Loading...
1#include <linux/mm.h>
2#include <linux/gfp.h>
3#include <asm/pgalloc.h>
4#include <asm/pgtable.h>
5#include <asm/tlb.h>
6#include <asm/fixmap.h>
7
8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10#ifdef CONFIG_HIGHPTE
11#define PGALLOC_USER_GFP __GFP_HIGHMEM
12#else
13#define PGALLOC_USER_GFP 0
14#endif
15
16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19{
20 return (pte_t *)__get_free_page(PGALLOC_GFP);
21}
22
23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24{
25 struct page *pte;
26
27 pte = alloc_pages(__userpte_alloc_gfp, 0);
28 if (!pte)
29 return NULL;
30 if (!pgtable_page_ctor(pte)) {
31 __free_page(pte);
32 return NULL;
33 }
34 return pte;
35}
36
37static int __init setup_userpte(char *arg)
38{
39 if (!arg)
40 return -EINVAL;
41
42 /*
43 * "userpte=nohigh" disables allocation of user pagetables in
44 * high memory.
45 */
46 if (strcmp(arg, "nohigh") == 0)
47 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 else
49 return -EINVAL;
50 return 0;
51}
52early_param("userpte", setup_userpte);
53
54void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55{
56 pgtable_page_dtor(pte);
57 paravirt_release_pte(page_to_pfn(pte));
58 tlb_remove_page(tlb, pte);
59}
60
61#if PAGETABLE_LEVELS > 2
62void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63{
64 struct page *page = virt_to_page(pmd);
65 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 /*
67 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 * entries need a full cr3 reload to flush.
69 */
70#ifdef CONFIG_X86_PAE
71 tlb->need_flush_all = 1;
72#endif
73 pgtable_pmd_page_dtor(page);
74 tlb_remove_page(tlb, page);
75}
76
77#if PAGETABLE_LEVELS > 3
78void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79{
80 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 tlb_remove_page(tlb, virt_to_page(pud));
82}
83#endif /* PAGETABLE_LEVELS > 3 */
84#endif /* PAGETABLE_LEVELS > 2 */
85
86static inline void pgd_list_add(pgd_t *pgd)
87{
88 struct page *page = virt_to_page(pgd);
89
90 list_add(&page->lru, &pgd_list);
91}
92
93static inline void pgd_list_del(pgd_t *pgd)
94{
95 struct page *page = virt_to_page(pgd);
96
97 list_del(&page->lru);
98}
99
100#define UNSHARED_PTRS_PER_PGD \
101 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105{
106 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107 virt_to_page(pgd)->index = (pgoff_t)mm;
108}
109
110struct mm_struct *pgd_page_get_mm(struct page *page)
111{
112 return (struct mm_struct *)page->index;
113}
114
115static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116{
117 /* If the pgd points to a shared pagetable level (either the
118 ptes in non-PAE, or shared PMD in PAE), then just copy the
119 references from swapper_pg_dir. */
120 if (PAGETABLE_LEVELS == 2 ||
121 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122 PAGETABLE_LEVELS == 4) {
123 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 KERNEL_PGD_PTRS);
126 }
127
128 /* list required to sync kernel mapping updates */
129 if (!SHARED_KERNEL_PMD) {
130 pgd_set_mm(pgd, mm);
131 pgd_list_add(pgd);
132 }
133}
134
135static void pgd_dtor(pgd_t *pgd)
136{
137 if (SHARED_KERNEL_PMD)
138 return;
139
140 spin_lock(&pgd_lock);
141 pgd_list_del(pgd);
142 spin_unlock(&pgd_lock);
143}
144
145/*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156#ifdef CONFIG_X86_PAE
157/*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update. Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
169
170void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171{
172 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174 /* Note: almost everything apart from _PAGE_PRESENT is
175 reserved at the pmd (PDPT) level. */
176 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178 /*
179 * According to Intel App note "TLBs, Paging-Structure Caches,
180 * and Their Invalidation", April 2007, document 317080-001,
181 * section 8.1: in PAE mode we explicitly have to flush the
182 * TLB via cr3 if the top-level pgd is changed...
183 */
184 flush_tlb_mm(mm);
185}
186#else /* !CONFIG_X86_PAE */
187
188/* No need to prepopulate any pagetable entries in non-PAE modes. */
189#define PREALLOCATED_PMDS 0
190
191#endif /* CONFIG_X86_PAE */
192
193static void free_pmds(pmd_t *pmds[])
194{
195 int i;
196
197 for(i = 0; i < PREALLOCATED_PMDS; i++)
198 if (pmds[i]) {
199 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200 free_page((unsigned long)pmds[i]);
201 }
202}
203
204static int preallocate_pmds(pmd_t *pmds[])
205{
206 int i;
207 bool failed = false;
208
209 for(i = 0; i < PREALLOCATED_PMDS; i++) {
210 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211 if (!pmd)
212 failed = true;
213 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214 free_page((unsigned long)pmd);
215 pmd = NULL;
216 failed = true;
217 }
218 pmds[i] = pmd;
219 }
220
221 if (failed) {
222 free_pmds(pmds);
223 return -ENOMEM;
224 }
225
226 return 0;
227}
228
229/*
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
233 * freed manually.
234 */
235static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236{
237 int i;
238
239 for(i = 0; i < PREALLOCATED_PMDS; i++) {
240 pgd_t pgd = pgdp[i];
241
242 if (pgd_val(pgd) != 0) {
243 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244
245 pgdp[i] = native_make_pgd(0);
246
247 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248 pmd_free(mm, pmd);
249 }
250 }
251}
252
253static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254{
255 pud_t *pud;
256 int i;
257
258 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259 return;
260
261 pud = pud_offset(pgd, 0);
262
263 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
264 pmd_t *pmd = pmds[i];
265
266 if (i >= KERNEL_PGD_BOUNDARY)
267 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268 sizeof(pmd_t) * PTRS_PER_PMD);
269
270 pud_populate(mm, pud, pmd);
271 }
272}
273
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276 pgd_t *pgd;
277 pmd_t *pmds[PREALLOCATED_PMDS];
278
279 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280
281 if (pgd == NULL)
282 goto out;
283
284 mm->pgd = pgd;
285
286 if (preallocate_pmds(pmds) != 0)
287 goto out_free_pgd;
288
289 if (paravirt_pgd_alloc(mm) != 0)
290 goto out_free_pmds;
291
292 /*
293 * Make sure that pre-populating the pmds is atomic with
294 * respect to anything walking the pgd_list, so that they
295 * never see a partially populated pgd.
296 */
297 spin_lock(&pgd_lock);
298
299 pgd_ctor(mm, pgd);
300 pgd_prepopulate_pmd(mm, pgd, pmds);
301
302 spin_unlock(&pgd_lock);
303
304 return pgd;
305
306out_free_pmds:
307 free_pmds(pmds);
308out_free_pgd:
309 free_page((unsigned long)pgd);
310out:
311 return NULL;
312}
313
314void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315{
316 pgd_mop_up_pmds(mm, pgd);
317 pgd_dtor(pgd);
318 paravirt_pgd_free(mm, pgd);
319 free_page((unsigned long)pgd);
320}
321
322/*
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
328 */
329int ptep_set_access_flags(struct vm_area_struct *vma,
330 unsigned long address, pte_t *ptep,
331 pte_t entry, int dirty)
332{
333 int changed = !pte_same(*ptep, entry);
334
335 if (changed && dirty) {
336 *ptep = entry;
337 pte_update_defer(vma->vm_mm, address, ptep);
338 }
339
340 return changed;
341}
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344int pmdp_set_access_flags(struct vm_area_struct *vma,
345 unsigned long address, pmd_t *pmdp,
346 pmd_t entry, int dirty)
347{
348 int changed = !pmd_same(*pmdp, entry);
349
350 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351
352 if (changed && dirty) {
353 *pmdp = entry;
354 pmd_update_defer(vma->vm_mm, address, pmdp);
355 /*
356 * We had a write-protection fault here and changed the pmd
357 * to to more permissive. No need to flush the TLB for that,
358 * #PF is architecturally guaranteed to do that and in the
359 * worst-case we'll generate a spurious fault.
360 */
361 }
362
363 return changed;
364}
365#endif
366
367int ptep_test_and_clear_young(struct vm_area_struct *vma,
368 unsigned long addr, pte_t *ptep)
369{
370 int ret = 0;
371
372 if (pte_young(*ptep))
373 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374 (unsigned long *) &ptep->pte);
375
376 if (ret)
377 pte_update(vma->vm_mm, addr, ptep);
378
379 return ret;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384 unsigned long addr, pmd_t *pmdp)
385{
386 int ret = 0;
387
388 if (pmd_young(*pmdp))
389 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390 (unsigned long *)pmdp);
391
392 if (ret)
393 pmd_update(vma->vm_mm, addr, pmdp);
394
395 return ret;
396}
397#endif
398
399int ptep_clear_flush_young(struct vm_area_struct *vma,
400 unsigned long address, pte_t *ptep)
401{
402 int young;
403
404 young = ptep_test_and_clear_young(vma, address, ptep);
405 if (young)
406 flush_tlb_page(vma, address);
407
408 return young;
409}
410
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
412int pmdp_clear_flush_young(struct vm_area_struct *vma,
413 unsigned long address, pmd_t *pmdp)
414{
415 int young;
416
417 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
418
419 young = pmdp_test_and_clear_young(vma, address, pmdp);
420 if (young)
421 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
422
423 return young;
424}
425
426void pmdp_splitting_flush(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428{
429 int set;
430 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
432 (unsigned long *)pmdp);
433 if (set) {
434 pmd_update(vma->vm_mm, address, pmdp);
435 /* need tlb flush only to serialize against gup-fast */
436 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
437 }
438}
439#endif
440
441/**
442 * reserve_top_address - reserves a hole in the top of kernel address space
443 * @reserve - size of hole to reserve
444 *
445 * Can be used to relocate the fixmap area and poke a hole in the top
446 * of kernel address space to make room for a hypervisor.
447 */
448void __init reserve_top_address(unsigned long reserve)
449{
450#ifdef CONFIG_X86_32
451 BUG_ON(fixmaps_set > 0);
452 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
453 (int)-reserve);
454 __FIXADDR_TOP = -reserve - PAGE_SIZE;
455#endif
456}
457
458int fixmaps_set;
459
460void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
461{
462 unsigned long address = __fix_to_virt(idx);
463
464 if (idx >= __end_of_fixed_addresses) {
465 BUG();
466 return;
467 }
468 set_pte_vaddr(address, pte);
469 fixmaps_set++;
470}
471
472void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
473 pgprot_t flags)
474{
475 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
476}
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/mm.h>
3#include <linux/gfp.h>
4#include <linux/hugetlb.h>
5#include <asm/pgalloc.h>
6#include <asm/pgtable.h>
7#include <asm/tlb.h>
8#include <asm/fixmap.h>
9#include <asm/mtrr.h>
10
11#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
12
13#ifdef CONFIG_HIGHPTE
14#define PGALLOC_USER_GFP __GFP_HIGHMEM
15#else
16#define PGALLOC_USER_GFP 0
17#endif
18
19gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
20
21pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
22{
23 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
24}
25
26pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
27{
28 struct page *pte;
29
30 pte = alloc_pages(__userpte_alloc_gfp, 0);
31 if (!pte)
32 return NULL;
33 if (!pgtable_page_ctor(pte)) {
34 __free_page(pte);
35 return NULL;
36 }
37 return pte;
38}
39
40static int __init setup_userpte(char *arg)
41{
42 if (!arg)
43 return -EINVAL;
44
45 /*
46 * "userpte=nohigh" disables allocation of user pagetables in
47 * high memory.
48 */
49 if (strcmp(arg, "nohigh") == 0)
50 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
51 else
52 return -EINVAL;
53 return 0;
54}
55early_param("userpte", setup_userpte);
56
57void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
58{
59 pgtable_page_dtor(pte);
60 paravirt_release_pte(page_to_pfn(pte));
61 tlb_remove_table(tlb, pte);
62}
63
64#if CONFIG_PGTABLE_LEVELS > 2
65void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
66{
67 struct page *page = virt_to_page(pmd);
68 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
69 /*
70 * NOTE! For PAE, any changes to the top page-directory-pointer-table
71 * entries need a full cr3 reload to flush.
72 */
73#ifdef CONFIG_X86_PAE
74 tlb->need_flush_all = 1;
75#endif
76 pgtable_pmd_page_dtor(page);
77 tlb_remove_table(tlb, page);
78}
79
80#if CONFIG_PGTABLE_LEVELS > 3
81void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
82{
83 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
84 tlb_remove_table(tlb, virt_to_page(pud));
85}
86
87#if CONFIG_PGTABLE_LEVELS > 4
88void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
89{
90 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
91 tlb_remove_table(tlb, virt_to_page(p4d));
92}
93#endif /* CONFIG_PGTABLE_LEVELS > 4 */
94#endif /* CONFIG_PGTABLE_LEVELS > 3 */
95#endif /* CONFIG_PGTABLE_LEVELS > 2 */
96
97static inline void pgd_list_add(pgd_t *pgd)
98{
99 struct page *page = virt_to_page(pgd);
100
101 list_add(&page->lru, &pgd_list);
102}
103
104static inline void pgd_list_del(pgd_t *pgd)
105{
106 struct page *page = virt_to_page(pgd);
107
108 list_del(&page->lru);
109}
110
111#define UNSHARED_PTRS_PER_PGD \
112 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
113
114
115static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
116{
117 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
118 virt_to_page(pgd)->index = (pgoff_t)mm;
119}
120
121struct mm_struct *pgd_page_get_mm(struct page *page)
122{
123 return (struct mm_struct *)page->index;
124}
125
126static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127{
128 /* If the pgd points to a shared pagetable level (either the
129 ptes in non-PAE, or shared PMD in PAE), then just copy the
130 references from swapper_pg_dir. */
131 if (CONFIG_PGTABLE_LEVELS == 2 ||
132 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 CONFIG_PGTABLE_LEVELS >= 4) {
134 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 KERNEL_PGD_PTRS);
137 }
138
139 /* list required to sync kernel mapping updates */
140 if (!SHARED_KERNEL_PMD) {
141 pgd_set_mm(pgd, mm);
142 pgd_list_add(pgd);
143 }
144}
145
146static void pgd_dtor(pgd_t *pgd)
147{
148 if (SHARED_KERNEL_PMD)
149 return;
150
151 spin_lock(&pgd_lock);
152 pgd_list_del(pgd);
153 spin_unlock(&pgd_lock);
154}
155
156/*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167#ifdef CONFIG_X86_PAE
168/*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update. Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
180
181void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182{
183 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184
185 /* Note: almost everything apart from _PAGE_PRESENT is
186 reserved at the pmd (PDPT) level. */
187 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188
189 /*
190 * According to Intel App note "TLBs, Paging-Structure Caches,
191 * and Their Invalidation", April 2007, document 317080-001,
192 * section 8.1: in PAE mode we explicitly have to flush the
193 * TLB via cr3 if the top-level pgd is changed...
194 */
195 flush_tlb_mm(mm);
196}
197#else /* !CONFIG_X86_PAE */
198
199/* No need to prepopulate any pagetable entries in non-PAE modes. */
200#define PREALLOCATED_PMDS 0
201
202#endif /* CONFIG_X86_PAE */
203
204static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
205{
206 int i;
207
208 for(i = 0; i < PREALLOCATED_PMDS; i++)
209 if (pmds[i]) {
210 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
211 free_page((unsigned long)pmds[i]);
212 mm_dec_nr_pmds(mm);
213 }
214}
215
216static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
217{
218 int i;
219 bool failed = false;
220 gfp_t gfp = PGALLOC_GFP;
221
222 if (mm == &init_mm)
223 gfp &= ~__GFP_ACCOUNT;
224
225 for(i = 0; i < PREALLOCATED_PMDS; i++) {
226 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
227 if (!pmd)
228 failed = true;
229 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
230 free_page((unsigned long)pmd);
231 pmd = NULL;
232 failed = true;
233 }
234 if (pmd)
235 mm_inc_nr_pmds(mm);
236 pmds[i] = pmd;
237 }
238
239 if (failed) {
240 free_pmds(mm, pmds);
241 return -ENOMEM;
242 }
243
244 return 0;
245}
246
247/*
248 * Mop up any pmd pages which may still be attached to the pgd.
249 * Normally they will be freed by munmap/exit_mmap, but any pmd we
250 * preallocate which never got a corresponding vma will need to be
251 * freed manually.
252 */
253static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
254{
255 int i;
256
257 for(i = 0; i < PREALLOCATED_PMDS; i++) {
258 pgd_t pgd = pgdp[i];
259
260 if (pgd_val(pgd) != 0) {
261 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
262
263 pgdp[i] = native_make_pgd(0);
264
265 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
266 pmd_free(mm, pmd);
267 mm_dec_nr_pmds(mm);
268 }
269 }
270}
271
272static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
273{
274 p4d_t *p4d;
275 pud_t *pud;
276 int i;
277
278 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
279 return;
280
281 p4d = p4d_offset(pgd, 0);
282 pud = pud_offset(p4d, 0);
283
284 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
285 pmd_t *pmd = pmds[i];
286
287 if (i >= KERNEL_PGD_BOUNDARY)
288 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
289 sizeof(pmd_t) * PTRS_PER_PMD);
290
291 pud_populate(mm, pud, pmd);
292 }
293}
294
295/*
296 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
297 * assumes that pgd should be in one page.
298 *
299 * But kernel with PAE paging that is not running as a Xen domain
300 * only needs to allocate 32 bytes for pgd instead of one page.
301 */
302#ifdef CONFIG_X86_PAE
303
304#include <linux/slab.h>
305
306#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
307#define PGD_ALIGN 32
308
309static struct kmem_cache *pgd_cache;
310
311static int __init pgd_cache_init(void)
312{
313 /*
314 * When PAE kernel is running as a Xen domain, it does not use
315 * shared kernel pmd. And this requires a whole page for pgd.
316 */
317 if (!SHARED_KERNEL_PMD)
318 return 0;
319
320 /*
321 * when PAE kernel is not running as a Xen domain, it uses
322 * shared kernel pmd. Shared kernel pmd does not require a whole
323 * page for pgd. We are able to just allocate a 32-byte for pgd.
324 * During boot time, we create a 32-byte slab for pgd table allocation.
325 */
326 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
327 SLAB_PANIC, NULL);
328 if (!pgd_cache)
329 return -ENOMEM;
330
331 return 0;
332}
333core_initcall(pgd_cache_init);
334
335static inline pgd_t *_pgd_alloc(void)
336{
337 /*
338 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
339 * We allocate one page for pgd.
340 */
341 if (!SHARED_KERNEL_PMD)
342 return (pgd_t *)__get_free_page(PGALLOC_GFP);
343
344 /*
345 * Now PAE kernel is not running as a Xen domain. We can allocate
346 * a 32-byte slab for pgd to save memory space.
347 */
348 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
349}
350
351static inline void _pgd_free(pgd_t *pgd)
352{
353 if (!SHARED_KERNEL_PMD)
354 free_page((unsigned long)pgd);
355 else
356 kmem_cache_free(pgd_cache, pgd);
357}
358#else
359
360static inline pgd_t *_pgd_alloc(void)
361{
362 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
363}
364
365static inline void _pgd_free(pgd_t *pgd)
366{
367 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
368}
369#endif /* CONFIG_X86_PAE */
370
371pgd_t *pgd_alloc(struct mm_struct *mm)
372{
373 pgd_t *pgd;
374 pmd_t *pmds[PREALLOCATED_PMDS];
375
376 pgd = _pgd_alloc();
377
378 if (pgd == NULL)
379 goto out;
380
381 mm->pgd = pgd;
382
383 if (preallocate_pmds(mm, pmds) != 0)
384 goto out_free_pgd;
385
386 if (paravirt_pgd_alloc(mm) != 0)
387 goto out_free_pmds;
388
389 /*
390 * Make sure that pre-populating the pmds is atomic with
391 * respect to anything walking the pgd_list, so that they
392 * never see a partially populated pgd.
393 */
394 spin_lock(&pgd_lock);
395
396 pgd_ctor(mm, pgd);
397 pgd_prepopulate_pmd(mm, pgd, pmds);
398
399 spin_unlock(&pgd_lock);
400
401 return pgd;
402
403out_free_pmds:
404 free_pmds(mm, pmds);
405out_free_pgd:
406 _pgd_free(pgd);
407out:
408 return NULL;
409}
410
411void pgd_free(struct mm_struct *mm, pgd_t *pgd)
412{
413 pgd_mop_up_pmds(mm, pgd);
414 pgd_dtor(pgd);
415 paravirt_pgd_free(mm, pgd);
416 _pgd_free(pgd);
417}
418
419/*
420 * Used to set accessed or dirty bits in the page table entries
421 * on other architectures. On x86, the accessed and dirty bits
422 * are tracked by hardware. However, do_wp_page calls this function
423 * to also make the pte writeable at the same time the dirty bit is
424 * set. In that case we do actually need to write the PTE.
425 */
426int ptep_set_access_flags(struct vm_area_struct *vma,
427 unsigned long address, pte_t *ptep,
428 pte_t entry, int dirty)
429{
430 int changed = !pte_same(*ptep, entry);
431
432 if (changed && dirty)
433 *ptep = entry;
434
435 return changed;
436}
437
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439int pmdp_set_access_flags(struct vm_area_struct *vma,
440 unsigned long address, pmd_t *pmdp,
441 pmd_t entry, int dirty)
442{
443 int changed = !pmd_same(*pmdp, entry);
444
445 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
446
447 if (changed && dirty) {
448 *pmdp = entry;
449 /*
450 * We had a write-protection fault here and changed the pmd
451 * to to more permissive. No need to flush the TLB for that,
452 * #PF is architecturally guaranteed to do that and in the
453 * worst-case we'll generate a spurious fault.
454 */
455 }
456
457 return changed;
458}
459
460int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
461 pud_t *pudp, pud_t entry, int dirty)
462{
463 int changed = !pud_same(*pudp, entry);
464
465 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
466
467 if (changed && dirty) {
468 *pudp = entry;
469 /*
470 * We had a write-protection fault here and changed the pud
471 * to to more permissive. No need to flush the TLB for that,
472 * #PF is architecturally guaranteed to do that and in the
473 * worst-case we'll generate a spurious fault.
474 */
475 }
476
477 return changed;
478}
479#endif
480
481int ptep_test_and_clear_young(struct vm_area_struct *vma,
482 unsigned long addr, pte_t *ptep)
483{
484 int ret = 0;
485
486 if (pte_young(*ptep))
487 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
488 (unsigned long *) &ptep->pte);
489
490 return ret;
491}
492
493#ifdef CONFIG_TRANSPARENT_HUGEPAGE
494int pmdp_test_and_clear_young(struct vm_area_struct *vma,
495 unsigned long addr, pmd_t *pmdp)
496{
497 int ret = 0;
498
499 if (pmd_young(*pmdp))
500 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
501 (unsigned long *)pmdp);
502
503 return ret;
504}
505int pudp_test_and_clear_young(struct vm_area_struct *vma,
506 unsigned long addr, pud_t *pudp)
507{
508 int ret = 0;
509
510 if (pud_young(*pudp))
511 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
512 (unsigned long *)pudp);
513
514 return ret;
515}
516#endif
517
518int ptep_clear_flush_young(struct vm_area_struct *vma,
519 unsigned long address, pte_t *ptep)
520{
521 /*
522 * On x86 CPUs, clearing the accessed bit without a TLB flush
523 * doesn't cause data corruption. [ It could cause incorrect
524 * page aging and the (mistaken) reclaim of hot pages, but the
525 * chance of that should be relatively low. ]
526 *
527 * So as a performance optimization don't flush the TLB when
528 * clearing the accessed bit, it will eventually be flushed by
529 * a context switch or a VM operation anyway. [ In the rare
530 * event of it not getting flushed for a long time the delay
531 * shouldn't really matter because there's no real memory
532 * pressure for swapout to react to. ]
533 */
534 return ptep_test_and_clear_young(vma, address, ptep);
535}
536
537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
538int pmdp_clear_flush_young(struct vm_area_struct *vma,
539 unsigned long address, pmd_t *pmdp)
540{
541 int young;
542
543 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
544
545 young = pmdp_test_and_clear_young(vma, address, pmdp);
546 if (young)
547 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
548
549 return young;
550}
551#endif
552
553/**
554 * reserve_top_address - reserves a hole in the top of kernel address space
555 * @reserve - size of hole to reserve
556 *
557 * Can be used to relocate the fixmap area and poke a hole in the top
558 * of kernel address space to make room for a hypervisor.
559 */
560void __init reserve_top_address(unsigned long reserve)
561{
562#ifdef CONFIG_X86_32
563 BUG_ON(fixmaps_set > 0);
564 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
565 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
566 -reserve, __FIXADDR_TOP + PAGE_SIZE);
567#endif
568}
569
570int fixmaps_set;
571
572void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
573{
574 unsigned long address = __fix_to_virt(idx);
575
576 if (idx >= __end_of_fixed_addresses) {
577 BUG();
578 return;
579 }
580 set_pte_vaddr(address, pte);
581 fixmaps_set++;
582}
583
584void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
585 pgprot_t flags)
586{
587 /* Sanitize 'prot' against any unsupported bits: */
588 pgprot_val(flags) &= __default_kernel_pte_mask;
589
590 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
591}
592
593#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
594#ifdef CONFIG_X86_5LEVEL
595/**
596 * p4d_set_huge - setup kernel P4D mapping
597 *
598 * No 512GB pages yet -- always return 0
599 */
600int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
601{
602 return 0;
603}
604
605/**
606 * p4d_clear_huge - clear kernel P4D mapping when it is set
607 *
608 * No 512GB pages yet -- always return 0
609 */
610int p4d_clear_huge(p4d_t *p4d)
611{
612 return 0;
613}
614#endif
615
616/**
617 * pud_set_huge - setup kernel PUD mapping
618 *
619 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
620 * function sets up a huge page only if any of the following conditions are met:
621 *
622 * - MTRRs are disabled, or
623 *
624 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
625 *
626 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
627 * has no effect on the requested PAT memory type.
628 *
629 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
630 * page mapping attempt fails.
631 *
632 * Returns 1 on success and 0 on failure.
633 */
634int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
635{
636 u8 mtrr, uniform;
637
638 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
639 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
640 (mtrr != MTRR_TYPE_WRBACK))
641 return 0;
642
643 /* Bail out if we are we on a populated non-leaf entry: */
644 if (pud_present(*pud) && !pud_huge(*pud))
645 return 0;
646
647 prot = pgprot_4k_2_large(prot);
648
649 set_pte((pte_t *)pud, pfn_pte(
650 (u64)addr >> PAGE_SHIFT,
651 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
652
653 return 1;
654}
655
656/**
657 * pmd_set_huge - setup kernel PMD mapping
658 *
659 * See text over pud_set_huge() above.
660 *
661 * Returns 1 on success and 0 on failure.
662 */
663int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
664{
665 u8 mtrr, uniform;
666
667 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
668 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
669 (mtrr != MTRR_TYPE_WRBACK)) {
670 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
671 __func__, addr, addr + PMD_SIZE);
672 return 0;
673 }
674
675 /* Bail out if we are we on a populated non-leaf entry: */
676 if (pmd_present(*pmd) && !pmd_huge(*pmd))
677 return 0;
678
679 prot = pgprot_4k_2_large(prot);
680
681 set_pte((pte_t *)pmd, pfn_pte(
682 (u64)addr >> PAGE_SHIFT,
683 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
684
685 return 1;
686}
687
688/**
689 * pud_clear_huge - clear kernel PUD mapping when it is set
690 *
691 * Returns 1 on success and 0 on failure (no PUD map is found).
692 */
693int pud_clear_huge(pud_t *pud)
694{
695 if (pud_large(*pud)) {
696 pud_clear(pud);
697 return 1;
698 }
699
700 return 0;
701}
702
703/**
704 * pmd_clear_huge - clear kernel PMD mapping when it is set
705 *
706 * Returns 1 on success and 0 on failure (no PMD map is found).
707 */
708int pmd_clear_huge(pmd_t *pmd)
709{
710 if (pmd_large(*pmd)) {
711 pmd_clear(pmd);
712 return 1;
713 }
714
715 return 0;
716}
717
718/**
719 * pud_free_pmd_page - Clear pud entry and free pmd page.
720 * @pud: Pointer to a PUD.
721 *
722 * Context: The pud range has been unmaped and TLB purged.
723 * Return: 1 if clearing the entry succeeded. 0 otherwise.
724 */
725int pud_free_pmd_page(pud_t *pud)
726{
727 pmd_t *pmd;
728 int i;
729
730 if (pud_none(*pud))
731 return 1;
732
733 pmd = (pmd_t *)pud_page_vaddr(*pud);
734
735 for (i = 0; i < PTRS_PER_PMD; i++)
736 if (!pmd_free_pte_page(&pmd[i]))
737 return 0;
738
739 pud_clear(pud);
740 free_page((unsigned long)pmd);
741
742 return 1;
743}
744
745/**
746 * pmd_free_pte_page - Clear pmd entry and free pte page.
747 * @pmd: Pointer to a PMD.
748 *
749 * Context: The pmd range has been unmaped and TLB purged.
750 * Return: 1 if clearing the entry succeeded. 0 otherwise.
751 */
752int pmd_free_pte_page(pmd_t *pmd)
753{
754 pte_t *pte;
755
756 if (pmd_none(*pmd))
757 return 1;
758
759 pte = (pte_t *)pmd_page_vaddr(*pmd);
760 pmd_clear(pmd);
761 free_page((unsigned long)pte);
762
763 return 1;
764}
765#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */