Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
 
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (!pte)
 29		return NULL;
 30	if (!pgtable_page_ctor(pte)) {
 31		__free_page(pte);
 32		return NULL;
 33	}
 34	return pte;
 35}
 36
 37static int __init setup_userpte(char *arg)
 38{
 39	if (!arg)
 40		return -EINVAL;
 41
 42	/*
 43	 * "userpte=nohigh" disables allocation of user pagetables in
 44	 * high memory.
 45	 */
 46	if (strcmp(arg, "nohigh") == 0)
 47		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 48	else
 49		return -EINVAL;
 50	return 0;
 51}
 52early_param("userpte", setup_userpte);
 53
 54void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 55{
 56	pgtable_page_dtor(pte);
 57	paravirt_release_pte(page_to_pfn(pte));
 58	tlb_remove_page(tlb, pte);
 59}
 60
 61#if PAGETABLE_LEVELS > 2
 62void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 63{
 64	struct page *page = virt_to_page(pmd);
 65	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 66	/*
 67	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 68	 * entries need a full cr3 reload to flush.
 69	 */
 70#ifdef CONFIG_X86_PAE
 71	tlb->need_flush_all = 1;
 72#endif
 73	pgtable_pmd_page_dtor(page);
 74	tlb_remove_page(tlb, page);
 75}
 76
 77#if PAGETABLE_LEVELS > 3
 78void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 79{
 80	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 81	tlb_remove_page(tlb, virt_to_page(pud));
 82}
 83#endif	/* PAGETABLE_LEVELS > 3 */
 84#endif	/* PAGETABLE_LEVELS > 2 */
 85
 86static inline void pgd_list_add(pgd_t *pgd)
 87{
 88	struct page *page = virt_to_page(pgd);
 89
 90	list_add(&page->lru, &pgd_list);
 91}
 92
 93static inline void pgd_list_del(pgd_t *pgd)
 94{
 95	struct page *page = virt_to_page(pgd);
 96
 97	list_del(&page->lru);
 98}
 99
100#define UNSHARED_PTRS_PER_PGD				\
101	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105{
106	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107	virt_to_page(pgd)->index = (pgoff_t)mm;
108}
109
110struct mm_struct *pgd_page_get_mm(struct page *page)
111{
112	return (struct mm_struct *)page->index;
113}
114
115static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116{
117	/* If the pgd points to a shared pagetable level (either the
118	   ptes in non-PAE, or shared PMD in PAE), then just copy the
119	   references from swapper_pg_dir. */
120	if (PAGETABLE_LEVELS == 2 ||
121	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122	    PAGETABLE_LEVELS == 4) {
123		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125				KERNEL_PGD_PTRS);
126	}
127
128	/* list required to sync kernel mapping updates */
129	if (!SHARED_KERNEL_PMD) {
130		pgd_set_mm(pgd, mm);
131		pgd_list_add(pgd);
132	}
133}
134
135static void pgd_dtor(pgd_t *pgd)
136{
137	if (SHARED_KERNEL_PMD)
138		return;
139
140	spin_lock(&pgd_lock);
141	pgd_list_del(pgd);
142	spin_unlock(&pgd_lock);
143}
144
145/*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156#ifdef CONFIG_X86_PAE
157/*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update.  Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
169
170void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171{
172	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174	/* Note: almost everything apart from _PAGE_PRESENT is
175	   reserved at the pmd (PDPT) level. */
176	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178	/*
179	 * According to Intel App note "TLBs, Paging-Structure Caches,
180	 * and Their Invalidation", April 2007, document 317080-001,
181	 * section 8.1: in PAE mode we explicitly have to flush the
182	 * TLB via cr3 if the top-level pgd is changed...
183	 */
184	flush_tlb_mm(mm);
185}
186#else  /* !CONFIG_X86_PAE */
187
188/* No need to prepopulate any pagetable entries in non-PAE modes. */
189#define PREALLOCATED_PMDS	0
190
191#endif	/* CONFIG_X86_PAE */
192
193static void free_pmds(pmd_t *pmds[])
194{
195	int i;
196
197	for(i = 0; i < PREALLOCATED_PMDS; i++)
198		if (pmds[i]) {
199			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200			free_page((unsigned long)pmds[i]);
 
201		}
202}
203
204static int preallocate_pmds(pmd_t *pmds[])
205{
206	int i;
207	bool failed = false;
 
 
 
 
208
209	for(i = 0; i < PREALLOCATED_PMDS; i++) {
210		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211		if (!pmd)
212			failed = true;
213		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214			free_page((unsigned long)pmd);
215			pmd = NULL;
216			failed = true;
217		}
 
 
218		pmds[i] = pmd;
219	}
220
221	if (failed) {
222		free_pmds(pmds);
223		return -ENOMEM;
224	}
225
226	return 0;
227}
228
229/*
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
233 * freed manually.
234 */
235static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236{
237	int i;
238
239	for(i = 0; i < PREALLOCATED_PMDS; i++) {
240		pgd_t pgd = pgdp[i];
241
242		if (pgd_val(pgd) != 0) {
243			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244
245			pgdp[i] = native_make_pgd(0);
246
247			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248			pmd_free(mm, pmd);
 
249		}
250	}
251}
252
253static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254{
255	pud_t *pud;
256	int i;
257
258	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259		return;
260
261	pud = pud_offset(pgd, 0);
262
263	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
264		pmd_t *pmd = pmds[i];
265
266		if (i >= KERNEL_PGD_BOUNDARY)
267			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268			       sizeof(pmd_t) * PTRS_PER_PMD);
269
270		pud_populate(mm, pud, pmd);
271	}
272}
273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276	pgd_t *pgd;
277	pmd_t *pmds[PREALLOCATED_PMDS];
278
279	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280
281	if (pgd == NULL)
282		goto out;
283
284	mm->pgd = pgd;
285
286	if (preallocate_pmds(pmds) != 0)
287		goto out_free_pgd;
288
289	if (paravirt_pgd_alloc(mm) != 0)
290		goto out_free_pmds;
291
292	/*
293	 * Make sure that pre-populating the pmds is atomic with
294	 * respect to anything walking the pgd_list, so that they
295	 * never see a partially populated pgd.
296	 */
297	spin_lock(&pgd_lock);
298
299	pgd_ctor(mm, pgd);
300	pgd_prepopulate_pmd(mm, pgd, pmds);
301
302	spin_unlock(&pgd_lock);
303
304	return pgd;
305
306out_free_pmds:
307	free_pmds(pmds);
308out_free_pgd:
309	free_page((unsigned long)pgd);
310out:
311	return NULL;
312}
313
314void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315{
316	pgd_mop_up_pmds(mm, pgd);
317	pgd_dtor(pgd);
318	paravirt_pgd_free(mm, pgd);
319	free_page((unsigned long)pgd);
320}
321
322/*
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
328 */
329int ptep_set_access_flags(struct vm_area_struct *vma,
330			  unsigned long address, pte_t *ptep,
331			  pte_t entry, int dirty)
332{
333	int changed = !pte_same(*ptep, entry);
334
335	if (changed && dirty) {
336		*ptep = entry;
337		pte_update_defer(vma->vm_mm, address, ptep);
338	}
339
340	return changed;
341}
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344int pmdp_set_access_flags(struct vm_area_struct *vma,
345			  unsigned long address, pmd_t *pmdp,
346			  pmd_t entry, int dirty)
347{
348	int changed = !pmd_same(*pmdp, entry);
349
350	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351
352	if (changed && dirty) {
353		*pmdp = entry;
354		pmd_update_defer(vma->vm_mm, address, pmdp);
355		/*
356		 * We had a write-protection fault here and changed the pmd
357		 * to to more permissive. No need to flush the TLB for that,
358		 * #PF is architecturally guaranteed to do that and in the
359		 * worst-case we'll generate a spurious fault.
360		 */
361	}
362
363	return changed;
364}
365#endif
366
367int ptep_test_and_clear_young(struct vm_area_struct *vma,
368			      unsigned long addr, pte_t *ptep)
369{
370	int ret = 0;
371
372	if (pte_young(*ptep))
373		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374					 (unsigned long *) &ptep->pte);
375
376	if (ret)
377		pte_update(vma->vm_mm, addr, ptep);
378
379	return ret;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384			      unsigned long addr, pmd_t *pmdp)
385{
386	int ret = 0;
387
388	if (pmd_young(*pmdp))
389		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390					 (unsigned long *)pmdp);
391
392	if (ret)
393		pmd_update(vma->vm_mm, addr, pmdp);
394
395	return ret;
396}
397#endif
398
399int ptep_clear_flush_young(struct vm_area_struct *vma,
400			   unsigned long address, pte_t *ptep)
401{
402	int young;
403
404	young = ptep_test_and_clear_young(vma, address, ptep);
405	if (young)
406		flush_tlb_page(vma, address);
407
408	return young;
 
 
 
 
 
 
 
409}
410
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
412int pmdp_clear_flush_young(struct vm_area_struct *vma,
413			   unsigned long address, pmd_t *pmdp)
414{
415	int young;
416
417	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
418
419	young = pmdp_test_and_clear_young(vma, address, pmdp);
420	if (young)
421		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
422
423	return young;
424}
425
426void pmdp_splitting_flush(struct vm_area_struct *vma,
427			  unsigned long address, pmd_t *pmdp)
428{
429	int set;
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
432				(unsigned long *)pmdp);
433	if (set) {
434		pmd_update(vma->vm_mm, address, pmdp);
435		/* need tlb flush only to serialize against gup-fast */
436		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
437	}
438}
439#endif
440
441/**
442 * reserve_top_address - reserves a hole in the top of kernel address space
443 * @reserve - size of hole to reserve
444 *
445 * Can be used to relocate the fixmap area and poke a hole in the top
446 * of kernel address space to make room for a hypervisor.
447 */
448void __init reserve_top_address(unsigned long reserve)
449{
450#ifdef CONFIG_X86_32
451	BUG_ON(fixmaps_set > 0);
452	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
453	       (int)-reserve);
454	__FIXADDR_TOP = -reserve - PAGE_SIZE;
455#endif
456}
457
458int fixmaps_set;
459
460void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
461{
462	unsigned long address = __fix_to_virt(idx);
463
464	if (idx >= __end_of_fixed_addresses) {
465		BUG();
466		return;
467	}
468	set_pte_vaddr(address, pte);
469	fixmaps_set++;
470}
471
472void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
473		       pgprot_t flags)
474{
475	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
476}
v4.10.11
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7#include <asm/mtrr.h>
  8
  9#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
 10
 11#ifdef CONFIG_HIGHPTE
 12#define PGALLOC_USER_GFP __GFP_HIGHMEM
 13#else
 14#define PGALLOC_USER_GFP 0
 15#endif
 16
 17gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 18
 19pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 20{
 21	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
 22}
 23
 24pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 25{
 26	struct page *pte;
 27
 28	pte = alloc_pages(__userpte_alloc_gfp, 0);
 29	if (!pte)
 30		return NULL;
 31	if (!pgtable_page_ctor(pte)) {
 32		__free_page(pte);
 33		return NULL;
 34	}
 35	return pte;
 36}
 37
 38static int __init setup_userpte(char *arg)
 39{
 40	if (!arg)
 41		return -EINVAL;
 42
 43	/*
 44	 * "userpte=nohigh" disables allocation of user pagetables in
 45	 * high memory.
 46	 */
 47	if (strcmp(arg, "nohigh") == 0)
 48		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 49	else
 50		return -EINVAL;
 51	return 0;
 52}
 53early_param("userpte", setup_userpte);
 54
 55void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 56{
 57	pgtable_page_dtor(pte);
 58	paravirt_release_pte(page_to_pfn(pte));
 59	tlb_remove_page(tlb, pte);
 60}
 61
 62#if CONFIG_PGTABLE_LEVELS > 2
 63void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 64{
 65	struct page *page = virt_to_page(pmd);
 66	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 67	/*
 68	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 69	 * entries need a full cr3 reload to flush.
 70	 */
 71#ifdef CONFIG_X86_PAE
 72	tlb->need_flush_all = 1;
 73#endif
 74	pgtable_pmd_page_dtor(page);
 75	tlb_remove_page(tlb, page);
 76}
 77
 78#if CONFIG_PGTABLE_LEVELS > 3
 79void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 80{
 81	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 82	tlb_remove_page(tlb, virt_to_page(pud));
 83}
 84#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 85#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 86
 87static inline void pgd_list_add(pgd_t *pgd)
 88{
 89	struct page *page = virt_to_page(pgd);
 90
 91	list_add(&page->lru, &pgd_list);
 92}
 93
 94static inline void pgd_list_del(pgd_t *pgd)
 95{
 96	struct page *page = virt_to_page(pgd);
 97
 98	list_del(&page->lru);
 99}
100
101#define UNSHARED_PTRS_PER_PGD				\
102	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
103
104
105static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106{
107	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108	virt_to_page(pgd)->index = (pgoff_t)mm;
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113	return (struct mm_struct *)page->index;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117{
118	/* If the pgd points to a shared pagetable level (either the
119	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120	   references from swapper_pg_dir. */
121	if (CONFIG_PGTABLE_LEVELS == 2 ||
122	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123	    CONFIG_PGTABLE_LEVELS == 4) {
124		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126				KERNEL_PGD_PTRS);
127	}
128
129	/* list required to sync kernel mapping updates */
130	if (!SHARED_KERNEL_PMD) {
131		pgd_set_mm(pgd, mm);
132		pgd_list_add(pgd);
133	}
134}
135
136static void pgd_dtor(pgd_t *pgd)
137{
138	if (SHARED_KERNEL_PMD)
139		return;
140
141	spin_lock(&pgd_lock);
142	pgd_list_del(pgd);
143	spin_unlock(&pgd_lock);
144}
145
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
155 */
156
157#ifdef CONFIG_X86_PAE
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update.  Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170
171void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172{
173	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174
175	/* Note: almost everything apart from _PAGE_PRESENT is
176	   reserved at the pmd (PDPT) level. */
177	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178
179	/*
180	 * According to Intel App note "TLBs, Paging-Structure Caches,
181	 * and Their Invalidation", April 2007, document 317080-001,
182	 * section 8.1: in PAE mode we explicitly have to flush the
183	 * TLB via cr3 if the top-level pgd is changed...
184	 */
185	flush_tlb_mm(mm);
186}
187#else  /* !CONFIG_X86_PAE */
188
189/* No need to prepopulate any pagetable entries in non-PAE modes. */
190#define PREALLOCATED_PMDS	0
191
192#endif	/* CONFIG_X86_PAE */
193
194static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195{
196	int i;
197
198	for(i = 0; i < PREALLOCATED_PMDS; i++)
199		if (pmds[i]) {
200			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201			free_page((unsigned long)pmds[i]);
202			mm_dec_nr_pmds(mm);
203		}
204}
205
206static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207{
208	int i;
209	bool failed = false;
210	gfp_t gfp = PGALLOC_GFP;
211
212	if (mm == &init_mm)
213		gfp &= ~__GFP_ACCOUNT;
214
215	for(i = 0; i < PREALLOCATED_PMDS; i++) {
216		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
217		if (!pmd)
218			failed = true;
219		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
220			free_page((unsigned long)pmd);
221			pmd = NULL;
222			failed = true;
223		}
224		if (pmd)
225			mm_inc_nr_pmds(mm);
226		pmds[i] = pmd;
227	}
228
229	if (failed) {
230		free_pmds(mm, pmds);
231		return -ENOMEM;
232	}
233
234	return 0;
235}
236
237/*
238 * Mop up any pmd pages which may still be attached to the pgd.
239 * Normally they will be freed by munmap/exit_mmap, but any pmd we
240 * preallocate which never got a corresponding vma will need to be
241 * freed manually.
242 */
243static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
244{
245	int i;
246
247	for(i = 0; i < PREALLOCATED_PMDS; i++) {
248		pgd_t pgd = pgdp[i];
249
250		if (pgd_val(pgd) != 0) {
251			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
252
253			pgdp[i] = native_make_pgd(0);
254
255			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
256			pmd_free(mm, pmd);
257			mm_dec_nr_pmds(mm);
258		}
259	}
260}
261
262static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
263{
264	pud_t *pud;
265	int i;
266
267	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
268		return;
269
270	pud = pud_offset(pgd, 0);
271
272	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
273		pmd_t *pmd = pmds[i];
274
275		if (i >= KERNEL_PGD_BOUNDARY)
276			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
277			       sizeof(pmd_t) * PTRS_PER_PMD);
278
279		pud_populate(mm, pud, pmd);
280	}
281}
282
283/*
284 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
285 * assumes that pgd should be in one page.
286 *
287 * But kernel with PAE paging that is not running as a Xen domain
288 * only needs to allocate 32 bytes for pgd instead of one page.
289 */
290#ifdef CONFIG_X86_PAE
291
292#include <linux/slab.h>
293
294#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
295#define PGD_ALIGN	32
296
297static struct kmem_cache *pgd_cache;
298
299static int __init pgd_cache_init(void)
300{
301	/*
302	 * When PAE kernel is running as a Xen domain, it does not use
303	 * shared kernel pmd. And this requires a whole page for pgd.
304	 */
305	if (!SHARED_KERNEL_PMD)
306		return 0;
307
308	/*
309	 * when PAE kernel is not running as a Xen domain, it uses
310	 * shared kernel pmd. Shared kernel pmd does not require a whole
311	 * page for pgd. We are able to just allocate a 32-byte for pgd.
312	 * During boot time, we create a 32-byte slab for pgd table allocation.
313	 */
314	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
315				      SLAB_PANIC, NULL);
316	if (!pgd_cache)
317		return -ENOMEM;
318
319	return 0;
320}
321core_initcall(pgd_cache_init);
322
323static inline pgd_t *_pgd_alloc(void)
324{
325	/*
326	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
327	 * We allocate one page for pgd.
328	 */
329	if (!SHARED_KERNEL_PMD)
330		return (pgd_t *)__get_free_page(PGALLOC_GFP);
331
332	/*
333	 * Now PAE kernel is not running as a Xen domain. We can allocate
334	 * a 32-byte slab for pgd to save memory space.
335	 */
336	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
337}
338
339static inline void _pgd_free(pgd_t *pgd)
340{
341	if (!SHARED_KERNEL_PMD)
342		free_page((unsigned long)pgd);
343	else
344		kmem_cache_free(pgd_cache, pgd);
345}
346#else
347static inline pgd_t *_pgd_alloc(void)
348{
349	return (pgd_t *)__get_free_page(PGALLOC_GFP);
350}
351
352static inline void _pgd_free(pgd_t *pgd)
353{
354	free_page((unsigned long)pgd);
355}
356#endif /* CONFIG_X86_PAE */
357
358pgd_t *pgd_alloc(struct mm_struct *mm)
359{
360	pgd_t *pgd;
361	pmd_t *pmds[PREALLOCATED_PMDS];
362
363	pgd = _pgd_alloc();
364
365	if (pgd == NULL)
366		goto out;
367
368	mm->pgd = pgd;
369
370	if (preallocate_pmds(mm, pmds) != 0)
371		goto out_free_pgd;
372
373	if (paravirt_pgd_alloc(mm) != 0)
374		goto out_free_pmds;
375
376	/*
377	 * Make sure that pre-populating the pmds is atomic with
378	 * respect to anything walking the pgd_list, so that they
379	 * never see a partially populated pgd.
380	 */
381	spin_lock(&pgd_lock);
382
383	pgd_ctor(mm, pgd);
384	pgd_prepopulate_pmd(mm, pgd, pmds);
385
386	spin_unlock(&pgd_lock);
387
388	return pgd;
389
390out_free_pmds:
391	free_pmds(mm, pmds);
392out_free_pgd:
393	_pgd_free(pgd);
394out:
395	return NULL;
396}
397
398void pgd_free(struct mm_struct *mm, pgd_t *pgd)
399{
400	pgd_mop_up_pmds(mm, pgd);
401	pgd_dtor(pgd);
402	paravirt_pgd_free(mm, pgd);
403	_pgd_free(pgd);
404}
405
406/*
407 * Used to set accessed or dirty bits in the page table entries
408 * on other architectures. On x86, the accessed and dirty bits
409 * are tracked by hardware. However, do_wp_page calls this function
410 * to also make the pte writeable at the same time the dirty bit is
411 * set. In that case we do actually need to write the PTE.
412 */
413int ptep_set_access_flags(struct vm_area_struct *vma,
414			  unsigned long address, pte_t *ptep,
415			  pte_t entry, int dirty)
416{
417	int changed = !pte_same(*ptep, entry);
418
419	if (changed && dirty) {
420		*ptep = entry;
421		pte_update(vma->vm_mm, address, ptep);
422	}
423
424	return changed;
425}
426
427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
428int pmdp_set_access_flags(struct vm_area_struct *vma,
429			  unsigned long address, pmd_t *pmdp,
430			  pmd_t entry, int dirty)
431{
432	int changed = !pmd_same(*pmdp, entry);
433
434	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
435
436	if (changed && dirty) {
437		*pmdp = entry;
 
438		/*
439		 * We had a write-protection fault here and changed the pmd
440		 * to to more permissive. No need to flush the TLB for that,
441		 * #PF is architecturally guaranteed to do that and in the
442		 * worst-case we'll generate a spurious fault.
443		 */
444	}
445
446	return changed;
447}
448#endif
449
450int ptep_test_and_clear_young(struct vm_area_struct *vma,
451			      unsigned long addr, pte_t *ptep)
452{
453	int ret = 0;
454
455	if (pte_young(*ptep))
456		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
457					 (unsigned long *) &ptep->pte);
458
459	if (ret)
460		pte_update(vma->vm_mm, addr, ptep);
461
462	return ret;
463}
464
465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
466int pmdp_test_and_clear_young(struct vm_area_struct *vma,
467			      unsigned long addr, pmd_t *pmdp)
468{
469	int ret = 0;
470
471	if (pmd_young(*pmdp))
472		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
473					 (unsigned long *)pmdp);
474
 
 
 
475	return ret;
476}
477#endif
478
479int ptep_clear_flush_young(struct vm_area_struct *vma,
480			   unsigned long address, pte_t *ptep)
481{
482	/*
483	 * On x86 CPUs, clearing the accessed bit without a TLB flush
484	 * doesn't cause data corruption. [ It could cause incorrect
485	 * page aging and the (mistaken) reclaim of hot pages, but the
486	 * chance of that should be relatively low. ]
487	 *
488	 * So as a performance optimization don't flush the TLB when
489	 * clearing the accessed bit, it will eventually be flushed by
490	 * a context switch or a VM operation anyway. [ In the rare
491	 * event of it not getting flushed for a long time the delay
492	 * shouldn't really matter because there's no real memory
493	 * pressure for swapout to react to. ]
494	 */
495	return ptep_test_and_clear_young(vma, address, ptep);
496}
497
498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
499int pmdp_clear_flush_young(struct vm_area_struct *vma,
500			   unsigned long address, pmd_t *pmdp)
501{
502	int young;
503
504	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
505
506	young = pmdp_test_and_clear_young(vma, address, pmdp);
507	if (young)
508		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
509
510	return young;
511}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512#endif
513
514/**
515 * reserve_top_address - reserves a hole in the top of kernel address space
516 * @reserve - size of hole to reserve
517 *
518 * Can be used to relocate the fixmap area and poke a hole in the top
519 * of kernel address space to make room for a hypervisor.
520 */
521void __init reserve_top_address(unsigned long reserve)
522{
523#ifdef CONFIG_X86_32
524	BUG_ON(fixmaps_set > 0);
525	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
526	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
527	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
528#endif
529}
530
531int fixmaps_set;
532
533void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
534{
535	unsigned long address = __fix_to_virt(idx);
536
537	if (idx >= __end_of_fixed_addresses) {
538		BUG();
539		return;
540	}
541	set_pte_vaddr(address, pte);
542	fixmaps_set++;
543}
544
545void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
546		       pgprot_t flags)
547{
548	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
549}
550
551#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
552/**
553 * pud_set_huge - setup kernel PUD mapping
554 *
555 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
556 * function sets up a huge page only if any of the following conditions are met:
557 *
558 * - MTRRs are disabled, or
559 *
560 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
561 *
562 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
563 *   has no effect on the requested PAT memory type.
564 *
565 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
566 * page mapping attempt fails.
567 *
568 * Returns 1 on success and 0 on failure.
569 */
570int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
571{
572	u8 mtrr, uniform;
573
574	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
575	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
576	    (mtrr != MTRR_TYPE_WRBACK))
577		return 0;
578
579	prot = pgprot_4k_2_large(prot);
580
581	set_pte((pte_t *)pud, pfn_pte(
582		(u64)addr >> PAGE_SHIFT,
583		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
584
585	return 1;
586}
587
588/**
589 * pmd_set_huge - setup kernel PMD mapping
590 *
591 * See text over pud_set_huge() above.
592 *
593 * Returns 1 on success and 0 on failure.
594 */
595int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
596{
597	u8 mtrr, uniform;
598
599	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
600	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
601	    (mtrr != MTRR_TYPE_WRBACK)) {
602		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
603			     __func__, addr, addr + PMD_SIZE);
604		return 0;
605	}
606
607	prot = pgprot_4k_2_large(prot);
608
609	set_pte((pte_t *)pmd, pfn_pte(
610		(u64)addr >> PAGE_SHIFT,
611		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
612
613	return 1;
614}
615
616/**
617 * pud_clear_huge - clear kernel PUD mapping when it is set
618 *
619 * Returns 1 on success and 0 on failure (no PUD map is found).
620 */
621int pud_clear_huge(pud_t *pud)
622{
623	if (pud_large(*pud)) {
624		pud_clear(pud);
625		return 1;
626	}
627
628	return 0;
629}
630
631/**
632 * pmd_clear_huge - clear kernel PMD mapping when it is set
633 *
634 * Returns 1 on success and 0 on failure (no PMD map is found).
635 */
636int pmd_clear_huge(pmd_t *pmd)
637{
638	if (pmd_large(*pmd)) {
639		pmd_clear(pmd);
640		return 1;
641	}
642
643	return 0;
644}
645#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */