Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v3.15
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
 
  27	help
  28	  This options enables the fips boot option which is
  29	  required if you want to system to operate in a FIPS 200
  30	  certification.  You should say no unless you know what
  31	  this is.
  32
  33config CRYPTO_ALGAPI
  34	tristate
  35	select CRYPTO_ALGAPI2
  36	help
  37	  This option provides the API for cryptographic algorithms.
  38
  39config CRYPTO_ALGAPI2
  40	tristate
  41
  42config CRYPTO_AEAD
  43	tristate
  44	select CRYPTO_AEAD2
  45	select CRYPTO_ALGAPI
  46
  47config CRYPTO_AEAD2
  48	tristate
  49	select CRYPTO_ALGAPI2
 
 
  50
  51config CRYPTO_BLKCIPHER
  52	tristate
  53	select CRYPTO_BLKCIPHER2
  54	select CRYPTO_ALGAPI
  55
  56config CRYPTO_BLKCIPHER2
  57	tristate
  58	select CRYPTO_ALGAPI2
  59	select CRYPTO_RNG2
  60	select CRYPTO_WORKQUEUE
  61
  62config CRYPTO_HASH
  63	tristate
  64	select CRYPTO_HASH2
  65	select CRYPTO_ALGAPI
  66
  67config CRYPTO_HASH2
  68	tristate
  69	select CRYPTO_ALGAPI2
  70
  71config CRYPTO_RNG
  72	tristate
  73	select CRYPTO_RNG2
  74	select CRYPTO_ALGAPI
  75
  76config CRYPTO_RNG2
  77	tristate
  78	select CRYPTO_ALGAPI2
  79
  80config CRYPTO_PCOMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81	tristate
  82	select CRYPTO_PCOMP2
  83	select CRYPTO_ALGAPI
 
  84
  85config CRYPTO_PCOMP2
  86	tristate
  87	select CRYPTO_ALGAPI2
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89config CRYPTO_MANAGER
  90	tristate "Cryptographic algorithm manager"
  91	select CRYPTO_MANAGER2
  92	help
  93	  Create default cryptographic template instantiations such as
  94	  cbc(aes).
  95
  96config CRYPTO_MANAGER2
  97	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  98	select CRYPTO_AEAD2
  99	select CRYPTO_HASH2
 100	select CRYPTO_BLKCIPHER2
 101	select CRYPTO_PCOMP2
 
 
 102
 103config CRYPTO_USER
 104	tristate "Userspace cryptographic algorithm configuration"
 105	depends on NET
 106	select CRYPTO_MANAGER
 107	help
 108	  Userspace configuration for cryptographic instantiations such as
 109	  cbc(aes).
 110
 111config CRYPTO_MANAGER_DISABLE_TESTS
 112	bool "Disable run-time self tests"
 113	default y
 114	depends on CRYPTO_MANAGER2
 115	help
 116	  Disable run-time self tests that normally take place at
 117	  algorithm registration.
 118
 119config CRYPTO_GF128MUL
 120	tristate "GF(2^128) multiplication functions"
 121	help
 122	  Efficient table driven implementation of multiplications in the
 123	  field GF(2^128).  This is needed by some cypher modes. This
 124	  option will be selected automatically if you select such a
 125	  cipher mode.  Only select this option by hand if you expect to load
 126	  an external module that requires these functions.
 127
 128config CRYPTO_NULL
 129	tristate "Null algorithms"
 130	select CRYPTO_ALGAPI
 131	select CRYPTO_BLKCIPHER
 132	select CRYPTO_HASH
 133	help
 134	  These are 'Null' algorithms, used by IPsec, which do nothing.
 135
 
 
 
 
 
 
 136config CRYPTO_PCRYPT
 137	tristate "Parallel crypto engine"
 138	depends on SMP
 139	select PADATA
 140	select CRYPTO_MANAGER
 141	select CRYPTO_AEAD
 142	help
 143	  This converts an arbitrary crypto algorithm into a parallel
 144	  algorithm that executes in kernel threads.
 145
 146config CRYPTO_WORKQUEUE
 147       tristate
 148
 149config CRYPTO_CRYPTD
 150	tristate "Software async crypto daemon"
 151	select CRYPTO_BLKCIPHER
 152	select CRYPTO_HASH
 153	select CRYPTO_MANAGER
 154	select CRYPTO_WORKQUEUE
 155	help
 156	  This is a generic software asynchronous crypto daemon that
 157	  converts an arbitrary synchronous software crypto algorithm
 158	  into an asynchronous algorithm that executes in a kernel thread.
 159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160config CRYPTO_AUTHENC
 161	tristate "Authenc support"
 162	select CRYPTO_AEAD
 163	select CRYPTO_BLKCIPHER
 164	select CRYPTO_MANAGER
 165	select CRYPTO_HASH
 
 166	help
 167	  Authenc: Combined mode wrapper for IPsec.
 168	  This is required for IPSec.
 169
 170config CRYPTO_TEST
 171	tristate "Testing module"
 172	depends on m
 173	select CRYPTO_MANAGER
 174	help
 175	  Quick & dirty crypto test module.
 176
 177config CRYPTO_ABLK_HELPER
 178	tristate
 179	select CRYPTO_CRYPTD
 180
 
 
 
 
 181config CRYPTO_GLUE_HELPER_X86
 182	tristate
 183	depends on X86
 184	select CRYPTO_ALGAPI
 
 
 
 185
 186comment "Authenticated Encryption with Associated Data"
 187
 188config CRYPTO_CCM
 189	tristate "CCM support"
 190	select CRYPTO_CTR
 191	select CRYPTO_AEAD
 192	help
 193	  Support for Counter with CBC MAC. Required for IPsec.
 194
 195config CRYPTO_GCM
 196	tristate "GCM/GMAC support"
 197	select CRYPTO_CTR
 198	select CRYPTO_AEAD
 199	select CRYPTO_GHASH
 200	select CRYPTO_NULL
 201	help
 202	  Support for Galois/Counter Mode (GCM) and Galois Message
 203	  Authentication Code (GMAC). Required for IPSec.
 204
 
 
 
 
 
 
 
 
 
 
 
 
 205config CRYPTO_SEQIV
 206	tristate "Sequence Number IV Generator"
 207	select CRYPTO_AEAD
 208	select CRYPTO_BLKCIPHER
 209	select CRYPTO_RNG
 
 210	help
 211	  This IV generator generates an IV based on a sequence number by
 212	  xoring it with a salt.  This algorithm is mainly useful for CTR
 213
 
 
 
 
 
 
 
 
 
 
 
 214comment "Block modes"
 215
 216config CRYPTO_CBC
 217	tristate "CBC support"
 218	select CRYPTO_BLKCIPHER
 219	select CRYPTO_MANAGER
 220	help
 221	  CBC: Cipher Block Chaining mode
 222	  This block cipher algorithm is required for IPSec.
 223
 224config CRYPTO_CTR
 225	tristate "CTR support"
 226	select CRYPTO_BLKCIPHER
 227	select CRYPTO_SEQIV
 228	select CRYPTO_MANAGER
 229	help
 230	  CTR: Counter mode
 231	  This block cipher algorithm is required for IPSec.
 232
 233config CRYPTO_CTS
 234	tristate "CTS support"
 235	select CRYPTO_BLKCIPHER
 236	help
 237	  CTS: Cipher Text Stealing
 238	  This is the Cipher Text Stealing mode as described by
 239	  Section 8 of rfc2040 and referenced by rfc3962.
 240	  (rfc3962 includes errata information in its Appendix A)
 241	  This mode is required for Kerberos gss mechanism support
 242	  for AES encryption.
 243
 244config CRYPTO_ECB
 245	tristate "ECB support"
 246	select CRYPTO_BLKCIPHER
 247	select CRYPTO_MANAGER
 248	help
 249	  ECB: Electronic CodeBook mode
 250	  This is the simplest block cipher algorithm.  It simply encrypts
 251	  the input block by block.
 252
 253config CRYPTO_LRW
 254	tristate "LRW support"
 255	select CRYPTO_BLKCIPHER
 256	select CRYPTO_MANAGER
 257	select CRYPTO_GF128MUL
 258	help
 259	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 260	  narrow block cipher mode for dm-crypt.  Use it with cipher
 261	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 262	  The first 128, 192 or 256 bits in the key are used for AES and the
 263	  rest is used to tie each cipher block to its logical position.
 264
 265config CRYPTO_PCBC
 266	tristate "PCBC support"
 267	select CRYPTO_BLKCIPHER
 268	select CRYPTO_MANAGER
 269	help
 270	  PCBC: Propagating Cipher Block Chaining mode
 271	  This block cipher algorithm is required for RxRPC.
 272
 273config CRYPTO_XTS
 274	tristate "XTS support"
 275	select CRYPTO_BLKCIPHER
 276	select CRYPTO_MANAGER
 277	select CRYPTO_GF128MUL
 
 278	help
 279	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 280	  key size 256, 384 or 512 bits. This implementation currently
 281	  can't handle a sectorsize which is not a multiple of 16 bytes.
 282
 
 
 
 
 
 
 
 283comment "Hash modes"
 284
 285config CRYPTO_CMAC
 286	tristate "CMAC support"
 287	select CRYPTO_HASH
 288	select CRYPTO_MANAGER
 289	help
 290	  Cipher-based Message Authentication Code (CMAC) specified by
 291	  The National Institute of Standards and Technology (NIST).
 292
 293	  https://tools.ietf.org/html/rfc4493
 294	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 295
 296config CRYPTO_HMAC
 297	tristate "HMAC support"
 298	select CRYPTO_HASH
 299	select CRYPTO_MANAGER
 300	help
 301	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 302	  This is required for IPSec.
 303
 304config CRYPTO_XCBC
 305	tristate "XCBC support"
 306	select CRYPTO_HASH
 307	select CRYPTO_MANAGER
 308	help
 309	  XCBC: Keyed-Hashing with encryption algorithm
 310		http://www.ietf.org/rfc/rfc3566.txt
 311		http://csrc.nist.gov/encryption/modes/proposedmodes/
 312		 xcbc-mac/xcbc-mac-spec.pdf
 313
 314config CRYPTO_VMAC
 315	tristate "VMAC support"
 316	select CRYPTO_HASH
 317	select CRYPTO_MANAGER
 318	help
 319	  VMAC is a message authentication algorithm designed for
 320	  very high speed on 64-bit architectures.
 321
 322	  See also:
 323	  <http://fastcrypto.org/vmac>
 324
 325comment "Digest"
 326
 327config CRYPTO_CRC32C
 328	tristate "CRC32c CRC algorithm"
 329	select CRYPTO_HASH
 330	select CRC32
 331	help
 332	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 333	  by iSCSI for header and data digests and by others.
 334	  See Castagnoli93.  Module will be crc32c.
 335
 336config CRYPTO_CRC32C_INTEL
 337	tristate "CRC32c INTEL hardware acceleration"
 338	depends on X86
 339	select CRYPTO_HASH
 340	help
 341	  In Intel processor with SSE4.2 supported, the processor will
 342	  support CRC32C implementation using hardware accelerated CRC32
 343	  instruction. This option will create 'crc32c-intel' module,
 344	  which will enable any routine to use the CRC32 instruction to
 345	  gain performance compared with software implementation.
 346	  Module will be crc32c-intel.
 347
 
 
 
 
 
 
 
 
 
 
 
 348config CRYPTO_CRC32C_SPARC64
 349	tristate "CRC32c CRC algorithm (SPARC64)"
 350	depends on SPARC64
 351	select CRYPTO_HASH
 352	select CRC32
 353	help
 354	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 355	  when available.
 356
 357config CRYPTO_CRC32
 358	tristate "CRC32 CRC algorithm"
 359	select CRYPTO_HASH
 360	select CRC32
 361	help
 362	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 363	  Shash crypto api wrappers to crc32_le function.
 364
 365config CRYPTO_CRC32_PCLMUL
 366	tristate "CRC32 PCLMULQDQ hardware acceleration"
 367	depends on X86
 368	select CRYPTO_HASH
 369	select CRC32
 370	help
 371	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 372	  and PCLMULQDQ supported, the processor will support
 373	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 374	  instruction. This option will create 'crc32-plcmul' module,
 375	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 376	  and gain better performance as compared with the table implementation.
 377
 378config CRYPTO_CRCT10DIF
 379	tristate "CRCT10DIF algorithm"
 380	select CRYPTO_HASH
 381	help
 382	  CRC T10 Data Integrity Field computation is being cast as
 383	  a crypto transform.  This allows for faster crc t10 diff
 384	  transforms to be used if they are available.
 385
 386config CRYPTO_CRCT10DIF_PCLMUL
 387	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 388	depends on X86 && 64BIT && CRC_T10DIF
 389	select CRYPTO_HASH
 390	help
 391	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 392	  CRC T10 DIF PCLMULQDQ computation can be hardware
 393	  accelerated PCLMULQDQ instruction. This option will create
 394	  'crct10dif-plcmul' module, which is faster when computing the
 395	  crct10dif checksum as compared with the generic table implementation.
 396
 397config CRYPTO_GHASH
 398	tristate "GHASH digest algorithm"
 399	select CRYPTO_GF128MUL
 
 400	help
 401	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403config CRYPTO_MD4
 404	tristate "MD4 digest algorithm"
 405	select CRYPTO_HASH
 406	help
 407	  MD4 message digest algorithm (RFC1320).
 408
 409config CRYPTO_MD5
 410	tristate "MD5 digest algorithm"
 411	select CRYPTO_HASH
 412	help
 413	  MD5 message digest algorithm (RFC1321).
 414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415config CRYPTO_MD5_SPARC64
 416	tristate "MD5 digest algorithm (SPARC64)"
 417	depends on SPARC64
 418	select CRYPTO_MD5
 419	select CRYPTO_HASH
 420	help
 421	  MD5 message digest algorithm (RFC1321) implemented
 422	  using sparc64 crypto instructions, when available.
 423
 424config CRYPTO_MICHAEL_MIC
 425	tristate "Michael MIC keyed digest algorithm"
 426	select CRYPTO_HASH
 427	help
 428	  Michael MIC is used for message integrity protection in TKIP
 429	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 430	  should not be used for other purposes because of the weakness
 431	  of the algorithm.
 432
 433config CRYPTO_RMD128
 434	tristate "RIPEMD-128 digest algorithm"
 435	select CRYPTO_HASH
 436	help
 437	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 438
 439	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 440	  be used as a secure replacement for RIPEMD. For other use cases,
 441	  RIPEMD-160 should be used.
 442
 443	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 444	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 445
 446config CRYPTO_RMD160
 447	tristate "RIPEMD-160 digest algorithm"
 448	select CRYPTO_HASH
 449	help
 450	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 451
 452	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 453	  to be used as a secure replacement for the 128-bit hash functions
 454	  MD4, MD5 and it's predecessor RIPEMD
 455	  (not to be confused with RIPEMD-128).
 456
 457	  It's speed is comparable to SHA1 and there are no known attacks
 458	  against RIPEMD-160.
 459
 460	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 461	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 462
 463config CRYPTO_RMD256
 464	tristate "RIPEMD-256 digest algorithm"
 465	select CRYPTO_HASH
 466	help
 467	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 468	  256 bit hash. It is intended for applications that require
 469	  longer hash-results, without needing a larger security level
 470	  (than RIPEMD-128).
 471
 472	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 473	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 474
 475config CRYPTO_RMD320
 476	tristate "RIPEMD-320 digest algorithm"
 477	select CRYPTO_HASH
 478	help
 479	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 480	  320 bit hash. It is intended for applications that require
 481	  longer hash-results, without needing a larger security level
 482	  (than RIPEMD-160).
 483
 484	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 485	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 486
 487config CRYPTO_SHA1
 488	tristate "SHA1 digest algorithm"
 489	select CRYPTO_HASH
 490	help
 491	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 492
 493config CRYPTO_SHA1_SSSE3
 494	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
 495	depends on X86 && 64BIT
 496	select CRYPTO_SHA1
 497	select CRYPTO_HASH
 498	help
 499	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 500	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 501	  Extensions (AVX/AVX2), when available.
 
 502
 503config CRYPTO_SHA256_SSSE3
 504	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
 505	depends on X86 && 64BIT
 506	select CRYPTO_SHA256
 507	select CRYPTO_HASH
 508	help
 509	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 510	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 511	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 512	  version 2 (AVX2) instructions, when available.
 
 513
 514config CRYPTO_SHA512_SSSE3
 515	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 516	depends on X86 && 64BIT
 517	select CRYPTO_SHA512
 518	select CRYPTO_HASH
 519	help
 520	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 521	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 522	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 523	  version 2 (AVX2) instructions, when available.
 524
 525config CRYPTO_SHA1_SPARC64
 526	tristate "SHA1 digest algorithm (SPARC64)"
 527	depends on SPARC64
 528	select CRYPTO_SHA1
 529	select CRYPTO_HASH
 530	help
 531	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 532	  using sparc64 crypto instructions, when available.
 533
 534config CRYPTO_SHA1_ARM
 535	tristate "SHA1 digest algorithm (ARM-asm)"
 536	depends on ARM
 537	select CRYPTO_SHA1
 538	select CRYPTO_HASH
 539	help
 540	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 541	  using optimized ARM assembler.
 542
 543config CRYPTO_SHA1_PPC
 544	tristate "SHA1 digest algorithm (powerpc)"
 545	depends on PPC
 546	help
 547	  This is the powerpc hardware accelerated implementation of the
 548	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550config CRYPTO_SHA256
 551	tristate "SHA224 and SHA256 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  SHA256 secure hash standard (DFIPS 180-2).
 555
 556	  This version of SHA implements a 256 bit hash with 128 bits of
 557	  security against collision attacks.
 558
 559	  This code also includes SHA-224, a 224 bit hash with 112 bits
 560	  of security against collision attacks.
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562config CRYPTO_SHA256_SPARC64
 563	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 564	depends on SPARC64
 565	select CRYPTO_SHA256
 566	select CRYPTO_HASH
 567	help
 568	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 569	  using sparc64 crypto instructions, when available.
 570
 571config CRYPTO_SHA512
 572	tristate "SHA384 and SHA512 digest algorithms"
 573	select CRYPTO_HASH
 574	help
 575	  SHA512 secure hash standard (DFIPS 180-2).
 576
 577	  This version of SHA implements a 512 bit hash with 256 bits of
 578	  security against collision attacks.
 579
 580	  This code also includes SHA-384, a 384 bit hash with 192 bits
 581	  of security against collision attacks.
 582
 
 
 
 
 
 
 
 
 
 583config CRYPTO_SHA512_SPARC64
 584	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 585	depends on SPARC64
 586	select CRYPTO_SHA512
 587	select CRYPTO_HASH
 588	help
 589	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 590	  using sparc64 crypto instructions, when available.
 591
 
 
 
 
 
 
 
 
 
 
 592config CRYPTO_TGR192
 593	tristate "Tiger digest algorithms"
 594	select CRYPTO_HASH
 595	help
 596	  Tiger hash algorithm 192, 160 and 128-bit hashes
 597
 598	  Tiger is a hash function optimized for 64-bit processors while
 599	  still having decent performance on 32-bit processors.
 600	  Tiger was developed by Ross Anderson and Eli Biham.
 601
 602	  See also:
 603	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 604
 605config CRYPTO_WP512
 606	tristate "Whirlpool digest algorithms"
 607	select CRYPTO_HASH
 608	help
 609	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 610
 611	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 612	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 613
 614	  See also:
 615	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 616
 617config CRYPTO_GHASH_CLMUL_NI_INTEL
 618	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 619	depends on X86 && 64BIT
 620	select CRYPTO_CRYPTD
 621	help
 622	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 623	  The implementation is accelerated by CLMUL-NI of Intel.
 624
 625comment "Ciphers"
 626
 627config CRYPTO_AES
 628	tristate "AES cipher algorithms"
 629	select CRYPTO_ALGAPI
 630	help
 631	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 632	  algorithm.
 633
 634	  Rijndael appears to be consistently a very good performer in
 635	  both hardware and software across a wide range of computing
 636	  environments regardless of its use in feedback or non-feedback
 637	  modes. Its key setup time is excellent, and its key agility is
 638	  good. Rijndael's very low memory requirements make it very well
 639	  suited for restricted-space environments, in which it also
 640	  demonstrates excellent performance. Rijndael's operations are
 641	  among the easiest to defend against power and timing attacks.
 642
 643	  The AES specifies three key sizes: 128, 192 and 256 bits
 644
 645	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 646
 647config CRYPTO_AES_586
 648	tristate "AES cipher algorithms (i586)"
 649	depends on (X86 || UML_X86) && !64BIT
 650	select CRYPTO_ALGAPI
 651	select CRYPTO_AES
 652	help
 653	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 654	  algorithm.
 655
 656	  Rijndael appears to be consistently a very good performer in
 657	  both hardware and software across a wide range of computing
 658	  environments regardless of its use in feedback or non-feedback
 659	  modes. Its key setup time is excellent, and its key agility is
 660	  good. Rijndael's very low memory requirements make it very well
 661	  suited for restricted-space environments, in which it also
 662	  demonstrates excellent performance. Rijndael's operations are
 663	  among the easiest to defend against power and timing attacks.
 664
 665	  The AES specifies three key sizes: 128, 192 and 256 bits
 666
 667	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 668
 669config CRYPTO_AES_X86_64
 670	tristate "AES cipher algorithms (x86_64)"
 671	depends on (X86 || UML_X86) && 64BIT
 672	select CRYPTO_ALGAPI
 673	select CRYPTO_AES
 674	help
 675	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 676	  algorithm.
 677
 678	  Rijndael appears to be consistently a very good performer in
 679	  both hardware and software across a wide range of computing
 680	  environments regardless of its use in feedback or non-feedback
 681	  modes. Its key setup time is excellent, and its key agility is
 682	  good. Rijndael's very low memory requirements make it very well
 683	  suited for restricted-space environments, in which it also
 684	  demonstrates excellent performance. Rijndael's operations are
 685	  among the easiest to defend against power and timing attacks.
 686
 687	  The AES specifies three key sizes: 128, 192 and 256 bits
 688
 689	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 690
 691config CRYPTO_AES_NI_INTEL
 692	tristate "AES cipher algorithms (AES-NI)"
 693	depends on X86
 
 694	select CRYPTO_AES_X86_64 if 64BIT
 695	select CRYPTO_AES_586 if !64BIT
 696	select CRYPTO_CRYPTD
 697	select CRYPTO_ABLK_HELPER
 698	select CRYPTO_ALGAPI
 
 699	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 700	select CRYPTO_LRW
 701	select CRYPTO_XTS
 702	help
 703	  Use Intel AES-NI instructions for AES algorithm.
 704
 705	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 706	  algorithm.
 707
 708	  Rijndael appears to be consistently a very good performer in
 709	  both hardware and software across a wide range of computing
 710	  environments regardless of its use in feedback or non-feedback
 711	  modes. Its key setup time is excellent, and its key agility is
 712	  good. Rijndael's very low memory requirements make it very well
 713	  suited for restricted-space environments, in which it also
 714	  demonstrates excellent performance. Rijndael's operations are
 715	  among the easiest to defend against power and timing attacks.
 716
 717	  The AES specifies three key sizes: 128, 192 and 256 bits
 718
 719	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 720
 721	  In addition to AES cipher algorithm support, the acceleration
 722	  for some popular block cipher mode is supported too, including
 723	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 724	  acceleration for CTR.
 725
 726config CRYPTO_AES_SPARC64
 727	tristate "AES cipher algorithms (SPARC64)"
 728	depends on SPARC64
 729	select CRYPTO_CRYPTD
 730	select CRYPTO_ALGAPI
 731	help
 732	  Use SPARC64 crypto opcodes for AES algorithm.
 733
 734	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 735	  algorithm.
 736
 737	  Rijndael appears to be consistently a very good performer in
 738	  both hardware and software across a wide range of computing
 739	  environments regardless of its use in feedback or non-feedback
 740	  modes. Its key setup time is excellent, and its key agility is
 741	  good. Rijndael's very low memory requirements make it very well
 742	  suited for restricted-space environments, in which it also
 743	  demonstrates excellent performance. Rijndael's operations are
 744	  among the easiest to defend against power and timing attacks.
 745
 746	  The AES specifies three key sizes: 128, 192 and 256 bits
 747
 748	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 749
 750	  In addition to AES cipher algorithm support, the acceleration
 751	  for some popular block cipher mode is supported too, including
 752	  ECB and CBC.
 753
 754config CRYPTO_AES_ARM
 755	tristate "AES cipher algorithms (ARM-asm)"
 756	depends on ARM
 757	select CRYPTO_ALGAPI
 758	select CRYPTO_AES
 759	help
 760	  Use optimized AES assembler routines for ARM platforms.
 761
 762	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 763	  algorithm.
 764
 765	  Rijndael appears to be consistently a very good performer in
 766	  both hardware and software across a wide range of computing
 767	  environments regardless of its use in feedback or non-feedback
 768	  modes. Its key setup time is excellent, and its key agility is
 769	  good. Rijndael's very low memory requirements make it very well
 770	  suited for restricted-space environments, in which it also
 771	  demonstrates excellent performance. Rijndael's operations are
 772	  among the easiest to defend against power and timing attacks.
 773
 774	  The AES specifies three key sizes: 128, 192 and 256 bits
 775
 776	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 777
 778config CRYPTO_AES_ARM_BS
 779	tristate "Bit sliced AES using NEON instructions"
 780	depends on ARM && KERNEL_MODE_NEON
 781	select CRYPTO_ALGAPI
 782	select CRYPTO_AES_ARM
 783	select CRYPTO_ABLK_HELPER
 784	help
 785	  Use a faster and more secure NEON based implementation of AES in CBC,
 786	  CTR and XTS modes
 787
 788	  Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
 789	  and for XTS mode encryption, CBC and XTS mode decryption speedup is
 790	  around 25%. (CBC encryption speed is not affected by this driver.)
 791	  This implementation does not rely on any lookup tables so it is
 792	  believed to be invulnerable to cache timing attacks.
 793
 794config CRYPTO_ANUBIS
 795	tristate "Anubis cipher algorithm"
 796	select CRYPTO_ALGAPI
 797	help
 798	  Anubis cipher algorithm.
 799
 800	  Anubis is a variable key length cipher which can use keys from
 801	  128 bits to 320 bits in length.  It was evaluated as a entrant
 802	  in the NESSIE competition.
 803
 804	  See also:
 805	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 806	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 807
 808config CRYPTO_ARC4
 809	tristate "ARC4 cipher algorithm"
 810	select CRYPTO_BLKCIPHER
 811	help
 812	  ARC4 cipher algorithm.
 813
 814	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 815	  bits in length.  This algorithm is required for driver-based
 816	  WEP, but it should not be for other purposes because of the
 817	  weakness of the algorithm.
 818
 819config CRYPTO_BLOWFISH
 820	tristate "Blowfish cipher algorithm"
 821	select CRYPTO_ALGAPI
 822	select CRYPTO_BLOWFISH_COMMON
 823	help
 824	  Blowfish cipher algorithm, by Bruce Schneier.
 825
 826	  This is a variable key length cipher which can use keys from 32
 827	  bits to 448 bits in length.  It's fast, simple and specifically
 828	  designed for use on "large microprocessors".
 829
 830	  See also:
 831	  <http://www.schneier.com/blowfish.html>
 832
 833config CRYPTO_BLOWFISH_COMMON
 834	tristate
 835	help
 836	  Common parts of the Blowfish cipher algorithm shared by the
 837	  generic c and the assembler implementations.
 838
 839	  See also:
 840	  <http://www.schneier.com/blowfish.html>
 841
 842config CRYPTO_BLOWFISH_X86_64
 843	tristate "Blowfish cipher algorithm (x86_64)"
 844	depends on X86 && 64BIT
 845	select CRYPTO_ALGAPI
 846	select CRYPTO_BLOWFISH_COMMON
 847	help
 848	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 849
 850	  This is a variable key length cipher which can use keys from 32
 851	  bits to 448 bits in length.  It's fast, simple and specifically
 852	  designed for use on "large microprocessors".
 853
 854	  See also:
 855	  <http://www.schneier.com/blowfish.html>
 856
 857config CRYPTO_CAMELLIA
 858	tristate "Camellia cipher algorithms"
 859	depends on CRYPTO
 860	select CRYPTO_ALGAPI
 861	help
 862	  Camellia cipher algorithms module.
 863
 864	  Camellia is a symmetric key block cipher developed jointly
 865	  at NTT and Mitsubishi Electric Corporation.
 866
 867	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 868
 869	  See also:
 870	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 871
 872config CRYPTO_CAMELLIA_X86_64
 873	tristate "Camellia cipher algorithm (x86_64)"
 874	depends on X86 && 64BIT
 875	depends on CRYPTO
 876	select CRYPTO_ALGAPI
 877	select CRYPTO_GLUE_HELPER_X86
 878	select CRYPTO_LRW
 879	select CRYPTO_XTS
 880	help
 881	  Camellia cipher algorithm module (x86_64).
 882
 883	  Camellia is a symmetric key block cipher developed jointly
 884	  at NTT and Mitsubishi Electric Corporation.
 885
 886	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 887
 888	  See also:
 889	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 890
 891config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 892	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
 893	depends on X86 && 64BIT
 894	depends on CRYPTO
 895	select CRYPTO_ALGAPI
 896	select CRYPTO_CRYPTD
 897	select CRYPTO_ABLK_HELPER
 898	select CRYPTO_GLUE_HELPER_X86
 899	select CRYPTO_CAMELLIA_X86_64
 900	select CRYPTO_LRW
 901	select CRYPTO_XTS
 902	help
 903	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 904
 905	  Camellia is a symmetric key block cipher developed jointly
 906	  at NTT and Mitsubishi Electric Corporation.
 907
 908	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 909
 910	  See also:
 911	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 912
 913config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
 914	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
 915	depends on X86 && 64BIT
 916	depends on CRYPTO
 917	select CRYPTO_ALGAPI
 918	select CRYPTO_CRYPTD
 919	select CRYPTO_ABLK_HELPER
 920	select CRYPTO_GLUE_HELPER_X86
 921	select CRYPTO_CAMELLIA_X86_64
 922	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 923	select CRYPTO_LRW
 924	select CRYPTO_XTS
 925	help
 926	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
 927
 928	  Camellia is a symmetric key block cipher developed jointly
 929	  at NTT and Mitsubishi Electric Corporation.
 930
 931	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 932
 933	  See also:
 934	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 935
 936config CRYPTO_CAMELLIA_SPARC64
 937	tristate "Camellia cipher algorithm (SPARC64)"
 938	depends on SPARC64
 939	depends on CRYPTO
 940	select CRYPTO_ALGAPI
 941	help
 942	  Camellia cipher algorithm module (SPARC64).
 943
 944	  Camellia is a symmetric key block cipher developed jointly
 945	  at NTT and Mitsubishi Electric Corporation.
 946
 947	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 948
 949	  See also:
 950	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 951
 952config CRYPTO_CAST_COMMON
 953	tristate
 954	help
 955	  Common parts of the CAST cipher algorithms shared by the
 956	  generic c and the assembler implementations.
 957
 958config CRYPTO_CAST5
 959	tristate "CAST5 (CAST-128) cipher algorithm"
 960	select CRYPTO_ALGAPI
 961	select CRYPTO_CAST_COMMON
 962	help
 963	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 964	  described in RFC2144.
 965
 966config CRYPTO_CAST5_AVX_X86_64
 967	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
 968	depends on X86 && 64BIT
 969	select CRYPTO_ALGAPI
 970	select CRYPTO_CRYPTD
 971	select CRYPTO_ABLK_HELPER
 972	select CRYPTO_CAST_COMMON
 973	select CRYPTO_CAST5
 974	help
 975	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 976	  described in RFC2144.
 977
 978	  This module provides the Cast5 cipher algorithm that processes
 979	  sixteen blocks parallel using the AVX instruction set.
 980
 981config CRYPTO_CAST6
 982	tristate "CAST6 (CAST-256) cipher algorithm"
 983	select CRYPTO_ALGAPI
 984	select CRYPTO_CAST_COMMON
 985	help
 986	  The CAST6 encryption algorithm (synonymous with CAST-256) is
 987	  described in RFC2612.
 988
 989config CRYPTO_CAST6_AVX_X86_64
 990	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
 991	depends on X86 && 64BIT
 992	select CRYPTO_ALGAPI
 993	select CRYPTO_CRYPTD
 994	select CRYPTO_ABLK_HELPER
 995	select CRYPTO_GLUE_HELPER_X86
 996	select CRYPTO_CAST_COMMON
 997	select CRYPTO_CAST6
 998	select CRYPTO_LRW
 999	select CRYPTO_XTS
1000	help
1001	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1002	  described in RFC2612.
1003
1004	  This module provides the Cast6 cipher algorithm that processes
1005	  eight blocks parallel using the AVX instruction set.
1006
1007config CRYPTO_DES
1008	tristate "DES and Triple DES EDE cipher algorithms"
1009	select CRYPTO_ALGAPI
1010	help
1011	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1012
1013config CRYPTO_DES_SPARC64
1014	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1015	depends on SPARC64
1016	select CRYPTO_ALGAPI
1017	select CRYPTO_DES
1018	help
1019	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1020	  optimized using SPARC64 crypto opcodes.
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
1022config CRYPTO_FCRYPT
1023	tristate "FCrypt cipher algorithm"
1024	select CRYPTO_ALGAPI
1025	select CRYPTO_BLKCIPHER
1026	help
1027	  FCrypt algorithm used by RxRPC.
1028
1029config CRYPTO_KHAZAD
1030	tristate "Khazad cipher algorithm"
1031	select CRYPTO_ALGAPI
1032	help
1033	  Khazad cipher algorithm.
1034
1035	  Khazad was a finalist in the initial NESSIE competition.  It is
1036	  an algorithm optimized for 64-bit processors with good performance
1037	  on 32-bit processors.  Khazad uses an 128 bit key size.
1038
1039	  See also:
1040	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1041
1042config CRYPTO_SALSA20
1043	tristate "Salsa20 stream cipher algorithm"
1044	select CRYPTO_BLKCIPHER
1045	help
1046	  Salsa20 stream cipher algorithm.
1047
1048	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1049	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1050
1051	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1052	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1053
1054config CRYPTO_SALSA20_586
1055	tristate "Salsa20 stream cipher algorithm (i586)"
1056	depends on (X86 || UML_X86) && !64BIT
1057	select CRYPTO_BLKCIPHER
1058	help
1059	  Salsa20 stream cipher algorithm.
1060
1061	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1062	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1063
1064	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1065	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1066
1067config CRYPTO_SALSA20_X86_64
1068	tristate "Salsa20 stream cipher algorithm (x86_64)"
1069	depends on (X86 || UML_X86) && 64BIT
1070	select CRYPTO_BLKCIPHER
1071	help
1072	  Salsa20 stream cipher algorithm.
1073
1074	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1075	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1076
1077	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1078	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080config CRYPTO_SEED
1081	tristate "SEED cipher algorithm"
1082	select CRYPTO_ALGAPI
1083	help
1084	  SEED cipher algorithm (RFC4269).
1085
1086	  SEED is a 128-bit symmetric key block cipher that has been
1087	  developed by KISA (Korea Information Security Agency) as a
1088	  national standard encryption algorithm of the Republic of Korea.
1089	  It is a 16 round block cipher with the key size of 128 bit.
1090
1091	  See also:
1092	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1093
1094config CRYPTO_SERPENT
1095	tristate "Serpent cipher algorithm"
1096	select CRYPTO_ALGAPI
1097	help
1098	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1099
1100	  Keys are allowed to be from 0 to 256 bits in length, in steps
1101	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1102	  variant of Serpent for compatibility with old kerneli.org code.
1103
1104	  See also:
1105	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1106
1107config CRYPTO_SERPENT_SSE2_X86_64
1108	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1109	depends on X86 && 64BIT
1110	select CRYPTO_ALGAPI
1111	select CRYPTO_CRYPTD
1112	select CRYPTO_ABLK_HELPER
1113	select CRYPTO_GLUE_HELPER_X86
1114	select CRYPTO_SERPENT
1115	select CRYPTO_LRW
1116	select CRYPTO_XTS
1117	help
1118	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1119
1120	  Keys are allowed to be from 0 to 256 bits in length, in steps
1121	  of 8 bits.
1122
1123	  This module provides Serpent cipher algorithm that processes eigth
1124	  blocks parallel using SSE2 instruction set.
1125
1126	  See also:
1127	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1128
1129config CRYPTO_SERPENT_SSE2_586
1130	tristate "Serpent cipher algorithm (i586/SSE2)"
1131	depends on X86 && !64BIT
1132	select CRYPTO_ALGAPI
1133	select CRYPTO_CRYPTD
1134	select CRYPTO_ABLK_HELPER
1135	select CRYPTO_GLUE_HELPER_X86
1136	select CRYPTO_SERPENT
1137	select CRYPTO_LRW
1138	select CRYPTO_XTS
1139	help
1140	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1141
1142	  Keys are allowed to be from 0 to 256 bits in length, in steps
1143	  of 8 bits.
1144
1145	  This module provides Serpent cipher algorithm that processes four
1146	  blocks parallel using SSE2 instruction set.
1147
1148	  See also:
1149	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1150
1151config CRYPTO_SERPENT_AVX_X86_64
1152	tristate "Serpent cipher algorithm (x86_64/AVX)"
1153	depends on X86 && 64BIT
1154	select CRYPTO_ALGAPI
1155	select CRYPTO_CRYPTD
1156	select CRYPTO_ABLK_HELPER
1157	select CRYPTO_GLUE_HELPER_X86
1158	select CRYPTO_SERPENT
1159	select CRYPTO_LRW
1160	select CRYPTO_XTS
1161	help
1162	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1163
1164	  Keys are allowed to be from 0 to 256 bits in length, in steps
1165	  of 8 bits.
1166
1167	  This module provides the Serpent cipher algorithm that processes
1168	  eight blocks parallel using the AVX instruction set.
1169
1170	  See also:
1171	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1172
1173config CRYPTO_SERPENT_AVX2_X86_64
1174	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1175	depends on X86 && 64BIT
1176	select CRYPTO_ALGAPI
1177	select CRYPTO_CRYPTD
1178	select CRYPTO_ABLK_HELPER
1179	select CRYPTO_GLUE_HELPER_X86
1180	select CRYPTO_SERPENT
1181	select CRYPTO_SERPENT_AVX_X86_64
1182	select CRYPTO_LRW
1183	select CRYPTO_XTS
1184	help
1185	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1186
1187	  Keys are allowed to be from 0 to 256 bits in length, in steps
1188	  of 8 bits.
1189
1190	  This module provides Serpent cipher algorithm that processes 16
1191	  blocks parallel using AVX2 instruction set.
1192
1193	  See also:
1194	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1195
1196config CRYPTO_TEA
1197	tristate "TEA, XTEA and XETA cipher algorithms"
1198	select CRYPTO_ALGAPI
1199	help
1200	  TEA cipher algorithm.
1201
1202	  Tiny Encryption Algorithm is a simple cipher that uses
1203	  many rounds for security.  It is very fast and uses
1204	  little memory.
1205
1206	  Xtendend Tiny Encryption Algorithm is a modification to
1207	  the TEA algorithm to address a potential key weakness
1208	  in the TEA algorithm.
1209
1210	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1211	  of the XTEA algorithm for compatibility purposes.
1212
1213config CRYPTO_TWOFISH
1214	tristate "Twofish cipher algorithm"
1215	select CRYPTO_ALGAPI
1216	select CRYPTO_TWOFISH_COMMON
1217	help
1218	  Twofish cipher algorithm.
1219
1220	  Twofish was submitted as an AES (Advanced Encryption Standard)
1221	  candidate cipher by researchers at CounterPane Systems.  It is a
1222	  16 round block cipher supporting key sizes of 128, 192, and 256
1223	  bits.
1224
1225	  See also:
1226	  <http://www.schneier.com/twofish.html>
1227
1228config CRYPTO_TWOFISH_COMMON
1229	tristate
1230	help
1231	  Common parts of the Twofish cipher algorithm shared by the
1232	  generic c and the assembler implementations.
1233
1234config CRYPTO_TWOFISH_586
1235	tristate "Twofish cipher algorithms (i586)"
1236	depends on (X86 || UML_X86) && !64BIT
1237	select CRYPTO_ALGAPI
1238	select CRYPTO_TWOFISH_COMMON
1239	help
1240	  Twofish cipher algorithm.
1241
1242	  Twofish was submitted as an AES (Advanced Encryption Standard)
1243	  candidate cipher by researchers at CounterPane Systems.  It is a
1244	  16 round block cipher supporting key sizes of 128, 192, and 256
1245	  bits.
1246
1247	  See also:
1248	  <http://www.schneier.com/twofish.html>
1249
1250config CRYPTO_TWOFISH_X86_64
1251	tristate "Twofish cipher algorithm (x86_64)"
1252	depends on (X86 || UML_X86) && 64BIT
1253	select CRYPTO_ALGAPI
1254	select CRYPTO_TWOFISH_COMMON
1255	help
1256	  Twofish cipher algorithm (x86_64).
1257
1258	  Twofish was submitted as an AES (Advanced Encryption Standard)
1259	  candidate cipher by researchers at CounterPane Systems.  It is a
1260	  16 round block cipher supporting key sizes of 128, 192, and 256
1261	  bits.
1262
1263	  See also:
1264	  <http://www.schneier.com/twofish.html>
1265
1266config CRYPTO_TWOFISH_X86_64_3WAY
1267	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1268	depends on X86 && 64BIT
1269	select CRYPTO_ALGAPI
1270	select CRYPTO_TWOFISH_COMMON
1271	select CRYPTO_TWOFISH_X86_64
1272	select CRYPTO_GLUE_HELPER_X86
1273	select CRYPTO_LRW
1274	select CRYPTO_XTS
1275	help
1276	  Twofish cipher algorithm (x86_64, 3-way parallel).
1277
1278	  Twofish was submitted as an AES (Advanced Encryption Standard)
1279	  candidate cipher by researchers at CounterPane Systems.  It is a
1280	  16 round block cipher supporting key sizes of 128, 192, and 256
1281	  bits.
1282
1283	  This module provides Twofish cipher algorithm that processes three
1284	  blocks parallel, utilizing resources of out-of-order CPUs better.
1285
1286	  See also:
1287	  <http://www.schneier.com/twofish.html>
1288
1289config CRYPTO_TWOFISH_AVX_X86_64
1290	tristate "Twofish cipher algorithm (x86_64/AVX)"
1291	depends on X86 && 64BIT
1292	select CRYPTO_ALGAPI
1293	select CRYPTO_CRYPTD
1294	select CRYPTO_ABLK_HELPER
1295	select CRYPTO_GLUE_HELPER_X86
1296	select CRYPTO_TWOFISH_COMMON
1297	select CRYPTO_TWOFISH_X86_64
1298	select CRYPTO_TWOFISH_X86_64_3WAY
1299	select CRYPTO_LRW
1300	select CRYPTO_XTS
1301	help
1302	  Twofish cipher algorithm (x86_64/AVX).
1303
1304	  Twofish was submitted as an AES (Advanced Encryption Standard)
1305	  candidate cipher by researchers at CounterPane Systems.  It is a
1306	  16 round block cipher supporting key sizes of 128, 192, and 256
1307	  bits.
1308
1309	  This module provides the Twofish cipher algorithm that processes
1310	  eight blocks parallel using the AVX Instruction Set.
1311
1312	  See also:
1313	  <http://www.schneier.com/twofish.html>
1314
1315comment "Compression"
1316
1317config CRYPTO_DEFLATE
1318	tristate "Deflate compression algorithm"
1319	select CRYPTO_ALGAPI
 
1320	select ZLIB_INFLATE
1321	select ZLIB_DEFLATE
1322	help
1323	  This is the Deflate algorithm (RFC1951), specified for use in
1324	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1325
1326	  You will most probably want this if using IPSec.
1327
1328config CRYPTO_ZLIB
1329	tristate "Zlib compression algorithm"
1330	select CRYPTO_PCOMP
1331	select ZLIB_INFLATE
1332	select ZLIB_DEFLATE
1333	select NLATTR
1334	help
1335	  This is the zlib algorithm.
1336
1337config CRYPTO_LZO
1338	tristate "LZO compression algorithm"
1339	select CRYPTO_ALGAPI
 
1340	select LZO_COMPRESS
1341	select LZO_DECOMPRESS
1342	help
1343	  This is the LZO algorithm.
1344
1345config CRYPTO_842
1346	tristate "842 compression algorithm"
1347	depends on CRYPTO_DEV_NX_COMPRESS
1348	# 842 uses lzo if the hardware becomes unavailable
1349	select LZO_COMPRESS
1350	select LZO_DECOMPRESS
1351	help
1352	  This is the 842 algorithm.
1353
1354config CRYPTO_LZ4
1355	tristate "LZ4 compression algorithm"
1356	select CRYPTO_ALGAPI
 
1357	select LZ4_COMPRESS
1358	select LZ4_DECOMPRESS
1359	help
1360	  This is the LZ4 algorithm.
1361
1362config CRYPTO_LZ4HC
1363	tristate "LZ4HC compression algorithm"
1364	select CRYPTO_ALGAPI
 
1365	select LZ4HC_COMPRESS
1366	select LZ4_DECOMPRESS
1367	help
1368	  This is the LZ4 high compression mode algorithm.
1369
1370comment "Random Number Generation"
1371
1372config CRYPTO_ANSI_CPRNG
1373	tristate "Pseudo Random Number Generation for Cryptographic modules"
1374	default m
1375	select CRYPTO_AES
1376	select CRYPTO_RNG
1377	help
1378	  This option enables the generic pseudo random number generator
1379	  for cryptographic modules.  Uses the Algorithm specified in
1380	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1381	  CRYPTO_FIPS is selected
1382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383config CRYPTO_USER_API
1384	tristate
1385
1386config CRYPTO_USER_API_HASH
1387	tristate "User-space interface for hash algorithms"
1388	depends on NET
1389	select CRYPTO_HASH
1390	select CRYPTO_USER_API
1391	help
1392	  This option enables the user-spaces interface for hash
1393	  algorithms.
1394
1395config CRYPTO_USER_API_SKCIPHER
1396	tristate "User-space interface for symmetric key cipher algorithms"
1397	depends on NET
1398	select CRYPTO_BLKCIPHER
1399	select CRYPTO_USER_API
1400	help
1401	  This option enables the user-spaces interface for symmetric
1402	  key cipher algorithms.
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404config CRYPTO_HASH_INFO
1405	bool
1406
1407source "drivers/crypto/Kconfig"
1408source crypto/asymmetric_keys/Kconfig
 
1409
1410endif	# if CRYPTO
v4.10.11
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on (MODULE_SIG || !MODULES)
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108
 109config CRYPTO_ACOMP
 110	tristate
 111	select CRYPTO_ALGAPI
 112	select CRYPTO_ACOMP2
 113
 114config CRYPTO_RSA
 115	tristate "RSA algorithm"
 116	select CRYPTO_AKCIPHER
 117	select CRYPTO_MANAGER
 118	select MPILIB
 119	select ASN1
 120	help
 121	  Generic implementation of the RSA public key algorithm.
 122
 123config CRYPTO_DH
 124	tristate "Diffie-Hellman algorithm"
 125	select CRYPTO_KPP
 126	select MPILIB
 127	help
 128	  Generic implementation of the Diffie-Hellman algorithm.
 129
 130config CRYPTO_ECDH
 131	tristate "ECDH algorithm"
 132	select CRYTPO_KPP
 133	help
 134	  Generic implementation of the ECDH algorithm
 135
 136config CRYPTO_MANAGER
 137	tristate "Cryptographic algorithm manager"
 138	select CRYPTO_MANAGER2
 139	help
 140	  Create default cryptographic template instantiations such as
 141	  cbc(aes).
 142
 143config CRYPTO_MANAGER2
 144	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 145	select CRYPTO_AEAD2
 146	select CRYPTO_HASH2
 147	select CRYPTO_BLKCIPHER2
 148	select CRYPTO_AKCIPHER2
 149	select CRYPTO_KPP2
 150	select CRYPTO_ACOMP2
 151
 152config CRYPTO_USER
 153	tristate "Userspace cryptographic algorithm configuration"
 154	depends on NET
 155	select CRYPTO_MANAGER
 156	help
 157	  Userspace configuration for cryptographic instantiations such as
 158	  cbc(aes).
 159
 160config CRYPTO_MANAGER_DISABLE_TESTS
 161	bool "Disable run-time self tests"
 162	default y
 163	depends on CRYPTO_MANAGER2
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_GF128MUL
 169	tristate "GF(2^128) multiplication functions"
 170	help
 171	  Efficient table driven implementation of multiplications in the
 172	  field GF(2^128).  This is needed by some cypher modes. This
 173	  option will be selected automatically if you select such a
 174	  cipher mode.  Only select this option by hand if you expect to load
 175	  an external module that requires these functions.
 176
 177config CRYPTO_NULL
 178	tristate "Null algorithms"
 179	select CRYPTO_NULL2
 
 
 180	help
 181	  These are 'Null' algorithms, used by IPsec, which do nothing.
 182
 183config CRYPTO_NULL2
 184	tristate
 185	select CRYPTO_ALGAPI2
 186	select CRYPTO_BLKCIPHER2
 187	select CRYPTO_HASH2
 188
 189config CRYPTO_PCRYPT
 190	tristate "Parallel crypto engine"
 191	depends on SMP
 192	select PADATA
 193	select CRYPTO_MANAGER
 194	select CRYPTO_AEAD
 195	help
 196	  This converts an arbitrary crypto algorithm into a parallel
 197	  algorithm that executes in kernel threads.
 198
 199config CRYPTO_WORKQUEUE
 200       tristate
 201
 202config CRYPTO_CRYPTD
 203	tristate "Software async crypto daemon"
 204	select CRYPTO_BLKCIPHER
 205	select CRYPTO_HASH
 206	select CRYPTO_MANAGER
 207	select CRYPTO_WORKQUEUE
 208	help
 209	  This is a generic software asynchronous crypto daemon that
 210	  converts an arbitrary synchronous software crypto algorithm
 211	  into an asynchronous algorithm that executes in a kernel thread.
 212
 213config CRYPTO_MCRYPTD
 214	tristate "Software async multi-buffer crypto daemon"
 215	select CRYPTO_BLKCIPHER
 216	select CRYPTO_HASH
 217	select CRYPTO_MANAGER
 218	select CRYPTO_WORKQUEUE
 219	help
 220	  This is a generic software asynchronous crypto daemon that
 221	  provides the kernel thread to assist multi-buffer crypto
 222	  algorithms for submitting jobs and flushing jobs in multi-buffer
 223	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 224	  in the context of this kernel thread and drivers can post
 225	  their crypto request asynchronously to be processed by this daemon.
 226
 227config CRYPTO_AUTHENC
 228	tristate "Authenc support"
 229	select CRYPTO_AEAD
 230	select CRYPTO_BLKCIPHER
 231	select CRYPTO_MANAGER
 232	select CRYPTO_HASH
 233	select CRYPTO_NULL
 234	help
 235	  Authenc: Combined mode wrapper for IPsec.
 236	  This is required for IPSec.
 237
 238config CRYPTO_TEST
 239	tristate "Testing module"
 240	depends on m
 241	select CRYPTO_MANAGER
 242	help
 243	  Quick & dirty crypto test module.
 244
 245config CRYPTO_ABLK_HELPER
 246	tristate
 247	select CRYPTO_CRYPTD
 248
 249config CRYPTO_SIMD
 250	tristate
 251	select CRYPTO_CRYPTD
 252
 253config CRYPTO_GLUE_HELPER_X86
 254	tristate
 255	depends on X86
 256	select CRYPTO_BLKCIPHER
 257
 258config CRYPTO_ENGINE
 259	tristate
 260
 261comment "Authenticated Encryption with Associated Data"
 262
 263config CRYPTO_CCM
 264	tristate "CCM support"
 265	select CRYPTO_CTR
 266	select CRYPTO_AEAD
 267	help
 268	  Support for Counter with CBC MAC. Required for IPsec.
 269
 270config CRYPTO_GCM
 271	tristate "GCM/GMAC support"
 272	select CRYPTO_CTR
 273	select CRYPTO_AEAD
 274	select CRYPTO_GHASH
 275	select CRYPTO_NULL
 276	help
 277	  Support for Galois/Counter Mode (GCM) and Galois Message
 278	  Authentication Code (GMAC). Required for IPSec.
 279
 280config CRYPTO_CHACHA20POLY1305
 281	tristate "ChaCha20-Poly1305 AEAD support"
 282	select CRYPTO_CHACHA20
 283	select CRYPTO_POLY1305
 284	select CRYPTO_AEAD
 285	help
 286	  ChaCha20-Poly1305 AEAD support, RFC7539.
 287
 288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 290	  IETF protocols.
 291
 292config CRYPTO_SEQIV
 293	tristate "Sequence Number IV Generator"
 294	select CRYPTO_AEAD
 295	select CRYPTO_BLKCIPHER
 296	select CRYPTO_NULL
 297	select CRYPTO_RNG_DEFAULT
 298	help
 299	  This IV generator generates an IV based on a sequence number by
 300	  xoring it with a salt.  This algorithm is mainly useful for CTR
 301
 302config CRYPTO_ECHAINIV
 303	tristate "Encrypted Chain IV Generator"
 304	select CRYPTO_AEAD
 305	select CRYPTO_NULL
 306	select CRYPTO_RNG_DEFAULT
 307	default m
 308	help
 309	  This IV generator generates an IV based on the encryption of
 310	  a sequence number xored with a salt.  This is the default
 311	  algorithm for CBC.
 312
 313comment "Block modes"
 314
 315config CRYPTO_CBC
 316	tristate "CBC support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	help
 320	  CBC: Cipher Block Chaining mode
 321	  This block cipher algorithm is required for IPSec.
 322
 323config CRYPTO_CTR
 324	tristate "CTR support"
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_SEQIV
 327	select CRYPTO_MANAGER
 328	help
 329	  CTR: Counter mode
 330	  This block cipher algorithm is required for IPSec.
 331
 332config CRYPTO_CTS
 333	tristate "CTS support"
 334	select CRYPTO_BLKCIPHER
 335	help
 336	  CTS: Cipher Text Stealing
 337	  This is the Cipher Text Stealing mode as described by
 338	  Section 8 of rfc2040 and referenced by rfc3962.
 339	  (rfc3962 includes errata information in its Appendix A)
 340	  This mode is required for Kerberos gss mechanism support
 341	  for AES encryption.
 342
 343config CRYPTO_ECB
 344	tristate "ECB support"
 345	select CRYPTO_BLKCIPHER
 346	select CRYPTO_MANAGER
 347	help
 348	  ECB: Electronic CodeBook mode
 349	  This is the simplest block cipher algorithm.  It simply encrypts
 350	  the input block by block.
 351
 352config CRYPTO_LRW
 353	tristate "LRW support"
 354	select CRYPTO_BLKCIPHER
 355	select CRYPTO_MANAGER
 356	select CRYPTO_GF128MUL
 357	help
 358	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 359	  narrow block cipher mode for dm-crypt.  Use it with cipher
 360	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 361	  The first 128, 192 or 256 bits in the key are used for AES and the
 362	  rest is used to tie each cipher block to its logical position.
 363
 364config CRYPTO_PCBC
 365	tristate "PCBC support"
 366	select CRYPTO_BLKCIPHER
 367	select CRYPTO_MANAGER
 368	help
 369	  PCBC: Propagating Cipher Block Chaining mode
 370	  This block cipher algorithm is required for RxRPC.
 371
 372config CRYPTO_XTS
 373	tristate "XTS support"
 374	select CRYPTO_BLKCIPHER
 375	select CRYPTO_MANAGER
 376	select CRYPTO_GF128MUL
 377	select CRYPTO_ECB
 378	help
 379	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 380	  key size 256, 384 or 512 bits. This implementation currently
 381	  can't handle a sectorsize which is not a multiple of 16 bytes.
 382
 383config CRYPTO_KEYWRAP
 384	tristate "Key wrapping support"
 385	select CRYPTO_BLKCIPHER
 386	help
 387	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 388	  padding.
 389
 390comment "Hash modes"
 391
 392config CRYPTO_CMAC
 393	tristate "CMAC support"
 394	select CRYPTO_HASH
 395	select CRYPTO_MANAGER
 396	help
 397	  Cipher-based Message Authentication Code (CMAC) specified by
 398	  The National Institute of Standards and Technology (NIST).
 399
 400	  https://tools.ietf.org/html/rfc4493
 401	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 402
 403config CRYPTO_HMAC
 404	tristate "HMAC support"
 405	select CRYPTO_HASH
 406	select CRYPTO_MANAGER
 407	help
 408	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 409	  This is required for IPSec.
 410
 411config CRYPTO_XCBC
 412	tristate "XCBC support"
 413	select CRYPTO_HASH
 414	select CRYPTO_MANAGER
 415	help
 416	  XCBC: Keyed-Hashing with encryption algorithm
 417		http://www.ietf.org/rfc/rfc3566.txt
 418		http://csrc.nist.gov/encryption/modes/proposedmodes/
 419		 xcbc-mac/xcbc-mac-spec.pdf
 420
 421config CRYPTO_VMAC
 422	tristate "VMAC support"
 423	select CRYPTO_HASH
 424	select CRYPTO_MANAGER
 425	help
 426	  VMAC is a message authentication algorithm designed for
 427	  very high speed on 64-bit architectures.
 428
 429	  See also:
 430	  <http://fastcrypto.org/vmac>
 431
 432comment "Digest"
 433
 434config CRYPTO_CRC32C
 435	tristate "CRC32c CRC algorithm"
 436	select CRYPTO_HASH
 437	select CRC32
 438	help
 439	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 440	  by iSCSI for header and data digests and by others.
 441	  See Castagnoli93.  Module will be crc32c.
 442
 443config CRYPTO_CRC32C_INTEL
 444	tristate "CRC32c INTEL hardware acceleration"
 445	depends on X86
 446	select CRYPTO_HASH
 447	help
 448	  In Intel processor with SSE4.2 supported, the processor will
 449	  support CRC32C implementation using hardware accelerated CRC32
 450	  instruction. This option will create 'crc32c-intel' module,
 451	  which will enable any routine to use the CRC32 instruction to
 452	  gain performance compared with software implementation.
 453	  Module will be crc32c-intel.
 454
 455config CRYPTO_CRC32C_VPMSUM
 456	tristate "CRC32c CRC algorithm (powerpc64)"
 457	depends on PPC64 && ALTIVEC
 458	select CRYPTO_HASH
 459	select CRC32
 460	help
 461	  CRC32c algorithm implemented using vector polynomial multiply-sum
 462	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 463	  and newer processors for improved performance.
 464
 465
 466config CRYPTO_CRC32C_SPARC64
 467	tristate "CRC32c CRC algorithm (SPARC64)"
 468	depends on SPARC64
 469	select CRYPTO_HASH
 470	select CRC32
 471	help
 472	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 473	  when available.
 474
 475config CRYPTO_CRC32
 476	tristate "CRC32 CRC algorithm"
 477	select CRYPTO_HASH
 478	select CRC32
 479	help
 480	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 481	  Shash crypto api wrappers to crc32_le function.
 482
 483config CRYPTO_CRC32_PCLMUL
 484	tristate "CRC32 PCLMULQDQ hardware acceleration"
 485	depends on X86
 486	select CRYPTO_HASH
 487	select CRC32
 488	help
 489	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 490	  and PCLMULQDQ supported, the processor will support
 491	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 492	  instruction. This option will create 'crc32-plcmul' module,
 493	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 494	  and gain better performance as compared with the table implementation.
 495
 496config CRYPTO_CRCT10DIF
 497	tristate "CRCT10DIF algorithm"
 498	select CRYPTO_HASH
 499	help
 500	  CRC T10 Data Integrity Field computation is being cast as
 501	  a crypto transform.  This allows for faster crc t10 diff
 502	  transforms to be used if they are available.
 503
 504config CRYPTO_CRCT10DIF_PCLMUL
 505	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 506	depends on X86 && 64BIT && CRC_T10DIF
 507	select CRYPTO_HASH
 508	help
 509	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 510	  CRC T10 DIF PCLMULQDQ computation can be hardware
 511	  accelerated PCLMULQDQ instruction. This option will create
 512	  'crct10dif-plcmul' module, which is faster when computing the
 513	  crct10dif checksum as compared with the generic table implementation.
 514
 515config CRYPTO_GHASH
 516	tristate "GHASH digest algorithm"
 517	select CRYPTO_GF128MUL
 518	select CRYPTO_HASH
 519	help
 520	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 521
 522config CRYPTO_POLY1305
 523	tristate "Poly1305 authenticator algorithm"
 524	select CRYPTO_HASH
 525	help
 526	  Poly1305 authenticator algorithm, RFC7539.
 527
 528	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 529	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 530	  in IETF protocols. This is the portable C implementation of Poly1305.
 531
 532config CRYPTO_POLY1305_X86_64
 533	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 534	depends on X86 && 64BIT
 535	select CRYPTO_POLY1305
 536	help
 537	  Poly1305 authenticator algorithm, RFC7539.
 538
 539	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 540	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 541	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 542	  instructions.
 543
 544config CRYPTO_MD4
 545	tristate "MD4 digest algorithm"
 546	select CRYPTO_HASH
 547	help
 548	  MD4 message digest algorithm (RFC1320).
 549
 550config CRYPTO_MD5
 551	tristate "MD5 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  MD5 message digest algorithm (RFC1321).
 555
 556config CRYPTO_MD5_OCTEON
 557	tristate "MD5 digest algorithm (OCTEON)"
 558	depends on CPU_CAVIUM_OCTEON
 559	select CRYPTO_MD5
 560	select CRYPTO_HASH
 561	help
 562	  MD5 message digest algorithm (RFC1321) implemented
 563	  using OCTEON crypto instructions, when available.
 564
 565config CRYPTO_MD5_PPC
 566	tristate "MD5 digest algorithm (PPC)"
 567	depends on PPC
 568	select CRYPTO_HASH
 569	help
 570	  MD5 message digest algorithm (RFC1321) implemented
 571	  in PPC assembler.
 572
 573config CRYPTO_MD5_SPARC64
 574	tristate "MD5 digest algorithm (SPARC64)"
 575	depends on SPARC64
 576	select CRYPTO_MD5
 577	select CRYPTO_HASH
 578	help
 579	  MD5 message digest algorithm (RFC1321) implemented
 580	  using sparc64 crypto instructions, when available.
 581
 582config CRYPTO_MICHAEL_MIC
 583	tristate "Michael MIC keyed digest algorithm"
 584	select CRYPTO_HASH
 585	help
 586	  Michael MIC is used for message integrity protection in TKIP
 587	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 588	  should not be used for other purposes because of the weakness
 589	  of the algorithm.
 590
 591config CRYPTO_RMD128
 592	tristate "RIPEMD-128 digest algorithm"
 593	select CRYPTO_HASH
 594	help
 595	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 596
 597	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 598	  be used as a secure replacement for RIPEMD. For other use cases,
 599	  RIPEMD-160 should be used.
 600
 601	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 602	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 603
 604config CRYPTO_RMD160
 605	tristate "RIPEMD-160 digest algorithm"
 606	select CRYPTO_HASH
 607	help
 608	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 609
 610	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 611	  to be used as a secure replacement for the 128-bit hash functions
 612	  MD4, MD5 and it's predecessor RIPEMD
 613	  (not to be confused with RIPEMD-128).
 614
 615	  It's speed is comparable to SHA1 and there are no known attacks
 616	  against RIPEMD-160.
 617
 618	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 619	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 620
 621config CRYPTO_RMD256
 622	tristate "RIPEMD-256 digest algorithm"
 623	select CRYPTO_HASH
 624	help
 625	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 626	  256 bit hash. It is intended for applications that require
 627	  longer hash-results, without needing a larger security level
 628	  (than RIPEMD-128).
 629
 630	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 631	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 632
 633config CRYPTO_RMD320
 634	tristate "RIPEMD-320 digest algorithm"
 635	select CRYPTO_HASH
 636	help
 637	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 638	  320 bit hash. It is intended for applications that require
 639	  longer hash-results, without needing a larger security level
 640	  (than RIPEMD-160).
 641
 642	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 643	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 644
 645config CRYPTO_SHA1
 646	tristate "SHA1 digest algorithm"
 647	select CRYPTO_HASH
 648	help
 649	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 650
 651config CRYPTO_SHA1_SSSE3
 652	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 653	depends on X86 && 64BIT
 654	select CRYPTO_SHA1
 655	select CRYPTO_HASH
 656	help
 657	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 658	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 659	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 660	  when available.
 661
 662config CRYPTO_SHA256_SSSE3
 663	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 664	depends on X86 && 64BIT
 665	select CRYPTO_SHA256
 666	select CRYPTO_HASH
 667	help
 668	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 669	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 670	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 671	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 672	  Instructions) when available.
 673
 674config CRYPTO_SHA512_SSSE3
 675	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 676	depends on X86 && 64BIT
 677	select CRYPTO_SHA512
 678	select CRYPTO_HASH
 679	help
 680	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 681	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 682	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 683	  version 2 (AVX2) instructions, when available.
 684
 685config CRYPTO_SHA1_OCTEON
 686	tristate "SHA1 digest algorithm (OCTEON)"
 687	depends on CPU_CAVIUM_OCTEON
 688	select CRYPTO_SHA1
 689	select CRYPTO_HASH
 690	help
 691	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 692	  using OCTEON crypto instructions, when available.
 693
 694config CRYPTO_SHA1_SPARC64
 695	tristate "SHA1 digest algorithm (SPARC64)"
 696	depends on SPARC64
 697	select CRYPTO_SHA1
 698	select CRYPTO_HASH
 699	help
 700	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 701	  using sparc64 crypto instructions, when available.
 702
 703config CRYPTO_SHA1_PPC
 704	tristate "SHA1 digest algorithm (powerpc)"
 705	depends on PPC
 706	help
 707	  This is the powerpc hardware accelerated implementation of the
 708	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 709
 710config CRYPTO_SHA1_PPC_SPE
 711	tristate "SHA1 digest algorithm (PPC SPE)"
 712	depends on PPC && SPE
 713	help
 714	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 715	  using powerpc SPE SIMD instruction set.
 716
 717config CRYPTO_SHA1_MB
 718	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 719	depends on X86 && 64BIT
 720	select CRYPTO_SHA1
 721	select CRYPTO_HASH
 722	select CRYPTO_MCRYPTD
 723	help
 724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 725	  using multi-buffer technique.  This algorithm computes on
 726	  multiple data lanes concurrently with SIMD instructions for
 727	  better throughput.  It should not be enabled by default but
 728	  used when there is significant amount of work to keep the keep
 729	  the data lanes filled to get performance benefit.  If the data
 730	  lanes remain unfilled, a flush operation will be initiated to
 731	  process the crypto jobs, adding a slight latency.
 732
 733config CRYPTO_SHA256_MB
 734	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 735	depends on X86 && 64BIT
 736	select CRYPTO_SHA256
 737	select CRYPTO_HASH
 738	select CRYPTO_MCRYPTD
 739	help
 740	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 741	  using multi-buffer technique.  This algorithm computes on
 742	  multiple data lanes concurrently with SIMD instructions for
 743	  better throughput.  It should not be enabled by default but
 744	  used when there is significant amount of work to keep the keep
 745	  the data lanes filled to get performance benefit.  If the data
 746	  lanes remain unfilled, a flush operation will be initiated to
 747	  process the crypto jobs, adding a slight latency.
 748
 749config CRYPTO_SHA512_MB
 750        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 751        depends on X86 && 64BIT
 752        select CRYPTO_SHA512
 753        select CRYPTO_HASH
 754        select CRYPTO_MCRYPTD
 755        help
 756          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 757          using multi-buffer technique.  This algorithm computes on
 758          multiple data lanes concurrently with SIMD instructions for
 759          better throughput.  It should not be enabled by default but
 760          used when there is significant amount of work to keep the keep
 761          the data lanes filled to get performance benefit.  If the data
 762          lanes remain unfilled, a flush operation will be initiated to
 763          process the crypto jobs, adding a slight latency.
 764
 765config CRYPTO_SHA256
 766	tristate "SHA224 and SHA256 digest algorithm"
 767	select CRYPTO_HASH
 768	help
 769	  SHA256 secure hash standard (DFIPS 180-2).
 770
 771	  This version of SHA implements a 256 bit hash with 128 bits of
 772	  security against collision attacks.
 773
 774	  This code also includes SHA-224, a 224 bit hash with 112 bits
 775	  of security against collision attacks.
 776
 777config CRYPTO_SHA256_PPC_SPE
 778	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 779	depends on PPC && SPE
 780	select CRYPTO_SHA256
 781	select CRYPTO_HASH
 782	help
 783	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 784	  implemented using powerpc SPE SIMD instruction set.
 785
 786config CRYPTO_SHA256_OCTEON
 787	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 788	depends on CPU_CAVIUM_OCTEON
 789	select CRYPTO_SHA256
 790	select CRYPTO_HASH
 791	help
 792	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 793	  using OCTEON crypto instructions, when available.
 794
 795config CRYPTO_SHA256_SPARC64
 796	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 797	depends on SPARC64
 798	select CRYPTO_SHA256
 799	select CRYPTO_HASH
 800	help
 801	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 802	  using sparc64 crypto instructions, when available.
 803
 804config CRYPTO_SHA512
 805	tristate "SHA384 and SHA512 digest algorithms"
 806	select CRYPTO_HASH
 807	help
 808	  SHA512 secure hash standard (DFIPS 180-2).
 809
 810	  This version of SHA implements a 512 bit hash with 256 bits of
 811	  security against collision attacks.
 812
 813	  This code also includes SHA-384, a 384 bit hash with 192 bits
 814	  of security against collision attacks.
 815
 816config CRYPTO_SHA512_OCTEON
 817	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 818	depends on CPU_CAVIUM_OCTEON
 819	select CRYPTO_SHA512
 820	select CRYPTO_HASH
 821	help
 822	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 823	  using OCTEON crypto instructions, when available.
 824
 825config CRYPTO_SHA512_SPARC64
 826	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 827	depends on SPARC64
 828	select CRYPTO_SHA512
 829	select CRYPTO_HASH
 830	help
 831	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 832	  using sparc64 crypto instructions, when available.
 833
 834config CRYPTO_SHA3
 835	tristate "SHA3 digest algorithm"
 836	select CRYPTO_HASH
 837	help
 838	  SHA-3 secure hash standard (DFIPS 202). It's based on
 839	  cryptographic sponge function family called Keccak.
 840
 841	  References:
 842	  http://keccak.noekeon.org/
 843
 844config CRYPTO_TGR192
 845	tristate "Tiger digest algorithms"
 846	select CRYPTO_HASH
 847	help
 848	  Tiger hash algorithm 192, 160 and 128-bit hashes
 849
 850	  Tiger is a hash function optimized for 64-bit processors while
 851	  still having decent performance on 32-bit processors.
 852	  Tiger was developed by Ross Anderson and Eli Biham.
 853
 854	  See also:
 855	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 856
 857config CRYPTO_WP512
 858	tristate "Whirlpool digest algorithms"
 859	select CRYPTO_HASH
 860	help
 861	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 862
 863	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 864	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 865
 866	  See also:
 867	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 868
 869config CRYPTO_GHASH_CLMUL_NI_INTEL
 870	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 871	depends on X86 && 64BIT
 872	select CRYPTO_CRYPTD
 873	help
 874	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 875	  The implementation is accelerated by CLMUL-NI of Intel.
 876
 877comment "Ciphers"
 878
 879config CRYPTO_AES
 880	tristate "AES cipher algorithms"
 881	select CRYPTO_ALGAPI
 882	help
 883	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 884	  algorithm.
 885
 886	  Rijndael appears to be consistently a very good performer in
 887	  both hardware and software across a wide range of computing
 888	  environments regardless of its use in feedback or non-feedback
 889	  modes. Its key setup time is excellent, and its key agility is
 890	  good. Rijndael's very low memory requirements make it very well
 891	  suited for restricted-space environments, in which it also
 892	  demonstrates excellent performance. Rijndael's operations are
 893	  among the easiest to defend against power and timing attacks.
 894
 895	  The AES specifies three key sizes: 128, 192 and 256 bits
 896
 897	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 898
 899config CRYPTO_AES_586
 900	tristate "AES cipher algorithms (i586)"
 901	depends on (X86 || UML_X86) && !64BIT
 902	select CRYPTO_ALGAPI
 903	select CRYPTO_AES
 904	help
 905	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 906	  algorithm.
 907
 908	  Rijndael appears to be consistently a very good performer in
 909	  both hardware and software across a wide range of computing
 910	  environments regardless of its use in feedback or non-feedback
 911	  modes. Its key setup time is excellent, and its key agility is
 912	  good. Rijndael's very low memory requirements make it very well
 913	  suited for restricted-space environments, in which it also
 914	  demonstrates excellent performance. Rijndael's operations are
 915	  among the easiest to defend against power and timing attacks.
 916
 917	  The AES specifies three key sizes: 128, 192 and 256 bits
 918
 919	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 920
 921config CRYPTO_AES_X86_64
 922	tristate "AES cipher algorithms (x86_64)"
 923	depends on (X86 || UML_X86) && 64BIT
 924	select CRYPTO_ALGAPI
 925	select CRYPTO_AES
 926	help
 927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 928	  algorithm.
 929
 930	  Rijndael appears to be consistently a very good performer in
 931	  both hardware and software across a wide range of computing
 932	  environments regardless of its use in feedback or non-feedback
 933	  modes. Its key setup time is excellent, and its key agility is
 934	  good. Rijndael's very low memory requirements make it very well
 935	  suited for restricted-space environments, in which it also
 936	  demonstrates excellent performance. Rijndael's operations are
 937	  among the easiest to defend against power and timing attacks.
 938
 939	  The AES specifies three key sizes: 128, 192 and 256 bits
 940
 941	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 942
 943config CRYPTO_AES_NI_INTEL
 944	tristate "AES cipher algorithms (AES-NI)"
 945	depends on X86
 946	select CRYPTO_AEAD
 947	select CRYPTO_AES_X86_64 if 64BIT
 948	select CRYPTO_AES_586 if !64BIT
 
 
 949	select CRYPTO_ALGAPI
 950	select CRYPTO_BLKCIPHER
 951	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 952	select CRYPTO_SIMD
 
 953	help
 954	  Use Intel AES-NI instructions for AES algorithm.
 955
 956	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 957	  algorithm.
 958
 959	  Rijndael appears to be consistently a very good performer in
 960	  both hardware and software across a wide range of computing
 961	  environments regardless of its use in feedback or non-feedback
 962	  modes. Its key setup time is excellent, and its key agility is
 963	  good. Rijndael's very low memory requirements make it very well
 964	  suited for restricted-space environments, in which it also
 965	  demonstrates excellent performance. Rijndael's operations are
 966	  among the easiest to defend against power and timing attacks.
 967
 968	  The AES specifies three key sizes: 128, 192 and 256 bits
 969
 970	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 971
 972	  In addition to AES cipher algorithm support, the acceleration
 973	  for some popular block cipher mode is supported too, including
 974	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 975	  acceleration for CTR.
 976
 977config CRYPTO_AES_SPARC64
 978	tristate "AES cipher algorithms (SPARC64)"
 979	depends on SPARC64
 980	select CRYPTO_CRYPTD
 981	select CRYPTO_ALGAPI
 982	help
 983	  Use SPARC64 crypto opcodes for AES algorithm.
 984
 985	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 986	  algorithm.
 987
 988	  Rijndael appears to be consistently a very good performer in
 989	  both hardware and software across a wide range of computing
 990	  environments regardless of its use in feedback or non-feedback
 991	  modes. Its key setup time is excellent, and its key agility is
 992	  good. Rijndael's very low memory requirements make it very well
 993	  suited for restricted-space environments, in which it also
 994	  demonstrates excellent performance. Rijndael's operations are
 995	  among the easiest to defend against power and timing attacks.
 996
 997	  The AES specifies three key sizes: 128, 192 and 256 bits
 998
 999	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1000
1001	  In addition to AES cipher algorithm support, the acceleration
1002	  for some popular block cipher mode is supported too, including
1003	  ECB and CBC.
1004
1005config CRYPTO_AES_PPC_SPE
1006	tristate "AES cipher algorithms (PPC SPE)"
1007	depends on PPC && SPE
1008	help
1009	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1010	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1011	  This module should only be used for low power (router) devices
1012	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1013	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1014	  timining attacks. Nevertheless it might be not as secure as other
1015	  architecture specific assembler implementations that work on 1KB
1016	  tables or 256 bytes S-boxes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018config CRYPTO_ANUBIS
1019	tristate "Anubis cipher algorithm"
1020	select CRYPTO_ALGAPI
1021	help
1022	  Anubis cipher algorithm.
1023
1024	  Anubis is a variable key length cipher which can use keys from
1025	  128 bits to 320 bits in length.  It was evaluated as a entrant
1026	  in the NESSIE competition.
1027
1028	  See also:
1029	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1030	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1031
1032config CRYPTO_ARC4
1033	tristate "ARC4 cipher algorithm"
1034	select CRYPTO_BLKCIPHER
1035	help
1036	  ARC4 cipher algorithm.
1037
1038	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1039	  bits in length.  This algorithm is required for driver-based
1040	  WEP, but it should not be for other purposes because of the
1041	  weakness of the algorithm.
1042
1043config CRYPTO_BLOWFISH
1044	tristate "Blowfish cipher algorithm"
1045	select CRYPTO_ALGAPI
1046	select CRYPTO_BLOWFISH_COMMON
1047	help
1048	  Blowfish cipher algorithm, by Bruce Schneier.
1049
1050	  This is a variable key length cipher which can use keys from 32
1051	  bits to 448 bits in length.  It's fast, simple and specifically
1052	  designed for use on "large microprocessors".
1053
1054	  See also:
1055	  <http://www.schneier.com/blowfish.html>
1056
1057config CRYPTO_BLOWFISH_COMMON
1058	tristate
1059	help
1060	  Common parts of the Blowfish cipher algorithm shared by the
1061	  generic c and the assembler implementations.
1062
1063	  See also:
1064	  <http://www.schneier.com/blowfish.html>
1065
1066config CRYPTO_BLOWFISH_X86_64
1067	tristate "Blowfish cipher algorithm (x86_64)"
1068	depends on X86 && 64BIT
1069	select CRYPTO_ALGAPI
1070	select CRYPTO_BLOWFISH_COMMON
1071	help
1072	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1073
1074	  This is a variable key length cipher which can use keys from 32
1075	  bits to 448 bits in length.  It's fast, simple and specifically
1076	  designed for use on "large microprocessors".
1077
1078	  See also:
1079	  <http://www.schneier.com/blowfish.html>
1080
1081config CRYPTO_CAMELLIA
1082	tristate "Camellia cipher algorithms"
1083	depends on CRYPTO
1084	select CRYPTO_ALGAPI
1085	help
1086	  Camellia cipher algorithms module.
1087
1088	  Camellia is a symmetric key block cipher developed jointly
1089	  at NTT and Mitsubishi Electric Corporation.
1090
1091	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1092
1093	  See also:
1094	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1095
1096config CRYPTO_CAMELLIA_X86_64
1097	tristate "Camellia cipher algorithm (x86_64)"
1098	depends on X86 && 64BIT
1099	depends on CRYPTO
1100	select CRYPTO_ALGAPI
1101	select CRYPTO_GLUE_HELPER_X86
1102	select CRYPTO_LRW
1103	select CRYPTO_XTS
1104	help
1105	  Camellia cipher algorithm module (x86_64).
1106
1107	  Camellia is a symmetric key block cipher developed jointly
1108	  at NTT and Mitsubishi Electric Corporation.
1109
1110	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1111
1112	  See also:
1113	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1114
1115config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1116	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1117	depends on X86 && 64BIT
1118	depends on CRYPTO
1119	select CRYPTO_ALGAPI
1120	select CRYPTO_CRYPTD
1121	select CRYPTO_ABLK_HELPER
1122	select CRYPTO_GLUE_HELPER_X86
1123	select CRYPTO_CAMELLIA_X86_64
1124	select CRYPTO_LRW
1125	select CRYPTO_XTS
1126	help
1127	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1128
1129	  Camellia is a symmetric key block cipher developed jointly
1130	  at NTT and Mitsubishi Electric Corporation.
1131
1132	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1133
1134	  See also:
1135	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1136
1137config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1138	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1139	depends on X86 && 64BIT
1140	depends on CRYPTO
1141	select CRYPTO_ALGAPI
1142	select CRYPTO_CRYPTD
1143	select CRYPTO_ABLK_HELPER
1144	select CRYPTO_GLUE_HELPER_X86
1145	select CRYPTO_CAMELLIA_X86_64
1146	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1147	select CRYPTO_LRW
1148	select CRYPTO_XTS
1149	help
1150	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1151
1152	  Camellia is a symmetric key block cipher developed jointly
1153	  at NTT and Mitsubishi Electric Corporation.
1154
1155	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1156
1157	  See also:
1158	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1159
1160config CRYPTO_CAMELLIA_SPARC64
1161	tristate "Camellia cipher algorithm (SPARC64)"
1162	depends on SPARC64
1163	depends on CRYPTO
1164	select CRYPTO_ALGAPI
1165	help
1166	  Camellia cipher algorithm module (SPARC64).
1167
1168	  Camellia is a symmetric key block cipher developed jointly
1169	  at NTT and Mitsubishi Electric Corporation.
1170
1171	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1172
1173	  See also:
1174	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1175
1176config CRYPTO_CAST_COMMON
1177	tristate
1178	help
1179	  Common parts of the CAST cipher algorithms shared by the
1180	  generic c and the assembler implementations.
1181
1182config CRYPTO_CAST5
1183	tristate "CAST5 (CAST-128) cipher algorithm"
1184	select CRYPTO_ALGAPI
1185	select CRYPTO_CAST_COMMON
1186	help
1187	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1188	  described in RFC2144.
1189
1190config CRYPTO_CAST5_AVX_X86_64
1191	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1192	depends on X86 && 64BIT
1193	select CRYPTO_ALGAPI
1194	select CRYPTO_CRYPTD
1195	select CRYPTO_ABLK_HELPER
1196	select CRYPTO_CAST_COMMON
1197	select CRYPTO_CAST5
1198	help
1199	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1200	  described in RFC2144.
1201
1202	  This module provides the Cast5 cipher algorithm that processes
1203	  sixteen blocks parallel using the AVX instruction set.
1204
1205config CRYPTO_CAST6
1206	tristate "CAST6 (CAST-256) cipher algorithm"
1207	select CRYPTO_ALGAPI
1208	select CRYPTO_CAST_COMMON
1209	help
1210	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1211	  described in RFC2612.
1212
1213config CRYPTO_CAST6_AVX_X86_64
1214	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1215	depends on X86 && 64BIT
1216	select CRYPTO_ALGAPI
1217	select CRYPTO_CRYPTD
1218	select CRYPTO_ABLK_HELPER
1219	select CRYPTO_GLUE_HELPER_X86
1220	select CRYPTO_CAST_COMMON
1221	select CRYPTO_CAST6
1222	select CRYPTO_LRW
1223	select CRYPTO_XTS
1224	help
1225	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1226	  described in RFC2612.
1227
1228	  This module provides the Cast6 cipher algorithm that processes
1229	  eight blocks parallel using the AVX instruction set.
1230
1231config CRYPTO_DES
1232	tristate "DES and Triple DES EDE cipher algorithms"
1233	select CRYPTO_ALGAPI
1234	help
1235	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1236
1237config CRYPTO_DES_SPARC64
1238	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1239	depends on SPARC64
1240	select CRYPTO_ALGAPI
1241	select CRYPTO_DES
1242	help
1243	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1244	  optimized using SPARC64 crypto opcodes.
1245
1246config CRYPTO_DES3_EDE_X86_64
1247	tristate "Triple DES EDE cipher algorithm (x86-64)"
1248	depends on X86 && 64BIT
1249	select CRYPTO_ALGAPI
1250	select CRYPTO_DES
1251	help
1252	  Triple DES EDE (FIPS 46-3) algorithm.
1253
1254	  This module provides implementation of the Triple DES EDE cipher
1255	  algorithm that is optimized for x86-64 processors. Two versions of
1256	  algorithm are provided; regular processing one input block and
1257	  one that processes three blocks parallel.
1258
1259config CRYPTO_FCRYPT
1260	tristate "FCrypt cipher algorithm"
1261	select CRYPTO_ALGAPI
1262	select CRYPTO_BLKCIPHER
1263	help
1264	  FCrypt algorithm used by RxRPC.
1265
1266config CRYPTO_KHAZAD
1267	tristate "Khazad cipher algorithm"
1268	select CRYPTO_ALGAPI
1269	help
1270	  Khazad cipher algorithm.
1271
1272	  Khazad was a finalist in the initial NESSIE competition.  It is
1273	  an algorithm optimized for 64-bit processors with good performance
1274	  on 32-bit processors.  Khazad uses an 128 bit key size.
1275
1276	  See also:
1277	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1278
1279config CRYPTO_SALSA20
1280	tristate "Salsa20 stream cipher algorithm"
1281	select CRYPTO_BLKCIPHER
1282	help
1283	  Salsa20 stream cipher algorithm.
1284
1285	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1286	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1287
1288	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1289	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1290
1291config CRYPTO_SALSA20_586
1292	tristate "Salsa20 stream cipher algorithm (i586)"
1293	depends on (X86 || UML_X86) && !64BIT
1294	select CRYPTO_BLKCIPHER
1295	help
1296	  Salsa20 stream cipher algorithm.
1297
1298	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1299	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1300
1301	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1302	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1303
1304config CRYPTO_SALSA20_X86_64
1305	tristate "Salsa20 stream cipher algorithm (x86_64)"
1306	depends on (X86 || UML_X86) && 64BIT
1307	select CRYPTO_BLKCIPHER
1308	help
1309	  Salsa20 stream cipher algorithm.
1310
1311	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1312	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1313
1314	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1315	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1316
1317config CRYPTO_CHACHA20
1318	tristate "ChaCha20 cipher algorithm"
1319	select CRYPTO_BLKCIPHER
1320	help
1321	  ChaCha20 cipher algorithm, RFC7539.
1322
1323	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1324	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1325	  This is the portable C implementation of ChaCha20.
1326
1327	  See also:
1328	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1329
1330config CRYPTO_CHACHA20_X86_64
1331	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1332	depends on X86 && 64BIT
1333	select CRYPTO_BLKCIPHER
1334	select CRYPTO_CHACHA20
1335	help
1336	  ChaCha20 cipher algorithm, RFC7539.
1337
1338	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1339	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1340	  This is the x86_64 assembler implementation using SIMD instructions.
1341
1342	  See also:
1343	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1344
1345config CRYPTO_SEED
1346	tristate "SEED cipher algorithm"
1347	select CRYPTO_ALGAPI
1348	help
1349	  SEED cipher algorithm (RFC4269).
1350
1351	  SEED is a 128-bit symmetric key block cipher that has been
1352	  developed by KISA (Korea Information Security Agency) as a
1353	  national standard encryption algorithm of the Republic of Korea.
1354	  It is a 16 round block cipher with the key size of 128 bit.
1355
1356	  See also:
1357	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1358
1359config CRYPTO_SERPENT
1360	tristate "Serpent cipher algorithm"
1361	select CRYPTO_ALGAPI
1362	help
1363	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1364
1365	  Keys are allowed to be from 0 to 256 bits in length, in steps
1366	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1367	  variant of Serpent for compatibility with old kerneli.org code.
1368
1369	  See also:
1370	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1371
1372config CRYPTO_SERPENT_SSE2_X86_64
1373	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1374	depends on X86 && 64BIT
1375	select CRYPTO_ALGAPI
1376	select CRYPTO_CRYPTD
1377	select CRYPTO_ABLK_HELPER
1378	select CRYPTO_GLUE_HELPER_X86
1379	select CRYPTO_SERPENT
1380	select CRYPTO_LRW
1381	select CRYPTO_XTS
1382	help
1383	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1384
1385	  Keys are allowed to be from 0 to 256 bits in length, in steps
1386	  of 8 bits.
1387
1388	  This module provides Serpent cipher algorithm that processes eight
1389	  blocks parallel using SSE2 instruction set.
1390
1391	  See also:
1392	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1393
1394config CRYPTO_SERPENT_SSE2_586
1395	tristate "Serpent cipher algorithm (i586/SSE2)"
1396	depends on X86 && !64BIT
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_CRYPTD
1399	select CRYPTO_ABLK_HELPER
1400	select CRYPTO_GLUE_HELPER_X86
1401	select CRYPTO_SERPENT
1402	select CRYPTO_LRW
1403	select CRYPTO_XTS
1404	help
1405	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1406
1407	  Keys are allowed to be from 0 to 256 bits in length, in steps
1408	  of 8 bits.
1409
1410	  This module provides Serpent cipher algorithm that processes four
1411	  blocks parallel using SSE2 instruction set.
1412
1413	  See also:
1414	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1415
1416config CRYPTO_SERPENT_AVX_X86_64
1417	tristate "Serpent cipher algorithm (x86_64/AVX)"
1418	depends on X86 && 64BIT
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_CRYPTD
1421	select CRYPTO_ABLK_HELPER
1422	select CRYPTO_GLUE_HELPER_X86
1423	select CRYPTO_SERPENT
1424	select CRYPTO_LRW
1425	select CRYPTO_XTS
1426	help
1427	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428
1429	  Keys are allowed to be from 0 to 256 bits in length, in steps
1430	  of 8 bits.
1431
1432	  This module provides the Serpent cipher algorithm that processes
1433	  eight blocks parallel using the AVX instruction set.
1434
1435	  See also:
1436	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1437
1438config CRYPTO_SERPENT_AVX2_X86_64
1439	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1440	depends on X86 && 64BIT
1441	select CRYPTO_ALGAPI
1442	select CRYPTO_CRYPTD
1443	select CRYPTO_ABLK_HELPER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SERPENT_AVX_X86_64
1447	select CRYPTO_LRW
1448	select CRYPTO_XTS
1449	help
1450	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1451
1452	  Keys are allowed to be from 0 to 256 bits in length, in steps
1453	  of 8 bits.
1454
1455	  This module provides Serpent cipher algorithm that processes 16
1456	  blocks parallel using AVX2 instruction set.
1457
1458	  See also:
1459	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1460
1461config CRYPTO_TEA
1462	tristate "TEA, XTEA and XETA cipher algorithms"
1463	select CRYPTO_ALGAPI
1464	help
1465	  TEA cipher algorithm.
1466
1467	  Tiny Encryption Algorithm is a simple cipher that uses
1468	  many rounds for security.  It is very fast and uses
1469	  little memory.
1470
1471	  Xtendend Tiny Encryption Algorithm is a modification to
1472	  the TEA algorithm to address a potential key weakness
1473	  in the TEA algorithm.
1474
1475	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1476	  of the XTEA algorithm for compatibility purposes.
1477
1478config CRYPTO_TWOFISH
1479	tristate "Twofish cipher algorithm"
1480	select CRYPTO_ALGAPI
1481	select CRYPTO_TWOFISH_COMMON
1482	help
1483	  Twofish cipher algorithm.
1484
1485	  Twofish was submitted as an AES (Advanced Encryption Standard)
1486	  candidate cipher by researchers at CounterPane Systems.  It is a
1487	  16 round block cipher supporting key sizes of 128, 192, and 256
1488	  bits.
1489
1490	  See also:
1491	  <http://www.schneier.com/twofish.html>
1492
1493config CRYPTO_TWOFISH_COMMON
1494	tristate
1495	help
1496	  Common parts of the Twofish cipher algorithm shared by the
1497	  generic c and the assembler implementations.
1498
1499config CRYPTO_TWOFISH_586
1500	tristate "Twofish cipher algorithms (i586)"
1501	depends on (X86 || UML_X86) && !64BIT
1502	select CRYPTO_ALGAPI
1503	select CRYPTO_TWOFISH_COMMON
1504	help
1505	  Twofish cipher algorithm.
1506
1507	  Twofish was submitted as an AES (Advanced Encryption Standard)
1508	  candidate cipher by researchers at CounterPane Systems.  It is a
1509	  16 round block cipher supporting key sizes of 128, 192, and 256
1510	  bits.
1511
1512	  See also:
1513	  <http://www.schneier.com/twofish.html>
1514
1515config CRYPTO_TWOFISH_X86_64
1516	tristate "Twofish cipher algorithm (x86_64)"
1517	depends on (X86 || UML_X86) && 64BIT
1518	select CRYPTO_ALGAPI
1519	select CRYPTO_TWOFISH_COMMON
1520	help
1521	  Twofish cipher algorithm (x86_64).
1522
1523	  Twofish was submitted as an AES (Advanced Encryption Standard)
1524	  candidate cipher by researchers at CounterPane Systems.  It is a
1525	  16 round block cipher supporting key sizes of 128, 192, and 256
1526	  bits.
1527
1528	  See also:
1529	  <http://www.schneier.com/twofish.html>
1530
1531config CRYPTO_TWOFISH_X86_64_3WAY
1532	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_ALGAPI
1535	select CRYPTO_TWOFISH_COMMON
1536	select CRYPTO_TWOFISH_X86_64
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_LRW
1539	select CRYPTO_XTS
1540	help
1541	  Twofish cipher algorithm (x86_64, 3-way parallel).
1542
1543	  Twofish was submitted as an AES (Advanced Encryption Standard)
1544	  candidate cipher by researchers at CounterPane Systems.  It is a
1545	  16 round block cipher supporting key sizes of 128, 192, and 256
1546	  bits.
1547
1548	  This module provides Twofish cipher algorithm that processes three
1549	  blocks parallel, utilizing resources of out-of-order CPUs better.
1550
1551	  See also:
1552	  <http://www.schneier.com/twofish.html>
1553
1554config CRYPTO_TWOFISH_AVX_X86_64
1555	tristate "Twofish cipher algorithm (x86_64/AVX)"
1556	depends on X86 && 64BIT
1557	select CRYPTO_ALGAPI
1558	select CRYPTO_CRYPTD
1559	select CRYPTO_ABLK_HELPER
1560	select CRYPTO_GLUE_HELPER_X86
1561	select CRYPTO_TWOFISH_COMMON
1562	select CRYPTO_TWOFISH_X86_64
1563	select CRYPTO_TWOFISH_X86_64_3WAY
1564	select CRYPTO_LRW
1565	select CRYPTO_XTS
1566	help
1567	  Twofish cipher algorithm (x86_64/AVX).
1568
1569	  Twofish was submitted as an AES (Advanced Encryption Standard)
1570	  candidate cipher by researchers at CounterPane Systems.  It is a
1571	  16 round block cipher supporting key sizes of 128, 192, and 256
1572	  bits.
1573
1574	  This module provides the Twofish cipher algorithm that processes
1575	  eight blocks parallel using the AVX Instruction Set.
1576
1577	  See also:
1578	  <http://www.schneier.com/twofish.html>
1579
1580comment "Compression"
1581
1582config CRYPTO_DEFLATE
1583	tristate "Deflate compression algorithm"
1584	select CRYPTO_ALGAPI
1585	select CRYPTO_ACOMP2
1586	select ZLIB_INFLATE
1587	select ZLIB_DEFLATE
1588	help
1589	  This is the Deflate algorithm (RFC1951), specified for use in
1590	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1591
1592	  You will most probably want this if using IPSec.
1593
 
 
 
 
 
 
 
 
 
1594config CRYPTO_LZO
1595	tristate "LZO compression algorithm"
1596	select CRYPTO_ALGAPI
1597	select CRYPTO_ACOMP2
1598	select LZO_COMPRESS
1599	select LZO_DECOMPRESS
1600	help
1601	  This is the LZO algorithm.
1602
1603config CRYPTO_842
1604	tristate "842 compression algorithm"
1605	select CRYPTO_ALGAPI
1606	select CRYPTO_ACOMP2
1607	select 842_COMPRESS
1608	select 842_DECOMPRESS
1609	help
1610	  This is the 842 algorithm.
1611
1612config CRYPTO_LZ4
1613	tristate "LZ4 compression algorithm"
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_ACOMP2
1616	select LZ4_COMPRESS
1617	select LZ4_DECOMPRESS
1618	help
1619	  This is the LZ4 algorithm.
1620
1621config CRYPTO_LZ4HC
1622	tristate "LZ4HC compression algorithm"
1623	select CRYPTO_ALGAPI
1624	select CRYPTO_ACOMP2
1625	select LZ4HC_COMPRESS
1626	select LZ4_DECOMPRESS
1627	help
1628	  This is the LZ4 high compression mode algorithm.
1629
1630comment "Random Number Generation"
1631
1632config CRYPTO_ANSI_CPRNG
1633	tristate "Pseudo Random Number Generation for Cryptographic modules"
 
1634	select CRYPTO_AES
1635	select CRYPTO_RNG
1636	help
1637	  This option enables the generic pseudo random number generator
1638	  for cryptographic modules.  Uses the Algorithm specified in
1639	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1640	  CRYPTO_FIPS is selected
1641
1642menuconfig CRYPTO_DRBG_MENU
1643	tristate "NIST SP800-90A DRBG"
1644	help
1645	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1646	  more of the DRBG types must be selected.
1647
1648if CRYPTO_DRBG_MENU
1649
1650config CRYPTO_DRBG_HMAC
1651	bool
1652	default y
1653	select CRYPTO_HMAC
1654	select CRYPTO_SHA256
1655
1656config CRYPTO_DRBG_HASH
1657	bool "Enable Hash DRBG"
1658	select CRYPTO_SHA256
1659	help
1660	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1661
1662config CRYPTO_DRBG_CTR
1663	bool "Enable CTR DRBG"
1664	select CRYPTO_AES
1665	depends on CRYPTO_CTR
1666	help
1667	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1668
1669config CRYPTO_DRBG
1670	tristate
1671	default CRYPTO_DRBG_MENU
1672	select CRYPTO_RNG
1673	select CRYPTO_JITTERENTROPY
1674
1675endif	# if CRYPTO_DRBG_MENU
1676
1677config CRYPTO_JITTERENTROPY
1678	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1679	select CRYPTO_RNG
1680	help
1681	  The Jitterentropy RNG is a noise that is intended
1682	  to provide seed to another RNG. The RNG does not
1683	  perform any cryptographic whitening of the generated
1684	  random numbers. This Jitterentropy RNG registers with
1685	  the kernel crypto API and can be used by any caller.
1686
1687config CRYPTO_USER_API
1688	tristate
1689
1690config CRYPTO_USER_API_HASH
1691	tristate "User-space interface for hash algorithms"
1692	depends on NET
1693	select CRYPTO_HASH
1694	select CRYPTO_USER_API
1695	help
1696	  This option enables the user-spaces interface for hash
1697	  algorithms.
1698
1699config CRYPTO_USER_API_SKCIPHER
1700	tristate "User-space interface for symmetric key cipher algorithms"
1701	depends on NET
1702	select CRYPTO_BLKCIPHER
1703	select CRYPTO_USER_API
1704	help
1705	  This option enables the user-spaces interface for symmetric
1706	  key cipher algorithms.
1707
1708config CRYPTO_USER_API_RNG
1709	tristate "User-space interface for random number generator algorithms"
1710	depends on NET
1711	select CRYPTO_RNG
1712	select CRYPTO_USER_API
1713	help
1714	  This option enables the user-spaces interface for random
1715	  number generator algorithms.
1716
1717config CRYPTO_USER_API_AEAD
1718	tristate "User-space interface for AEAD cipher algorithms"
1719	depends on NET
1720	select CRYPTO_AEAD
1721	select CRYPTO_USER_API
1722	help
1723	  This option enables the user-spaces interface for AEAD
1724	  cipher algorithms.
1725
1726config CRYPTO_HASH_INFO
1727	bool
1728
1729source "drivers/crypto/Kconfig"
1730source crypto/asymmetric_keys/Kconfig
1731source certs/Kconfig
1732
1733endif	# if CRYPTO