Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 
 
 
 248#include <linux/kernel.h>
 249#include <linux/module.h>
 250#include <linux/types.h>
 251#include <linux/fcntl.h>
 252#include <linux/poll.h>
 
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/bootmem.h>
 262#include <linux/highmem.h>
 263#include <linux/swap.h>
 264#include <linux/cache.h>
 265#include <linux/err.h>
 266#include <linux/crypto.h>
 267#include <linux/time.h>
 268#include <linux/slab.h>
 
 
 
 269
 270#include <net/icmp.h>
 
 271#include <net/tcp.h>
 
 272#include <net/xfrm.h>
 273#include <net/ip.h>
 274#include <net/netdma.h>
 275#include <net/sock.h>
 276
 277#include <asm/uaccess.h>
 278#include <asm/ioctls.h>
 
 
 279
 280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 
 
 
 
 281
 282struct percpu_counter tcp_orphan_count;
 283EXPORT_SYMBOL_GPL(tcp_orphan_count);
 284
 285long sysctl_tcp_mem[3] __read_mostly;
 286int sysctl_tcp_wmem[3] __read_mostly;
 287int sysctl_tcp_rmem[3] __read_mostly;
 288
 289EXPORT_SYMBOL(sysctl_tcp_mem);
 290EXPORT_SYMBOL(sysctl_tcp_rmem);
 291EXPORT_SYMBOL(sysctl_tcp_wmem);
 292
 293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 294EXPORT_SYMBOL(tcp_memory_allocated);
 
 
 
 
 
 
 
 295
 296/*
 297 * Current number of TCP sockets.
 298 */
 299struct percpu_counter tcp_sockets_allocated;
 300EXPORT_SYMBOL(tcp_sockets_allocated);
 301
 302/*
 303 * TCP splice context
 304 */
 305struct tcp_splice_state {
 306	struct pipe_inode_info *pipe;
 307	size_t len;
 308	unsigned int flags;
 309};
 310
 311/*
 312 * Pressure flag: try to collapse.
 313 * Technical note: it is used by multiple contexts non atomically.
 314 * All the __sk_mem_schedule() is of this nature: accounting
 315 * is strict, actions are advisory and have some latency.
 316 */
 317int tcp_memory_pressure __read_mostly;
 318EXPORT_SYMBOL(tcp_memory_pressure);
 319
 320void tcp_enter_memory_pressure(struct sock *sk)
 321{
 322	if (!tcp_memory_pressure) {
 
 
 
 
 
 
 
 
 323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 324		tcp_memory_pressure = 1;
 325	}
 326}
 327EXPORT_SYMBOL(tcp_enter_memory_pressure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329/* Convert seconds to retransmits based on initial and max timeout */
 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 331{
 332	u8 res = 0;
 333
 334	if (seconds > 0) {
 335		int period = timeout;
 336
 337		res = 1;
 338		while (seconds > period && res < 255) {
 339			res++;
 340			timeout <<= 1;
 341			if (timeout > rto_max)
 342				timeout = rto_max;
 343			period += timeout;
 344		}
 345	}
 346	return res;
 347}
 348
 349/* Convert retransmits to seconds based on initial and max timeout */
 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 351{
 352	int period = 0;
 353
 354	if (retrans > 0) {
 355		period = timeout;
 356		while (--retrans) {
 357			timeout <<= 1;
 358			if (timeout > rto_max)
 359				timeout = rto_max;
 360			period += timeout;
 361		}
 362	}
 363	return period;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 *	Wait for a TCP event.
 368 *
 369 *	Note that we don't need to lock the socket, as the upper poll layers
 370 *	take care of normal races (between the test and the event) and we don't
 371 *	go look at any of the socket buffers directly.
 372 */
 373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 374{
 375	unsigned int mask;
 376	struct sock *sk = sock->sk;
 377	struct tcp_sock *tp = tcp_sk(sk);
 
 
 378
 379	sock_poll_wait(file, sk_sleep(sk), wait);
 380	if (sk->sk_state == TCP_LISTEN)
 
 
 381		return inet_csk_listen_poll(sk);
 382
 383	/* Socket is not locked. We are protected from async events
 384	 * by poll logic and correct handling of state changes
 385	 * made by other threads is impossible in any case.
 386	 */
 387
 388	mask = 0;
 389
 390	/*
 391	 * POLLHUP is certainly not done right. But poll() doesn't
 392	 * have a notion of HUP in just one direction, and for a
 393	 * socket the read side is more interesting.
 394	 *
 395	 * Some poll() documentation says that POLLHUP is incompatible
 396	 * with the POLLOUT/POLLWR flags, so somebody should check this
 397	 * all. But careful, it tends to be safer to return too many
 398	 * bits than too few, and you can easily break real applications
 399	 * if you don't tell them that something has hung up!
 400	 *
 401	 * Check-me.
 402	 *
 403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 404	 * our fs/select.c). It means that after we received EOF,
 405	 * poll always returns immediately, making impossible poll() on write()
 406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 407	 * if and only if shutdown has been made in both directions.
 408	 * Actually, it is interesting to look how Solaris and DUX
 409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 410	 * then we could set it on SND_SHUTDOWN. BTW examples given
 411	 * in Stevens' books assume exactly this behaviour, it explains
 412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 413	 *
 414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 415	 * blocking on fresh not-connected or disconnected socket. --ANK
 416	 */
 417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 418		mask |= POLLHUP;
 419	if (sk->sk_shutdown & RCV_SHUTDOWN)
 420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 421
 422	/* Connected? */
 423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
 
 
 424		int target = sock_rcvlowat(sk, 0, INT_MAX);
 
 425
 426		if (tp->urg_seq == tp->copied_seq &&
 427		    !sock_flag(sk, SOCK_URGINLINE) &&
 428		    tp->urg_data)
 429			target++;
 430
 431		/* Potential race condition. If read of tp below will
 432		 * escape above sk->sk_state, we can be illegally awaken
 433		 * in SYN_* states. */
 434		if (tp->rcv_nxt - tp->copied_seq >= target)
 435			mask |= POLLIN | POLLRDNORM;
 436
 437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 439				mask |= POLLOUT | POLLWRNORM;
 440			} else {  /* send SIGIO later */
 441				set_bit(SOCK_ASYNC_NOSPACE,
 442					&sk->sk_socket->flags);
 443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 444
 445				/* Race breaker. If space is freed after
 446				 * wspace test but before the flags are set,
 447				 * IO signal will be lost.
 
 448				 */
 449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
 450					mask |= POLLOUT | POLLWRNORM;
 
 451			}
 452		} else
 453			mask |= POLLOUT | POLLWRNORM;
 454
 455		if (tp->urg_data & TCP_URG_VALID)
 456			mask |= POLLPRI;
 
 
 
 
 
 
 
 457	}
 458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 459	smp_rmb();
 460	if (sk->sk_err)
 461		mask |= POLLERR;
 
 462
 463	return mask;
 464}
 465EXPORT_SYMBOL(tcp_poll);
 466
 467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 468{
 469	struct tcp_sock *tp = tcp_sk(sk);
 470	int answ;
 
 471
 472	switch (cmd) {
 473	case SIOCINQ:
 474		if (sk->sk_state == TCP_LISTEN)
 475			return -EINVAL;
 476
 477		lock_sock(sk);
 478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 479			answ = 0;
 480		else if (sock_flag(sk, SOCK_URGINLINE) ||
 481			 !tp->urg_data ||
 482			 before(tp->urg_seq, tp->copied_seq) ||
 483			 !before(tp->urg_seq, tp->rcv_nxt)) {
 484			struct sk_buff *skb;
 485
 486			answ = tp->rcv_nxt - tp->copied_seq;
 487
 488			/* Subtract 1, if FIN is in queue. */
 489			skb = skb_peek_tail(&sk->sk_receive_queue);
 490			if (answ && skb)
 491				answ -= tcp_hdr(skb)->fin;
 492		} else
 493			answ = tp->urg_seq - tp->copied_seq;
 494		release_sock(sk);
 495		break;
 496	case SIOCATMARK:
 497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 
 498		break;
 499	case SIOCOUTQ:
 500		if (sk->sk_state == TCP_LISTEN)
 501			return -EINVAL;
 502
 503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 504			answ = 0;
 505		else
 506			answ = tp->write_seq - tp->snd_una;
 507		break;
 508	case SIOCOUTQNSD:
 509		if (sk->sk_state == TCP_LISTEN)
 510			return -EINVAL;
 511
 512		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 513			answ = 0;
 514		else
 515			answ = tp->write_seq - tp->snd_nxt;
 
 516		break;
 517	default:
 518		return -ENOIOCTLCMD;
 519	}
 520
 521	return put_user(answ, (int __user *)arg);
 
 522}
 523EXPORT_SYMBOL(tcp_ioctl);
 524
 525static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 526{
 527	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
 528	tp->pushed_seq = tp->write_seq;
 529}
 530
 531static inline int forced_push(struct tcp_sock *tp)
 532{
 533	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 534}
 535
 536static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 537{
 538	struct tcp_sock *tp = tcp_sk(sk);
 539	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 540
 541	skb->csum    = 0;
 542	tcb->seq     = tcb->end_seq = tp->write_seq;
 543	tcb->flags   = TCPHDR_ACK;
 544	tcb->sacked  = 0;
 545	skb_header_release(skb);
 546	tcp_add_write_queue_tail(sk, skb);
 547	sk->sk_wmem_queued += skb->truesize;
 548	sk_mem_charge(sk, skb->truesize);
 549	if (tp->nonagle & TCP_NAGLE_PUSH)
 550		tp->nonagle &= ~TCP_NAGLE_PUSH;
 
 
 551}
 552
 553static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 554{
 555	if (flags & MSG_OOB)
 556		tp->snd_up = tp->write_seq;
 557}
 558
 559static inline void tcp_push(struct sock *sk, int flags, int mss_now,
 560			    int nonagle)
 
 
 
 
 
 
 
 
 
 
 561{
 562	if (tcp_send_head(sk)) {
 563		struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565		if (!(flags & MSG_MORE) || forced_push(tp))
 566			tcp_mark_push(tp, tcp_write_queue_tail(sk));
 567
 568		tcp_mark_urg(tp, flags);
 569		__tcp_push_pending_frames(sk, mss_now,
 570					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
 
 
 
 
 
 
 
 
 
 
 571	}
 
 
 
 
 
 572}
 573
 574static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 575				unsigned int offset, size_t len)
 576{
 577	struct tcp_splice_state *tss = rd_desc->arg.data;
 578	int ret;
 579
 580	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 581			      tss->flags);
 582	if (ret > 0)
 583		rd_desc->count -= ret;
 584	return ret;
 585}
 586
 587static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 588{
 589	/* Store TCP splice context information in read_descriptor_t. */
 590	read_descriptor_t rd_desc = {
 591		.arg.data = tss,
 592		.count	  = tss->len,
 593	};
 594
 595	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 596}
 597
 598/**
 599 *  tcp_splice_read - splice data from TCP socket to a pipe
 600 * @sock:	socket to splice from
 601 * @ppos:	position (not valid)
 602 * @pipe:	pipe to splice to
 603 * @len:	number of bytes to splice
 604 * @flags:	splice modifier flags
 605 *
 606 * Description:
 607 *    Will read pages from given socket and fill them into a pipe.
 608 *
 609 **/
 610ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 611			struct pipe_inode_info *pipe, size_t len,
 612			unsigned int flags)
 613{
 614	struct sock *sk = sock->sk;
 615	struct tcp_splice_state tss = {
 616		.pipe = pipe,
 617		.len = len,
 618		.flags = flags,
 619	};
 620	long timeo;
 621	ssize_t spliced;
 622	int ret;
 623
 624	sock_rps_record_flow(sk);
 625	/*
 626	 * We can't seek on a socket input
 627	 */
 628	if (unlikely(*ppos))
 629		return -ESPIPE;
 630
 631	ret = spliced = 0;
 632
 633	lock_sock(sk);
 634
 635	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 636	while (tss.len) {
 637		ret = __tcp_splice_read(sk, &tss);
 638		if (ret < 0)
 639			break;
 640		else if (!ret) {
 641			if (spliced)
 642				break;
 643			if (sock_flag(sk, SOCK_DONE))
 644				break;
 645			if (sk->sk_err) {
 646				ret = sock_error(sk);
 647				break;
 648			}
 649			if (sk->sk_shutdown & RCV_SHUTDOWN)
 650				break;
 651			if (sk->sk_state == TCP_CLOSE) {
 652				/*
 653				 * This occurs when user tries to read
 654				 * from never connected socket.
 655				 */
 656				if (!sock_flag(sk, SOCK_DONE))
 657					ret = -ENOTCONN;
 658				break;
 659			}
 660			if (!timeo) {
 661				ret = -EAGAIN;
 662				break;
 663			}
 664			sk_wait_data(sk, &timeo);
 
 
 
 
 
 
 
 
 665			if (signal_pending(current)) {
 666				ret = sock_intr_errno(timeo);
 667				break;
 668			}
 669			continue;
 670		}
 671		tss.len -= ret;
 672		spliced += ret;
 673
 674		if (!timeo)
 675			break;
 676		release_sock(sk);
 677		lock_sock(sk);
 678
 679		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 680		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 681		    signal_pending(current))
 682			break;
 683	}
 684
 685	release_sock(sk);
 686
 687	if (spliced)
 688		return spliced;
 689
 690	return ret;
 691}
 692EXPORT_SYMBOL(tcp_splice_read);
 693
 694struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 
 695{
 696	struct sk_buff *skb;
 697
 698	/* The TCP header must be at least 32-bit aligned.  */
 699	size = ALIGN(size, 4);
 700
 701	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 702	if (skb) {
 703		if (sk_wmem_schedule(sk, skb->truesize)) {
 704			/*
 705			 * Make sure that we have exactly size bytes
 706			 * available to the caller, no more, no less.
 707			 */
 708			skb_reserve(skb, skb_tailroom(skb) - size);
 
 
 
 
 709			return skb;
 710		}
 711		__kfree_skb(skb);
 712	} else {
 713		sk->sk_prot->enter_memory_pressure(sk);
 714		sk_stream_moderate_sndbuf(sk);
 715	}
 716	return NULL;
 717}
 718
 719static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 720				       int large_allowed)
 721{
 722	struct tcp_sock *tp = tcp_sk(sk);
 723	u32 xmit_size_goal, old_size_goal;
 724
 725	xmit_size_goal = mss_now;
 
 726
 727	if (large_allowed && sk_can_gso(sk)) {
 728		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
 729				  inet_csk(sk)->icsk_af_ops->net_header_len -
 730				  inet_csk(sk)->icsk_ext_hdr_len -
 731				  tp->tcp_header_len);
 732
 733		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 734
 735		/* We try hard to avoid divides here */
 736		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 737
 738		if (likely(old_size_goal <= xmit_size_goal &&
 739			   old_size_goal + mss_now > xmit_size_goal)) {
 740			xmit_size_goal = old_size_goal;
 741		} else {
 742			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
 743			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 744		}
 745	}
 746
 747	return max(xmit_size_goal, mss_now);
 748}
 749
 750static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 751{
 752	int mss_now;
 753
 754	mss_now = tcp_current_mss(sk);
 755	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 756
 757	return mss_now;
 758}
 759
 760static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
 761			 size_t psize, int flags)
 
 
 
 
 
 762{
 763	struct tcp_sock *tp = tcp_sk(sk);
 764	int mss_now, size_goal;
 765	int err;
 766	ssize_t copied;
 767	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 768
 769	/* Wait for a connection to finish. */
 770	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 771		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 772			goto out_err;
 773
 774	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 775
 776	mss_now = tcp_send_mss(sk, &size_goal, flags);
 777	copied = 0;
 778
 779	err = -EPIPE;
 780	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 781		goto out_err;
 782
 783	while (psize > 0) {
 784		struct sk_buff *skb = tcp_write_queue_tail(sk);
 785		struct page *page = pages[poffset / PAGE_SIZE];
 786		int copy, i, can_coalesce;
 787		int offset = poffset % PAGE_SIZE;
 788		int size = min_t(size_t, psize, PAGE_SIZE - offset);
 789
 790		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 791new_segment:
 792			if (!sk_stream_memory_free(sk))
 793				goto wait_for_sndbuf;
 794
 795			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 796			if (!skb)
 797				goto wait_for_memory;
 798
 799			skb_entail(sk, skb);
 800			copy = size_goal;
 801		}
 802
 803		if (copy > size)
 804			copy = size;
 805
 806		i = skb_shinfo(skb)->nr_frags;
 807		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 808		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 809			tcp_mark_push(tp, skb);
 810			goto new_segment;
 811		}
 812		if (!sk_wmem_schedule(sk, copy))
 813			goto wait_for_memory;
 814
 815		if (can_coalesce) {
 816			skb_shinfo(skb)->frags[i - 1].size += copy;
 817		} else {
 818			get_page(page);
 819			skb_fill_page_desc(skb, i, page, offset, copy);
 820		}
 821
 822		skb->len += copy;
 823		skb->data_len += copy;
 824		skb->truesize += copy;
 825		sk->sk_wmem_queued += copy;
 826		sk_mem_charge(sk, copy);
 827		skb->ip_summed = CHECKSUM_PARTIAL;
 828		tp->write_seq += copy;
 829		TCP_SKB_CB(skb)->end_seq += copy;
 830		skb_shinfo(skb)->gso_segs = 0;
 831
 832		if (!copied)
 833			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
 834
 835		copied += copy;
 836		poffset += copy;
 837		if (!(psize -= copy))
 838			goto out;
 839
 840		if (skb->len < size_goal || (flags & MSG_OOB))
 841			continue;
 842
 843		if (forced_push(tp)) {
 844			tcp_mark_push(tp, skb);
 845			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 846		} else if (skb == tcp_send_head(sk))
 847			tcp_push_one(sk, mss_now);
 848		continue;
 849
 850wait_for_sndbuf:
 851		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 852wait_for_memory:
 853		if (copied)
 854			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 
 855
 856		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 857			goto do_error;
 858
 859		mss_now = tcp_send_mss(sk, &size_goal, flags);
 
 860	}
 861
 862out:
 863	if (copied)
 864		tcp_push(sk, flags, mss_now, tp->nonagle);
 865	return copied;
 866
 867do_error:
 868	if (copied)
 869		goto out;
 870out_err:
 871	return sk_stream_error(sk, flags, err);
 872}
 873
 874int tcp_sendpage(struct sock *sk, struct page *page, int offset,
 875		 size_t size, int flags)
 876{
 877	ssize_t res;
 878
 879	if (!(sk->sk_route_caps & NETIF_F_SG) ||
 880	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
 881		return sock_no_sendpage(sk->sk_socket, page, offset, size,
 882					flags);
 883
 884	lock_sock(sk);
 885	res = do_tcp_sendpages(sk, &page, offset, size, flags);
 886	release_sock(sk);
 887	return res;
 
 
 
 
 888}
 889EXPORT_SYMBOL(tcp_sendpage);
 890
 891#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
 892#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
 
 
 
 
 
 893
 894static inline int select_size(struct sock *sk, int sg)
 
 895{
 896	struct tcp_sock *tp = tcp_sk(sk);
 897	int tmp = tp->mss_cache;
 898
 899	if (sg) {
 900		if (sk_can_gso(sk))
 901			tmp = 0;
 902		else {
 903			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
 904
 905			if (tmp >= pgbreak &&
 906			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
 907				tmp = pgbreak;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908		}
 909	}
 910
 911	return tmp;
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 915		size_t size)
 916{
 917	struct iovec *iov;
 918	struct tcp_sock *tp = tcp_sk(sk);
 
 919	struct sk_buff *skb;
 920	int iovlen, flags;
 921	int mss_now, size_goal;
 922	int sg, err, copied;
 
 
 923	long timeo;
 924
 925	lock_sock(sk);
 926
 927	flags = msg->msg_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 929
 930	/* Wait for a connection to finish. */
 931	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 932		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933			goto out_err;
 934
 935	/* This should be in poll */
 936	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 937
 938	mss_now = tcp_send_mss(sk, &size_goal, flags);
 
 
 
 
 
 
 
 
 
 
 939
 940	/* Ok commence sending. */
 941	iovlen = msg->msg_iovlen;
 942	iov = msg->msg_iov;
 943	copied = 0;
 944
 
 
 
 945	err = -EPIPE;
 946	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 947		goto out_err;
 948
 949	sg = sk->sk_route_caps & NETIF_F_SG;
 
 950
 951	while (--iovlen >= 0) {
 952		size_t seglen = iov->iov_len;
 953		unsigned char __user *from = iov->iov_base;
 954
 955		iov++;
 
 956
 957		while (seglen > 0) {
 958			int copy = 0;
 959			int max = size_goal;
 960
 961			skb = tcp_write_queue_tail(sk);
 962			if (tcp_send_head(sk)) {
 963				if (skb->ip_summed == CHECKSUM_NONE)
 964					max = mss_now;
 965				copy = max - skb->len;
 966			}
 
 
 
 
 
 967
 968			if (copy <= 0) {
 969new_segment:
 970				/* Allocate new segment. If the interface is SG,
 971				 * allocate skb fitting to single page.
 972				 */
 973				if (!sk_stream_memory_free(sk))
 974					goto wait_for_sndbuf;
 975
 976				skb = sk_stream_alloc_skb(sk,
 977							  select_size(sk, sg),
 978							  sk->sk_allocation);
 979				if (!skb)
 980					goto wait_for_memory;
 981
 982				/*
 983				 * Check whether we can use HW checksum.
 984				 */
 985				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
 986					skb->ip_summed = CHECKSUM_PARTIAL;
 
 
 987
 988				skb_entail(sk, skb);
 989				copy = size_goal;
 990				max = size_goal;
 991			}
 992
 993			/* Try to append data to the end of skb. */
 994			if (copy > seglen)
 995				copy = seglen;
 996
 997			/* Where to copy to? */
 998			if (skb_tailroom(skb) > 0) {
 999				/* We have some space in skb head. Superb! */
1000				if (copy > skb_tailroom(skb))
1001					copy = skb_tailroom(skb);
1002				err = skb_add_data_nocache(sk, skb, from, copy);
1003				if (err)
1004					goto do_fault;
1005			} else {
1006				int merge = 0;
1007				int i = skb_shinfo(skb)->nr_frags;
1008				struct page *page = TCP_PAGE(sk);
1009				int off = TCP_OFF(sk);
1010
1011				if (skb_can_coalesce(skb, i, page, off) &&
1012				    off != PAGE_SIZE) {
1013					/* We can extend the last page
1014					 * fragment. */
1015					merge = 1;
1016				} else if (i == MAX_SKB_FRAGS || !sg) {
1017					/* Need to add new fragment and cannot
1018					 * do this because interface is non-SG,
1019					 * or because all the page slots are
1020					 * busy. */
1021					tcp_mark_push(tp, skb);
1022					goto new_segment;
1023				} else if (page) {
1024					if (off == PAGE_SIZE) {
1025						put_page(page);
1026						TCP_PAGE(sk) = page = NULL;
1027						off = 0;
1028					}
1029				} else
1030					off = 0;
1031
1032				if (copy > PAGE_SIZE - off)
1033					copy = PAGE_SIZE - off;
1034
1035				if (!sk_wmem_schedule(sk, copy))
1036					goto wait_for_memory;
 
 
 
1037
1038				if (!page) {
1039					/* Allocate new cache page. */
1040					if (!(page = sk_stream_alloc_page(sk)))
1041						goto wait_for_memory;
1042				}
 
 
 
 
 
1043
1044				/* Time to copy data. We are close to
1045				 * the end! */
1046				err = skb_copy_to_page_nocache(sk, from, skb,
1047							       page, off, copy);
1048				if (err) {
1049					/* If this page was new, give it to the
1050					 * socket so it does not get leaked.
1051					 */
1052					if (!TCP_PAGE(sk)) {
1053						TCP_PAGE(sk) = page;
1054						TCP_OFF(sk) = 0;
1055					}
1056					goto do_error;
1057				}
 
1058
1059				/* Update the skb. */
1060				if (merge) {
1061					skb_shinfo(skb)->frags[i - 1].size +=
1062									copy;
1063				} else {
1064					skb_fill_page_desc(skb, i, page, off, copy);
1065					if (TCP_PAGE(sk)) {
1066						get_page(page);
1067					} else if (off + copy < PAGE_SIZE) {
1068						get_page(page);
1069						TCP_PAGE(sk) = page;
1070					}
1071				}
1072
1073				TCP_OFF(sk) = off + copy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074			}
 
1075
1076			if (!copied)
1077				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1078
1079			tp->write_seq += copy;
1080			TCP_SKB_CB(skb)->end_seq += copy;
1081			skb_shinfo(skb)->gso_segs = 0;
1082
1083			from += copy;
1084			copied += copy;
1085			if ((seglen -= copy) == 0 && iovlen == 0)
1086				goto out;
1087
1088			if (skb->len < max || (flags & MSG_OOB))
1089				continue;
1090
1091			if (forced_push(tp)) {
1092				tcp_mark_push(tp, skb);
1093				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094			} else if (skb == tcp_send_head(sk))
1095				tcp_push_one(sk, mss_now);
 
 
 
 
 
 
 
1096			continue;
1097
1098wait_for_sndbuf:
1099			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100wait_for_memory:
1101			if (copied)
1102				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 
1103
1104			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1105				goto do_error;
 
 
 
 
1106
1107			mss_now = tcp_send_mss(sk, &size_goal, flags);
1108		}
 
 
 
1109	}
1110
1111out:
1112	if (copied)
1113		tcp_push(sk, flags, mss_now, tp->nonagle);
1114	release_sock(sk);
1115	return copied;
1116
1117do_fault:
1118	if (!skb->len) {
1119		tcp_unlink_write_queue(skb, sk);
1120		/* It is the one place in all of TCP, except connection
1121		 * reset, where we can be unlinking the send_head.
1122		 */
1123		tcp_check_send_head(sk, skb);
1124		sk_wmem_free_skb(sk, skb);
1125	}
1126
1127do_error:
1128	if (copied)
 
 
1129		goto out;
1130out_err:
 
 
 
1131	err = sk_stream_error(sk, flags, err);
1132	release_sock(sk);
 
 
 
 
1133	return err;
1134}
 
 
 
 
 
 
 
 
 
 
 
 
1135EXPORT_SYMBOL(tcp_sendmsg);
1136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137/*
1138 *	Handle reading urgent data. BSD has very simple semantics for
1139 *	this, no blocking and very strange errors 8)
1140 */
1141
1142static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1143{
1144	struct tcp_sock *tp = tcp_sk(sk);
1145
1146	/* No URG data to read. */
1147	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1148	    tp->urg_data == TCP_URG_READ)
1149		return -EINVAL;	/* Yes this is right ! */
1150
1151	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1152		return -ENOTCONN;
1153
1154	if (tp->urg_data & TCP_URG_VALID) {
1155		int err = 0;
1156		char c = tp->urg_data;
1157
1158		if (!(flags & MSG_PEEK))
1159			tp->urg_data = TCP_URG_READ;
1160
1161		/* Read urgent data. */
1162		msg->msg_flags |= MSG_OOB;
1163
1164		if (len > 0) {
1165			if (!(flags & MSG_TRUNC))
1166				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1167			len = 1;
1168		} else
1169			msg->msg_flags |= MSG_TRUNC;
1170
1171		return err ? -EFAULT : len;
1172	}
1173
1174	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1175		return 0;
1176
1177	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1178	 * the available implementations agree in this case:
1179	 * this call should never block, independent of the
1180	 * blocking state of the socket.
1181	 * Mike <pall@rz.uni-karlsruhe.de>
1182	 */
1183	return -EAGAIN;
1184}
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186/* Clean up the receive buffer for full frames taken by the user,
1187 * then send an ACK if necessary.  COPIED is the number of bytes
1188 * tcp_recvmsg has given to the user so far, it speeds up the
1189 * calculation of whether or not we must ACK for the sake of
1190 * a window update.
1191 */
1192void tcp_cleanup_rbuf(struct sock *sk, int copied)
1193{
1194	struct tcp_sock *tp = tcp_sk(sk);
1195	int time_to_ack = 0;
1196
1197#if TCP_DEBUG
1198	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1199
1200	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1201	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1203#endif
1204
1205	if (inet_csk_ack_scheduled(sk)) {
1206		const struct inet_connection_sock *icsk = inet_csk(sk);
1207		   /* Delayed ACKs frequently hit locked sockets during bulk
1208		    * receive. */
1209		if (icsk->icsk_ack.blocked ||
1210		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212		    /*
1213		     * If this read emptied read buffer, we send ACK, if
1214		     * connection is not bidirectional, user drained
1215		     * receive buffer and there was a small segment
1216		     * in queue.
1217		     */
1218		    (copied > 0 &&
1219		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221		       !icsk->icsk_ack.pingpong)) &&
1222		      !atomic_read(&sk->sk_rmem_alloc)))
1223			time_to_ack = 1;
1224	}
1225
1226	/* We send an ACK if we can now advertise a non-zero window
1227	 * which has been raised "significantly".
1228	 *
1229	 * Even if window raised up to infinity, do not send window open ACK
1230	 * in states, where we will not receive more. It is useless.
1231	 */
1232	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233		__u32 rcv_window_now = tcp_receive_window(tp);
1234
1235		/* Optimize, __tcp_select_window() is not cheap. */
1236		if (2*rcv_window_now <= tp->window_clamp) {
1237			__u32 new_window = __tcp_select_window(sk);
1238
1239			/* Send ACK now, if this read freed lots of space
1240			 * in our buffer. Certainly, new_window is new window.
1241			 * We can advertise it now, if it is not less than current one.
1242			 * "Lots" means "at least twice" here.
1243			 */
1244			if (new_window && new_window >= 2 * rcv_window_now)
1245				time_to_ack = 1;
1246		}
1247	}
1248	if (time_to_ack)
1249		tcp_send_ack(sk);
1250}
1251
1252static void tcp_prequeue_process(struct sock *sk)
1253{
1254	struct sk_buff *skb;
1255	struct tcp_sock *tp = tcp_sk(sk);
1256
1257	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258
1259	/* RX process wants to run with disabled BHs, though it is not
1260	 * necessary */
1261	local_bh_disable();
1262	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263		sk_backlog_rcv(sk, skb);
1264	local_bh_enable();
1265
1266	/* Clear memory counter. */
1267	tp->ucopy.memory = 0;
1268}
1269
1270#ifdef CONFIG_NET_DMA
1271static void tcp_service_net_dma(struct sock *sk, bool wait)
1272{
1273	dma_cookie_t done, used;
1274	dma_cookie_t last_issued;
1275	struct tcp_sock *tp = tcp_sk(sk);
1276
1277	if (!tp->ucopy.dma_chan)
1278		return;
1279
1280	last_issued = tp->ucopy.dma_cookie;
1281	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282
1283	do {
1284		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285					      last_issued, &done,
1286					      &used) == DMA_SUCCESS) {
1287			/* Safe to free early-copied skbs now */
1288			__skb_queue_purge(&sk->sk_async_wait_queue);
1289			break;
1290		} else {
1291			struct sk_buff *skb;
1292			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293			       (dma_async_is_complete(skb->dma_cookie, done,
1294						      used) == DMA_SUCCESS)) {
1295				__skb_dequeue(&sk->sk_async_wait_queue);
1296				kfree_skb(skb);
1297			}
1298		}
1299	} while (wait);
1300}
1301#endif
1302
1303static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304{
1305	struct sk_buff *skb;
1306	u32 offset;
1307
1308	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309		offset = seq - TCP_SKB_CB(skb)->seq;
1310		if (tcp_hdr(skb)->syn)
 
1311			offset--;
1312		if (offset < skb->len || tcp_hdr(skb)->fin) {
 
1313			*off = offset;
1314			return skb;
1315		}
 
 
 
 
 
1316	}
1317	return NULL;
1318}
 
1319
1320/*
1321 * This routine provides an alternative to tcp_recvmsg() for routines
1322 * that would like to handle copying from skbuffs directly in 'sendfile'
1323 * fashion.
1324 * Note:
1325 *	- It is assumed that the socket was locked by the caller.
1326 *	- The routine does not block.
1327 *	- At present, there is no support for reading OOB data
1328 *	  or for 'peeking' the socket using this routine
1329 *	  (although both would be easy to implement).
1330 */
1331int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332		  sk_read_actor_t recv_actor)
1333{
1334	struct sk_buff *skb;
1335	struct tcp_sock *tp = tcp_sk(sk);
1336	u32 seq = tp->copied_seq;
1337	u32 offset;
1338	int copied = 0;
1339
1340	if (sk->sk_state == TCP_LISTEN)
1341		return -ENOTCONN;
1342	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343		if (offset < skb->len) {
1344			int used;
1345			size_t len;
1346
1347			len = skb->len - offset;
1348			/* Stop reading if we hit a patch of urgent data */
1349			if (tp->urg_data) {
1350				u32 urg_offset = tp->urg_seq - seq;
1351				if (urg_offset < len)
1352					len = urg_offset;
1353				if (!len)
1354					break;
1355			}
1356			used = recv_actor(desc, skb, offset, len);
1357			if (used < 0) {
1358				if (!copied)
1359					copied = used;
1360				break;
1361			} else if (used <= len) {
1362				seq += used;
1363				copied += used;
1364				offset += used;
1365			}
1366			/*
1367			 * If recv_actor drops the lock (e.g. TCP splice
 
 
 
 
 
1368			 * receive) the skb pointer might be invalid when
1369			 * getting here: tcp_collapse might have deleted it
1370			 * while aggregating skbs from the socket queue.
1371			 */
1372			skb = tcp_recv_skb(sk, seq-1, &offset);
1373			if (!skb || (offset+1 != skb->len))
1374				break;
 
 
 
 
 
1375		}
1376		if (tcp_hdr(skb)->fin) {
1377			sk_eat_skb(sk, skb, 0);
1378			++seq;
1379			break;
1380		}
1381		sk_eat_skb(sk, skb, 0);
1382		if (!desc->count)
1383			break;
1384		tp->copied_seq = seq;
1385	}
1386	tp->copied_seq = seq;
1387
1388	tcp_rcv_space_adjust(sk);
1389
1390	/* Clean up data we have read: This will do ACK frames. */
1391	if (copied > 0)
 
1392		tcp_cleanup_rbuf(sk, copied);
 
1393	return copied;
1394}
1395EXPORT_SYMBOL(tcp_read_sock);
1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397/*
1398 *	This routine copies from a sock struct into the user buffer.
1399 *
1400 *	Technical note: in 2.3 we work on _locked_ socket, so that
1401 *	tricks with *seq access order and skb->users are not required.
1402 *	Probably, code can be easily improved even more.
1403 */
1404
1405int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406		size_t len, int nonblock, int flags, int *addr_len)
 
1407{
1408	struct tcp_sock *tp = tcp_sk(sk);
1409	int copied = 0;
1410	u32 peek_seq;
1411	u32 *seq;
1412	unsigned long used;
1413	int err;
1414	int target;		/* Read at least this many bytes */
1415	long timeo;
1416	struct task_struct *user_recv = NULL;
1417	int copied_early = 0;
1418	struct sk_buff *skb;
1419	u32 urg_hole = 0;
1420
1421	lock_sock(sk);
1422
1423	err = -ENOTCONN;
1424	if (sk->sk_state == TCP_LISTEN)
1425		goto out;
1426
1427	timeo = sock_rcvtimeo(sk, nonblock);
 
 
 
 
1428
1429	/* Urgent data needs to be handled specially. */
1430	if (flags & MSG_OOB)
1431		goto recv_urg;
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433	seq = &tp->copied_seq;
1434	if (flags & MSG_PEEK) {
1435		peek_seq = tp->copied_seq;
1436		seq = &peek_seq;
1437	}
1438
1439	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440
1441#ifdef CONFIG_NET_DMA
1442	tp->ucopy.dma_chan = NULL;
1443	preempt_disable();
1444	skb = skb_peek_tail(&sk->sk_receive_queue);
1445	{
1446		int available = 0;
1447
1448		if (skb)
1449			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450		if ((available < target) &&
1451		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452		    !sysctl_tcp_low_latency &&
1453		    dma_find_channel(DMA_MEMCPY)) {
1454			preempt_enable_no_resched();
1455			tp->ucopy.pinned_list =
1456					dma_pin_iovec_pages(msg->msg_iov, len);
1457		} else {
1458			preempt_enable_no_resched();
1459		}
1460	}
1461#endif
1462
1463	do {
1464		u32 offset;
1465
1466		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467		if (tp->urg_data && tp->urg_seq == *seq) {
1468			if (copied)
1469				break;
1470			if (signal_pending(current)) {
1471				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472				break;
1473			}
1474		}
1475
1476		/* Next get a buffer. */
1477
 
1478		skb_queue_walk(&sk->sk_receive_queue, skb) {
 
1479			/* Now that we have two receive queues this
1480			 * shouldn't happen.
1481			 */
1482			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485				 flags))
1486				break;
1487
1488			offset = *seq - TCP_SKB_CB(skb)->seq;
1489			if (tcp_hdr(skb)->syn)
 
1490				offset--;
 
1491			if (offset < skb->len)
1492				goto found_ok_skb;
1493			if (tcp_hdr(skb)->fin)
1494				goto found_fin_ok;
1495			WARN(!(flags & MSG_PEEK),
1496			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498		}
1499
1500		/* Well, if we have backlog, try to process it now yet. */
1501
1502		if (copied >= target && !sk->sk_backlog.tail)
1503			break;
1504
1505		if (copied) {
1506			if (sk->sk_err ||
 
1507			    sk->sk_state == TCP_CLOSE ||
1508			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509			    !timeo ||
1510			    signal_pending(current))
1511				break;
1512		} else {
1513			if (sock_flag(sk, SOCK_DONE))
1514				break;
1515
1516			if (sk->sk_err) {
1517				copied = sock_error(sk);
1518				break;
1519			}
1520
1521			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522				break;
1523
1524			if (sk->sk_state == TCP_CLOSE) {
1525				if (!sock_flag(sk, SOCK_DONE)) {
1526					/* This occurs when user tries to read
1527					 * from never connected socket.
1528					 */
1529					copied = -ENOTCONN;
1530					break;
1531				}
1532				break;
1533			}
1534
1535			if (!timeo) {
1536				copied = -EAGAIN;
1537				break;
1538			}
1539
1540			if (signal_pending(current)) {
1541				copied = sock_intr_errno(timeo);
1542				break;
1543			}
1544		}
1545
1546		tcp_cleanup_rbuf(sk, copied);
1547
1548		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549			/* Install new reader */
1550			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551				user_recv = current;
1552				tp->ucopy.task = user_recv;
1553				tp->ucopy.iov = msg->msg_iov;
1554			}
1555
1556			tp->ucopy.len = len;
1557
1558			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560
1561			/* Ugly... If prequeue is not empty, we have to
1562			 * process it before releasing socket, otherwise
1563			 * order will be broken at second iteration.
1564			 * More elegant solution is required!!!
1565			 *
1566			 * Look: we have the following (pseudo)queues:
1567			 *
1568			 * 1. packets in flight
1569			 * 2. backlog
1570			 * 3. prequeue
1571			 * 4. receive_queue
1572			 *
1573			 * Each queue can be processed only if the next ones
1574			 * are empty. At this point we have empty receive_queue.
1575			 * But prequeue _can_ be not empty after 2nd iteration,
1576			 * when we jumped to start of loop because backlog
1577			 * processing added something to receive_queue.
1578			 * We cannot release_sock(), because backlog contains
1579			 * packets arrived _after_ prequeued ones.
1580			 *
1581			 * Shortly, algorithm is clear --- to process all
1582			 * the queues in order. We could make it more directly,
1583			 * requeueing packets from backlog to prequeue, if
1584			 * is not empty. It is more elegant, but eats cycles,
1585			 * unfortunately.
1586			 */
1587			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588				goto do_prequeue;
1589
1590			/* __ Set realtime policy in scheduler __ */
1591		}
1592
1593#ifdef CONFIG_NET_DMA
1594		if (tp->ucopy.dma_chan)
1595			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596#endif
1597		if (copied >= target) {
1598			/* Do not sleep, just process backlog. */
1599			release_sock(sk);
1600			lock_sock(sk);
1601		} else
1602			sk_wait_data(sk, &timeo);
1603
1604#ifdef CONFIG_NET_DMA
1605		tcp_service_net_dma(sk, false);  /* Don't block */
1606		tp->ucopy.wakeup = 0;
1607#endif
1608
1609		if (user_recv) {
1610			int chunk;
1611
1612			/* __ Restore normal policy in scheduler __ */
1613
1614			if ((chunk = len - tp->ucopy.len) != 0) {
1615				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616				len -= chunk;
1617				copied += chunk;
1618			}
1619
1620			if (tp->rcv_nxt == tp->copied_seq &&
1621			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622do_prequeue:
1623				tcp_prequeue_process(sk);
1624
1625				if ((chunk = len - tp->ucopy.len) != 0) {
1626					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627					len -= chunk;
1628					copied += chunk;
1629				}
1630			}
1631		}
 
1632		if ((flags & MSG_PEEK) &&
1633		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634			if (net_ratelimit())
1635				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636				       current->comm, task_pid_nr(current));
1637			peek_seq = tp->copied_seq;
1638		}
1639		continue;
1640
1641	found_ok_skb:
1642		/* Ok so how much can we use? */
1643		used = skb->len - offset;
1644		if (len < used)
1645			used = len;
1646
1647		/* Do we have urgent data here? */
1648		if (tp->urg_data) {
1649			u32 urg_offset = tp->urg_seq - *seq;
1650			if (urg_offset < used) {
1651				if (!urg_offset) {
1652					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653						++*seq;
1654						urg_hole++;
1655						offset++;
1656						used--;
1657						if (!used)
1658							goto skip_copy;
1659					}
1660				} else
1661					used = urg_offset;
1662			}
1663		}
1664
1665		if (!(flags & MSG_TRUNC)) {
1666#ifdef CONFIG_NET_DMA
1667			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669
1670			if (tp->ucopy.dma_chan) {
1671				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672					tp->ucopy.dma_chan, skb, offset,
1673					msg->msg_iov, used,
1674					tp->ucopy.pinned_list);
1675
1676				if (tp->ucopy.dma_cookie < 0) {
1677
1678					printk(KERN_ALERT "dma_cookie < 0\n");
1679
1680					/* Exception. Bailout! */
1681					if (!copied)
1682						copied = -EFAULT;
1683					break;
1684				}
1685
1686				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687
1688				if ((offset + used) == skb->len)
1689					copied_early = 1;
1690
1691			} else
1692#endif
1693			{
1694				err = skb_copy_datagram_iovec(skb, offset,
1695						msg->msg_iov, used);
1696				if (err) {
1697					/* Exception. Bailout! */
1698					if (!copied)
1699						copied = -EFAULT;
1700					break;
1701				}
1702			}
1703		}
1704
1705		*seq += used;
1706		copied += used;
1707		len -= used;
1708
1709		tcp_rcv_space_adjust(sk);
1710
1711skip_copy:
1712		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713			tp->urg_data = 0;
1714			tcp_fast_path_check(sk);
1715		}
 
 
 
 
 
 
1716		if (used + offset < skb->len)
1717			continue;
1718
1719		if (tcp_hdr(skb)->fin)
1720			goto found_fin_ok;
1721		if (!(flags & MSG_PEEK)) {
1722			sk_eat_skb(sk, skb, copied_early);
1723			copied_early = 0;
1724		}
1725		continue;
1726
1727	found_fin_ok:
1728		/* Process the FIN. */
1729		++*seq;
1730		if (!(flags & MSG_PEEK)) {
1731			sk_eat_skb(sk, skb, copied_early);
1732			copied_early = 0;
1733		}
1734		break;
1735	} while (len > 0);
1736
1737	if (user_recv) {
1738		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739			int chunk;
1740
1741			tp->ucopy.len = copied > 0 ? len : 0;
1742
1743			tcp_prequeue_process(sk);
1744
1745			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747				len -= chunk;
1748				copied += chunk;
1749			}
1750		}
1751
1752		tp->ucopy.task = NULL;
1753		tp->ucopy.len = 0;
1754	}
1755
1756#ifdef CONFIG_NET_DMA
1757	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758	tp->ucopy.dma_chan = NULL;
1759
1760	if (tp->ucopy.pinned_list) {
1761		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762		tp->ucopy.pinned_list = NULL;
1763	}
1764#endif
1765
1766	/* According to UNIX98, msg_name/msg_namelen are ignored
1767	 * on connected socket. I was just happy when found this 8) --ANK
1768	 */
1769
1770	/* Clean up data we have read: This will do ACK frames. */
1771	tcp_cleanup_rbuf(sk, copied);
1772
1773	release_sock(sk);
1774	return copied;
1775
1776out:
1777	release_sock(sk);
1778	return err;
1779
1780recv_urg:
1781	err = tcp_recv_urg(sk, msg, len, flags);
1782	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783}
1784EXPORT_SYMBOL(tcp_recvmsg);
1785
1786void tcp_set_state(struct sock *sk, int state)
1787{
1788	int oldstate = sk->sk_state;
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790	switch (state) {
1791	case TCP_ESTABLISHED:
1792		if (oldstate != TCP_ESTABLISHED)
1793			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794		break;
1795
1796	case TCP_CLOSE:
1797		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799
1800		sk->sk_prot->unhash(sk);
1801		if (inet_csk(sk)->icsk_bind_hash &&
1802		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803			inet_put_port(sk);
1804		/* fall through */
1805	default:
1806		if (oldstate == TCP_ESTABLISHED)
1807			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808	}
1809
1810	/* Change state AFTER socket is unhashed to avoid closed
1811	 * socket sitting in hash tables.
1812	 */
1813	sk->sk_state = state;
1814
1815#ifdef STATE_TRACE
1816	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817#endif
1818}
1819EXPORT_SYMBOL_GPL(tcp_set_state);
1820
1821/*
1822 *	State processing on a close. This implements the state shift for
1823 *	sending our FIN frame. Note that we only send a FIN for some
1824 *	states. A shutdown() may have already sent the FIN, or we may be
1825 *	closed.
1826 */
1827
1828static const unsigned char new_state[16] = {
1829  /* current state:        new state:      action:	*/
1830  /* (Invalid)		*/ TCP_CLOSE,
1831  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837  /* TCP_CLOSE		*/ TCP_CLOSE,
1838  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840  /* TCP_LISTEN		*/ TCP_CLOSE,
1841  /* TCP_CLOSING	*/ TCP_CLOSING,
 
1842};
1843
1844static int tcp_close_state(struct sock *sk)
1845{
1846	int next = (int)new_state[sk->sk_state];
1847	int ns = next & TCP_STATE_MASK;
1848
1849	tcp_set_state(sk, ns);
1850
1851	return next & TCP_ACTION_FIN;
1852}
1853
1854/*
1855 *	Shutdown the sending side of a connection. Much like close except
1856 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857 */
1858
1859void tcp_shutdown(struct sock *sk, int how)
1860{
1861	/*	We need to grab some memory, and put together a FIN,
1862	 *	and then put it into the queue to be sent.
1863	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864	 */
1865	if (!(how & SEND_SHUTDOWN))
1866		return;
1867
1868	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869	if ((1 << sk->sk_state) &
1870	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872		/* Clear out any half completed packets.  FIN if needed. */
1873		if (tcp_close_state(sk))
1874			tcp_send_fin(sk);
1875	}
1876}
1877EXPORT_SYMBOL(tcp_shutdown);
1878
1879void tcp_close(struct sock *sk, long timeout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880{
1881	struct sk_buff *skb;
1882	int data_was_unread = 0;
1883	int state;
1884
1885	lock_sock(sk);
1886	sk->sk_shutdown = SHUTDOWN_MASK;
1887
1888	if (sk->sk_state == TCP_LISTEN) {
1889		tcp_set_state(sk, TCP_CLOSE);
1890
1891		/* Special case. */
1892		inet_csk_listen_stop(sk);
1893
1894		goto adjudge_to_death;
1895	}
1896
1897	/*  We need to flush the recv. buffs.  We do this only on the
1898	 *  descriptor close, not protocol-sourced closes, because the
1899	 *  reader process may not have drained the data yet!
1900	 */
1901	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1902		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1903			  tcp_hdr(skb)->fin;
 
 
1904		data_was_unread += len;
1905		__kfree_skb(skb);
1906	}
1907
1908	sk_mem_reclaim(sk);
1909
1910	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1911	if (sk->sk_state == TCP_CLOSE)
1912		goto adjudge_to_death;
1913
1914	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1915	 * data was lost. To witness the awful effects of the old behavior of
1916	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1917	 * GET in an FTP client, suspend the process, wait for the client to
1918	 * advertise a zero window, then kill -9 the FTP client, wheee...
1919	 * Note: timeout is always zero in such a case.
1920	 */
1921	if (data_was_unread) {
 
 
1922		/* Unread data was tossed, zap the connection. */
1923		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1924		tcp_set_state(sk, TCP_CLOSE);
1925		tcp_send_active_reset(sk, sk->sk_allocation);
1926	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1927		/* Check zero linger _after_ checking for unread data. */
1928		sk->sk_prot->disconnect(sk, 0);
1929		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1930	} else if (tcp_close_state(sk)) {
1931		/* We FIN if the application ate all the data before
1932		 * zapping the connection.
1933		 */
1934
1935		/* RED-PEN. Formally speaking, we have broken TCP state
1936		 * machine. State transitions:
1937		 *
1938		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1939		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1940		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1941		 *
1942		 * are legal only when FIN has been sent (i.e. in window),
1943		 * rather than queued out of window. Purists blame.
1944		 *
1945		 * F.e. "RFC state" is ESTABLISHED,
1946		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1947		 *
1948		 * The visible declinations are that sometimes
1949		 * we enter time-wait state, when it is not required really
1950		 * (harmless), do not send active resets, when they are
1951		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1952		 * they look as CLOSING or LAST_ACK for Linux)
1953		 * Probably, I missed some more holelets.
1954		 * 						--ANK
 
 
 
 
1955		 */
1956		tcp_send_fin(sk);
1957	}
1958
1959	sk_stream_wait_close(sk, timeout);
1960
1961adjudge_to_death:
1962	state = sk->sk_state;
1963	sock_hold(sk);
1964	sock_orphan(sk);
1965
1966	/* It is the last release_sock in its life. It will remove backlog. */
1967	release_sock(sk);
1968
1969
1970	/* Now socket is owned by kernel and we acquire BH lock
1971	   to finish close. No need to check for user refs.
1972	 */
1973	local_bh_disable();
1974	bh_lock_sock(sk);
1975	WARN_ON(sock_owned_by_user(sk));
 
1976
1977	percpu_counter_inc(sk->sk_prot->orphan_count);
1978
1979	/* Have we already been destroyed by a softirq or backlog? */
1980	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1981		goto out;
1982
1983	/*	This is a (useful) BSD violating of the RFC. There is a
1984	 *	problem with TCP as specified in that the other end could
1985	 *	keep a socket open forever with no application left this end.
1986	 *	We use a 3 minute timeout (about the same as BSD) then kill
1987	 *	our end. If they send after that then tough - BUT: long enough
1988	 *	that we won't make the old 4*rto = almost no time - whoops
1989	 *	reset mistake.
1990	 *
1991	 *	Nope, it was not mistake. It is really desired behaviour
1992	 *	f.e. on http servers, when such sockets are useless, but
1993	 *	consume significant resources. Let's do it with special
1994	 *	linger2	option.					--ANK
1995	 */
1996
1997	if (sk->sk_state == TCP_FIN_WAIT2) {
1998		struct tcp_sock *tp = tcp_sk(sk);
1999		if (tp->linger2 < 0) {
2000			tcp_set_state(sk, TCP_CLOSE);
2001			tcp_send_active_reset(sk, GFP_ATOMIC);
2002			NET_INC_STATS_BH(sock_net(sk),
2003					LINUX_MIB_TCPABORTONLINGER);
2004		} else {
2005			const int tmo = tcp_fin_time(sk);
2006
2007			if (tmo > TCP_TIMEWAIT_LEN) {
2008				inet_csk_reset_keepalive_timer(sk,
2009						tmo - TCP_TIMEWAIT_LEN);
2010			} else {
2011				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2012				goto out;
2013			}
2014		}
2015	}
2016	if (sk->sk_state != TCP_CLOSE) {
2017		sk_mem_reclaim(sk);
2018		if (tcp_too_many_orphans(sk, 0)) {
2019			if (net_ratelimit())
2020				printk(KERN_INFO "TCP: too many of orphaned "
2021				       "sockets\n");
2022			tcp_set_state(sk, TCP_CLOSE);
2023			tcp_send_active_reset(sk, GFP_ATOMIC);
2024			NET_INC_STATS_BH(sock_net(sk),
2025					LINUX_MIB_TCPABORTONMEMORY);
 
 
 
2026		}
2027	}
2028
2029	if (sk->sk_state == TCP_CLOSE)
 
 
 
 
 
 
 
 
 
 
2030		inet_csk_destroy_sock(sk);
 
2031	/* Otherwise, socket is reprieved until protocol close. */
2032
2033out:
2034	bh_unlock_sock(sk);
2035	local_bh_enable();
 
 
 
 
 
 
 
 
 
2036	sock_put(sk);
2037}
2038EXPORT_SYMBOL(tcp_close);
2039
2040/* These states need RST on ABORT according to RFC793 */
2041
2042static inline int tcp_need_reset(int state)
2043{
2044	return (1 << state) &
2045	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047}
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049int tcp_disconnect(struct sock *sk, int flags)
2050{
2051	struct inet_sock *inet = inet_sk(sk);
2052	struct inet_connection_sock *icsk = inet_csk(sk);
2053	struct tcp_sock *tp = tcp_sk(sk);
2054	int err = 0;
2055	int old_state = sk->sk_state;
 
2056
2057	if (old_state != TCP_CLOSE)
2058		tcp_set_state(sk, TCP_CLOSE);
2059
2060	/* ABORT function of RFC793 */
2061	if (old_state == TCP_LISTEN) {
2062		inet_csk_listen_stop(sk);
 
 
2063	} else if (tcp_need_reset(old_state) ||
2064		   (tp->snd_nxt != tp->write_seq &&
2065		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067		 * states
2068		 */
2069		tcp_send_active_reset(sk, gfp_any());
2070		sk->sk_err = ECONNRESET;
2071	} else if (old_state == TCP_SYN_SENT)
2072		sk->sk_err = ECONNRESET;
2073
2074	tcp_clear_xmit_timers(sk);
2075	__skb_queue_purge(&sk->sk_receive_queue);
 
 
2076	tcp_write_queue_purge(sk);
2077	__skb_queue_purge(&tp->out_of_order_queue);
2078#ifdef CONFIG_NET_DMA
2079	__skb_queue_purge(&sk->sk_async_wait_queue);
2080#endif
2081
2082	inet->inet_dport = 0;
2083
2084	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085		inet_reset_saddr(sk);
2086
2087	sk->sk_shutdown = 0;
2088	sock_reset_flag(sk, SOCK_DONE);
2089	tp->srtt = 0;
2090	if ((tp->write_seq += tp->max_window + 2) == 0)
2091		tp->write_seq = 1;
 
 
 
 
 
 
2092	icsk->icsk_backoff = 0;
2093	tp->snd_cwnd = 2;
2094	icsk->icsk_probes_out = 0;
2095	tp->packets_out = 0;
 
 
 
2096	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 
2097	tp->snd_cwnd_cnt = 0;
2098	tp->bytes_acked = 0;
 
2099	tp->window_clamp = 0;
 
 
 
 
 
 
2100	tcp_set_ca_state(sk, TCP_CA_Open);
 
2101	tcp_clear_retrans(tp);
 
2102	inet_csk_delack_init(sk);
2103	tcp_init_send_head(sk);
 
 
 
2104	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105	__sk_dst_reset(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106
2107	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108
2109	sk->sk_error_report(sk);
2110	return err;
 
 
 
 
 
2111}
2112EXPORT_SYMBOL(tcp_disconnect);
2113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114/*
2115 *	Socket option code for TCP.
2116 */
2117static int do_tcp_setsockopt(struct sock *sk, int level,
2118		int optname, char __user *optval, unsigned int optlen)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	struct inet_connection_sock *icsk = inet_csk(sk);
 
2122	int val;
2123	int err = 0;
2124
2125	/* These are data/string values, all the others are ints */
2126	switch (optname) {
2127	case TCP_CONGESTION: {
2128		char name[TCP_CA_NAME_MAX];
2129
2130		if (optlen < 1)
2131			return -EINVAL;
2132
2133		val = strncpy_from_user(name, optval,
2134					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135		if (val < 0)
2136			return -EFAULT;
2137		name[val] = 0;
2138
2139		lock_sock(sk);
2140		err = tcp_set_congestion_control(sk, name);
2141		release_sock(sk);
 
 
2142		return err;
2143	}
2144	case TCP_COOKIE_TRANSACTIONS: {
2145		struct tcp_cookie_transactions ctd;
2146		struct tcp_cookie_values *cvp = NULL;
2147
2148		if (sizeof(ctd) > optlen)
2149			return -EINVAL;
2150		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151			return -EFAULT;
2152
2153		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155			return -EINVAL;
2156
2157		if (ctd.tcpct_cookie_desired == 0) {
2158			/* default to global value */
2159		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162			return -EINVAL;
2163		}
2164
2165		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166			/* Supercedes all other values */
2167			lock_sock(sk);
2168			if (tp->cookie_values != NULL) {
2169				kref_put(&tp->cookie_values->kref,
2170					 tcp_cookie_values_release);
2171				tp->cookie_values = NULL;
2172			}
2173			tp->rx_opt.cookie_in_always = 0; /* false */
2174			tp->rx_opt.cookie_out_never = 1; /* true */
2175			release_sock(sk);
2176			return err;
2177		}
2178
2179		/* Allocate ancillary memory before locking.
 
2180		 */
2181		if (ctd.tcpct_used > 0 ||
2182		    (tp->cookie_values == NULL &&
2183		     (sysctl_tcp_cookie_size > 0 ||
2184		      ctd.tcpct_cookie_desired > 0 ||
2185		      ctd.tcpct_s_data_desired > 0))) {
2186			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187				      GFP_KERNEL);
2188			if (cvp == NULL)
2189				return -ENOMEM;
2190
2191			kref_init(&cvp->kref);
2192		}
2193		lock_sock(sk);
2194		tp->rx_opt.cookie_in_always =
2195			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196		tp->rx_opt.cookie_out_never = 0; /* false */
2197
2198		if (tp->cookie_values != NULL) {
2199			if (cvp != NULL) {
2200				/* Changed values are recorded by a changed
2201				 * pointer, ensuring the cookie will differ,
2202				 * without separately hashing each value later.
2203				 */
2204				kref_put(&tp->cookie_values->kref,
2205					 tcp_cookie_values_release);
2206			} else {
2207				cvp = tp->cookie_values;
2208			}
2209		}
2210
2211		if (cvp != NULL) {
2212			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213
2214			if (ctd.tcpct_used > 0) {
2215				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216				       ctd.tcpct_used);
2217				cvp->s_data_desired = ctd.tcpct_used;
2218				cvp->s_data_constant = 1; /* true */
2219			} else {
2220				/* No constant payload data. */
2221				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222				cvp->s_data_constant = 0; /* false */
2223			}
2224
2225			tp->cookie_values = cvp;
2226		}
2227		release_sock(sk);
2228		return err;
2229	}
2230	default:
2231		/* fallthru */
2232		break;
2233	}
2234
2235	if (optlen < sizeof(int))
2236		return -EINVAL;
2237
2238	if (get_user(val, (int __user *)optval))
2239		return -EFAULT;
2240
2241	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242
2243	switch (optname) {
2244	case TCP_MAXSEG:
2245		/* Values greater than interface MTU won't take effect. However
2246		 * at the point when this call is done we typically don't yet
2247		 * know which interface is going to be used */
2248		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
 
2249			err = -EINVAL;
2250			break;
2251		}
2252		tp->rx_opt.user_mss = val;
2253		break;
2254
2255	case TCP_NODELAY:
2256		if (val) {
2257			/* TCP_NODELAY is weaker than TCP_CORK, so that
2258			 * this option on corked socket is remembered, but
2259			 * it is not activated until cork is cleared.
2260			 *
2261			 * However, when TCP_NODELAY is set we make
2262			 * an explicit push, which overrides even TCP_CORK
2263			 * for currently queued segments.
2264			 */
2265			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266			tcp_push_pending_frames(sk);
2267		} else {
2268			tp->nonagle &= ~TCP_NAGLE_OFF;
2269		}
2270		break;
2271
2272	case TCP_THIN_LINEAR_TIMEOUTS:
2273		if (val < 0 || val > 1)
2274			err = -EINVAL;
2275		else
2276			tp->thin_lto = val;
2277		break;
2278
2279	case TCP_THIN_DUPACK:
2280		if (val < 0 || val > 1)
2281			err = -EINVAL;
2282		else
2283			tp->thin_dupack = val;
2284		break;
2285
2286	case TCP_CORK:
2287		/* When set indicates to always queue non-full frames.
2288		 * Later the user clears this option and we transmit
2289		 * any pending partial frames in the queue.  This is
2290		 * meant to be used alongside sendfile() to get properly
2291		 * filled frames when the user (for example) must write
2292		 * out headers with a write() call first and then use
2293		 * sendfile to send out the data parts.
2294		 *
2295		 * TCP_CORK can be set together with TCP_NODELAY and it is
2296		 * stronger than TCP_NODELAY.
2297		 */
2298		if (val) {
2299			tp->nonagle |= TCP_NAGLE_CORK;
2300		} else {
2301			tp->nonagle &= ~TCP_NAGLE_CORK;
2302			if (tp->nonagle&TCP_NAGLE_OFF)
2303				tp->nonagle |= TCP_NAGLE_PUSH;
2304			tcp_push_pending_frames(sk);
2305		}
2306		break;
2307
2308	case TCP_KEEPIDLE:
2309		if (val < 1 || val > MAX_TCP_KEEPIDLE)
 
 
 
 
 
 
 
 
 
 
 
 
 
2310			err = -EINVAL;
2311		else {
2312			tp->keepalive_time = val * HZ;
2313			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314			    !((1 << sk->sk_state) &
2315			      (TCPF_CLOSE | TCPF_LISTEN))) {
2316				u32 elapsed = keepalive_time_elapsed(tp);
2317				if (tp->keepalive_time > elapsed)
2318					elapsed = tp->keepalive_time - elapsed;
2319				else
2320					elapsed = 0;
2321				inet_csk_reset_keepalive_timer(sk, elapsed);
2322			}
2323		}
2324		break;
2325	case TCP_KEEPINTVL:
2326		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327			err = -EINVAL;
 
 
 
2328		else
2329			tp->keepalive_intvl = val * HZ;
2330		break;
2331	case TCP_KEEPCNT:
2332		if (val < 1 || val > MAX_TCP_KEEPCNT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333			err = -EINVAL;
2334		else
2335			tp->keepalive_probes = val;
2336		break;
2337	case TCP_SYNCNT:
2338		if (val < 1 || val > MAX_TCP_SYNCNT)
 
2339			err = -EINVAL;
 
 
2340		else
2341			icsk->icsk_syn_retries = val;
2342		break;
2343
2344	case TCP_LINGER2:
2345		if (val < 0)
2346			tp->linger2 = -1;
2347		else if (val > sysctl_tcp_fin_timeout / HZ)
2348			tp->linger2 = 0;
2349		else
2350			tp->linger2 = val * HZ;
2351		break;
2352
2353	case TCP_DEFER_ACCEPT:
2354		/* Translate value in seconds to number of retransmits */
2355		icsk->icsk_accept_queue.rskq_defer_accept =
2356			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357					TCP_RTO_MAX / HZ);
 
 
 
 
2358		break;
2359
2360	case TCP_WINDOW_CLAMP:
2361		if (!val) {
2362			if (sk->sk_state != TCP_CLOSE) {
2363				err = -EINVAL;
2364				break;
2365			}
2366			tp->window_clamp = 0;
2367		} else
2368			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369						SOCK_MIN_RCVBUF / 2 : val;
2370		break;
2371
2372	case TCP_QUICKACK:
2373		if (!val) {
2374			icsk->icsk_ack.pingpong = 1;
2375		} else {
2376			icsk->icsk_ack.pingpong = 0;
2377			if ((1 << sk->sk_state) &
2378			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379			    inet_csk_ack_scheduled(sk)) {
2380				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381				tcp_cleanup_rbuf(sk, 1);
2382				if (!(val & 1))
2383					icsk->icsk_ack.pingpong = 1;
2384			}
2385		}
2386		break;
2387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388#ifdef CONFIG_TCP_MD5SIG
2389	case TCP_MD5SIG:
2390		/* Read the IP->Key mappings from userspace */
2391		err = tp->af_specific->md5_parse(sk, optval, optlen);
2392		break;
2393#endif
2394	case TCP_USER_TIMEOUT:
2395		/* Cap the max timeout in ms TCP will retry/retrans
2396		 * before giving up and aborting (ETIMEDOUT) a connection.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397		 */
2398		icsk->icsk_user_timeout = msecs_to_jiffies(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399		break;
2400	default:
2401		err = -ENOPROTOOPT;
2402		break;
2403	}
2404
2405	release_sock(sk);
2406	return err;
2407}
2408
2409int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2410		   unsigned int optlen)
2411{
2412	struct inet_connection_sock *icsk = inet_csk(sk);
2413
2414	if (level != SOL_TCP)
2415		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2416						     optval, optlen);
 
2417	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2418}
2419EXPORT_SYMBOL(tcp_setsockopt);
2420
2421#ifdef CONFIG_COMPAT
2422int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2423			  char __user *optval, unsigned int optlen)
2424{
2425	if (level != SOL_TCP)
2426		return inet_csk_compat_setsockopt(sk, level, optname,
2427						  optval, optlen);
2428	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
 
 
 
 
 
 
 
 
 
 
2429}
2430EXPORT_SYMBOL(compat_tcp_setsockopt);
2431#endif
2432
2433/* Return information about state of tcp endpoint in API format. */
2434void tcp_get_info(struct sock *sk, struct tcp_info *info)
2435{
2436	struct tcp_sock *tp = tcp_sk(sk);
2437	const struct inet_connection_sock *icsk = inet_csk(sk);
2438	u32 now = tcp_time_stamp;
 
 
 
2439
2440	memset(info, 0, sizeof(*info));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441
2442	info->tcpi_state = sk->sk_state;
2443	info->tcpi_ca_state = icsk->icsk_ca_state;
2444	info->tcpi_retransmits = icsk->icsk_retransmits;
2445	info->tcpi_probes = icsk->icsk_probes_out;
2446	info->tcpi_backoff = icsk->icsk_backoff;
2447
2448	if (tp->rx_opt.tstamp_ok)
2449		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2450	if (tcp_is_sack(tp))
2451		info->tcpi_options |= TCPI_OPT_SACK;
2452	if (tp->rx_opt.wscale_ok) {
2453		info->tcpi_options |= TCPI_OPT_WSCALE;
2454		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2455		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2456	}
2457
2458	if (tp->ecn_flags&TCP_ECN_OK)
2459		info->tcpi_options |= TCPI_OPT_ECN;
 
 
 
 
 
 
2460
2461	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2462	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
 
2463	info->tcpi_snd_mss = tp->mss_cache;
2464	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2465
2466	if (sk->sk_state == TCP_LISTEN) {
2467		info->tcpi_unacked = sk->sk_ack_backlog;
2468		info->tcpi_sacked = sk->sk_max_ack_backlog;
2469	} else {
2470		info->tcpi_unacked = tp->packets_out;
2471		info->tcpi_sacked = tp->sacked_out;
2472	}
2473	info->tcpi_lost = tp->lost_out;
2474	info->tcpi_retrans = tp->retrans_out;
2475	info->tcpi_fackets = tp->fackets_out;
2476
 
2477	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2478	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2479	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2480
2481	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2482	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2483	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2484	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2485	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2486	info->tcpi_snd_cwnd = tp->snd_cwnd;
2487	info->tcpi_advmss = tp->advmss;
2488	info->tcpi_reordering = tp->reordering;
2489
2490	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2491	info->tcpi_rcv_space = tp->rcvq_space.space;
2492
2493	info->tcpi_total_retrans = tp->total_retrans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494}
2495EXPORT_SYMBOL_GPL(tcp_get_info);
2496
2497static int do_tcp_getsockopt(struct sock *sk, int level,
2498		int optname, char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499{
2500	struct inet_connection_sock *icsk = inet_csk(sk);
2501	struct tcp_sock *tp = tcp_sk(sk);
 
2502	int val, len;
2503
2504	if (get_user(len, optlen))
2505		return -EFAULT;
2506
2507	len = min_t(unsigned int, len, sizeof(int));
2508
2509	if (len < 0)
2510		return -EINVAL;
2511
 
 
2512	switch (optname) {
2513	case TCP_MAXSEG:
2514		val = tp->mss_cache;
2515		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
 
2516			val = tp->rx_opt.user_mss;
 
 
2517		break;
2518	case TCP_NODELAY:
2519		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2520		break;
2521	case TCP_CORK:
2522		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2523		break;
2524	case TCP_KEEPIDLE:
2525		val = keepalive_time_when(tp) / HZ;
2526		break;
2527	case TCP_KEEPINTVL:
2528		val = keepalive_intvl_when(tp) / HZ;
2529		break;
2530	case TCP_KEEPCNT:
2531		val = keepalive_probes(tp);
2532		break;
2533	case TCP_SYNCNT:
2534		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
 
2535		break;
2536	case TCP_LINGER2:
2537		val = tp->linger2;
2538		if (val >= 0)
2539			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2540		break;
2541	case TCP_DEFER_ACCEPT:
2542		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2543				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
 
2544		break;
2545	case TCP_WINDOW_CLAMP:
2546		val = tp->window_clamp;
2547		break;
2548	case TCP_INFO: {
2549		struct tcp_info info;
2550
2551		if (get_user(len, optlen))
2552			return -EFAULT;
2553
2554		tcp_get_info(sk, &info);
2555
2556		len = min_t(unsigned int, len, sizeof(info));
2557		if (put_user(len, optlen))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558			return -EFAULT;
2559		if (copy_to_user(optval, &info, len))
2560			return -EFAULT;
2561		return 0;
2562	}
2563	case TCP_QUICKACK:
2564		val = !icsk->icsk_ack.pingpong;
2565		break;
2566
2567	case TCP_CONGESTION:
2568		if (get_user(len, optlen))
2569			return -EFAULT;
2570		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2571		if (put_user(len, optlen))
2572			return -EFAULT;
2573		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2574			return -EFAULT;
2575		return 0;
2576
2577	case TCP_COOKIE_TRANSACTIONS: {
2578		struct tcp_cookie_transactions ctd;
2579		struct tcp_cookie_values *cvp = tp->cookie_values;
2580
2581		if (get_user(len, optlen))
2582			return -EFAULT;
2583		if (len < sizeof(ctd))
2584			return -EINVAL;
2585
2586		memset(&ctd, 0, sizeof(ctd));
2587		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2588				   TCP_COOKIE_IN_ALWAYS : 0)
2589				| (tp->rx_opt.cookie_out_never ?
2590				   TCP_COOKIE_OUT_NEVER : 0);
2591
2592		if (cvp != NULL) {
2593			ctd.tcpct_flags |= (cvp->s_data_in ?
2594					    TCP_S_DATA_IN : 0)
2595					 | (cvp->s_data_out ?
2596					    TCP_S_DATA_OUT : 0);
2597
2598			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2599			ctd.tcpct_s_data_desired = cvp->s_data_desired;
 
2600
2601			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2602			       cvp->cookie_pair_size);
2603			ctd.tcpct_used = cvp->cookie_pair_size;
2604		}
2605
2606		if (put_user(sizeof(ctd), optlen))
 
 
 
2607			return -EFAULT;
2608		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2609			return -EFAULT;
2610		return 0;
2611	}
2612	case TCP_THIN_LINEAR_TIMEOUTS:
2613		val = tp->thin_lto;
2614		break;
 
2615	case TCP_THIN_DUPACK:
2616		val = tp->thin_dupack;
2617		break;
2618
2619	case TCP_USER_TIMEOUT:
2620		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2621		break;
2622	default:
2623		return -ENOPROTOOPT;
2624	}
2625
2626	if (put_user(len, optlen))
2627		return -EFAULT;
2628	if (copy_to_user(optval, &val, len))
2629		return -EFAULT;
2630	return 0;
2631}
2632
2633int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2634		   int __user *optlen)
2635{
2636	struct inet_connection_sock *icsk = inet_csk(sk);
2637
2638	if (level != SOL_TCP)
2639		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2640						     optval, optlen);
2641	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642}
2643EXPORT_SYMBOL(tcp_getsockopt);
2644
2645#ifdef CONFIG_COMPAT
2646int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2647			  char __user *optval, int __user *optlen)
2648{
2649	if (level != SOL_TCP)
2650		return inet_csk_compat_getsockopt(sk, level, optname,
2651						  optval, optlen);
2652	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2653}
2654EXPORT_SYMBOL(compat_tcp_getsockopt);
2655#endif
2656
2657struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2658{
2659	struct sk_buff *segs = ERR_PTR(-EINVAL);
2660	struct tcphdr *th;
2661	unsigned thlen;
2662	unsigned int seq;
2663	__be32 delta;
2664	unsigned int oldlen;
2665	unsigned int mss;
2666
2667	if (!pskb_may_pull(skb, sizeof(*th)))
2668		goto out;
2669
2670	th = tcp_hdr(skb);
2671	thlen = th->doff * 4;
2672	if (thlen < sizeof(*th))
2673		goto out;
2674
2675	if (!pskb_may_pull(skb, thlen))
2676		goto out;
2677
2678	oldlen = (u16)~skb->len;
2679	__skb_pull(skb, thlen);
2680
2681	mss = skb_shinfo(skb)->gso_size;
2682	if (unlikely(skb->len <= mss))
2683		goto out;
2684
2685	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2686		/* Packet is from an untrusted source, reset gso_segs. */
2687		int type = skb_shinfo(skb)->gso_type;
2688
2689		if (unlikely(type &
2690			     ~(SKB_GSO_TCPV4 |
2691			       SKB_GSO_DODGY |
2692			       SKB_GSO_TCP_ECN |
2693			       SKB_GSO_TCPV6 |
2694			       0) ||
2695			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2696			goto out;
2697
2698		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
 
 
 
 
2699
2700		segs = NULL;
2701		goto out;
 
2702	}
 
 
 
 
 
 
 
 
2703
2704	segs = skb_segment(skb, features);
2705	if (IS_ERR(segs))
2706		goto out;
2707
2708	delta = htonl(oldlen + (thlen + mss));
2709
2710	skb = segs;
2711	th = tcp_hdr(skb);
2712	seq = ntohl(th->seq);
2713
2714	do {
2715		th->fin = th->psh = 0;
 
2716
2717		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2718				       (__force u32)delta));
2719		if (skb->ip_summed != CHECKSUM_PARTIAL)
2720			th->check =
2721			     csum_fold(csum_partial(skb_transport_header(skb),
2722						    thlen, skb->csum));
2723
2724		seq += mss;
2725		skb = skb->next;
2726		th = tcp_hdr(skb);
2727
2728		th->seq = htonl(seq);
2729		th->cwr = 0;
2730	} while (skb->next);
2731
2732	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2733		      skb->data_len);
2734	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735				(__force u32)delta));
2736	if (skb->ip_summed != CHECKSUM_PARTIAL)
2737		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2738						   thlen, skb->csum));
2739
2740out:
2741	return segs;
2742}
2743EXPORT_SYMBOL(tcp_tso_segment);
2744
2745struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2746{
2747	struct sk_buff **pp = NULL;
2748	struct sk_buff *p;
2749	struct tcphdr *th;
2750	struct tcphdr *th2;
2751	unsigned int len;
2752	unsigned int thlen;
2753	__be32 flags;
2754	unsigned int mss = 1;
2755	unsigned int hlen;
2756	unsigned int off;
2757	int flush = 1;
2758	int i;
2759
2760	off = skb_gro_offset(skb);
2761	hlen = off + sizeof(*th);
2762	th = skb_gro_header_fast(skb, off);
2763	if (skb_gro_header_hard(skb, hlen)) {
2764		th = skb_gro_header_slow(skb, hlen, off);
2765		if (unlikely(!th))
2766			goto out;
2767	}
2768
2769	thlen = th->doff * 4;
2770	if (thlen < sizeof(*th))
2771		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772
2773	hlen = off + thlen;
2774	if (skb_gro_header_hard(skb, hlen)) {
2775		th = skb_gro_header_slow(skb, hlen, off);
2776		if (unlikely(!th))
2777			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778	}
 
 
 
 
 
2779
2780	skb_gro_pull(skb, thlen);
2781
2782	len = skb_gro_len(skb);
2783	flags = tcp_flag_word(th);
2784
2785	for (; (p = *head); head = &p->next) {
2786		if (!NAPI_GRO_CB(p)->same_flow)
2787			continue;
2788
2789		th2 = tcp_hdr(p);
2790
2791		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2792			NAPI_GRO_CB(p)->same_flow = 0;
2793			continue;
2794		}
2795
2796		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2798
2799	goto out_check_final;
2800
2801found:
2802	flush = NAPI_GRO_CB(p)->flush;
2803	flush |= (__force int)(flags & TCP_FLAG_CWR);
2804	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2805		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2806	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2807	for (i = sizeof(*th); i < thlen; i += 4)
2808		flush |= *(u32 *)((u8 *)th + i) ^
2809			 *(u32 *)((u8 *)th2 + i);
2810
2811	mss = skb_shinfo(p)->gso_size;
2812
2813	flush |= (len - 1) >= mss;
2814	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2815
2816	if (flush || skb_gro_receive(head, skb)) {
2817		mss = 1;
2818		goto out_check_final;
2819	}
2820
2821	p = *head;
2822	th2 = tcp_hdr(p);
2823	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2824
2825out_check_final:
2826	flush = len < mss;
2827	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2828					TCP_FLAG_RST | TCP_FLAG_SYN |
2829					TCP_FLAG_FIN));
2830
2831	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2832		pp = head;
2833
2834out:
2835	NAPI_GRO_CB(skb)->flush |= flush;
2836
2837	return pp;
2838}
2839EXPORT_SYMBOL(tcp_gro_receive);
2840
2841int tcp_gro_complete(struct sk_buff *skb)
2842{
2843	struct tcphdr *th = tcp_hdr(skb);
2844
2845	skb->csum_start = skb_transport_header(skb) - skb->head;
2846	skb->csum_offset = offsetof(struct tcphdr, check);
2847	skb->ip_summed = CHECKSUM_PARTIAL;
2848
2849	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2850
2851	if (th->cwr)
2852		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2853
2854	return 0;
2855}
2856EXPORT_SYMBOL(tcp_gro_complete);
2857
2858#ifdef CONFIG_TCP_MD5SIG
2859static unsigned long tcp_md5sig_users;
2860static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2861static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2862
2863static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2864{
2865	int cpu;
2866	for_each_possible_cpu(cpu) {
2867		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2868		if (p) {
2869			if (p->md5_desc.tfm)
2870				crypto_free_hash(p->md5_desc.tfm);
2871			kfree(p);
2872		}
2873	}
2874	free_percpu(pool);
2875}
2876
2877void tcp_free_md5sig_pool(void)
2878{
2879	struct tcp_md5sig_pool * __percpu *pool = NULL;
2880
2881	spin_lock_bh(&tcp_md5sig_pool_lock);
2882	if (--tcp_md5sig_users == 0) {
2883		pool = tcp_md5sig_pool;
2884		tcp_md5sig_pool = NULL;
2885	}
2886	spin_unlock_bh(&tcp_md5sig_pool_lock);
2887	if (pool)
2888		__tcp_free_md5sig_pool(pool);
2889}
2890EXPORT_SYMBOL(tcp_free_md5sig_pool);
2891
2892static struct tcp_md5sig_pool * __percpu *
2893__tcp_alloc_md5sig_pool(struct sock *sk)
2894{
2895	int cpu;
2896	struct tcp_md5sig_pool * __percpu *pool;
2897
2898	pool = alloc_percpu(struct tcp_md5sig_pool *);
2899	if (!pool)
2900		return NULL;
2901
2902	for_each_possible_cpu(cpu) {
2903		struct tcp_md5sig_pool *p;
2904		struct crypto_hash *hash;
2905
2906		p = kzalloc(sizeof(*p), sk->sk_allocation);
2907		if (!p)
2908			goto out_free;
2909		*per_cpu_ptr(pool, cpu) = p;
2910
2911		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2912		if (!hash || IS_ERR(hash))
2913			goto out_free;
2914
2915		p->md5_desc.tfm = hash;
2916	}
2917	return pool;
2918out_free:
2919	__tcp_free_md5sig_pool(pool);
2920	return NULL;
2921}
 
2922
2923struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
 
2924{
2925	struct tcp_md5sig_pool * __percpu *pool;
2926	int alloc = 0;
2927
2928retry:
2929	spin_lock_bh(&tcp_md5sig_pool_lock);
2930	pool = tcp_md5sig_pool;
2931	if (tcp_md5sig_users++ == 0) {
2932		alloc = 1;
2933		spin_unlock_bh(&tcp_md5sig_pool_lock);
2934	} else if (!pool) {
2935		tcp_md5sig_users--;
2936		spin_unlock_bh(&tcp_md5sig_pool_lock);
2937		cpu_relax();
2938		goto retry;
2939	} else
2940		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941
2942	if (alloc) {
2943		/* we cannot hold spinlock here because this may sleep. */
2944		struct tcp_md5sig_pool * __percpu *p;
2945
2946		p = __tcp_alloc_md5sig_pool(sk);
2947		spin_lock_bh(&tcp_md5sig_pool_lock);
2948		if (!p) {
2949			tcp_md5sig_users--;
2950			spin_unlock_bh(&tcp_md5sig_pool_lock);
2951			return NULL;
2952		}
2953		pool = tcp_md5sig_pool;
2954		if (pool) {
2955			/* oops, it has already been assigned. */
2956			spin_unlock_bh(&tcp_md5sig_pool_lock);
2957			__tcp_free_md5sig_pool(p);
2958		} else {
2959			tcp_md5sig_pool = pool = p;
2960			spin_unlock_bh(&tcp_md5sig_pool_lock);
2961		}
2962	}
2963	return pool;
2964}
2965EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2966
 
 
 
2967
2968/**
2969 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2970 *
2971 *	We use percpu structure, so if we succeed, we exit with preemption
2972 *	and BH disabled, to make sure another thread or softirq handling
2973 *	wont try to get same context.
2974 */
2975struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2976{
2977	struct tcp_md5sig_pool * __percpu *p;
2978
2979	local_bh_disable();
2980
2981	spin_lock(&tcp_md5sig_pool_lock);
2982	p = tcp_md5sig_pool;
2983	if (p)
2984		tcp_md5sig_users++;
2985	spin_unlock(&tcp_md5sig_pool_lock);
2986
2987	if (p)
2988		return *this_cpu_ptr(p);
2989
2990	local_bh_enable();
2991	return NULL;
 
 
 
 
 
 
 
 
 
 
 
2992}
2993EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994
2995void tcp_put_md5sig_pool(void)
2996{
2997	local_bh_enable();
2998	tcp_free_md5sig_pool();
2999}
3000EXPORT_SYMBOL(tcp_put_md5sig_pool);
3001
3002int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3003			struct tcphdr *th)
3004{
3005	struct scatterlist sg;
3006	int err;
3007
3008	__sum16 old_checksum = th->check;
3009	th->check = 0;
3010	/* options aren't included in the hash */
3011	sg_init_one(&sg, th, sizeof(struct tcphdr));
3012	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3013	th->check = old_checksum;
3014	return err;
3015}
3016EXPORT_SYMBOL(tcp_md5_hash_header);
3017
3018int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3019			  struct sk_buff *skb, unsigned header_len)
3020{
 
3021	struct scatterlist sg;
3022	const struct tcphdr *tp = tcp_hdr(skb);
3023	struct hash_desc *desc = &hp->md5_desc;
3024	unsigned i;
3025	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3026				       skb_headlen(skb) - header_len : 0;
3027	const struct skb_shared_info *shi = skb_shinfo(skb);
3028	struct sk_buff *frag_iter;
3029
3030	sg_init_table(&sg, 1);
3031
3032	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3033	if (crypto_hash_update(desc, &sg, head_data_len))
3034		return 1;
3035
3036	for (i = 0; i < shi->nr_frags; ++i) {
3037		const struct skb_frag_struct *f = &shi->frags[i];
3038		sg_set_page(&sg, f->page, f->size, f->page_offset);
3039		if (crypto_hash_update(desc, &sg, f->size))
3040			return 1;
3041	}
3042
3043	skb_walk_frags(skb, frag_iter)
3044		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045			return 1;
3046
3047	return 0;
3048}
3049EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050
3051int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3052{
3053	struct scatterlist sg;
3054
3055	sg_init_one(&sg, key->key, key->keylen);
3056	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
 
 
3057}
3058EXPORT_SYMBOL(tcp_md5_hash_key);
3059
3060#endif
3061
3062/**
3063 * Each Responder maintains up to two secret values concurrently for
3064 * efficient secret rollover.  Each secret value has 4 states:
3065 *
3066 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3067 *    Generates new Responder-Cookies, but not yet used for primary
3068 *    verification.  This is a short-term state, typically lasting only
3069 *    one round trip time (RTT).
3070 *
3071 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3072 *    Used both for generation and primary verification.
3073 *
3074 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3075 *    Used for verification, until the first failure that can be
3076 *    verified by the newer Generating secret.  At that time, this
3077 *    cookie's state is changed to Secondary, and the Generating
3078 *    cookie's state is changed to Primary.  This is a short-term state,
3079 *    typically lasting only one round trip time (RTT).
3080 *
3081 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3082 *    Used for secondary verification, after primary verification
3083 *    failures.  This state lasts no more than twice the Maximum Segment
3084 *    Lifetime (2MSL).  Then, the secret is discarded.
3085 */
3086struct tcp_cookie_secret {
3087	/* The secret is divided into two parts.  The digest part is the
3088	 * equivalent of previously hashing a secret and saving the state,
3089	 * and serves as an initialization vector (IV).  The message part
3090	 * serves as the trailing secret.
3091	 */
3092	u32				secrets[COOKIE_WORKSPACE_WORDS];
3093	unsigned long			expires;
3094};
3095
3096#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3097#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3098#define TCP_SECRET_LIFE (HZ * 600)
3099
3100static struct tcp_cookie_secret tcp_secret_one;
3101static struct tcp_cookie_secret tcp_secret_two;
3102
3103/* Essentially a circular list, without dynamic allocation. */
3104static struct tcp_cookie_secret *tcp_secret_generating;
3105static struct tcp_cookie_secret *tcp_secret_primary;
3106static struct tcp_cookie_secret *tcp_secret_retiring;
3107static struct tcp_cookie_secret *tcp_secret_secondary;
3108
3109static DEFINE_SPINLOCK(tcp_secret_locker);
3110
3111/* Select a pseudo-random word in the cookie workspace.
3112 */
3113static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3114{
3115	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3116}
3117
3118/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3119 * Called in softirq context.
3120 * Returns: 0 for success.
3121 */
3122int tcp_cookie_generator(u32 *bakery)
3123{
3124	unsigned long jiffy = jiffies;
3125
3126	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3127		spin_lock_bh(&tcp_secret_locker);
3128		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3129			/* refreshed by another */
3130			memcpy(bakery,
3131			       &tcp_secret_generating->secrets[0],
3132			       COOKIE_WORKSPACE_WORDS);
3133		} else {
3134			/* still needs refreshing */
3135			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3136
3137			/* The first time, paranoia assumes that the
3138			 * randomization function isn't as strong.  But,
3139			 * this secret initialization is delayed until
3140			 * the last possible moment (packet arrival).
3141			 * Although that time is observable, it is
3142			 * unpredictably variable.  Mash in the most
3143			 * volatile clock bits available, and expire the
3144			 * secret extra quickly.
3145			 */
3146			if (unlikely(tcp_secret_primary->expires ==
3147				     tcp_secret_secondary->expires)) {
3148				struct timespec tv;
3149
3150				getnstimeofday(&tv);
3151				bakery[COOKIE_DIGEST_WORDS+0] ^=
3152					(u32)tv.tv_nsec;
3153
3154				tcp_secret_secondary->expires = jiffy
3155					+ TCP_SECRET_1MSL
3156					+ (0x0f & tcp_cookie_work(bakery, 0));
3157			} else {
3158				tcp_secret_secondary->expires = jiffy
3159					+ TCP_SECRET_LIFE
3160					+ (0xff & tcp_cookie_work(bakery, 1));
3161				tcp_secret_primary->expires = jiffy
3162					+ TCP_SECRET_2MSL
3163					+ (0x1f & tcp_cookie_work(bakery, 2));
3164			}
3165			memcpy(&tcp_secret_secondary->secrets[0],
3166			       bakery, COOKIE_WORKSPACE_WORDS);
3167
3168			rcu_assign_pointer(tcp_secret_generating,
3169					   tcp_secret_secondary);
3170			rcu_assign_pointer(tcp_secret_retiring,
3171					   tcp_secret_primary);
3172			/*
3173			 * Neither call_rcu() nor synchronize_rcu() needed.
3174			 * Retiring data is not freed.  It is replaced after
3175			 * further (locked) pointer updates, and a quiet time
3176			 * (minimum 1MSL, maximum LIFE - 2MSL).
3177			 */
3178		}
3179		spin_unlock_bh(&tcp_secret_locker);
3180	} else {
3181		rcu_read_lock_bh();
3182		memcpy(bakery,
3183		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3184		       COOKIE_WORKSPACE_WORDS);
3185		rcu_read_unlock_bh();
3186	}
3187	return 0;
3188}
3189EXPORT_SYMBOL(tcp_cookie_generator);
 
 
3190
3191void tcp_done(struct sock *sk)
3192{
 
 
 
 
 
 
 
 
3193	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3195
3196	tcp_set_state(sk, TCP_CLOSE);
3197	tcp_clear_xmit_timers(sk);
 
 
3198
3199	sk->sk_shutdown = SHUTDOWN_MASK;
3200
3201	if (!sock_flag(sk, SOCK_DEAD))
3202		sk->sk_state_change(sk);
3203	else
3204		inet_csk_destroy_sock(sk);
3205}
3206EXPORT_SYMBOL_GPL(tcp_done);
3207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208extern struct tcp_congestion_ops tcp_reno;
3209
3210static __initdata unsigned long thash_entries;
3211static int __init set_thash_entries(char *str)
3212{
 
 
3213	if (!str)
3214		return 0;
3215	thash_entries = simple_strtoul(str, &str, 0);
 
 
 
 
3216	return 1;
3217}
3218__setup("thash_entries=", set_thash_entries);
3219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220void __init tcp_init(void)
3221{
3222	struct sk_buff *skb = NULL;
3223	unsigned long limit;
3224	int i, max_share, cnt;
3225	unsigned long jiffy = jiffies;
 
 
 
3226
3227	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3228
3229	percpu_counter_init(&tcp_sockets_allocated, 0);
3230	percpu_counter_init(&tcp_orphan_count, 0);
 
 
 
 
 
 
3231	tcp_hashinfo.bind_bucket_cachep =
3232		kmem_cache_create("tcp_bind_bucket",
3233				  sizeof(struct inet_bind_bucket), 0,
3234				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 
 
 
 
 
 
 
 
3235
3236	/* Size and allocate the main established and bind bucket
3237	 * hash tables.
3238	 *
3239	 * The methodology is similar to that of the buffer cache.
3240	 */
3241	tcp_hashinfo.ehash =
3242		alloc_large_system_hash("TCP established",
3243					sizeof(struct inet_ehash_bucket),
3244					thash_entries,
3245					(totalram_pages >= 128 * 1024) ?
3246					13 : 15,
3247					0,
3248					NULL,
3249					&tcp_hashinfo.ehash_mask,
 
3250					thash_entries ? 0 : 512 * 1024);
3251	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3252		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3253		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3254	}
3255	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3256		panic("TCP: failed to alloc ehash_locks");
3257	tcp_hashinfo.bhash =
3258		alloc_large_system_hash("TCP bind",
3259					sizeof(struct inet_bind_hashbucket),
3260					tcp_hashinfo.ehash_mask + 1,
3261					(totalram_pages >= 128 * 1024) ?
3262					13 : 15,
3263					0,
3264					&tcp_hashinfo.bhash_size,
3265					NULL,
 
3266					64 * 1024);
3267	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
 
3268	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3269		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3270		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
 
 
3271	}
3272
 
3273
3274	cnt = tcp_hashinfo.ehash_mask + 1;
3275
3276	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3277	sysctl_tcp_max_orphans = cnt / 2;
3278	sysctl_max_syn_backlog = max(128, cnt / 256);
3279
3280	limit = nr_free_buffer_pages() / 8;
3281	limit = max(limit, 128UL);
3282	sysctl_tcp_mem[0] = limit / 4 * 3;
3283	sysctl_tcp_mem[1] = limit;
3284	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3285
 
3286	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3287	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3288	max_share = min(4UL*1024*1024, limit);
3289
3290	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3291	sysctl_tcp_wmem[1] = 16*1024;
3292	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3293
3294	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3295	sysctl_tcp_rmem[1] = 87380;
3296	sysctl_tcp_rmem[2] = max(87380, max_share);
3297
3298	printk(KERN_INFO "TCP: Hash tables configured "
3299	       "(established %u bind %u)\n",
3300	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3301
3302	tcp_register_congestion_control(&tcp_reno);
3303
3304	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3305	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3306	tcp_secret_one.expires = jiffy; /* past due */
3307	tcp_secret_two.expires = jiffy; /* past due */
3308	tcp_secret_generating = &tcp_secret_one;
3309	tcp_secret_primary = &tcp_secret_one;
3310	tcp_secret_retiring = &tcp_secret_two;
3311	tcp_secret_secondary = &tcp_secret_two;
3312}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 
 
 
 
 
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 
 263#include <linux/cache.h>
 264#include <linux/err.h>
 
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 
 277#include <net/sock.h>
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 282#include <net/rps.h>
 283
 284/* Track pending CMSGs. */
 285enum {
 286	TCP_CMSG_INQ = 1,
 287	TCP_CMSG_TS = 2
 288};
 289
 290DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 291EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 292
 293long sysctl_tcp_mem[3] __read_mostly;
 
 
 
 294EXPORT_SYMBOL(sysctl_tcp_mem);
 
 
 295
 296atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 297EXPORT_SYMBOL(tcp_memory_allocated);
 298DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 299EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 300
 301#if IS_ENABLED(CONFIG_SMC)
 302DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 303EXPORT_SYMBOL(tcp_have_smc);
 304#endif
 305
 306/*
 307 * Current number of TCP sockets.
 308 */
 309struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 310EXPORT_SYMBOL(tcp_sockets_allocated);
 311
 312/*
 313 * TCP splice context
 314 */
 315struct tcp_splice_state {
 316	struct pipe_inode_info *pipe;
 317	size_t len;
 318	unsigned int flags;
 319};
 320
 321/*
 322 * Pressure flag: try to collapse.
 323 * Technical note: it is used by multiple contexts non atomically.
 324 * All the __sk_mem_schedule() is of this nature: accounting
 325 * is strict, actions are advisory and have some latency.
 326 */
 327unsigned long tcp_memory_pressure __read_mostly;
 328EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 329
 330void tcp_enter_memory_pressure(struct sock *sk)
 331{
 332	unsigned long val;
 333
 334	if (READ_ONCE(tcp_memory_pressure))
 335		return;
 336	val = jiffies;
 337
 338	if (!val)
 339		val--;
 340	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 341		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 
 
 342}
 343EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 344
 345void tcp_leave_memory_pressure(struct sock *sk)
 346{
 347	unsigned long val;
 348
 349	if (!READ_ONCE(tcp_memory_pressure))
 350		return;
 351	val = xchg(&tcp_memory_pressure, 0);
 352	if (val)
 353		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 354			      jiffies_to_msecs(jiffies - val));
 355}
 356EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 357
 358/* Convert seconds to retransmits based on initial and max timeout */
 359static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 360{
 361	u8 res = 0;
 362
 363	if (seconds > 0) {
 364		int period = timeout;
 365
 366		res = 1;
 367		while (seconds > period && res < 255) {
 368			res++;
 369			timeout <<= 1;
 370			if (timeout > rto_max)
 371				timeout = rto_max;
 372			period += timeout;
 373		}
 374	}
 375	return res;
 376}
 377
 378/* Convert retransmits to seconds based on initial and max timeout */
 379static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 380{
 381	int period = 0;
 382
 383	if (retrans > 0) {
 384		period = timeout;
 385		while (--retrans) {
 386			timeout <<= 1;
 387			if (timeout > rto_max)
 388				timeout = rto_max;
 389			period += timeout;
 390		}
 391	}
 392	return period;
 393}
 394
 395static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 396{
 397	u32 rate = READ_ONCE(tp->rate_delivered);
 398	u32 intv = READ_ONCE(tp->rate_interval_us);
 399	u64 rate64 = 0;
 400
 401	if (rate && intv) {
 402		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 403		do_div(rate64, intv);
 404	}
 405	return rate64;
 406}
 407
 408/* Address-family independent initialization for a tcp_sock.
 409 *
 410 * NOTE: A lot of things set to zero explicitly by call to
 411 *       sk_alloc() so need not be done here.
 412 */
 413void tcp_init_sock(struct sock *sk)
 414{
 415	struct inet_connection_sock *icsk = inet_csk(sk);
 416	struct tcp_sock *tp = tcp_sk(sk);
 417
 418	tp->out_of_order_queue = RB_ROOT;
 419	sk->tcp_rtx_queue = RB_ROOT;
 420	tcp_init_xmit_timers(sk);
 421	INIT_LIST_HEAD(&tp->tsq_node);
 422	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 423
 424	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 425	icsk->icsk_rto_min = TCP_RTO_MIN;
 426	icsk->icsk_delack_max = TCP_DELACK_MAX;
 427	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 428	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 429
 430	/* So many TCP implementations out there (incorrectly) count the
 431	 * initial SYN frame in their delayed-ACK and congestion control
 432	 * algorithms that we must have the following bandaid to talk
 433	 * efficiently to them.  -DaveM
 434	 */
 435	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 436
 437	/* There's a bubble in the pipe until at least the first ACK. */
 438	tp->app_limited = ~0U;
 439	tp->rate_app_limited = 1;
 440
 441	/* See draft-stevens-tcpca-spec-01 for discussion of the
 442	 * initialization of these values.
 443	 */
 444	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 445	tp->snd_cwnd_clamp = ~0;
 446	tp->mss_cache = TCP_MSS_DEFAULT;
 447
 448	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 449	tcp_assign_congestion_control(sk);
 450
 451	tp->tsoffset = 0;
 452	tp->rack.reo_wnd_steps = 1;
 453
 454	sk->sk_write_space = sk_stream_write_space;
 455	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 456
 457	icsk->icsk_sync_mss = tcp_sync_mss;
 458
 459	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 460	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 461	tcp_scaling_ratio_init(sk);
 462
 463	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 464	sk_sockets_allocated_inc(sk);
 465}
 466EXPORT_SYMBOL(tcp_init_sock);
 467
 468static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 469{
 470	struct sk_buff *skb = tcp_write_queue_tail(sk);
 471
 472	if (tsflags && skb) {
 473		struct skb_shared_info *shinfo = skb_shinfo(skb);
 474		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 475
 476		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 477		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 478			tcb->txstamp_ack = 1;
 479		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 480			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 481	}
 482}
 483
 484static bool tcp_stream_is_readable(struct sock *sk, int target)
 485{
 486	if (tcp_epollin_ready(sk, target))
 487		return true;
 488	return sk_is_readable(sk);
 489}
 490
 491/*
 492 *	Wait for a TCP event.
 493 *
 494 *	Note that we don't need to lock the socket, as the upper poll layers
 495 *	take care of normal races (between the test and the event) and we don't
 496 *	go look at any of the socket buffers directly.
 497 */
 498__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 499{
 500	__poll_t mask;
 501	struct sock *sk = sock->sk;
 502	const struct tcp_sock *tp = tcp_sk(sk);
 503	u8 shutdown;
 504	int state;
 505
 506	sock_poll_wait(file, sock, wait);
 507
 508	state = inet_sk_state_load(sk);
 509	if (state == TCP_LISTEN)
 510		return inet_csk_listen_poll(sk);
 511
 512	/* Socket is not locked. We are protected from async events
 513	 * by poll logic and correct handling of state changes
 514	 * made by other threads is impossible in any case.
 515	 */
 516
 517	mask = 0;
 518
 519	/*
 520	 * EPOLLHUP is certainly not done right. But poll() doesn't
 521	 * have a notion of HUP in just one direction, and for a
 522	 * socket the read side is more interesting.
 523	 *
 524	 * Some poll() documentation says that EPOLLHUP is incompatible
 525	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 526	 * all. But careful, it tends to be safer to return too many
 527	 * bits than too few, and you can easily break real applications
 528	 * if you don't tell them that something has hung up!
 529	 *
 530	 * Check-me.
 531	 *
 532	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 533	 * our fs/select.c). It means that after we received EOF,
 534	 * poll always returns immediately, making impossible poll() on write()
 535	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 536	 * if and only if shutdown has been made in both directions.
 537	 * Actually, it is interesting to look how Solaris and DUX
 538	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 539	 * then we could set it on SND_SHUTDOWN. BTW examples given
 540	 * in Stevens' books assume exactly this behaviour, it explains
 541	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 542	 *
 543	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 544	 * blocking on fresh not-connected or disconnected socket. --ANK
 545	 */
 546	shutdown = READ_ONCE(sk->sk_shutdown);
 547	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 548		mask |= EPOLLHUP;
 549	if (shutdown & RCV_SHUTDOWN)
 550		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 551
 552	/* Connected or passive Fast Open socket? */
 553	if (state != TCP_SYN_SENT &&
 554	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 555		int target = sock_rcvlowat(sk, 0, INT_MAX);
 556		u16 urg_data = READ_ONCE(tp->urg_data);
 557
 558		if (unlikely(urg_data) &&
 559		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 560		    !sock_flag(sk, SOCK_URGINLINE))
 561			target++;
 562
 563		if (tcp_stream_is_readable(sk, target))
 564			mask |= EPOLLIN | EPOLLRDNORM;
 565
 566		if (!(shutdown & SEND_SHUTDOWN)) {
 567			if (__sk_stream_is_writeable(sk, 1)) {
 568				mask |= EPOLLOUT | EPOLLWRNORM;
 
 
 
 569			} else {  /* send SIGIO later */
 570				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 571				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 572
 573				/* Race breaker. If space is freed after
 574				 * wspace test but before the flags are set,
 575				 * IO signal will be lost. Memory barrier
 576				 * pairs with the input side.
 577				 */
 578				smp_mb__after_atomic();
 579				if (__sk_stream_is_writeable(sk, 1))
 580					mask |= EPOLLOUT | EPOLLWRNORM;
 581			}
 582		} else
 583			mask |= EPOLLOUT | EPOLLWRNORM;
 584
 585		if (urg_data & TCP_URG_VALID)
 586			mask |= EPOLLPRI;
 587	} else if (state == TCP_SYN_SENT &&
 588		   inet_test_bit(DEFER_CONNECT, sk)) {
 589		/* Active TCP fastopen socket with defer_connect
 590		 * Return EPOLLOUT so application can call write()
 591		 * in order for kernel to generate SYN+data
 592		 */
 593		mask |= EPOLLOUT | EPOLLWRNORM;
 594	}
 595	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 596	smp_rmb();
 597	if (READ_ONCE(sk->sk_err) ||
 598	    !skb_queue_empty_lockless(&sk->sk_error_queue))
 599		mask |= EPOLLERR;
 600
 601	return mask;
 602}
 603EXPORT_SYMBOL(tcp_poll);
 604
 605int tcp_ioctl(struct sock *sk, int cmd, int *karg)
 606{
 607	struct tcp_sock *tp = tcp_sk(sk);
 608	int answ;
 609	bool slow;
 610
 611	switch (cmd) {
 612	case SIOCINQ:
 613		if (sk->sk_state == TCP_LISTEN)
 614			return -EINVAL;
 615
 616		slow = lock_sock_fast(sk);
 617		answ = tcp_inq(sk);
 618		unlock_sock_fast(sk, slow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		break;
 620	case SIOCATMARK:
 621		answ = READ_ONCE(tp->urg_data) &&
 622		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 623		break;
 624	case SIOCOUTQ:
 625		if (sk->sk_state == TCP_LISTEN)
 626			return -EINVAL;
 627
 628		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 629			answ = 0;
 630		else
 631			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 632		break;
 633	case SIOCOUTQNSD:
 634		if (sk->sk_state == TCP_LISTEN)
 635			return -EINVAL;
 636
 637		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 638			answ = 0;
 639		else
 640			answ = READ_ONCE(tp->write_seq) -
 641			       READ_ONCE(tp->snd_nxt);
 642		break;
 643	default:
 644		return -ENOIOCTLCMD;
 645	}
 646
 647	*karg = answ;
 648	return 0;
 649}
 650EXPORT_SYMBOL(tcp_ioctl);
 651
 652void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 653{
 654	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 655	tp->pushed_seq = tp->write_seq;
 656}
 657
 658static inline bool forced_push(const struct tcp_sock *tp)
 659{
 660	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 661}
 662
 663void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 664{
 665	struct tcp_sock *tp = tcp_sk(sk);
 666	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 667
 
 668	tcb->seq     = tcb->end_seq = tp->write_seq;
 669	tcb->tcp_flags = TCPHDR_ACK;
 670	__skb_header_release(skb);
 
 671	tcp_add_write_queue_tail(sk, skb);
 672	sk_wmem_queued_add(sk, skb->truesize);
 673	sk_mem_charge(sk, skb->truesize);
 674	if (tp->nonagle & TCP_NAGLE_PUSH)
 675		tp->nonagle &= ~TCP_NAGLE_PUSH;
 676
 677	tcp_slow_start_after_idle_check(sk);
 678}
 679
 680static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 681{
 682	if (flags & MSG_OOB)
 683		tp->snd_up = tp->write_seq;
 684}
 685
 686/* If a not yet filled skb is pushed, do not send it if
 687 * we have data packets in Qdisc or NIC queues :
 688 * Because TX completion will happen shortly, it gives a chance
 689 * to coalesce future sendmsg() payload into this skb, without
 690 * need for a timer, and with no latency trade off.
 691 * As packets containing data payload have a bigger truesize
 692 * than pure acks (dataless) packets, the last checks prevent
 693 * autocorking if we only have an ACK in Qdisc/NIC queues,
 694 * or if TX completion was delayed after we processed ACK packet.
 695 */
 696static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 697				int size_goal)
 698{
 699	return skb->len < size_goal &&
 700	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 701	       !tcp_rtx_queue_empty(sk) &&
 702	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 703	       tcp_skb_can_collapse_to(skb);
 704}
 705
 706void tcp_push(struct sock *sk, int flags, int mss_now,
 707	      int nonagle, int size_goal)
 708{
 709	struct tcp_sock *tp = tcp_sk(sk);
 710	struct sk_buff *skb;
 711
 712	skb = tcp_write_queue_tail(sk);
 713	if (!skb)
 714		return;
 715	if (!(flags & MSG_MORE) || forced_push(tp))
 716		tcp_mark_push(tp, skb);
 717
 718	tcp_mark_urg(tp, flags);
 
 719
 720	if (tcp_should_autocork(sk, skb, size_goal)) {
 721
 722		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 723		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 724			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 725			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 726			smp_mb__after_atomic();
 727		}
 728		/* It is possible TX completion already happened
 729		 * before we set TSQ_THROTTLED.
 730		 */
 731		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 732			return;
 733	}
 734
 735	if (flags & MSG_MORE)
 736		nonagle = TCP_NAGLE_CORK;
 737
 738	__tcp_push_pending_frames(sk, mss_now, nonagle);
 739}
 740
 741static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 742				unsigned int offset, size_t len)
 743{
 744	struct tcp_splice_state *tss = rd_desc->arg.data;
 745	int ret;
 746
 747	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 748			      min(rd_desc->count, len), tss->flags);
 749	if (ret > 0)
 750		rd_desc->count -= ret;
 751	return ret;
 752}
 753
 754static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 755{
 756	/* Store TCP splice context information in read_descriptor_t. */
 757	read_descriptor_t rd_desc = {
 758		.arg.data = tss,
 759		.count	  = tss->len,
 760	};
 761
 762	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 763}
 764
 765/**
 766 *  tcp_splice_read - splice data from TCP socket to a pipe
 767 * @sock:	socket to splice from
 768 * @ppos:	position (not valid)
 769 * @pipe:	pipe to splice to
 770 * @len:	number of bytes to splice
 771 * @flags:	splice modifier flags
 772 *
 773 * Description:
 774 *    Will read pages from given socket and fill them into a pipe.
 775 *
 776 **/
 777ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 778			struct pipe_inode_info *pipe, size_t len,
 779			unsigned int flags)
 780{
 781	struct sock *sk = sock->sk;
 782	struct tcp_splice_state tss = {
 783		.pipe = pipe,
 784		.len = len,
 785		.flags = flags,
 786	};
 787	long timeo;
 788	ssize_t spliced;
 789	int ret;
 790
 791	sock_rps_record_flow(sk);
 792	/*
 793	 * We can't seek on a socket input
 794	 */
 795	if (unlikely(*ppos))
 796		return -ESPIPE;
 797
 798	ret = spliced = 0;
 799
 800	lock_sock(sk);
 801
 802	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 803	while (tss.len) {
 804		ret = __tcp_splice_read(sk, &tss);
 805		if (ret < 0)
 806			break;
 807		else if (!ret) {
 808			if (spliced)
 809				break;
 810			if (sock_flag(sk, SOCK_DONE))
 811				break;
 812			if (sk->sk_err) {
 813				ret = sock_error(sk);
 814				break;
 815			}
 816			if (sk->sk_shutdown & RCV_SHUTDOWN)
 817				break;
 818			if (sk->sk_state == TCP_CLOSE) {
 819				/*
 820				 * This occurs when user tries to read
 821				 * from never connected socket.
 822				 */
 823				ret = -ENOTCONN;
 
 824				break;
 825			}
 826			if (!timeo) {
 827				ret = -EAGAIN;
 828				break;
 829			}
 830			/* if __tcp_splice_read() got nothing while we have
 831			 * an skb in receive queue, we do not want to loop.
 832			 * This might happen with URG data.
 833			 */
 834			if (!skb_queue_empty(&sk->sk_receive_queue))
 835				break;
 836			ret = sk_wait_data(sk, &timeo, NULL);
 837			if (ret < 0)
 838				break;
 839			if (signal_pending(current)) {
 840				ret = sock_intr_errno(timeo);
 841				break;
 842			}
 843			continue;
 844		}
 845		tss.len -= ret;
 846		spliced += ret;
 847
 848		if (!tss.len || !timeo)
 849			break;
 850		release_sock(sk);
 851		lock_sock(sk);
 852
 853		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 854		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 855		    signal_pending(current))
 856			break;
 857	}
 858
 859	release_sock(sk);
 860
 861	if (spliced)
 862		return spliced;
 863
 864	return ret;
 865}
 866EXPORT_SYMBOL(tcp_splice_read);
 867
 868struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 869				     bool force_schedule)
 870{
 871	struct sk_buff *skb;
 872
 873	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
 874	if (likely(skb)) {
 875		bool mem_scheduled;
 876
 877		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 878		if (force_schedule) {
 879			mem_scheduled = true;
 880			sk_forced_mem_schedule(sk, skb->truesize);
 881		} else {
 882			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 883		}
 884		if (likely(mem_scheduled)) {
 885			skb_reserve(skb, MAX_TCP_HEADER);
 886			skb->ip_summed = CHECKSUM_PARTIAL;
 887			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 888			return skb;
 889		}
 890		__kfree_skb(skb);
 891	} else {
 892		sk->sk_prot->enter_memory_pressure(sk);
 893		sk_stream_moderate_sndbuf(sk);
 894	}
 895	return NULL;
 896}
 897
 898static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 899				       int large_allowed)
 900{
 901	struct tcp_sock *tp = tcp_sk(sk);
 902	u32 new_size_goal, size_goal;
 903
 904	if (!large_allowed)
 905		return mss_now;
 906
 907	/* Note : tcp_tso_autosize() will eventually split this later */
 908	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 
 
 
 909
 910	/* We try hard to avoid divides here */
 911	size_goal = tp->gso_segs * mss_now;
 912	if (unlikely(new_size_goal < size_goal ||
 913		     new_size_goal >= size_goal + mss_now)) {
 914		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 915				     sk->sk_gso_max_segs);
 916		size_goal = tp->gso_segs * mss_now;
 
 
 
 
 
 917	}
 918
 919	return max(size_goal, mss_now);
 920}
 921
 922int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 923{
 924	int mss_now;
 925
 926	mss_now = tcp_current_mss(sk);
 927	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 928
 929	return mss_now;
 930}
 931
 932/* In some cases, sendmsg() could have added an skb to the write queue,
 933 * but failed adding payload on it. We need to remove it to consume less
 934 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
 935 * epoll() users. Another reason is that tcp_write_xmit() does not like
 936 * finding an empty skb in the write queue.
 937 */
 938void tcp_remove_empty_skb(struct sock *sk)
 939{
 940	struct sk_buff *skb = tcp_write_queue_tail(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 943		tcp_unlink_write_queue(skb, sk);
 944		if (tcp_write_queue_empty(sk))
 945			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 946		tcp_wmem_free_skb(sk, skb);
 947	}
 948}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949
 950/* skb changing from pure zc to mixed, must charge zc */
 951static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 952{
 953	if (unlikely(skb_zcopy_pure(skb))) {
 954		u32 extra = skb->truesize -
 955			    SKB_TRUESIZE(skb_end_offset(skb));
 956
 957		if (!sk_wmem_schedule(sk, extra))
 958			return -ENOMEM;
 959
 960		sk_mem_charge(sk, extra);
 961		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 962	}
 963	return 0;
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966
 967int tcp_wmem_schedule(struct sock *sk, int copy)
 968{
 969	int left;
 970
 971	if (likely(sk_wmem_schedule(sk, copy)))
 972		return copy;
 
 
 973
 974	/* We could be in trouble if we have nothing queued.
 975	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 976	 * to guarantee some progress.
 977	 */
 978	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
 979	if (left > 0)
 980		sk_forced_mem_schedule(sk, min(left, copy));
 981	return min(copy, sk->sk_forward_alloc);
 982}
 
 983
 984void tcp_free_fastopen_req(struct tcp_sock *tp)
 985{
 986	if (tp->fastopen_req) {
 987		kfree(tp->fastopen_req);
 988		tp->fastopen_req = NULL;
 989	}
 990}
 991
 992int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 993			 size_t size, struct ubuf_info *uarg)
 994{
 995	struct tcp_sock *tp = tcp_sk(sk);
 996	struct inet_sock *inet = inet_sk(sk);
 997	struct sockaddr *uaddr = msg->msg_name;
 998	int err, flags;
 
 
 
 
 999
1000	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1001	      TFO_CLIENT_ENABLE) ||
1002	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1003	     uaddr->sa_family == AF_UNSPEC))
1004		return -EOPNOTSUPP;
1005	if (tp->fastopen_req)
1006		return -EALREADY; /* Another Fast Open is in progress */
1007
1008	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009				   sk->sk_allocation);
1010	if (unlikely(!tp->fastopen_req))
1011		return -ENOBUFS;
1012	tp->fastopen_req->data = msg;
1013	tp->fastopen_req->size = size;
1014	tp->fastopen_req->uarg = uarg;
1015
1016	if (inet_test_bit(DEFER_CONNECT, sk)) {
1017		err = tcp_connect(sk);
1018		/* Same failure procedure as in tcp_v4/6_connect */
1019		if (err) {
1020			tcp_set_state(sk, TCP_CLOSE);
1021			inet->inet_dport = 0;
1022			sk->sk_route_caps = 0;
1023		}
1024	}
1025	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026	err = __inet_stream_connect(sk->sk_socket, uaddr,
1027				    msg->msg_namelen, flags, 1);
1028	/* fastopen_req could already be freed in __inet_stream_connect
1029	 * if the connection times out or gets rst
1030	 */
1031	if (tp->fastopen_req) {
1032		*copied = tp->fastopen_req->copied;
1033		tcp_free_fastopen_req(tp);
1034		inet_clear_bit(DEFER_CONNECT, sk);
1035	}
1036	return err;
1037}
1038
1039int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
 
1040{
 
1041	struct tcp_sock *tp = tcp_sk(sk);
1042	struct ubuf_info *uarg = NULL;
1043	struct sk_buff *skb;
1044	struct sockcm_cookie sockc;
1045	int flags, err, copied = 0;
1046	int mss_now = 0, size_goal, copied_syn = 0;
1047	int process_backlog = 0;
1048	int zc = 0;
1049	long timeo;
1050
 
 
1051	flags = msg->msg_flags;
1052
1053	if ((flags & MSG_ZEROCOPY) && size) {
1054		if (msg->msg_ubuf) {
1055			uarg = msg->msg_ubuf;
1056			if (sk->sk_route_caps & NETIF_F_SG)
1057				zc = MSG_ZEROCOPY;
1058		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1059			skb = tcp_write_queue_tail(sk);
1060			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1061			if (!uarg) {
1062				err = -ENOBUFS;
1063				goto out_err;
1064			}
1065			if (sk->sk_route_caps & NETIF_F_SG)
1066				zc = MSG_ZEROCOPY;
1067			else
1068				uarg_to_msgzc(uarg)->zerocopy = 0;
1069		}
1070	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1071		if (sk->sk_route_caps & NETIF_F_SG)
1072			zc = MSG_SPLICE_PAGES;
1073	}
1074
1075	if (unlikely(flags & MSG_FASTOPEN ||
1076		     inet_test_bit(DEFER_CONNECT, sk)) &&
1077	    !tp->repair) {
1078		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1079		if (err == -EINPROGRESS && copied_syn > 0)
1080			goto out;
1081		else if (err)
1082			goto out_err;
1083	}
1084
1085	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086
1087	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1088
1089	/* Wait for a connection to finish. One exception is TCP Fast Open
1090	 * (passive side) where data is allowed to be sent before a connection
1091	 * is fully established.
1092	 */
1093	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094	    !tcp_passive_fastopen(sk)) {
1095		err = sk_stream_wait_connect(sk, &timeo);
1096		if (err != 0)
1097			goto do_error;
1098	}
1099
1100	if (unlikely(tp->repair)) {
1101		if (tp->repair_queue == TCP_RECV_QUEUE) {
1102			copied = tcp_send_rcvq(sk, msg, size);
1103			goto out_nopush;
1104		}
1105
1106		err = -EINVAL;
1107		if (tp->repair_queue == TCP_NO_QUEUE)
1108			goto out_err;
1109
1110		/* 'common' sending to sendq */
1111	}
1112
1113	sockcm_init(&sockc, sk);
1114	if (msg->msg_controllen) {
1115		err = sock_cmsg_send(sk, msg, &sockc);
1116		if (unlikely(err)) {
1117			err = -EINVAL;
1118			goto out_err;
1119		}
1120	}
1121
1122	/* This should be in poll */
1123	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124
1125	/* Ok commence sending. */
 
 
1126	copied = 0;
1127
1128restart:
1129	mss_now = tcp_send_mss(sk, &size_goal, flags);
1130
1131	err = -EPIPE;
1132	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133		goto do_error;
1134
1135	while (msg_data_left(msg)) {
1136		ssize_t copy = 0;
1137
1138		skb = tcp_write_queue_tail(sk);
1139		if (skb)
1140			copy = size_goal - skb->len;
1141
1142		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1143			bool first_skb;
1144
1145new_segment:
1146			if (!sk_stream_memory_free(sk))
1147				goto wait_for_space;
1148
1149			if (unlikely(process_backlog >= 16)) {
1150				process_backlog = 0;
1151				if (sk_flush_backlog(sk))
1152					goto restart;
 
1153			}
1154			first_skb = tcp_rtx_and_write_queues_empty(sk);
1155			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1156						   first_skb);
1157			if (!skb)
1158				goto wait_for_space;
1159
1160			process_backlog++;
 
 
 
 
 
 
1161
1162			tcp_skb_entail(sk, skb);
1163			copy = size_goal;
 
 
 
1164
1165			/* All packets are restored as if they have
1166			 * already been sent. skb_mstamp_ns isn't set to
1167			 * avoid wrong rtt estimation.
1168			 */
1169			if (tp->repair)
1170				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1171		}
1172
1173		/* Try to append data to the end of skb. */
1174		if (copy > msg_data_left(msg))
1175			copy = msg_data_left(msg);
1176
1177		if (zc == 0) {
1178			bool merge = true;
1179			int i = skb_shinfo(skb)->nr_frags;
1180			struct page_frag *pfrag = sk_page_frag(sk);
1181
1182			if (!sk_page_frag_refill(sk, pfrag))
1183				goto wait_for_space;
1184
1185			if (!skb_can_coalesce(skb, i, pfrag->page,
1186					      pfrag->offset)) {
1187				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188					tcp_mark_push(tp, skb);
1189					goto new_segment;
1190				}
1191				merge = false;
1192			}
 
 
 
 
 
1193
1194			copy = min_t(int, copy, pfrag->size - pfrag->offset);
 
1195
1196			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1197				if (tcp_downgrade_zcopy_pure(sk, skb))
1198					goto wait_for_space;
1199				skb_zcopy_downgrade_managed(skb);
1200			}
1201
1202			copy = tcp_wmem_schedule(sk, copy);
1203			if (!copy)
1204				goto wait_for_space;
1205
1206			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1207						       pfrag->page,
1208						       pfrag->offset,
1209						       copy);
1210			if (err)
1211				goto do_error;
1212
1213			/* Update the skb. */
1214			if (merge) {
1215				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1216			} else {
1217				skb_fill_page_desc(skb, i, pfrag->page,
1218						   pfrag->offset, copy);
1219				page_ref_inc(pfrag->page);
1220			}
1221			pfrag->offset += copy;
1222		} else if (zc == MSG_ZEROCOPY)  {
1223			/* First append to a fragless skb builds initial
1224			 * pure zerocopy skb
1225			 */
1226			if (!skb->len)
1227				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1228
1229			if (!skb_zcopy_pure(skb)) {
1230				copy = tcp_wmem_schedule(sk, copy);
1231				if (!copy)
1232					goto wait_for_space;
1233			}
 
 
 
 
 
 
 
 
1234
1235			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1236			if (err == -EMSGSIZE || err == -EEXIST) {
1237				tcp_mark_push(tp, skb);
1238				goto new_segment;
1239			}
1240			if (err < 0)
1241				goto do_error;
1242			copy = err;
1243		} else if (zc == MSG_SPLICE_PAGES) {
1244			/* Splice in data if we can; copy if we can't. */
1245			if (tcp_downgrade_zcopy_pure(sk, skb))
1246				goto wait_for_space;
1247			copy = tcp_wmem_schedule(sk, copy);
1248			if (!copy)
1249				goto wait_for_space;
1250
1251			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1252						   sk->sk_allocation);
1253			if (err < 0) {
1254				if (err == -EMSGSIZE) {
1255					tcp_mark_push(tp, skb);
1256					goto new_segment;
1257				}
1258				goto do_error;
1259			}
1260			copy = err;
1261
1262			if (!(flags & MSG_NO_SHARED_FRAGS))
1263				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1264
1265			sk_wmem_queued_add(sk, copy);
1266			sk_mem_charge(sk, copy);
1267		}
 
 
 
 
 
1268
1269		if (!copied)
1270			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1271
1272		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1273		TCP_SKB_CB(skb)->end_seq += copy;
1274		tcp_skb_pcount_set(skb, 0);
1275
1276		copied += copy;
1277		if (!msg_data_left(msg)) {
1278			if (unlikely(flags & MSG_EOR))
1279				TCP_SKB_CB(skb)->eor = 1;
1280			goto out;
1281		}
1282
1283		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1284			continue;
1285
1286		if (forced_push(tp)) {
1287			tcp_mark_push(tp, skb);
1288			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1289		} else if (skb == tcp_send_head(sk))
1290			tcp_push_one(sk, mss_now);
1291		continue;
1292
1293wait_for_space:
1294		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1295		tcp_remove_empty_skb(sk);
1296		if (copied)
1297			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1298				 TCP_NAGLE_PUSH, size_goal);
1299
1300		err = sk_stream_wait_memory(sk, &timeo);
1301		if (err != 0)
1302			goto do_error;
1303
1304		mss_now = tcp_send_mss(sk, &size_goal, flags);
1305	}
1306
1307out:
1308	if (copied) {
1309		tcp_tx_timestamp(sk, sockc.tsflags);
1310		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1311	}
1312out_nopush:
1313	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1314	if (uarg && !msg->msg_ubuf)
1315		net_zcopy_put(uarg);
1316	return copied + copied_syn;
 
 
 
 
 
1317
1318do_error:
1319	tcp_remove_empty_skb(sk);
1320
1321	if (copied + copied_syn)
1322		goto out;
1323out_err:
1324	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1325	if (uarg && !msg->msg_ubuf)
1326		net_zcopy_put_abort(uarg, true);
1327	err = sk_stream_error(sk, flags, err);
1328	/* make sure we wake any epoll edge trigger waiter */
1329	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1330		sk->sk_write_space(sk);
1331		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1332	}
1333	return err;
1334}
1335EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1336
1337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1338{
1339	int ret;
1340
1341	lock_sock(sk);
1342	ret = tcp_sendmsg_locked(sk, msg, size);
1343	release_sock(sk);
1344
1345	return ret;
1346}
1347EXPORT_SYMBOL(tcp_sendmsg);
1348
1349void tcp_splice_eof(struct socket *sock)
1350{
1351	struct sock *sk = sock->sk;
1352	struct tcp_sock *tp = tcp_sk(sk);
1353	int mss_now, size_goal;
1354
1355	if (!tcp_write_queue_tail(sk))
1356		return;
1357
1358	lock_sock(sk);
1359	mss_now = tcp_send_mss(sk, &size_goal, 0);
1360	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1361	release_sock(sk);
1362}
1363EXPORT_SYMBOL_GPL(tcp_splice_eof);
1364
1365/*
1366 *	Handle reading urgent data. BSD has very simple semantics for
1367 *	this, no blocking and very strange errors 8)
1368 */
1369
1370static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1371{
1372	struct tcp_sock *tp = tcp_sk(sk);
1373
1374	/* No URG data to read. */
1375	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1376	    tp->urg_data == TCP_URG_READ)
1377		return -EINVAL;	/* Yes this is right ! */
1378
1379	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1380		return -ENOTCONN;
1381
1382	if (tp->urg_data & TCP_URG_VALID) {
1383		int err = 0;
1384		char c = tp->urg_data;
1385
1386		if (!(flags & MSG_PEEK))
1387			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1388
1389		/* Read urgent data. */
1390		msg->msg_flags |= MSG_OOB;
1391
1392		if (len > 0) {
1393			if (!(flags & MSG_TRUNC))
1394				err = memcpy_to_msg(msg, &c, 1);
1395			len = 1;
1396		} else
1397			msg->msg_flags |= MSG_TRUNC;
1398
1399		return err ? -EFAULT : len;
1400	}
1401
1402	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1403		return 0;
1404
1405	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1406	 * the available implementations agree in this case:
1407	 * this call should never block, independent of the
1408	 * blocking state of the socket.
1409	 * Mike <pall@rz.uni-karlsruhe.de>
1410	 */
1411	return -EAGAIN;
1412}
1413
1414static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1415{
1416	struct sk_buff *skb;
1417	int copied = 0, err = 0;
1418
1419	/* XXX -- need to support SO_PEEK_OFF */
1420
1421	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1422		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1423		if (err)
1424			return err;
1425		copied += skb->len;
1426	}
1427
1428	skb_queue_walk(&sk->sk_write_queue, skb) {
1429		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1430		if (err)
1431			break;
1432
1433		copied += skb->len;
1434	}
1435
1436	return err ?: copied;
1437}
1438
1439/* Clean up the receive buffer for full frames taken by the user,
1440 * then send an ACK if necessary.  COPIED is the number of bytes
1441 * tcp_recvmsg has given to the user so far, it speeds up the
1442 * calculation of whether or not we must ACK for the sake of
1443 * a window update.
1444 */
1445void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448	bool time_to_ack = false;
 
 
 
 
 
 
 
 
1449
1450	if (inet_csk_ack_scheduled(sk)) {
1451		const struct inet_connection_sock *icsk = inet_csk(sk);
1452
1453		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
 
 
1454		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1455		    /*
1456		     * If this read emptied read buffer, we send ACK, if
1457		     * connection is not bidirectional, user drained
1458		     * receive buffer and there was a small segment
1459		     * in queue.
1460		     */
1461		    (copied > 0 &&
1462		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1463		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1464		       !inet_csk_in_pingpong_mode(sk))) &&
1465		      !atomic_read(&sk->sk_rmem_alloc)))
1466			time_to_ack = true;
1467	}
1468
1469	/* We send an ACK if we can now advertise a non-zero window
1470	 * which has been raised "significantly".
1471	 *
1472	 * Even if window raised up to infinity, do not send window open ACK
1473	 * in states, where we will not receive more. It is useless.
1474	 */
1475	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1476		__u32 rcv_window_now = tcp_receive_window(tp);
1477
1478		/* Optimize, __tcp_select_window() is not cheap. */
1479		if (2*rcv_window_now <= tp->window_clamp) {
1480			__u32 new_window = __tcp_select_window(sk);
1481
1482			/* Send ACK now, if this read freed lots of space
1483			 * in our buffer. Certainly, new_window is new window.
1484			 * We can advertise it now, if it is not less than current one.
1485			 * "Lots" means "at least twice" here.
1486			 */
1487			if (new_window && new_window >= 2 * rcv_window_now)
1488				time_to_ack = true;
1489		}
1490	}
1491	if (time_to_ack)
1492		tcp_send_ack(sk);
1493}
1494
1495void tcp_cleanup_rbuf(struct sock *sk, int copied)
1496{
1497	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1498	struct tcp_sock *tp = tcp_sk(sk);
1499
1500	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1501	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1502	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1503	__tcp_cleanup_rbuf(sk, copied);
 
 
 
 
 
 
 
1504}
1505
1506static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
 
1507{
1508	__skb_unlink(skb, &sk->sk_receive_queue);
1509	if (likely(skb->destructor == sock_rfree)) {
1510		sock_rfree(skb);
1511		skb->destructor = NULL;
1512		skb->sk = NULL;
1513		return skb_attempt_defer_free(skb);
1514	}
1515	__kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516}
 
1517
1518struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1519{
1520	struct sk_buff *skb;
1521	u32 offset;
1522
1523	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1524		offset = seq - TCP_SKB_CB(skb)->seq;
1525		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1526			pr_err_once("%s: found a SYN, please report !\n", __func__);
1527			offset--;
1528		}
1529		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1530			*off = offset;
1531			return skb;
1532		}
1533		/* This looks weird, but this can happen if TCP collapsing
1534		 * splitted a fat GRO packet, while we released socket lock
1535		 * in skb_splice_bits()
1536		 */
1537		tcp_eat_recv_skb(sk, skb);
1538	}
1539	return NULL;
1540}
1541EXPORT_SYMBOL(tcp_recv_skb);
1542
1543/*
1544 * This routine provides an alternative to tcp_recvmsg() for routines
1545 * that would like to handle copying from skbuffs directly in 'sendfile'
1546 * fashion.
1547 * Note:
1548 *	- It is assumed that the socket was locked by the caller.
1549 *	- The routine does not block.
1550 *	- At present, there is no support for reading OOB data
1551 *	  or for 'peeking' the socket using this routine
1552 *	  (although both would be easy to implement).
1553 */
1554int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1555		  sk_read_actor_t recv_actor)
1556{
1557	struct sk_buff *skb;
1558	struct tcp_sock *tp = tcp_sk(sk);
1559	u32 seq = tp->copied_seq;
1560	u32 offset;
1561	int copied = 0;
1562
1563	if (sk->sk_state == TCP_LISTEN)
1564		return -ENOTCONN;
1565	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1566		if (offset < skb->len) {
1567			int used;
1568			size_t len;
1569
1570			len = skb->len - offset;
1571			/* Stop reading if we hit a patch of urgent data */
1572			if (unlikely(tp->urg_data)) {
1573				u32 urg_offset = tp->urg_seq - seq;
1574				if (urg_offset < len)
1575					len = urg_offset;
1576				if (!len)
1577					break;
1578			}
1579			used = recv_actor(desc, skb, offset, len);
1580			if (used <= 0) {
1581				if (!copied)
1582					copied = used;
1583				break;
 
 
 
 
1584			}
1585			if (WARN_ON_ONCE(used > len))
1586				used = len;
1587			seq += used;
1588			copied += used;
1589			offset += used;
1590
1591			/* If recv_actor drops the lock (e.g. TCP splice
1592			 * receive) the skb pointer might be invalid when
1593			 * getting here: tcp_collapse might have deleted it
1594			 * while aggregating skbs from the socket queue.
1595			 */
1596			skb = tcp_recv_skb(sk, seq - 1, &offset);
1597			if (!skb)
1598				break;
1599			/* TCP coalescing might have appended data to the skb.
1600			 * Try to splice more frags
1601			 */
1602			if (offset + 1 != skb->len)
1603				continue;
1604		}
1605		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1606			tcp_eat_recv_skb(sk, skb);
1607			++seq;
1608			break;
1609		}
1610		tcp_eat_recv_skb(sk, skb);
1611		if (!desc->count)
1612			break;
1613		WRITE_ONCE(tp->copied_seq, seq);
1614	}
1615	WRITE_ONCE(tp->copied_seq, seq);
1616
1617	tcp_rcv_space_adjust(sk);
1618
1619	/* Clean up data we have read: This will do ACK frames. */
1620	if (copied > 0) {
1621		tcp_recv_skb(sk, seq, &offset);
1622		tcp_cleanup_rbuf(sk, copied);
1623	}
1624	return copied;
1625}
1626EXPORT_SYMBOL(tcp_read_sock);
1627
1628int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1629{
1630	struct sk_buff *skb;
1631	int copied = 0;
1632
1633	if (sk->sk_state == TCP_LISTEN)
1634		return -ENOTCONN;
1635
1636	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1637		u8 tcp_flags;
1638		int used;
1639
1640		__skb_unlink(skb, &sk->sk_receive_queue);
1641		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1642		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1643		used = recv_actor(sk, skb);
1644		if (used < 0) {
1645			if (!copied)
1646				copied = used;
1647			break;
1648		}
1649		copied += used;
1650
1651		if (tcp_flags & TCPHDR_FIN)
1652			break;
1653	}
1654	return copied;
1655}
1656EXPORT_SYMBOL(tcp_read_skb);
1657
1658void tcp_read_done(struct sock *sk, size_t len)
1659{
1660	struct tcp_sock *tp = tcp_sk(sk);
1661	u32 seq = tp->copied_seq;
1662	struct sk_buff *skb;
1663	size_t left;
1664	u32 offset;
1665
1666	if (sk->sk_state == TCP_LISTEN)
1667		return;
1668
1669	left = len;
1670	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671		int used;
1672
1673		used = min_t(size_t, skb->len - offset, left);
1674		seq += used;
1675		left -= used;
1676
1677		if (skb->len > offset + used)
1678			break;
1679
1680		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681			tcp_eat_recv_skb(sk, skb);
1682			++seq;
1683			break;
1684		}
1685		tcp_eat_recv_skb(sk, skb);
1686	}
1687	WRITE_ONCE(tp->copied_seq, seq);
1688
1689	tcp_rcv_space_adjust(sk);
1690
1691	/* Clean up data we have read: This will do ACK frames. */
1692	if (left != len)
1693		tcp_cleanup_rbuf(sk, len - left);
1694}
1695EXPORT_SYMBOL(tcp_read_done);
1696
1697int tcp_peek_len(struct socket *sock)
1698{
1699	return tcp_inq(sock->sk);
1700}
1701EXPORT_SYMBOL(tcp_peek_len);
1702
1703/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704int tcp_set_rcvlowat(struct sock *sk, int val)
1705{
1706	int space, cap;
1707
1708	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709		cap = sk->sk_rcvbuf >> 1;
1710	else
1711		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712	val = min(val, cap);
1713	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714
1715	/* Check if we need to signal EPOLLIN right now */
1716	tcp_data_ready(sk);
1717
1718	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719		return 0;
1720
1721	space = tcp_space_from_win(sk, val);
1722	if (space > sk->sk_rcvbuf) {
1723		WRITE_ONCE(sk->sk_rcvbuf, space);
1724		tcp_sk(sk)->window_clamp = val;
1725	}
1726	return 0;
1727}
1728EXPORT_SYMBOL(tcp_set_rcvlowat);
1729
1730void tcp_update_recv_tstamps(struct sk_buff *skb,
1731			     struct scm_timestamping_internal *tss)
1732{
1733	if (skb->tstamp)
1734		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735	else
1736		tss->ts[0] = (struct timespec64) {0};
1737
1738	if (skb_hwtstamps(skb)->hwtstamp)
1739		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740	else
1741		tss->ts[2] = (struct timespec64) {0};
1742}
1743
1744#ifdef CONFIG_MMU
1745static const struct vm_operations_struct tcp_vm_ops = {
1746};
1747
1748int tcp_mmap(struct file *file, struct socket *sock,
1749	     struct vm_area_struct *vma)
1750{
1751	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752		return -EPERM;
1753	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754
1755	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756	vm_flags_set(vma, VM_MIXEDMAP);
1757
1758	vma->vm_ops = &tcp_vm_ops;
1759	return 0;
1760}
1761EXPORT_SYMBOL(tcp_mmap);
1762
1763static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764				       u32 *offset_frag)
1765{
1766	skb_frag_t *frag;
1767
1768	if (unlikely(offset_skb >= skb->len))
1769		return NULL;
1770
1771	offset_skb -= skb_headlen(skb);
1772	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773		return NULL;
1774
1775	frag = skb_shinfo(skb)->frags;
1776	while (offset_skb) {
1777		if (skb_frag_size(frag) > offset_skb) {
1778			*offset_frag = offset_skb;
1779			return frag;
1780		}
1781		offset_skb -= skb_frag_size(frag);
1782		++frag;
1783	}
1784	*offset_frag = 0;
1785	return frag;
1786}
1787
1788static bool can_map_frag(const skb_frag_t *frag)
1789{
1790	struct page *page;
1791
1792	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1793		return false;
1794
1795	page = skb_frag_page(frag);
1796
1797	if (PageCompound(page) || page->mapping)
1798		return false;
1799
1800	return true;
1801}
1802
1803static int find_next_mappable_frag(const skb_frag_t *frag,
1804				   int remaining_in_skb)
1805{
1806	int offset = 0;
1807
1808	if (likely(can_map_frag(frag)))
1809		return 0;
1810
1811	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1812		offset += skb_frag_size(frag);
1813		++frag;
1814	}
1815	return offset;
1816}
1817
1818static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1819					  struct tcp_zerocopy_receive *zc,
1820					  struct sk_buff *skb, u32 offset)
1821{
1822	u32 frag_offset, partial_frag_remainder = 0;
1823	int mappable_offset;
1824	skb_frag_t *frag;
1825
1826	/* worst case: skip to next skb. try to improve on this case below */
1827	zc->recv_skip_hint = skb->len - offset;
1828
1829	/* Find the frag containing this offset (and how far into that frag) */
1830	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1831	if (!frag)
1832		return;
1833
1834	if (frag_offset) {
1835		struct skb_shared_info *info = skb_shinfo(skb);
1836
1837		/* We read part of the last frag, must recvmsg() rest of skb. */
1838		if (frag == &info->frags[info->nr_frags - 1])
1839			return;
1840
1841		/* Else, we must at least read the remainder in this frag. */
1842		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1843		zc->recv_skip_hint -= partial_frag_remainder;
1844		++frag;
1845	}
1846
1847	/* partial_frag_remainder: If part way through a frag, must read rest.
1848	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1849	 * in partial_frag_remainder.
1850	 */
1851	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1852	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1853}
1854
1855static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1856			      int flags, struct scm_timestamping_internal *tss,
1857			      int *cmsg_flags);
1858static int receive_fallback_to_copy(struct sock *sk,
1859				    struct tcp_zerocopy_receive *zc, int inq,
1860				    struct scm_timestamping_internal *tss)
1861{
1862	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1863	struct msghdr msg = {};
1864	int err;
1865
1866	zc->length = 0;
1867	zc->recv_skip_hint = 0;
1868
1869	if (copy_address != zc->copybuf_address)
1870		return -EINVAL;
1871
1872	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1873			  &msg.msg_iter);
1874	if (err)
1875		return err;
1876
1877	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1878				 tss, &zc->msg_flags);
1879	if (err < 0)
1880		return err;
1881
1882	zc->copybuf_len = err;
1883	if (likely(zc->copybuf_len)) {
1884		struct sk_buff *skb;
1885		u32 offset;
1886
1887		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888		if (skb)
1889			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890	}
1891	return 0;
1892}
1893
1894static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895				   struct sk_buff *skb, u32 copylen,
1896				   u32 *offset, u32 *seq)
1897{
1898	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899	struct msghdr msg = {};
1900	int err;
1901
1902	if (copy_address != zc->copybuf_address)
1903		return -EINVAL;
1904
1905	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1906			  &msg.msg_iter);
1907	if (err)
1908		return err;
1909	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1910	if (err)
1911		return err;
1912	zc->recv_skip_hint -= copylen;
1913	*offset += copylen;
1914	*seq += copylen;
1915	return (__s32)copylen;
1916}
1917
1918static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1919				  struct sock *sk,
1920				  struct sk_buff *skb,
1921				  u32 *seq,
1922				  s32 copybuf_len,
1923				  struct scm_timestamping_internal *tss)
1924{
1925	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1926
1927	if (!copylen)
1928		return 0;
1929	/* skb is null if inq < PAGE_SIZE. */
1930	if (skb) {
1931		offset = *seq - TCP_SKB_CB(skb)->seq;
1932	} else {
1933		skb = tcp_recv_skb(sk, *seq, &offset);
1934		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1935			tcp_update_recv_tstamps(skb, tss);
1936			zc->msg_flags |= TCP_CMSG_TS;
1937		}
1938	}
1939
1940	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1941						  seq);
1942	return zc->copybuf_len < 0 ? 0 : copylen;
1943}
1944
1945static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1946					      struct page **pending_pages,
1947					      unsigned long pages_remaining,
1948					      unsigned long *address,
1949					      u32 *length,
1950					      u32 *seq,
1951					      struct tcp_zerocopy_receive *zc,
1952					      u32 total_bytes_to_map,
1953					      int err)
1954{
1955	/* At least one page did not map. Try zapping if we skipped earlier. */
1956	if (err == -EBUSY &&
1957	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1958		u32 maybe_zap_len;
1959
1960		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1961				*length + /* Mapped or pending */
1962				(pages_remaining * PAGE_SIZE); /* Failed map. */
1963		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1964		err = 0;
1965	}
1966
1967	if (!err) {
1968		unsigned long leftover_pages = pages_remaining;
1969		int bytes_mapped;
1970
1971		/* We called zap_page_range_single, try to reinsert. */
1972		err = vm_insert_pages(vma, *address,
1973				      pending_pages,
1974				      &pages_remaining);
1975		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1976		*seq += bytes_mapped;
1977		*address += bytes_mapped;
1978	}
1979	if (err) {
1980		/* Either we were unable to zap, OR we zapped, retried an
1981		 * insert, and still had an issue. Either ways, pages_remaining
1982		 * is the number of pages we were unable to map, and we unroll
1983		 * some state we speculatively touched before.
1984		 */
1985		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1986
1987		*length -= bytes_not_mapped;
1988		zc->recv_skip_hint += bytes_not_mapped;
1989	}
1990	return err;
1991}
1992
1993static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1994					struct page **pages,
1995					unsigned int pages_to_map,
1996					unsigned long *address,
1997					u32 *length,
1998					u32 *seq,
1999					struct tcp_zerocopy_receive *zc,
2000					u32 total_bytes_to_map)
2001{
2002	unsigned long pages_remaining = pages_to_map;
2003	unsigned int pages_mapped;
2004	unsigned int bytes_mapped;
2005	int err;
2006
2007	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2008	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2009	bytes_mapped = PAGE_SIZE * pages_mapped;
2010	/* Even if vm_insert_pages fails, it may have partially succeeded in
2011	 * mapping (some but not all of the pages).
2012	 */
2013	*seq += bytes_mapped;
2014	*address += bytes_mapped;
2015
2016	if (likely(!err))
2017		return 0;
2018
2019	/* Error: maybe zap and retry + rollback state for failed inserts. */
2020	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2021		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2022		err);
2023}
2024
2025#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2026static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2027				      struct tcp_zerocopy_receive *zc,
2028				      struct scm_timestamping_internal *tss)
2029{
2030	unsigned long msg_control_addr;
2031	struct msghdr cmsg_dummy;
2032
2033	msg_control_addr = (unsigned long)zc->msg_control;
2034	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2035	cmsg_dummy.msg_controllen =
2036		(__kernel_size_t)zc->msg_controllen;
2037	cmsg_dummy.msg_flags = in_compat_syscall()
2038		? MSG_CMSG_COMPAT : 0;
2039	cmsg_dummy.msg_control_is_user = true;
2040	zc->msg_flags = 0;
2041	if (zc->msg_control == msg_control_addr &&
2042	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2043		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2044		zc->msg_control = (__u64)
2045			((uintptr_t)cmsg_dummy.msg_control_user);
2046		zc->msg_controllen =
2047			(__u64)cmsg_dummy.msg_controllen;
2048		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2049	}
2050}
2051
2052static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2053					   unsigned long address,
2054					   bool *mmap_locked)
2055{
2056	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2057
2058	if (vma) {
2059		if (vma->vm_ops != &tcp_vm_ops) {
2060			vma_end_read(vma);
2061			return NULL;
2062		}
2063		*mmap_locked = false;
2064		return vma;
2065	}
2066
2067	mmap_read_lock(mm);
2068	vma = vma_lookup(mm, address);
2069	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2070		mmap_read_unlock(mm);
2071		return NULL;
2072	}
2073	*mmap_locked = true;
2074	return vma;
2075}
2076
2077#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2078static int tcp_zerocopy_receive(struct sock *sk,
2079				struct tcp_zerocopy_receive *zc,
2080				struct scm_timestamping_internal *tss)
2081{
2082	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2083	unsigned long address = (unsigned long)zc->address;
2084	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2085	s32 copybuf_len = zc->copybuf_len;
2086	struct tcp_sock *tp = tcp_sk(sk);
2087	const skb_frag_t *frags = NULL;
2088	unsigned int pages_to_map = 0;
2089	struct vm_area_struct *vma;
2090	struct sk_buff *skb = NULL;
2091	u32 seq = tp->copied_seq;
2092	u32 total_bytes_to_map;
2093	int inq = tcp_inq(sk);
2094	bool mmap_locked;
2095	int ret;
2096
2097	zc->copybuf_len = 0;
2098	zc->msg_flags = 0;
2099
2100	if (address & (PAGE_SIZE - 1) || address != zc->address)
2101		return -EINVAL;
2102
2103	if (sk->sk_state == TCP_LISTEN)
2104		return -ENOTCONN;
2105
2106	sock_rps_record_flow(sk);
2107
2108	if (inq && inq <= copybuf_len)
2109		return receive_fallback_to_copy(sk, zc, inq, tss);
2110
2111	if (inq < PAGE_SIZE) {
2112		zc->length = 0;
2113		zc->recv_skip_hint = inq;
2114		if (!inq && sock_flag(sk, SOCK_DONE))
2115			return -EIO;
2116		return 0;
2117	}
2118
2119	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2120	if (!vma)
2121		return -EINVAL;
2122
2123	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2124	avail_len = min_t(u32, vma_len, inq);
2125	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2126	if (total_bytes_to_map) {
2127		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2128			zap_page_range_single(vma, address, total_bytes_to_map,
2129					      NULL);
2130		zc->length = total_bytes_to_map;
2131		zc->recv_skip_hint = 0;
2132	} else {
2133		zc->length = avail_len;
2134		zc->recv_skip_hint = avail_len;
2135	}
2136	ret = 0;
2137	while (length + PAGE_SIZE <= zc->length) {
2138		int mappable_offset;
2139		struct page *page;
2140
2141		if (zc->recv_skip_hint < PAGE_SIZE) {
2142			u32 offset_frag;
2143
2144			if (skb) {
2145				if (zc->recv_skip_hint > 0)
2146					break;
2147				skb = skb->next;
2148				offset = seq - TCP_SKB_CB(skb)->seq;
2149			} else {
2150				skb = tcp_recv_skb(sk, seq, &offset);
2151			}
2152
2153			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2154				tcp_update_recv_tstamps(skb, tss);
2155				zc->msg_flags |= TCP_CMSG_TS;
2156			}
2157			zc->recv_skip_hint = skb->len - offset;
2158			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2159			if (!frags || offset_frag)
2160				break;
2161		}
2162
2163		mappable_offset = find_next_mappable_frag(frags,
2164							  zc->recv_skip_hint);
2165		if (mappable_offset) {
2166			zc->recv_skip_hint = mappable_offset;
2167			break;
2168		}
2169		page = skb_frag_page(frags);
2170		prefetchw(page);
2171		pages[pages_to_map++] = page;
2172		length += PAGE_SIZE;
2173		zc->recv_skip_hint -= PAGE_SIZE;
2174		frags++;
2175		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2176		    zc->recv_skip_hint < PAGE_SIZE) {
2177			/* Either full batch, or we're about to go to next skb
2178			 * (and we cannot unroll failed ops across skbs).
2179			 */
2180			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2181							   pages_to_map,
2182							   &address, &length,
2183							   &seq, zc,
2184							   total_bytes_to_map);
2185			if (ret)
2186				goto out;
2187			pages_to_map = 0;
2188		}
2189	}
2190	if (pages_to_map) {
2191		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2192						   &address, &length, &seq,
2193						   zc, total_bytes_to_map);
2194	}
2195out:
2196	if (mmap_locked)
2197		mmap_read_unlock(current->mm);
2198	else
2199		vma_end_read(vma);
2200	/* Try to copy straggler data. */
2201	if (!ret)
2202		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2203
2204	if (length + copylen) {
2205		WRITE_ONCE(tp->copied_seq, seq);
2206		tcp_rcv_space_adjust(sk);
2207
2208		/* Clean up data we have read: This will do ACK frames. */
2209		tcp_recv_skb(sk, seq, &offset);
2210		tcp_cleanup_rbuf(sk, length + copylen);
2211		ret = 0;
2212		if (length == zc->length)
2213			zc->recv_skip_hint = 0;
2214	} else {
2215		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2216			ret = -EIO;
2217	}
2218	zc->length = length;
2219	return ret;
2220}
2221#endif
2222
2223/* Similar to __sock_recv_timestamp, but does not require an skb */
2224void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2225			struct scm_timestamping_internal *tss)
2226{
2227	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2228	bool has_timestamping = false;
2229
2230	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2231		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2232			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2233				if (new_tstamp) {
2234					struct __kernel_timespec kts = {
2235						.tv_sec = tss->ts[0].tv_sec,
2236						.tv_nsec = tss->ts[0].tv_nsec,
2237					};
2238					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2239						 sizeof(kts), &kts);
2240				} else {
2241					struct __kernel_old_timespec ts_old = {
2242						.tv_sec = tss->ts[0].tv_sec,
2243						.tv_nsec = tss->ts[0].tv_nsec,
2244					};
2245					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2246						 sizeof(ts_old), &ts_old);
2247				}
2248			} else {
2249				if (new_tstamp) {
2250					struct __kernel_sock_timeval stv = {
2251						.tv_sec = tss->ts[0].tv_sec,
2252						.tv_usec = tss->ts[0].tv_nsec / 1000,
2253					};
2254					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2255						 sizeof(stv), &stv);
2256				} else {
2257					struct __kernel_old_timeval tv = {
2258						.tv_sec = tss->ts[0].tv_sec,
2259						.tv_usec = tss->ts[0].tv_nsec / 1000,
2260					};
2261					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2262						 sizeof(tv), &tv);
2263				}
2264			}
2265		}
2266
2267		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2268			has_timestamping = true;
2269		else
2270			tss->ts[0] = (struct timespec64) {0};
2271	}
2272
2273	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2274		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2275			has_timestamping = true;
2276		else
2277			tss->ts[2] = (struct timespec64) {0};
2278	}
2279
2280	if (has_timestamping) {
2281		tss->ts[1] = (struct timespec64) {0};
2282		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2283			put_cmsg_scm_timestamping64(msg, tss);
2284		else
2285			put_cmsg_scm_timestamping(msg, tss);
2286	}
2287}
2288
2289static int tcp_inq_hint(struct sock *sk)
2290{
2291	const struct tcp_sock *tp = tcp_sk(sk);
2292	u32 copied_seq = READ_ONCE(tp->copied_seq);
2293	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2294	int inq;
2295
2296	inq = rcv_nxt - copied_seq;
2297	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2298		lock_sock(sk);
2299		inq = tp->rcv_nxt - tp->copied_seq;
2300		release_sock(sk);
2301	}
2302	/* After receiving a FIN, tell the user-space to continue reading
2303	 * by returning a non-zero inq.
2304	 */
2305	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2306		inq = 1;
2307	return inq;
2308}
2309
2310/*
2311 *	This routine copies from a sock struct into the user buffer.
2312 *
2313 *	Technical note: in 2.3 we work on _locked_ socket, so that
2314 *	tricks with *seq access order and skb->users are not required.
2315 *	Probably, code can be easily improved even more.
2316 */
2317
2318static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2319			      int flags, struct scm_timestamping_internal *tss,
2320			      int *cmsg_flags)
2321{
2322	struct tcp_sock *tp = tcp_sk(sk);
2323	int copied = 0;
2324	u32 peek_seq;
2325	u32 *seq;
2326	unsigned long used;
2327	int err;
2328	int target;		/* Read at least this many bytes */
2329	long timeo;
2330	struct sk_buff *skb, *last;
 
 
2331	u32 urg_hole = 0;
2332
 
 
2333	err = -ENOTCONN;
2334	if (sk->sk_state == TCP_LISTEN)
2335		goto out;
2336
2337	if (tp->recvmsg_inq) {
2338		*cmsg_flags = TCP_CMSG_INQ;
2339		msg->msg_get_inq = 1;
2340	}
2341	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2342
2343	/* Urgent data needs to be handled specially. */
2344	if (flags & MSG_OOB)
2345		goto recv_urg;
2346
2347	if (unlikely(tp->repair)) {
2348		err = -EPERM;
2349		if (!(flags & MSG_PEEK))
2350			goto out;
2351
2352		if (tp->repair_queue == TCP_SEND_QUEUE)
2353			goto recv_sndq;
2354
2355		err = -EINVAL;
2356		if (tp->repair_queue == TCP_NO_QUEUE)
2357			goto out;
2358
2359		/* 'common' recv queue MSG_PEEK-ing */
2360	}
2361
2362	seq = &tp->copied_seq;
2363	if (flags & MSG_PEEK) {
2364		peek_seq = tp->copied_seq;
2365		seq = &peek_seq;
2366	}
2367
2368	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2370	do {
2371		u32 offset;
2372
2373		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2374		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2375			if (copied)
2376				break;
2377			if (signal_pending(current)) {
2378				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2379				break;
2380			}
2381		}
2382
2383		/* Next get a buffer. */
2384
2385		last = skb_peek_tail(&sk->sk_receive_queue);
2386		skb_queue_walk(&sk->sk_receive_queue, skb) {
2387			last = skb;
2388			/* Now that we have two receive queues this
2389			 * shouldn't happen.
2390			 */
2391			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2392				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2393				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2394				 flags))
2395				break;
2396
2397			offset = *seq - TCP_SKB_CB(skb)->seq;
2398			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2399				pr_err_once("%s: found a SYN, please report !\n", __func__);
2400				offset--;
2401			}
2402			if (offset < skb->len)
2403				goto found_ok_skb;
2404			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2405				goto found_fin_ok;
2406			WARN(!(flags & MSG_PEEK),
2407			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2408			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2409		}
2410
2411		/* Well, if we have backlog, try to process it now yet. */
2412
2413		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2414			break;
2415
2416		if (copied) {
2417			if (!timeo ||
2418			    sk->sk_err ||
2419			    sk->sk_state == TCP_CLOSE ||
2420			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 
2421			    signal_pending(current))
2422				break;
2423		} else {
2424			if (sock_flag(sk, SOCK_DONE))
2425				break;
2426
2427			if (sk->sk_err) {
2428				copied = sock_error(sk);
2429				break;
2430			}
2431
2432			if (sk->sk_shutdown & RCV_SHUTDOWN)
2433				break;
2434
2435			if (sk->sk_state == TCP_CLOSE) {
2436				/* This occurs when user tries to read
2437				 * from never connected socket.
2438				 */
2439				copied = -ENOTCONN;
 
 
 
2440				break;
2441			}
2442
2443			if (!timeo) {
2444				copied = -EAGAIN;
2445				break;
2446			}
2447
2448			if (signal_pending(current)) {
2449				copied = sock_intr_errno(timeo);
2450				break;
2451			}
2452		}
2453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454		if (copied >= target) {
2455			/* Do not sleep, just process backlog. */
2456			__sk_flush_backlog(sk);
2457		} else {
2458			tcp_cleanup_rbuf(sk, copied);
2459			err = sk_wait_data(sk, &timeo, last);
2460			if (err < 0) {
2461				err = copied ? : err;
2462				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463			}
2464		}
2465
2466		if ((flags & MSG_PEEK) &&
2467		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2468			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2469					    current->comm,
2470					    task_pid_nr(current));
2471			peek_seq = tp->copied_seq;
2472		}
2473		continue;
2474
2475found_ok_skb:
2476		/* Ok so how much can we use? */
2477		used = skb->len - offset;
2478		if (len < used)
2479			used = len;
2480
2481		/* Do we have urgent data here? */
2482		if (unlikely(tp->urg_data)) {
2483			u32 urg_offset = tp->urg_seq - *seq;
2484			if (urg_offset < used) {
2485				if (!urg_offset) {
2486					if (!sock_flag(sk, SOCK_URGINLINE)) {
2487						WRITE_ONCE(*seq, *seq + 1);
2488						urg_hole++;
2489						offset++;
2490						used--;
2491						if (!used)
2492							goto skip_copy;
2493					}
2494				} else
2495					used = urg_offset;
2496			}
2497		}
2498
2499		if (!(flags & MSG_TRUNC)) {
2500			err = skb_copy_datagram_msg(skb, offset, msg, used);
2501			if (err) {
2502				/* Exception. Bailout! */
2503				if (!copied)
2504					copied = -EFAULT;
2505				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506			}
2507		}
2508
2509		WRITE_ONCE(*seq, *seq + used);
2510		copied += used;
2511		len -= used;
2512
2513		tcp_rcv_space_adjust(sk);
2514
2515skip_copy:
2516		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2517			WRITE_ONCE(tp->urg_data, 0);
2518			tcp_fast_path_check(sk);
2519		}
2520
2521		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2522			tcp_update_recv_tstamps(skb, tss);
2523			*cmsg_flags |= TCP_CMSG_TS;
2524		}
2525
2526		if (used + offset < skb->len)
2527			continue;
2528
2529		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2530			goto found_fin_ok;
2531		if (!(flags & MSG_PEEK))
2532			tcp_eat_recv_skb(sk, skb);
 
 
2533		continue;
2534
2535found_fin_ok:
2536		/* Process the FIN. */
2537		WRITE_ONCE(*seq, *seq + 1);
2538		if (!(flags & MSG_PEEK))
2539			tcp_eat_recv_skb(sk, skb);
 
 
2540		break;
2541	} while (len > 0);
2542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543	/* According to UNIX98, msg_name/msg_namelen are ignored
2544	 * on connected socket. I was just happy when found this 8) --ANK
2545	 */
2546
2547	/* Clean up data we have read: This will do ACK frames. */
2548	tcp_cleanup_rbuf(sk, copied);
 
 
2549	return copied;
2550
2551out:
 
2552	return err;
2553
2554recv_urg:
2555	err = tcp_recv_urg(sk, msg, len, flags);
2556	goto out;
2557
2558recv_sndq:
2559	err = tcp_peek_sndq(sk, msg, len);
2560	goto out;
2561}
2562
2563int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2564		int *addr_len)
2565{
2566	int cmsg_flags = 0, ret;
2567	struct scm_timestamping_internal tss;
2568
2569	if (unlikely(flags & MSG_ERRQUEUE))
2570		return inet_recv_error(sk, msg, len, addr_len);
2571
2572	if (sk_can_busy_loop(sk) &&
2573	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2574	    sk->sk_state == TCP_ESTABLISHED)
2575		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2576
2577	lock_sock(sk);
2578	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2579	release_sock(sk);
2580
2581	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2582		if (cmsg_flags & TCP_CMSG_TS)
2583			tcp_recv_timestamp(msg, sk, &tss);
2584		if (msg->msg_get_inq) {
2585			msg->msg_inq = tcp_inq_hint(sk);
2586			if (cmsg_flags & TCP_CMSG_INQ)
2587				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2588					 sizeof(msg->msg_inq), &msg->msg_inq);
2589		}
2590	}
2591	return ret;
2592}
2593EXPORT_SYMBOL(tcp_recvmsg);
2594
2595void tcp_set_state(struct sock *sk, int state)
2596{
2597	int oldstate = sk->sk_state;
2598
2599	/* We defined a new enum for TCP states that are exported in BPF
2600	 * so as not force the internal TCP states to be frozen. The
2601	 * following checks will detect if an internal state value ever
2602	 * differs from the BPF value. If this ever happens, then we will
2603	 * need to remap the internal value to the BPF value before calling
2604	 * tcp_call_bpf_2arg.
2605	 */
2606	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2607	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2608	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2609	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2610	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2611	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2612	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2613	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2614	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2615	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2616	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2617	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2618	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2619	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620
2621	/* bpf uapi header bpf.h defines an anonymous enum with values
2622	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624	 * But clang built vmlinux does not have this enum in DWARF
2625	 * since clang removes the above code before generating IR/debuginfo.
2626	 * Let us explicitly emit the type debuginfo to ensure the
2627	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628	 * regardless of which compiler is used.
2629	 */
2630	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631
2632	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634
2635	switch (state) {
2636	case TCP_ESTABLISHED:
2637		if (oldstate != TCP_ESTABLISHED)
2638			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639		break;
2640
2641	case TCP_CLOSE:
2642		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644
2645		sk->sk_prot->unhash(sk);
2646		if (inet_csk(sk)->icsk_bind_hash &&
2647		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648			inet_put_port(sk);
2649		fallthrough;
2650	default:
2651		if (oldstate == TCP_ESTABLISHED)
2652			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653	}
2654
2655	/* Change state AFTER socket is unhashed to avoid closed
2656	 * socket sitting in hash tables.
2657	 */
2658	inet_sk_state_store(sk, state);
 
 
 
 
2659}
2660EXPORT_SYMBOL_GPL(tcp_set_state);
2661
2662/*
2663 *	State processing on a close. This implements the state shift for
2664 *	sending our FIN frame. Note that we only send a FIN for some
2665 *	states. A shutdown() may have already sent the FIN, or we may be
2666 *	closed.
2667 */
2668
2669static const unsigned char new_state[16] = {
2670  /* current state:        new state:      action:	*/
2671  [0 /* (Invalid) */]	= TCP_CLOSE,
2672  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673  [TCP_SYN_SENT]	= TCP_CLOSE,
2674  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2676  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2677  [TCP_TIME_WAIT]	= TCP_CLOSE,
2678  [TCP_CLOSE]		= TCP_CLOSE,
2679  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2680  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2681  [TCP_LISTEN]		= TCP_CLOSE,
2682  [TCP_CLOSING]		= TCP_CLOSING,
2683  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2684};
2685
2686static int tcp_close_state(struct sock *sk)
2687{
2688	int next = (int)new_state[sk->sk_state];
2689	int ns = next & TCP_STATE_MASK;
2690
2691	tcp_set_state(sk, ns);
2692
2693	return next & TCP_ACTION_FIN;
2694}
2695
2696/*
2697 *	Shutdown the sending side of a connection. Much like close except
2698 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699 */
2700
2701void tcp_shutdown(struct sock *sk, int how)
2702{
2703	/*	We need to grab some memory, and put together a FIN,
2704	 *	and then put it into the queue to be sent.
2705	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706	 */
2707	if (!(how & SEND_SHUTDOWN))
2708		return;
2709
2710	/* If we've already sent a FIN, or it's a closed state, skip this. */
2711	if ((1 << sk->sk_state) &
2712	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713	     TCPF_CLOSE_WAIT)) {
2714		/* Clear out any half completed packets.  FIN if needed. */
2715		if (tcp_close_state(sk))
2716			tcp_send_fin(sk);
2717	}
2718}
2719EXPORT_SYMBOL(tcp_shutdown);
2720
2721int tcp_orphan_count_sum(void)
2722{
2723	int i, total = 0;
2724
2725	for_each_possible_cpu(i)
2726		total += per_cpu(tcp_orphan_count, i);
2727
2728	return max(total, 0);
2729}
2730
2731static int tcp_orphan_cache;
2732static struct timer_list tcp_orphan_timer;
2733#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734
2735static void tcp_orphan_update(struct timer_list *unused)
2736{
2737	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739}
2740
2741static bool tcp_too_many_orphans(int shift)
2742{
2743	return READ_ONCE(tcp_orphan_cache) << shift >
2744		READ_ONCE(sysctl_tcp_max_orphans);
2745}
2746
2747bool tcp_check_oom(struct sock *sk, int shift)
2748{
2749	bool too_many_orphans, out_of_socket_memory;
2750
2751	too_many_orphans = tcp_too_many_orphans(shift);
2752	out_of_socket_memory = tcp_out_of_memory(sk);
2753
2754	if (too_many_orphans)
2755		net_info_ratelimited("too many orphaned sockets\n");
2756	if (out_of_socket_memory)
2757		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2758	return too_many_orphans || out_of_socket_memory;
2759}
2760
2761void __tcp_close(struct sock *sk, long timeout)
2762{
2763	struct sk_buff *skb;
2764	int data_was_unread = 0;
2765	int state;
2766
2767	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
 
2768
2769	if (sk->sk_state == TCP_LISTEN) {
2770		tcp_set_state(sk, TCP_CLOSE);
2771
2772		/* Special case. */
2773		inet_csk_listen_stop(sk);
2774
2775		goto adjudge_to_death;
2776	}
2777
2778	/*  We need to flush the recv. buffs.  We do this only on the
2779	 *  descriptor close, not protocol-sourced closes, because the
2780	 *  reader process may not have drained the data yet!
2781	 */
2782	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2783		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2784
2785		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2786			len--;
2787		data_was_unread += len;
2788		__kfree_skb(skb);
2789	}
2790
 
 
2791	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2792	if (sk->sk_state == TCP_CLOSE)
2793		goto adjudge_to_death;
2794
2795	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2796	 * data was lost. To witness the awful effects of the old behavior of
2797	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2798	 * GET in an FTP client, suspend the process, wait for the client to
2799	 * advertise a zero window, then kill -9 the FTP client, wheee...
2800	 * Note: timeout is always zero in such a case.
2801	 */
2802	if (unlikely(tcp_sk(sk)->repair)) {
2803		sk->sk_prot->disconnect(sk, 0);
2804	} else if (data_was_unread) {
2805		/* Unread data was tossed, zap the connection. */
2806		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2807		tcp_set_state(sk, TCP_CLOSE);
2808		tcp_send_active_reset(sk, sk->sk_allocation);
2809	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2810		/* Check zero linger _after_ checking for unread data. */
2811		sk->sk_prot->disconnect(sk, 0);
2812		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2813	} else if (tcp_close_state(sk)) {
2814		/* We FIN if the application ate all the data before
2815		 * zapping the connection.
2816		 */
2817
2818		/* RED-PEN. Formally speaking, we have broken TCP state
2819		 * machine. State transitions:
2820		 *
2821		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2822		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2823		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2824		 *
2825		 * are legal only when FIN has been sent (i.e. in window),
2826		 * rather than queued out of window. Purists blame.
2827		 *
2828		 * F.e. "RFC state" is ESTABLISHED,
2829		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2830		 *
2831		 * The visible declinations are that sometimes
2832		 * we enter time-wait state, when it is not required really
2833		 * (harmless), do not send active resets, when they are
2834		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2835		 * they look as CLOSING or LAST_ACK for Linux)
2836		 * Probably, I missed some more holelets.
2837		 * 						--ANK
2838		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2839		 * in a single packet! (May consider it later but will
2840		 * probably need API support or TCP_CORK SYN-ACK until
2841		 * data is written and socket is closed.)
2842		 */
2843		tcp_send_fin(sk);
2844	}
2845
2846	sk_stream_wait_close(sk, timeout);
2847
2848adjudge_to_death:
2849	state = sk->sk_state;
2850	sock_hold(sk);
2851	sock_orphan(sk);
2852
 
 
 
 
 
 
 
2853	local_bh_disable();
2854	bh_lock_sock(sk);
2855	/* remove backlog if any, without releasing ownership. */
2856	__release_sock(sk);
2857
2858	this_cpu_inc(tcp_orphan_count);
2859
2860	/* Have we already been destroyed by a softirq or backlog? */
2861	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2862		goto out;
2863
2864	/*	This is a (useful) BSD violating of the RFC. There is a
2865	 *	problem with TCP as specified in that the other end could
2866	 *	keep a socket open forever with no application left this end.
2867	 *	We use a 1 minute timeout (about the same as BSD) then kill
2868	 *	our end. If they send after that then tough - BUT: long enough
2869	 *	that we won't make the old 4*rto = almost no time - whoops
2870	 *	reset mistake.
2871	 *
2872	 *	Nope, it was not mistake. It is really desired behaviour
2873	 *	f.e. on http servers, when such sockets are useless, but
2874	 *	consume significant resources. Let's do it with special
2875	 *	linger2	option.					--ANK
2876	 */
2877
2878	if (sk->sk_state == TCP_FIN_WAIT2) {
2879		struct tcp_sock *tp = tcp_sk(sk);
2880		if (READ_ONCE(tp->linger2) < 0) {
2881			tcp_set_state(sk, TCP_CLOSE);
2882			tcp_send_active_reset(sk, GFP_ATOMIC);
2883			__NET_INC_STATS(sock_net(sk),
2884					LINUX_MIB_TCPABORTONLINGER);
2885		} else {
2886			const int tmo = tcp_fin_time(sk);
2887
2888			if (tmo > TCP_TIMEWAIT_LEN) {
2889				inet_csk_reset_keepalive_timer(sk,
2890						tmo - TCP_TIMEWAIT_LEN);
2891			} else {
2892				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2893				goto out;
2894			}
2895		}
2896	}
2897	if (sk->sk_state != TCP_CLOSE) {
2898		if (tcp_check_oom(sk, 0)) {
 
 
 
 
2899			tcp_set_state(sk, TCP_CLOSE);
2900			tcp_send_active_reset(sk, GFP_ATOMIC);
2901			__NET_INC_STATS(sock_net(sk),
2902					LINUX_MIB_TCPABORTONMEMORY);
2903		} else if (!check_net(sock_net(sk))) {
2904			/* Not possible to send reset; just close */
2905			tcp_set_state(sk, TCP_CLOSE);
2906		}
2907	}
2908
2909	if (sk->sk_state == TCP_CLOSE) {
2910		struct request_sock *req;
2911
2912		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2913						lockdep_sock_is_held(sk));
2914		/* We could get here with a non-NULL req if the socket is
2915		 * aborted (e.g., closed with unread data) before 3WHS
2916		 * finishes.
2917		 */
2918		if (req)
2919			reqsk_fastopen_remove(sk, req, false);
2920		inet_csk_destroy_sock(sk);
2921	}
2922	/* Otherwise, socket is reprieved until protocol close. */
2923
2924out:
2925	bh_unlock_sock(sk);
2926	local_bh_enable();
2927}
2928
2929void tcp_close(struct sock *sk, long timeout)
2930{
2931	lock_sock(sk);
2932	__tcp_close(sk, timeout);
2933	release_sock(sk);
2934	if (!sk->sk_net_refcnt)
2935		inet_csk_clear_xmit_timers_sync(sk);
2936	sock_put(sk);
2937}
2938EXPORT_SYMBOL(tcp_close);
2939
2940/* These states need RST on ABORT according to RFC793 */
2941
2942static inline bool tcp_need_reset(int state)
2943{
2944	return (1 << state) &
2945	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2946		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2947}
2948
2949static void tcp_rtx_queue_purge(struct sock *sk)
2950{
2951	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2952
2953	tcp_sk(sk)->highest_sack = NULL;
2954	while (p) {
2955		struct sk_buff *skb = rb_to_skb(p);
2956
2957		p = rb_next(p);
2958		/* Since we are deleting whole queue, no need to
2959		 * list_del(&skb->tcp_tsorted_anchor)
2960		 */
2961		tcp_rtx_queue_unlink(skb, sk);
2962		tcp_wmem_free_skb(sk, skb);
2963	}
2964}
2965
2966void tcp_write_queue_purge(struct sock *sk)
2967{
2968	struct sk_buff *skb;
2969
2970	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2971	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2972		tcp_skb_tsorted_anchor_cleanup(skb);
2973		tcp_wmem_free_skb(sk, skb);
2974	}
2975	tcp_rtx_queue_purge(sk);
2976	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2977	tcp_clear_all_retrans_hints(tcp_sk(sk));
2978	tcp_sk(sk)->packets_out = 0;
2979	inet_csk(sk)->icsk_backoff = 0;
2980}
2981
2982int tcp_disconnect(struct sock *sk, int flags)
2983{
2984	struct inet_sock *inet = inet_sk(sk);
2985	struct inet_connection_sock *icsk = inet_csk(sk);
2986	struct tcp_sock *tp = tcp_sk(sk);
 
2987	int old_state = sk->sk_state;
2988	u32 seq;
2989
2990	if (old_state != TCP_CLOSE)
2991		tcp_set_state(sk, TCP_CLOSE);
2992
2993	/* ABORT function of RFC793 */
2994	if (old_state == TCP_LISTEN) {
2995		inet_csk_listen_stop(sk);
2996	} else if (unlikely(tp->repair)) {
2997		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2998	} else if (tcp_need_reset(old_state) ||
2999		   (tp->snd_nxt != tp->write_seq &&
3000		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3001		/* The last check adjusts for discrepancy of Linux wrt. RFC
3002		 * states
3003		 */
3004		tcp_send_active_reset(sk, gfp_any());
3005		WRITE_ONCE(sk->sk_err, ECONNRESET);
3006	} else if (old_state == TCP_SYN_SENT)
3007		WRITE_ONCE(sk->sk_err, ECONNRESET);
3008
3009	tcp_clear_xmit_timers(sk);
3010	__skb_queue_purge(&sk->sk_receive_queue);
3011	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3012	WRITE_ONCE(tp->urg_data, 0);
3013	tcp_write_queue_purge(sk);
3014	tcp_fastopen_active_disable_ofo_check(sk);
3015	skb_rbtree_purge(&tp->out_of_order_queue);
 
 
3016
3017	inet->inet_dport = 0;
3018
3019	inet_bhash2_reset_saddr(sk);
 
3020
3021	WRITE_ONCE(sk->sk_shutdown, 0);
3022	sock_reset_flag(sk, SOCK_DONE);
3023	tp->srtt_us = 0;
3024	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3025	tp->rcv_rtt_last_tsecr = 0;
3026
3027	seq = tp->write_seq + tp->max_window + 2;
3028	if (!seq)
3029		seq = 1;
3030	WRITE_ONCE(tp->write_seq, seq);
3031
3032	icsk->icsk_backoff = 0;
 
3033	icsk->icsk_probes_out = 0;
3034	icsk->icsk_probes_tstamp = 0;
3035	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3036	icsk->icsk_rto_min = TCP_RTO_MIN;
3037	icsk->icsk_delack_max = TCP_DELACK_MAX;
3038	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3039	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3040	tp->snd_cwnd_cnt = 0;
3041	tp->is_cwnd_limited = 0;
3042	tp->max_packets_out = 0;
3043	tp->window_clamp = 0;
3044	tp->delivered = 0;
3045	tp->delivered_ce = 0;
3046	if (icsk->icsk_ca_ops->release)
3047		icsk->icsk_ca_ops->release(sk);
3048	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3049	icsk->icsk_ca_initialized = 0;
3050	tcp_set_ca_state(sk, TCP_CA_Open);
3051	tp->is_sack_reneg = 0;
3052	tcp_clear_retrans(tp);
3053	tp->total_retrans = 0;
3054	inet_csk_delack_init(sk);
3055	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3056	 * issue in __tcp_select_window()
3057	 */
3058	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3059	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3060	__sk_dst_reset(sk);
3061	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3062	tcp_saved_syn_free(tp);
3063	tp->compressed_ack = 0;
3064	tp->segs_in = 0;
3065	tp->segs_out = 0;
3066	tp->bytes_sent = 0;
3067	tp->bytes_acked = 0;
3068	tp->bytes_received = 0;
3069	tp->bytes_retrans = 0;
3070	tp->data_segs_in = 0;
3071	tp->data_segs_out = 0;
3072	tp->duplicate_sack[0].start_seq = 0;
3073	tp->duplicate_sack[0].end_seq = 0;
3074	tp->dsack_dups = 0;
3075	tp->reord_seen = 0;
3076	tp->retrans_out = 0;
3077	tp->sacked_out = 0;
3078	tp->tlp_high_seq = 0;
3079	tp->last_oow_ack_time = 0;
3080	tp->plb_rehash = 0;
3081	/* There's a bubble in the pipe until at least the first ACK. */
3082	tp->app_limited = ~0U;
3083	tp->rate_app_limited = 1;
3084	tp->rack.mstamp = 0;
3085	tp->rack.advanced = 0;
3086	tp->rack.reo_wnd_steps = 1;
3087	tp->rack.last_delivered = 0;
3088	tp->rack.reo_wnd_persist = 0;
3089	tp->rack.dsack_seen = 0;
3090	tp->syn_data_acked = 0;
3091	tp->rx_opt.saw_tstamp = 0;
3092	tp->rx_opt.dsack = 0;
3093	tp->rx_opt.num_sacks = 0;
3094	tp->rcv_ooopack = 0;
3095
3096
3097	/* Clean up fastopen related fields */
3098	tcp_free_fastopen_req(tp);
3099	inet_clear_bit(DEFER_CONNECT, sk);
3100	tp->fastopen_client_fail = 0;
3101
3102	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3103
3104	if (sk->sk_frag.page) {
3105		put_page(sk->sk_frag.page);
3106		sk->sk_frag.page = NULL;
3107		sk->sk_frag.offset = 0;
3108	}
3109	sk_error_report(sk);
3110	return 0;
3111}
3112EXPORT_SYMBOL(tcp_disconnect);
3113
3114static inline bool tcp_can_repair_sock(const struct sock *sk)
3115{
3116	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3117		(sk->sk_state != TCP_LISTEN);
3118}
3119
3120static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3121{
3122	struct tcp_repair_window opt;
3123
3124	if (!tp->repair)
3125		return -EPERM;
3126
3127	if (len != sizeof(opt))
3128		return -EINVAL;
3129
3130	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3131		return -EFAULT;
3132
3133	if (opt.max_window < opt.snd_wnd)
3134		return -EINVAL;
3135
3136	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3137		return -EINVAL;
3138
3139	if (after(opt.rcv_wup, tp->rcv_nxt))
3140		return -EINVAL;
3141
3142	tp->snd_wl1	= opt.snd_wl1;
3143	tp->snd_wnd	= opt.snd_wnd;
3144	tp->max_window	= opt.max_window;
3145
3146	tp->rcv_wnd	= opt.rcv_wnd;
3147	tp->rcv_wup	= opt.rcv_wup;
3148
3149	return 0;
3150}
3151
3152static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3153		unsigned int len)
3154{
3155	struct tcp_sock *tp = tcp_sk(sk);
3156	struct tcp_repair_opt opt;
3157	size_t offset = 0;
3158
3159	while (len >= sizeof(opt)) {
3160		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3161			return -EFAULT;
3162
3163		offset += sizeof(opt);
3164		len -= sizeof(opt);
3165
3166		switch (opt.opt_code) {
3167		case TCPOPT_MSS:
3168			tp->rx_opt.mss_clamp = opt.opt_val;
3169			tcp_mtup_init(sk);
3170			break;
3171		case TCPOPT_WINDOW:
3172			{
3173				u16 snd_wscale = opt.opt_val & 0xFFFF;
3174				u16 rcv_wscale = opt.opt_val >> 16;
3175
3176				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3177					return -EFBIG;
3178
3179				tp->rx_opt.snd_wscale = snd_wscale;
3180				tp->rx_opt.rcv_wscale = rcv_wscale;
3181				tp->rx_opt.wscale_ok = 1;
3182			}
3183			break;
3184		case TCPOPT_SACK_PERM:
3185			if (opt.opt_val != 0)
3186				return -EINVAL;
3187
3188			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3189			break;
3190		case TCPOPT_TIMESTAMP:
3191			if (opt.opt_val != 0)
3192				return -EINVAL;
3193
3194			tp->rx_opt.tstamp_ok = 1;
3195			break;
3196		}
3197	}
3198
3199	return 0;
3200}
3201
3202DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3203EXPORT_SYMBOL(tcp_tx_delay_enabled);
3204
3205static void tcp_enable_tx_delay(void)
3206{
3207	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3208		static int __tcp_tx_delay_enabled = 0;
3209
3210		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3211			static_branch_enable(&tcp_tx_delay_enabled);
3212			pr_info("TCP_TX_DELAY enabled\n");
3213		}
3214	}
3215}
3216
3217/* When set indicates to always queue non-full frames.  Later the user clears
3218 * this option and we transmit any pending partial frames in the queue.  This is
3219 * meant to be used alongside sendfile() to get properly filled frames when the
3220 * user (for example) must write out headers with a write() call first and then
3221 * use sendfile to send out the data parts.
3222 *
3223 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3224 * TCP_NODELAY.
3225 */
3226void __tcp_sock_set_cork(struct sock *sk, bool on)
3227{
3228	struct tcp_sock *tp = tcp_sk(sk);
3229
3230	if (on) {
3231		tp->nonagle |= TCP_NAGLE_CORK;
3232	} else {
3233		tp->nonagle &= ~TCP_NAGLE_CORK;
3234		if (tp->nonagle & TCP_NAGLE_OFF)
3235			tp->nonagle |= TCP_NAGLE_PUSH;
3236		tcp_push_pending_frames(sk);
3237	}
3238}
3239
3240void tcp_sock_set_cork(struct sock *sk, bool on)
3241{
3242	lock_sock(sk);
3243	__tcp_sock_set_cork(sk, on);
3244	release_sock(sk);
3245}
3246EXPORT_SYMBOL(tcp_sock_set_cork);
3247
3248/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3249 * remembered, but it is not activated until cork is cleared.
3250 *
3251 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3252 * even TCP_CORK for currently queued segments.
3253 */
3254void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3255{
3256	if (on) {
3257		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3258		tcp_push_pending_frames(sk);
3259	} else {
3260		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3261	}
3262}
3263
3264void tcp_sock_set_nodelay(struct sock *sk)
3265{
3266	lock_sock(sk);
3267	__tcp_sock_set_nodelay(sk, true);
3268	release_sock(sk);
3269}
3270EXPORT_SYMBOL(tcp_sock_set_nodelay);
3271
3272static void __tcp_sock_set_quickack(struct sock *sk, int val)
3273{
3274	if (!val) {
3275		inet_csk_enter_pingpong_mode(sk);
3276		return;
3277	}
3278
3279	inet_csk_exit_pingpong_mode(sk);
3280	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3281	    inet_csk_ack_scheduled(sk)) {
3282		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3283		tcp_cleanup_rbuf(sk, 1);
3284		if (!(val & 1))
3285			inet_csk_enter_pingpong_mode(sk);
3286	}
3287}
3288
3289void tcp_sock_set_quickack(struct sock *sk, int val)
3290{
3291	lock_sock(sk);
3292	__tcp_sock_set_quickack(sk, val);
3293	release_sock(sk);
3294}
3295EXPORT_SYMBOL(tcp_sock_set_quickack);
3296
3297int tcp_sock_set_syncnt(struct sock *sk, int val)
3298{
3299	if (val < 1 || val > MAX_TCP_SYNCNT)
3300		return -EINVAL;
3301
3302	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3303	return 0;
3304}
3305EXPORT_SYMBOL(tcp_sock_set_syncnt);
3306
3307int tcp_sock_set_user_timeout(struct sock *sk, int val)
3308{
3309	/* Cap the max time in ms TCP will retry or probe the window
3310	 * before giving up and aborting (ETIMEDOUT) a connection.
3311	 */
3312	if (val < 0)
3313		return -EINVAL;
3314
3315	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3316	return 0;
3317}
3318EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3319
3320int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3321{
3322	struct tcp_sock *tp = tcp_sk(sk);
3323
3324	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3325		return -EINVAL;
3326
3327	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3328	WRITE_ONCE(tp->keepalive_time, val * HZ);
3329	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3330	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3331		u32 elapsed = keepalive_time_elapsed(tp);
3332
3333		if (tp->keepalive_time > elapsed)
3334			elapsed = tp->keepalive_time - elapsed;
3335		else
3336			elapsed = 0;
3337		inet_csk_reset_keepalive_timer(sk, elapsed);
3338	}
3339
3340	return 0;
3341}
3342
3343int tcp_sock_set_keepidle(struct sock *sk, int val)
3344{
3345	int err;
3346
3347	lock_sock(sk);
3348	err = tcp_sock_set_keepidle_locked(sk, val);
3349	release_sock(sk);
3350	return err;
3351}
3352EXPORT_SYMBOL(tcp_sock_set_keepidle);
3353
3354int tcp_sock_set_keepintvl(struct sock *sk, int val)
3355{
3356	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3357		return -EINVAL;
3358
3359	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3360	return 0;
3361}
3362EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3363
3364int tcp_sock_set_keepcnt(struct sock *sk, int val)
3365{
3366	if (val < 1 || val > MAX_TCP_KEEPCNT)
3367		return -EINVAL;
3368
3369	/* Paired with READ_ONCE() in keepalive_probes() */
3370	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3371	return 0;
3372}
3373EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3374
3375int tcp_set_window_clamp(struct sock *sk, int val)
3376{
3377	struct tcp_sock *tp = tcp_sk(sk);
3378
3379	if (!val) {
3380		if (sk->sk_state != TCP_CLOSE)
3381			return -EINVAL;
3382		tp->window_clamp = 0;
3383	} else {
3384		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3385		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3386						SOCK_MIN_RCVBUF / 2 : val;
3387
3388		if (new_window_clamp == old_window_clamp)
3389			return 0;
3390
3391		tp->window_clamp = new_window_clamp;
3392		if (new_window_clamp < old_window_clamp) {
3393			/* need to apply the reserved mem provisioning only
3394			 * when shrinking the window clamp
3395			 */
3396			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3397
3398		} else {
3399			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3400			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3401					       tp->rcv_ssthresh);
3402		}
3403	}
3404	return 0;
3405}
3406
3407/*
3408 *	Socket option code for TCP.
3409 */
3410int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3411		      sockptr_t optval, unsigned int optlen)
3412{
3413	struct tcp_sock *tp = tcp_sk(sk);
3414	struct inet_connection_sock *icsk = inet_csk(sk);
3415	struct net *net = sock_net(sk);
3416	int val;
3417	int err = 0;
3418
3419	/* These are data/string values, all the others are ints */
3420	switch (optname) {
3421	case TCP_CONGESTION: {
3422		char name[TCP_CA_NAME_MAX];
3423
3424		if (optlen < 1)
3425			return -EINVAL;
3426
3427		val = strncpy_from_sockptr(name, optval,
3428					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3429		if (val < 0)
3430			return -EFAULT;
3431		name[val] = 0;
3432
3433		sockopt_lock_sock(sk);
3434		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3435						 sockopt_ns_capable(sock_net(sk)->user_ns,
3436								    CAP_NET_ADMIN));
3437		sockopt_release_sock(sk);
3438		return err;
3439	}
3440	case TCP_ULP: {
3441		char name[TCP_ULP_NAME_MAX];
 
 
 
 
 
 
3442
3443		if (optlen < 1)
 
3444			return -EINVAL;
3445
3446		val = strncpy_from_sockptr(name, optval,
3447					min_t(long, TCP_ULP_NAME_MAX - 1,
3448					      optlen));
3449		if (val < 0)
3450			return -EFAULT;
3451		name[val] = 0;
 
3452
3453		sockopt_lock_sock(sk);
3454		err = tcp_set_ulp(sk, name);
3455		sockopt_release_sock(sk);
3456		return err;
3457	}
3458	case TCP_FASTOPEN_KEY: {
3459		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3460		__u8 *backup_key = NULL;
 
 
 
 
 
3461
3462		/* Allow a backup key as well to facilitate key rotation
3463		 * First key is the active one.
3464		 */
3465		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3466		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3467			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468
3469		if (copy_from_sockptr(key, optval, optlen))
3470			return -EFAULT;
3471
3472		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3473			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
 
 
 
 
 
 
 
 
3474
3475		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
 
 
 
3476	}
3477	default:
3478		/* fallthru */
3479		break;
3480	}
3481
3482	if (optlen < sizeof(int))
3483		return -EINVAL;
3484
3485	if (copy_from_sockptr(&val, optval, sizeof(val)))
3486		return -EFAULT;
3487
3488	/* Handle options that can be set without locking the socket. */
3489	switch (optname) {
3490	case TCP_SYNCNT:
3491		return tcp_sock_set_syncnt(sk, val);
3492	case TCP_USER_TIMEOUT:
3493		return tcp_sock_set_user_timeout(sk, val);
3494	case TCP_KEEPINTVL:
3495		return tcp_sock_set_keepintvl(sk, val);
3496	case TCP_KEEPCNT:
3497		return tcp_sock_set_keepcnt(sk, val);
3498	case TCP_LINGER2:
3499		if (val < 0)
3500			WRITE_ONCE(tp->linger2, -1);
3501		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3502			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3503		else
3504			WRITE_ONCE(tp->linger2, val * HZ);
3505		return 0;
3506	case TCP_DEFER_ACCEPT:
3507		/* Translate value in seconds to number of retransmits */
3508		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3509			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3510					   TCP_RTO_MAX / HZ));
3511		return 0;
3512	}
3513
3514	sockopt_lock_sock(sk);
3515
3516	switch (optname) {
3517	case TCP_MAXSEG:
3518		/* Values greater than interface MTU won't take effect. However
3519		 * at the point when this call is done we typically don't yet
3520		 * know which interface is going to be used
3521		 */
3522		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3523			err = -EINVAL;
3524			break;
3525		}
3526		tp->rx_opt.user_mss = val;
3527		break;
3528
3529	case TCP_NODELAY:
3530		__tcp_sock_set_nodelay(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
3531		break;
3532
3533	case TCP_THIN_LINEAR_TIMEOUTS:
3534		if (val < 0 || val > 1)
3535			err = -EINVAL;
3536		else
3537			tp->thin_lto = val;
3538		break;
3539
3540	case TCP_THIN_DUPACK:
3541		if (val < 0 || val > 1)
3542			err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543		break;
3544
3545	case TCP_REPAIR:
3546		if (!tcp_can_repair_sock(sk))
3547			err = -EPERM;
3548		else if (val == TCP_REPAIR_ON) {
3549			tp->repair = 1;
3550			sk->sk_reuse = SK_FORCE_REUSE;
3551			tp->repair_queue = TCP_NO_QUEUE;
3552		} else if (val == TCP_REPAIR_OFF) {
3553			tp->repair = 0;
3554			sk->sk_reuse = SK_NO_REUSE;
3555			tcp_send_window_probe(sk);
3556		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3557			tp->repair = 0;
3558			sk->sk_reuse = SK_NO_REUSE;
3559		} else
3560			err = -EINVAL;
3561
 
 
 
 
 
 
 
 
 
 
 
 
3562		break;
3563
3564	case TCP_REPAIR_QUEUE:
3565		if (!tp->repair)
3566			err = -EPERM;
3567		else if ((unsigned int)val < TCP_QUEUES_NR)
3568			tp->repair_queue = val;
3569		else
3570			err = -EINVAL;
3571		break;
3572
3573	case TCP_QUEUE_SEQ:
3574		if (sk->sk_state != TCP_CLOSE) {
3575			err = -EPERM;
3576		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3577			if (!tcp_rtx_queue_empty(sk))
3578				err = -EPERM;
3579			else
3580				WRITE_ONCE(tp->write_seq, val);
3581		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3582			if (tp->rcv_nxt != tp->copied_seq) {
3583				err = -EPERM;
3584			} else {
3585				WRITE_ONCE(tp->rcv_nxt, val);
3586				WRITE_ONCE(tp->copied_seq, val);
3587			}
3588		} else {
3589			err = -EINVAL;
3590		}
 
3591		break;
3592
3593	case TCP_REPAIR_OPTIONS:
3594		if (!tp->repair)
3595			err = -EINVAL;
3596		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3597			err = tcp_repair_options_est(sk, optval, optlen);
3598		else
3599			err = -EPERM;
3600		break;
3601
3602	case TCP_CORK:
3603		__tcp_sock_set_cork(sk, val);
 
 
 
 
 
3604		break;
3605
3606	case TCP_KEEPIDLE:
3607		err = tcp_sock_set_keepidle_locked(sk, val);
3608		break;
3609	case TCP_SAVE_SYN:
3610		/* 0: disable, 1: enable, 2: start from ether_header */
3611		if (val < 0 || val > 2)
3612			err = -EINVAL;
3613		else
3614			tp->save_syn = val;
3615		break;
3616
3617	case TCP_WINDOW_CLAMP:
3618		err = tcp_set_window_clamp(sk, val);
 
 
 
 
 
 
 
 
3619		break;
3620
3621	case TCP_QUICKACK:
3622		__tcp_sock_set_quickack(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
3623		break;
3624
3625	case TCP_AO_REPAIR:
3626		if (!tcp_can_repair_sock(sk)) {
3627			err = -EPERM;
3628			break;
3629		}
3630		err = tcp_ao_set_repair(sk, optval, optlen);
3631		break;
3632#ifdef CONFIG_TCP_AO
3633	case TCP_AO_ADD_KEY:
3634	case TCP_AO_DEL_KEY:
3635	case TCP_AO_INFO: {
3636		/* If this is the first TCP-AO setsockopt() on the socket,
3637		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3638		 * in any state.
3639		 */
3640		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3641			goto ao_parse;
3642		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3643					      lockdep_sock_is_held(sk)))
3644			goto ao_parse;
3645		if (tp->repair)
3646			goto ao_parse;
3647		err = -EISCONN;
3648		break;
3649ao_parse:
3650		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3651		break;
3652	}
3653#endif
3654#ifdef CONFIG_TCP_MD5SIG
3655	case TCP_MD5SIG:
3656	case TCP_MD5SIG_EXT:
3657		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3658		break;
3659#endif
3660	case TCP_FASTOPEN:
3661		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3662		    TCPF_LISTEN))) {
3663			tcp_fastopen_init_key_once(net);
3664
3665			fastopen_queue_tune(sk, val);
3666		} else {
3667			err = -EINVAL;
3668		}
3669		break;
3670	case TCP_FASTOPEN_CONNECT:
3671		if (val > 1 || val < 0) {
3672			err = -EINVAL;
3673		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3674			   TFO_CLIENT_ENABLE) {
3675			if (sk->sk_state == TCP_CLOSE)
3676				tp->fastopen_connect = val;
3677			else
3678				err = -EINVAL;
3679		} else {
3680			err = -EOPNOTSUPP;
3681		}
3682		break;
3683	case TCP_FASTOPEN_NO_COOKIE:
3684		if (val > 1 || val < 0)
3685			err = -EINVAL;
3686		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3687			err = -EINVAL;
3688		else
3689			tp->fastopen_no_cookie = val;
3690		break;
3691	case TCP_TIMESTAMP:
3692		if (!tp->repair) {
3693			err = -EPERM;
3694			break;
3695		}
3696		/* val is an opaque field,
3697		 * and low order bit contains usec_ts enable bit.
3698		 * Its a best effort, and we do not care if user makes an error.
3699		 */
3700		tp->tcp_usec_ts = val & 1;
3701		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3702		break;
3703	case TCP_REPAIR_WINDOW:
3704		err = tcp_repair_set_window(tp, optval, optlen);
3705		break;
3706	case TCP_NOTSENT_LOWAT:
3707		WRITE_ONCE(tp->notsent_lowat, val);
3708		sk->sk_write_space(sk);
3709		break;
3710	case TCP_INQ:
3711		if (val > 1 || val < 0)
3712			err = -EINVAL;
3713		else
3714			tp->recvmsg_inq = val;
3715		break;
3716	case TCP_TX_DELAY:
3717		if (val)
3718			tcp_enable_tx_delay();
3719		WRITE_ONCE(tp->tcp_tx_delay, val);
3720		break;
3721	default:
3722		err = -ENOPROTOOPT;
3723		break;
3724	}
3725
3726	sockopt_release_sock(sk);
3727	return err;
3728}
3729
3730int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3731		   unsigned int optlen)
3732{
3733	const struct inet_connection_sock *icsk = inet_csk(sk);
3734
3735	if (level != SOL_TCP)
3736		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3737		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3738								optval, optlen);
3739	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3740}
3741EXPORT_SYMBOL(tcp_setsockopt);
3742
3743static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3744				      struct tcp_info *info)
 
3745{
3746	u64 stats[__TCP_CHRONO_MAX], total = 0;
3747	enum tcp_chrono i;
3748
3749	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3750		stats[i] = tp->chrono_stat[i - 1];
3751		if (i == tp->chrono_type)
3752			stats[i] += tcp_jiffies32 - tp->chrono_start;
3753		stats[i] *= USEC_PER_SEC / HZ;
3754		total += stats[i];
3755	}
3756
3757	info->tcpi_busy_time = total;
3758	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3759	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3760}
 
 
3761
3762/* Return information about state of tcp endpoint in API format. */
3763void tcp_get_info(struct sock *sk, struct tcp_info *info)
3764{
3765	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3766	const struct inet_connection_sock *icsk = inet_csk(sk);
3767	unsigned long rate;
3768	u32 now;
3769	u64 rate64;
3770	bool slow;
3771
3772	memset(info, 0, sizeof(*info));
3773	if (sk->sk_type != SOCK_STREAM)
3774		return;
3775
3776	info->tcpi_state = inet_sk_state_load(sk);
3777
3778	/* Report meaningful fields for all TCP states, including listeners */
3779	rate = READ_ONCE(sk->sk_pacing_rate);
3780	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3781	info->tcpi_pacing_rate = rate64;
3782
3783	rate = READ_ONCE(sk->sk_max_pacing_rate);
3784	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3785	info->tcpi_max_pacing_rate = rate64;
3786
3787	info->tcpi_reordering = tp->reordering;
3788	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3789
3790	if (info->tcpi_state == TCP_LISTEN) {
3791		/* listeners aliased fields :
3792		 * tcpi_unacked -> Number of children ready for accept()
3793		 * tcpi_sacked  -> max backlog
3794		 */
3795		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3796		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3797		return;
3798	}
3799
3800	slow = lock_sock_fast(sk);
3801
 
3802	info->tcpi_ca_state = icsk->icsk_ca_state;
3803	info->tcpi_retransmits = icsk->icsk_retransmits;
3804	info->tcpi_probes = icsk->icsk_probes_out;
3805	info->tcpi_backoff = icsk->icsk_backoff;
3806
3807	if (tp->rx_opt.tstamp_ok)
3808		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3809	if (tcp_is_sack(tp))
3810		info->tcpi_options |= TCPI_OPT_SACK;
3811	if (tp->rx_opt.wscale_ok) {
3812		info->tcpi_options |= TCPI_OPT_WSCALE;
3813		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3814		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3815	}
3816
3817	if (tp->ecn_flags & TCP_ECN_OK)
3818		info->tcpi_options |= TCPI_OPT_ECN;
3819	if (tp->ecn_flags & TCP_ECN_SEEN)
3820		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3821	if (tp->syn_data_acked)
3822		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3823	if (tp->tcp_usec_ts)
3824		info->tcpi_options |= TCPI_OPT_USEC_TS;
3825
3826	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3827	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3828						tcp_delack_max(sk)));
3829	info->tcpi_snd_mss = tp->mss_cache;
3830	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3831
3832	info->tcpi_unacked = tp->packets_out;
3833	info->tcpi_sacked = tp->sacked_out;
3834
 
 
 
 
3835	info->tcpi_lost = tp->lost_out;
3836	info->tcpi_retrans = tp->retrans_out;
 
3837
3838	now = tcp_jiffies32;
3839	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3840	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3841	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3842
3843	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3844	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3845	info->tcpi_rtt = tp->srtt_us >> 3;
3846	info->tcpi_rttvar = tp->mdev_us >> 2;
3847	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
 
3848	info->tcpi_advmss = tp->advmss;
 
3849
3850	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3851	info->tcpi_rcv_space = tp->rcvq_space.space;
3852
3853	info->tcpi_total_retrans = tp->total_retrans;
3854
3855	info->tcpi_bytes_acked = tp->bytes_acked;
3856	info->tcpi_bytes_received = tp->bytes_received;
3857	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3858	tcp_get_info_chrono_stats(tp, info);
3859
3860	info->tcpi_segs_out = tp->segs_out;
3861
3862	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3863	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3864	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3865
3866	info->tcpi_min_rtt = tcp_min_rtt(tp);
3867	info->tcpi_data_segs_out = tp->data_segs_out;
3868
3869	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3870	rate64 = tcp_compute_delivery_rate(tp);
3871	if (rate64)
3872		info->tcpi_delivery_rate = rate64;
3873	info->tcpi_delivered = tp->delivered;
3874	info->tcpi_delivered_ce = tp->delivered_ce;
3875	info->tcpi_bytes_sent = tp->bytes_sent;
3876	info->tcpi_bytes_retrans = tp->bytes_retrans;
3877	info->tcpi_dsack_dups = tp->dsack_dups;
3878	info->tcpi_reord_seen = tp->reord_seen;
3879	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3880	info->tcpi_snd_wnd = tp->snd_wnd;
3881	info->tcpi_rcv_wnd = tp->rcv_wnd;
3882	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3883	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3884
3885	info->tcpi_total_rto = tp->total_rto;
3886	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3887	info->tcpi_total_rto_time = tp->total_rto_time;
3888	if (tp->rto_stamp)
3889		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3890
3891	unlock_sock_fast(sk, slow);
3892}
3893EXPORT_SYMBOL_GPL(tcp_get_info);
3894
3895static size_t tcp_opt_stats_get_size(void)
3896{
3897	return
3898		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3899		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3900		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3901		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3902		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3903		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3904		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3905		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3906		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3907		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3908		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3909		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3910		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3911		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3912		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3913		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3914		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3915		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3916		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3917		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3918		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3919		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3920		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3921		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3922		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3923		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3924		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3925		0;
3926}
3927
3928/* Returns TTL or hop limit of an incoming packet from skb. */
3929static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3930{
3931	if (skb->protocol == htons(ETH_P_IP))
3932		return ip_hdr(skb)->ttl;
3933	else if (skb->protocol == htons(ETH_P_IPV6))
3934		return ipv6_hdr(skb)->hop_limit;
3935	else
3936		return 0;
3937}
3938
3939struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3940					       const struct sk_buff *orig_skb,
3941					       const struct sk_buff *ack_skb)
3942{
3943	const struct tcp_sock *tp = tcp_sk(sk);
3944	struct sk_buff *stats;
3945	struct tcp_info info;
3946	unsigned long rate;
3947	u64 rate64;
3948
3949	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3950	if (!stats)
3951		return NULL;
3952
3953	tcp_get_info_chrono_stats(tp, &info);
3954	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3955			  info.tcpi_busy_time, TCP_NLA_PAD);
3956	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3957			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3958	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3959			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3960	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3961			  tp->data_segs_out, TCP_NLA_PAD);
3962	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3963			  tp->total_retrans, TCP_NLA_PAD);
3964
3965	rate = READ_ONCE(sk->sk_pacing_rate);
3966	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3967	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3968
3969	rate64 = tcp_compute_delivery_rate(tp);
3970	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3971
3972	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3973	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3974	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3975
3976	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3977	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3978	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3979	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3980	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3981
3982	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3983	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3984
3985	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3986			  TCP_NLA_PAD);
3987	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3988			  TCP_NLA_PAD);
3989	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3990	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3991	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3992	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3993	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3994		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3995	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3996			  TCP_NLA_PAD);
3997	if (ack_skb)
3998		nla_put_u8(stats, TCP_NLA_TTL,
3999			   tcp_skb_ttl_or_hop_limit(ack_skb));
4000
4001	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4002	return stats;
4003}
4004
4005int do_tcp_getsockopt(struct sock *sk, int level,
4006		      int optname, sockptr_t optval, sockptr_t optlen)
4007{
4008	struct inet_connection_sock *icsk = inet_csk(sk);
4009	struct tcp_sock *tp = tcp_sk(sk);
4010	struct net *net = sock_net(sk);
4011	int val, len;
4012
4013	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4014		return -EFAULT;
4015
 
 
4016	if (len < 0)
4017		return -EINVAL;
4018
4019	len = min_t(unsigned int, len, sizeof(int));
4020
4021	switch (optname) {
4022	case TCP_MAXSEG:
4023		val = tp->mss_cache;
4024		if (tp->rx_opt.user_mss &&
4025		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4026			val = tp->rx_opt.user_mss;
4027		if (tp->repair)
4028			val = tp->rx_opt.mss_clamp;
4029		break;
4030	case TCP_NODELAY:
4031		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4032		break;
4033	case TCP_CORK:
4034		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4035		break;
4036	case TCP_KEEPIDLE:
4037		val = keepalive_time_when(tp) / HZ;
4038		break;
4039	case TCP_KEEPINTVL:
4040		val = keepalive_intvl_when(tp) / HZ;
4041		break;
4042	case TCP_KEEPCNT:
4043		val = keepalive_probes(tp);
4044		break;
4045	case TCP_SYNCNT:
4046		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4047			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4048		break;
4049	case TCP_LINGER2:
4050		val = READ_ONCE(tp->linger2);
4051		if (val >= 0)
4052			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4053		break;
4054	case TCP_DEFER_ACCEPT:
4055		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4056		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4057				      TCP_RTO_MAX / HZ);
4058		break;
4059	case TCP_WINDOW_CLAMP:
4060		val = tp->window_clamp;
4061		break;
4062	case TCP_INFO: {
4063		struct tcp_info info;
4064
4065		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4066			return -EFAULT;
4067
4068		tcp_get_info(sk, &info);
4069
4070		len = min_t(unsigned int, len, sizeof(info));
4071		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072			return -EFAULT;
4073		if (copy_to_sockptr(optval, &info, len))
4074			return -EFAULT;
4075		return 0;
4076	}
4077	case TCP_CC_INFO: {
4078		const struct tcp_congestion_ops *ca_ops;
4079		union tcp_cc_info info;
4080		size_t sz = 0;
4081		int attr;
4082
4083		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4084			return -EFAULT;
4085
4086		ca_ops = icsk->icsk_ca_ops;
4087		if (ca_ops && ca_ops->get_info)
4088			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4089
4090		len = min_t(unsigned int, len, sz);
4091		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4092			return -EFAULT;
4093		if (copy_to_sockptr(optval, &info, len))
4094			return -EFAULT;
4095		return 0;
4096	}
4097	case TCP_QUICKACK:
4098		val = !inet_csk_in_pingpong_mode(sk);
4099		break;
4100
4101	case TCP_CONGESTION:
4102		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4103			return -EFAULT;
4104		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4105		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4106			return -EFAULT;
4107		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4108			return -EFAULT;
4109		return 0;
4110
4111	case TCP_ULP:
4112		if (copy_from_sockptr(&len, optlen, sizeof(int)))
 
 
 
4113			return -EFAULT;
4114		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4115		if (!icsk->icsk_ulp_ops) {
4116			len = 0;
4117			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4118				return -EFAULT;
4119			return 0;
4120		}
4121		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4122			return -EFAULT;
4123		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4124			return -EFAULT;
4125		return 0;
 
 
4126
4127	case TCP_FASTOPEN_KEY: {
4128		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4129		unsigned int key_len;
4130
4131		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4132			return -EFAULT;
 
 
4133
4134		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4135				TCP_FASTOPEN_KEY_LENGTH;
4136		len = min_t(unsigned int, len, key_len);
4137		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4138			return -EFAULT;
4139		if (copy_to_sockptr(optval, key, len))
4140			return -EFAULT;
4141		return 0;
4142	}
4143	case TCP_THIN_LINEAR_TIMEOUTS:
4144		val = tp->thin_lto;
4145		break;
4146
4147	case TCP_THIN_DUPACK:
4148		val = 0;
4149		break;
4150
4151	case TCP_REPAIR:
4152		val = tp->repair;
4153		break;
 
 
 
4154
4155	case TCP_REPAIR_QUEUE:
4156		if (tp->repair)
4157			val = tp->repair_queue;
4158		else
4159			return -EINVAL;
4160		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161
4162	case TCP_REPAIR_WINDOW: {
4163		struct tcp_repair_window opt;
4164
4165		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4166			return -EFAULT;
4167
4168		if (len != sizeof(opt))
4169			return -EINVAL;
 
4170
4171		if (!tp->repair)
4172			return -EPERM;
 
 
 
 
 
 
 
 
 
 
4173
4174		opt.snd_wl1	= tp->snd_wl1;
4175		opt.snd_wnd	= tp->snd_wnd;
4176		opt.max_window	= tp->max_window;
4177		opt.rcv_wnd	= tp->rcv_wnd;
4178		opt.rcv_wup	= tp->rcv_wup;
4179
4180		if (copy_to_sockptr(optval, &opt, len))
4181			return -EFAULT;
4182		return 0;
4183	}
4184	case TCP_QUEUE_SEQ:
4185		if (tp->repair_queue == TCP_SEND_QUEUE)
4186			val = tp->write_seq;
4187		else if (tp->repair_queue == TCP_RECV_QUEUE)
4188			val = tp->rcv_nxt;
4189		else
4190			return -EINVAL;
4191		break;
4192
4193	case TCP_USER_TIMEOUT:
4194		val = READ_ONCE(icsk->icsk_user_timeout);
4195		break;
 
 
 
 
 
 
4196
4197	case TCP_FASTOPEN:
4198		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4199		break;
4200
4201	case TCP_FASTOPEN_CONNECT:
4202		val = tp->fastopen_connect;
4203		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4204
4205	case TCP_FASTOPEN_NO_COOKIE:
4206		val = tp->fastopen_no_cookie;
4207		break;
 
4208
4209	case TCP_TX_DELAY:
4210		val = READ_ONCE(tp->tcp_tx_delay);
4211		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4212
4213	case TCP_TIMESTAMP:
4214		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4215		if (tp->tcp_usec_ts)
4216			val |= 1;
4217		else
4218			val &= ~1;
4219		break;
4220	case TCP_NOTSENT_LOWAT:
4221		val = READ_ONCE(tp->notsent_lowat);
4222		break;
4223	case TCP_INQ:
4224		val = tp->recvmsg_inq;
4225		break;
4226	case TCP_SAVE_SYN:
4227		val = tp->save_syn;
4228		break;
4229	case TCP_SAVED_SYN: {
4230		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4231			return -EFAULT;
4232
4233		sockopt_lock_sock(sk);
4234		if (tp->saved_syn) {
4235			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4236				len = tcp_saved_syn_len(tp->saved_syn);
4237				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4238					sockopt_release_sock(sk);
4239					return -EFAULT;
4240				}
4241				sockopt_release_sock(sk);
4242				return -EINVAL;
4243			}
4244			len = tcp_saved_syn_len(tp->saved_syn);
4245			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4246				sockopt_release_sock(sk);
4247				return -EFAULT;
4248			}
4249			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4250				sockopt_release_sock(sk);
4251				return -EFAULT;
4252			}
4253			tcp_saved_syn_free(tp);
4254			sockopt_release_sock(sk);
4255		} else {
4256			sockopt_release_sock(sk);
4257			len = 0;
4258			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4259				return -EFAULT;
4260		}
4261		return 0;
4262	}
4263#ifdef CONFIG_MMU
4264	case TCP_ZEROCOPY_RECEIVE: {
4265		struct scm_timestamping_internal tss;
4266		struct tcp_zerocopy_receive zc = {};
4267		int err;
4268
4269		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4270			return -EFAULT;
4271		if (len < 0 ||
4272		    len < offsetofend(struct tcp_zerocopy_receive, length))
4273			return -EINVAL;
4274		if (unlikely(len > sizeof(zc))) {
4275			err = check_zeroed_sockptr(optval, sizeof(zc),
4276						   len - sizeof(zc));
4277			if (err < 1)
4278				return err == 0 ? -EINVAL : err;
4279			len = sizeof(zc);
4280			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4281				return -EFAULT;
 
4282		}
4283		if (copy_from_sockptr(&zc, optval, len))
4284			return -EFAULT;
4285		if (zc.reserved)
4286			return -EINVAL;
4287		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4288			return -EINVAL;
4289		sockopt_lock_sock(sk);
4290		err = tcp_zerocopy_receive(sk, &zc, &tss);
4291		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4292							  &zc, &len, err);
4293		sockopt_release_sock(sk);
4294		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4295			goto zerocopy_rcv_cmsg;
4296		switch (len) {
4297		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4298			goto zerocopy_rcv_cmsg;
4299		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4300		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4301		case offsetofend(struct tcp_zerocopy_receive, flags):
4302		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4303		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4304		case offsetofend(struct tcp_zerocopy_receive, err):
4305			goto zerocopy_rcv_sk_err;
4306		case offsetofend(struct tcp_zerocopy_receive, inq):
4307			goto zerocopy_rcv_inq;
4308		case offsetofend(struct tcp_zerocopy_receive, length):
4309		default:
4310			goto zerocopy_rcv_out;
4311		}
4312zerocopy_rcv_cmsg:
4313		if (zc.msg_flags & TCP_CMSG_TS)
4314			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4315		else
4316			zc.msg_flags = 0;
4317zerocopy_rcv_sk_err:
4318		if (!err)
4319			zc.err = sock_error(sk);
4320zerocopy_rcv_inq:
4321		zc.inq = tcp_inq_hint(sk);
4322zerocopy_rcv_out:
4323		if (!err && copy_to_sockptr(optval, &zc, len))
4324			err = -EFAULT;
4325		return err;
4326	}
4327#endif
4328	case TCP_AO_REPAIR:
4329		if (!tcp_can_repair_sock(sk))
4330			return -EPERM;
4331		return tcp_ao_get_repair(sk, optval, optlen);
4332	case TCP_AO_GET_KEYS:
4333	case TCP_AO_INFO: {
4334		int err;
4335
4336		sockopt_lock_sock(sk);
4337		if (optname == TCP_AO_GET_KEYS)
4338			err = tcp_ao_get_mkts(sk, optval, optlen);
4339		else
4340			err = tcp_ao_get_sock_info(sk, optval, optlen);
4341		sockopt_release_sock(sk);
4342
4343		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4344	}
4345	default:
4346		return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4347	}
 
 
4348
4349	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4350		return -EFAULT;
4351	if (copy_to_sockptr(optval, &val, len))
4352		return -EFAULT;
4353	return 0;
 
 
 
 
 
 
 
4354}
 
4355
4356bool tcp_bpf_bypass_getsockopt(int level, int optname)
 
4357{
4358	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4359	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4360	 */
4361	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4362		return true;
 
4363
4364	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365}
4366EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4367
4368int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4369		   int __user *optlen)
4370{
4371	struct inet_connection_sock *icsk = inet_csk(sk);
 
4372
4373	if (level != SOL_TCP)
4374		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4375		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4376								optval, optlen);
4377	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4378				 USER_SOCKPTR(optlen));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4379}
4380EXPORT_SYMBOL(tcp_getsockopt);
4381
4382#ifdef CONFIG_TCP_MD5SIG
4383int tcp_md5_sigpool_id = -1;
4384EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4385
4386int tcp_md5_alloc_sigpool(void)
 
 
 
 
 
 
 
4387{
4388	size_t scratch_size;
4389	int ret;
 
 
 
 
 
 
 
 
 
 
4390
4391	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4392	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4393	if (ret >= 0) {
4394		/* As long as any md5 sigpool was allocated, the return
4395		 * id would stay the same. Re-write the id only for the case
4396		 * when previously all MD5 keys were deleted and this call
4397		 * allocates the first MD5 key, which may return a different
4398		 * sigpool id than was used previously.
4399		 */
4400		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4401		return 0;
4402	}
4403	return ret;
4404}
 
4405
4406void tcp_md5_release_sigpool(void)
4407{
4408	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
 
4409}
 
4410
4411void tcp_md5_add_sigpool(void)
 
4412{
4413	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
 
 
 
 
 
 
 
 
 
4414}
 
4415
4416int tcp_md5_hash_key(struct tcp_sigpool *hp,
4417		     const struct tcp_md5sig_key *key)
4418{
4419	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420	struct scatterlist sg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4421
4422	sg_init_one(&sg, key->key, keylen);
4423	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
 
 
 
 
 
4424
4425	/* We use data_race() because tcp_md5_do_add() might change
4426	 * key->key under us
4427	 */
4428	return data_race(crypto_ahash_update(hp->req));
4429}
4430EXPORT_SYMBOL(tcp_md5_hash_key);
4431
4432/* Called with rcu_read_lock() */
4433enum skb_drop_reason
4434tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4435		     const void *saddr, const void *daddr,
4436		     int family, int l3index, const __u8 *hash_location)
4437{
4438	/* This gets called for each TCP segment that has TCP-MD5 option.
4439	 * We have 3 drop cases:
4440	 * o No MD5 hash and one expected.
4441	 * o MD5 hash and we're not expecting one.
4442	 * o MD5 hash and its wrong.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4443	 */
4444	const struct tcp_sock *tp = tcp_sk(sk);
4445	struct tcp_md5sig_key *key;
4446	u8 newhash[16];
4447	int genhash;
4448
4449	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4450
4451	if (!key && hash_location) {
4452		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4453		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4454		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4455	}
4456
4457	/* Check the signature.
4458	 * To support dual stack listeners, we need to handle
4459	 * IPv4-mapped case.
4460	 */
4461	if (family == AF_INET)
4462		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4463	else
4464		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4465							 NULL, skb);
4466	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4467		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4468		if (family == AF_INET) {
4469			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4470				      genhash ? "tcp_v4_calc_md5_hash failed"
4471				      : "", l3index);
 
 
 
 
 
 
 
 
 
 
 
 
 
4472		} else {
4473			if (genhash) {
4474				tcp_hash_fail("MD5 Hash failed",
4475					      AF_INET6, skb, "L3 index %d",
4476					      l3index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4477			} else {
4478				tcp_hash_fail("MD5 Hash mismatch",
4479					      AF_INET6, skb, "L3 index %d",
4480					      l3index);
4481			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4482		}
4483		return SKB_DROP_REASON_TCP_MD5FAILURE;
 
 
 
 
 
 
4484	}
4485	return SKB_NOT_DROPPED_YET;
4486}
4487EXPORT_SYMBOL(tcp_inbound_md5_hash);
4488
4489#endif
4490
4491void tcp_done(struct sock *sk)
4492{
4493	struct request_sock *req;
4494
4495	/* We might be called with a new socket, after
4496	 * inet_csk_prepare_forced_close() has been called
4497	 * so we can not use lockdep_sock_is_held(sk)
4498	 */
4499	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4500
4501	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4502		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4503
4504	tcp_set_state(sk, TCP_CLOSE);
4505	tcp_clear_xmit_timers(sk);
4506	if (req)
4507		reqsk_fastopen_remove(sk, req, false);
4508
4509	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4510
4511	if (!sock_flag(sk, SOCK_DEAD))
4512		sk->sk_state_change(sk);
4513	else
4514		inet_csk_destroy_sock(sk);
4515}
4516EXPORT_SYMBOL_GPL(tcp_done);
4517
4518int tcp_abort(struct sock *sk, int err)
4519{
4520	int state = inet_sk_state_load(sk);
4521
4522	if (state == TCP_NEW_SYN_RECV) {
4523		struct request_sock *req = inet_reqsk(sk);
4524
4525		local_bh_disable();
4526		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4527		local_bh_enable();
4528		return 0;
4529	}
4530	if (state == TCP_TIME_WAIT) {
4531		struct inet_timewait_sock *tw = inet_twsk(sk);
4532
4533		refcount_inc(&tw->tw_refcnt);
4534		local_bh_disable();
4535		inet_twsk_deschedule_put(tw);
4536		local_bh_enable();
4537		return 0;
4538	}
4539
4540	/* BPF context ensures sock locking. */
4541	if (!has_current_bpf_ctx())
4542		/* Don't race with userspace socket closes such as tcp_close. */
4543		lock_sock(sk);
4544
4545	if (sk->sk_state == TCP_LISTEN) {
4546		tcp_set_state(sk, TCP_CLOSE);
4547		inet_csk_listen_stop(sk);
4548	}
4549
4550	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4551	local_bh_disable();
4552	bh_lock_sock(sk);
4553
4554	if (!sock_flag(sk, SOCK_DEAD)) {
4555		WRITE_ONCE(sk->sk_err, err);
4556		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4557		smp_wmb();
4558		sk_error_report(sk);
4559		if (tcp_need_reset(sk->sk_state))
4560			tcp_send_active_reset(sk, GFP_ATOMIC);
4561		tcp_done(sk);
4562	}
4563
4564	bh_unlock_sock(sk);
4565	local_bh_enable();
4566	tcp_write_queue_purge(sk);
4567	if (!has_current_bpf_ctx())
4568		release_sock(sk);
4569	return 0;
4570}
4571EXPORT_SYMBOL_GPL(tcp_abort);
4572
4573extern struct tcp_congestion_ops tcp_reno;
4574
4575static __initdata unsigned long thash_entries;
4576static int __init set_thash_entries(char *str)
4577{
4578	ssize_t ret;
4579
4580	if (!str)
4581		return 0;
4582
4583	ret = kstrtoul(str, 0, &thash_entries);
4584	if (ret)
4585		return 0;
4586
4587	return 1;
4588}
4589__setup("thash_entries=", set_thash_entries);
4590
4591static void __init tcp_init_mem(void)
4592{
4593	unsigned long limit = nr_free_buffer_pages() / 16;
4594
4595	limit = max(limit, 128UL);
4596	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4597	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4598	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4599}
4600
4601static void __init tcp_struct_check(void)
4602{
4603	/* TX read-mostly hotpath cache lines */
4604	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4605	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4606	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4607	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4608	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4609	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4610	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4611	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4612
4613	/* TXRX read-mostly hotpath cache lines */
4614	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4615	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4616	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4617	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4618	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4619	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4620	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4621	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4622	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4623
4624	/* RX read-mostly hotpath cache lines */
4625	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4626	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4627	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4628	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4629	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4630	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4631	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4632	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4633	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4634	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4635	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4636	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4637	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4638
4639	/* TX read-write hotpath cache lines */
4640	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4641	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4642	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4643	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4644	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4645	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4646	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4647	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4648	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4649	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4650	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4651	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache);
4652	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp);
4653	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4654	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4655	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4656	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4657	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 105);
4658
4659	/* TXRX read-write hotpath cache lines */
4660	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4661	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4662	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4663	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4664	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4665	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4666	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4667	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4668	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4669	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4670	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4671	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4672	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4673	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76);
4674
4675	/* RX read-write hotpath cache lines */
4676	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4677	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4678	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4679	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4680	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4681	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4682	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4683	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4684	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4685	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4686	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4687	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4688	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4689	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4690	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4691}
4692
4693void __init tcp_init(void)
4694{
4695	int max_rshare, max_wshare, cnt;
4696	unsigned long limit;
4697	unsigned int i;
4698
4699	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4700	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4701		     sizeof_field(struct sk_buff, cb));
4702
4703	tcp_struct_check();
4704
4705	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4706
4707	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4708	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4709
4710	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4711			    thash_entries, 21,  /* one slot per 2 MB*/
4712			    0, 64 * 1024);
4713	tcp_hashinfo.bind_bucket_cachep =
4714		kmem_cache_create("tcp_bind_bucket",
4715				  sizeof(struct inet_bind_bucket), 0,
4716				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4717				  SLAB_ACCOUNT,
4718				  NULL);
4719	tcp_hashinfo.bind2_bucket_cachep =
4720		kmem_cache_create("tcp_bind2_bucket",
4721				  sizeof(struct inet_bind2_bucket), 0,
4722				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4723				  SLAB_ACCOUNT,
4724				  NULL);
4725
4726	/* Size and allocate the main established and bind bucket
4727	 * hash tables.
4728	 *
4729	 * The methodology is similar to that of the buffer cache.
4730	 */
4731	tcp_hashinfo.ehash =
4732		alloc_large_system_hash("TCP established",
4733					sizeof(struct inet_ehash_bucket),
4734					thash_entries,
4735					17, /* one slot per 128 KB of memory */
 
4736					0,
4737					NULL,
4738					&tcp_hashinfo.ehash_mask,
4739					0,
4740					thash_entries ? 0 : 512 * 1024);
4741	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4742		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4743
 
4744	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4745		panic("TCP: failed to alloc ehash_locks");
4746	tcp_hashinfo.bhash =
4747		alloc_large_system_hash("TCP bind",
4748					2 * sizeof(struct inet_bind_hashbucket),
4749					tcp_hashinfo.ehash_mask + 1,
4750					17, /* one slot per 128 KB of memory */
 
4751					0,
4752					&tcp_hashinfo.bhash_size,
4753					NULL,
4754					0,
4755					64 * 1024);
4756	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4757	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4758	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4759		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4760		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4761		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4762		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4763	}
4764
4765	tcp_hashinfo.pernet = false;
4766
4767	cnt = tcp_hashinfo.ehash_mask + 1;
 
 
4768	sysctl_tcp_max_orphans = cnt / 2;
 
 
 
 
 
 
 
4769
4770	tcp_init_mem();
4771	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4772	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4773	max_wshare = min(4UL*1024*1024, limit);
4774	max_rshare = min(6UL*1024*1024, limit);
4775
4776	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4777	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4778	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4779
4780	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4781	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4782	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4783
4784	pr_info("Hash tables configured (established %u bind %u)\n",
4785		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4786
4787	tcp_v4_init();
4788	tcp_metrics_init();
4789	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4790	tcp_tasklet_init();
4791	mptcp_init();
 
 
 
 
 
4792}