Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define CREATE_TRACE_POINTS
 42#include <trace/events/swiotlb.h>
 43
 44#define OFFSET(val,align) ((unsigned long)	\
 45	                   ( (val) & ( (align) - 1)))
 46
 47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 48
 49/*
 50 * Minimum IO TLB size to bother booting with.  Systems with mainly
 51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 52 * allocate a contiguous 1MB, we're probably in trouble anyway.
 53 */
 54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 55
 56int swiotlb_force;
 57
 58/*
 59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 61 * API.
 62 */
 63static phys_addr_t io_tlb_start, io_tlb_end;
 64
 65/*
 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 68 */
 69static unsigned long io_tlb_nslabs;
 70
 71/*
 72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 73 */
 74static unsigned long io_tlb_overflow = 32*1024;
 75
 76static phys_addr_t io_tlb_overflow_buffer;
 77
 78/*
 79 * This is a free list describing the number of free entries available from
 80 * each index
 81 */
 82static unsigned int *io_tlb_list;
 83static unsigned int io_tlb_index;
 84
 85/*
 86 * We need to save away the original address corresponding to a mapped entry
 87 * for the sync operations.
 88 */
 
 89static phys_addr_t *io_tlb_orig_addr;
 90
 91/*
 92 * Protect the above data structures in the map and unmap calls
 93 */
 94static DEFINE_SPINLOCK(io_tlb_lock);
 95
 96static int late_alloc;
 97
 98static int __init
 99setup_io_tlb_npages(char *str)
100{
101	if (isdigit(*str)) {
102		io_tlb_nslabs = simple_strtoul(str, &str, 0);
103		/* avoid tail segment of size < IO_TLB_SEGSIZE */
104		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105	}
106	if (*str == ',')
107		++str;
108	if (!strcmp(str, "force"))
109		swiotlb_force = 1;
110
111	return 0;
112}
113early_param("swiotlb", setup_io_tlb_npages);
114/* make io_tlb_overflow tunable too? */
115
116unsigned long swiotlb_nr_tbl(void)
117{
118	return io_tlb_nslabs;
119}
120EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
121
122/* default to 64MB */
123#define IO_TLB_DEFAULT_SIZE (64UL<<20)
124unsigned long swiotlb_size_or_default(void)
125{
126	unsigned long size;
127
128	size = io_tlb_nslabs << IO_TLB_SHIFT;
129
130	return size ? size : (IO_TLB_DEFAULT_SIZE);
131}
132
133/* Note that this doesn't work with highmem page */
134static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135				      volatile void *address)
136{
137	return phys_to_dma(hwdev, virt_to_phys(address));
138}
139
140static bool no_iotlb_memory;
141
142void swiotlb_print_info(void)
143{
144	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145	unsigned char *vstart, *vend;
146
147	if (no_iotlb_memory) {
148		pr_warn("software IO TLB: No low mem\n");
149		return;
150	}
151
152	vstart = phys_to_virt(io_tlb_start);
153	vend = phys_to_virt(io_tlb_end);
154
155	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156	       (unsigned long long)io_tlb_start,
157	       (unsigned long long)io_tlb_end,
158	       bytes >> 20, vstart, vend - 1);
159}
160
161int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
162{
163	void *v_overflow_buffer;
164	unsigned long i, bytes;
165
166	bytes = nslabs << IO_TLB_SHIFT;
167
168	io_tlb_nslabs = nslabs;
169	io_tlb_start = __pa(tlb);
170	io_tlb_end = io_tlb_start + bytes;
171
172	/*
173	 * Get the overflow emergency buffer
174	 */
175	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
176						PAGE_ALIGN(io_tlb_overflow),
177						PAGE_SIZE);
178	if (!v_overflow_buffer)
179		return -ENOMEM;
180
181	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182
183	/*
184	 * Allocate and initialize the free list array.  This array is used
185	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186	 * between io_tlb_start and io_tlb_end.
187	 */
188	io_tlb_list = memblock_virt_alloc(
189				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
190				PAGE_SIZE);
191	for (i = 0; i < io_tlb_nslabs; i++)
192 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
193	io_tlb_index = 0;
194	io_tlb_orig_addr = memblock_virt_alloc(
195				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196				PAGE_SIZE);
 
 
 
 
 
197
198	if (verbose)
199		swiotlb_print_info();
200
201	return 0;
202}
203
204/*
205 * Statically reserve bounce buffer space and initialize bounce buffer data
206 * structures for the software IO TLB used to implement the DMA API.
207 */
208void  __init
209swiotlb_init(int verbose)
210{
211	size_t default_size = IO_TLB_DEFAULT_SIZE;
212	unsigned char *vstart;
213	unsigned long bytes;
214
215	if (!io_tlb_nslabs) {
216		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
217		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
218	}
219
220	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
221
222	/* Get IO TLB memory from the low pages */
223	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
224	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
225		return;
226
227	if (io_tlb_start)
228		memblock_free_early(io_tlb_start,
229				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
230	pr_warn("Cannot allocate SWIOTLB buffer");
231	no_iotlb_memory = true;
232}
233
234/*
235 * Systems with larger DMA zones (those that don't support ISA) can
236 * initialize the swiotlb later using the slab allocator if needed.
237 * This should be just like above, but with some error catching.
238 */
239int
240swiotlb_late_init_with_default_size(size_t default_size)
241{
242	unsigned long bytes, req_nslabs = io_tlb_nslabs;
243	unsigned char *vstart = NULL;
244	unsigned int order;
245	int rc = 0;
246
247	if (!io_tlb_nslabs) {
248		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
250	}
251
252	/*
253	 * Get IO TLB memory from the low pages
254	 */
255	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
256	io_tlb_nslabs = SLABS_PER_PAGE << order;
257	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
261						  order);
262		if (vstart)
263			break;
264		order--;
265	}
266
267	if (!vstart) {
268		io_tlb_nslabs = req_nslabs;
269		return -ENOMEM;
270	}
271	if (order != get_order(bytes)) {
272		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
273		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
274		io_tlb_nslabs = SLABS_PER_PAGE << order;
275	}
276	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
277	if (rc)
278		free_pages((unsigned long)vstart, order);
279	return rc;
280}
281
282int
283swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
284{
285	unsigned long i, bytes;
286	unsigned char *v_overflow_buffer;
287
288	bytes = nslabs << IO_TLB_SHIFT;
289
290	io_tlb_nslabs = nslabs;
291	io_tlb_start = virt_to_phys(tlb);
292	io_tlb_end = io_tlb_start + bytes;
293
294	memset(tlb, 0, bytes);
295
296	/*
297	 * Get the overflow emergency buffer
298	 */
299	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
300						     get_order(io_tlb_overflow));
301	if (!v_overflow_buffer)
302		goto cleanup2;
303
304	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
305
306	/*
307	 * Allocate and initialize the free list array.  This array is used
308	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309	 * between io_tlb_start and io_tlb_end.
310	 */
311	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
312	                              get_order(io_tlb_nslabs * sizeof(int)));
313	if (!io_tlb_list)
314		goto cleanup3;
315
316	for (i = 0; i < io_tlb_nslabs; i++)
317 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
318	io_tlb_index = 0;
319
320	io_tlb_orig_addr = (phys_addr_t *)
321		__get_free_pages(GFP_KERNEL,
322				 get_order(io_tlb_nslabs *
323					   sizeof(phys_addr_t)));
324	if (!io_tlb_orig_addr)
325		goto cleanup4;
326
327	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
 
 
 
 
328
329	swiotlb_print_info();
330
331	late_alloc = 1;
332
333	return 0;
334
335cleanup4:
336	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
337	                                                 sizeof(int)));
338	io_tlb_list = NULL;
339cleanup3:
340	free_pages((unsigned long)v_overflow_buffer,
341		   get_order(io_tlb_overflow));
342	io_tlb_overflow_buffer = 0;
343cleanup2:
344	io_tlb_end = 0;
345	io_tlb_start = 0;
346	io_tlb_nslabs = 0;
347	return -ENOMEM;
348}
349
350void __init swiotlb_free(void)
351{
352	if (!io_tlb_orig_addr)
353		return;
354
355	if (late_alloc) {
356		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
357			   get_order(io_tlb_overflow));
358		free_pages((unsigned long)io_tlb_orig_addr,
359			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
360		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
361								 sizeof(int)));
362		free_pages((unsigned long)phys_to_virt(io_tlb_start),
363			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
364	} else {
365		memblock_free_late(io_tlb_overflow_buffer,
366				   PAGE_ALIGN(io_tlb_overflow));
367		memblock_free_late(__pa(io_tlb_orig_addr),
368				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
369		memblock_free_late(__pa(io_tlb_list),
370				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
371		memblock_free_late(io_tlb_start,
372				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
373	}
374	io_tlb_nslabs = 0;
375}
376
377static int is_swiotlb_buffer(phys_addr_t paddr)
378{
379	return paddr >= io_tlb_start && paddr < io_tlb_end;
380}
381
382/*
383 * Bounce: copy the swiotlb buffer back to the original dma location
384 */
385static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
386			   size_t size, enum dma_data_direction dir)
387{
388	unsigned long pfn = PFN_DOWN(orig_addr);
389	unsigned char *vaddr = phys_to_virt(tlb_addr);
390
391	if (PageHighMem(pfn_to_page(pfn))) {
392		/* The buffer does not have a mapping.  Map it in and copy */
393		unsigned int offset = orig_addr & ~PAGE_MASK;
394		char *buffer;
395		unsigned int sz = 0;
396		unsigned long flags;
397
398		while (size) {
399			sz = min_t(size_t, PAGE_SIZE - offset, size);
400
401			local_irq_save(flags);
402			buffer = kmap_atomic(pfn_to_page(pfn));
403			if (dir == DMA_TO_DEVICE)
404				memcpy(vaddr, buffer + offset, sz);
405			else
406				memcpy(buffer + offset, vaddr, sz);
407			kunmap_atomic(buffer);
408			local_irq_restore(flags);
409
410			size -= sz;
411			pfn++;
412			vaddr += sz;
413			offset = 0;
414		}
415	} else if (dir == DMA_TO_DEVICE) {
416		memcpy(vaddr, phys_to_virt(orig_addr), size);
417	} else {
418		memcpy(phys_to_virt(orig_addr), vaddr, size);
419	}
420}
421
422phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
423				   dma_addr_t tbl_dma_addr,
424				   phys_addr_t orig_addr, size_t size,
425				   enum dma_data_direction dir)
426{
427	unsigned long flags;
428	phys_addr_t tlb_addr;
429	unsigned int nslots, stride, index, wrap;
430	int i;
431	unsigned long mask;
432	unsigned long offset_slots;
433	unsigned long max_slots;
434
435	if (no_iotlb_memory)
436		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
437
438	mask = dma_get_seg_boundary(hwdev);
439
440	tbl_dma_addr &= mask;
441
442	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
443
444	/*
445 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
446 	 */
447	max_slots = mask + 1
448		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
449		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450
451	/*
452	 * For mappings greater than a page, we limit the stride (and
453	 * hence alignment) to a page size.
454	 */
455	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
456	if (size > PAGE_SIZE)
457		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
458	else
459		stride = 1;
460
461	BUG_ON(!nslots);
462
463	/*
464	 * Find suitable number of IO TLB entries size that will fit this
465	 * request and allocate a buffer from that IO TLB pool.
466	 */
467	spin_lock_irqsave(&io_tlb_lock, flags);
468	index = ALIGN(io_tlb_index, stride);
469	if (index >= io_tlb_nslabs)
470		index = 0;
471	wrap = index;
472
473	do {
474		while (iommu_is_span_boundary(index, nslots, offset_slots,
475					      max_slots)) {
476			index += stride;
477			if (index >= io_tlb_nslabs)
478				index = 0;
479			if (index == wrap)
480				goto not_found;
481		}
482
483		/*
484		 * If we find a slot that indicates we have 'nslots' number of
485		 * contiguous buffers, we allocate the buffers from that slot
486		 * and mark the entries as '0' indicating unavailable.
487		 */
488		if (io_tlb_list[index] >= nslots) {
489			int count = 0;
490
491			for (i = index; i < (int) (index + nslots); i++)
492				io_tlb_list[i] = 0;
493			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
494				io_tlb_list[i] = ++count;
495			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
496
497			/*
498			 * Update the indices to avoid searching in the next
499			 * round.
500			 */
501			io_tlb_index = ((index + nslots) < io_tlb_nslabs
502					? (index + nslots) : 0);
503
504			goto found;
505		}
506		index += stride;
507		if (index >= io_tlb_nslabs)
508			index = 0;
509	} while (index != wrap);
510
511not_found:
512	spin_unlock_irqrestore(&io_tlb_lock, flags);
513	if (printk_ratelimit())
514		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
515	return SWIOTLB_MAP_ERROR;
516found:
517	spin_unlock_irqrestore(&io_tlb_lock, flags);
518
519	/*
520	 * Save away the mapping from the original address to the DMA address.
521	 * This is needed when we sync the memory.  Then we sync the buffer if
522	 * needed.
523	 */
524	for (i = 0; i < nslots; i++)
525		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
526	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
527		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
528
529	return tlb_addr;
530}
531EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
532
533/*
534 * Allocates bounce buffer and returns its kernel virtual address.
535 */
536
537phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
538		       enum dma_data_direction dir)
 
539{
540	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
541
542	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
543}
544
545/*
546 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
547 */
548void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
549			      size_t size, enum dma_data_direction dir)
550{
551	unsigned long flags;
552	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
553	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
554	phys_addr_t orig_addr = io_tlb_orig_addr[index];
555
556	/*
557	 * First, sync the memory before unmapping the entry
558	 */
559	if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 
560		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
561
562	/*
563	 * Return the buffer to the free list by setting the corresponding
564	 * entries to indicate the number of contiguous entries available.
565	 * While returning the entries to the free list, we merge the entries
566	 * with slots below and above the pool being returned.
567	 */
568	spin_lock_irqsave(&io_tlb_lock, flags);
569	{
570		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
571			 io_tlb_list[index + nslots] : 0);
572		/*
573		 * Step 1: return the slots to the free list, merging the
574		 * slots with superceeding slots
575		 */
576		for (i = index + nslots - 1; i >= index; i--)
577			io_tlb_list[i] = ++count;
 
 
578		/*
579		 * Step 2: merge the returned slots with the preceding slots,
580		 * if available (non zero)
581		 */
582		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
583			io_tlb_list[i] = ++count;
584	}
585	spin_unlock_irqrestore(&io_tlb_lock, flags);
586}
587EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
588
589void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
590			     size_t size, enum dma_data_direction dir,
591			     enum dma_sync_target target)
592{
593	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
594	phys_addr_t orig_addr = io_tlb_orig_addr[index];
595
 
 
596	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
597
598	switch (target) {
599	case SYNC_FOR_CPU:
600		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
601			swiotlb_bounce(orig_addr, tlb_addr,
602				       size, DMA_FROM_DEVICE);
603		else
604			BUG_ON(dir != DMA_TO_DEVICE);
605		break;
606	case SYNC_FOR_DEVICE:
607		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
608			swiotlb_bounce(orig_addr, tlb_addr,
609				       size, DMA_TO_DEVICE);
610		else
611			BUG_ON(dir != DMA_FROM_DEVICE);
612		break;
613	default:
614		BUG();
615	}
616}
617EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
618
619void *
620swiotlb_alloc_coherent(struct device *hwdev, size_t size,
621		       dma_addr_t *dma_handle, gfp_t flags)
622{
623	dma_addr_t dev_addr;
624	void *ret;
625	int order = get_order(size);
626	u64 dma_mask = DMA_BIT_MASK(32);
627
628	if (hwdev && hwdev->coherent_dma_mask)
629		dma_mask = hwdev->coherent_dma_mask;
630
631	ret = (void *)__get_free_pages(flags, order);
632	if (ret) {
633		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
634		if (dev_addr + size - 1 > dma_mask) {
635			/*
636			 * The allocated memory isn't reachable by the device.
637			 */
638			free_pages((unsigned long) ret, order);
639			ret = NULL;
640		}
641	}
642	if (!ret) {
643		/*
644		 * We are either out of memory or the device can't DMA to
645		 * GFP_DMA memory; fall back on map_single(), which
646		 * will grab memory from the lowest available address range.
647		 */
648		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
649		if (paddr == SWIOTLB_MAP_ERROR)
650			return NULL;
651
652		ret = phys_to_virt(paddr);
653		dev_addr = phys_to_dma(hwdev, paddr);
654
655		/* Confirm address can be DMA'd by device */
656		if (dev_addr + size - 1 > dma_mask) {
657			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658			       (unsigned long long)dma_mask,
659			       (unsigned long long)dev_addr);
660
661			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
662			swiotlb_tbl_unmap_single(hwdev, paddr,
663						 size, DMA_TO_DEVICE);
664			return NULL;
665		}
666	}
667
668	*dma_handle = dev_addr;
669	memset(ret, 0, size);
670
671	return ret;
 
 
 
 
 
 
 
672}
673EXPORT_SYMBOL(swiotlb_alloc_coherent);
674
675void
676swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
677		      dma_addr_t dev_addr)
678{
679	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
680
681	WARN_ON(irqs_disabled());
682	if (!is_swiotlb_buffer(paddr))
683		free_pages((unsigned long)vaddr, get_order(size));
684	else
685		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
687}
688EXPORT_SYMBOL(swiotlb_free_coherent);
689
690static void
691swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
692	     int do_panic)
693{
694	/*
695	 * Ran out of IOMMU space for this operation. This is very bad.
696	 * Unfortunately the drivers cannot handle this operation properly.
697	 * unless they check for dma_mapping_error (most don't)
698	 * When the mapping is small enough return a static buffer to limit
699	 * the damage, or panic when the transfer is too big.
700	 */
701	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
702	       "device %s\n", size, dev ? dev_name(dev) : "?");
703
704	if (size <= io_tlb_overflow || !do_panic)
705		return;
706
707	if (dir == DMA_BIDIRECTIONAL)
708		panic("DMA: Random memory could be DMA accessed\n");
709	if (dir == DMA_FROM_DEVICE)
710		panic("DMA: Random memory could be DMA written\n");
711	if (dir == DMA_TO_DEVICE)
712		panic("DMA: Random memory could be DMA read\n");
713}
714
715/*
716 * Map a single buffer of the indicated size for DMA in streaming mode.  The
717 * physical address to use is returned.
718 *
719 * Once the device is given the dma address, the device owns this memory until
720 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
721 */
722dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
723			    unsigned long offset, size_t size,
724			    enum dma_data_direction dir,
725			    struct dma_attrs *attrs)
726{
727	phys_addr_t map, phys = page_to_phys(page) + offset;
728	dma_addr_t dev_addr = phys_to_dma(dev, phys);
729
730	BUG_ON(dir == DMA_NONE);
731	/*
732	 * If the address happens to be in the device's DMA window,
733	 * we can safely return the device addr and not worry about bounce
734	 * buffering it.
735	 */
736	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
737		return dev_addr;
738
739	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
740
741	/* Oh well, have to allocate and map a bounce buffer. */
742	map = map_single(dev, phys, size, dir);
743	if (map == SWIOTLB_MAP_ERROR) {
744		swiotlb_full(dev, size, dir, 1);
745		return phys_to_dma(dev, io_tlb_overflow_buffer);
746	}
747
748	dev_addr = phys_to_dma(dev, map);
749
750	/* Ensure that the address returned is DMA'ble */
751	if (!dma_capable(dev, dev_addr, size)) {
752		swiotlb_tbl_unmap_single(dev, map, size, dir);
753		return phys_to_dma(dev, io_tlb_overflow_buffer);
754	}
755
756	return dev_addr;
757}
758EXPORT_SYMBOL_GPL(swiotlb_map_page);
759
760/*
761 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
762 * match what was provided for in a previous swiotlb_map_page call.  All
763 * other usages are undefined.
764 *
765 * After this call, reads by the cpu to the buffer are guaranteed to see
766 * whatever the device wrote there.
767 */
768static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
769			 size_t size, enum dma_data_direction dir)
770{
771	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
772
773	BUG_ON(dir == DMA_NONE);
774
775	if (is_swiotlb_buffer(paddr)) {
776		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
777		return;
778	}
779
780	if (dir != DMA_FROM_DEVICE)
781		return;
782
783	/*
784	 * phys_to_virt doesn't work with hihgmem page but we could
785	 * call dma_mark_clean() with hihgmem page here. However, we
786	 * are fine since dma_mark_clean() is null on POWERPC. We can
787	 * make dma_mark_clean() take a physical address if necessary.
788	 */
789	dma_mark_clean(phys_to_virt(paddr), size);
790}
791
792void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
793			size_t size, enum dma_data_direction dir,
794			struct dma_attrs *attrs)
795{
796	unmap_single(hwdev, dev_addr, size, dir);
797}
798EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
799
800/*
801 * Make physical memory consistent for a single streaming mode DMA translation
802 * after a transfer.
803 *
804 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 * using the cpu, yet do not wish to teardown the dma mapping, you must
806 * call this function before doing so.  At the next point you give the dma
807 * address back to the card, you must first perform a
808 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
809 */
810static void
811swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
812		    size_t size, enum dma_data_direction dir,
813		    enum dma_sync_target target)
814{
815	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
816
817	BUG_ON(dir == DMA_NONE);
818
819	if (is_swiotlb_buffer(paddr)) {
820		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
821		return;
822	}
823
824	if (dir != DMA_FROM_DEVICE)
825		return;
826
827	dma_mark_clean(phys_to_virt(paddr), size);
828}
829
830void
831swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
832			    size_t size, enum dma_data_direction dir)
833{
834	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
835}
836EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
837
838void
839swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
840			       size_t size, enum dma_data_direction dir)
841{
842	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
843}
844EXPORT_SYMBOL(swiotlb_sync_single_for_device);
845
846/*
847 * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 * This is the scatter-gather version of the above swiotlb_map_page
849 * interface.  Here the scatter gather list elements are each tagged with the
850 * appropriate dma address and length.  They are obtained via
851 * sg_dma_{address,length}(SG).
852 *
853 * NOTE: An implementation may be able to use a smaller number of
854 *       DMA address/length pairs than there are SG table elements.
855 *       (for example via virtual mapping capabilities)
856 *       The routine returns the number of addr/length pairs actually
857 *       used, at most nents.
858 *
859 * Device ownership issues as mentioned above for swiotlb_map_page are the
860 * same here.
861 */
862int
863swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
864		     enum dma_data_direction dir, struct dma_attrs *attrs)
865{
866	struct scatterlist *sg;
867	int i;
868
869	BUG_ON(dir == DMA_NONE);
870
871	for_each_sg(sgl, sg, nelems, i) {
872		phys_addr_t paddr = sg_phys(sg);
873		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
874
875		if (swiotlb_force ||
876		    !dma_capable(hwdev, dev_addr, sg->length)) {
877			phys_addr_t map = map_single(hwdev, sg_phys(sg),
878						     sg->length, dir);
879			if (map == SWIOTLB_MAP_ERROR) {
880				/* Don't panic here, we expect map_sg users
881				   to do proper error handling. */
882				swiotlb_full(hwdev, sg->length, dir, 0);
883				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
884						       attrs);
885				sg_dma_len(sgl) = 0;
886				return 0;
887			}
888			sg->dma_address = phys_to_dma(hwdev, map);
889		} else
890			sg->dma_address = dev_addr;
891		sg_dma_len(sg) = sg->length;
892	}
893	return nelems;
894}
895EXPORT_SYMBOL(swiotlb_map_sg_attrs);
896
897int
898swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
899	       enum dma_data_direction dir)
900{
901	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
902}
903EXPORT_SYMBOL(swiotlb_map_sg);
904
905/*
906 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
907 * concerning calls here are the same as for swiotlb_unmap_page() above.
908 */
909void
910swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
911		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
912{
913	struct scatterlist *sg;
914	int i;
915
916	BUG_ON(dir == DMA_NONE);
917
918	for_each_sg(sgl, sg, nelems, i)
919		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
920
921}
922EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
923
924void
925swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
926		 enum dma_data_direction dir)
927{
928	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
929}
930EXPORT_SYMBOL(swiotlb_unmap_sg);
931
932/*
933 * Make physical memory consistent for a set of streaming mode DMA translations
934 * after a transfer.
935 *
936 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
937 * and usage.
938 */
939static void
940swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
941		int nelems, enum dma_data_direction dir,
942		enum dma_sync_target target)
943{
944	struct scatterlist *sg;
945	int i;
946
947	for_each_sg(sgl, sg, nelems, i)
948		swiotlb_sync_single(hwdev, sg->dma_address,
949				    sg_dma_len(sg), dir, target);
950}
951
952void
953swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
954			int nelems, enum dma_data_direction dir)
955{
956	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
957}
958EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
959
960void
961swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
962			   int nelems, enum dma_data_direction dir)
963{
964	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
965}
966EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
967
968int
969swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
970{
971	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
972}
973EXPORT_SYMBOL(swiotlb_dma_mapping_error);
974
975/*
976 * Return whether the given device DMA address mask can be supported
977 * properly.  For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask to
979 * this function.
980 */
981int
982swiotlb_dma_supported(struct device *hwdev, u64 mask)
983{
984	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
985}
986EXPORT_SYMBOL(swiotlb_dma_supported);
v4.6
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
  13 *			unnecessary i-cache flushing.
  14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
  16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb	Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33
  34#include <asm/io.h>
  35#include <asm/dma.h>
 
  36
  37#include <linux/init.h>
  38#include <linux/bootmem.h>
  39#include <linux/iommu-helper.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/swiotlb.h>
  43
  44#define OFFSET(val,align) ((unsigned long)	\
  45	                   ( (val) & ( (align) - 1)))
  46
  47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  48
  49/*
  50 * Minimum IO TLB size to bother booting with.  Systems with mainly
  51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  52 * allocate a contiguous 1MB, we're probably in trouble anyway.
  53 */
  54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  55
  56int swiotlb_force;
  57
  58/*
  59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  61 * API.
  62 */
  63static phys_addr_t io_tlb_start, io_tlb_end;
  64
  65/*
  66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  68 */
  69static unsigned long io_tlb_nslabs;
  70
  71/*
  72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  73 */
  74static unsigned long io_tlb_overflow = 32*1024;
  75
  76static phys_addr_t io_tlb_overflow_buffer;
  77
  78/*
  79 * This is a free list describing the number of free entries available from
  80 * each index
  81 */
  82static unsigned int *io_tlb_list;
  83static unsigned int io_tlb_index;
  84
  85/*
  86 * We need to save away the original address corresponding to a mapped entry
  87 * for the sync operations.
  88 */
  89#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  90static phys_addr_t *io_tlb_orig_addr;
  91
  92/*
  93 * Protect the above data structures in the map and unmap calls
  94 */
  95static DEFINE_SPINLOCK(io_tlb_lock);
  96
  97static int late_alloc;
  98
  99static int __init
 100setup_io_tlb_npages(char *str)
 101{
 102	if (isdigit(*str)) {
 103		io_tlb_nslabs = simple_strtoul(str, &str, 0);
 104		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 105		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 106	}
 107	if (*str == ',')
 108		++str;
 109	if (!strcmp(str, "force"))
 110		swiotlb_force = 1;
 111
 112	return 0;
 113}
 114early_param("swiotlb", setup_io_tlb_npages);
 115/* make io_tlb_overflow tunable too? */
 116
 117unsigned long swiotlb_nr_tbl(void)
 118{
 119	return io_tlb_nslabs;
 120}
 121EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 122
 123/* default to 64MB */
 124#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 125unsigned long swiotlb_size_or_default(void)
 126{
 127	unsigned long size;
 128
 129	size = io_tlb_nslabs << IO_TLB_SHIFT;
 130
 131	return size ? size : (IO_TLB_DEFAULT_SIZE);
 132}
 133
 134/* Note that this doesn't work with highmem page */
 135static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 136				      volatile void *address)
 137{
 138	return phys_to_dma(hwdev, virt_to_phys(address));
 139}
 140
 141static bool no_iotlb_memory;
 142
 143void swiotlb_print_info(void)
 144{
 145	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 146	unsigned char *vstart, *vend;
 147
 148	if (no_iotlb_memory) {
 149		pr_warn("software IO TLB: No low mem\n");
 150		return;
 151	}
 152
 153	vstart = phys_to_virt(io_tlb_start);
 154	vend = phys_to_virt(io_tlb_end);
 155
 156	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 157	       (unsigned long long)io_tlb_start,
 158	       (unsigned long long)io_tlb_end,
 159	       bytes >> 20, vstart, vend - 1);
 160}
 161
 162int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 163{
 164	void *v_overflow_buffer;
 165	unsigned long i, bytes;
 166
 167	bytes = nslabs << IO_TLB_SHIFT;
 168
 169	io_tlb_nslabs = nslabs;
 170	io_tlb_start = __pa(tlb);
 171	io_tlb_end = io_tlb_start + bytes;
 172
 173	/*
 174	 * Get the overflow emergency buffer
 175	 */
 176	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 177						PAGE_ALIGN(io_tlb_overflow),
 178						PAGE_SIZE);
 179	if (!v_overflow_buffer)
 180		return -ENOMEM;
 181
 182	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 183
 184	/*
 185	 * Allocate and initialize the free list array.  This array is used
 186	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 187	 * between io_tlb_start and io_tlb_end.
 188	 */
 189	io_tlb_list = memblock_virt_alloc(
 190				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 191				PAGE_SIZE);
 
 
 
 192	io_tlb_orig_addr = memblock_virt_alloc(
 193				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 194				PAGE_SIZE);
 195	for (i = 0; i < io_tlb_nslabs; i++) {
 196		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 197		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 198	}
 199	io_tlb_index = 0;
 200
 201	if (verbose)
 202		swiotlb_print_info();
 203
 204	return 0;
 205}
 206
 207/*
 208 * Statically reserve bounce buffer space and initialize bounce buffer data
 209 * structures for the software IO TLB used to implement the DMA API.
 210 */
 211void  __init
 212swiotlb_init(int verbose)
 213{
 214	size_t default_size = IO_TLB_DEFAULT_SIZE;
 215	unsigned char *vstart;
 216	unsigned long bytes;
 217
 218	if (!io_tlb_nslabs) {
 219		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 220		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 221	}
 222
 223	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 224
 225	/* Get IO TLB memory from the low pages */
 226	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 227	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 228		return;
 229
 230	if (io_tlb_start)
 231		memblock_free_early(io_tlb_start,
 232				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 233	pr_warn("Cannot allocate SWIOTLB buffer");
 234	no_iotlb_memory = true;
 235}
 236
 237/*
 238 * Systems with larger DMA zones (those that don't support ISA) can
 239 * initialize the swiotlb later using the slab allocator if needed.
 240 * This should be just like above, but with some error catching.
 241 */
 242int
 243swiotlb_late_init_with_default_size(size_t default_size)
 244{
 245	unsigned long bytes, req_nslabs = io_tlb_nslabs;
 246	unsigned char *vstart = NULL;
 247	unsigned int order;
 248	int rc = 0;
 249
 250	if (!io_tlb_nslabs) {
 251		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 252		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 253	}
 254
 255	/*
 256	 * Get IO TLB memory from the low pages
 257	 */
 258	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 259	io_tlb_nslabs = SLABS_PER_PAGE << order;
 260	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 261
 262	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 263		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 264						  order);
 265		if (vstart)
 266			break;
 267		order--;
 268	}
 269
 270	if (!vstart) {
 271		io_tlb_nslabs = req_nslabs;
 272		return -ENOMEM;
 273	}
 274	if (order != get_order(bytes)) {
 275		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 276		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 277		io_tlb_nslabs = SLABS_PER_PAGE << order;
 278	}
 279	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 280	if (rc)
 281		free_pages((unsigned long)vstart, order);
 282	return rc;
 283}
 284
 285int
 286swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 287{
 288	unsigned long i, bytes;
 289	unsigned char *v_overflow_buffer;
 290
 291	bytes = nslabs << IO_TLB_SHIFT;
 292
 293	io_tlb_nslabs = nslabs;
 294	io_tlb_start = virt_to_phys(tlb);
 295	io_tlb_end = io_tlb_start + bytes;
 296
 297	memset(tlb, 0, bytes);
 298
 299	/*
 300	 * Get the overflow emergency buffer
 301	 */
 302	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 303						     get_order(io_tlb_overflow));
 304	if (!v_overflow_buffer)
 305		goto cleanup2;
 306
 307	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 308
 309	/*
 310	 * Allocate and initialize the free list array.  This array is used
 311	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 312	 * between io_tlb_start and io_tlb_end.
 313	 */
 314	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 315	                              get_order(io_tlb_nslabs * sizeof(int)));
 316	if (!io_tlb_list)
 317		goto cleanup3;
 318
 
 
 
 
 319	io_tlb_orig_addr = (phys_addr_t *)
 320		__get_free_pages(GFP_KERNEL,
 321				 get_order(io_tlb_nslabs *
 322					   sizeof(phys_addr_t)));
 323	if (!io_tlb_orig_addr)
 324		goto cleanup4;
 325
 326	for (i = 0; i < io_tlb_nslabs; i++) {
 327		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 328		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 329	}
 330	io_tlb_index = 0;
 331
 332	swiotlb_print_info();
 333
 334	late_alloc = 1;
 335
 336	return 0;
 337
 338cleanup4:
 339	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 340	                                                 sizeof(int)));
 341	io_tlb_list = NULL;
 342cleanup3:
 343	free_pages((unsigned long)v_overflow_buffer,
 344		   get_order(io_tlb_overflow));
 345	io_tlb_overflow_buffer = 0;
 346cleanup2:
 347	io_tlb_end = 0;
 348	io_tlb_start = 0;
 349	io_tlb_nslabs = 0;
 350	return -ENOMEM;
 351}
 352
 353void __init swiotlb_free(void)
 354{
 355	if (!io_tlb_orig_addr)
 356		return;
 357
 358	if (late_alloc) {
 359		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 360			   get_order(io_tlb_overflow));
 361		free_pages((unsigned long)io_tlb_orig_addr,
 362			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 363		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 364								 sizeof(int)));
 365		free_pages((unsigned long)phys_to_virt(io_tlb_start),
 366			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 367	} else {
 368		memblock_free_late(io_tlb_overflow_buffer,
 369				   PAGE_ALIGN(io_tlb_overflow));
 370		memblock_free_late(__pa(io_tlb_orig_addr),
 371				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 372		memblock_free_late(__pa(io_tlb_list),
 373				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 374		memblock_free_late(io_tlb_start,
 375				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 376	}
 377	io_tlb_nslabs = 0;
 378}
 379
 380int is_swiotlb_buffer(phys_addr_t paddr)
 381{
 382	return paddr >= io_tlb_start && paddr < io_tlb_end;
 383}
 384
 385/*
 386 * Bounce: copy the swiotlb buffer back to the original dma location
 387 */
 388static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 389			   size_t size, enum dma_data_direction dir)
 390{
 391	unsigned long pfn = PFN_DOWN(orig_addr);
 392	unsigned char *vaddr = phys_to_virt(tlb_addr);
 393
 394	if (PageHighMem(pfn_to_page(pfn))) {
 395		/* The buffer does not have a mapping.  Map it in and copy */
 396		unsigned int offset = orig_addr & ~PAGE_MASK;
 397		char *buffer;
 398		unsigned int sz = 0;
 399		unsigned long flags;
 400
 401		while (size) {
 402			sz = min_t(size_t, PAGE_SIZE - offset, size);
 403
 404			local_irq_save(flags);
 405			buffer = kmap_atomic(pfn_to_page(pfn));
 406			if (dir == DMA_TO_DEVICE)
 407				memcpy(vaddr, buffer + offset, sz);
 408			else
 409				memcpy(buffer + offset, vaddr, sz);
 410			kunmap_atomic(buffer);
 411			local_irq_restore(flags);
 412
 413			size -= sz;
 414			pfn++;
 415			vaddr += sz;
 416			offset = 0;
 417		}
 418	} else if (dir == DMA_TO_DEVICE) {
 419		memcpy(vaddr, phys_to_virt(orig_addr), size);
 420	} else {
 421		memcpy(phys_to_virt(orig_addr), vaddr, size);
 422	}
 423}
 424
 425phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 426				   dma_addr_t tbl_dma_addr,
 427				   phys_addr_t orig_addr, size_t size,
 428				   enum dma_data_direction dir)
 429{
 430	unsigned long flags;
 431	phys_addr_t tlb_addr;
 432	unsigned int nslots, stride, index, wrap;
 433	int i;
 434	unsigned long mask;
 435	unsigned long offset_slots;
 436	unsigned long max_slots;
 437
 438	if (no_iotlb_memory)
 439		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 440
 441	mask = dma_get_seg_boundary(hwdev);
 442
 443	tbl_dma_addr &= mask;
 444
 445	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 446
 447	/*
 448 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
 449 	 */
 450	max_slots = mask + 1
 451		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 452		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 453
 454	/*
 455	 * For mappings greater than a page, we limit the stride (and
 456	 * hence alignment) to a page size.
 457	 */
 458	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 459	if (size > PAGE_SIZE)
 460		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 461	else
 462		stride = 1;
 463
 464	BUG_ON(!nslots);
 465
 466	/*
 467	 * Find suitable number of IO TLB entries size that will fit this
 468	 * request and allocate a buffer from that IO TLB pool.
 469	 */
 470	spin_lock_irqsave(&io_tlb_lock, flags);
 471	index = ALIGN(io_tlb_index, stride);
 472	if (index >= io_tlb_nslabs)
 473		index = 0;
 474	wrap = index;
 475
 476	do {
 477		while (iommu_is_span_boundary(index, nslots, offset_slots,
 478					      max_slots)) {
 479			index += stride;
 480			if (index >= io_tlb_nslabs)
 481				index = 0;
 482			if (index == wrap)
 483				goto not_found;
 484		}
 485
 486		/*
 487		 * If we find a slot that indicates we have 'nslots' number of
 488		 * contiguous buffers, we allocate the buffers from that slot
 489		 * and mark the entries as '0' indicating unavailable.
 490		 */
 491		if (io_tlb_list[index] >= nslots) {
 492			int count = 0;
 493
 494			for (i = index; i < (int) (index + nslots); i++)
 495				io_tlb_list[i] = 0;
 496			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 497				io_tlb_list[i] = ++count;
 498			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 499
 500			/*
 501			 * Update the indices to avoid searching in the next
 502			 * round.
 503			 */
 504			io_tlb_index = ((index + nslots) < io_tlb_nslabs
 505					? (index + nslots) : 0);
 506
 507			goto found;
 508		}
 509		index += stride;
 510		if (index >= io_tlb_nslabs)
 511			index = 0;
 512	} while (index != wrap);
 513
 514not_found:
 515	spin_unlock_irqrestore(&io_tlb_lock, flags);
 516	if (printk_ratelimit())
 517		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 518	return SWIOTLB_MAP_ERROR;
 519found:
 520	spin_unlock_irqrestore(&io_tlb_lock, flags);
 521
 522	/*
 523	 * Save away the mapping from the original address to the DMA address.
 524	 * This is needed when we sync the memory.  Then we sync the buffer if
 525	 * needed.
 526	 */
 527	for (i = 0; i < nslots; i++)
 528		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 529	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 530		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 531
 532	return tlb_addr;
 533}
 534EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 535
 536/*
 537 * Allocates bounce buffer and returns its kernel virtual address.
 538 */
 539
 540static phys_addr_t
 541map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 542	   enum dma_data_direction dir)
 543{
 544	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
 545
 546	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
 547}
 548
 549/*
 550 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 551 */
 552void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 553			      size_t size, enum dma_data_direction dir)
 554{
 555	unsigned long flags;
 556	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 557	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 558	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 559
 560	/*
 561	 * First, sync the memory before unmapping the entry
 562	 */
 563	if (orig_addr != INVALID_PHYS_ADDR &&
 564	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 565		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 566
 567	/*
 568	 * Return the buffer to the free list by setting the corresponding
 569	 * entries to indicate the number of contiguous entries available.
 570	 * While returning the entries to the free list, we merge the entries
 571	 * with slots below and above the pool being returned.
 572	 */
 573	spin_lock_irqsave(&io_tlb_lock, flags);
 574	{
 575		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 576			 io_tlb_list[index + nslots] : 0);
 577		/*
 578		 * Step 1: return the slots to the free list, merging the
 579		 * slots with superceeding slots
 580		 */
 581		for (i = index + nslots - 1; i >= index; i--) {
 582			io_tlb_list[i] = ++count;
 583			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 584		}
 585		/*
 586		 * Step 2: merge the returned slots with the preceding slots,
 587		 * if available (non zero)
 588		 */
 589		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 590			io_tlb_list[i] = ++count;
 591	}
 592	spin_unlock_irqrestore(&io_tlb_lock, flags);
 593}
 594EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 595
 596void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 597			     size_t size, enum dma_data_direction dir,
 598			     enum dma_sync_target target)
 599{
 600	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 601	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 602
 603	if (orig_addr == INVALID_PHYS_ADDR)
 604		return;
 605	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 606
 607	switch (target) {
 608	case SYNC_FOR_CPU:
 609		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 610			swiotlb_bounce(orig_addr, tlb_addr,
 611				       size, DMA_FROM_DEVICE);
 612		else
 613			BUG_ON(dir != DMA_TO_DEVICE);
 614		break;
 615	case SYNC_FOR_DEVICE:
 616		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 617			swiotlb_bounce(orig_addr, tlb_addr,
 618				       size, DMA_TO_DEVICE);
 619		else
 620			BUG_ON(dir != DMA_FROM_DEVICE);
 621		break;
 622	default:
 623		BUG();
 624	}
 625}
 626EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 627
 628void *
 629swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 630		       dma_addr_t *dma_handle, gfp_t flags)
 631{
 632	dma_addr_t dev_addr;
 633	void *ret;
 634	int order = get_order(size);
 635	u64 dma_mask = DMA_BIT_MASK(32);
 636
 637	if (hwdev && hwdev->coherent_dma_mask)
 638		dma_mask = hwdev->coherent_dma_mask;
 639
 640	ret = (void *)__get_free_pages(flags, order);
 641	if (ret) {
 642		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 643		if (dev_addr + size - 1 > dma_mask) {
 644			/*
 645			 * The allocated memory isn't reachable by the device.
 646			 */
 647			free_pages((unsigned long) ret, order);
 648			ret = NULL;
 649		}
 650	}
 651	if (!ret) {
 652		/*
 653		 * We are either out of memory or the device can't DMA to
 654		 * GFP_DMA memory; fall back on map_single(), which
 655		 * will grab memory from the lowest available address range.
 656		 */
 657		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
 658		if (paddr == SWIOTLB_MAP_ERROR)
 659			goto err_warn;
 660
 661		ret = phys_to_virt(paddr);
 662		dev_addr = phys_to_dma(hwdev, paddr);
 663
 664		/* Confirm address can be DMA'd by device */
 665		if (dev_addr + size - 1 > dma_mask) {
 666			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 667			       (unsigned long long)dma_mask,
 668			       (unsigned long long)dev_addr);
 669
 670			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 671			swiotlb_tbl_unmap_single(hwdev, paddr,
 672						 size, DMA_TO_DEVICE);
 673			goto err_warn;
 674		}
 675	}
 676
 677	*dma_handle = dev_addr;
 678	memset(ret, 0, size);
 679
 680	return ret;
 681
 682err_warn:
 683	pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 684		dev_name(hwdev), size);
 685	dump_stack();
 686
 687	return NULL;
 688}
 689EXPORT_SYMBOL(swiotlb_alloc_coherent);
 690
 691void
 692swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 693		      dma_addr_t dev_addr)
 694{
 695	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 696
 697	WARN_ON(irqs_disabled());
 698	if (!is_swiotlb_buffer(paddr))
 699		free_pages((unsigned long)vaddr, get_order(size));
 700	else
 701		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
 702		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
 703}
 704EXPORT_SYMBOL(swiotlb_free_coherent);
 705
 706static void
 707swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 708	     int do_panic)
 709{
 710	/*
 711	 * Ran out of IOMMU space for this operation. This is very bad.
 712	 * Unfortunately the drivers cannot handle this operation properly.
 713	 * unless they check for dma_mapping_error (most don't)
 714	 * When the mapping is small enough return a static buffer to limit
 715	 * the damage, or panic when the transfer is too big.
 716	 */
 717	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
 718	       "device %s\n", size, dev ? dev_name(dev) : "?");
 719
 720	if (size <= io_tlb_overflow || !do_panic)
 721		return;
 722
 723	if (dir == DMA_BIDIRECTIONAL)
 724		panic("DMA: Random memory could be DMA accessed\n");
 725	if (dir == DMA_FROM_DEVICE)
 726		panic("DMA: Random memory could be DMA written\n");
 727	if (dir == DMA_TO_DEVICE)
 728		panic("DMA: Random memory could be DMA read\n");
 729}
 730
 731/*
 732 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 733 * physical address to use is returned.
 734 *
 735 * Once the device is given the dma address, the device owns this memory until
 736 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 737 */
 738dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 739			    unsigned long offset, size_t size,
 740			    enum dma_data_direction dir,
 741			    struct dma_attrs *attrs)
 742{
 743	phys_addr_t map, phys = page_to_phys(page) + offset;
 744	dma_addr_t dev_addr = phys_to_dma(dev, phys);
 745
 746	BUG_ON(dir == DMA_NONE);
 747	/*
 748	 * If the address happens to be in the device's DMA window,
 749	 * we can safely return the device addr and not worry about bounce
 750	 * buffering it.
 751	 */
 752	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
 753		return dev_addr;
 754
 755	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 756
 757	/* Oh well, have to allocate and map a bounce buffer. */
 758	map = map_single(dev, phys, size, dir);
 759	if (map == SWIOTLB_MAP_ERROR) {
 760		swiotlb_full(dev, size, dir, 1);
 761		return phys_to_dma(dev, io_tlb_overflow_buffer);
 762	}
 763
 764	dev_addr = phys_to_dma(dev, map);
 765
 766	/* Ensure that the address returned is DMA'ble */
 767	if (!dma_capable(dev, dev_addr, size)) {
 768		swiotlb_tbl_unmap_single(dev, map, size, dir);
 769		return phys_to_dma(dev, io_tlb_overflow_buffer);
 770	}
 771
 772	return dev_addr;
 773}
 774EXPORT_SYMBOL_GPL(swiotlb_map_page);
 775
 776/*
 777 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 778 * match what was provided for in a previous swiotlb_map_page call.  All
 779 * other usages are undefined.
 780 *
 781 * After this call, reads by the cpu to the buffer are guaranteed to see
 782 * whatever the device wrote there.
 783 */
 784static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 785			 size_t size, enum dma_data_direction dir)
 786{
 787	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 788
 789	BUG_ON(dir == DMA_NONE);
 790
 791	if (is_swiotlb_buffer(paddr)) {
 792		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
 793		return;
 794	}
 795
 796	if (dir != DMA_FROM_DEVICE)
 797		return;
 798
 799	/*
 800	 * phys_to_virt doesn't work with hihgmem page but we could
 801	 * call dma_mark_clean() with hihgmem page here. However, we
 802	 * are fine since dma_mark_clean() is null on POWERPC. We can
 803	 * make dma_mark_clean() take a physical address if necessary.
 804	 */
 805	dma_mark_clean(phys_to_virt(paddr), size);
 806}
 807
 808void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 809			size_t size, enum dma_data_direction dir,
 810			struct dma_attrs *attrs)
 811{
 812	unmap_single(hwdev, dev_addr, size, dir);
 813}
 814EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 815
 816/*
 817 * Make physical memory consistent for a single streaming mode DMA translation
 818 * after a transfer.
 819 *
 820 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 821 * using the cpu, yet do not wish to teardown the dma mapping, you must
 822 * call this function before doing so.  At the next point you give the dma
 823 * address back to the card, you must first perform a
 824 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 825 */
 826static void
 827swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 828		    size_t size, enum dma_data_direction dir,
 829		    enum dma_sync_target target)
 830{
 831	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 832
 833	BUG_ON(dir == DMA_NONE);
 834
 835	if (is_swiotlb_buffer(paddr)) {
 836		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 837		return;
 838	}
 839
 840	if (dir != DMA_FROM_DEVICE)
 841		return;
 842
 843	dma_mark_clean(phys_to_virt(paddr), size);
 844}
 845
 846void
 847swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 848			    size_t size, enum dma_data_direction dir)
 849{
 850	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 851}
 852EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 853
 854void
 855swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 856			       size_t size, enum dma_data_direction dir)
 857{
 858	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 859}
 860EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 861
 862/*
 863 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 864 * This is the scatter-gather version of the above swiotlb_map_page
 865 * interface.  Here the scatter gather list elements are each tagged with the
 866 * appropriate dma address and length.  They are obtained via
 867 * sg_dma_{address,length}(SG).
 868 *
 869 * NOTE: An implementation may be able to use a smaller number of
 870 *       DMA address/length pairs than there are SG table elements.
 871 *       (for example via virtual mapping capabilities)
 872 *       The routine returns the number of addr/length pairs actually
 873 *       used, at most nents.
 874 *
 875 * Device ownership issues as mentioned above for swiotlb_map_page are the
 876 * same here.
 877 */
 878int
 879swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 880		     enum dma_data_direction dir, struct dma_attrs *attrs)
 881{
 882	struct scatterlist *sg;
 883	int i;
 884
 885	BUG_ON(dir == DMA_NONE);
 886
 887	for_each_sg(sgl, sg, nelems, i) {
 888		phys_addr_t paddr = sg_phys(sg);
 889		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 890
 891		if (swiotlb_force ||
 892		    !dma_capable(hwdev, dev_addr, sg->length)) {
 893			phys_addr_t map = map_single(hwdev, sg_phys(sg),
 894						     sg->length, dir);
 895			if (map == SWIOTLB_MAP_ERROR) {
 896				/* Don't panic here, we expect map_sg users
 897				   to do proper error handling. */
 898				swiotlb_full(hwdev, sg->length, dir, 0);
 899				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 900						       attrs);
 901				sg_dma_len(sgl) = 0;
 902				return 0;
 903			}
 904			sg->dma_address = phys_to_dma(hwdev, map);
 905		} else
 906			sg->dma_address = dev_addr;
 907		sg_dma_len(sg) = sg->length;
 908	}
 909	return nelems;
 910}
 911EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 912
 913int
 914swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 915	       enum dma_data_direction dir)
 916{
 917	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 918}
 919EXPORT_SYMBOL(swiotlb_map_sg);
 920
 921/*
 922 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 923 * concerning calls here are the same as for swiotlb_unmap_page() above.
 924 */
 925void
 926swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 927		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
 928{
 929	struct scatterlist *sg;
 930	int i;
 931
 932	BUG_ON(dir == DMA_NONE);
 933
 934	for_each_sg(sgl, sg, nelems, i)
 935		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
 936
 937}
 938EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 939
 940void
 941swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 942		 enum dma_data_direction dir)
 943{
 944	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 945}
 946EXPORT_SYMBOL(swiotlb_unmap_sg);
 947
 948/*
 949 * Make physical memory consistent for a set of streaming mode DMA translations
 950 * after a transfer.
 951 *
 952 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 953 * and usage.
 954 */
 955static void
 956swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 957		int nelems, enum dma_data_direction dir,
 958		enum dma_sync_target target)
 959{
 960	struct scatterlist *sg;
 961	int i;
 962
 963	for_each_sg(sgl, sg, nelems, i)
 964		swiotlb_sync_single(hwdev, sg->dma_address,
 965				    sg_dma_len(sg), dir, target);
 966}
 967
 968void
 969swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 970			int nelems, enum dma_data_direction dir)
 971{
 972	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 973}
 974EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
 975
 976void
 977swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 978			   int nelems, enum dma_data_direction dir)
 979{
 980	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 981}
 982EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
 983
 984int
 985swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 986{
 987	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
 988}
 989EXPORT_SYMBOL(swiotlb_dma_mapping_error);
 990
 991/*
 992 * Return whether the given device DMA address mask can be supported
 993 * properly.  For example, if your device can only drive the low 24-bits
 994 * during bus mastering, then you would pass 0x00ffffff as the mask to
 995 * this function.
 996 */
 997int
 998swiotlb_dma_supported(struct device *hwdev, u64 mask)
 999{
1000	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1001}
1002EXPORT_SYMBOL(swiotlb_dma_supported);