Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (!pte)
 29		return NULL;
 30	if (!pgtable_page_ctor(pte)) {
 31		__free_page(pte);
 32		return NULL;
 33	}
 34	return pte;
 35}
 36
 37static int __init setup_userpte(char *arg)
 38{
 39	if (!arg)
 40		return -EINVAL;
 41
 42	/*
 43	 * "userpte=nohigh" disables allocation of user pagetables in
 44	 * high memory.
 45	 */
 46	if (strcmp(arg, "nohigh") == 0)
 47		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 48	else
 49		return -EINVAL;
 50	return 0;
 51}
 52early_param("userpte", setup_userpte);
 53
 54void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 55{
 56	pgtable_page_dtor(pte);
 57	paravirt_release_pte(page_to_pfn(pte));
 58	tlb_remove_page(tlb, pte);
 59}
 60
 61#if PAGETABLE_LEVELS > 2
 62void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 63{
 64	struct page *page = virt_to_page(pmd);
 65	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 66	/*
 67	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 68	 * entries need a full cr3 reload to flush.
 69	 */
 70#ifdef CONFIG_X86_PAE
 71	tlb->need_flush_all = 1;
 72#endif
 73	pgtable_pmd_page_dtor(page);
 74	tlb_remove_page(tlb, page);
 75}
 76
 77#if PAGETABLE_LEVELS > 3
 78void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 79{
 80	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 81	tlb_remove_page(tlb, virt_to_page(pud));
 82}
 83#endif	/* PAGETABLE_LEVELS > 3 */
 84#endif	/* PAGETABLE_LEVELS > 2 */
 85
 86static inline void pgd_list_add(pgd_t *pgd)
 87{
 88	struct page *page = virt_to_page(pgd);
 89
 90	list_add(&page->lru, &pgd_list);
 91}
 92
 93static inline void pgd_list_del(pgd_t *pgd)
 94{
 95	struct page *page = virt_to_page(pgd);
 96
 97	list_del(&page->lru);
 98}
 99
100#define UNSHARED_PTRS_PER_PGD				\
101	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105{
106	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107	virt_to_page(pgd)->index = (pgoff_t)mm;
108}
109
110struct mm_struct *pgd_page_get_mm(struct page *page)
111{
112	return (struct mm_struct *)page->index;
113}
114
115static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116{
117	/* If the pgd points to a shared pagetable level (either the
118	   ptes in non-PAE, or shared PMD in PAE), then just copy the
119	   references from swapper_pg_dir. */
120	if (PAGETABLE_LEVELS == 2 ||
121	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122	    PAGETABLE_LEVELS == 4) {
123		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125				KERNEL_PGD_PTRS);
126	}
127
128	/* list required to sync kernel mapping updates */
129	if (!SHARED_KERNEL_PMD) {
130		pgd_set_mm(pgd, mm);
131		pgd_list_add(pgd);
132	}
133}
134
135static void pgd_dtor(pgd_t *pgd)
136{
137	if (SHARED_KERNEL_PMD)
138		return;
139
140	spin_lock(&pgd_lock);
141	pgd_list_del(pgd);
142	spin_unlock(&pgd_lock);
143}
144
145/*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156#ifdef CONFIG_X86_PAE
157/*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update.  Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
169
170void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171{
172	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174	/* Note: almost everything apart from _PAGE_PRESENT is
175	   reserved at the pmd (PDPT) level. */
176	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178	/*
179	 * According to Intel App note "TLBs, Paging-Structure Caches,
180	 * and Their Invalidation", April 2007, document 317080-001,
181	 * section 8.1: in PAE mode we explicitly have to flush the
182	 * TLB via cr3 if the top-level pgd is changed...
183	 */
184	flush_tlb_mm(mm);
185}
186#else  /* !CONFIG_X86_PAE */
187
188/* No need to prepopulate any pagetable entries in non-PAE modes. */
189#define PREALLOCATED_PMDS	0
190
191#endif	/* CONFIG_X86_PAE */
192
193static void free_pmds(pmd_t *pmds[])
194{
195	int i;
196
197	for(i = 0; i < PREALLOCATED_PMDS; i++)
198		if (pmds[i]) {
199			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200			free_page((unsigned long)pmds[i]);
201		}
202}
203
204static int preallocate_pmds(pmd_t *pmds[])
205{
206	int i;
207	bool failed = false;
208
209	for(i = 0; i < PREALLOCATED_PMDS; i++) {
210		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211		if (!pmd)
212			failed = true;
213		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214			free_page((unsigned long)pmd);
215			pmd = NULL;
216			failed = true;
217		}
218		pmds[i] = pmd;
219	}
220
221	if (failed) {
222		free_pmds(pmds);
223		return -ENOMEM;
224	}
225
226	return 0;
227}
228
229/*
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
233 * freed manually.
234 */
235static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236{
237	int i;
238
239	for(i = 0; i < PREALLOCATED_PMDS; i++) {
240		pgd_t pgd = pgdp[i];
241
242		if (pgd_val(pgd) != 0) {
243			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244
245			pgdp[i] = native_make_pgd(0);
246
247			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248			pmd_free(mm, pmd);
249		}
250	}
251}
252
253static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254{
255	pud_t *pud;
 
256	int i;
257
258	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259		return;
260
261	pud = pud_offset(pgd, 0);
262
263	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
 
264		pmd_t *pmd = pmds[i];
265
266		if (i >= KERNEL_PGD_BOUNDARY)
267			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268			       sizeof(pmd_t) * PTRS_PER_PMD);
269
270		pud_populate(mm, pud, pmd);
271	}
272}
273
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276	pgd_t *pgd;
277	pmd_t *pmds[PREALLOCATED_PMDS];
278
279	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280
281	if (pgd == NULL)
282		goto out;
283
284	mm->pgd = pgd;
285
286	if (preallocate_pmds(pmds) != 0)
287		goto out_free_pgd;
288
289	if (paravirt_pgd_alloc(mm) != 0)
290		goto out_free_pmds;
291
292	/*
293	 * Make sure that pre-populating the pmds is atomic with
294	 * respect to anything walking the pgd_list, so that they
295	 * never see a partially populated pgd.
296	 */
297	spin_lock(&pgd_lock);
298
299	pgd_ctor(mm, pgd);
300	pgd_prepopulate_pmd(mm, pgd, pmds);
301
302	spin_unlock(&pgd_lock);
303
304	return pgd;
305
306out_free_pmds:
307	free_pmds(pmds);
308out_free_pgd:
309	free_page((unsigned long)pgd);
310out:
311	return NULL;
312}
313
314void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315{
316	pgd_mop_up_pmds(mm, pgd);
317	pgd_dtor(pgd);
318	paravirt_pgd_free(mm, pgd);
319	free_page((unsigned long)pgd);
320}
321
322/*
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
328 */
329int ptep_set_access_flags(struct vm_area_struct *vma,
330			  unsigned long address, pte_t *ptep,
331			  pte_t entry, int dirty)
332{
333	int changed = !pte_same(*ptep, entry);
334
335	if (changed && dirty) {
336		*ptep = entry;
337		pte_update_defer(vma->vm_mm, address, ptep);
 
338	}
339
340	return changed;
341}
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344int pmdp_set_access_flags(struct vm_area_struct *vma,
345			  unsigned long address, pmd_t *pmdp,
346			  pmd_t entry, int dirty)
347{
348	int changed = !pmd_same(*pmdp, entry);
349
350	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351
352	if (changed && dirty) {
353		*pmdp = entry;
354		pmd_update_defer(vma->vm_mm, address, pmdp);
355		/*
356		 * We had a write-protection fault here and changed the pmd
357		 * to to more permissive. No need to flush the TLB for that,
358		 * #PF is architecturally guaranteed to do that and in the
359		 * worst-case we'll generate a spurious fault.
360		 */
361	}
362
363	return changed;
364}
365#endif
366
367int ptep_test_and_clear_young(struct vm_area_struct *vma,
368			      unsigned long addr, pte_t *ptep)
369{
370	int ret = 0;
371
372	if (pte_young(*ptep))
373		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374					 (unsigned long *) &ptep->pte);
375
376	if (ret)
377		pte_update(vma->vm_mm, addr, ptep);
378
379	return ret;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384			      unsigned long addr, pmd_t *pmdp)
385{
386	int ret = 0;
387
388	if (pmd_young(*pmdp))
389		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390					 (unsigned long *)pmdp);
391
392	if (ret)
393		pmd_update(vma->vm_mm, addr, pmdp);
394
395	return ret;
396}
397#endif
398
399int ptep_clear_flush_young(struct vm_area_struct *vma,
400			   unsigned long address, pte_t *ptep)
401{
402	int young;
403
404	young = ptep_test_and_clear_young(vma, address, ptep);
405	if (young)
406		flush_tlb_page(vma, address);
407
408	return young;
409}
410
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
412int pmdp_clear_flush_young(struct vm_area_struct *vma,
413			   unsigned long address, pmd_t *pmdp)
414{
415	int young;
416
417	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
418
419	young = pmdp_test_and_clear_young(vma, address, pmdp);
420	if (young)
421		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
422
423	return young;
424}
425
426void pmdp_splitting_flush(struct vm_area_struct *vma,
427			  unsigned long address, pmd_t *pmdp)
428{
429	int set;
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
432				(unsigned long *)pmdp);
433	if (set) {
434		pmd_update(vma->vm_mm, address, pmdp);
435		/* need tlb flush only to serialize against gup-fast */
436		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
437	}
438}
439#endif
440
441/**
442 * reserve_top_address - reserves a hole in the top of kernel address space
443 * @reserve - size of hole to reserve
444 *
445 * Can be used to relocate the fixmap area and poke a hole in the top
446 * of kernel address space to make room for a hypervisor.
447 */
448void __init reserve_top_address(unsigned long reserve)
449{
450#ifdef CONFIG_X86_32
451	BUG_ON(fixmaps_set > 0);
452	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
453	       (int)-reserve);
454	__FIXADDR_TOP = -reserve - PAGE_SIZE;
455#endif
456}
457
458int fixmaps_set;
459
460void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
461{
462	unsigned long address = __fix_to_virt(idx);
463
464	if (idx >= __end_of_fixed_addresses) {
465		BUG();
466		return;
467	}
468	set_pte_vaddr(address, pte);
469	fixmaps_set++;
470}
471
472void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
473		       pgprot_t flags)
474{
475	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
476}
v3.1
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (pte)
 29		pgtable_page_ctor(pte);
 
 
 
 
 30	return pte;
 31}
 32
 33static int __init setup_userpte(char *arg)
 34{
 35	if (!arg)
 36		return -EINVAL;
 37
 38	/*
 39	 * "userpte=nohigh" disables allocation of user pagetables in
 40	 * high memory.
 41	 */
 42	if (strcmp(arg, "nohigh") == 0)
 43		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 44	else
 45		return -EINVAL;
 46	return 0;
 47}
 48early_param("userpte", setup_userpte);
 49
 50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 51{
 52	pgtable_page_dtor(pte);
 53	paravirt_release_pte(page_to_pfn(pte));
 54	tlb_remove_page(tlb, pte);
 55}
 56
 57#if PAGETABLE_LEVELS > 2
 58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 59{
 
 60	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 61	tlb_remove_page(tlb, virt_to_page(pmd));
 
 
 
 
 
 
 
 
 62}
 63
 64#if PAGETABLE_LEVELS > 3
 65void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 66{
 67	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 68	tlb_remove_page(tlb, virt_to_page(pud));
 69}
 70#endif	/* PAGETABLE_LEVELS > 3 */
 71#endif	/* PAGETABLE_LEVELS > 2 */
 72
 73static inline void pgd_list_add(pgd_t *pgd)
 74{
 75	struct page *page = virt_to_page(pgd);
 76
 77	list_add(&page->lru, &pgd_list);
 78}
 79
 80static inline void pgd_list_del(pgd_t *pgd)
 81{
 82	struct page *page = virt_to_page(pgd);
 83
 84	list_del(&page->lru);
 85}
 86
 87#define UNSHARED_PTRS_PER_PGD				\
 88	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 89
 90
 91static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 92{
 93	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
 94	virt_to_page(pgd)->index = (pgoff_t)mm;
 95}
 96
 97struct mm_struct *pgd_page_get_mm(struct page *page)
 98{
 99	return (struct mm_struct *)page->index;
100}
101
102static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103{
104	/* If the pgd points to a shared pagetable level (either the
105	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106	   references from swapper_pg_dir. */
107	if (PAGETABLE_LEVELS == 2 ||
108	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109	    PAGETABLE_LEVELS == 4) {
110		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112				KERNEL_PGD_PTRS);
113	}
114
115	/* list required to sync kernel mapping updates */
116	if (!SHARED_KERNEL_PMD) {
117		pgd_set_mm(pgd, mm);
118		pgd_list_add(pgd);
119	}
120}
121
122static void pgd_dtor(pgd_t *pgd)
123{
124	if (SHARED_KERNEL_PMD)
125		return;
126
127	spin_lock(&pgd_lock);
128	pgd_list_del(pgd);
129	spin_unlock(&pgd_lock);
130}
131
132/*
133 * List of all pgd's needed for non-PAE so it can invalidate entries
134 * in both cached and uncached pgd's; not needed for PAE since the
135 * kernel pmd is shared. If PAE were not to share the pmd a similar
136 * tactic would be needed. This is essentially codepath-based locking
137 * against pageattr.c; it is the unique case in which a valid change
138 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139 * vmalloc faults work because attached pagetables are never freed.
140 * -- wli
141 */
142
143#ifdef CONFIG_X86_PAE
144/*
145 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146 * updating the top-level pagetable entries to guarantee the
147 * processor notices the update.  Since this is expensive, and
148 * all 4 top-level entries are used almost immediately in a
149 * new process's life, we just pre-populate them here.
150 *
151 * Also, if we're in a paravirt environment where the kernel pmd is
152 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153 * and initialize the kernel pmds here.
154 */
155#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
156
157void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158{
159	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161	/* Note: almost everything apart from _PAGE_PRESENT is
162	   reserved at the pmd (PDPT) level. */
163	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165	/*
166	 * According to Intel App note "TLBs, Paging-Structure Caches,
167	 * and Their Invalidation", April 2007, document 317080-001,
168	 * section 8.1: in PAE mode we explicitly have to flush the
169	 * TLB via cr3 if the top-level pgd is changed...
170	 */
171	flush_tlb_mm(mm);
172}
173#else  /* !CONFIG_X86_PAE */
174
175/* No need to prepopulate any pagetable entries in non-PAE modes. */
176#define PREALLOCATED_PMDS	0
177
178#endif	/* CONFIG_X86_PAE */
179
180static void free_pmds(pmd_t *pmds[])
181{
182	int i;
183
184	for(i = 0; i < PREALLOCATED_PMDS; i++)
185		if (pmds[i])
 
186			free_page((unsigned long)pmds[i]);
 
187}
188
189static int preallocate_pmds(pmd_t *pmds[])
190{
191	int i;
192	bool failed = false;
193
194	for(i = 0; i < PREALLOCATED_PMDS; i++) {
195		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196		if (pmd == NULL)
197			failed = true;
 
 
 
 
 
198		pmds[i] = pmd;
199	}
200
201	if (failed) {
202		free_pmds(pmds);
203		return -ENOMEM;
204	}
205
206	return 0;
207}
208
209/*
210 * Mop up any pmd pages which may still be attached to the pgd.
211 * Normally they will be freed by munmap/exit_mmap, but any pmd we
212 * preallocate which never got a corresponding vma will need to be
213 * freed manually.
214 */
215static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216{
217	int i;
218
219	for(i = 0; i < PREALLOCATED_PMDS; i++) {
220		pgd_t pgd = pgdp[i];
221
222		if (pgd_val(pgd) != 0) {
223			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224
225			pgdp[i] = native_make_pgd(0);
226
227			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228			pmd_free(mm, pmd);
229		}
230	}
231}
232
233static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234{
235	pud_t *pud;
236	unsigned long addr;
237	int i;
238
239	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240		return;
241
242	pud = pud_offset(pgd, 0);
243
244 	for (addr = i = 0; i < PREALLOCATED_PMDS;
245	     i++, pud++, addr += PUD_SIZE) {
246		pmd_t *pmd = pmds[i];
247
248		if (i >= KERNEL_PGD_BOUNDARY)
249			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250			       sizeof(pmd_t) * PTRS_PER_PMD);
251
252		pud_populate(mm, pud, pmd);
253	}
254}
255
256pgd_t *pgd_alloc(struct mm_struct *mm)
257{
258	pgd_t *pgd;
259	pmd_t *pmds[PREALLOCATED_PMDS];
260
261	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262
263	if (pgd == NULL)
264		goto out;
265
266	mm->pgd = pgd;
267
268	if (preallocate_pmds(pmds) != 0)
269		goto out_free_pgd;
270
271	if (paravirt_pgd_alloc(mm) != 0)
272		goto out_free_pmds;
273
274	/*
275	 * Make sure that pre-populating the pmds is atomic with
276	 * respect to anything walking the pgd_list, so that they
277	 * never see a partially populated pgd.
278	 */
279	spin_lock(&pgd_lock);
280
281	pgd_ctor(mm, pgd);
282	pgd_prepopulate_pmd(mm, pgd, pmds);
283
284	spin_unlock(&pgd_lock);
285
286	return pgd;
287
288out_free_pmds:
289	free_pmds(pmds);
290out_free_pgd:
291	free_page((unsigned long)pgd);
292out:
293	return NULL;
294}
295
296void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297{
298	pgd_mop_up_pmds(mm, pgd);
299	pgd_dtor(pgd);
300	paravirt_pgd_free(mm, pgd);
301	free_page((unsigned long)pgd);
302}
303
 
 
 
 
 
 
 
304int ptep_set_access_flags(struct vm_area_struct *vma,
305			  unsigned long address, pte_t *ptep,
306			  pte_t entry, int dirty)
307{
308	int changed = !pte_same(*ptep, entry);
309
310	if (changed && dirty) {
311		*ptep = entry;
312		pte_update_defer(vma->vm_mm, address, ptep);
313		flush_tlb_page(vma, address);
314	}
315
316	return changed;
317}
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320int pmdp_set_access_flags(struct vm_area_struct *vma,
321			  unsigned long address, pmd_t *pmdp,
322			  pmd_t entry, int dirty)
323{
324	int changed = !pmd_same(*pmdp, entry);
325
326	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
327
328	if (changed && dirty) {
329		*pmdp = entry;
330		pmd_update_defer(vma->vm_mm, address, pmdp);
331		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 
 
 
 
 
332	}
333
334	return changed;
335}
336#endif
337
338int ptep_test_and_clear_young(struct vm_area_struct *vma,
339			      unsigned long addr, pte_t *ptep)
340{
341	int ret = 0;
342
343	if (pte_young(*ptep))
344		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
345					 (unsigned long *) &ptep->pte);
346
347	if (ret)
348		pte_update(vma->vm_mm, addr, ptep);
349
350	return ret;
351}
352
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354int pmdp_test_and_clear_young(struct vm_area_struct *vma,
355			      unsigned long addr, pmd_t *pmdp)
356{
357	int ret = 0;
358
359	if (pmd_young(*pmdp))
360		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
361					 (unsigned long *)pmdp);
362
363	if (ret)
364		pmd_update(vma->vm_mm, addr, pmdp);
365
366	return ret;
367}
368#endif
369
370int ptep_clear_flush_young(struct vm_area_struct *vma,
371			   unsigned long address, pte_t *ptep)
372{
373	int young;
374
375	young = ptep_test_and_clear_young(vma, address, ptep);
376	if (young)
377		flush_tlb_page(vma, address);
378
379	return young;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_clear_flush_young(struct vm_area_struct *vma,
384			   unsigned long address, pmd_t *pmdp)
385{
386	int young;
387
388	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
389
390	young = pmdp_test_and_clear_young(vma, address, pmdp);
391	if (young)
392		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
393
394	return young;
395}
396
397void pmdp_splitting_flush(struct vm_area_struct *vma,
398			  unsigned long address, pmd_t *pmdp)
399{
400	int set;
401	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
402	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
403				(unsigned long *)pmdp);
404	if (set) {
405		pmd_update(vma->vm_mm, address, pmdp);
406		/* need tlb flush only to serialize against gup-fast */
407		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
408	}
409}
410#endif
411
412/**
413 * reserve_top_address - reserves a hole in the top of kernel address space
414 * @reserve - size of hole to reserve
415 *
416 * Can be used to relocate the fixmap area and poke a hole in the top
417 * of kernel address space to make room for a hypervisor.
418 */
419void __init reserve_top_address(unsigned long reserve)
420{
421#ifdef CONFIG_X86_32
422	BUG_ON(fixmaps_set > 0);
423	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
424	       (int)-reserve);
425	__FIXADDR_TOP = -reserve - PAGE_SIZE;
426#endif
427}
428
429int fixmaps_set;
430
431void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
432{
433	unsigned long address = __fix_to_virt(idx);
434
435	if (idx >= __end_of_fixed_addresses) {
436		BUG();
437		return;
438	}
439	set_pte_vaddr(address, pte);
440	fixmaps_set++;
441}
442
443void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
444		       pgprot_t flags)
445{
446	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
447}