Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
 
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (!pte)
 29		return NULL;
 30	if (!pgtable_page_ctor(pte)) {
 31		__free_page(pte);
 32		return NULL;
 33	}
 34	return pte;
 35}
 36
 37static int __init setup_userpte(char *arg)
 38{
 39	if (!arg)
 40		return -EINVAL;
 41
 42	/*
 43	 * "userpte=nohigh" disables allocation of user pagetables in
 44	 * high memory.
 45	 */
 46	if (strcmp(arg, "nohigh") == 0)
 47		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 48	else
 49		return -EINVAL;
 50	return 0;
 51}
 52early_param("userpte", setup_userpte);
 53
 54void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 55{
 56	pgtable_page_dtor(pte);
 57	paravirt_release_pte(page_to_pfn(pte));
 58	tlb_remove_page(tlb, pte);
 59}
 60
 61#if PAGETABLE_LEVELS > 2
 62void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 63{
 64	struct page *page = virt_to_page(pmd);
 65	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 66	/*
 67	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 68	 * entries need a full cr3 reload to flush.
 69	 */
 70#ifdef CONFIG_X86_PAE
 71	tlb->need_flush_all = 1;
 72#endif
 73	pgtable_pmd_page_dtor(page);
 74	tlb_remove_page(tlb, page);
 75}
 76
 77#if PAGETABLE_LEVELS > 3
 78void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 79{
 80	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 81	tlb_remove_page(tlb, virt_to_page(pud));
 82}
 83#endif	/* PAGETABLE_LEVELS > 3 */
 84#endif	/* PAGETABLE_LEVELS > 2 */
 85
 86static inline void pgd_list_add(pgd_t *pgd)
 87{
 88	struct page *page = virt_to_page(pgd);
 89
 90	list_add(&page->lru, &pgd_list);
 91}
 92
 93static inline void pgd_list_del(pgd_t *pgd)
 94{
 95	struct page *page = virt_to_page(pgd);
 96
 97	list_del(&page->lru);
 98}
 99
100#define UNSHARED_PTRS_PER_PGD				\
101	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105{
106	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107	virt_to_page(pgd)->index = (pgoff_t)mm;
108}
109
110struct mm_struct *pgd_page_get_mm(struct page *page)
111{
112	return (struct mm_struct *)page->index;
113}
114
115static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116{
117	/* If the pgd points to a shared pagetable level (either the
118	   ptes in non-PAE, or shared PMD in PAE), then just copy the
119	   references from swapper_pg_dir. */
120	if (PAGETABLE_LEVELS == 2 ||
121	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122	    PAGETABLE_LEVELS == 4) {
123		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125				KERNEL_PGD_PTRS);
126	}
127
128	/* list required to sync kernel mapping updates */
129	if (!SHARED_KERNEL_PMD) {
130		pgd_set_mm(pgd, mm);
131		pgd_list_add(pgd);
132	}
133}
134
135static void pgd_dtor(pgd_t *pgd)
136{
137	if (SHARED_KERNEL_PMD)
138		return;
139
140	spin_lock(&pgd_lock);
141	pgd_list_del(pgd);
142	spin_unlock(&pgd_lock);
143}
144
145/*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156#ifdef CONFIG_X86_PAE
157/*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update.  Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
169
170void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171{
172	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174	/* Note: almost everything apart from _PAGE_PRESENT is
175	   reserved at the pmd (PDPT) level. */
176	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178	/*
179	 * According to Intel App note "TLBs, Paging-Structure Caches,
180	 * and Their Invalidation", April 2007, document 317080-001,
181	 * section 8.1: in PAE mode we explicitly have to flush the
182	 * TLB via cr3 if the top-level pgd is changed...
183	 */
184	flush_tlb_mm(mm);
185}
186#else  /* !CONFIG_X86_PAE */
187
188/* No need to prepopulate any pagetable entries in non-PAE modes. */
189#define PREALLOCATED_PMDS	0
190
191#endif	/* CONFIG_X86_PAE */
192
193static void free_pmds(pmd_t *pmds[])
194{
195	int i;
196
197	for(i = 0; i < PREALLOCATED_PMDS; i++)
198		if (pmds[i]) {
199			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200			free_page((unsigned long)pmds[i]);
 
201		}
202}
203
204static int preallocate_pmds(pmd_t *pmds[])
205{
206	int i;
207	bool failed = false;
208
209	for(i = 0; i < PREALLOCATED_PMDS; i++) {
210		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211		if (!pmd)
212			failed = true;
213		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214			free_page((unsigned long)pmd);
215			pmd = NULL;
216			failed = true;
217		}
 
 
218		pmds[i] = pmd;
219	}
220
221	if (failed) {
222		free_pmds(pmds);
223		return -ENOMEM;
224	}
225
226	return 0;
227}
228
229/*
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
233 * freed manually.
234 */
235static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236{
237	int i;
238
239	for(i = 0; i < PREALLOCATED_PMDS; i++) {
240		pgd_t pgd = pgdp[i];
241
242		if (pgd_val(pgd) != 0) {
243			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244
245			pgdp[i] = native_make_pgd(0);
246
247			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248			pmd_free(mm, pmd);
 
249		}
250	}
251}
252
253static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254{
255	pud_t *pud;
256	int i;
257
258	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259		return;
260
261	pud = pud_offset(pgd, 0);
262
263	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
264		pmd_t *pmd = pmds[i];
265
266		if (i >= KERNEL_PGD_BOUNDARY)
267			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268			       sizeof(pmd_t) * PTRS_PER_PMD);
269
270		pud_populate(mm, pud, pmd);
271	}
272}
273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276	pgd_t *pgd;
277	pmd_t *pmds[PREALLOCATED_PMDS];
278
279	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280
281	if (pgd == NULL)
282		goto out;
283
284	mm->pgd = pgd;
285
286	if (preallocate_pmds(pmds) != 0)
287		goto out_free_pgd;
288
289	if (paravirt_pgd_alloc(mm) != 0)
290		goto out_free_pmds;
291
292	/*
293	 * Make sure that pre-populating the pmds is atomic with
294	 * respect to anything walking the pgd_list, so that they
295	 * never see a partially populated pgd.
296	 */
297	spin_lock(&pgd_lock);
298
299	pgd_ctor(mm, pgd);
300	pgd_prepopulate_pmd(mm, pgd, pmds);
301
302	spin_unlock(&pgd_lock);
303
304	return pgd;
305
306out_free_pmds:
307	free_pmds(pmds);
308out_free_pgd:
309	free_page((unsigned long)pgd);
310out:
311	return NULL;
312}
313
314void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315{
316	pgd_mop_up_pmds(mm, pgd);
317	pgd_dtor(pgd);
318	paravirt_pgd_free(mm, pgd);
319	free_page((unsigned long)pgd);
320}
321
322/*
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
328 */
329int ptep_set_access_flags(struct vm_area_struct *vma,
330			  unsigned long address, pte_t *ptep,
331			  pte_t entry, int dirty)
332{
333	int changed = !pte_same(*ptep, entry);
334
335	if (changed && dirty) {
336		*ptep = entry;
337		pte_update_defer(vma->vm_mm, address, ptep);
338	}
339
340	return changed;
341}
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344int pmdp_set_access_flags(struct vm_area_struct *vma,
345			  unsigned long address, pmd_t *pmdp,
346			  pmd_t entry, int dirty)
347{
348	int changed = !pmd_same(*pmdp, entry);
349
350	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351
352	if (changed && dirty) {
353		*pmdp = entry;
354		pmd_update_defer(vma->vm_mm, address, pmdp);
355		/*
356		 * We had a write-protection fault here and changed the pmd
357		 * to to more permissive. No need to flush the TLB for that,
358		 * #PF is architecturally guaranteed to do that and in the
359		 * worst-case we'll generate a spurious fault.
360		 */
361	}
362
363	return changed;
364}
365#endif
366
367int ptep_test_and_clear_young(struct vm_area_struct *vma,
368			      unsigned long addr, pte_t *ptep)
369{
370	int ret = 0;
371
372	if (pte_young(*ptep))
373		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374					 (unsigned long *) &ptep->pte);
375
376	if (ret)
377		pte_update(vma->vm_mm, addr, ptep);
378
379	return ret;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384			      unsigned long addr, pmd_t *pmdp)
385{
386	int ret = 0;
387
388	if (pmd_young(*pmdp))
389		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390					 (unsigned long *)pmdp);
391
392	if (ret)
393		pmd_update(vma->vm_mm, addr, pmdp);
394
395	return ret;
396}
397#endif
398
399int ptep_clear_flush_young(struct vm_area_struct *vma,
400			   unsigned long address, pte_t *ptep)
401{
402	int young;
403
404	young = ptep_test_and_clear_young(vma, address, ptep);
405	if (young)
406		flush_tlb_page(vma, address);
407
408	return young;
 
 
 
 
 
 
 
409}
410
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
412int pmdp_clear_flush_young(struct vm_area_struct *vma,
413			   unsigned long address, pmd_t *pmdp)
414{
415	int young;
416
417	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
418
419	young = pmdp_test_and_clear_young(vma, address, pmdp);
420	if (young)
421		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
422
423	return young;
424}
425
426void pmdp_splitting_flush(struct vm_area_struct *vma,
427			  unsigned long address, pmd_t *pmdp)
428{
429	int set;
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
432				(unsigned long *)pmdp);
433	if (set) {
434		pmd_update(vma->vm_mm, address, pmdp);
435		/* need tlb flush only to serialize against gup-fast */
436		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
437	}
438}
439#endif
440
441/**
442 * reserve_top_address - reserves a hole in the top of kernel address space
443 * @reserve - size of hole to reserve
444 *
445 * Can be used to relocate the fixmap area and poke a hole in the top
446 * of kernel address space to make room for a hypervisor.
447 */
448void __init reserve_top_address(unsigned long reserve)
449{
450#ifdef CONFIG_X86_32
451	BUG_ON(fixmaps_set > 0);
452	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
453	       (int)-reserve);
454	__FIXADDR_TOP = -reserve - PAGE_SIZE;
455#endif
456}
457
458int fixmaps_set;
459
460void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
461{
462	unsigned long address = __fix_to_virt(idx);
463
464	if (idx >= __end_of_fixed_addresses) {
465		BUG();
466		return;
467	}
468	set_pte_vaddr(address, pte);
469	fixmaps_set++;
470}
471
472void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
473		       pgprot_t flags)
474{
475	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
476}
v4.6
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7#include <asm/mtrr.h>
  8
  9#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
 10
 11#ifdef CONFIG_HIGHPTE
 12#define PGALLOC_USER_GFP __GFP_HIGHMEM
 13#else
 14#define PGALLOC_USER_GFP 0
 15#endif
 16
 17gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 18
 19pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 20{
 21	return (pte_t *)__get_free_page(PGALLOC_GFP);
 22}
 23
 24pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 25{
 26	struct page *pte;
 27
 28	pte = alloc_pages(__userpte_alloc_gfp, 0);
 29	if (!pte)
 30		return NULL;
 31	if (!pgtable_page_ctor(pte)) {
 32		__free_page(pte);
 33		return NULL;
 34	}
 35	return pte;
 36}
 37
 38static int __init setup_userpte(char *arg)
 39{
 40	if (!arg)
 41		return -EINVAL;
 42
 43	/*
 44	 * "userpte=nohigh" disables allocation of user pagetables in
 45	 * high memory.
 46	 */
 47	if (strcmp(arg, "nohigh") == 0)
 48		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 49	else
 50		return -EINVAL;
 51	return 0;
 52}
 53early_param("userpte", setup_userpte);
 54
 55void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 56{
 57	pgtable_page_dtor(pte);
 58	paravirt_release_pte(page_to_pfn(pte));
 59	tlb_remove_page(tlb, pte);
 60}
 61
 62#if CONFIG_PGTABLE_LEVELS > 2
 63void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 64{
 65	struct page *page = virt_to_page(pmd);
 66	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 67	/*
 68	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 69	 * entries need a full cr3 reload to flush.
 70	 */
 71#ifdef CONFIG_X86_PAE
 72	tlb->need_flush_all = 1;
 73#endif
 74	pgtable_pmd_page_dtor(page);
 75	tlb_remove_page(tlb, page);
 76}
 77
 78#if CONFIG_PGTABLE_LEVELS > 3
 79void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 80{
 81	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 82	tlb_remove_page(tlb, virt_to_page(pud));
 83}
 84#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 85#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 86
 87static inline void pgd_list_add(pgd_t *pgd)
 88{
 89	struct page *page = virt_to_page(pgd);
 90
 91	list_add(&page->lru, &pgd_list);
 92}
 93
 94static inline void pgd_list_del(pgd_t *pgd)
 95{
 96	struct page *page = virt_to_page(pgd);
 97
 98	list_del(&page->lru);
 99}
100
101#define UNSHARED_PTRS_PER_PGD				\
102	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
103
104
105static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106{
107	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108	virt_to_page(pgd)->index = (pgoff_t)mm;
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113	return (struct mm_struct *)page->index;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117{
118	/* If the pgd points to a shared pagetable level (either the
119	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120	   references from swapper_pg_dir. */
121	if (CONFIG_PGTABLE_LEVELS == 2 ||
122	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123	    CONFIG_PGTABLE_LEVELS == 4) {
124		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126				KERNEL_PGD_PTRS);
127	}
128
129	/* list required to sync kernel mapping updates */
130	if (!SHARED_KERNEL_PMD) {
131		pgd_set_mm(pgd, mm);
132		pgd_list_add(pgd);
133	}
134}
135
136static void pgd_dtor(pgd_t *pgd)
137{
138	if (SHARED_KERNEL_PMD)
139		return;
140
141	spin_lock(&pgd_lock);
142	pgd_list_del(pgd);
143	spin_unlock(&pgd_lock);
144}
145
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
155 */
156
157#ifdef CONFIG_X86_PAE
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update.  Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170
171void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172{
173	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174
175	/* Note: almost everything apart from _PAGE_PRESENT is
176	   reserved at the pmd (PDPT) level. */
177	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178
179	/*
180	 * According to Intel App note "TLBs, Paging-Structure Caches,
181	 * and Their Invalidation", April 2007, document 317080-001,
182	 * section 8.1: in PAE mode we explicitly have to flush the
183	 * TLB via cr3 if the top-level pgd is changed...
184	 */
185	flush_tlb_mm(mm);
186}
187#else  /* !CONFIG_X86_PAE */
188
189/* No need to prepopulate any pagetable entries in non-PAE modes. */
190#define PREALLOCATED_PMDS	0
191
192#endif	/* CONFIG_X86_PAE */
193
194static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195{
196	int i;
197
198	for(i = 0; i < PREALLOCATED_PMDS; i++)
199		if (pmds[i]) {
200			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201			free_page((unsigned long)pmds[i]);
202			mm_dec_nr_pmds(mm);
203		}
204}
205
206static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207{
208	int i;
209	bool failed = false;
210
211	for(i = 0; i < PREALLOCATED_PMDS; i++) {
212		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
213		if (!pmd)
214			failed = true;
215		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
216			free_page((unsigned long)pmd);
217			pmd = NULL;
218			failed = true;
219		}
220		if (pmd)
221			mm_inc_nr_pmds(mm);
222		pmds[i] = pmd;
223	}
224
225	if (failed) {
226		free_pmds(mm, pmds);
227		return -ENOMEM;
228	}
229
230	return 0;
231}
232
233/*
234 * Mop up any pmd pages which may still be attached to the pgd.
235 * Normally they will be freed by munmap/exit_mmap, but any pmd we
236 * preallocate which never got a corresponding vma will need to be
237 * freed manually.
238 */
239static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
240{
241	int i;
242
243	for(i = 0; i < PREALLOCATED_PMDS; i++) {
244		pgd_t pgd = pgdp[i];
245
246		if (pgd_val(pgd) != 0) {
247			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
248
249			pgdp[i] = native_make_pgd(0);
250
251			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
252			pmd_free(mm, pmd);
253			mm_dec_nr_pmds(mm);
254		}
255	}
256}
257
258static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
259{
260	pud_t *pud;
261	int i;
262
263	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
264		return;
265
266	pud = pud_offset(pgd, 0);
267
268	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
269		pmd_t *pmd = pmds[i];
270
271		if (i >= KERNEL_PGD_BOUNDARY)
272			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
273			       sizeof(pmd_t) * PTRS_PER_PMD);
274
275		pud_populate(mm, pud, pmd);
276	}
277}
278
279/*
280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
281 * assumes that pgd should be in one page.
282 *
283 * But kernel with PAE paging that is not running as a Xen domain
284 * only needs to allocate 32 bytes for pgd instead of one page.
285 */
286#ifdef CONFIG_X86_PAE
287
288#include <linux/slab.h>
289
290#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
291#define PGD_ALIGN	32
292
293static struct kmem_cache *pgd_cache;
294
295static int __init pgd_cache_init(void)
296{
297	/*
298	 * When PAE kernel is running as a Xen domain, it does not use
299	 * shared kernel pmd. And this requires a whole page for pgd.
300	 */
301	if (!SHARED_KERNEL_PMD)
302		return 0;
303
304	/*
305	 * when PAE kernel is not running as a Xen domain, it uses
306	 * shared kernel pmd. Shared kernel pmd does not require a whole
307	 * page for pgd. We are able to just allocate a 32-byte for pgd.
308	 * During boot time, we create a 32-byte slab for pgd table allocation.
309	 */
310	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
311				      SLAB_PANIC, NULL);
312	if (!pgd_cache)
313		return -ENOMEM;
314
315	return 0;
316}
317core_initcall(pgd_cache_init);
318
319static inline pgd_t *_pgd_alloc(void)
320{
321	/*
322	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
323	 * We allocate one page for pgd.
324	 */
325	if (!SHARED_KERNEL_PMD)
326		return (pgd_t *)__get_free_page(PGALLOC_GFP);
327
328	/*
329	 * Now PAE kernel is not running as a Xen domain. We can allocate
330	 * a 32-byte slab for pgd to save memory space.
331	 */
332	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
333}
334
335static inline void _pgd_free(pgd_t *pgd)
336{
337	if (!SHARED_KERNEL_PMD)
338		free_page((unsigned long)pgd);
339	else
340		kmem_cache_free(pgd_cache, pgd);
341}
342#else
343static inline pgd_t *_pgd_alloc(void)
344{
345	return (pgd_t *)__get_free_page(PGALLOC_GFP);
346}
347
348static inline void _pgd_free(pgd_t *pgd)
349{
350	free_page((unsigned long)pgd);
351}
352#endif /* CONFIG_X86_PAE */
353
354pgd_t *pgd_alloc(struct mm_struct *mm)
355{
356	pgd_t *pgd;
357	pmd_t *pmds[PREALLOCATED_PMDS];
358
359	pgd = _pgd_alloc();
360
361	if (pgd == NULL)
362		goto out;
363
364	mm->pgd = pgd;
365
366	if (preallocate_pmds(mm, pmds) != 0)
367		goto out_free_pgd;
368
369	if (paravirt_pgd_alloc(mm) != 0)
370		goto out_free_pmds;
371
372	/*
373	 * Make sure that pre-populating the pmds is atomic with
374	 * respect to anything walking the pgd_list, so that they
375	 * never see a partially populated pgd.
376	 */
377	spin_lock(&pgd_lock);
378
379	pgd_ctor(mm, pgd);
380	pgd_prepopulate_pmd(mm, pgd, pmds);
381
382	spin_unlock(&pgd_lock);
383
384	return pgd;
385
386out_free_pmds:
387	free_pmds(mm, pmds);
388out_free_pgd:
389	_pgd_free(pgd);
390out:
391	return NULL;
392}
393
394void pgd_free(struct mm_struct *mm, pgd_t *pgd)
395{
396	pgd_mop_up_pmds(mm, pgd);
397	pgd_dtor(pgd);
398	paravirt_pgd_free(mm, pgd);
399	_pgd_free(pgd);
400}
401
402/*
403 * Used to set accessed or dirty bits in the page table entries
404 * on other architectures. On x86, the accessed and dirty bits
405 * are tracked by hardware. However, do_wp_page calls this function
406 * to also make the pte writeable at the same time the dirty bit is
407 * set. In that case we do actually need to write the PTE.
408 */
409int ptep_set_access_flags(struct vm_area_struct *vma,
410			  unsigned long address, pte_t *ptep,
411			  pte_t entry, int dirty)
412{
413	int changed = !pte_same(*ptep, entry);
414
415	if (changed && dirty) {
416		*ptep = entry;
417		pte_update(vma->vm_mm, address, ptep);
418	}
419
420	return changed;
421}
422
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424int pmdp_set_access_flags(struct vm_area_struct *vma,
425			  unsigned long address, pmd_t *pmdp,
426			  pmd_t entry, int dirty)
427{
428	int changed = !pmd_same(*pmdp, entry);
429
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431
432	if (changed && dirty) {
433		*pmdp = entry;
 
434		/*
435		 * We had a write-protection fault here and changed the pmd
436		 * to to more permissive. No need to flush the TLB for that,
437		 * #PF is architecturally guaranteed to do that and in the
438		 * worst-case we'll generate a spurious fault.
439		 */
440	}
441
442	return changed;
443}
444#endif
445
446int ptep_test_and_clear_young(struct vm_area_struct *vma,
447			      unsigned long addr, pte_t *ptep)
448{
449	int ret = 0;
450
451	if (pte_young(*ptep))
452		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
453					 (unsigned long *) &ptep->pte);
454
455	if (ret)
456		pte_update(vma->vm_mm, addr, ptep);
457
458	return ret;
459}
460
461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
462int pmdp_test_and_clear_young(struct vm_area_struct *vma,
463			      unsigned long addr, pmd_t *pmdp)
464{
465	int ret = 0;
466
467	if (pmd_young(*pmdp))
468		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
469					 (unsigned long *)pmdp);
470
 
 
 
471	return ret;
472}
473#endif
474
475int ptep_clear_flush_young(struct vm_area_struct *vma,
476			   unsigned long address, pte_t *ptep)
477{
478	/*
479	 * On x86 CPUs, clearing the accessed bit without a TLB flush
480	 * doesn't cause data corruption. [ It could cause incorrect
481	 * page aging and the (mistaken) reclaim of hot pages, but the
482	 * chance of that should be relatively low. ]
483	 *
484	 * So as a performance optimization don't flush the TLB when
485	 * clearing the accessed bit, it will eventually be flushed by
486	 * a context switch or a VM operation anyway. [ In the rare
487	 * event of it not getting flushed for a long time the delay
488	 * shouldn't really matter because there's no real memory
489	 * pressure for swapout to react to. ]
490	 */
491	return ptep_test_and_clear_young(vma, address, ptep);
492}
493
494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
495int pmdp_clear_flush_young(struct vm_area_struct *vma,
496			   unsigned long address, pmd_t *pmdp)
497{
498	int young;
499
500	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
501
502	young = pmdp_test_and_clear_young(vma, address, pmdp);
503	if (young)
504		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
505
506	return young;
507}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508#endif
509
510/**
511 * reserve_top_address - reserves a hole in the top of kernel address space
512 * @reserve - size of hole to reserve
513 *
514 * Can be used to relocate the fixmap area and poke a hole in the top
515 * of kernel address space to make room for a hypervisor.
516 */
517void __init reserve_top_address(unsigned long reserve)
518{
519#ifdef CONFIG_X86_32
520	BUG_ON(fixmaps_set > 0);
521	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
522	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
523	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
524#endif
525}
526
527int fixmaps_set;
528
529void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
530{
531	unsigned long address = __fix_to_virt(idx);
532
533	if (idx >= __end_of_fixed_addresses) {
534		BUG();
535		return;
536	}
537	set_pte_vaddr(address, pte);
538	fixmaps_set++;
539}
540
541void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
542		       pgprot_t flags)
543{
544	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
545}
546
547#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
548/**
549 * pud_set_huge - setup kernel PUD mapping
550 *
551 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
552 * function sets up a huge page only if any of the following conditions are met:
553 *
554 * - MTRRs are disabled, or
555 *
556 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
557 *
558 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
559 *   has no effect on the requested PAT memory type.
560 *
561 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
562 * page mapping attempt fails.
563 *
564 * Returns 1 on success and 0 on failure.
565 */
566int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
567{
568	u8 mtrr, uniform;
569
570	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
571	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
572	    (mtrr != MTRR_TYPE_WRBACK))
573		return 0;
574
575	prot = pgprot_4k_2_large(prot);
576
577	set_pte((pte_t *)pud, pfn_pte(
578		(u64)addr >> PAGE_SHIFT,
579		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
580
581	return 1;
582}
583
584/**
585 * pmd_set_huge - setup kernel PMD mapping
586 *
587 * See text over pud_set_huge() above.
588 *
589 * Returns 1 on success and 0 on failure.
590 */
591int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
592{
593	u8 mtrr, uniform;
594
595	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
596	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
597	    (mtrr != MTRR_TYPE_WRBACK)) {
598		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
599			     __func__, addr, addr + PMD_SIZE);
600		return 0;
601	}
602
603	prot = pgprot_4k_2_large(prot);
604
605	set_pte((pte_t *)pmd, pfn_pte(
606		(u64)addr >> PAGE_SHIFT,
607		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
608
609	return 1;
610}
611
612/**
613 * pud_clear_huge - clear kernel PUD mapping when it is set
614 *
615 * Returns 1 on success and 0 on failure (no PUD map is found).
616 */
617int pud_clear_huge(pud_t *pud)
618{
619	if (pud_large(*pud)) {
620		pud_clear(pud);
621		return 1;
622	}
623
624	return 0;
625}
626
627/**
628 * pmd_clear_huge - clear kernel PMD mapping when it is set
629 *
630 * Returns 1 on success and 0 on failure (no PMD map is found).
631 */
632int pmd_clear_huge(pmd_t *pmd)
633{
634	if (pmd_large(*pmd)) {
635		pmd_clear(pmd);
636		return 1;
637	}
638
639	return 0;
640}
641#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */