Linux Audio

Check our new training course

Loading...
v3.15
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
 
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
 
  27	help
  28	  This options enables the fips boot option which is
  29	  required if you want to system to operate in a FIPS 200
  30	  certification.  You should say no unless you know what
  31	  this is.
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33config CRYPTO_ALGAPI
  34	tristate
  35	select CRYPTO_ALGAPI2
  36	help
  37	  This option provides the API for cryptographic algorithms.
  38
  39config CRYPTO_ALGAPI2
  40	tristate
  41
  42config CRYPTO_AEAD
  43	tristate
  44	select CRYPTO_AEAD2
  45	select CRYPTO_ALGAPI
  46
  47config CRYPTO_AEAD2
  48	tristate
  49	select CRYPTO_ALGAPI2
  50
  51config CRYPTO_BLKCIPHER
  52	tristate
  53	select CRYPTO_BLKCIPHER2
  54	select CRYPTO_ALGAPI
  55
  56config CRYPTO_BLKCIPHER2
 
 
 
 
 
 
 
 
 
 
  57	tristate
  58	select CRYPTO_ALGAPI2
  59	select CRYPTO_RNG2
  60	select CRYPTO_WORKQUEUE
  61
  62config CRYPTO_HASH
  63	tristate
  64	select CRYPTO_HASH2
  65	select CRYPTO_ALGAPI
  66
  67config CRYPTO_HASH2
  68	tristate
  69	select CRYPTO_ALGAPI2
  70
  71config CRYPTO_RNG
  72	tristate
  73	select CRYPTO_RNG2
  74	select CRYPTO_ALGAPI
  75
  76config CRYPTO_RNG2
  77	tristate
  78	select CRYPTO_ALGAPI2
  79
  80config CRYPTO_PCOMP
 
 
 
 
 
 
 
 
  81	tristate
  82	select CRYPTO_PCOMP2
  83	select CRYPTO_ALGAPI
  84
  85config CRYPTO_PCOMP2
  86	tristate
  87	select CRYPTO_ALGAPI2
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89config CRYPTO_MANAGER
  90	tristate "Cryptographic algorithm manager"
  91	select CRYPTO_MANAGER2
  92	help
  93	  Create default cryptographic template instantiations such as
  94	  cbc(aes).
  95
  96config CRYPTO_MANAGER2
  97	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
  98	select CRYPTO_AEAD2
 
 
  99	select CRYPTO_HASH2
 100	select CRYPTO_BLKCIPHER2
 101	select CRYPTO_PCOMP2
 
 102
 103config CRYPTO_USER
 104	tristate "Userspace cryptographic algorithm configuration"
 105	depends on NET
 106	select CRYPTO_MANAGER
 107	help
 108	  Userspace configuration for cryptographic instantiations such as
 109	  cbc(aes).
 110
 111config CRYPTO_MANAGER_DISABLE_TESTS
 112	bool "Disable run-time self tests"
 113	default y
 114	depends on CRYPTO_MANAGER2
 115	help
 116	  Disable run-time self tests that normally take place at
 117	  algorithm registration.
 118
 119config CRYPTO_GF128MUL
 120	tristate "GF(2^128) multiplication functions"
 
 121	help
 122	  Efficient table driven implementation of multiplications in the
 123	  field GF(2^128).  This is needed by some cypher modes. This
 124	  option will be selected automatically if you select such a
 125	  cipher mode.  Only select this option by hand if you expect to load
 126	  an external module that requires these functions.
 127
 128config CRYPTO_NULL
 129	tristate "Null algorithms"
 130	select CRYPTO_ALGAPI
 131	select CRYPTO_BLKCIPHER
 132	select CRYPTO_HASH
 133	help
 134	  These are 'Null' algorithms, used by IPsec, which do nothing.
 135
 
 
 
 
 
 
 136config CRYPTO_PCRYPT
 137	tristate "Parallel crypto engine"
 138	depends on SMP
 139	select PADATA
 140	select CRYPTO_MANAGER
 141	select CRYPTO_AEAD
 142	help
 143	  This converts an arbitrary crypto algorithm into a parallel
 144	  algorithm that executes in kernel threads.
 145
 146config CRYPTO_WORKQUEUE
 147       tristate
 148
 149config CRYPTO_CRYPTD
 150	tristate "Software async crypto daemon"
 151	select CRYPTO_BLKCIPHER
 152	select CRYPTO_HASH
 153	select CRYPTO_MANAGER
 154	select CRYPTO_WORKQUEUE
 155	help
 156	  This is a generic software asynchronous crypto daemon that
 157	  converts an arbitrary synchronous software crypto algorithm
 158	  into an asynchronous algorithm that executes in a kernel thread.
 159
 160config CRYPTO_AUTHENC
 161	tristate "Authenc support"
 162	select CRYPTO_AEAD
 163	select CRYPTO_BLKCIPHER
 164	select CRYPTO_MANAGER
 165	select CRYPTO_HASH
 
 166	help
 167	  Authenc: Combined mode wrapper for IPsec.
 168	  This is required for IPSec.
 
 169
 170config CRYPTO_TEST
 171	tristate "Testing module"
 172	depends on m
 173	select CRYPTO_MANAGER
 174	help
 175	  Quick & dirty crypto test module.
 176
 177config CRYPTO_ABLK_HELPER
 178	tristate
 179	select CRYPTO_CRYPTD
 180
 181config CRYPTO_GLUE_HELPER_X86
 182	tristate
 183	depends on X86
 184	select CRYPTO_ALGAPI
 185
 186comment "Authenticated Encryption with Associated Data"
 187
 188config CRYPTO_CCM
 189	tristate "CCM support"
 190	select CRYPTO_CTR
 191	select CRYPTO_AEAD
 192	help
 193	  Support for Counter with CBC MAC. Required for IPsec.
 194
 195config CRYPTO_GCM
 196	tristate "GCM/GMAC support"
 197	select CRYPTO_CTR
 198	select CRYPTO_AEAD
 199	select CRYPTO_GHASH
 200	select CRYPTO_NULL
 201	help
 202	  Support for Galois/Counter Mode (GCM) and Galois Message
 203	  Authentication Code (GMAC). Required for IPSec.
 204
 205config CRYPTO_SEQIV
 206	tristate "Sequence Number IV Generator"
 207	select CRYPTO_AEAD
 208	select CRYPTO_BLKCIPHER
 209	select CRYPTO_RNG
 210	help
 211	  This IV generator generates an IV based on a sequence number by
 212	  xoring it with a salt.  This algorithm is mainly useful for CTR
 213
 214comment "Block modes"
 215
 216config CRYPTO_CBC
 217	tristate "CBC support"
 218	select CRYPTO_BLKCIPHER
 219	select CRYPTO_MANAGER
 220	help
 221	  CBC: Cipher Block Chaining mode
 222	  This block cipher algorithm is required for IPSec.
 223
 224config CRYPTO_CTR
 225	tristate "CTR support"
 226	select CRYPTO_BLKCIPHER
 227	select CRYPTO_SEQIV
 228	select CRYPTO_MANAGER
 229	help
 230	  CTR: Counter mode
 231	  This block cipher algorithm is required for IPSec.
 232
 233config CRYPTO_CTS
 234	tristate "CTS support"
 235	select CRYPTO_BLKCIPHER
 236	help
 237	  CTS: Cipher Text Stealing
 238	  This is the Cipher Text Stealing mode as described by
 239	  Section 8 of rfc2040 and referenced by rfc3962.
 240	  (rfc3962 includes errata information in its Appendix A)
 241	  This mode is required for Kerberos gss mechanism support
 242	  for AES encryption.
 243
 244config CRYPTO_ECB
 245	tristate "ECB support"
 246	select CRYPTO_BLKCIPHER
 247	select CRYPTO_MANAGER
 
 
 248	help
 249	  ECB: Electronic CodeBook mode
 250	  This is the simplest block cipher algorithm.  It simply encrypts
 251	  the input block by block.
 252
 253config CRYPTO_LRW
 254	tristate "LRW support"
 255	select CRYPTO_BLKCIPHER
 256	select CRYPTO_MANAGER
 257	select CRYPTO_GF128MUL
 258	help
 259	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 260	  narrow block cipher mode for dm-crypt.  Use it with cipher
 261	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 262	  The first 128, 192 or 256 bits in the key are used for AES and the
 263	  rest is used to tie each cipher block to its logical position.
 264
 265config CRYPTO_PCBC
 266	tristate "PCBC support"
 267	select CRYPTO_BLKCIPHER
 268	select CRYPTO_MANAGER
 269	help
 270	  PCBC: Propagating Cipher Block Chaining mode
 271	  This block cipher algorithm is required for RxRPC.
 272
 273config CRYPTO_XTS
 274	tristate "XTS support"
 275	select CRYPTO_BLKCIPHER
 276	select CRYPTO_MANAGER
 277	select CRYPTO_GF128MUL
 278	help
 279	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 280	  key size 256, 384 or 512 bits. This implementation currently
 281	  can't handle a sectorsize which is not a multiple of 16 bytes.
 282
 283comment "Hash modes"
 284
 285config CRYPTO_CMAC
 286	tristate "CMAC support"
 287	select CRYPTO_HASH
 288	select CRYPTO_MANAGER
 289	help
 290	  Cipher-based Message Authentication Code (CMAC) specified by
 291	  The National Institute of Standards and Technology (NIST).
 292
 293	  https://tools.ietf.org/html/rfc4493
 294	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 295
 296config CRYPTO_HMAC
 297	tristate "HMAC support"
 298	select CRYPTO_HASH
 299	select CRYPTO_MANAGER
 300	help
 301	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 302	  This is required for IPSec.
 303
 304config CRYPTO_XCBC
 305	tristate "XCBC support"
 306	select CRYPTO_HASH
 307	select CRYPTO_MANAGER
 308	help
 309	  XCBC: Keyed-Hashing with encryption algorithm
 310		http://www.ietf.org/rfc/rfc3566.txt
 311		http://csrc.nist.gov/encryption/modes/proposedmodes/
 312		 xcbc-mac/xcbc-mac-spec.pdf
 313
 314config CRYPTO_VMAC
 315	tristate "VMAC support"
 316	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317	select CRYPTO_MANAGER
 
 
 318	help
 319	  VMAC is a message authentication algorithm designed for
 320	  very high speed on 64-bit architectures.
 321
 322	  See also:
 323	  <http://fastcrypto.org/vmac>
 324
 325comment "Digest"
 
 
 
 326
 327config CRYPTO_CRC32C
 328	tristate "CRC32c CRC algorithm"
 329	select CRYPTO_HASH
 330	select CRC32
 331	help
 332	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 333	  by iSCSI for header and data digests and by others.
 334	  See Castagnoli93.  Module will be crc32c.
 335
 336config CRYPTO_CRC32C_INTEL
 337	tristate "CRC32c INTEL hardware acceleration"
 338	depends on X86
 339	select CRYPTO_HASH
 340	help
 341	  In Intel processor with SSE4.2 supported, the processor will
 342	  support CRC32C implementation using hardware accelerated CRC32
 343	  instruction. This option will create 'crc32c-intel' module,
 344	  which will enable any routine to use the CRC32 instruction to
 345	  gain performance compared with software implementation.
 346	  Module will be crc32c-intel.
 347
 348config CRYPTO_CRC32C_SPARC64
 349	tristate "CRC32c CRC algorithm (SPARC64)"
 350	depends on SPARC64
 351	select CRYPTO_HASH
 352	select CRC32
 353	help
 354	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 355	  when available.
 356
 357config CRYPTO_CRC32
 358	tristate "CRC32 CRC algorithm"
 359	select CRYPTO_HASH
 360	select CRC32
 361	help
 362	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 363	  Shash crypto api wrappers to crc32_le function.
 364
 365config CRYPTO_CRC32_PCLMUL
 366	tristate "CRC32 PCLMULQDQ hardware acceleration"
 367	depends on X86
 368	select CRYPTO_HASH
 369	select CRC32
 370	help
 371	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 372	  and PCLMULQDQ supported, the processor will support
 373	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 374	  instruction. This option will create 'crc32-plcmul' module,
 375	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 376	  and gain better performance as compared with the table implementation.
 377
 378config CRYPTO_CRCT10DIF
 379	tristate "CRCT10DIF algorithm"
 380	select CRYPTO_HASH
 381	help
 382	  CRC T10 Data Integrity Field computation is being cast as
 383	  a crypto transform.  This allows for faster crc t10 diff
 384	  transforms to be used if they are available.
 385
 386config CRYPTO_CRCT10DIF_PCLMUL
 387	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 388	depends on X86 && 64BIT && CRC_T10DIF
 389	select CRYPTO_HASH
 390	help
 391	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 392	  CRC T10 DIF PCLMULQDQ computation can be hardware
 393	  accelerated PCLMULQDQ instruction. This option will create
 394	  'crct10dif-plcmul' module, which is faster when computing the
 395	  crct10dif checksum as compared with the generic table implementation.
 396
 397config CRYPTO_GHASH
 398	tristate "GHASH digest algorithm"
 399	select CRYPTO_GF128MUL
 400	help
 401	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 402
 403config CRYPTO_MD4
 404	tristate "MD4 digest algorithm"
 405	select CRYPTO_HASH
 406	help
 407	  MD4 message digest algorithm (RFC1320).
 
 
 
 408
 409config CRYPTO_MD5
 410	tristate "MD5 digest algorithm"
 411	select CRYPTO_HASH
 412	help
 413	  MD5 message digest algorithm (RFC1321).
 414
 415config CRYPTO_MD5_SPARC64
 416	tristate "MD5 digest algorithm (SPARC64)"
 417	depends on SPARC64
 418	select CRYPTO_MD5
 419	select CRYPTO_HASH
 420	help
 421	  MD5 message digest algorithm (RFC1321) implemented
 422	  using sparc64 crypto instructions, when available.
 423
 424config CRYPTO_MICHAEL_MIC
 425	tristate "Michael MIC keyed digest algorithm"
 426	select CRYPTO_HASH
 427	help
 428	  Michael MIC is used for message integrity protection in TKIP
 429	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 430	  should not be used for other purposes because of the weakness
 431	  of the algorithm.
 
 
 
 
 
 432
 433config CRYPTO_RMD128
 434	tristate "RIPEMD-128 digest algorithm"
 435	select CRYPTO_HASH
 
 436	help
 437	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 438
 439	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 440	  be used as a secure replacement for RIPEMD. For other use cases,
 441	  RIPEMD-160 should be used.
 442
 443	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 444	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 445
 446config CRYPTO_RMD160
 447	tristate "RIPEMD-160 digest algorithm"
 448	select CRYPTO_HASH
 449	help
 450	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 451
 452	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 453	  to be used as a secure replacement for the 128-bit hash functions
 454	  MD4, MD5 and it's predecessor RIPEMD
 455	  (not to be confused with RIPEMD-128).
 
 456
 457	  It's speed is comparable to SHA1 and there are no known attacks
 458	  against RIPEMD-160.
 459
 460	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 461	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 462
 463config CRYPTO_RMD256
 464	tristate "RIPEMD-256 digest algorithm"
 465	select CRYPTO_HASH
 466	help
 467	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 468	  256 bit hash. It is intended for applications that require
 469	  longer hash-results, without needing a larger security level
 470	  (than RIPEMD-128).
 471
 472	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 473	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 474
 475config CRYPTO_RMD320
 476	tristate "RIPEMD-320 digest algorithm"
 477	select CRYPTO_HASH
 478	help
 479	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 480	  320 bit hash. It is intended for applications that require
 481	  longer hash-results, without needing a larger security level
 482	  (than RIPEMD-160).
 483
 484	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 485	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 486
 487config CRYPTO_SHA1
 488	tristate "SHA1 digest algorithm"
 489	select CRYPTO_HASH
 490	help
 491	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 492
 493config CRYPTO_SHA1_SSSE3
 494	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
 495	depends on X86 && 64BIT
 496	select CRYPTO_SHA1
 497	select CRYPTO_HASH
 498	help
 499	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 500	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 501	  Extensions (AVX/AVX2), when available.
 502
 503config CRYPTO_SHA256_SSSE3
 504	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
 505	depends on X86 && 64BIT
 506	select CRYPTO_SHA256
 507	select CRYPTO_HASH
 508	help
 509	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 510	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 511	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 512	  version 2 (AVX2) instructions, when available.
 513
 514config CRYPTO_SHA512_SSSE3
 515	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 516	depends on X86 && 64BIT
 517	select CRYPTO_SHA512
 518	select CRYPTO_HASH
 519	help
 520	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 521	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 522	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 523	  version 2 (AVX2) instructions, when available.
 524
 525config CRYPTO_SHA1_SPARC64
 526	tristate "SHA1 digest algorithm (SPARC64)"
 527	depends on SPARC64
 528	select CRYPTO_SHA1
 529	select CRYPTO_HASH
 530	help
 531	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 532	  using sparc64 crypto instructions, when available.
 533
 534config CRYPTO_SHA1_ARM
 535	tristate "SHA1 digest algorithm (ARM-asm)"
 536	depends on ARM
 537	select CRYPTO_SHA1
 538	select CRYPTO_HASH
 539	help
 540	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 541	  using optimized ARM assembler.
 542
 543config CRYPTO_SHA1_PPC
 544	tristate "SHA1 digest algorithm (powerpc)"
 545	depends on PPC
 546	help
 547	  This is the powerpc hardware accelerated implementation of the
 548	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 549
 550config CRYPTO_SHA256
 551	tristate "SHA224 and SHA256 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  SHA256 secure hash standard (DFIPS 180-2).
 555
 556	  This version of SHA implements a 256 bit hash with 128 bits of
 557	  security against collision attacks.
 558
 559	  This code also includes SHA-224, a 224 bit hash with 112 bits
 560	  of security against collision attacks.
 561
 562config CRYPTO_SHA256_SPARC64
 563	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 564	depends on SPARC64
 565	select CRYPTO_SHA256
 566	select CRYPTO_HASH
 567	help
 568	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 569	  using sparc64 crypto instructions, when available.
 570
 571config CRYPTO_SHA512
 572	tristate "SHA384 and SHA512 digest algorithms"
 573	select CRYPTO_HASH
 
 574	help
 575	  SHA512 secure hash standard (DFIPS 180-2).
 576
 577	  This version of SHA implements a 512 bit hash with 256 bits of
 578	  security against collision attacks.
 579
 580	  This code also includes SHA-384, a 384 bit hash with 192 bits
 581	  of security against collision attacks.
 582
 583config CRYPTO_SHA512_SPARC64
 584	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 585	depends on SPARC64
 586	select CRYPTO_SHA512
 587	select CRYPTO_HASH
 588	help
 589	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 590	  using sparc64 crypto instructions, when available.
 
 591
 592config CRYPTO_TGR192
 593	tristate "Tiger digest algorithms"
 594	select CRYPTO_HASH
 
 595	help
 596	  Tiger hash algorithm 192, 160 and 128-bit hashes
 597
 598	  Tiger is a hash function optimized for 64-bit processors while
 599	  still having decent performance on 32-bit processors.
 600	  Tiger was developed by Ross Anderson and Eli Biham.
 601
 602	  See also:
 603	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 604
 605config CRYPTO_WP512
 606	tristate "Whirlpool digest algorithms"
 607	select CRYPTO_HASH
 
 608	help
 609	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 610
 611	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 612	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 613
 614	  See also:
 615	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 616
 617config CRYPTO_GHASH_CLMUL_NI_INTEL
 618	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 619	depends on X86 && 64BIT
 620	select CRYPTO_CRYPTD
 621	help
 622	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 623	  The implementation is accelerated by CLMUL-NI of Intel.
 624
 625comment "Ciphers"
 
 626
 627config CRYPTO_AES
 628	tristate "AES cipher algorithms"
 
 629	select CRYPTO_ALGAPI
 630	help
 631	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 632	  algorithm.
 633
 634	  Rijndael appears to be consistently a very good performer in
 635	  both hardware and software across a wide range of computing
 636	  environments regardless of its use in feedback or non-feedback
 637	  modes. Its key setup time is excellent, and its key agility is
 638	  good. Rijndael's very low memory requirements make it very well
 639	  suited for restricted-space environments, in which it also
 640	  demonstrates excellent performance. Rijndael's operations are
 641	  among the easiest to defend against power and timing attacks.
 642
 643	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 644
 645	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 
 646
 647config CRYPTO_AES_586
 648	tristate "AES cipher algorithms (i586)"
 649	depends on (X86 || UML_X86) && !64BIT
 650	select CRYPTO_ALGAPI
 651	select CRYPTO_AES
 652	help
 653	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 654	  algorithm.
 655
 656	  Rijndael appears to be consistently a very good performer in
 657	  both hardware and software across a wide range of computing
 658	  environments regardless of its use in feedback or non-feedback
 659	  modes. Its key setup time is excellent, and its key agility is
 660	  good. Rijndael's very low memory requirements make it very well
 661	  suited for restricted-space environments, in which it also
 662	  demonstrates excellent performance. Rijndael's operations are
 663	  among the easiest to defend against power and timing attacks.
 664
 665	  The AES specifies three key sizes: 128, 192 and 256 bits
 666
 667	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 668
 669config CRYPTO_AES_X86_64
 670	tristate "AES cipher algorithms (x86_64)"
 671	depends on (X86 || UML_X86) && 64BIT
 672	select CRYPTO_ALGAPI
 673	select CRYPTO_AES
 674	help
 675	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 676	  algorithm.
 677
 678	  Rijndael appears to be consistently a very good performer in
 679	  both hardware and software across a wide range of computing
 680	  environments regardless of its use in feedback or non-feedback
 681	  modes. Its key setup time is excellent, and its key agility is
 682	  good. Rijndael's very low memory requirements make it very well
 683	  suited for restricted-space environments, in which it also
 684	  demonstrates excellent performance. Rijndael's operations are
 685	  among the easiest to defend against power and timing attacks.
 686
 687	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 688
 689	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 
 690
 691config CRYPTO_AES_NI_INTEL
 692	tristate "AES cipher algorithms (AES-NI)"
 693	depends on X86
 694	select CRYPTO_AES_X86_64 if 64BIT
 695	select CRYPTO_AES_586 if !64BIT
 696	select CRYPTO_CRYPTD
 697	select CRYPTO_ABLK_HELPER
 698	select CRYPTO_ALGAPI
 699	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 700	select CRYPTO_LRW
 701	select CRYPTO_XTS
 702	help
 703	  Use Intel AES-NI instructions for AES algorithm.
 704
 705	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 706	  algorithm.
 707
 708	  Rijndael appears to be consistently a very good performer in
 709	  both hardware and software across a wide range of computing
 710	  environments regardless of its use in feedback or non-feedback
 711	  modes. Its key setup time is excellent, and its key agility is
 712	  good. Rijndael's very low memory requirements make it very well
 713	  suited for restricted-space environments, in which it also
 714	  demonstrates excellent performance. Rijndael's operations are
 715	  among the easiest to defend against power and timing attacks.
 716
 717	  The AES specifies three key sizes: 128, 192 and 256 bits
 718
 719	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 720
 721	  In addition to AES cipher algorithm support, the acceleration
 722	  for some popular block cipher mode is supported too, including
 723	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 724	  acceleration for CTR.
 725
 726config CRYPTO_AES_SPARC64
 727	tristate "AES cipher algorithms (SPARC64)"
 728	depends on SPARC64
 729	select CRYPTO_CRYPTD
 730	select CRYPTO_ALGAPI
 731	help
 732	  Use SPARC64 crypto opcodes for AES algorithm.
 733
 734	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 735	  algorithm.
 736
 737	  Rijndael appears to be consistently a very good performer in
 738	  both hardware and software across a wide range of computing
 739	  environments regardless of its use in feedback or non-feedback
 740	  modes. Its key setup time is excellent, and its key agility is
 741	  good. Rijndael's very low memory requirements make it very well
 742	  suited for restricted-space environments, in which it also
 743	  demonstrates excellent performance. Rijndael's operations are
 744	  among the easiest to defend against power and timing attacks.
 745
 746	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 747
 748	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 749
 750	  In addition to AES cipher algorithm support, the acceleration
 751	  for some popular block cipher mode is supported too, including
 752	  ECB and CBC.
 753
 754config CRYPTO_AES_ARM
 755	tristate "AES cipher algorithms (ARM-asm)"
 756	depends on ARM
 757	select CRYPTO_ALGAPI
 758	select CRYPTO_AES
 759	help
 760	  Use optimized AES assembler routines for ARM platforms.
 761
 762	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 763	  algorithm.
 
 
 764
 765	  Rijndael appears to be consistently a very good performer in
 766	  both hardware and software across a wide range of computing
 767	  environments regardless of its use in feedback or non-feedback
 768	  modes. Its key setup time is excellent, and its key agility is
 769	  good. Rijndael's very low memory requirements make it very well
 770	  suited for restricted-space environments, in which it also
 771	  demonstrates excellent performance. Rijndael's operations are
 772	  among the easiest to defend against power and timing attacks.
 773
 774	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 775
 776	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 777
 778config CRYPTO_AES_ARM_BS
 779	tristate "Bit sliced AES using NEON instructions"
 780	depends on ARM && KERNEL_MODE_NEON
 781	select CRYPTO_ALGAPI
 782	select CRYPTO_AES_ARM
 783	select CRYPTO_ABLK_HELPER
 784	help
 785	  Use a faster and more secure NEON based implementation of AES in CBC,
 786	  CTR and XTS modes
 787
 788	  Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
 789	  and for XTS mode encryption, CBC and XTS mode decryption speedup is
 790	  around 25%. (CBC encryption speed is not affected by this driver.)
 791	  This implementation does not rely on any lookup tables so it is
 792	  believed to be invulnerable to cache timing attacks.
 793
 794config CRYPTO_ANUBIS
 795	tristate "Anubis cipher algorithm"
 796	select CRYPTO_ALGAPI
 
 
 
 797	help
 798	  Anubis cipher algorithm.
 799
 800	  Anubis is a variable key length cipher which can use keys from
 801	  128 bits to 320 bits in length.  It was evaluated as a entrant
 802	  in the NESSIE competition.
 
 
 
 
 
 
 
 
 
 
 803
 804	  See also:
 805	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 806	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 807
 808config CRYPTO_ARC4
 809	tristate "ARC4 cipher algorithm"
 810	select CRYPTO_BLKCIPHER
 
 
 811	help
 812	  ARC4 cipher algorithm.
 813
 814	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 815	  bits in length.  This algorithm is required for driver-based
 816	  WEP, but it should not be for other purposes because of the
 817	  weakness of the algorithm.
 818
 819config CRYPTO_BLOWFISH
 820	tristate "Blowfish cipher algorithm"
 821	select CRYPTO_ALGAPI
 822	select CRYPTO_BLOWFISH_COMMON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	help
 824	  Blowfish cipher algorithm, by Bruce Schneier.
 825
 826	  This is a variable key length cipher which can use keys from 32
 827	  bits to 448 bits in length.  It's fast, simple and specifically
 828	  designed for use on "large microprocessors".
 829
 830	  See also:
 831	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 832
 833config CRYPTO_BLOWFISH_COMMON
 834	tristate
 
 
 835	help
 836	  Common parts of the Blowfish cipher algorithm shared by the
 837	  generic c and the assembler implementations.
 838
 839	  See also:
 840	  <http://www.schneier.com/blowfish.html>
 841
 842config CRYPTO_BLOWFISH_X86_64
 843	tristate "Blowfish cipher algorithm (x86_64)"
 844	depends on X86 && 64BIT
 845	select CRYPTO_ALGAPI
 846	select CRYPTO_BLOWFISH_COMMON
 847	help
 848	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 849
 850	  This is a variable key length cipher which can use keys from 32
 851	  bits to 448 bits in length.  It's fast, simple and specifically
 852	  designed for use on "large microprocessors".
 853
 854	  See also:
 855	  <http://www.schneier.com/blowfish.html>
 
 856
 857config CRYPTO_CAMELLIA
 858	tristate "Camellia cipher algorithms"
 859	depends on CRYPTO
 860	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 861	help
 862	  Camellia cipher algorithms module.
 
 863
 864	  Camellia is a symmetric key block cipher developed jointly
 865	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 866
 867	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 868
 869	  See also:
 870	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 871
 872config CRYPTO_CAMELLIA_X86_64
 873	tristate "Camellia cipher algorithm (x86_64)"
 874	depends on X86 && 64BIT
 875	depends on CRYPTO
 876	select CRYPTO_ALGAPI
 877	select CRYPTO_GLUE_HELPER_X86
 878	select CRYPTO_LRW
 879	select CRYPTO_XTS
 880	help
 881	  Camellia cipher algorithm module (x86_64).
 882
 883	  Camellia is a symmetric key block cipher developed jointly
 884	  at NTT and Mitsubishi Electric Corporation.
 885
 886	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 887
 888	  See also:
 889	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 890
 891config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 892	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
 893	depends on X86 && 64BIT
 894	depends on CRYPTO
 895	select CRYPTO_ALGAPI
 896	select CRYPTO_CRYPTD
 897	select CRYPTO_ABLK_HELPER
 898	select CRYPTO_GLUE_HELPER_X86
 899	select CRYPTO_CAMELLIA_X86_64
 900	select CRYPTO_LRW
 901	select CRYPTO_XTS
 902	help
 903	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 904
 905	  Camellia is a symmetric key block cipher developed jointly
 906	  at NTT and Mitsubishi Electric Corporation.
 907
 908	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 909
 910	  See also:
 911	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 912
 913config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
 914	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
 915	depends on X86 && 64BIT
 916	depends on CRYPTO
 917	select CRYPTO_ALGAPI
 918	select CRYPTO_CRYPTD
 919	select CRYPTO_ABLK_HELPER
 920	select CRYPTO_GLUE_HELPER_X86
 921	select CRYPTO_CAMELLIA_X86_64
 922	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 923	select CRYPTO_LRW
 924	select CRYPTO_XTS
 925	help
 926	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
 
 927
 928	  Camellia is a symmetric key block cipher developed jointly
 929	  at NTT and Mitsubishi Electric Corporation.
 
 930
 931	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 932
 933	  See also:
 934	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 935
 936config CRYPTO_CAMELLIA_SPARC64
 937	tristate "Camellia cipher algorithm (SPARC64)"
 938	depends on SPARC64
 939	depends on CRYPTO
 940	select CRYPTO_ALGAPI
 941	help
 942	  Camellia cipher algorithm module (SPARC64).
 943
 944	  Camellia is a symmetric key block cipher developed jointly
 945	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 946
 947	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 948
 949	  See also:
 950	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 951
 952config CRYPTO_CAST_COMMON
 953	tristate
 
 
 
 
 954	help
 955	  Common parts of the CAST cipher algorithms shared by the
 956	  generic c and the assembler implementations.
 957
 958config CRYPTO_CAST5
 959	tristate "CAST5 (CAST-128) cipher algorithm"
 960	select CRYPTO_ALGAPI
 961	select CRYPTO_CAST_COMMON
 
 
 962	help
 963	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 964	  described in RFC2144.
 965
 966config CRYPTO_CAST5_AVX_X86_64
 967	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
 968	depends on X86 && 64BIT
 969	select CRYPTO_ALGAPI
 970	select CRYPTO_CRYPTD
 971	select CRYPTO_ABLK_HELPER
 972	select CRYPTO_CAST_COMMON
 973	select CRYPTO_CAST5
 974	help
 975	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 976	  described in RFC2144.
 977
 978	  This module provides the Cast5 cipher algorithm that processes
 979	  sixteen blocks parallel using the AVX instruction set.
 980
 981config CRYPTO_CAST6
 982	tristate "CAST6 (CAST-256) cipher algorithm"
 983	select CRYPTO_ALGAPI
 984	select CRYPTO_CAST_COMMON
 985	help
 986	  The CAST6 encryption algorithm (synonymous with CAST-256) is
 987	  described in RFC2612.
 988
 989config CRYPTO_CAST6_AVX_X86_64
 990	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
 991	depends on X86 && 64BIT
 992	select CRYPTO_ALGAPI
 993	select CRYPTO_CRYPTD
 994	select CRYPTO_ABLK_HELPER
 995	select CRYPTO_GLUE_HELPER_X86
 996	select CRYPTO_CAST_COMMON
 997	select CRYPTO_CAST6
 998	select CRYPTO_LRW
 999	select CRYPTO_XTS
1000	help
1001	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1002	  described in RFC2612.
1003
1004	  This module provides the Cast6 cipher algorithm that processes
1005	  eight blocks parallel using the AVX instruction set.
1006
1007config CRYPTO_DES
1008	tristate "DES and Triple DES EDE cipher algorithms"
1009	select CRYPTO_ALGAPI
1010	help
1011	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1012
1013config CRYPTO_DES_SPARC64
1014	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1015	depends on SPARC64
1016	select CRYPTO_ALGAPI
1017	select CRYPTO_DES
1018	help
1019	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1020	  optimized using SPARC64 crypto opcodes.
1021
1022config CRYPTO_FCRYPT
1023	tristate "FCrypt cipher algorithm"
1024	select CRYPTO_ALGAPI
1025	select CRYPTO_BLKCIPHER
1026	help
1027	  FCrypt algorithm used by RxRPC.
1028
1029config CRYPTO_KHAZAD
1030	tristate "Khazad cipher algorithm"
1031	select CRYPTO_ALGAPI
1032	help
1033	  Khazad cipher algorithm.
1034
1035	  Khazad was a finalist in the initial NESSIE competition.  It is
1036	  an algorithm optimized for 64-bit processors with good performance
1037	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
1038
1039	  See also:
1040	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
 
 
 
 
 
 
1041
1042config CRYPTO_SALSA20
1043	tristate "Salsa20 stream cipher algorithm"
1044	select CRYPTO_BLKCIPHER
1045	help
1046	  Salsa20 stream cipher algorithm.
 
 
1047
1048	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1049	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1050
1051	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1052	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1053
1054config CRYPTO_SALSA20_586
1055	tristate "Salsa20 stream cipher algorithm (i586)"
1056	depends on (X86 || UML_X86) && !64BIT
1057	select CRYPTO_BLKCIPHER
1058	help
1059	  Salsa20 stream cipher algorithm.
1060
1061	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1062	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1063
1064	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1065	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
1066
1067config CRYPTO_SALSA20_X86_64
1068	tristate "Salsa20 stream cipher algorithm (x86_64)"
1069	depends on (X86 || UML_X86) && 64BIT
1070	select CRYPTO_BLKCIPHER
1071	help
1072	  Salsa20 stream cipher algorithm.
1073
1074	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1075	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1076
1077	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1078	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
 
 
1079
1080config CRYPTO_SEED
1081	tristate "SEED cipher algorithm"
1082	select CRYPTO_ALGAPI
 
1083	help
1084	  SEED cipher algorithm (RFC4269).
1085
1086	  SEED is a 128-bit symmetric key block cipher that has been
1087	  developed by KISA (Korea Information Security Agency) as a
1088	  national standard encryption algorithm of the Republic of Korea.
1089	  It is a 16 round block cipher with the key size of 128 bit.
 
 
 
1090
1091	  See also:
1092	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1093
1094config CRYPTO_SERPENT
1095	tristate "Serpent cipher algorithm"
1096	select CRYPTO_ALGAPI
1097	help
1098	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1099
1100	  Keys are allowed to be from 0 to 256 bits in length, in steps
1101	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1102	  variant of Serpent for compatibility with old kerneli.org code.
 
 
 
 
 
 
 
 
1103
1104	  See also:
1105	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1106
1107config CRYPTO_SERPENT_SSE2_X86_64
1108	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1109	depends on X86 && 64BIT
1110	select CRYPTO_ALGAPI
1111	select CRYPTO_CRYPTD
1112	select CRYPTO_ABLK_HELPER
1113	select CRYPTO_GLUE_HELPER_X86
1114	select CRYPTO_SERPENT
1115	select CRYPTO_LRW
1116	select CRYPTO_XTS
1117	help
1118	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1119
1120	  Keys are allowed to be from 0 to 256 bits in length, in steps
1121	  of 8 bits.
1122
1123	  This module provides Serpent cipher algorithm that processes eigth
1124	  blocks parallel using SSE2 instruction set.
 
 
 
 
1125
1126	  See also:
1127	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1128
1129config CRYPTO_SERPENT_SSE2_586
1130	tristate "Serpent cipher algorithm (i586/SSE2)"
1131	depends on X86 && !64BIT
1132	select CRYPTO_ALGAPI
1133	select CRYPTO_CRYPTD
1134	select CRYPTO_ABLK_HELPER
1135	select CRYPTO_GLUE_HELPER_X86
1136	select CRYPTO_SERPENT
1137	select CRYPTO_LRW
1138	select CRYPTO_XTS
1139	help
1140	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1141
1142	  Keys are allowed to be from 0 to 256 bits in length, in steps
1143	  of 8 bits.
 
 
1144
1145	  This module provides Serpent cipher algorithm that processes four
1146	  blocks parallel using SSE2 instruction set.
1147
1148	  See also:
1149	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1150
1151config CRYPTO_SERPENT_AVX_X86_64
1152	tristate "Serpent cipher algorithm (x86_64/AVX)"
1153	depends on X86 && 64BIT
1154	select CRYPTO_ALGAPI
1155	select CRYPTO_CRYPTD
1156	select CRYPTO_ABLK_HELPER
1157	select CRYPTO_GLUE_HELPER_X86
1158	select CRYPTO_SERPENT
1159	select CRYPTO_LRW
1160	select CRYPTO_XTS
1161	help
1162	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1163
1164	  Keys are allowed to be from 0 to 256 bits in length, in steps
1165	  of 8 bits.
 
 
 
 
1166
1167	  This module provides the Serpent cipher algorithm that processes
1168	  eight blocks parallel using the AVX instruction set.
1169
1170	  See also:
1171	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
 
 
1172
1173config CRYPTO_SERPENT_AVX2_X86_64
1174	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1175	depends on X86 && 64BIT
1176	select CRYPTO_ALGAPI
1177	select CRYPTO_CRYPTD
1178	select CRYPTO_ABLK_HELPER
1179	select CRYPTO_GLUE_HELPER_X86
1180	select CRYPTO_SERPENT
1181	select CRYPTO_SERPENT_AVX_X86_64
1182	select CRYPTO_LRW
1183	select CRYPTO_XTS
1184	help
1185	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1186
1187	  Keys are allowed to be from 0 to 256 bits in length, in steps
1188	  of 8 bits.
1189
1190	  This module provides Serpent cipher algorithm that processes 16
1191	  blocks parallel using AVX2 instruction set.
 
 
 
 
1192
1193	  See also:
1194	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1195
1196config CRYPTO_TEA
1197	tristate "TEA, XTEA and XETA cipher algorithms"
1198	select CRYPTO_ALGAPI
 
 
 
 
1199	help
1200	  TEA cipher algorithm.
1201
1202	  Tiny Encryption Algorithm is a simple cipher that uses
1203	  many rounds for security.  It is very fast and uses
1204	  little memory.
1205
1206	  Xtendend Tiny Encryption Algorithm is a modification to
1207	  the TEA algorithm to address a potential key weakness
1208	  in the TEA algorithm.
1209
1210	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1211	  of the XTEA algorithm for compatibility purposes.
 
 
 
 
 
1212
1213config CRYPTO_TWOFISH
1214	tristate "Twofish cipher algorithm"
1215	select CRYPTO_ALGAPI
1216	select CRYPTO_TWOFISH_COMMON
 
1217	help
1218	  Twofish cipher algorithm.
1219
1220	  Twofish was submitted as an AES (Advanced Encryption Standard)
1221	  candidate cipher by researchers at CounterPane Systems.  It is a
1222	  16 round block cipher supporting key sizes of 128, 192, and 256
1223	  bits.
1224
1225	  See also:
1226	  <http://www.schneier.com/twofish.html>
1227
1228config CRYPTO_TWOFISH_COMMON
1229	tristate
 
 
 
 
 
1230	help
1231	  Common parts of the Twofish cipher algorithm shared by the
1232	  generic c and the assembler implementations.
1233
1234config CRYPTO_TWOFISH_586
1235	tristate "Twofish cipher algorithms (i586)"
1236	depends on (X86 || UML_X86) && !64BIT
1237	select CRYPTO_ALGAPI
1238	select CRYPTO_TWOFISH_COMMON
1239	help
1240	  Twofish cipher algorithm.
1241
1242	  Twofish was submitted as an AES (Advanced Encryption Standard)
1243	  candidate cipher by researchers at CounterPane Systems.  It is a
1244	  16 round block cipher supporting key sizes of 128, 192, and 256
1245	  bits.
1246
1247	  See also:
1248	  <http://www.schneier.com/twofish.html>
1249
1250config CRYPTO_TWOFISH_X86_64
1251	tristate "Twofish cipher algorithm (x86_64)"
1252	depends on (X86 || UML_X86) && 64BIT
1253	select CRYPTO_ALGAPI
1254	select CRYPTO_TWOFISH_COMMON
 
 
 
1255	help
1256	  Twofish cipher algorithm (x86_64).
1257
1258	  Twofish was submitted as an AES (Advanced Encryption Standard)
1259	  candidate cipher by researchers at CounterPane Systems.  It is a
1260	  16 round block cipher supporting key sizes of 128, 192, and 256
1261	  bits.
 
1262
1263	  See also:
1264	  <http://www.schneier.com/twofish.html>
1265
1266config CRYPTO_TWOFISH_X86_64_3WAY
1267	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1268	depends on X86 && 64BIT
1269	select CRYPTO_ALGAPI
1270	select CRYPTO_TWOFISH_COMMON
1271	select CRYPTO_TWOFISH_X86_64
1272	select CRYPTO_GLUE_HELPER_X86
1273	select CRYPTO_LRW
1274	select CRYPTO_XTS
1275	help
1276	  Twofish cipher algorithm (x86_64, 3-way parallel).
1277
1278	  Twofish was submitted as an AES (Advanced Encryption Standard)
1279	  candidate cipher by researchers at CounterPane Systems.  It is a
1280	  16 round block cipher supporting key sizes of 128, 192, and 256
1281	  bits.
1282
1283	  This module provides Twofish cipher algorithm that processes three
1284	  blocks parallel, utilizing resources of out-of-order CPUs better.
 
 
 
1285
1286	  See also:
1287	  <http://www.schneier.com/twofish.html>
1288
1289config CRYPTO_TWOFISH_AVX_X86_64
1290	tristate "Twofish cipher algorithm (x86_64/AVX)"
1291	depends on X86 && 64BIT
1292	select CRYPTO_ALGAPI
1293	select CRYPTO_CRYPTD
1294	select CRYPTO_ABLK_HELPER
1295	select CRYPTO_GLUE_HELPER_X86
1296	select CRYPTO_TWOFISH_COMMON
1297	select CRYPTO_TWOFISH_X86_64
1298	select CRYPTO_TWOFISH_X86_64_3WAY
1299	select CRYPTO_LRW
1300	select CRYPTO_XTS
1301	help
1302	  Twofish cipher algorithm (x86_64/AVX).
1303
1304	  Twofish was submitted as an AES (Advanced Encryption Standard)
1305	  candidate cipher by researchers at CounterPane Systems.  It is a
1306	  16 round block cipher supporting key sizes of 128, 192, and 256
1307	  bits.
1308
1309	  This module provides the Twofish cipher algorithm that processes
1310	  eight blocks parallel using the AVX Instruction Set.
1311
1312	  See also:
1313	  <http://www.schneier.com/twofish.html>
1314
1315comment "Compression"
1316
1317config CRYPTO_DEFLATE
1318	tristate "Deflate compression algorithm"
1319	select CRYPTO_ALGAPI
 
1320	select ZLIB_INFLATE
1321	select ZLIB_DEFLATE
1322	help
1323	  This is the Deflate algorithm (RFC1951), specified for use in
1324	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1325
1326	  You will most probably want this if using IPSec.
1327
1328config CRYPTO_ZLIB
1329	tristate "Zlib compression algorithm"
1330	select CRYPTO_PCOMP
1331	select ZLIB_INFLATE
1332	select ZLIB_DEFLATE
1333	select NLATTR
1334	help
1335	  This is the zlib algorithm.
1336
1337config CRYPTO_LZO
1338	tristate "LZO compression algorithm"
1339	select CRYPTO_ALGAPI
 
1340	select LZO_COMPRESS
1341	select LZO_DECOMPRESS
1342	help
1343	  This is the LZO algorithm.
 
 
1344
1345config CRYPTO_842
1346	tristate "842 compression algorithm"
1347	depends on CRYPTO_DEV_NX_COMPRESS
1348	# 842 uses lzo if the hardware becomes unavailable
1349	select LZO_COMPRESS
1350	select LZO_DECOMPRESS
1351	help
1352	  This is the 842 algorithm.
 
 
1353
1354config CRYPTO_LZ4
1355	tristate "LZ4 compression algorithm"
1356	select CRYPTO_ALGAPI
 
1357	select LZ4_COMPRESS
1358	select LZ4_DECOMPRESS
1359	help
1360	  This is the LZ4 algorithm.
 
 
1361
1362config CRYPTO_LZ4HC
1363	tristate "LZ4HC compression algorithm"
1364	select CRYPTO_ALGAPI
 
1365	select LZ4HC_COMPRESS
1366	select LZ4_DECOMPRESS
1367	help
1368	  This is the LZ4 high compression mode algorithm.
1369
1370comment "Random Number Generation"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372config CRYPTO_ANSI_CPRNG
1373	tristate "Pseudo Random Number Generation for Cryptographic modules"
1374	default m
1375	select CRYPTO_AES
1376	select CRYPTO_RNG
1377	help
1378	  This option enables the generic pseudo random number generator
1379	  for cryptographic modules.  Uses the Algorithm specified in
1380	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1381	  CRYPTO_FIPS is selected
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383config CRYPTO_USER_API
1384	tristate
1385
1386config CRYPTO_USER_API_HASH
1387	tristate "User-space interface for hash algorithms"
1388	depends on NET
1389	select CRYPTO_HASH
1390	select CRYPTO_USER_API
1391	help
1392	  This option enables the user-spaces interface for hash
1393	  algorithms.
 
 
1394
1395config CRYPTO_USER_API_SKCIPHER
1396	tristate "User-space interface for symmetric key cipher algorithms"
 
 
 
 
 
 
 
 
 
 
 
1397	depends on NET
1398	select CRYPTO_BLKCIPHER
1399	select CRYPTO_USER_API
1400	help
1401	  This option enables the user-spaces interface for symmetric
1402	  key cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404config CRYPTO_HASH_INFO
1405	bool
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407source "drivers/crypto/Kconfig"
1408source crypto/asymmetric_keys/Kconfig
 
1409
1410endif	# if CRYPTO
v6.8
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 
 
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 
 
 
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 242config CRYPTO_ENGINE
 243	tristate
 
 
 244
 245endmenu
 246
 247menu "Public-key cryptography"
 
 
 
 
 
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252	select CRYPTO_MANAGER
 253	select MPILIB
 254	select ASN1
 255	help
 256	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 
 
 257
 258config CRYPTO_DH
 259	tristate "DH (Diffie-Hellman)"
 260	select CRYPTO_KPP
 261	select MPILIB
 
 262	help
 263	  DH (Diffie-Hellman) key exchange algorithm
 
 
 
 
 264
 265config CRYPTO_DH_RFC7919_GROUPS
 266	bool "RFC 7919 FFDHE groups"
 267	depends on CRYPTO_DH
 268	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269	help
 270	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 271	  defined in RFC7919.
 272
 273	  Support these finite-field groups in DH key exchanges:
 274	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 275
 276	  If unsure, say N.
 
 
 
 
 
 
 277
 278config CRYPTO_ECC
 279	tristate
 280	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 281
 282config CRYPTO_ECDH
 283	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 284	select CRYPTO_ECC
 285	select CRYPTO_KPP
 286	help
 287	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 288	  using curves P-192, P-256, and P-384 (FIPS 186)
 289
 290config CRYPTO_ECDSA
 291	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 292	select CRYPTO_ECC
 293	select CRYPTO_AKCIPHER
 294	select ASN1
 295	help
 296	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 297	  ISO/IEC 14888-3)
 298	  using curves P-192, P-256, and P-384
 299
 300	  Only signature verification is implemented.
 301
 302config CRYPTO_ECRDSA
 303	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 304	select CRYPTO_ECC
 305	select CRYPTO_AKCIPHER
 306	select CRYPTO_STREEBOG
 307	select OID_REGISTRY
 308	select ASN1
 309	help
 310	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 311	  RFC 7091, ISO/IEC 14888-3)
 312
 313	  One of the Russian cryptographic standard algorithms (called GOST
 314	  algorithms). Only signature verification is implemented.
 315
 316config CRYPTO_SM2
 317	tristate "SM2 (ShangMi 2)"
 318	select CRYPTO_SM3
 319	select CRYPTO_AKCIPHER
 320	select CRYPTO_MANAGER
 321	select MPILIB
 322	select ASN1
 323	help
 324	  SM2 (ShangMi 2) public key algorithm
 
 325
 326	  Published by State Encryption Management Bureau, China,
 327	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 328
 329	  References:
 330	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 331	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 332	  http://www.gmbz.org.cn/main/bzlb.html
 333
 334config CRYPTO_CURVE25519
 335	tristate "Curve25519"
 336	select CRYPTO_KPP
 337	select CRYPTO_LIB_CURVE25519_GENERIC
 338	help
 339	  Curve25519 elliptic curve (RFC7748)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341endmenu
 
 
 
 
 
 
 342
 343menu "Block ciphers"
 
 
 
 
 
 
 
 
 
 
 
 344
 345config CRYPTO_AES
 346	tristate "AES (Advanced Encryption Standard)"
 347	select CRYPTO_ALGAPI
 348	select CRYPTO_LIB_AES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349	help
 350	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 351
 352	  Rijndael appears to be consistently a very good performer in
 353	  both hardware and software across a wide range of computing
 354	  environments regardless of its use in feedback or non-feedback
 355	  modes. Its key setup time is excellent, and its key agility is
 356	  good. Rijndael's very low memory requirements make it very well
 357	  suited for restricted-space environments, in which it also
 358	  demonstrates excellent performance. Rijndael's operations are
 359	  among the easiest to defend against power and timing attacks.
 360
 361	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 362
 363config CRYPTO_AES_TI
 364	tristate "AES (Advanced Encryption Standard) (fixed time)"
 365	select CRYPTO_ALGAPI
 366	select CRYPTO_LIB_AES
 
 367	help
 368	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 369
 370	  This is a generic implementation of AES that attempts to eliminate
 371	  data dependent latencies as much as possible without affecting
 372	  performance too much. It is intended for use by the generic CCM
 373	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 374	  solely on encryption (although decryption is supported as well, but
 375	  with a more dramatic performance hit)
 376
 377	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 378	  8 for decryption), this implementation only uses just two S-boxes of
 379	  256 bytes each, and attempts to eliminate data dependent latencies by
 380	  prefetching the entire table into the cache at the start of each
 381	  block. Interrupts are also disabled to avoid races where cachelines
 382	  are evicted when the CPU is interrupted to do something else.
 383
 384config CRYPTO_ANUBIS
 385	tristate "Anubis"
 386	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 387	select CRYPTO_ALGAPI
 388	help
 389	  Anubis cipher algorithm
 390
 391	  Anubis is a variable key length cipher which can use keys from
 392	  128 bits to 320 bits in length.  It was evaluated as a entrant
 393	  in the NESSIE competition.
 394
 395	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 396	  for further information.
 397
 398config CRYPTO_ARIA
 399	tristate "ARIA"
 400	select CRYPTO_ALGAPI
 401	help
 402	  ARIA cipher algorithm (RFC5794)
 403
 404	  ARIA is a standard encryption algorithm of the Republic of Korea.
 405	  The ARIA specifies three key sizes and rounds.
 406	  128-bit: 12 rounds.
 407	  192-bit: 14 rounds.
 408	  256-bit: 16 rounds.
 409
 410	  See:
 411	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 
 
 
 412
 413config CRYPTO_BLOWFISH
 414	tristate "Blowfish"
 415	select CRYPTO_ALGAPI
 416	select CRYPTO_BLOWFISH_COMMON
 
 
 
 
 
 
 
 
 
 
 
 417	help
 418	  Blowfish cipher algorithm, by Bruce Schneier
 
 
 
 419
 420	  This is a variable key length cipher which can use keys from 32
 421	  bits to 448 bits in length.  It's fast, simple and specifically
 422	  designed for use on "large microprocessors".
 423
 424	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 425
 426config CRYPTO_BLOWFISH_COMMON
 427	tristate
 
 
 
 428	help
 429	  Common parts of the Blowfish cipher algorithm shared by the
 430	  generic c and the assembler implementations.
 
 431
 432config CRYPTO_CAMELLIA
 433	tristate "Camellia"
 434	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 435	help
 436	  Camellia cipher algorithms (ISO/IEC 18033-3)
 
 
 
 437
 438	  Camellia is a symmetric key block cipher developed jointly
 439	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 440
 441	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 
 
 442
 443	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 
 
 
 444
 445config CRYPTO_CAST_COMMON
 446	tristate
 
 447	help
 448	  Common parts of the CAST cipher algorithms shared by the
 449	  generic c and the assembler implementations.
 
 
 
 
 
 450
 451config CRYPTO_CAST5
 452	tristate "CAST5 (CAST-128)"
 453	select CRYPTO_ALGAPI
 454	select CRYPTO_CAST_COMMON
 
 455	help
 456	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 
 457
 458config CRYPTO_CAST6
 459	tristate "CAST6 (CAST-256)"
 460	select CRYPTO_ALGAPI
 461	select CRYPTO_CAST_COMMON
 462	help
 463	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 
 
 
 464
 465config CRYPTO_DES
 466	tristate "DES and Triple DES EDE"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_LIB_DES
 
 
 
 
 469	help
 470	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 471	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 472	  cipher algorithms
 473
 474config CRYPTO_FCRYPT
 475	tristate "FCrypt"
 476	select CRYPTO_ALGAPI
 477	select CRYPTO_SKCIPHER
 478	help
 479	  FCrypt algorithm used by RxRPC
 
 
 
 
 480
 481	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 482
 483config CRYPTO_KHAZAD
 484	tristate "Khazad"
 485	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 486	select CRYPTO_ALGAPI
 487	help
 488	  Khazad cipher algorithm
 
 
 
 
 
 
 489
 490	  Khazad was a finalist in the initial NESSIE competition.  It is
 491	  an algorithm optimized for 64-bit processors with good performance
 492	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
 
 
 493
 494	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 495	  for further information.
 496
 497config CRYPTO_SEED
 498	tristate "SEED"
 499	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 500	select CRYPTO_ALGAPI
 501	help
 502	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 
 
 
 
 
 
 
 
 
 
 503
 504	  SEED is a 128-bit symmetric key block cipher that has been
 505	  developed by KISA (Korea Information Security Agency) as a
 506	  national standard encryption algorithm of the Republic of Korea.
 507	  It is a 16 round block cipher with the key size of 128 bit.
 508
 509	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 510	  for further information.
 511
 512config CRYPTO_SERPENT
 513	tristate "Serpent"
 
 514	select CRYPTO_ALGAPI
 
 515	help
 516	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 517
 518	  Keys are allowed to be from 0 to 256 bits in length, in steps
 519	  of 8 bits.
 
 
 
 
 
 
 520
 521	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 522
 523config CRYPTO_SM4
 524	tristate
 525
 526config CRYPTO_SM4_GENERIC
 527	tristate "SM4 (ShangMi 4)"
 
 528	select CRYPTO_ALGAPI
 529	select CRYPTO_SM4
 530	help
 531	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 532	  ISO/IEC 18033-3:2010/Amd 1:2021)
 533
 534	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 535	  Organization of State Commercial Administration of China (OSCCA)
 536	  as an authorized cryptographic algorithms for the use within China.
 
 
 
 
 
 537
 538	  SMS4 was originally created for use in protecting wireless
 539	  networks, and is mandated in the Chinese National Standard for
 540	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 541	  (GB.15629.11-2003).
 542
 543	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 544	  standardized through TC 260 of the Standardization Administration
 545	  of the People's Republic of China (SAC).
 546
 547	  The input, output, and key of SMS4 are each 128 bits.
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	  See https://eprint.iacr.org/2008/329.pdf for further information.
 
 550
 551	  If unsure, say N.
 
 
 
 
 
 
 
 
 
 
 
 552
 553config CRYPTO_TEA
 554	tristate "TEA, XTEA and XETA"
 555	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 
 
 
 
 
 
 556	select CRYPTO_ALGAPI
 557	help
 558	  TEA (Tiny Encryption Algorithm) cipher algorithms
 
 
 
 559
 560	  Tiny Encryption Algorithm is a simple cipher that uses
 561	  many rounds for security.  It is very fast and uses
 562	  little memory.
 
 
 
 
 
 563
 564	  Xtendend Tiny Encryption Algorithm is a modification to
 565	  the TEA algorithm to address a potential key weakness
 566	  in the TEA algorithm.
 567
 568	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 569	  of the XTEA algorithm for compatibility purposes.
 570
 571config CRYPTO_TWOFISH
 572	tristate "Twofish"
 
 
 
 
 
 573	select CRYPTO_ALGAPI
 574	select CRYPTO_TWOFISH_COMMON
 575	help
 576	  Twofish cipher algorithm
 577
 578	  Twofish was submitted as an AES (Advanced Encryption Standard)
 579	  candidate cipher by researchers at CounterPane Systems.  It is a
 580	  16 round block cipher supporting key sizes of 128, 192, and 256
 581	  bits.
 582
 583	  See https://www.schneier.com/twofish.html for further information.
 
 
 
 
 
 
 
 584
 585config CRYPTO_TWOFISH_COMMON
 586	tristate
 587	help
 588	  Common parts of the Twofish cipher algorithm shared by the
 589	  generic c and the assembler implementations.
 590
 591endmenu
 592
 593menu "Length-preserving ciphers and modes"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595config CRYPTO_ADIANTUM
 596	tristate "Adiantum"
 597	select CRYPTO_CHACHA20
 598	select CRYPTO_LIB_POLY1305_GENERIC
 599	select CRYPTO_NHPOLY1305
 600	select CRYPTO_MANAGER
 601	help
 602	  Adiantum tweakable, length-preserving encryption mode
 603
 604	  Designed for fast and secure disk encryption, especially on
 605	  CPUs without dedicated crypto instructions.  It encrypts
 606	  each sector using the XChaCha12 stream cipher, two passes of
 607	  an ε-almost-∆-universal hash function, and an invocation of
 608	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 609	  without AES instructions, Adiantum is much faster than
 610	  AES-XTS.
 611
 612	  Adiantum's security is provably reducible to that of its
 613	  underlying stream and block ciphers, subject to a security
 614	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 615	  mode, so it actually provides an even stronger notion of
 616	  security than XTS, subject to the security bound.
 617
 618	  If unsure, say N.
 
 
 619
 620config CRYPTO_ARC4
 621	tristate "ARC4 (Alleged Rivest Cipher 4)"
 622	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 623	select CRYPTO_SKCIPHER
 624	select CRYPTO_LIB_ARC4
 625	help
 626	  ARC4 cipher algorithm
 627
 628	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 629	  bits in length.  This algorithm is required for driver-based
 630	  WEP, but it should not be for other purposes because of the
 631	  weakness of the algorithm.
 632
 633config CRYPTO_CHACHA20
 634	tristate "ChaCha"
 635	select CRYPTO_LIB_CHACHA_GENERIC
 636	select CRYPTO_SKCIPHER
 637	help
 638	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 639
 640	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 641	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 642	  This is the portable C implementation of ChaCha20.  See
 643	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 644
 645	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 646	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 647	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 648	  while provably retaining ChaCha20's security.  See
 649	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 650
 651	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 652	  reduced security margin but increased performance.  It can be needed
 653	  in some performance-sensitive scenarios.
 654
 655config CRYPTO_CBC
 656	tristate "CBC (Cipher Block Chaining)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 659	help
 660	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 661
 662	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER2
 685	select CRYPTO_MANAGER
 
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 728
 729config CRYPTO_PCBC
 730	tristate "PCBC (Propagating Cipher Block Chaining)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 
 
 
 
 733	help
 734	  PCBC (Propagating Cipher Block Chaining) mode
 735
 736	  This block cipher mode is required for RxRPC.
 
 737
 738config CRYPTO_XCTR
 739	tristate
 740	select CRYPTO_SKCIPHER
 741	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 742	help
 743	  XCTR (XOR Counter) mode for HCTR2
 744
 745	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 746	  addition rather than big-endian arithmetic.
 747
 748	  XCTR mode is used to implement HCTR2.
 749
 750config CRYPTO_XTS
 751	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 752	select CRYPTO_SKCIPHER
 753	select CRYPTO_MANAGER
 754	select CRYPTO_ECB
 
 
 
 
 
 
 
 
 
 
 755	help
 756	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 757	  and IEEE 1619)
 758
 759	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 760	  implementation currently can't handle a sectorsize which is not a
 761	  multiple of 16 bytes.
 762
 763config CRYPTO_NHPOLY1305
 764	tristate
 765	select CRYPTO_HASH
 766	select CRYPTO_LIB_POLY1305_GENERIC
 767
 768endmenu
 
 769
 770menu "AEAD (authenticated encryption with associated data) ciphers"
 
 
 
 
 
 
 771
 772config CRYPTO_AEGIS128
 773	tristate "AEGIS-128"
 774	select CRYPTO_AEAD
 775	select CRYPTO_AES  # for AES S-box tables
 776	help
 777	  AEGIS-128 AEAD algorithm
 778
 779config CRYPTO_AEGIS128_SIMD
 780	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 781	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 782	default y
 783	help
 784	  AEGIS-128 AEAD algorithm
 785
 786	  Architecture: arm or arm64 using:
 787	  - NEON (Advanced SIMD) extension
 788
 789config CRYPTO_CHACHA20POLY1305
 790	tristate "ChaCha20-Poly1305"
 791	select CRYPTO_CHACHA20
 792	select CRYPTO_POLY1305
 793	select CRYPTO_AEAD
 794	select CRYPTO_MANAGER
 795	help
 796	  ChaCha20 stream cipher and Poly1305 authenticator combined
 797	  mode (RFC8439)
 798
 799config CRYPTO_CCM
 800	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 801	select CRYPTO_CTR
 802	select CRYPTO_HASH
 803	select CRYPTO_AEAD
 804	select CRYPTO_MANAGER
 805	help
 806	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 807	  authenticated encryption mode (NIST SP800-38C)
 808
 809config CRYPTO_GCM
 810	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 811	select CRYPTO_CTR
 812	select CRYPTO_AEAD
 813	select CRYPTO_GHASH
 814	select CRYPTO_NULL
 815	select CRYPTO_MANAGER
 
 816	help
 817	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 818	  (GCM Message Authentication Code) (NIST SP800-38D)
 819
 820	  This is required for IPSec ESP (XFRM_ESP).
 
 821
 822config CRYPTO_GENIV
 823	tristate
 824	select CRYPTO_AEAD
 825	select CRYPTO_NULL
 826	select CRYPTO_MANAGER
 827	select CRYPTO_RNG_DEFAULT
 
 828
 829config CRYPTO_SEQIV
 830	tristate "Sequence Number IV Generator"
 831	select CRYPTO_GENIV
 
 
 
 
 
 
 
 
 832	help
 833	  Sequence Number IV generator
 
 834
 835	  This IV generator generates an IV based on a sequence number by
 836	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 837
 838	  This is required for IPsec ESP (XFRM_ESP).
 
 
 
 
 839
 840config CRYPTO_ECHAINIV
 841	tristate "Encrypted Chain IV Generator"
 842	select CRYPTO_GENIV
 
 
 843	help
 844	  Encrypted Chain IV generator
 
 845
 846	  This IV generator generates an IV based on the encryption of
 847	  a sequence number xored with a salt.  This is the default
 848	  algorithm for CBC.
 
 
 
 849
 850config CRYPTO_ESSIV
 851	tristate "Encrypted Salt-Sector IV Generator"
 852	select CRYPTO_AUTHENC
 853	help
 854	  Encrypted Salt-Sector IV generator
 855
 856	  This IV generator is used in some cases by fscrypt and/or
 857	  dm-crypt. It uses the hash of the block encryption key as the
 858	  symmetric key for a block encryption pass applied to the input
 859	  IV, making low entropy IV sources more suitable for block
 860	  encryption.
 861
 862	  This driver implements a crypto API template that can be
 863	  instantiated either as an skcipher or as an AEAD (depending on the
 864	  type of the first template argument), and which defers encryption
 865	  and decryption requests to the encapsulated cipher after applying
 866	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 867	  that the keys are presented in the same format used by the authenc
 868	  template, and that the IV appears at the end of the authenticated
 869	  associated data (AAD) region (which is how dm-crypt uses it.)
 870
 871	  Note that the use of ESSIV is not recommended for new deployments,
 872	  and so this only needs to be enabled when interoperability with
 873	  existing encrypted volumes of filesystems is required, or when
 874	  building for a particular system that requires it (e.g., when
 875	  the SoC in question has accelerated CBC but not XTS, making CBC
 876	  combined with ESSIV the only feasible mode for h/w accelerated
 877	  block encryption)
 878
 879endmenu
 
 880
 881menu "Hashes, digests, and MACs"
 
 882
 883config CRYPTO_BLAKE2B
 884	tristate "BLAKE2b"
 885	select CRYPTO_HASH
 
 886	help
 887	  BLAKE2b cryptographic hash function (RFC 7693)
 888
 889	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 890	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 891
 892	  This module provides the following algorithms:
 893	  - blake2b-160
 894	  - blake2b-256
 895	  - blake2b-384
 896	  - blake2b-512
 897
 898	  Used by the btrfs filesystem.
 
 
 
 
 
 899
 900	  See https://blake2.net for further information.
 
 901
 902config CRYPTO_CMAC
 903	tristate "CMAC (Cipher-based MAC)"
 904	select CRYPTO_HASH
 905	select CRYPTO_MANAGER
 906	help
 907	  CMAC (Cipher-based Message Authentication Code) authentication
 908	  mode (NIST SP800-38B and IETF RFC4493)
 909
 910config CRYPTO_GHASH
 911	tristate "GHASH"
 912	select CRYPTO_HASH
 913	select CRYPTO_LIB_GF128MUL
 914	help
 915	  GCM GHASH function (NIST SP800-38D)
 916
 917config CRYPTO_HMAC
 918	tristate "HMAC (Keyed-Hash MAC)"
 919	select CRYPTO_HASH
 920	select CRYPTO_MANAGER
 921	help
 922	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 923	  RFC2104)
 924
 925	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 926
 927config CRYPTO_MD4
 928	tristate "MD4"
 929	select CRYPTO_HASH
 930	help
 931	  MD4 message digest algorithm (RFC1320)
 932
 933config CRYPTO_MD5
 934	tristate "MD5"
 935	select CRYPTO_HASH
 936	help
 937	  MD5 message digest algorithm (RFC1321)
 938
 939config CRYPTO_MICHAEL_MIC
 940	tristate "Michael MIC"
 941	select CRYPTO_HASH
 942	help
 943	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 944
 945	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 946	  known as WPA (Wif-Fi Protected Access).
 947
 948	  This algorithm is required for TKIP, but it should not be used for
 949	  other purposes because of the weakness of the algorithm.
 950
 951config CRYPTO_POLYVAL
 952	tristate
 953	select CRYPTO_HASH
 954	select CRYPTO_LIB_GF128MUL
 
 
 
 955	help
 956	  POLYVAL hash function for HCTR2
 957
 958	  This is used in HCTR2.  It is not a general-purpose
 959	  cryptographic hash function.
 960
 961config CRYPTO_POLY1305
 962	tristate "Poly1305"
 963	select CRYPTO_HASH
 964	select CRYPTO_LIB_POLY1305_GENERIC
 965	help
 966	  Poly1305 authenticator algorithm (RFC7539)
 967
 968	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 969	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 970	  in IETF protocols. This is the portable C implementation of Poly1305.
 971
 972config CRYPTO_RMD160
 973	tristate "RIPEMD-160"
 974	select CRYPTO_HASH
 
 
 
 
 
 
 
 975	help
 976	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 977
 978	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 979	  to be used as a secure replacement for the 128-bit hash functions
 980	  MD4, MD5 and its predecessor RIPEMD
 981	  (not to be confused with RIPEMD-128).
 982
 983	  Its speed is comparable to SHA-1 and there are no known attacks
 984	  against RIPEMD-160.
 985
 986	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 987	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 988	  for further information.
 989
 990config CRYPTO_SHA1
 991	tristate "SHA-1"
 992	select CRYPTO_HASH
 993	select CRYPTO_LIB_SHA1
 
 
 
 
 
 
 994	help
 995	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 996
 997config CRYPTO_SHA256
 998	tristate "SHA-224 and SHA-256"
 999	select CRYPTO_HASH
1000	select CRYPTO_LIB_SHA256
1001	help
1002	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1003
1004	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
1006
1007config CRYPTO_SHA512
1008	tristate "SHA-384 and SHA-512"
1009	select CRYPTO_HASH
1010	help
1011	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014	tristate "SHA-3"
1015	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1016	help
1017	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1018
1019config CRYPTO_SM3
1020	tristate
1021
1022config CRYPTO_SM3_GENERIC
1023	tristate "SM3 (ShangMi 3)"
1024	select CRYPTO_HASH
1025	select CRYPTO_SM3
1026	help
1027	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1028
1029	  This is part of the Chinese Commercial Cryptography suite.
 
1030
1031	  References:
1032	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036	tristate "Streebog"
1037	select CRYPTO_HASH
1038	help
1039	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041	  This is one of the Russian cryptographic standard algorithms (called
1042	  GOST algorithms). This setting enables two hash algorithms with
1043	  256 and 512 bits output.
1044
1045	  References:
1046	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047	  https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050	tristate "VMAC"
1051	select CRYPTO_HASH
1052	select CRYPTO_MANAGER
1053	help
1054	  VMAC is a message authentication algorithm designed for
1055	  very high speed on 64-bit architectures.
1056
1057	  See https://fastcrypto.org/vmac for further information.
1058
1059config CRYPTO_WP512
1060	tristate "Whirlpool"
1061	select CRYPTO_HASH
1062	help
1063	  Whirlpool hash function (ISO/IEC 10118-3)
1064
1065	  512, 384 and 256-bit hashes.
 
 
 
1066
1067	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1068
1069	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070	  for further information.
1071
1072config CRYPTO_XCBC
1073	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074	select CRYPTO_HASH
1075	select CRYPTO_MANAGER
1076	help
1077	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078	  Code) (RFC3566)
1079
1080config CRYPTO_XXHASH
1081	tristate "xxHash"
1082	select CRYPTO_HASH
1083	select XXHASH
 
1084	help
1085	  xxHash non-cryptographic hash algorithm
1086
1087	  Extremely fast, working at speeds close to RAM limits.
 
 
 
1088
1089	  Used by the btrfs filesystem.
 
1090
1091endmenu
1092
1093menu "CRCs (cyclic redundancy checks)"
1094
1095config CRYPTO_CRC32C
1096	tristate "CRC32c"
1097	select CRYPTO_HASH
1098	select CRC32
1099	help
1100	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106	  iSCSI.
1107
1108	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1109
1110config CRYPTO_CRC32
1111	tristate "CRC32"
1112	select CRYPTO_HASH
1113	select CRC32
 
 
 
 
 
1114	help
1115	  CRC32 CRC algorithm (IEEE 802.3)
1116
1117	  Used by RoCEv2 and f2fs.
 
 
 
1118
1119config CRYPTO_CRCT10DIF
1120	tristate "CRCT10DIF"
1121	select CRYPTO_HASH
1122	help
1123	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1124
1125	  CRC algorithm used by the SCSI Block Commands standard.
 
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128	tristate "CRC64 based on Rocksoft Model algorithm"
1129	depends on CRC64
1130	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1131	help
1132	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1135
1136	  See https://zlib.net/crc_v3.txt
 
1137
1138endmenu
 
1139
1140menu "Compression"
1141
1142config CRYPTO_DEFLATE
1143	tristate "Deflate"
1144	select CRYPTO_ALGAPI
1145	select CRYPTO_ACOMP2
1146	select ZLIB_INFLATE
1147	select ZLIB_DEFLATE
1148	help
1149	  Deflate compression algorithm (RFC1951)
 
1150
1151	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
 
 
 
 
 
 
 
 
 
1152
1153config CRYPTO_LZO
1154	tristate "LZO"
1155	select CRYPTO_ALGAPI
1156	select CRYPTO_ACOMP2
1157	select LZO_COMPRESS
1158	select LZO_DECOMPRESS
1159	help
1160	  LZO compression algorithm
1161
1162	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165	tristate "842"
1166	select CRYPTO_ALGAPI
1167	select CRYPTO_ACOMP2
1168	select 842_COMPRESS
1169	select 842_DECOMPRESS
1170	help
1171	  842 compression algorithm by IBM
1172
1173	  See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176	tristate "LZ4"
1177	select CRYPTO_ALGAPI
1178	select CRYPTO_ACOMP2
1179	select LZ4_COMPRESS
1180	select LZ4_DECOMPRESS
1181	help
1182	  LZ4 compression algorithm
1183
1184	  See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187	tristate "LZ4HC"
1188	select CRYPTO_ALGAPI
1189	select CRYPTO_ACOMP2
1190	select LZ4HC_COMPRESS
1191	select LZ4_DECOMPRESS
1192	help
1193	  LZ4 high compression mode algorithm
1194
1195	  See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198	tristate "Zstd"
1199	select CRYPTO_ALGAPI
1200	select CRYPTO_ACOMP2
1201	select ZSTD_COMPRESS
1202	select ZSTD_DECOMPRESS
1203	help
1204	  zstd compression algorithm
1205
1206	  See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213	tristate "ANSI PRNG (Pseudo Random Number Generator)"
 
1214	select CRYPTO_AES
1215	select CRYPTO_RNG
1216	help
1217	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219	  This uses the AES cipher algorithm.
1220
1221	  Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225	help
1226	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228	  In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233	bool
1234	default y
1235	select CRYPTO_HMAC
1236	select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239	bool "Hash_DRBG"
1240	select CRYPTO_SHA256
1241	help
1242	  Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247	bool "CTR_DRBG"
1248	select CRYPTO_AES
1249	select CRYPTO_CTR
1250	help
1251	  CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253	  This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256	tristate
1257	default CRYPTO_DRBG_MENU
1258	select CRYPTO_RNG
1259	select CRYPTO_JITTERENTROPY
1260
1261endif	# if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265	select CRYPTO_RNG
1266	select CRYPTO_SHA3
1267	help
1268	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271	  compliant with NIST SP800-90B) intended to provide a seed to a
1272	  deterministic RNG (e.g.  per NIST SP800-90C).
1273	  This RNG does not perform any cryptographic whitening of the generated
1274
1275	  See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281	prompt "CPU Jitter RNG Memory Size"
1282	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283	help
1284	  The Jitter RNG measures the execution time of memory accesses.
1285	  Multiple consecutive memory accesses are performed. If the memory
1286	  size fits into a cache (e.g. L1), only the memory access timing
1287	  to that cache is measured. The closer the cache is to the CPU
1288	  the less variations are measured and thus the less entropy is
1289	  obtained. Thus, if the memory size fits into the L1 cache, the
1290	  obtained entropy is less than if the memory size fits within
1291	  L1 + L2, which in turn is less if the memory fits into
1292	  L1 + L2 + L3. Thus, by selecting a different memory size,
1293	  the entropy rate produced by the Jitter RNG can be modified.
1294
1295	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296		bool "2048 Bytes (default)"
1297
1298	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299		bool "128 kBytes"
1300
1301	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302		bool "1024 kBytes"
1303
1304	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305		bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309	int
1310	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316	int
1317	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323	int "CPU Jitter RNG Oversampling Rate"
1324	range 1 15
1325	default 1
1326	help
1327	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1328	  The Jitter RNG operation requires a fixed amount of timing
1329	  measurements to produce one output block of random numbers. The
1330	  OSR value is multiplied with the amount of timing measurements to
1331	  generate one output block. Thus, the timing measurement is oversampled
1332	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1333	  on hardware whose timers deliver limited amount of entropy (e.g.
1334	  the timer is coarse) by setting the OSR to a higher value. The
1335	  trade-off, however, is that the Jitter RNG now requires more time
1336	  to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339	bool "CPU Jitter RNG Test Interface"
1340	help
1341	  The test interface allows a privileged process to capture
1342	  the raw unconditioned high resolution time stamp noise that
1343	  is collected by the Jitter RNG for statistical analysis. As
1344	  this data is used at the same time to generate random bits,
1345	  the Jitter RNG operates in an insecure mode as long as the
1346	  recording is enabled. This interface therefore is only
1347	  intended for testing purposes and is not suitable for
1348	  production systems.
1349
1350	  The raw noise data can be obtained using the jent_raw_hires
1351	  debugfs file. Using the option
1352	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353	  the first 1000 entropy events since boot can be sampled.
1354
1355	  If unsure, select N.
1356
1357endif	# if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362	int
1363	default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366	int
1367	default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370	int
1371	default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374	bool
1375
1376endif	# if !(CRYPTO_FIPS && EXPERT)
1377endif	# if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380	tristate
1381	select CRYPTO_HMAC
1382	select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388	tristate
1389
1390config CRYPTO_USER_API_HASH
1391	tristate "Hash algorithms"
1392	depends on NET
1393	select CRYPTO_HASH
1394	select CRYPTO_USER_API
1395	help
1396	  Enable the userspace interface for hash algorithms.
1397
1398	  See Documentation/crypto/userspace-if.rst and
1399	  https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402	tristate "Symmetric key cipher algorithms"
1403	depends on NET
1404	select CRYPTO_SKCIPHER
1405	select CRYPTO_USER_API
1406	help
1407	  Enable the userspace interface for symmetric key cipher algorithms.
1408
1409	  See Documentation/crypto/userspace-if.rst and
1410	  https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413	tristate "RNG (random number generator) algorithms"
1414	depends on NET
1415	select CRYPTO_RNG
1416	select CRYPTO_USER_API
1417	help
1418	  Enable the userspace interface for RNG (random number generator)
1419	  algorithms.
1420
1421	  See Documentation/crypto/userspace-if.rst and
1422	  https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425	bool "Enable CAVP testing of DRBG"
1426	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427	help
1428	  Enable extra APIs in the userspace interface for NIST CAVP
1429	  (Cryptographic Algorithm Validation Program) testing:
1430	  - resetting DRBG entropy
1431	  - providing Additional Data
1432
1433	  This should only be enabled for CAVP testing. You should say
1434	  no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437	tristate "AEAD cipher algorithms"
1438	depends on NET
1439	select CRYPTO_AEAD
1440	select CRYPTO_SKCIPHER
1441	select CRYPTO_NULL
1442	select CRYPTO_USER_API
1443	help
1444	  Enable the userspace interface for AEAD cipher algorithms.
1445
1446	  See Documentation/crypto/userspace-if.rst and
1447	  https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450	bool "Obsolete cryptographic algorithms"
1451	depends on CRYPTO_USER_API
1452	default y
1453	help
1454	  Allow obsolete cryptographic algorithms to be selected that have
1455	  already been phased out from internal use by the kernel, and are
1456	  only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459	bool "Crypto usage statistics"
1460	depends on CRYPTO_USER
1461	help
1462	  Enable the gathering of crypto stats.
1463
1464	  Enabling this option reduces the performance of the crypto API.  It
1465	  should only be enabled when there is actually a use case for it.
1466
1467	  This collects data sizes, numbers of requests, and numbers
1468	  of errors processed by:
1469	  - AEAD ciphers (encrypt, decrypt)
1470	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471	  - symmetric key ciphers (encrypt, decrypt)
1472	  - compression algorithms (compress, decompress)
1473	  - hash algorithms (hash)
1474	  - key-agreement protocol primitives (setsecret, generate
1475	    public key, compute shared secret)
1476	  - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481	bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif	# if CRYPTO