Linux Audio

Check our new training course

Loading...
v3.15
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
 
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
 
  27	help
  28	  This options enables the fips boot option which is
  29	  required if you want to system to operate in a FIPS 200
  30	  certification.  You should say no unless you know what
  31	  this is.
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33config CRYPTO_ALGAPI
  34	tristate
  35	select CRYPTO_ALGAPI2
  36	help
  37	  This option provides the API for cryptographic algorithms.
  38
  39config CRYPTO_ALGAPI2
  40	tristate
  41
  42config CRYPTO_AEAD
  43	tristate
  44	select CRYPTO_AEAD2
  45	select CRYPTO_ALGAPI
  46
  47config CRYPTO_AEAD2
  48	tristate
  49	select CRYPTO_ALGAPI2
 
 
  50
  51config CRYPTO_BLKCIPHER
  52	tristate
  53	select CRYPTO_BLKCIPHER2
  54	select CRYPTO_ALGAPI
  55
  56config CRYPTO_BLKCIPHER2
  57	tristate
  58	select CRYPTO_ALGAPI2
  59	select CRYPTO_RNG2
  60	select CRYPTO_WORKQUEUE
  61
  62config CRYPTO_HASH
  63	tristate
  64	select CRYPTO_HASH2
  65	select CRYPTO_ALGAPI
  66
  67config CRYPTO_HASH2
  68	tristate
  69	select CRYPTO_ALGAPI2
  70
  71config CRYPTO_RNG
  72	tristate
  73	select CRYPTO_RNG2
  74	select CRYPTO_ALGAPI
  75
  76config CRYPTO_RNG2
  77	tristate
  78	select CRYPTO_ALGAPI2
  79
  80config CRYPTO_PCOMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81	tristate
  82	select CRYPTO_PCOMP2
  83	select CRYPTO_ALGAPI
 
  84
  85config CRYPTO_PCOMP2
  86	tristate
  87	select CRYPTO_ALGAPI2
 
 
 
 
 
 
  88
  89config CRYPTO_MANAGER
  90	tristate "Cryptographic algorithm manager"
  91	select CRYPTO_MANAGER2
  92	help
  93	  Create default cryptographic template instantiations such as
  94	  cbc(aes).
  95
  96config CRYPTO_MANAGER2
  97	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  98	select CRYPTO_AEAD2
  99	select CRYPTO_HASH2
 100	select CRYPTO_BLKCIPHER2
 101	select CRYPTO_PCOMP2
 
 
 102
 103config CRYPTO_USER
 104	tristate "Userspace cryptographic algorithm configuration"
 105	depends on NET
 106	select CRYPTO_MANAGER
 107	help
 108	  Userspace configuration for cryptographic instantiations such as
 109	  cbc(aes).
 110
 111config CRYPTO_MANAGER_DISABLE_TESTS
 112	bool "Disable run-time self tests"
 113	default y
 114	depends on CRYPTO_MANAGER2
 115	help
 116	  Disable run-time self tests that normally take place at
 117	  algorithm registration.
 118
 119config CRYPTO_GF128MUL
 120	tristate "GF(2^128) multiplication functions"
 
 121	help
 122	  Efficient table driven implementation of multiplications in the
 123	  field GF(2^128).  This is needed by some cypher modes. This
 124	  option will be selected automatically if you select such a
 125	  cipher mode.  Only select this option by hand if you expect to load
 126	  an external module that requires these functions.
 127
 128config CRYPTO_NULL
 129	tristate "Null algorithms"
 130	select CRYPTO_ALGAPI
 131	select CRYPTO_BLKCIPHER
 132	select CRYPTO_HASH
 133	help
 134	  These are 'Null' algorithms, used by IPsec, which do nothing.
 135
 
 
 
 
 
 
 136config CRYPTO_PCRYPT
 137	tristate "Parallel crypto engine"
 138	depends on SMP
 139	select PADATA
 140	select CRYPTO_MANAGER
 141	select CRYPTO_AEAD
 142	help
 143	  This converts an arbitrary crypto algorithm into a parallel
 144	  algorithm that executes in kernel threads.
 145
 146config CRYPTO_WORKQUEUE
 147       tristate
 148
 149config CRYPTO_CRYPTD
 150	tristate "Software async crypto daemon"
 151	select CRYPTO_BLKCIPHER
 152	select CRYPTO_HASH
 153	select CRYPTO_MANAGER
 154	select CRYPTO_WORKQUEUE
 155	help
 156	  This is a generic software asynchronous crypto daemon that
 157	  converts an arbitrary synchronous software crypto algorithm
 158	  into an asynchronous algorithm that executes in a kernel thread.
 159
 160config CRYPTO_AUTHENC
 161	tristate "Authenc support"
 162	select CRYPTO_AEAD
 163	select CRYPTO_BLKCIPHER
 164	select CRYPTO_MANAGER
 165	select CRYPTO_HASH
 
 166	help
 167	  Authenc: Combined mode wrapper for IPsec.
 168	  This is required for IPSec.
 
 169
 170config CRYPTO_TEST
 171	tristate "Testing module"
 172	depends on m
 173	select CRYPTO_MANAGER
 174	help
 175	  Quick & dirty crypto test module.
 176
 177config CRYPTO_ABLK_HELPER
 178	tristate
 179	select CRYPTO_CRYPTD
 180
 181config CRYPTO_GLUE_HELPER_X86
 182	tristate
 183	depends on X86
 184	select CRYPTO_ALGAPI
 185
 186comment "Authenticated Encryption with Associated Data"
 187
 188config CRYPTO_CCM
 189	tristate "CCM support"
 190	select CRYPTO_CTR
 191	select CRYPTO_AEAD
 192	help
 193	  Support for Counter with CBC MAC. Required for IPsec.
 194
 195config CRYPTO_GCM
 196	tristate "GCM/GMAC support"
 197	select CRYPTO_CTR
 198	select CRYPTO_AEAD
 199	select CRYPTO_GHASH
 200	select CRYPTO_NULL
 201	help
 202	  Support for Galois/Counter Mode (GCM) and Galois Message
 203	  Authentication Code (GMAC). Required for IPSec.
 204
 205config CRYPTO_SEQIV
 206	tristate "Sequence Number IV Generator"
 207	select CRYPTO_AEAD
 208	select CRYPTO_BLKCIPHER
 209	select CRYPTO_RNG
 210	help
 211	  This IV generator generates an IV based on a sequence number by
 212	  xoring it with a salt.  This algorithm is mainly useful for CTR
 213
 214comment "Block modes"
 215
 216config CRYPTO_CBC
 217	tristate "CBC support"
 218	select CRYPTO_BLKCIPHER
 219	select CRYPTO_MANAGER
 220	help
 221	  CBC: Cipher Block Chaining mode
 222	  This block cipher algorithm is required for IPSec.
 223
 224config CRYPTO_CTR
 225	tristate "CTR support"
 226	select CRYPTO_BLKCIPHER
 227	select CRYPTO_SEQIV
 228	select CRYPTO_MANAGER
 229	help
 230	  CTR: Counter mode
 231	  This block cipher algorithm is required for IPSec.
 232
 233config CRYPTO_CTS
 234	tristate "CTS support"
 235	select CRYPTO_BLKCIPHER
 236	help
 237	  CTS: Cipher Text Stealing
 238	  This is the Cipher Text Stealing mode as described by
 239	  Section 8 of rfc2040 and referenced by rfc3962.
 240	  (rfc3962 includes errata information in its Appendix A)
 241	  This mode is required for Kerberos gss mechanism support
 242	  for AES encryption.
 243
 244config CRYPTO_ECB
 245	tristate "ECB support"
 246	select CRYPTO_BLKCIPHER
 247	select CRYPTO_MANAGER
 248	help
 249	  ECB: Electronic CodeBook mode
 250	  This is the simplest block cipher algorithm.  It simply encrypts
 251	  the input block by block.
 252
 253config CRYPTO_LRW
 254	tristate "LRW support"
 255	select CRYPTO_BLKCIPHER
 256	select CRYPTO_MANAGER
 257	select CRYPTO_GF128MUL
 
 258	help
 259	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 260	  narrow block cipher mode for dm-crypt.  Use it with cipher
 261	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 262	  The first 128, 192 or 256 bits in the key are used for AES and the
 263	  rest is used to tie each cipher block to its logical position.
 264
 265config CRYPTO_PCBC
 266	tristate "PCBC support"
 267	select CRYPTO_BLKCIPHER
 268	select CRYPTO_MANAGER
 269	help
 270	  PCBC: Propagating Cipher Block Chaining mode
 271	  This block cipher algorithm is required for RxRPC.
 272
 273config CRYPTO_XTS
 274	tristate "XTS support"
 275	select CRYPTO_BLKCIPHER
 276	select CRYPTO_MANAGER
 277	select CRYPTO_GF128MUL
 278	help
 279	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 280	  key size 256, 384 or 512 bits. This implementation currently
 281	  can't handle a sectorsize which is not a multiple of 16 bytes.
 282
 283comment "Hash modes"
 
 284
 285config CRYPTO_CMAC
 286	tristate "CMAC support"
 287	select CRYPTO_HASH
 288	select CRYPTO_MANAGER
 289	help
 290	  Cipher-based Message Authentication Code (CMAC) specified by
 291	  The National Institute of Standards and Technology (NIST).
 292
 293	  https://tools.ietf.org/html/rfc4493
 294	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 295
 296config CRYPTO_HMAC
 297	tristate "HMAC support"
 298	select CRYPTO_HASH
 299	select CRYPTO_MANAGER
 300	help
 301	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 302	  This is required for IPSec.
 303
 304config CRYPTO_XCBC
 305	tristate "XCBC support"
 306	select CRYPTO_HASH
 307	select CRYPTO_MANAGER
 308	help
 309	  XCBC: Keyed-Hashing with encryption algorithm
 310		http://www.ietf.org/rfc/rfc3566.txt
 311		http://csrc.nist.gov/encryption/modes/proposedmodes/
 312		 xcbc-mac/xcbc-mac-spec.pdf
 313
 314config CRYPTO_VMAC
 315	tristate "VMAC support"
 316	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317	select CRYPTO_MANAGER
 
 
 318	help
 319	  VMAC is a message authentication algorithm designed for
 320	  very high speed on 64-bit architectures.
 321
 322	  See also:
 323	  <http://fastcrypto.org/vmac>
 324
 325comment "Digest"
 
 
 
 326
 327config CRYPTO_CRC32C
 328	tristate "CRC32c CRC algorithm"
 329	select CRYPTO_HASH
 330	select CRC32
 331	help
 332	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 333	  by iSCSI for header and data digests and by others.
 334	  See Castagnoli93.  Module will be crc32c.
 335
 336config CRYPTO_CRC32C_INTEL
 337	tristate "CRC32c INTEL hardware acceleration"
 338	depends on X86
 339	select CRYPTO_HASH
 340	help
 341	  In Intel processor with SSE4.2 supported, the processor will
 342	  support CRC32C implementation using hardware accelerated CRC32
 343	  instruction. This option will create 'crc32c-intel' module,
 344	  which will enable any routine to use the CRC32 instruction to
 345	  gain performance compared with software implementation.
 346	  Module will be crc32c-intel.
 347
 348config CRYPTO_CRC32C_SPARC64
 349	tristate "CRC32c CRC algorithm (SPARC64)"
 350	depends on SPARC64
 351	select CRYPTO_HASH
 352	select CRC32
 353	help
 354	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 355	  when available.
 356
 357config CRYPTO_CRC32
 358	tristate "CRC32 CRC algorithm"
 359	select CRYPTO_HASH
 360	select CRC32
 361	help
 362	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 363	  Shash crypto api wrappers to crc32_le function.
 364
 365config CRYPTO_CRC32_PCLMUL
 366	tristate "CRC32 PCLMULQDQ hardware acceleration"
 367	depends on X86
 368	select CRYPTO_HASH
 369	select CRC32
 370	help
 371	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 372	  and PCLMULQDQ supported, the processor will support
 373	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 374	  instruction. This option will create 'crc32-plcmul' module,
 375	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 376	  and gain better performance as compared with the table implementation.
 377
 378config CRYPTO_CRCT10DIF
 379	tristate "CRCT10DIF algorithm"
 380	select CRYPTO_HASH
 381	help
 382	  CRC T10 Data Integrity Field computation is being cast as
 383	  a crypto transform.  This allows for faster crc t10 diff
 384	  transforms to be used if they are available.
 385
 386config CRYPTO_CRCT10DIF_PCLMUL
 387	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 388	depends on X86 && 64BIT && CRC_T10DIF
 389	select CRYPTO_HASH
 390	help
 391	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 392	  CRC T10 DIF PCLMULQDQ computation can be hardware
 393	  accelerated PCLMULQDQ instruction. This option will create
 394	  'crct10dif-plcmul' module, which is faster when computing the
 395	  crct10dif checksum as compared with the generic table implementation.
 396
 397config CRYPTO_GHASH
 398	tristate "GHASH digest algorithm"
 399	select CRYPTO_GF128MUL
 
 400	help
 401	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 402
 403config CRYPTO_MD4
 404	tristate "MD4 digest algorithm"
 405	select CRYPTO_HASH
 406	help
 407	  MD4 message digest algorithm (RFC1320).
 
 
 
 408
 409config CRYPTO_MD5
 410	tristate "MD5 digest algorithm"
 411	select CRYPTO_HASH
 412	help
 413	  MD5 message digest algorithm (RFC1321).
 414
 415config CRYPTO_MD5_SPARC64
 416	tristate "MD5 digest algorithm (SPARC64)"
 417	depends on SPARC64
 418	select CRYPTO_MD5
 419	select CRYPTO_HASH
 420	help
 421	  MD5 message digest algorithm (RFC1321) implemented
 422	  using sparc64 crypto instructions, when available.
 423
 424config CRYPTO_MICHAEL_MIC
 425	tristate "Michael MIC keyed digest algorithm"
 426	select CRYPTO_HASH
 427	help
 428	  Michael MIC is used for message integrity protection in TKIP
 429	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 430	  should not be used for other purposes because of the weakness
 431	  of the algorithm.
 
 
 
 
 
 432
 433config CRYPTO_RMD128
 434	tristate "RIPEMD-128 digest algorithm"
 435	select CRYPTO_HASH
 
 436	help
 437	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 438
 439	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 440	  be used as a secure replacement for RIPEMD. For other use cases,
 441	  RIPEMD-160 should be used.
 442
 443	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 444	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 445
 446config CRYPTO_RMD160
 447	tristate "RIPEMD-160 digest algorithm"
 448	select CRYPTO_HASH
 449	help
 450	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 451
 452	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 453	  to be used as a secure replacement for the 128-bit hash functions
 454	  MD4, MD5 and it's predecessor RIPEMD
 455	  (not to be confused with RIPEMD-128).
 456
 457	  It's speed is comparable to SHA1 and there are no known attacks
 458	  against RIPEMD-160.
 459
 460	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 461	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 462
 463config CRYPTO_RMD256
 464	tristate "RIPEMD-256 digest algorithm"
 465	select CRYPTO_HASH
 466	help
 467	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 468	  256 bit hash. It is intended for applications that require
 469	  longer hash-results, without needing a larger security level
 470	  (than RIPEMD-128).
 471
 472	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 473	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 474
 475config CRYPTO_RMD320
 476	tristate "RIPEMD-320 digest algorithm"
 477	select CRYPTO_HASH
 478	help
 479	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 480	  320 bit hash. It is intended for applications that require
 481	  longer hash-results, without needing a larger security level
 482	  (than RIPEMD-160).
 483
 484	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 485	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 486
 487config CRYPTO_SHA1
 488	tristate "SHA1 digest algorithm"
 489	select CRYPTO_HASH
 490	help
 491	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 492
 493config CRYPTO_SHA1_SSSE3
 494	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
 495	depends on X86 && 64BIT
 496	select CRYPTO_SHA1
 497	select CRYPTO_HASH
 498	help
 499	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 500	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 501	  Extensions (AVX/AVX2), when available.
 502
 503config CRYPTO_SHA256_SSSE3
 504	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
 505	depends on X86 && 64BIT
 506	select CRYPTO_SHA256
 507	select CRYPTO_HASH
 508	help
 509	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 510	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 511	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 512	  version 2 (AVX2) instructions, when available.
 513
 514config CRYPTO_SHA512_SSSE3
 515	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 516	depends on X86 && 64BIT
 517	select CRYPTO_SHA512
 518	select CRYPTO_HASH
 519	help
 520	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 521	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 522	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 523	  version 2 (AVX2) instructions, when available.
 524
 525config CRYPTO_SHA1_SPARC64
 526	tristate "SHA1 digest algorithm (SPARC64)"
 527	depends on SPARC64
 528	select CRYPTO_SHA1
 529	select CRYPTO_HASH
 530	help
 531	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 532	  using sparc64 crypto instructions, when available.
 533
 534config CRYPTO_SHA1_ARM
 535	tristate "SHA1 digest algorithm (ARM-asm)"
 536	depends on ARM
 537	select CRYPTO_SHA1
 538	select CRYPTO_HASH
 539	help
 540	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 541	  using optimized ARM assembler.
 542
 543config CRYPTO_SHA1_PPC
 544	tristate "SHA1 digest algorithm (powerpc)"
 545	depends on PPC
 546	help
 547	  This is the powerpc hardware accelerated implementation of the
 548	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 549
 550config CRYPTO_SHA256
 551	tristate "SHA224 and SHA256 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  SHA256 secure hash standard (DFIPS 180-2).
 555
 556	  This version of SHA implements a 256 bit hash with 128 bits of
 557	  security against collision attacks.
 558
 559	  This code also includes SHA-224, a 224 bit hash with 112 bits
 560	  of security against collision attacks.
 561
 562config CRYPTO_SHA256_SPARC64
 563	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 564	depends on SPARC64
 565	select CRYPTO_SHA256
 566	select CRYPTO_HASH
 567	help
 568	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 569	  using sparc64 crypto instructions, when available.
 570
 571config CRYPTO_SHA512
 572	tristate "SHA384 and SHA512 digest algorithms"
 573	select CRYPTO_HASH
 
 574	help
 575	  SHA512 secure hash standard (DFIPS 180-2).
 576
 577	  This version of SHA implements a 512 bit hash with 256 bits of
 578	  security against collision attacks.
 579
 580	  This code also includes SHA-384, a 384 bit hash with 192 bits
 581	  of security against collision attacks.
 582
 583config CRYPTO_SHA512_SPARC64
 584	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 585	depends on SPARC64
 586	select CRYPTO_SHA512
 587	select CRYPTO_HASH
 588	help
 589	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 590	  using sparc64 crypto instructions, when available.
 
 591
 592config CRYPTO_TGR192
 593	tristate "Tiger digest algorithms"
 594	select CRYPTO_HASH
 
 595	help
 596	  Tiger hash algorithm 192, 160 and 128-bit hashes
 597
 598	  Tiger is a hash function optimized for 64-bit processors while
 599	  still having decent performance on 32-bit processors.
 600	  Tiger was developed by Ross Anderson and Eli Biham.
 601
 602	  See also:
 603	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 604
 605config CRYPTO_WP512
 606	tristate "Whirlpool digest algorithms"
 607	select CRYPTO_HASH
 
 608	help
 609	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 610
 611	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 612	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 613
 614	  See also:
 615	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 616
 617config CRYPTO_GHASH_CLMUL_NI_INTEL
 618	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 619	depends on X86 && 64BIT
 620	select CRYPTO_CRYPTD
 621	help
 622	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 623	  The implementation is accelerated by CLMUL-NI of Intel.
 624
 625comment "Ciphers"
 
 626
 627config CRYPTO_AES
 628	tristate "AES cipher algorithms"
 
 629	select CRYPTO_ALGAPI
 630	help
 631	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 632	  algorithm.
 633
 634	  Rijndael appears to be consistently a very good performer in
 635	  both hardware and software across a wide range of computing
 636	  environments regardless of its use in feedback or non-feedback
 637	  modes. Its key setup time is excellent, and its key agility is
 638	  good. Rijndael's very low memory requirements make it very well
 639	  suited for restricted-space environments, in which it also
 640	  demonstrates excellent performance. Rijndael's operations are
 641	  among the easiest to defend against power and timing attacks.
 642
 643	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 644
 645	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 
 646
 647config CRYPTO_AES_586
 648	tristate "AES cipher algorithms (i586)"
 649	depends on (X86 || UML_X86) && !64BIT
 650	select CRYPTO_ALGAPI
 651	select CRYPTO_AES
 652	help
 653	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 654	  algorithm.
 655
 656	  Rijndael appears to be consistently a very good performer in
 657	  both hardware and software across a wide range of computing
 658	  environments regardless of its use in feedback or non-feedback
 659	  modes. Its key setup time is excellent, and its key agility is
 660	  good. Rijndael's very low memory requirements make it very well
 661	  suited for restricted-space environments, in which it also
 662	  demonstrates excellent performance. Rijndael's operations are
 663	  among the easiest to defend against power and timing attacks.
 664
 665	  The AES specifies three key sizes: 128, 192 and 256 bits
 666
 667	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 668
 669config CRYPTO_AES_X86_64
 670	tristate "AES cipher algorithms (x86_64)"
 671	depends on (X86 || UML_X86) && 64BIT
 672	select CRYPTO_ALGAPI
 673	select CRYPTO_AES
 674	help
 675	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 676	  algorithm.
 677
 678	  Rijndael appears to be consistently a very good performer in
 679	  both hardware and software across a wide range of computing
 680	  environments regardless of its use in feedback or non-feedback
 681	  modes. Its key setup time is excellent, and its key agility is
 682	  good. Rijndael's very low memory requirements make it very well
 683	  suited for restricted-space environments, in which it also
 684	  demonstrates excellent performance. Rijndael's operations are
 685	  among the easiest to defend against power and timing attacks.
 686
 687	  The AES specifies three key sizes: 128, 192 and 256 bits
 688
 689	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 690
 691config CRYPTO_AES_NI_INTEL
 692	tristate "AES cipher algorithms (AES-NI)"
 693	depends on X86
 694	select CRYPTO_AES_X86_64 if 64BIT
 695	select CRYPTO_AES_586 if !64BIT
 696	select CRYPTO_CRYPTD
 697	select CRYPTO_ABLK_HELPER
 698	select CRYPTO_ALGAPI
 699	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 700	select CRYPTO_LRW
 701	select CRYPTO_XTS
 702	help
 703	  Use Intel AES-NI instructions for AES algorithm.
 704
 705	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 706	  algorithm.
 
 707
 708	  Rijndael appears to be consistently a very good performer in
 709	  both hardware and software across a wide range of computing
 710	  environments regardless of its use in feedback or non-feedback
 711	  modes. Its key setup time is excellent, and its key agility is
 712	  good. Rijndael's very low memory requirements make it very well
 713	  suited for restricted-space environments, in which it also
 714	  demonstrates excellent performance. Rijndael's operations are
 715	  among the easiest to defend against power and timing attacks.
 716
 717	  The AES specifies three key sizes: 128, 192 and 256 bits
 718
 719	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 720
 721	  In addition to AES cipher algorithm support, the acceleration
 722	  for some popular block cipher mode is supported too, including
 723	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 724	  acceleration for CTR.
 725
 726config CRYPTO_AES_SPARC64
 727	tristate "AES cipher algorithms (SPARC64)"
 728	depends on SPARC64
 729	select CRYPTO_CRYPTD
 730	select CRYPTO_ALGAPI
 731	help
 732	  Use SPARC64 crypto opcodes for AES algorithm.
 733
 734	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 735	  algorithm.
 736
 737	  Rijndael appears to be consistently a very good performer in
 738	  both hardware and software across a wide range of computing
 739	  environments regardless of its use in feedback or non-feedback
 740	  modes. Its key setup time is excellent, and its key agility is
 741	  good. Rijndael's very low memory requirements make it very well
 742	  suited for restricted-space environments, in which it also
 743	  demonstrates excellent performance. Rijndael's operations are
 744	  among the easiest to defend against power and timing attacks.
 745
 746	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 747
 748	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 749
 750	  In addition to AES cipher algorithm support, the acceleration
 751	  for some popular block cipher mode is supported too, including
 752	  ECB and CBC.
 753
 754config CRYPTO_AES_ARM
 755	tristate "AES cipher algorithms (ARM-asm)"
 756	depends on ARM
 757	select CRYPTO_ALGAPI
 758	select CRYPTO_AES
 759	help
 760	  Use optimized AES assembler routines for ARM platforms.
 761
 762	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 763	  algorithm.
 
 
 764
 765	  Rijndael appears to be consistently a very good performer in
 766	  both hardware and software across a wide range of computing
 767	  environments regardless of its use in feedback or non-feedback
 768	  modes. Its key setup time is excellent, and its key agility is
 769	  good. Rijndael's very low memory requirements make it very well
 770	  suited for restricted-space environments, in which it also
 771	  demonstrates excellent performance. Rijndael's operations are
 772	  among the easiest to defend against power and timing attacks.
 773
 774	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 775
 776	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 777
 778config CRYPTO_AES_ARM_BS
 779	tristate "Bit sliced AES using NEON instructions"
 780	depends on ARM && KERNEL_MODE_NEON
 781	select CRYPTO_ALGAPI
 782	select CRYPTO_AES_ARM
 783	select CRYPTO_ABLK_HELPER
 784	help
 785	  Use a faster and more secure NEON based implementation of AES in CBC,
 786	  CTR and XTS modes
 787
 788	  Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
 789	  and for XTS mode encryption, CBC and XTS mode decryption speedup is
 790	  around 25%. (CBC encryption speed is not affected by this driver.)
 791	  This implementation does not rely on any lookup tables so it is
 792	  believed to be invulnerable to cache timing attacks.
 793
 794config CRYPTO_ANUBIS
 795	tristate "Anubis cipher algorithm"
 796	select CRYPTO_ALGAPI
 
 
 
 797	help
 798	  Anubis cipher algorithm.
 799
 800	  Anubis is a variable key length cipher which can use keys from
 801	  128 bits to 320 bits in length.  It was evaluated as a entrant
 802	  in the NESSIE competition.
 
 
 
 
 
 
 
 
 
 
 803
 804	  See also:
 805	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 806	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 807
 808config CRYPTO_ARC4
 809	tristate "ARC4 cipher algorithm"
 810	select CRYPTO_BLKCIPHER
 
 
 811	help
 812	  ARC4 cipher algorithm.
 813
 814	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 815	  bits in length.  This algorithm is required for driver-based
 816	  WEP, but it should not be for other purposes because of the
 817	  weakness of the algorithm.
 818
 819config CRYPTO_BLOWFISH
 820	tristate "Blowfish cipher algorithm"
 821	select CRYPTO_ALGAPI
 822	select CRYPTO_BLOWFISH_COMMON
 823	help
 824	  Blowfish cipher algorithm, by Bruce Schneier.
 825
 826	  This is a variable key length cipher which can use keys from 32
 827	  bits to 448 bits in length.  It's fast, simple and specifically
 828	  designed for use on "large microprocessors".
 
 
 
 
 
 
 
 
 
 
 
 829
 830	  See also:
 831	  <http://www.schneier.com/blowfish.html>
 832
 833config CRYPTO_BLOWFISH_COMMON
 834	tristate
 835	help
 836	  Common parts of the Blowfish cipher algorithm shared by the
 837	  generic c and the assembler implementations.
 838
 839	  See also:
 840	  <http://www.schneier.com/blowfish.html>
 841
 842config CRYPTO_BLOWFISH_X86_64
 843	tristate "Blowfish cipher algorithm (x86_64)"
 844	depends on X86 && 64BIT
 845	select CRYPTO_ALGAPI
 846	select CRYPTO_BLOWFISH_COMMON
 847	help
 848	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 849
 850	  This is a variable key length cipher which can use keys from 32
 851	  bits to 448 bits in length.  It's fast, simple and specifically
 852	  designed for use on "large microprocessors".
 853
 854	  See also:
 855	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 856
 857config CRYPTO_CAMELLIA
 858	tristate "Camellia cipher algorithms"
 859	depends on CRYPTO
 860	select CRYPTO_ALGAPI
 861	help
 862	  Camellia cipher algorithms module.
 
 863
 864	  Camellia is a symmetric key block cipher developed jointly
 865	  at NTT and Mitsubishi Electric Corporation.
 866
 867	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 868
 869	  See also:
 870	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
 
 
 
 
 871
 872config CRYPTO_CAMELLIA_X86_64
 873	tristate "Camellia cipher algorithm (x86_64)"
 874	depends on X86 && 64BIT
 875	depends on CRYPTO
 876	select CRYPTO_ALGAPI
 877	select CRYPTO_GLUE_HELPER_X86
 878	select CRYPTO_LRW
 879	select CRYPTO_XTS
 
 
 
 880	help
 881	  Camellia cipher algorithm module (x86_64).
 
 882
 883	  Camellia is a symmetric key block cipher developed jointly
 884	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 885
 886	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 887
 888	  See also:
 889	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 890
 891config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 892	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
 893	depends on X86 && 64BIT
 894	depends on CRYPTO
 895	select CRYPTO_ALGAPI
 896	select CRYPTO_CRYPTD
 897	select CRYPTO_ABLK_HELPER
 898	select CRYPTO_GLUE_HELPER_X86
 899	select CRYPTO_CAMELLIA_X86_64
 900	select CRYPTO_LRW
 901	select CRYPTO_XTS
 902	help
 903	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 904
 905	  Camellia is a symmetric key block cipher developed jointly
 906	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 907
 908	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 909
 910	  See also:
 911	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 912
 913config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
 914	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
 915	depends on X86 && 64BIT
 916	depends on CRYPTO
 917	select CRYPTO_ALGAPI
 918	select CRYPTO_CRYPTD
 919	select CRYPTO_ABLK_HELPER
 920	select CRYPTO_GLUE_HELPER_X86
 921	select CRYPTO_CAMELLIA_X86_64
 922	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 923	select CRYPTO_LRW
 924	select CRYPTO_XTS
 925	help
 926	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
 927
 928	  Camellia is a symmetric key block cipher developed jointly
 929	  at NTT and Mitsubishi Electric Corporation.
 930
 931	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 932
 933	  See also:
 934	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 935
 936config CRYPTO_CAMELLIA_SPARC64
 937	tristate "Camellia cipher algorithm (SPARC64)"
 938	depends on SPARC64
 939	depends on CRYPTO
 940	select CRYPTO_ALGAPI
 941	help
 942	  Camellia cipher algorithm module (SPARC64).
 
 943
 944	  Camellia is a symmetric key block cipher developed jointly
 945	  at NTT and Mitsubishi Electric Corporation.
 
 946
 947	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 948
 949	  See also:
 950	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 951
 952config CRYPTO_CAST_COMMON
 953	tristate
 954	help
 955	  Common parts of the CAST cipher algorithms shared by the
 956	  generic c and the assembler implementations.
 957
 958config CRYPTO_CAST5
 959	tristate "CAST5 (CAST-128) cipher algorithm"
 960	select CRYPTO_ALGAPI
 961	select CRYPTO_CAST_COMMON
 962	help
 963	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 964	  described in RFC2144.
 965
 966config CRYPTO_CAST5_AVX_X86_64
 967	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
 968	depends on X86 && 64BIT
 969	select CRYPTO_ALGAPI
 970	select CRYPTO_CRYPTD
 971	select CRYPTO_ABLK_HELPER
 972	select CRYPTO_CAST_COMMON
 973	select CRYPTO_CAST5
 974	help
 975	  The CAST5 encryption algorithm (synonymous with CAST-128) is
 976	  described in RFC2144.
 977
 978	  This module provides the Cast5 cipher algorithm that processes
 979	  sixteen blocks parallel using the AVX instruction set.
 980
 981config CRYPTO_CAST6
 982	tristate "CAST6 (CAST-256) cipher algorithm"
 983	select CRYPTO_ALGAPI
 984	select CRYPTO_CAST_COMMON
 
 
 985	help
 986	  The CAST6 encryption algorithm (synonymous with CAST-256) is
 987	  described in RFC2612.
 988
 989config CRYPTO_CAST6_AVX_X86_64
 990	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
 991	depends on X86 && 64BIT
 992	select CRYPTO_ALGAPI
 993	select CRYPTO_CRYPTD
 994	select CRYPTO_ABLK_HELPER
 995	select CRYPTO_GLUE_HELPER_X86
 996	select CRYPTO_CAST_COMMON
 997	select CRYPTO_CAST6
 998	select CRYPTO_LRW
 999	select CRYPTO_XTS
1000	help
1001	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1002	  described in RFC2612.
1003
1004	  This module provides the Cast6 cipher algorithm that processes
1005	  eight blocks parallel using the AVX instruction set.
1006
1007config CRYPTO_DES
1008	tristate "DES and Triple DES EDE cipher algorithms"
1009	select CRYPTO_ALGAPI
 
 
 
 
1010	help
1011	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
 
1012
1013config CRYPTO_DES_SPARC64
1014	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1015	depends on SPARC64
1016	select CRYPTO_ALGAPI
1017	select CRYPTO_DES
 
 
 
 
1018	help
1019	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1020	  optimized using SPARC64 crypto opcodes.
1021
1022config CRYPTO_FCRYPT
1023	tristate "FCrypt cipher algorithm"
1024	select CRYPTO_ALGAPI
1025	select CRYPTO_BLKCIPHER
 
 
 
 
 
 
 
1026	help
1027	  FCrypt algorithm used by RxRPC.
1028
1029config CRYPTO_KHAZAD
1030	tristate "Khazad cipher algorithm"
1031	select CRYPTO_ALGAPI
 
 
 
 
1032	help
1033	  Khazad cipher algorithm.
1034
1035	  Khazad was a finalist in the initial NESSIE competition.  It is
1036	  an algorithm optimized for 64-bit processors with good performance
1037	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
1038
1039	  See also:
1040	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
 
 
 
 
 
 
1041
1042config CRYPTO_SALSA20
1043	tristate "Salsa20 stream cipher algorithm"
1044	select CRYPTO_BLKCIPHER
1045	help
1046	  Salsa20 stream cipher algorithm.
 
 
1047
1048	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1049	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1050
1051	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1052	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1053
1054config CRYPTO_SALSA20_586
1055	tristate "Salsa20 stream cipher algorithm (i586)"
1056	depends on (X86 || UML_X86) && !64BIT
1057	select CRYPTO_BLKCIPHER
1058	help
1059	  Salsa20 stream cipher algorithm.
1060
1061	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1062	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1063
1064	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1065	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
1066
1067config CRYPTO_SALSA20_X86_64
1068	tristate "Salsa20 stream cipher algorithm (x86_64)"
1069	depends on (X86 || UML_X86) && 64BIT
1070	select CRYPTO_BLKCIPHER
1071	help
1072	  Salsa20 stream cipher algorithm.
1073
1074	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1075	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
 
 
 
 
 
1076
1077	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1078	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
 
1079
1080config CRYPTO_SEED
1081	tristate "SEED cipher algorithm"
1082	select CRYPTO_ALGAPI
 
1083	help
1084	  SEED cipher algorithm (RFC4269).
 
1085
1086	  SEED is a 128-bit symmetric key block cipher that has been
1087	  developed by KISA (Korea Information Security Agency) as a
1088	  national standard encryption algorithm of the Republic of Korea.
1089	  It is a 16 round block cipher with the key size of 128 bit.
1090
1091	  See also:
1092	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
 
 
 
1093
1094config CRYPTO_SERPENT
1095	tristate "Serpent cipher algorithm"
1096	select CRYPTO_ALGAPI
1097	help
1098	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1099
1100	  Keys are allowed to be from 0 to 256 bits in length, in steps
1101	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1102	  variant of Serpent for compatibility with old kerneli.org code.
 
 
1103
1104	  See also:
1105	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1106
1107config CRYPTO_SERPENT_SSE2_X86_64
1108	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1109	depends on X86 && 64BIT
1110	select CRYPTO_ALGAPI
1111	select CRYPTO_CRYPTD
1112	select CRYPTO_ABLK_HELPER
1113	select CRYPTO_GLUE_HELPER_X86
1114	select CRYPTO_SERPENT
1115	select CRYPTO_LRW
1116	select CRYPTO_XTS
1117	help
1118	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1119
1120	  Keys are allowed to be from 0 to 256 bits in length, in steps
1121	  of 8 bits.
1122
1123	  This module provides Serpent cipher algorithm that processes eigth
1124	  blocks parallel using SSE2 instruction set.
 
 
 
 
1125
1126	  See also:
1127	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1128
1129config CRYPTO_SERPENT_SSE2_586
1130	tristate "Serpent cipher algorithm (i586/SSE2)"
1131	depends on X86 && !64BIT
1132	select CRYPTO_ALGAPI
1133	select CRYPTO_CRYPTD
1134	select CRYPTO_ABLK_HELPER
1135	select CRYPTO_GLUE_HELPER_X86
1136	select CRYPTO_SERPENT
1137	select CRYPTO_LRW
1138	select CRYPTO_XTS
1139	help
1140	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1141
1142	  Keys are allowed to be from 0 to 256 bits in length, in steps
1143	  of 8 bits.
 
 
1144
1145	  This module provides Serpent cipher algorithm that processes four
1146	  blocks parallel using SSE2 instruction set.
1147
1148	  See also:
1149	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1150
1151config CRYPTO_SERPENT_AVX_X86_64
1152	tristate "Serpent cipher algorithm (x86_64/AVX)"
1153	depends on X86 && 64BIT
1154	select CRYPTO_ALGAPI
1155	select CRYPTO_CRYPTD
1156	select CRYPTO_ABLK_HELPER
1157	select CRYPTO_GLUE_HELPER_X86
1158	select CRYPTO_SERPENT
1159	select CRYPTO_LRW
1160	select CRYPTO_XTS
1161	help
1162	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1163
1164	  Keys are allowed to be from 0 to 256 bits in length, in steps
1165	  of 8 bits.
 
 
 
 
1166
1167	  This module provides the Serpent cipher algorithm that processes
1168	  eight blocks parallel using the AVX instruction set.
1169
1170	  See also:
1171	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
 
 
1172
1173config CRYPTO_SERPENT_AVX2_X86_64
1174	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1175	depends on X86 && 64BIT
1176	select CRYPTO_ALGAPI
1177	select CRYPTO_CRYPTD
1178	select CRYPTO_ABLK_HELPER
1179	select CRYPTO_GLUE_HELPER_X86
1180	select CRYPTO_SERPENT
1181	select CRYPTO_SERPENT_AVX_X86_64
1182	select CRYPTO_LRW
1183	select CRYPTO_XTS
1184	help
1185	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1186
1187	  Keys are allowed to be from 0 to 256 bits in length, in steps
1188	  of 8 bits.
1189
1190	  This module provides Serpent cipher algorithm that processes 16
1191	  blocks parallel using AVX2 instruction set.
 
 
 
 
1192
1193	  See also:
1194	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1195
1196config CRYPTO_TEA
1197	tristate "TEA, XTEA and XETA cipher algorithms"
1198	select CRYPTO_ALGAPI
 
 
 
 
1199	help
1200	  TEA cipher algorithm.
1201
1202	  Tiny Encryption Algorithm is a simple cipher that uses
1203	  many rounds for security.  It is very fast and uses
1204	  little memory.
1205
1206	  Xtendend Tiny Encryption Algorithm is a modification to
1207	  the TEA algorithm to address a potential key weakness
1208	  in the TEA algorithm.
1209
1210	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1211	  of the XTEA algorithm for compatibility purposes.
 
 
 
 
 
1212
1213config CRYPTO_TWOFISH
1214	tristate "Twofish cipher algorithm"
1215	select CRYPTO_ALGAPI
1216	select CRYPTO_TWOFISH_COMMON
 
1217	help
1218	  Twofish cipher algorithm.
1219
1220	  Twofish was submitted as an AES (Advanced Encryption Standard)
1221	  candidate cipher by researchers at CounterPane Systems.  It is a
1222	  16 round block cipher supporting key sizes of 128, 192, and 256
1223	  bits.
1224
1225	  See also:
1226	  <http://www.schneier.com/twofish.html>
1227
1228config CRYPTO_TWOFISH_COMMON
1229	tristate
 
 
 
 
 
1230	help
1231	  Common parts of the Twofish cipher algorithm shared by the
1232	  generic c and the assembler implementations.
1233
1234config CRYPTO_TWOFISH_586
1235	tristate "Twofish cipher algorithms (i586)"
1236	depends on (X86 || UML_X86) && !64BIT
1237	select CRYPTO_ALGAPI
1238	select CRYPTO_TWOFISH_COMMON
1239	help
1240	  Twofish cipher algorithm.
1241
1242	  Twofish was submitted as an AES (Advanced Encryption Standard)
1243	  candidate cipher by researchers at CounterPane Systems.  It is a
1244	  16 round block cipher supporting key sizes of 128, 192, and 256
1245	  bits.
1246
1247	  See also:
1248	  <http://www.schneier.com/twofish.html>
1249
1250config CRYPTO_TWOFISH_X86_64
1251	tristate "Twofish cipher algorithm (x86_64)"
1252	depends on (X86 || UML_X86) && 64BIT
1253	select CRYPTO_ALGAPI
1254	select CRYPTO_TWOFISH_COMMON
 
 
 
1255	help
1256	  Twofish cipher algorithm (x86_64).
1257
1258	  Twofish was submitted as an AES (Advanced Encryption Standard)
1259	  candidate cipher by researchers at CounterPane Systems.  It is a
1260	  16 round block cipher supporting key sizes of 128, 192, and 256
1261	  bits.
 
1262
1263	  See also:
1264	  <http://www.schneier.com/twofish.html>
1265
1266config CRYPTO_TWOFISH_X86_64_3WAY
1267	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1268	depends on X86 && 64BIT
1269	select CRYPTO_ALGAPI
1270	select CRYPTO_TWOFISH_COMMON
1271	select CRYPTO_TWOFISH_X86_64
1272	select CRYPTO_GLUE_HELPER_X86
1273	select CRYPTO_LRW
1274	select CRYPTO_XTS
1275	help
1276	  Twofish cipher algorithm (x86_64, 3-way parallel).
1277
1278	  Twofish was submitted as an AES (Advanced Encryption Standard)
1279	  candidate cipher by researchers at CounterPane Systems.  It is a
1280	  16 round block cipher supporting key sizes of 128, 192, and 256
1281	  bits.
1282
1283	  This module provides Twofish cipher algorithm that processes three
1284	  blocks parallel, utilizing resources of out-of-order CPUs better.
 
 
 
1285
1286	  See also:
1287	  <http://www.schneier.com/twofish.html>
1288
1289config CRYPTO_TWOFISH_AVX_X86_64
1290	tristate "Twofish cipher algorithm (x86_64/AVX)"
1291	depends on X86 && 64BIT
1292	select CRYPTO_ALGAPI
1293	select CRYPTO_CRYPTD
1294	select CRYPTO_ABLK_HELPER
1295	select CRYPTO_GLUE_HELPER_X86
1296	select CRYPTO_TWOFISH_COMMON
1297	select CRYPTO_TWOFISH_X86_64
1298	select CRYPTO_TWOFISH_X86_64_3WAY
1299	select CRYPTO_LRW
1300	select CRYPTO_XTS
1301	help
1302	  Twofish cipher algorithm (x86_64/AVX).
1303
1304	  Twofish was submitted as an AES (Advanced Encryption Standard)
1305	  candidate cipher by researchers at CounterPane Systems.  It is a
1306	  16 round block cipher supporting key sizes of 128, 192, and 256
1307	  bits.
1308
1309	  This module provides the Twofish cipher algorithm that processes
1310	  eight blocks parallel using the AVX Instruction Set.
1311
1312	  See also:
1313	  <http://www.schneier.com/twofish.html>
1314
1315comment "Compression"
1316
1317config CRYPTO_DEFLATE
1318	tristate "Deflate compression algorithm"
1319	select CRYPTO_ALGAPI
 
1320	select ZLIB_INFLATE
1321	select ZLIB_DEFLATE
1322	help
1323	  This is the Deflate algorithm (RFC1951), specified for use in
1324	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1325
1326	  You will most probably want this if using IPSec.
1327
1328config CRYPTO_ZLIB
1329	tristate "Zlib compression algorithm"
1330	select CRYPTO_PCOMP
1331	select ZLIB_INFLATE
1332	select ZLIB_DEFLATE
1333	select NLATTR
1334	help
1335	  This is the zlib algorithm.
1336
1337config CRYPTO_LZO
1338	tristate "LZO compression algorithm"
1339	select CRYPTO_ALGAPI
 
1340	select LZO_COMPRESS
1341	select LZO_DECOMPRESS
1342	help
1343	  This is the LZO algorithm.
 
 
1344
1345config CRYPTO_842
1346	tristate "842 compression algorithm"
1347	depends on CRYPTO_DEV_NX_COMPRESS
1348	# 842 uses lzo if the hardware becomes unavailable
1349	select LZO_COMPRESS
1350	select LZO_DECOMPRESS
1351	help
1352	  This is the 842 algorithm.
 
 
1353
1354config CRYPTO_LZ4
1355	tristate "LZ4 compression algorithm"
1356	select CRYPTO_ALGAPI
 
1357	select LZ4_COMPRESS
1358	select LZ4_DECOMPRESS
1359	help
1360	  This is the LZ4 algorithm.
 
 
1361
1362config CRYPTO_LZ4HC
1363	tristate "LZ4HC compression algorithm"
1364	select CRYPTO_ALGAPI
 
1365	select LZ4HC_COMPRESS
1366	select LZ4_DECOMPRESS
1367	help
1368	  This is the LZ4 high compression mode algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370comment "Random Number Generation"
 
 
1371
1372config CRYPTO_ANSI_CPRNG
1373	tristate "Pseudo Random Number Generation for Cryptographic modules"
1374	default m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375	select CRYPTO_AES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376	select CRYPTO_RNG
1377	help
1378	  This option enables the generic pseudo random number generator
1379	  for cryptographic modules.  Uses the Algorithm specified in
1380	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1381	  CRYPTO_FIPS is selected
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383config CRYPTO_USER_API
1384	tristate
1385
1386config CRYPTO_USER_API_HASH
1387	tristate "User-space interface for hash algorithms"
1388	depends on NET
1389	select CRYPTO_HASH
1390	select CRYPTO_USER_API
1391	help
1392	  This option enables the user-spaces interface for hash
1393	  algorithms.
 
 
1394
1395config CRYPTO_USER_API_SKCIPHER
1396	tristate "User-space interface for symmetric key cipher algorithms"
 
 
 
 
 
 
 
 
 
 
 
1397	depends on NET
1398	select CRYPTO_BLKCIPHER
1399	select CRYPTO_USER_API
1400	help
1401	  This option enables the user-spaces interface for symmetric
1402	  key cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404config CRYPTO_HASH_INFO
1405	bool
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407source "drivers/crypto/Kconfig"
1408source crypto/asymmetric_keys/Kconfig
 
1409
1410endif	# if CRYPTO
v6.2
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74	select CRYPTO_NULL2
  75	select CRYPTO_RNG2
  76
  77config CRYPTO_SKCIPHER
  78	tristate
  79	select CRYPTO_SKCIPHER2
  80	select CRYPTO_ALGAPI
  81
  82config CRYPTO_SKCIPHER2
  83	tristate
  84	select CRYPTO_ALGAPI2
  85	select CRYPTO_RNG2
 
  86
  87config CRYPTO_HASH
  88	tristate
  89	select CRYPTO_HASH2
  90	select CRYPTO_ALGAPI
  91
  92config CRYPTO_HASH2
  93	tristate
  94	select CRYPTO_ALGAPI2
  95
  96config CRYPTO_RNG
  97	tristate
  98	select CRYPTO_RNG2
  99	select CRYPTO_ALGAPI
 100
 101config CRYPTO_RNG2
 102	tristate
 103	select CRYPTO_ALGAPI2
 104
 105config CRYPTO_RNG_DEFAULT
 106	tristate
 107	select CRYPTO_DRBG_MENU
 108
 109config CRYPTO_AKCIPHER2
 110	tristate
 111	select CRYPTO_ALGAPI2
 112
 113config CRYPTO_AKCIPHER
 114	tristate
 115	select CRYPTO_AKCIPHER2
 116	select CRYPTO_ALGAPI
 117
 118config CRYPTO_KPP2
 119	tristate
 120	select CRYPTO_ALGAPI2
 121
 122config CRYPTO_KPP
 123	tristate
 
 124	select CRYPTO_ALGAPI
 125	select CRYPTO_KPP2
 126
 127config CRYPTO_ACOMP2
 128	tristate
 129	select CRYPTO_ALGAPI2
 130	select SGL_ALLOC
 131
 132config CRYPTO_ACOMP
 133	tristate
 134	select CRYPTO_ALGAPI
 135	select CRYPTO_ACOMP2
 136
 137config CRYPTO_MANAGER
 138	tristate "Cryptographic algorithm manager"
 139	select CRYPTO_MANAGER2
 140	help
 141	  Create default cryptographic template instantiations such as
 142	  cbc(aes).
 143
 144config CRYPTO_MANAGER2
 145	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 146	select CRYPTO_AEAD2
 147	select CRYPTO_HASH2
 148	select CRYPTO_SKCIPHER2
 149	select CRYPTO_AKCIPHER2
 150	select CRYPTO_KPP2
 151	select CRYPTO_ACOMP2
 152
 153config CRYPTO_USER
 154	tristate "Userspace cryptographic algorithm configuration"
 155	depends on NET
 156	select CRYPTO_MANAGER
 157	help
 158	  Userspace configuration for cryptographic instantiations such as
 159	  cbc(aes).
 160
 161config CRYPTO_MANAGER_DISABLE_TESTS
 162	bool "Disable run-time self tests"
 163	default y
 
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_MANAGER_EXTRA_TESTS
 169	bool "Enable extra run-time crypto self tests"
 170	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 171	help
 172	  Enable extra run-time self tests of registered crypto algorithms,
 173	  including randomized fuzz tests.
 174
 175	  This is intended for developer use only, as these tests take much
 176	  longer to run than the normal self tests.
 177
 178config CRYPTO_NULL
 179	tristate "Null algorithms"
 180	select CRYPTO_NULL2
 
 
 181	help
 182	  These are 'Null' algorithms, used by IPsec, which do nothing.
 183
 184config CRYPTO_NULL2
 185	tristate
 186	select CRYPTO_ALGAPI2
 187	select CRYPTO_SKCIPHER2
 188	select CRYPTO_HASH2
 189
 190config CRYPTO_PCRYPT
 191	tristate "Parallel crypto engine"
 192	depends on SMP
 193	select PADATA
 194	select CRYPTO_MANAGER
 195	select CRYPTO_AEAD
 196	help
 197	  This converts an arbitrary crypto algorithm into a parallel
 198	  algorithm that executes in kernel threads.
 199
 
 
 
 200config CRYPTO_CRYPTD
 201	tristate "Software async crypto daemon"
 202	select CRYPTO_SKCIPHER
 203	select CRYPTO_HASH
 204	select CRYPTO_MANAGER
 
 205	help
 206	  This is a generic software asynchronous crypto daemon that
 207	  converts an arbitrary synchronous software crypto algorithm
 208	  into an asynchronous algorithm that executes in a kernel thread.
 209
 210config CRYPTO_AUTHENC
 211	tristate "Authenc support"
 212	select CRYPTO_AEAD
 213	select CRYPTO_SKCIPHER
 214	select CRYPTO_MANAGER
 215	select CRYPTO_HASH
 216	select CRYPTO_NULL
 217	help
 218	  Authenc: Combined mode wrapper for IPsec.
 219
 220	  This is required for IPSec ESP (XFRM_ESP).
 221
 222config CRYPTO_TEST
 223	tristate "Testing module"
 224	depends on m || EXPERT
 225	select CRYPTO_MANAGER
 226	help
 227	  Quick & dirty crypto test module.
 228
 229config CRYPTO_SIMD
 230	tristate
 231	select CRYPTO_CRYPTD
 232
 233config CRYPTO_ENGINE
 234	tristate
 
 
 235
 236endmenu
 237
 238menu "Public-key cryptography"
 
 
 
 
 
 239
 240config CRYPTO_RSA
 241	tristate "RSA (Rivest-Shamir-Adleman)"
 242	select CRYPTO_AKCIPHER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	select CRYPTO_MANAGER
 244	select MPILIB
 245	select ASN1
 246	help
 247	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 
 
 
 
 248
 249config CRYPTO_DH
 250	tristate "DH (Diffie-Hellman)"
 251	select CRYPTO_KPP
 252	select MPILIB
 253	help
 254	  DH (Diffie-Hellman) key exchange algorithm
 
 255
 256config CRYPTO_DH_RFC7919_GROUPS
 257	bool "RFC 7919 FFDHE groups"
 258	depends on CRYPTO_DH
 259	select CRYPTO_RNG_DEFAULT
 
 260	help
 261	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 262	  defined in RFC7919.
 
 263
 264	  Support these finite-field groups in DH key exchanges:
 265	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 266
 267	  If unsure, say N.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268
 269config CRYPTO_ECC
 270	tristate
 271	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 272
 273config CRYPTO_ECDH
 274	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 275	select CRYPTO_ECC
 276	select CRYPTO_KPP
 277	help
 278	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 279	  using curves P-192, P-256, and P-384 (FIPS 186)
 280
 281config CRYPTO_ECDSA
 282	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 283	select CRYPTO_ECC
 284	select CRYPTO_AKCIPHER
 285	select ASN1
 286	help
 287	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 288	  ISO/IEC 14888-3)
 289	  using curves P-192, P-256, and P-384
 290
 291	  Only signature verification is implemented.
 292
 293config CRYPTO_ECRDSA
 294	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 295	select CRYPTO_ECC
 296	select CRYPTO_AKCIPHER
 297	select CRYPTO_STREEBOG
 298	select OID_REGISTRY
 299	select ASN1
 300	help
 301	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 302	  RFC 7091, ISO/IEC 14888-3)
 303
 304	  One of the Russian cryptographic standard algorithms (called GOST
 305	  algorithms). Only signature verification is implemented.
 306
 307config CRYPTO_SM2
 308	tristate "SM2 (ShangMi 2)"
 309	select CRYPTO_SM3
 310	select CRYPTO_AKCIPHER
 311	select CRYPTO_MANAGER
 312	select MPILIB
 313	select ASN1
 314	help
 315	  SM2 (ShangMi 2) public key algorithm
 
 316
 317	  Published by State Encryption Management Bureau, China,
 318	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 319
 320	  References:
 321	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 322	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 323	  http://www.gmbz.org.cn/main/bzlb.html
 324
 325config CRYPTO_CURVE25519
 326	tristate "Curve25519"
 327	select CRYPTO_KPP
 328	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329	help
 330	  Curve25519 elliptic curve (RFC7748)
 
 
 
 
 
 331
 332endmenu
 
 
 
 
 
 
 333
 334menu "Block ciphers"
 
 
 
 
 
 
 
 
 
 335
 336config CRYPTO_AES
 337	tristate "AES (Advanced Encryption Standard)"
 338	select CRYPTO_ALGAPI
 339	select CRYPTO_LIB_AES
 340	help
 341	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 342
 343	  Rijndael appears to be consistently a very good performer in
 344	  both hardware and software across a wide range of computing
 345	  environments regardless of its use in feedback or non-feedback
 346	  modes. Its key setup time is excellent, and its key agility is
 347	  good. Rijndael's very low memory requirements make it very well
 348	  suited for restricted-space environments, in which it also
 349	  demonstrates excellent performance. Rijndael's operations are
 350	  among the easiest to defend against power and timing attacks.
 351
 352	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 353
 354config CRYPTO_AES_TI
 355	tristate "AES (Advanced Encryption Standard) (fixed time)"
 356	select CRYPTO_ALGAPI
 357	select CRYPTO_LIB_AES
 
 358	help
 359	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 360
 361	  This is a generic implementation of AES that attempts to eliminate
 362	  data dependent latencies as much as possible without affecting
 363	  performance too much. It is intended for use by the generic CCM
 364	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 365	  solely on encryption (although decryption is supported as well, but
 366	  with a more dramatic performance hit)
 367
 368	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 369	  8 for decryption), this implementation only uses just two S-boxes of
 370	  256 bytes each, and attempts to eliminate data dependent latencies by
 371	  prefetching the entire table into the cache at the start of each
 372	  block. Interrupts are also disabled to avoid races where cachelines
 373	  are evicted when the CPU is interrupted to do something else.
 374
 375config CRYPTO_ANUBIS
 376	tristate "Anubis"
 377	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 378	select CRYPTO_ALGAPI
 379	help
 380	  Anubis cipher algorithm
 381
 382	  Anubis is a variable key length cipher which can use keys from
 383	  128 bits to 320 bits in length.  It was evaluated as a entrant
 384	  in the NESSIE competition.
 385
 386	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 387	  for further information.
 388
 389config CRYPTO_ARIA
 390	tristate "ARIA"
 391	select CRYPTO_ALGAPI
 392	help
 393	  ARIA cipher algorithm (RFC5794)
 
 
 
 
 
 
 
 
 394
 395	  ARIA is a standard encryption algorithm of the Republic of Korea.
 396	  The ARIA specifies three key sizes and rounds.
 397	  128-bit: 12 rounds.
 398	  192-bit: 14 rounds.
 399	  256-bit: 16 rounds.
 400
 401	  See:
 402	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 
 
 
 
 
 
 403
 404config CRYPTO_BLOWFISH
 405	tristate "Blowfish"
 406	select CRYPTO_ALGAPI
 407	select CRYPTO_BLOWFISH_COMMON
 
 
 408	help
 409	  Blowfish cipher algorithm, by Bruce Schneier
 
 
 
 410
 411	  This is a variable key length cipher which can use keys from 32
 412	  bits to 448 bits in length.  It's fast, simple and specifically
 413	  designed for use on "large microprocessors".
 414
 415	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 416
 417config CRYPTO_BLOWFISH_COMMON
 418	tristate
 
 
 
 419	help
 420	  Common parts of the Blowfish cipher algorithm shared by the
 421	  generic c and the assembler implementations.
 
 422
 423config CRYPTO_CAMELLIA
 424	tristate "Camellia"
 425	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	help
 427	  Camellia cipher algorithms (ISO/IEC 18033-3)
 
 
 
 428
 429	  Camellia is a symmetric key block cipher developed jointly
 430	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 431
 432	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 
 
 433
 434	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 
 
 
 435
 436config CRYPTO_CAST_COMMON
 437	tristate
 
 438	help
 439	  Common parts of the CAST cipher algorithms shared by the
 440	  generic c and the assembler implementations.
 
 
 
 
 
 441
 442config CRYPTO_CAST5
 443	tristate "CAST5 (CAST-128)"
 444	select CRYPTO_ALGAPI
 445	select CRYPTO_CAST_COMMON
 
 446	help
 447	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 
 448
 449config CRYPTO_CAST6
 450	tristate "CAST6 (CAST-256)"
 451	select CRYPTO_ALGAPI
 452	select CRYPTO_CAST_COMMON
 453	help
 454	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 
 
 
 
 
 
 455
 456config CRYPTO_DES
 457	tristate "DES and Triple DES EDE"
 458	select CRYPTO_ALGAPI
 459	select CRYPTO_LIB_DES
 
 460	help
 461	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 462	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 463	  cipher algorithms
 464
 465config CRYPTO_FCRYPT
 466	tristate "FCrypt"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_SKCIPHER
 469	help
 470	  FCrypt algorithm used by RxRPC
 
 
 
 
 471
 472	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 473
 474config CRYPTO_KHAZAD
 475	tristate "Khazad"
 476	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 477	select CRYPTO_ALGAPI
 478	help
 479	  Khazad cipher algorithm
 
 
 
 480
 481	  Khazad was a finalist in the initial NESSIE competition.  It is
 482	  an algorithm optimized for 64-bit processors with good performance
 483	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
 
 
 
 
 
 484
 485	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 486	  for further information.
 487
 488config CRYPTO_SEED
 489	tristate "SEED"
 490	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 491	select CRYPTO_ALGAPI
 492	help
 493	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 
 
 
 
 
 
 
 
 
 
 494
 495	  SEED is a 128-bit symmetric key block cipher that has been
 496	  developed by KISA (Korea Information Security Agency) as a
 497	  national standard encryption algorithm of the Republic of Korea.
 498	  It is a 16 round block cipher with the key size of 128 bit.
 499
 500	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 501	  for further information.
 502
 503config CRYPTO_SERPENT
 504	tristate "Serpent"
 
 505	select CRYPTO_ALGAPI
 
 506	help
 507	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 508
 509	  Keys are allowed to be from 0 to 256 bits in length, in steps
 510	  of 8 bits.
 
 
 
 
 
 
 511
 512	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 513
 514config CRYPTO_SM4
 515	tristate
 516
 517config CRYPTO_SM4_GENERIC
 518	tristate "SM4 (ShangMi 4)"
 
 519	select CRYPTO_ALGAPI
 520	select CRYPTO_SM4
 521	help
 522	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 523	  ISO/IEC 18033-3:2010/Amd 1:2021)
 524
 525	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 526	  Organization of State Commercial Administration of China (OSCCA)
 527	  as an authorized cryptographic algorithms for the use within China.
 
 
 
 
 
 
 
 528
 529	  SMS4 was originally created for use in protecting wireless
 530	  networks, and is mandated in the Chinese National Standard for
 531	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 532	  (GB.15629.11-2003).
 
 
 
 
 
 
 
 
 
 
 
 533
 534	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 535	  standardized through TC 260 of the Standardization Administration
 536	  of the People's Republic of China (SAC).
 537
 538	  The input, output, and key of SMS4 are each 128 bits.
 
 
 
 
 
 
 
 539
 540	  See https://eprint.iacr.org/2008/329.pdf for further information.
 541
 542	  If unsure, say N.
 543
 544config CRYPTO_TEA
 545	tristate "TEA, XTEA and XETA"
 546	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 
 
 
 
 
 
 547	select CRYPTO_ALGAPI
 548	help
 549	  TEA (Tiny Encryption Algorithm) cipher algorithms
 
 
 
 550
 551	  Tiny Encryption Algorithm is a simple cipher that uses
 552	  many rounds for security.  It is very fast and uses
 553	  little memory.
 
 
 
 
 
 554
 555	  Xtendend Tiny Encryption Algorithm is a modification to
 556	  the TEA algorithm to address a potential key weakness
 557	  in the TEA algorithm.
 558
 559	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 560	  of the XTEA algorithm for compatibility purposes.
 561
 562config CRYPTO_TWOFISH
 563	tristate "Twofish"
 
 
 
 
 
 564	select CRYPTO_ALGAPI
 565	select CRYPTO_TWOFISH_COMMON
 566	help
 567	  Twofish cipher algorithm
 568
 569	  Twofish was submitted as an AES (Advanced Encryption Standard)
 570	  candidate cipher by researchers at CounterPane Systems.  It is a
 571	  16 round block cipher supporting key sizes of 128, 192, and 256
 572	  bits.
 573
 574	  See https://www.schneier.com/twofish.html for further information.
 
 
 
 
 
 
 
 575
 576config CRYPTO_TWOFISH_COMMON
 577	tristate
 578	help
 579	  Common parts of the Twofish cipher algorithm shared by the
 580	  generic c and the assembler implementations.
 581
 582endmenu
 583
 584menu "Length-preserving ciphers and modes"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586config CRYPTO_ADIANTUM
 587	tristate "Adiantum"
 588	select CRYPTO_CHACHA20
 589	select CRYPTO_LIB_POLY1305_GENERIC
 590	select CRYPTO_NHPOLY1305
 591	select CRYPTO_MANAGER
 592	help
 593	  Adiantum tweakable, length-preserving encryption mode
 594
 595	  Designed for fast and secure disk encryption, especially on
 596	  CPUs without dedicated crypto instructions.  It encrypts
 597	  each sector using the XChaCha12 stream cipher, two passes of
 598	  an ε-almost-∆-universal hash function, and an invocation of
 599	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 600	  without AES instructions, Adiantum is much faster than
 601	  AES-XTS.
 602
 603	  Adiantum's security is provably reducible to that of its
 604	  underlying stream and block ciphers, subject to a security
 605	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 606	  mode, so it actually provides an even stronger notion of
 607	  security than XTS, subject to the security bound.
 608
 609	  If unsure, say N.
 
 
 610
 611config CRYPTO_ARC4
 612	tristate "ARC4 (Alleged Rivest Cipher 4)"
 613	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 614	select CRYPTO_SKCIPHER
 615	select CRYPTO_LIB_ARC4
 616	help
 617	  ARC4 cipher algorithm
 618
 619	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 620	  bits in length.  This algorithm is required for driver-based
 621	  WEP, but it should not be for other purposes because of the
 622	  weakness of the algorithm.
 623
 624config CRYPTO_CHACHA20
 625	tristate "ChaCha"
 626	select CRYPTO_LIB_CHACHA_GENERIC
 627	select CRYPTO_SKCIPHER
 628	help
 629	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 630
 631	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 632	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 633	  This is the portable C implementation of ChaCha20.  See
 634	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 635
 636	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 637	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 638	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 639	  while provably retaining ChaCha20's security.  See
 640	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 641
 642	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 643	  reduced security margin but increased performance.  It can be needed
 644	  in some performance-sensitive scenarios.
 645
 646config CRYPTO_CBC
 647	tristate "CBC (Cipher Block Chaining)"
 648	select CRYPTO_SKCIPHER
 649	select CRYPTO_MANAGER
 
 650	help
 651	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 
 652
 653	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 654
 655config CRYPTO_CFB
 656	tristate "CFB (Cipher Feedback)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 
 659	help
 660	  CFB (Cipher Feedback) mode (NIST SP800-38A)
 661
 662	  This block cipher mode is required for TPM2 Cryptography.
 
 
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER
 685	select CRYPTO_MANAGER
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 728
 729config CRYPTO_OFB
 730	tristate "OFB (Output Feedback)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 733	help
 734	  OFB (Output Feedback) mode (NIST SP800-38A)
 735
 736	  This mode makes a block cipher into a synchronous
 737	  stream cipher. It generates keystream blocks, which are then XORed
 738	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 739	  ciphertext produces a flipped bit in the plaintext at the same
 740	  location. This property allows many error correcting codes to function
 741	  normally even when applied before encryption.
 742
 743config CRYPTO_PCBC
 744	tristate "PCBC (Propagating Cipher Block Chaining)"
 745	select CRYPTO_SKCIPHER
 746	select CRYPTO_MANAGER
 747	help
 748	  PCBC (Propagating Cipher Block Chaining) mode
 749
 750	  This block cipher mode is required for RxRPC.
 
 751
 752config CRYPTO_XCTR
 753	tristate
 754	select CRYPTO_SKCIPHER
 755	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 756	help
 757	  XCTR (XOR Counter) mode for HCTR2
 758
 759	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 760	  addition rather than big-endian arithmetic.
 761
 762	  XCTR mode is used to implement HCTR2.
 
 
 
 763
 764config CRYPTO_XTS
 765	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 766	select CRYPTO_SKCIPHER
 767	select CRYPTO_MANAGER
 768	select CRYPTO_ECB
 769	help
 770	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 771	  and IEEE 1619)
 772
 773	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 774	  implementation currently can't handle a sectorsize which is not a
 775	  multiple of 16 bytes.
 776
 777config CRYPTO_NHPOLY1305
 778	tristate
 779	select CRYPTO_HASH
 780	select CRYPTO_LIB_POLY1305_GENERIC
 781
 782endmenu
 
 783
 784menu "AEAD (authenticated encryption with associated data) ciphers"
 
 
 
 
 785
 786config CRYPTO_AEGIS128
 787	tristate "AEGIS-128"
 788	select CRYPTO_AEAD
 789	select CRYPTO_AES  # for AES S-box tables
 790	help
 791	  AEGIS-128 AEAD algorithm
 
 792
 793config CRYPTO_AEGIS128_SIMD
 794	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 795	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 796	default y
 
 
 
 
 797	help
 798	  AEGIS-128 AEAD algorithm
 
 799
 800	  Architecture: arm or arm64 using:
 801	  - NEON (Advanced SIMD) extension
 802
 803config CRYPTO_CHACHA20POLY1305
 804	tristate "ChaCha20-Poly1305"
 805	select CRYPTO_CHACHA20
 806	select CRYPTO_POLY1305
 807	select CRYPTO_AEAD
 808	select CRYPTO_MANAGER
 809	help
 810	  ChaCha20 stream cipher and Poly1305 authenticator combined
 811	  mode (RFC8439)
 812
 813config CRYPTO_CCM
 814	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 815	select CRYPTO_CTR
 816	select CRYPTO_HASH
 817	select CRYPTO_AEAD
 818	select CRYPTO_MANAGER
 
 
 
 
 
 819	help
 820	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 821	  authenticated encryption mode (NIST SP800-38C)
 
 
 
 822
 823config CRYPTO_GCM
 824	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 825	select CRYPTO_CTR
 826	select CRYPTO_AEAD
 827	select CRYPTO_GHASH
 828	select CRYPTO_NULL
 829	select CRYPTO_MANAGER
 830	help
 831	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 832	  (GCM Message Authentication Code) (NIST SP800-38D)
 833
 834	  This is required for IPSec ESP (XFRM_ESP).
 835
 836config CRYPTO_SEQIV
 837	tristate "Sequence Number IV Generator"
 838	select CRYPTO_AEAD
 839	select CRYPTO_SKCIPHER
 840	select CRYPTO_NULL
 841	select CRYPTO_RNG_DEFAULT
 842	select CRYPTO_MANAGER
 843	help
 844	  Sequence Number IV generator
 
 845
 846	  This IV generator generates an IV based on a sequence number by
 847	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 848
 849	  This is required for IPsec ESP (XFRM_ESP).
 850
 851config CRYPTO_ECHAINIV
 852	tristate "Encrypted Chain IV Generator"
 853	select CRYPTO_AEAD
 854	select CRYPTO_NULL
 855	select CRYPTO_RNG_DEFAULT
 856	select CRYPTO_MANAGER
 857	help
 858	  Encrypted Chain IV generator
 859
 860	  This IV generator generates an IV based on the encryption of
 861	  a sequence number xored with a salt.  This is the default
 862	  algorithm for CBC.
 863
 864config CRYPTO_ESSIV
 865	tristate "Encrypted Salt-Sector IV Generator"
 866	select CRYPTO_AUTHENC
 867	help
 868	  Encrypted Salt-Sector IV generator
 869
 870	  This IV generator is used in some cases by fscrypt and/or
 871	  dm-crypt. It uses the hash of the block encryption key as the
 872	  symmetric key for a block encryption pass applied to the input
 873	  IV, making low entropy IV sources more suitable for block
 874	  encryption.
 875
 876	  This driver implements a crypto API template that can be
 877	  instantiated either as an skcipher or as an AEAD (depending on the
 878	  type of the first template argument), and which defers encryption
 879	  and decryption requests to the encapsulated cipher after applying
 880	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 881	  that the keys are presented in the same format used by the authenc
 882	  template, and that the IV appears at the end of the authenticated
 883	  associated data (AAD) region (which is how dm-crypt uses it.)
 884
 885	  Note that the use of ESSIV is not recommended for new deployments,
 886	  and so this only needs to be enabled when interoperability with
 887	  existing encrypted volumes of filesystems is required, or when
 888	  building for a particular system that requires it (e.g., when
 889	  the SoC in question has accelerated CBC but not XTS, making CBC
 890	  combined with ESSIV the only feasible mode for h/w accelerated
 891	  block encryption)
 892
 893endmenu
 
 894
 895menu "Hashes, digests, and MACs"
 
 896
 897config CRYPTO_BLAKE2B
 898	tristate "BLAKE2b"
 899	select CRYPTO_HASH
 
 900	help
 901	  BLAKE2b cryptographic hash function (RFC 7693)
 902
 903	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 904	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 905
 906	  This module provides the following algorithms:
 907	  - blake2b-160
 908	  - blake2b-256
 909	  - blake2b-384
 910	  - blake2b-512
 911
 912	  Used by the btrfs filesystem.
 913
 914	  See https://blake2.net for further information.
 
 
 
 915
 916config CRYPTO_CMAC
 917	tristate "CMAC (Cipher-based MAC)"
 918	select CRYPTO_HASH
 919	select CRYPTO_MANAGER
 920	help
 921	  CMAC (Cipher-based Message Authentication Code) authentication
 922	  mode (NIST SP800-38B and IETF RFC4493)
 923
 924config CRYPTO_GHASH
 925	tristate "GHASH"
 926	select CRYPTO_HASH
 927	select CRYPTO_LIB_GF128MUL
 928	help
 929	  GCM GHASH function (NIST SP800-38D)
 930
 931config CRYPTO_HMAC
 932	tristate "HMAC (Keyed-Hash MAC)"
 933	select CRYPTO_HASH
 934	select CRYPTO_MANAGER
 935	help
 936	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 937	  RFC2104)
 938
 939	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 
 
 940
 941config CRYPTO_MD4
 942	tristate "MD4"
 943	select CRYPTO_HASH
 944	help
 945	  MD4 message digest algorithm (RFC1320)
 946
 947config CRYPTO_MD5
 948	tristate "MD5"
 949	select CRYPTO_HASH
 950	help
 951	  MD5 message digest algorithm (RFC1321)
 952
 953config CRYPTO_MICHAEL_MIC
 954	tristate "Michael MIC"
 955	select CRYPTO_HASH
 956	help
 957	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 958
 959	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 960	  known as WPA (Wif-Fi Protected Access).
 961
 962	  This algorithm is required for TKIP, but it should not be used for
 963	  other purposes because of the weakness of the algorithm.
 964
 965config CRYPTO_POLYVAL
 966	tristate
 967	select CRYPTO_HASH
 968	select CRYPTO_LIB_GF128MUL
 
 
 
 969	help
 970	  POLYVAL hash function for HCTR2
 971
 972	  This is used in HCTR2.  It is not a general-purpose
 973	  cryptographic hash function.
 974
 975config CRYPTO_POLY1305
 976	tristate "Poly1305"
 977	select CRYPTO_HASH
 978	select CRYPTO_LIB_POLY1305_GENERIC
 979	help
 980	  Poly1305 authenticator algorithm (RFC7539)
 981
 982	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 983	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 984	  in IETF protocols. This is the portable C implementation of Poly1305.
 985
 986config CRYPTO_RMD160
 987	tristate "RIPEMD-160"
 988	select CRYPTO_HASH
 
 
 
 
 
 
 
 989	help
 990	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 991
 992	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 993	  to be used as a secure replacement for the 128-bit hash functions
 994	  MD4, MD5 and its predecessor RIPEMD
 995	  (not to be confused with RIPEMD-128).
 996
 997	  Its speed is comparable to SHA-1 and there are no known attacks
 998	  against RIPEMD-160.
 999
1000	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
1001	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
1002	  for further information.
1003
1004config CRYPTO_SHA1
1005	tristate "SHA-1"
1006	select CRYPTO_HASH
1007	select CRYPTO_LIB_SHA1
 
 
 
 
 
 
1008	help
1009	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
1010
1011config CRYPTO_SHA256
1012	tristate "SHA-224 and SHA-256"
1013	select CRYPTO_HASH
1014	select CRYPTO_LIB_SHA256
1015	help
1016	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1017
1018	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1019	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
1020
1021config CRYPTO_SHA512
1022	tristate "SHA-384 and SHA-512"
1023	select CRYPTO_HASH
1024	help
1025	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1026
1027config CRYPTO_SHA3
1028	tristate "SHA-3"
1029	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1030	help
1031	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1032
1033config CRYPTO_SM3
1034	tristate
1035
1036config CRYPTO_SM3_GENERIC
1037	tristate "SM3 (ShangMi 3)"
1038	select CRYPTO_HASH
1039	select CRYPTO_SM3
1040	help
1041	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1042
1043	  This is part of the Chinese Commercial Cryptography suite.
 
1044
1045	  References:
1046	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1047	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1048
1049config CRYPTO_STREEBOG
1050	tristate "Streebog"
1051	select CRYPTO_HASH
1052	help
1053	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1054
1055	  This is one of the Russian cryptographic standard algorithms (called
1056	  GOST algorithms). This setting enables two hash algorithms with
1057	  256 and 512 bits output.
1058
1059	  References:
1060	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1061	  https://tools.ietf.org/html/rfc6986
1062
1063config CRYPTO_VMAC
1064	tristate "VMAC"
1065	select CRYPTO_HASH
1066	select CRYPTO_MANAGER
1067	help
1068	  VMAC is a message authentication algorithm designed for
1069	  very high speed on 64-bit architectures.
1070
1071	  See https://fastcrypto.org/vmac for further information.
1072
1073config CRYPTO_WP512
1074	tristate "Whirlpool"
1075	select CRYPTO_HASH
1076	help
1077	  Whirlpool hash function (ISO/IEC 10118-3)
1078
1079	  512, 384 and 256-bit hashes.
 
 
 
1080
1081	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1082
1083	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1084	  for further information.
1085
1086config CRYPTO_XCBC
1087	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1088	select CRYPTO_HASH
1089	select CRYPTO_MANAGER
1090	help
1091	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1092	  Code) (RFC3566)
1093
1094config CRYPTO_XXHASH
1095	tristate "xxHash"
1096	select CRYPTO_HASH
1097	select XXHASH
 
1098	help
1099	  xxHash non-cryptographic hash algorithm
1100
1101	  Extremely fast, working at speeds close to RAM limits.
 
 
 
1102
1103	  Used by the btrfs filesystem.
 
1104
1105endmenu
1106
1107menu "CRCs (cyclic redundancy checks)"
1108
1109config CRYPTO_CRC32C
1110	tristate "CRC32c"
1111	select CRYPTO_HASH
1112	select CRC32
1113	help
1114	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1115
1116	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1117	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1118	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1119	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1120	  iSCSI.
1121
1122	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1123
1124config CRYPTO_CRC32
1125	tristate "CRC32"
1126	select CRYPTO_HASH
1127	select CRC32
 
 
 
 
 
1128	help
1129	  CRC32 CRC algorithm (IEEE 802.3)
1130
1131	  Used by RoCEv2 and f2fs.
 
 
 
1132
1133config CRYPTO_CRCT10DIF
1134	tristate "CRCT10DIF"
1135	select CRYPTO_HASH
1136	help
1137	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1138
1139	  CRC algorithm used by the SCSI Block Commands standard.
 
1140
1141config CRYPTO_CRC64_ROCKSOFT
1142	tristate "CRC64 based on Rocksoft Model algorithm"
1143	depends on CRC64
1144	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1145	help
1146	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1147
1148	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1149
1150	  See https://zlib.net/crc_v3.txt
 
1151
1152endmenu
 
1153
1154menu "Compression"
1155
1156config CRYPTO_DEFLATE
1157	tristate "Deflate"
1158	select CRYPTO_ALGAPI
1159	select CRYPTO_ACOMP2
1160	select ZLIB_INFLATE
1161	select ZLIB_DEFLATE
1162	help
1163	  Deflate compression algorithm (RFC1951)
 
 
 
1164
1165	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
 
 
 
 
 
 
 
1166
1167config CRYPTO_LZO
1168	tristate "LZO"
1169	select CRYPTO_ALGAPI
1170	select CRYPTO_ACOMP2
1171	select LZO_COMPRESS
1172	select LZO_DECOMPRESS
1173	help
1174	  LZO compression algorithm
1175
1176	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1177
1178config CRYPTO_842
1179	tristate "842"
1180	select CRYPTO_ALGAPI
1181	select CRYPTO_ACOMP2
1182	select 842_COMPRESS
1183	select 842_DECOMPRESS
1184	help
1185	  842 compression algorithm by IBM
1186
1187	  See https://github.com/plauth/lib842 for further information.
1188
1189config CRYPTO_LZ4
1190	tristate "LZ4"
1191	select CRYPTO_ALGAPI
1192	select CRYPTO_ACOMP2
1193	select LZ4_COMPRESS
1194	select LZ4_DECOMPRESS
1195	help
1196	  LZ4 compression algorithm
1197
1198	  See https://github.com/lz4/lz4 for further information.
1199
1200config CRYPTO_LZ4HC
1201	tristate "LZ4HC"
1202	select CRYPTO_ALGAPI
1203	select CRYPTO_ACOMP2
1204	select LZ4HC_COMPRESS
1205	select LZ4_DECOMPRESS
1206	help
1207	  LZ4 high compression mode algorithm
1208
1209	  See https://github.com/lz4/lz4 for further information.
1210
1211config CRYPTO_ZSTD
1212	tristate "Zstd"
1213	select CRYPTO_ALGAPI
1214	select CRYPTO_ACOMP2
1215	select ZSTD_COMPRESS
1216	select ZSTD_DECOMPRESS
1217	help
1218	  zstd compression algorithm
1219
1220	  See https://github.com/facebook/zstd for further information.
1221
1222endmenu
1223
1224menu "Random number generation"
1225
1226config CRYPTO_ANSI_CPRNG
1227	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1228	select CRYPTO_AES
1229	select CRYPTO_RNG
1230	help
1231	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1232
1233	  This uses the AES cipher algorithm.
1234
1235	  Note that this option must be enabled if CRYPTO_FIPS is selected
1236
1237menuconfig CRYPTO_DRBG_MENU
1238	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1239	help
1240	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1241
1242	  In the following submenu, one or more of the DRBG types must be selected.
1243
1244if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_DRBG_HMAC
1247	bool
1248	default y
1249	select CRYPTO_HMAC
1250	select CRYPTO_SHA512
1251
1252config CRYPTO_DRBG_HASH
1253	bool "Hash_DRBG"
1254	select CRYPTO_SHA256
1255	help
1256	  Hash_DRBG variant as defined in NIST SP800-90A.
1257
1258	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1259
1260config CRYPTO_DRBG_CTR
1261	bool "CTR_DRBG"
1262	select CRYPTO_AES
1263	select CRYPTO_CTR
1264	help
1265	  CTR_DRBG variant as defined in NIST SP800-90A.
1266
1267	  This uses the AES cipher algorithm with the counter block mode.
1268
1269config CRYPTO_DRBG
1270	tristate
1271	default CRYPTO_DRBG_MENU
1272	select CRYPTO_RNG
1273	select CRYPTO_JITTERENTROPY
1274
1275endif	# if CRYPTO_DRBG_MENU
1276
1277config CRYPTO_JITTERENTROPY
1278	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1279	select CRYPTO_RNG
1280	help
1281	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1282
1283	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1284	  compliant with NIST SP800-90B) intended to provide a seed to a
1285	  deterministic RNG (e.g.  per NIST SP800-90C).
1286	  This RNG does not perform any cryptographic whitening of the generated
1287
1288	  See https://www.chronox.de/jent.html
1289
1290config CRYPTO_KDF800108_CTR
1291	tristate
1292	select CRYPTO_HMAC
1293	select CRYPTO_SHA256
1294
1295endmenu
1296menu "Userspace interface"
1297
1298config CRYPTO_USER_API
1299	tristate
1300
1301config CRYPTO_USER_API_HASH
1302	tristate "Hash algorithms"
1303	depends on NET
1304	select CRYPTO_HASH
1305	select CRYPTO_USER_API
1306	help
1307	  Enable the userspace interface for hash algorithms.
1308
1309	  See Documentation/crypto/userspace-if.rst and
1310	  https://www.chronox.de/libkcapi/html/index.html
1311
1312config CRYPTO_USER_API_SKCIPHER
1313	tristate "Symmetric key cipher algorithms"
1314	depends on NET
1315	select CRYPTO_SKCIPHER
1316	select CRYPTO_USER_API
1317	help
1318	  Enable the userspace interface for symmetric key cipher algorithms.
1319
1320	  See Documentation/crypto/userspace-if.rst and
1321	  https://www.chronox.de/libkcapi/html/index.html
1322
1323config CRYPTO_USER_API_RNG
1324	tristate "RNG (random number generator) algorithms"
1325	depends on NET
1326	select CRYPTO_RNG
1327	select CRYPTO_USER_API
1328	help
1329	  Enable the userspace interface for RNG (random number generator)
1330	  algorithms.
1331
1332	  See Documentation/crypto/userspace-if.rst and
1333	  https://www.chronox.de/libkcapi/html/index.html
1334
1335config CRYPTO_USER_API_RNG_CAVP
1336	bool "Enable CAVP testing of DRBG"
1337	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1338	help
1339	  Enable extra APIs in the userspace interface for NIST CAVP
1340	  (Cryptographic Algorithm Validation Program) testing:
1341	  - resetting DRBG entropy
1342	  - providing Additional Data
1343
1344	  This should only be enabled for CAVP testing. You should say
1345	  no unless you know what this is.
1346
1347config CRYPTO_USER_API_AEAD
1348	tristate "AEAD cipher algorithms"
1349	depends on NET
1350	select CRYPTO_AEAD
1351	select CRYPTO_SKCIPHER
1352	select CRYPTO_NULL
1353	select CRYPTO_USER_API
1354	help
1355	  Enable the userspace interface for AEAD cipher algorithms.
1356
1357	  See Documentation/crypto/userspace-if.rst and
1358	  https://www.chronox.de/libkcapi/html/index.html
1359
1360config CRYPTO_USER_API_ENABLE_OBSOLETE
1361	bool "Obsolete cryptographic algorithms"
1362	depends on CRYPTO_USER_API
1363	default y
1364	help
1365	  Allow obsolete cryptographic algorithms to be selected that have
1366	  already been phased out from internal use by the kernel, and are
1367	  only useful for userspace clients that still rely on them.
1368
1369config CRYPTO_STATS
1370	bool "Crypto usage statistics"
1371	depends on CRYPTO_USER
1372	help
1373	  Enable the gathering of crypto stats.
1374
1375	  This collects data sizes, numbers of requests, and numbers
1376	  of errors processed by:
1377	  - AEAD ciphers (encrypt, decrypt)
1378	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1379	  - symmetric key ciphers (encrypt, decrypt)
1380	  - compression algorithms (compress, decompress)
1381	  - hash algorithms (hash)
1382	  - key-agreement protocol primitives (setsecret, generate
1383	    public key, compute shared secret)
1384	  - RNG (generate, seed)
1385
1386endmenu
1387
1388config CRYPTO_HASH_INFO
1389	bool
1390
1391if !KMSAN # avoid false positives from assembly
1392if ARM
1393source "arch/arm/crypto/Kconfig"
1394endif
1395if ARM64
1396source "arch/arm64/crypto/Kconfig"
1397endif
1398if MIPS
1399source "arch/mips/crypto/Kconfig"
1400endif
1401if PPC
1402source "arch/powerpc/crypto/Kconfig"
1403endif
1404if S390
1405source "arch/s390/crypto/Kconfig"
1406endif
1407if SPARC
1408source "arch/sparc/crypto/Kconfig"
1409endif
1410if X86
1411source "arch/x86/crypto/Kconfig"
1412endif
1413endif
1414
1415source "drivers/crypto/Kconfig"
1416source "crypto/asymmetric_keys/Kconfig"
1417source "certs/Kconfig"
1418
1419endif	# if CRYPTO