
589		 */
590		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
591		if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592			return NULL;
 
593	}
594
 
595	memset(ret, 0, size);
596	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
597
598	/* Confirm address can be DMA'd by device */
599	if (dev_addr + size - 1 > dma_mask) {
600		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
601		       (unsigned long long)dma_mask,
602		       (unsigned long long)dev_addr);
603
604		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
605		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
606		return NULL;
607	}
608	*dma_handle = dev_addr;
609	return ret;
610}
611EXPORT_SYMBOL(swiotlb_alloc_coherent);
612
613void
614swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
615		      dma_addr_t dev_addr)
616{
617	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
618
619	WARN_ON(irqs_disabled());
620	if (!is_swiotlb_buffer(paddr))
621		free_pages((unsigned long)vaddr, get_order(size));
622	else
623		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
624		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
625}
626EXPORT_SYMBOL(swiotlb_free_coherent);
627
628static void
629swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
630	     int do_panic)
631{
632	/*
633	 * Ran out of IOMMU space for this operation. This is very bad.
634	 * Unfortunately the drivers cannot handle this operation properly.
635	 * unless they check for dma_mapping_error (most don't)
636	 * When the mapping is small enough return a static buffer to limit
637	 * the damage, or panic when the transfer is too big.
638	 */
639	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
640	       "device %s\n", size, dev ? dev_name(dev) : "?");
641
642	if (size <= io_tlb_overflow || !do_panic)
643		return;
644
645	if (dir == DMA_BIDIRECTIONAL)
646		panic("DMA: Random memory could be DMA accessed\n");
647	if (dir == DMA_FROM_DEVICE)
648		panic("DMA: Random memory could be DMA written\n");
649	if (dir == DMA_TO_DEVICE)
650		panic("DMA: Random memory could be DMA read\n");
651}
652
653/*
654 * Map a single buffer of the indicated size for DMA in streaming mode.  The
655 * physical address to use is returned.
656 *
657 * Once the device is given the dma address, the device owns this memory until
658 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
659 */
660dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
661			    unsigned long offset, size_t size,
662			    enum dma_data_direction dir,
663			    struct dma_attrs *attrs)
664{
665	phys_addr_t phys = page_to_phys(page) + offset;
666	dma_addr_t dev_addr = phys_to_dma(dev, phys);
667	void *map;
668
669	BUG_ON(dir == DMA_NONE);
670	/*
671	 * If the address happens to be in the device's DMA window,
672	 * we can safely return the device addr and not worry about bounce
673	 * buffering it.
674	 */
675	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
676		return dev_addr;
677
678	/*
679	 * Oh well, have to allocate and map a bounce buffer.
680	 */
681	map = map_single(dev, phys, size, dir);
682	if (!map) {
683		swiotlb_full(dev, size, dir, 1);
684		map = io_tlb_overflow_buffer;
685	}
686
687	dev_addr = swiotlb_virt_to_bus(dev, map);
688
689	/*
690	 * Ensure that the address returned is DMA'ble
691	 */
692	if (!dma_capable(dev, dev_addr, size)) {
693		swiotlb_tbl_unmap_single(dev, map, size, dir);
694		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
695	}
696
697	return dev_addr;
698}
699EXPORT_SYMBOL_GPL(swiotlb_map_page);
700
701/*
702 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
703 * match what was provided for in a previous swiotlb_map_page call.  All
704 * other usages are undefined.
705 *
706 * After this call, reads by the cpu to the buffer are guaranteed to see
707 * whatever the device wrote there.
708 */
709static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
710			 size_t size, enum dma_data_direction dir)
711{
712	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
713
714	BUG_ON(dir == DMA_NONE);
715
716	if (is_swiotlb_buffer(paddr)) {
717		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
718		return;
719	}
720
721	if (dir != DMA_FROM_DEVICE)
722		return;
723
724	/*
725	 * phys_to_virt doesn't work with hihgmem page but we could
726	 * call dma_mark_clean() with hihgmem page here. However, we
727	 * are fine since dma_mark_clean() is null on POWERPC. We can
728	 * make dma_mark_clean() take a physical address if necessary.
729	 */
730	dma_mark_clean(phys_to_virt(paddr), size);
731}
732
733void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
734			size_t size, enum dma_data_direction dir,
735			struct dma_attrs *attrs)
736{
737	unmap_single(hwdev, dev_addr, size, dir);
738}
739EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
740
741/*
742 * Make physical memory consistent for a single streaming mode DMA translation
743 * after a transfer.
744 *
745 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
746 * using the cpu, yet do not wish to teardown the dma mapping, you must
747 * call this function before doing so.  At the next point you give the dma
748 * address back to the card, you must first perform a
749 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
750 */
751static void
752swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
753		    size_t size, enum dma_data_direction dir,
754		    enum dma_sync_target target)
755{
756	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
757
758	BUG_ON(dir == DMA_NONE);
759
760	if (is_swiotlb_buffer(paddr)) {
761		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
762				       target);
763		return;
764	}
765
766	if (dir != DMA_FROM_DEVICE)
767		return;
768
769	dma_mark_clean(phys_to_virt(paddr), size);
770}
771
772void
773swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
774			    size_t size, enum dma_data_direction dir)
775{
776	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
777}
778EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
779
780void
781swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
782			       size_t size, enum dma_data_direction dir)
783{
784	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
785}
786EXPORT_SYMBOL(swiotlb_sync_single_for_device);
787
788/*
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_page
791 * interface.  Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length.  They are obtained via
793 * sg_dma_{address,length}(SG).
794 *
795 * NOTE: An implementation may be able to use a smaller number of
796 *       DMA address/length pairs than there are SG table elements.
797 *       (for example via virtual mapping capabilities)
798 *       The routine returns the number of addr/length pairs actually
799 *       used, at most nents.
800 *
801 * Device ownership issues as mentioned above for swiotlb_map_page are the
802 * same here.
803 */
804int
805swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
806		     enum dma_data_direction dir, struct dma_attrs *attrs)
807{
808	struct scatterlist *sg;
809	int i;
810
811	BUG_ON(dir == DMA_NONE);
812
813	for_each_sg(sgl, sg, nelems, i) {
814		phys_addr_t paddr = sg_phys(sg);
815		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
816
817		if (swiotlb_force ||
818		    !dma_capable(hwdev, dev_addr, sg->length)) {
819			void *map = map_single(hwdev, sg_phys(sg),
820					       sg->length, dir);
821			if (!map) {
822				/* Don't panic here, we expect map_sg users
823				   to do proper error handling. */
824				swiotlb_full(hwdev, sg->length, dir, 0);
825				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
826						       attrs);
827				sgl[0].dma_length = 0;
828				return 0;
829			}
830			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
831		} else
832			sg->dma_address = dev_addr;
833		sg->dma_length = sg->length;
834	}
835	return nelems;
836}
837EXPORT_SYMBOL(swiotlb_map_sg_attrs);
838
839int
840swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
841	       enum dma_data_direction dir)
842{
843	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
844}
845EXPORT_SYMBOL(swiotlb_map_sg);
846
847/*
848 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_page() above.
850 */
851void
852swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
853		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
854{
855	struct scatterlist *sg;
856	int i;
857
858	BUG_ON(dir == DMA_NONE);
859
860	for_each_sg(sgl, sg, nelems, i)
861		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
862
863}
864EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
865
866void
867swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
868		 enum dma_data_direction dir)
869{
870	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
871}
872EXPORT_SYMBOL(swiotlb_unmap_sg);
873
874/*
875 * Make physical memory consistent for a set of streaming mode DMA translations
876 * after a transfer.
877 *
878 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
879 * and usage.
880 */
881static void
882swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
883		int nelems, enum dma_data_direction dir,
884		enum dma_sync_target target)
885{
886	struct scatterlist *sg;
887	int i;
888
889	for_each_sg(sgl, sg, nelems, i)
890		swiotlb_sync_single(hwdev, sg->dma_address,
891				    sg->dma_length, dir, target);
892}
893
894void
895swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
896			int nelems, enum dma_data_direction dir)
897{
898	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
899}
900EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
901
902void
903swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
904			   int nelems, enum dma_data_direction dir)
905{
906	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
907}
908EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
909
910int
911swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
912{
913	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
914}
915EXPORT_SYMBOL(swiotlb_dma_mapping_error);
916
917/*
918 * Return whether the given device DMA address mask can be supported
919 * properly.  For example, if your device can only drive the low 24-bits
920 * during bus mastering, then you would pass 0x00ffffff as the mask to
921 * this function.
922 */
923int
924swiotlb_dma_supported(struct device *hwdev, u64 mask)
925{
926	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
927}
928EXPORT_SYMBOL(swiotlb_dma_supported);