Linux Audio

Check our new training course

Loading...
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <linux/kernel.h>
 251#include <linux/module.h>
 252#include <linux/types.h>
 253#include <linux/fcntl.h>
 254#include <linux/poll.h>
 255#include <linux/init.h>
 256#include <linux/fs.h>
 257#include <linux/skbuff.h>
 258#include <linux/scatterlist.h>
 259#include <linux/splice.h>
 260#include <linux/net.h>
 261#include <linux/socket.h>
 262#include <linux/random.h>
 263#include <linux/bootmem.h>
 264#include <linux/highmem.h>
 265#include <linux/swap.h>
 266#include <linux/cache.h>
 267#include <linux/err.h>
 268#include <linux/crypto.h>
 269#include <linux/time.h>
 270#include <linux/slab.h>
 271
 272#include <net/icmp.h>
 273#include <net/tcp.h>
 274#include <net/xfrm.h>
 275#include <net/ip.h>
 276#include <net/netdma.h>
 277#include <net/sock.h>
 278
 279#include <asm/uaccess.h>
 280#include <asm/ioctls.h>
 281
 282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 283
 284struct percpu_counter tcp_orphan_count;
 285EXPORT_SYMBOL_GPL(tcp_orphan_count);
 286
 287int sysctl_tcp_wmem[3] __read_mostly;
 288int sysctl_tcp_rmem[3] __read_mostly;
 289
 290EXPORT_SYMBOL(sysctl_tcp_rmem);
 291EXPORT_SYMBOL(sysctl_tcp_wmem);
 292
 293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 294EXPORT_SYMBOL(tcp_memory_allocated);
 295
 296/*
 297 * Current number of TCP sockets.
 298 */
 299struct percpu_counter tcp_sockets_allocated;
 300EXPORT_SYMBOL(tcp_sockets_allocated);
 301
 302/*
 303 * TCP splice context
 304 */
 305struct tcp_splice_state {
 306	struct pipe_inode_info *pipe;
 307	size_t len;
 308	unsigned int flags;
 309};
 310
 311/*
 312 * Pressure flag: try to collapse.
 313 * Technical note: it is used by multiple contexts non atomically.
 314 * All the __sk_mem_schedule() is of this nature: accounting
 315 * is strict, actions are advisory and have some latency.
 316 */
 317int tcp_memory_pressure __read_mostly;
 318EXPORT_SYMBOL(tcp_memory_pressure);
 319
 320void tcp_enter_memory_pressure(struct sock *sk)
 321{
 322	if (!tcp_memory_pressure) {
 323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 324		tcp_memory_pressure = 1;
 325	}
 326}
 327EXPORT_SYMBOL(tcp_enter_memory_pressure);
 328
 329/* Convert seconds to retransmits based on initial and max timeout */
 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 331{
 332	u8 res = 0;
 333
 334	if (seconds > 0) {
 335		int period = timeout;
 336
 337		res = 1;
 338		while (seconds > period && res < 255) {
 339			res++;
 340			timeout <<= 1;
 341			if (timeout > rto_max)
 342				timeout = rto_max;
 343			period += timeout;
 344		}
 345	}
 346	return res;
 347}
 348
 349/* Convert retransmits to seconds based on initial and max timeout */
 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 351{
 352	int period = 0;
 353
 354	if (retrans > 0) {
 355		period = timeout;
 356		while (--retrans) {
 357			timeout <<= 1;
 358			if (timeout > rto_max)
 359				timeout = rto_max;
 360			period += timeout;
 361		}
 362	}
 363	return period;
 364}
 365
 366/* Address-family independent initialization for a tcp_sock.
 367 *
 368 * NOTE: A lot of things set to zero explicitly by call to
 369 *       sk_alloc() so need not be done here.
 370 */
 371void tcp_init_sock(struct sock *sk)
 372{
 373	struct inet_connection_sock *icsk = inet_csk(sk);
 374	struct tcp_sock *tp = tcp_sk(sk);
 375
 376	skb_queue_head_init(&tp->out_of_order_queue);
 377	tcp_init_xmit_timers(sk);
 378	tcp_prequeue_init(tp);
 379
 380	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 381	tp->mdev = TCP_TIMEOUT_INIT;
 382
 383	/* So many TCP implementations out there (incorrectly) count the
 384	 * initial SYN frame in their delayed-ACK and congestion control
 385	 * algorithms that we must have the following bandaid to talk
 386	 * efficiently to them.  -DaveM
 387	 */
 388	tp->snd_cwnd = TCP_INIT_CWND;
 389
 390	/* See draft-stevens-tcpca-spec-01 for discussion of the
 391	 * initialization of these values.
 392	 */
 393	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 394	tp->snd_cwnd_clamp = ~0;
 395	tp->mss_cache = TCP_MSS_DEFAULT;
 396
 397	tp->reordering = sysctl_tcp_reordering;
 398	tcp_enable_early_retrans(tp);
 399	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
 400
 401	sk->sk_state = TCP_CLOSE;
 402
 403	sk->sk_write_space = sk_stream_write_space;
 404	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 405
 406	icsk->icsk_sync_mss = tcp_sync_mss;
 407
 408	/* TCP Cookie Transactions */
 409	if (sysctl_tcp_cookie_size > 0) {
 410		/* Default, cookies without s_data_payload. */
 411		tp->cookie_values =
 412			kzalloc(sizeof(*tp->cookie_values),
 413				sk->sk_allocation);
 414		if (tp->cookie_values != NULL)
 415			kref_init(&tp->cookie_values->kref);
 416	}
 417	/* Presumed zeroed, in order of appearance:
 418	 *	cookie_in_always, cookie_out_never,
 419	 *	s_data_constant, s_data_in, s_data_out
 420	 */
 421	sk->sk_sndbuf = sysctl_tcp_wmem[1];
 422	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
 423
 424	local_bh_disable();
 425	sock_update_memcg(sk);
 426	sk_sockets_allocated_inc(sk);
 427	local_bh_enable();
 428}
 429EXPORT_SYMBOL(tcp_init_sock);
 430
 431/*
 432 *	Wait for a TCP event.
 433 *
 434 *	Note that we don't need to lock the socket, as the upper poll layers
 435 *	take care of normal races (between the test and the event) and we don't
 436 *	go look at any of the socket buffers directly.
 437 */
 438unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 439{
 440	unsigned int mask;
 441	struct sock *sk = sock->sk;
 442	const struct tcp_sock *tp = tcp_sk(sk);
 443
 444	sock_poll_wait(file, sk_sleep(sk), wait);
 445	if (sk->sk_state == TCP_LISTEN)
 446		return inet_csk_listen_poll(sk);
 447
 448	/* Socket is not locked. We are protected from async events
 449	 * by poll logic and correct handling of state changes
 450	 * made by other threads is impossible in any case.
 451	 */
 452
 453	mask = 0;
 454
 455	/*
 456	 * POLLHUP is certainly not done right. But poll() doesn't
 457	 * have a notion of HUP in just one direction, and for a
 458	 * socket the read side is more interesting.
 459	 *
 460	 * Some poll() documentation says that POLLHUP is incompatible
 461	 * with the POLLOUT/POLLWR flags, so somebody should check this
 462	 * all. But careful, it tends to be safer to return too many
 463	 * bits than too few, and you can easily break real applications
 464	 * if you don't tell them that something has hung up!
 465	 *
 466	 * Check-me.
 467	 *
 468	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 469	 * our fs/select.c). It means that after we received EOF,
 470	 * poll always returns immediately, making impossible poll() on write()
 471	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 472	 * if and only if shutdown has been made in both directions.
 473	 * Actually, it is interesting to look how Solaris and DUX
 474	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 475	 * then we could set it on SND_SHUTDOWN. BTW examples given
 476	 * in Stevens' books assume exactly this behaviour, it explains
 477	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 478	 *
 479	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 480	 * blocking on fresh not-connected or disconnected socket. --ANK
 481	 */
 482	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 483		mask |= POLLHUP;
 484	if (sk->sk_shutdown & RCV_SHUTDOWN)
 485		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 486
 487	/* Connected? */
 488	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
 489		int target = sock_rcvlowat(sk, 0, INT_MAX);
 490
 491		if (tp->urg_seq == tp->copied_seq &&
 492		    !sock_flag(sk, SOCK_URGINLINE) &&
 493		    tp->urg_data)
 494			target++;
 495
 496		/* Potential race condition. If read of tp below will
 497		 * escape above sk->sk_state, we can be illegally awaken
 498		 * in SYN_* states. */
 499		if (tp->rcv_nxt - tp->copied_seq >= target)
 500			mask |= POLLIN | POLLRDNORM;
 501
 502		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 503			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 504				mask |= POLLOUT | POLLWRNORM;
 505			} else {  /* send SIGIO later */
 506				set_bit(SOCK_ASYNC_NOSPACE,
 507					&sk->sk_socket->flags);
 508				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 509
 510				/* Race breaker. If space is freed after
 511				 * wspace test but before the flags are set,
 512				 * IO signal will be lost.
 513				 */
 514				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
 515					mask |= POLLOUT | POLLWRNORM;
 516			}
 517		} else
 518			mask |= POLLOUT | POLLWRNORM;
 519
 520		if (tp->urg_data & TCP_URG_VALID)
 521			mask |= POLLPRI;
 522	}
 523	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 524	smp_rmb();
 525	if (sk->sk_err)
 526		mask |= POLLERR;
 527
 528	return mask;
 529}
 530EXPORT_SYMBOL(tcp_poll);
 531
 532int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 533{
 534	struct tcp_sock *tp = tcp_sk(sk);
 535	int answ;
 536
 537	switch (cmd) {
 538	case SIOCINQ:
 539		if (sk->sk_state == TCP_LISTEN)
 540			return -EINVAL;
 541
 542		lock_sock(sk);
 543		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 544			answ = 0;
 545		else if (sock_flag(sk, SOCK_URGINLINE) ||
 546			 !tp->urg_data ||
 547			 before(tp->urg_seq, tp->copied_seq) ||
 548			 !before(tp->urg_seq, tp->rcv_nxt)) {
 549			struct sk_buff *skb;
 550
 551			answ = tp->rcv_nxt - tp->copied_seq;
 552
 553			/* Subtract 1, if FIN is in queue. */
 554			skb = skb_peek_tail(&sk->sk_receive_queue);
 555			if (answ && skb)
 556				answ -= tcp_hdr(skb)->fin;
 557		} else
 558			answ = tp->urg_seq - tp->copied_seq;
 559		release_sock(sk);
 560		break;
 561	case SIOCATMARK:
 562		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 563		break;
 564	case SIOCOUTQ:
 565		if (sk->sk_state == TCP_LISTEN)
 566			return -EINVAL;
 567
 568		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 569			answ = 0;
 570		else
 571			answ = tp->write_seq - tp->snd_una;
 572		break;
 573	case SIOCOUTQNSD:
 574		if (sk->sk_state == TCP_LISTEN)
 575			return -EINVAL;
 576
 577		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 578			answ = 0;
 579		else
 580			answ = tp->write_seq - tp->snd_nxt;
 581		break;
 582	default:
 583		return -ENOIOCTLCMD;
 584	}
 585
 586	return put_user(answ, (int __user *)arg);
 587}
 588EXPORT_SYMBOL(tcp_ioctl);
 589
 590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 591{
 592	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 593	tp->pushed_seq = tp->write_seq;
 594}
 595
 596static inline bool forced_push(const struct tcp_sock *tp)
 597{
 598	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 599}
 600
 601static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 602{
 603	struct tcp_sock *tp = tcp_sk(sk);
 604	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 605
 606	skb->csum    = 0;
 607	tcb->seq     = tcb->end_seq = tp->write_seq;
 608	tcb->tcp_flags = TCPHDR_ACK;
 609	tcb->sacked  = 0;
 610	skb_header_release(skb);
 611	tcp_add_write_queue_tail(sk, skb);
 612	sk->sk_wmem_queued += skb->truesize;
 613	sk_mem_charge(sk, skb->truesize);
 614	if (tp->nonagle & TCP_NAGLE_PUSH)
 615		tp->nonagle &= ~TCP_NAGLE_PUSH;
 616}
 617
 618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 619{
 620	if (flags & MSG_OOB)
 621		tp->snd_up = tp->write_seq;
 622}
 623
 624static inline void tcp_push(struct sock *sk, int flags, int mss_now,
 625			    int nonagle)
 626{
 627	if (tcp_send_head(sk)) {
 628		struct tcp_sock *tp = tcp_sk(sk);
 629
 630		if (!(flags & MSG_MORE) || forced_push(tp))
 631			tcp_mark_push(tp, tcp_write_queue_tail(sk));
 632
 633		tcp_mark_urg(tp, flags);
 634		__tcp_push_pending_frames(sk, mss_now,
 635					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
 636	}
 637}
 638
 639static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 640				unsigned int offset, size_t len)
 641{
 642	struct tcp_splice_state *tss = rd_desc->arg.data;
 643	int ret;
 644
 645	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 646			      tss->flags);
 647	if (ret > 0)
 648		rd_desc->count -= ret;
 649	return ret;
 650}
 651
 652static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 653{
 654	/* Store TCP splice context information in read_descriptor_t. */
 655	read_descriptor_t rd_desc = {
 656		.arg.data = tss,
 657		.count	  = tss->len,
 658	};
 659
 660	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 661}
 662
 663/**
 664 *  tcp_splice_read - splice data from TCP socket to a pipe
 665 * @sock:	socket to splice from
 666 * @ppos:	position (not valid)
 667 * @pipe:	pipe to splice to
 668 * @len:	number of bytes to splice
 669 * @flags:	splice modifier flags
 670 *
 671 * Description:
 672 *    Will read pages from given socket and fill them into a pipe.
 673 *
 674 **/
 675ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 676			struct pipe_inode_info *pipe, size_t len,
 677			unsigned int flags)
 678{
 679	struct sock *sk = sock->sk;
 680	struct tcp_splice_state tss = {
 681		.pipe = pipe,
 682		.len = len,
 683		.flags = flags,
 684	};
 685	long timeo;
 686	ssize_t spliced;
 687	int ret;
 688
 689	sock_rps_record_flow(sk);
 690	/*
 691	 * We can't seek on a socket input
 692	 */
 693	if (unlikely(*ppos))
 694		return -ESPIPE;
 695
 696	ret = spliced = 0;
 697
 698	lock_sock(sk);
 699
 700	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 701	while (tss.len) {
 702		ret = __tcp_splice_read(sk, &tss);
 703		if (ret < 0)
 704			break;
 705		else if (!ret) {
 706			if (spliced)
 707				break;
 708			if (sock_flag(sk, SOCK_DONE))
 709				break;
 710			if (sk->sk_err) {
 711				ret = sock_error(sk);
 712				break;
 713			}
 714			if (sk->sk_shutdown & RCV_SHUTDOWN)
 715				break;
 716			if (sk->sk_state == TCP_CLOSE) {
 717				/*
 718				 * This occurs when user tries to read
 719				 * from never connected socket.
 720				 */
 721				if (!sock_flag(sk, SOCK_DONE))
 722					ret = -ENOTCONN;
 723				break;
 724			}
 725			if (!timeo) {
 726				ret = -EAGAIN;
 727				break;
 728			}
 729			sk_wait_data(sk, &timeo);
 730			if (signal_pending(current)) {
 731				ret = sock_intr_errno(timeo);
 732				break;
 733			}
 734			continue;
 735		}
 736		tss.len -= ret;
 737		spliced += ret;
 738
 739		if (!timeo)
 740			break;
 741		release_sock(sk);
 742		lock_sock(sk);
 743
 744		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 745		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 746		    signal_pending(current))
 747			break;
 748	}
 749
 750	release_sock(sk);
 751
 752	if (spliced)
 753		return spliced;
 754
 755	return ret;
 756}
 757EXPORT_SYMBOL(tcp_splice_read);
 758
 759struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 760{
 761	struct sk_buff *skb;
 762
 763	/* The TCP header must be at least 32-bit aligned.  */
 764	size = ALIGN(size, 4);
 765
 766	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 767	if (skb) {
 768		if (sk_wmem_schedule(sk, skb->truesize)) {
 769			skb_reserve(skb, sk->sk_prot->max_header);
 770			/*
 771			 * Make sure that we have exactly size bytes
 772			 * available to the caller, no more, no less.
 773			 */
 774			skb->avail_size = size;
 775			return skb;
 776		}
 777		__kfree_skb(skb);
 778	} else {
 779		sk->sk_prot->enter_memory_pressure(sk);
 780		sk_stream_moderate_sndbuf(sk);
 781	}
 782	return NULL;
 783}
 784
 785static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 786				       int large_allowed)
 787{
 788	struct tcp_sock *tp = tcp_sk(sk);
 789	u32 xmit_size_goal, old_size_goal;
 790
 791	xmit_size_goal = mss_now;
 792
 793	if (large_allowed && sk_can_gso(sk)) {
 794		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
 795				  inet_csk(sk)->icsk_af_ops->net_header_len -
 796				  inet_csk(sk)->icsk_ext_hdr_len -
 797				  tp->tcp_header_len);
 798
 799		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 800
 801		/* We try hard to avoid divides here */
 802		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 803
 804		if (likely(old_size_goal <= xmit_size_goal &&
 805			   old_size_goal + mss_now > xmit_size_goal)) {
 806			xmit_size_goal = old_size_goal;
 807		} else {
 808			tp->xmit_size_goal_segs =
 809				min_t(u16, xmit_size_goal / mss_now,
 810				      sk->sk_gso_max_segs);
 811			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 812		}
 813	}
 814
 815	return max(xmit_size_goal, mss_now);
 816}
 817
 818static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 819{
 820	int mss_now;
 821
 822	mss_now = tcp_current_mss(sk);
 823	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 824
 825	return mss_now;
 826}
 827
 828static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
 829			 size_t psize, int flags)
 830{
 831	struct tcp_sock *tp = tcp_sk(sk);
 832	int mss_now, size_goal;
 833	int err;
 834	ssize_t copied;
 835	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 836
 837	/* Wait for a connection to finish. */
 838	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 839		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 840			goto out_err;
 841
 842	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 843
 844	mss_now = tcp_send_mss(sk, &size_goal, flags);
 845	copied = 0;
 846
 847	err = -EPIPE;
 848	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 849		goto out_err;
 850
 851	while (psize > 0) {
 852		struct sk_buff *skb = tcp_write_queue_tail(sk);
 853		struct page *page = pages[poffset / PAGE_SIZE];
 854		int copy, i;
 855		int offset = poffset % PAGE_SIZE;
 856		int size = min_t(size_t, psize, PAGE_SIZE - offset);
 857		bool can_coalesce;
 858
 859		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 860new_segment:
 861			if (!sk_stream_memory_free(sk))
 862				goto wait_for_sndbuf;
 863
 864			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 865			if (!skb)
 866				goto wait_for_memory;
 867
 868			skb_entail(sk, skb);
 869			copy = size_goal;
 870		}
 871
 872		if (copy > size)
 873			copy = size;
 874
 875		i = skb_shinfo(skb)->nr_frags;
 876		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 877		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 878			tcp_mark_push(tp, skb);
 879			goto new_segment;
 880		}
 881		if (!sk_wmem_schedule(sk, copy))
 882			goto wait_for_memory;
 883
 884		if (can_coalesce) {
 885			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
 886		} else {
 887			get_page(page);
 888			skb_fill_page_desc(skb, i, page, offset, copy);
 889		}
 890
 891		skb->len += copy;
 892		skb->data_len += copy;
 893		skb->truesize += copy;
 894		sk->sk_wmem_queued += copy;
 895		sk_mem_charge(sk, copy);
 896		skb->ip_summed = CHECKSUM_PARTIAL;
 897		tp->write_seq += copy;
 898		TCP_SKB_CB(skb)->end_seq += copy;
 899		skb_shinfo(skb)->gso_segs = 0;
 900
 901		if (!copied)
 902			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
 903
 904		copied += copy;
 905		poffset += copy;
 906		if (!(psize -= copy))
 907			goto out;
 908
 909		if (skb->len < size_goal || (flags & MSG_OOB))
 910			continue;
 911
 912		if (forced_push(tp)) {
 913			tcp_mark_push(tp, skb);
 914			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 915		} else if (skb == tcp_send_head(sk))
 916			tcp_push_one(sk, mss_now);
 917		continue;
 918
 919wait_for_sndbuf:
 920		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 921wait_for_memory:
 922		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 923
 924		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 925			goto do_error;
 926
 927		mss_now = tcp_send_mss(sk, &size_goal, flags);
 928	}
 929
 930out:
 931	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
 932		tcp_push(sk, flags, mss_now, tp->nonagle);
 933	return copied;
 934
 935do_error:
 936	if (copied)
 937		goto out;
 938out_err:
 939	return sk_stream_error(sk, flags, err);
 940}
 941
 942int tcp_sendpage(struct sock *sk, struct page *page, int offset,
 943		 size_t size, int flags)
 944{
 945	ssize_t res;
 946
 947	if (!(sk->sk_route_caps & NETIF_F_SG) ||
 948	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
 949		return sock_no_sendpage(sk->sk_socket, page, offset, size,
 950					flags);
 951
 952	lock_sock(sk);
 953	res = do_tcp_sendpages(sk, &page, offset, size, flags);
 954	release_sock(sk);
 955	return res;
 956}
 957EXPORT_SYMBOL(tcp_sendpage);
 958
 959static inline int select_size(const struct sock *sk, bool sg)
 960{
 961	const struct tcp_sock *tp = tcp_sk(sk);
 962	int tmp = tp->mss_cache;
 963
 964	if (sg) {
 965		if (sk_can_gso(sk)) {
 966			/* Small frames wont use a full page:
 967			 * Payload will immediately follow tcp header.
 968			 */
 969			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
 970		} else {
 971			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
 972
 973			if (tmp >= pgbreak &&
 974			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
 975				tmp = pgbreak;
 976		}
 977	}
 978
 979	return tmp;
 980}
 981
 982int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 983		size_t size)
 984{
 985	struct iovec *iov;
 986	struct tcp_sock *tp = tcp_sk(sk);
 987	struct sk_buff *skb;
 988	int iovlen, flags, err, copied;
 989	int mss_now = 0, size_goal;
 990	bool sg;
 991	long timeo;
 992
 993	lock_sock(sk);
 994
 995	flags = msg->msg_flags;
 996	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 997
 998	/* Wait for a connection to finish. */
 999	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1000		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1001			goto out_err;
1002
1003	if (unlikely(tp->repair)) {
1004		if (tp->repair_queue == TCP_RECV_QUEUE) {
1005			copied = tcp_send_rcvq(sk, msg, size);
1006			goto out;
1007		}
1008
1009		err = -EINVAL;
1010		if (tp->repair_queue == TCP_NO_QUEUE)
1011			goto out_err;
1012
1013		/* 'common' sending to sendq */
1014	}
1015
1016	/* This should be in poll */
1017	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1018
1019	mss_now = tcp_send_mss(sk, &size_goal, flags);
1020
1021	/* Ok commence sending. */
1022	iovlen = msg->msg_iovlen;
1023	iov = msg->msg_iov;
1024	copied = 0;
1025
1026	err = -EPIPE;
1027	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1028		goto out_err;
1029
1030	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1031
1032	while (--iovlen >= 0) {
1033		size_t seglen = iov->iov_len;
1034		unsigned char __user *from = iov->iov_base;
1035
1036		iov++;
1037
1038		while (seglen > 0) {
1039			int copy = 0;
1040			int max = size_goal;
1041
1042			skb = tcp_write_queue_tail(sk);
1043			if (tcp_send_head(sk)) {
1044				if (skb->ip_summed == CHECKSUM_NONE)
1045					max = mss_now;
1046				copy = max - skb->len;
1047			}
1048
1049			if (copy <= 0) {
1050new_segment:
1051				/* Allocate new segment. If the interface is SG,
1052				 * allocate skb fitting to single page.
1053				 */
1054				if (!sk_stream_memory_free(sk))
1055					goto wait_for_sndbuf;
1056
1057				skb = sk_stream_alloc_skb(sk,
1058							  select_size(sk, sg),
1059							  sk->sk_allocation);
1060				if (!skb)
1061					goto wait_for_memory;
1062
1063				/*
1064				 * Check whether we can use HW checksum.
1065				 */
1066				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1067					skb->ip_summed = CHECKSUM_PARTIAL;
1068
1069				skb_entail(sk, skb);
1070				copy = size_goal;
1071				max = size_goal;
1072			}
1073
1074			/* Try to append data to the end of skb. */
1075			if (copy > seglen)
1076				copy = seglen;
1077
1078			/* Where to copy to? */
1079			if (skb_availroom(skb) > 0) {
1080				/* We have some space in skb head. Superb! */
1081				copy = min_t(int, copy, skb_availroom(skb));
1082				err = skb_add_data_nocache(sk, skb, from, copy);
1083				if (err)
1084					goto do_fault;
1085			} else {
1086				bool merge = false;
1087				int i = skb_shinfo(skb)->nr_frags;
1088				struct page *page = sk->sk_sndmsg_page;
1089				int off;
1090
1091				if (page && page_count(page) == 1)
1092					sk->sk_sndmsg_off = 0;
1093
1094				off = sk->sk_sndmsg_off;
1095
1096				if (skb_can_coalesce(skb, i, page, off) &&
1097				    off != PAGE_SIZE) {
1098					/* We can extend the last page
1099					 * fragment. */
1100					merge = true;
1101				} else if (i == MAX_SKB_FRAGS || !sg) {
1102					/* Need to add new fragment and cannot
1103					 * do this because interface is non-SG,
1104					 * or because all the page slots are
1105					 * busy. */
1106					tcp_mark_push(tp, skb);
1107					goto new_segment;
1108				} else if (page) {
1109					if (off == PAGE_SIZE) {
1110						put_page(page);
1111						sk->sk_sndmsg_page = page = NULL;
1112						off = 0;
1113					}
1114				} else
1115					off = 0;
1116
1117				if (copy > PAGE_SIZE - off)
1118					copy = PAGE_SIZE - off;
1119
1120				if (!sk_wmem_schedule(sk, copy))
1121					goto wait_for_memory;
1122
1123				if (!page) {
1124					/* Allocate new cache page. */
1125					if (!(page = sk_stream_alloc_page(sk)))
1126						goto wait_for_memory;
1127				}
1128
1129				/* Time to copy data. We are close to
1130				 * the end! */
1131				err = skb_copy_to_page_nocache(sk, from, skb,
1132							       page, off, copy);
1133				if (err) {
1134					/* If this page was new, give it to the
1135					 * socket so it does not get leaked.
1136					 */
1137					if (!sk->sk_sndmsg_page) {
1138						sk->sk_sndmsg_page = page;
1139						sk->sk_sndmsg_off = 0;
1140					}
1141					goto do_error;
1142				}
1143
1144				/* Update the skb. */
1145				if (merge) {
1146					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1147				} else {
1148					skb_fill_page_desc(skb, i, page, off, copy);
1149					if (sk->sk_sndmsg_page) {
1150						get_page(page);
1151					} else if (off + copy < PAGE_SIZE) {
1152						get_page(page);
1153						sk->sk_sndmsg_page = page;
1154					}
1155				}
1156
1157				sk->sk_sndmsg_off = off + copy;
1158			}
1159
1160			if (!copied)
1161				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1162
1163			tp->write_seq += copy;
1164			TCP_SKB_CB(skb)->end_seq += copy;
1165			skb_shinfo(skb)->gso_segs = 0;
1166
1167			from += copy;
1168			copied += copy;
1169			if ((seglen -= copy) == 0 && iovlen == 0)
1170				goto out;
1171
1172			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1173				continue;
1174
1175			if (forced_push(tp)) {
1176				tcp_mark_push(tp, skb);
1177				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1178			} else if (skb == tcp_send_head(sk))
1179				tcp_push_one(sk, mss_now);
1180			continue;
1181
1182wait_for_sndbuf:
1183			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1184wait_for_memory:
1185			if (copied && likely(!tp->repair))
1186				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1187
1188			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1189				goto do_error;
1190
1191			mss_now = tcp_send_mss(sk, &size_goal, flags);
1192		}
1193	}
1194
1195out:
1196	if (copied && likely(!tp->repair))
1197		tcp_push(sk, flags, mss_now, tp->nonagle);
1198	release_sock(sk);
1199	return copied;
1200
1201do_fault:
1202	if (!skb->len) {
1203		tcp_unlink_write_queue(skb, sk);
1204		/* It is the one place in all of TCP, except connection
1205		 * reset, where we can be unlinking the send_head.
1206		 */
1207		tcp_check_send_head(sk, skb);
1208		sk_wmem_free_skb(sk, skb);
1209	}
1210
1211do_error:
1212	if (copied)
1213		goto out;
1214out_err:
1215	err = sk_stream_error(sk, flags, err);
1216	release_sock(sk);
1217	return err;
1218}
1219EXPORT_SYMBOL(tcp_sendmsg);
1220
1221/*
1222 *	Handle reading urgent data. BSD has very simple semantics for
1223 *	this, no blocking and very strange errors 8)
1224 */
1225
1226static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1227{
1228	struct tcp_sock *tp = tcp_sk(sk);
1229
1230	/* No URG data to read. */
1231	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1232	    tp->urg_data == TCP_URG_READ)
1233		return -EINVAL;	/* Yes this is right ! */
1234
1235	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1236		return -ENOTCONN;
1237
1238	if (tp->urg_data & TCP_URG_VALID) {
1239		int err = 0;
1240		char c = tp->urg_data;
1241
1242		if (!(flags & MSG_PEEK))
1243			tp->urg_data = TCP_URG_READ;
1244
1245		/* Read urgent data. */
1246		msg->msg_flags |= MSG_OOB;
1247
1248		if (len > 0) {
1249			if (!(flags & MSG_TRUNC))
1250				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1251			len = 1;
1252		} else
1253			msg->msg_flags |= MSG_TRUNC;
1254
1255		return err ? -EFAULT : len;
1256	}
1257
1258	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1259		return 0;
1260
1261	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1262	 * the available implementations agree in this case:
1263	 * this call should never block, independent of the
1264	 * blocking state of the socket.
1265	 * Mike <pall@rz.uni-karlsruhe.de>
1266	 */
1267	return -EAGAIN;
1268}
1269
1270static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1271{
1272	struct sk_buff *skb;
1273	int copied = 0, err = 0;
1274
1275	/* XXX -- need to support SO_PEEK_OFF */
1276
1277	skb_queue_walk(&sk->sk_write_queue, skb) {
1278		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1279		if (err)
1280			break;
1281
1282		copied += skb->len;
1283	}
1284
1285	return err ?: copied;
1286}
1287
1288/* Clean up the receive buffer for full frames taken by the user,
1289 * then send an ACK if necessary.  COPIED is the number of bytes
1290 * tcp_recvmsg has given to the user so far, it speeds up the
1291 * calculation of whether or not we must ACK for the sake of
1292 * a window update.
1293 */
1294void tcp_cleanup_rbuf(struct sock *sk, int copied)
1295{
1296	struct tcp_sock *tp = tcp_sk(sk);
1297	bool time_to_ack = false;
1298
1299	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1300
1301	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1302	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1303	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1304
1305	if (inet_csk_ack_scheduled(sk)) {
1306		const struct inet_connection_sock *icsk = inet_csk(sk);
1307		   /* Delayed ACKs frequently hit locked sockets during bulk
1308		    * receive. */
1309		if (icsk->icsk_ack.blocked ||
1310		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1311		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1312		    /*
1313		     * If this read emptied read buffer, we send ACK, if
1314		     * connection is not bidirectional, user drained
1315		     * receive buffer and there was a small segment
1316		     * in queue.
1317		     */
1318		    (copied > 0 &&
1319		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1320		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1321		       !icsk->icsk_ack.pingpong)) &&
1322		      !atomic_read(&sk->sk_rmem_alloc)))
1323			time_to_ack = true;
1324	}
1325
1326	/* We send an ACK if we can now advertise a non-zero window
1327	 * which has been raised "significantly".
1328	 *
1329	 * Even if window raised up to infinity, do not send window open ACK
1330	 * in states, where we will not receive more. It is useless.
1331	 */
1332	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1333		__u32 rcv_window_now = tcp_receive_window(tp);
1334
1335		/* Optimize, __tcp_select_window() is not cheap. */
1336		if (2*rcv_window_now <= tp->window_clamp) {
1337			__u32 new_window = __tcp_select_window(sk);
1338
1339			/* Send ACK now, if this read freed lots of space
1340			 * in our buffer. Certainly, new_window is new window.
1341			 * We can advertise it now, if it is not less than current one.
1342			 * "Lots" means "at least twice" here.
1343			 */
1344			if (new_window && new_window >= 2 * rcv_window_now)
1345				time_to_ack = true;
1346		}
1347	}
1348	if (time_to_ack)
1349		tcp_send_ack(sk);
1350}
1351
1352static void tcp_prequeue_process(struct sock *sk)
1353{
1354	struct sk_buff *skb;
1355	struct tcp_sock *tp = tcp_sk(sk);
1356
1357	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1358
1359	/* RX process wants to run with disabled BHs, though it is not
1360	 * necessary */
1361	local_bh_disable();
1362	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1363		sk_backlog_rcv(sk, skb);
1364	local_bh_enable();
1365
1366	/* Clear memory counter. */
1367	tp->ucopy.memory = 0;
1368}
1369
1370#ifdef CONFIG_NET_DMA
1371static void tcp_service_net_dma(struct sock *sk, bool wait)
1372{
1373	dma_cookie_t done, used;
1374	dma_cookie_t last_issued;
1375	struct tcp_sock *tp = tcp_sk(sk);
1376
1377	if (!tp->ucopy.dma_chan)
1378		return;
1379
1380	last_issued = tp->ucopy.dma_cookie;
1381	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1382
1383	do {
1384		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1385					      last_issued, &done,
1386					      &used) == DMA_SUCCESS) {
1387			/* Safe to free early-copied skbs now */
1388			__skb_queue_purge(&sk->sk_async_wait_queue);
1389			break;
1390		} else {
1391			struct sk_buff *skb;
1392			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1393			       (dma_async_is_complete(skb->dma_cookie, done,
1394						      used) == DMA_SUCCESS)) {
1395				__skb_dequeue(&sk->sk_async_wait_queue);
1396				kfree_skb(skb);
1397			}
1398		}
1399	} while (wait);
1400}
1401#endif
1402
1403static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1404{
1405	struct sk_buff *skb;
1406	u32 offset;
1407
1408	skb_queue_walk(&sk->sk_receive_queue, skb) {
1409		offset = seq - TCP_SKB_CB(skb)->seq;
1410		if (tcp_hdr(skb)->syn)
1411			offset--;
1412		if (offset < skb->len || tcp_hdr(skb)->fin) {
1413			*off = offset;
1414			return skb;
1415		}
1416	}
1417	return NULL;
1418}
1419
1420/*
1421 * This routine provides an alternative to tcp_recvmsg() for routines
1422 * that would like to handle copying from skbuffs directly in 'sendfile'
1423 * fashion.
1424 * Note:
1425 *	- It is assumed that the socket was locked by the caller.
1426 *	- The routine does not block.
1427 *	- At present, there is no support for reading OOB data
1428 *	  or for 'peeking' the socket using this routine
1429 *	  (although both would be easy to implement).
1430 */
1431int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1432		  sk_read_actor_t recv_actor)
1433{
1434	struct sk_buff *skb;
1435	struct tcp_sock *tp = tcp_sk(sk);
1436	u32 seq = tp->copied_seq;
1437	u32 offset;
1438	int copied = 0;
1439
1440	if (sk->sk_state == TCP_LISTEN)
1441		return -ENOTCONN;
1442	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1443		if (offset < skb->len) {
1444			int used;
1445			size_t len;
1446
1447			len = skb->len - offset;
1448			/* Stop reading if we hit a patch of urgent data */
1449			if (tp->urg_data) {
1450				u32 urg_offset = tp->urg_seq - seq;
1451				if (urg_offset < len)
1452					len = urg_offset;
1453				if (!len)
1454					break;
1455			}
1456			used = recv_actor(desc, skb, offset, len);
1457			if (used < 0) {
1458				if (!copied)
1459					copied = used;
1460				break;
1461			} else if (used <= len) {
1462				seq += used;
1463				copied += used;
1464				offset += used;
1465			}
1466			/*
1467			 * If recv_actor drops the lock (e.g. TCP splice
1468			 * receive) the skb pointer might be invalid when
1469			 * getting here: tcp_collapse might have deleted it
1470			 * while aggregating skbs from the socket queue.
1471			 */
1472			skb = tcp_recv_skb(sk, seq-1, &offset);
1473			if (!skb || (offset+1 != skb->len))
1474				break;
1475		}
1476		if (tcp_hdr(skb)->fin) {
1477			sk_eat_skb(sk, skb, false);
1478			++seq;
1479			break;
1480		}
1481		sk_eat_skb(sk, skb, false);
1482		if (!desc->count)
1483			break;
1484		tp->copied_seq = seq;
1485	}
1486	tp->copied_seq = seq;
1487
1488	tcp_rcv_space_adjust(sk);
1489
1490	/* Clean up data we have read: This will do ACK frames. */
1491	if (copied > 0)
1492		tcp_cleanup_rbuf(sk, copied);
1493	return copied;
1494}
1495EXPORT_SYMBOL(tcp_read_sock);
1496
1497/*
1498 *	This routine copies from a sock struct into the user buffer.
1499 *
1500 *	Technical note: in 2.3 we work on _locked_ socket, so that
1501 *	tricks with *seq access order and skb->users are not required.
1502 *	Probably, code can be easily improved even more.
1503 */
1504
1505int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1506		size_t len, int nonblock, int flags, int *addr_len)
1507{
1508	struct tcp_sock *tp = tcp_sk(sk);
1509	int copied = 0;
1510	u32 peek_seq;
1511	u32 *seq;
1512	unsigned long used;
1513	int err;
1514	int target;		/* Read at least this many bytes */
1515	long timeo;
1516	struct task_struct *user_recv = NULL;
1517	bool copied_early = false;
1518	struct sk_buff *skb;
1519	u32 urg_hole = 0;
1520
1521	lock_sock(sk);
1522
1523	err = -ENOTCONN;
1524	if (sk->sk_state == TCP_LISTEN)
1525		goto out;
1526
1527	timeo = sock_rcvtimeo(sk, nonblock);
1528
1529	/* Urgent data needs to be handled specially. */
1530	if (flags & MSG_OOB)
1531		goto recv_urg;
1532
1533	if (unlikely(tp->repair)) {
1534		err = -EPERM;
1535		if (!(flags & MSG_PEEK))
1536			goto out;
1537
1538		if (tp->repair_queue == TCP_SEND_QUEUE)
1539			goto recv_sndq;
1540
1541		err = -EINVAL;
1542		if (tp->repair_queue == TCP_NO_QUEUE)
1543			goto out;
1544
1545		/* 'common' recv queue MSG_PEEK-ing */
1546	}
1547
1548	seq = &tp->copied_seq;
1549	if (flags & MSG_PEEK) {
1550		peek_seq = tp->copied_seq;
1551		seq = &peek_seq;
1552	}
1553
1554	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1555
1556#ifdef CONFIG_NET_DMA
1557	tp->ucopy.dma_chan = NULL;
1558	preempt_disable();
1559	skb = skb_peek_tail(&sk->sk_receive_queue);
1560	{
1561		int available = 0;
1562
1563		if (skb)
1564			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1565		if ((available < target) &&
1566		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1567		    !sysctl_tcp_low_latency &&
1568		    net_dma_find_channel()) {
1569			preempt_enable_no_resched();
1570			tp->ucopy.pinned_list =
1571					dma_pin_iovec_pages(msg->msg_iov, len);
1572		} else {
1573			preempt_enable_no_resched();
1574		}
1575	}
1576#endif
1577
1578	do {
1579		u32 offset;
1580
1581		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1582		if (tp->urg_data && tp->urg_seq == *seq) {
1583			if (copied)
1584				break;
1585			if (signal_pending(current)) {
1586				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1587				break;
1588			}
1589		}
1590
1591		/* Next get a buffer. */
1592
1593		skb_queue_walk(&sk->sk_receive_queue, skb) {
1594			/* Now that we have two receive queues this
1595			 * shouldn't happen.
1596			 */
1597			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1598				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1599				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1600				 flags))
1601				break;
1602
1603			offset = *seq - TCP_SKB_CB(skb)->seq;
1604			if (tcp_hdr(skb)->syn)
1605				offset--;
1606			if (offset < skb->len)
1607				goto found_ok_skb;
1608			if (tcp_hdr(skb)->fin)
1609				goto found_fin_ok;
1610			WARN(!(flags & MSG_PEEK),
1611			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1612			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1613		}
1614
1615		/* Well, if we have backlog, try to process it now yet. */
1616
1617		if (copied >= target && !sk->sk_backlog.tail)
1618			break;
1619
1620		if (copied) {
1621			if (sk->sk_err ||
1622			    sk->sk_state == TCP_CLOSE ||
1623			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1624			    !timeo ||
1625			    signal_pending(current))
1626				break;
1627		} else {
1628			if (sock_flag(sk, SOCK_DONE))
1629				break;
1630
1631			if (sk->sk_err) {
1632				copied = sock_error(sk);
1633				break;
1634			}
1635
1636			if (sk->sk_shutdown & RCV_SHUTDOWN)
1637				break;
1638
1639			if (sk->sk_state == TCP_CLOSE) {
1640				if (!sock_flag(sk, SOCK_DONE)) {
1641					/* This occurs when user tries to read
1642					 * from never connected socket.
1643					 */
1644					copied = -ENOTCONN;
1645					break;
1646				}
1647				break;
1648			}
1649
1650			if (!timeo) {
1651				copied = -EAGAIN;
1652				break;
1653			}
1654
1655			if (signal_pending(current)) {
1656				copied = sock_intr_errno(timeo);
1657				break;
1658			}
1659		}
1660
1661		tcp_cleanup_rbuf(sk, copied);
1662
1663		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1664			/* Install new reader */
1665			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1666				user_recv = current;
1667				tp->ucopy.task = user_recv;
1668				tp->ucopy.iov = msg->msg_iov;
1669			}
1670
1671			tp->ucopy.len = len;
1672
1673			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1674				!(flags & (MSG_PEEK | MSG_TRUNC)));
1675
1676			/* Ugly... If prequeue is not empty, we have to
1677			 * process it before releasing socket, otherwise
1678			 * order will be broken at second iteration.
1679			 * More elegant solution is required!!!
1680			 *
1681			 * Look: we have the following (pseudo)queues:
1682			 *
1683			 * 1. packets in flight
1684			 * 2. backlog
1685			 * 3. prequeue
1686			 * 4. receive_queue
1687			 *
1688			 * Each queue can be processed only if the next ones
1689			 * are empty. At this point we have empty receive_queue.
1690			 * But prequeue _can_ be not empty after 2nd iteration,
1691			 * when we jumped to start of loop because backlog
1692			 * processing added something to receive_queue.
1693			 * We cannot release_sock(), because backlog contains
1694			 * packets arrived _after_ prequeued ones.
1695			 *
1696			 * Shortly, algorithm is clear --- to process all
1697			 * the queues in order. We could make it more directly,
1698			 * requeueing packets from backlog to prequeue, if
1699			 * is not empty. It is more elegant, but eats cycles,
1700			 * unfortunately.
1701			 */
1702			if (!skb_queue_empty(&tp->ucopy.prequeue))
1703				goto do_prequeue;
1704
1705			/* __ Set realtime policy in scheduler __ */
1706		}
1707
1708#ifdef CONFIG_NET_DMA
1709		if (tp->ucopy.dma_chan)
1710			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1711#endif
1712		if (copied >= target) {
1713			/* Do not sleep, just process backlog. */
1714			release_sock(sk);
1715			lock_sock(sk);
1716		} else
1717			sk_wait_data(sk, &timeo);
1718
1719#ifdef CONFIG_NET_DMA
1720		tcp_service_net_dma(sk, false);  /* Don't block */
1721		tp->ucopy.wakeup = 0;
1722#endif
1723
1724		if (user_recv) {
1725			int chunk;
1726
1727			/* __ Restore normal policy in scheduler __ */
1728
1729			if ((chunk = len - tp->ucopy.len) != 0) {
1730				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1731				len -= chunk;
1732				copied += chunk;
1733			}
1734
1735			if (tp->rcv_nxt == tp->copied_seq &&
1736			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1737do_prequeue:
1738				tcp_prequeue_process(sk);
1739
1740				if ((chunk = len - tp->ucopy.len) != 0) {
1741					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1742					len -= chunk;
1743					copied += chunk;
1744				}
1745			}
1746		}
1747		if ((flags & MSG_PEEK) &&
1748		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1749			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1750					    current->comm,
1751					    task_pid_nr(current));
1752			peek_seq = tp->copied_seq;
1753		}
1754		continue;
1755
1756	found_ok_skb:
1757		/* Ok so how much can we use? */
1758		used = skb->len - offset;
1759		if (len < used)
1760			used = len;
1761
1762		/* Do we have urgent data here? */
1763		if (tp->urg_data) {
1764			u32 urg_offset = tp->urg_seq - *seq;
1765			if (urg_offset < used) {
1766				if (!urg_offset) {
1767					if (!sock_flag(sk, SOCK_URGINLINE)) {
1768						++*seq;
1769						urg_hole++;
1770						offset++;
1771						used--;
1772						if (!used)
1773							goto skip_copy;
1774					}
1775				} else
1776					used = urg_offset;
1777			}
1778		}
1779
1780		if (!(flags & MSG_TRUNC)) {
1781#ifdef CONFIG_NET_DMA
1782			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1783				tp->ucopy.dma_chan = net_dma_find_channel();
1784
1785			if (tp->ucopy.dma_chan) {
1786				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1787					tp->ucopy.dma_chan, skb, offset,
1788					msg->msg_iov, used,
1789					tp->ucopy.pinned_list);
1790
1791				if (tp->ucopy.dma_cookie < 0) {
1792
1793					pr_alert("%s: dma_cookie < 0\n",
1794						 __func__);
1795
1796					/* Exception. Bailout! */
1797					if (!copied)
1798						copied = -EFAULT;
1799					break;
1800				}
1801
1802				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1803
1804				if ((offset + used) == skb->len)
1805					copied_early = true;
1806
1807			} else
1808#endif
1809			{
1810				err = skb_copy_datagram_iovec(skb, offset,
1811						msg->msg_iov, used);
1812				if (err) {
1813					/* Exception. Bailout! */
1814					if (!copied)
1815						copied = -EFAULT;
1816					break;
1817				}
1818			}
1819		}
1820
1821		*seq += used;
1822		copied += used;
1823		len -= used;
1824
1825		tcp_rcv_space_adjust(sk);
1826
1827skip_copy:
1828		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1829			tp->urg_data = 0;
1830			tcp_fast_path_check(sk);
1831		}
1832		if (used + offset < skb->len)
1833			continue;
1834
1835		if (tcp_hdr(skb)->fin)
1836			goto found_fin_ok;
1837		if (!(flags & MSG_PEEK)) {
1838			sk_eat_skb(sk, skb, copied_early);
1839			copied_early = false;
1840		}
1841		continue;
1842
1843	found_fin_ok:
1844		/* Process the FIN. */
1845		++*seq;
1846		if (!(flags & MSG_PEEK)) {
1847			sk_eat_skb(sk, skb, copied_early);
1848			copied_early = false;
1849		}
1850		break;
1851	} while (len > 0);
1852
1853	if (user_recv) {
1854		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1855			int chunk;
1856
1857			tp->ucopy.len = copied > 0 ? len : 0;
1858
1859			tcp_prequeue_process(sk);
1860
1861			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1862				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1863				len -= chunk;
1864				copied += chunk;
1865			}
1866		}
1867
1868		tp->ucopy.task = NULL;
1869		tp->ucopy.len = 0;
1870	}
1871
1872#ifdef CONFIG_NET_DMA
1873	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1874	tp->ucopy.dma_chan = NULL;
1875
1876	if (tp->ucopy.pinned_list) {
1877		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1878		tp->ucopy.pinned_list = NULL;
1879	}
1880#endif
1881
1882	/* According to UNIX98, msg_name/msg_namelen are ignored
1883	 * on connected socket. I was just happy when found this 8) --ANK
1884	 */
1885
1886	/* Clean up data we have read: This will do ACK frames. */
1887	tcp_cleanup_rbuf(sk, copied);
1888
1889	release_sock(sk);
1890	return copied;
1891
1892out:
1893	release_sock(sk);
1894	return err;
1895
1896recv_urg:
1897	err = tcp_recv_urg(sk, msg, len, flags);
1898	goto out;
1899
1900recv_sndq:
1901	err = tcp_peek_sndq(sk, msg, len);
1902	goto out;
1903}
1904EXPORT_SYMBOL(tcp_recvmsg);
1905
1906void tcp_set_state(struct sock *sk, int state)
1907{
1908	int oldstate = sk->sk_state;
1909
1910	switch (state) {
1911	case TCP_ESTABLISHED:
1912		if (oldstate != TCP_ESTABLISHED)
1913			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1914		break;
1915
1916	case TCP_CLOSE:
1917		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1918			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1919
1920		sk->sk_prot->unhash(sk);
1921		if (inet_csk(sk)->icsk_bind_hash &&
1922		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1923			inet_put_port(sk);
1924		/* fall through */
1925	default:
1926		if (oldstate == TCP_ESTABLISHED)
1927			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1928	}
1929
1930	/* Change state AFTER socket is unhashed to avoid closed
1931	 * socket sitting in hash tables.
1932	 */
1933	sk->sk_state = state;
1934
1935#ifdef STATE_TRACE
1936	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1937#endif
1938}
1939EXPORT_SYMBOL_GPL(tcp_set_state);
1940
1941/*
1942 *	State processing on a close. This implements the state shift for
1943 *	sending our FIN frame. Note that we only send a FIN for some
1944 *	states. A shutdown() may have already sent the FIN, or we may be
1945 *	closed.
1946 */
1947
1948static const unsigned char new_state[16] = {
1949  /* current state:        new state:      action:	*/
1950  /* (Invalid)		*/ TCP_CLOSE,
1951  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1952  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1953  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1954  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1955  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1956  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1957  /* TCP_CLOSE		*/ TCP_CLOSE,
1958  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1959  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1960  /* TCP_LISTEN		*/ TCP_CLOSE,
1961  /* TCP_CLOSING	*/ TCP_CLOSING,
1962};
1963
1964static int tcp_close_state(struct sock *sk)
1965{
1966	int next = (int)new_state[sk->sk_state];
1967	int ns = next & TCP_STATE_MASK;
1968
1969	tcp_set_state(sk, ns);
1970
1971	return next & TCP_ACTION_FIN;
1972}
1973
1974/*
1975 *	Shutdown the sending side of a connection. Much like close except
1976 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1977 */
1978
1979void tcp_shutdown(struct sock *sk, int how)
1980{
1981	/*	We need to grab some memory, and put together a FIN,
1982	 *	and then put it into the queue to be sent.
1983	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1984	 */
1985	if (!(how & SEND_SHUTDOWN))
1986		return;
1987
1988	/* If we've already sent a FIN, or it's a closed state, skip this. */
1989	if ((1 << sk->sk_state) &
1990	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1991	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1992		/* Clear out any half completed packets.  FIN if needed. */
1993		if (tcp_close_state(sk))
1994			tcp_send_fin(sk);
1995	}
1996}
1997EXPORT_SYMBOL(tcp_shutdown);
1998
1999bool tcp_check_oom(struct sock *sk, int shift)
2000{
2001	bool too_many_orphans, out_of_socket_memory;
2002
2003	too_many_orphans = tcp_too_many_orphans(sk, shift);
2004	out_of_socket_memory = tcp_out_of_memory(sk);
2005
2006	if (too_many_orphans)
2007		net_info_ratelimited("too many orphaned sockets\n");
2008	if (out_of_socket_memory)
2009		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2010	return too_many_orphans || out_of_socket_memory;
2011}
2012
2013void tcp_close(struct sock *sk, long timeout)
2014{
2015	struct sk_buff *skb;
2016	int data_was_unread = 0;
2017	int state;
2018
2019	lock_sock(sk);
2020	sk->sk_shutdown = SHUTDOWN_MASK;
2021
2022	if (sk->sk_state == TCP_LISTEN) {
2023		tcp_set_state(sk, TCP_CLOSE);
2024
2025		/* Special case. */
2026		inet_csk_listen_stop(sk);
2027
2028		goto adjudge_to_death;
2029	}
2030
2031	/*  We need to flush the recv. buffs.  We do this only on the
2032	 *  descriptor close, not protocol-sourced closes, because the
2033	 *  reader process may not have drained the data yet!
2034	 */
2035	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2036		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2037			  tcp_hdr(skb)->fin;
2038		data_was_unread += len;
2039		__kfree_skb(skb);
2040	}
2041
2042	sk_mem_reclaim(sk);
2043
2044	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2045	if (sk->sk_state == TCP_CLOSE)
2046		goto adjudge_to_death;
2047
2048	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2049	 * data was lost. To witness the awful effects of the old behavior of
2050	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2051	 * GET in an FTP client, suspend the process, wait for the client to
2052	 * advertise a zero window, then kill -9 the FTP client, wheee...
2053	 * Note: timeout is always zero in such a case.
2054	 */
2055	if (unlikely(tcp_sk(sk)->repair)) {
2056		sk->sk_prot->disconnect(sk, 0);
2057	} else if (data_was_unread) {
2058		/* Unread data was tossed, zap the connection. */
2059		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2060		tcp_set_state(sk, TCP_CLOSE);
2061		tcp_send_active_reset(sk, sk->sk_allocation);
2062	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2063		/* Check zero linger _after_ checking for unread data. */
2064		sk->sk_prot->disconnect(sk, 0);
2065		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2066	} else if (tcp_close_state(sk)) {
2067		/* We FIN if the application ate all the data before
2068		 * zapping the connection.
2069		 */
2070
2071		/* RED-PEN. Formally speaking, we have broken TCP state
2072		 * machine. State transitions:
2073		 *
2074		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2075		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2076		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2077		 *
2078		 * are legal only when FIN has been sent (i.e. in window),
2079		 * rather than queued out of window. Purists blame.
2080		 *
2081		 * F.e. "RFC state" is ESTABLISHED,
2082		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2083		 *
2084		 * The visible declinations are that sometimes
2085		 * we enter time-wait state, when it is not required really
2086		 * (harmless), do not send active resets, when they are
2087		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2088		 * they look as CLOSING or LAST_ACK for Linux)
2089		 * Probably, I missed some more holelets.
2090		 * 						--ANK
2091		 */
2092		tcp_send_fin(sk);
2093	}
2094
2095	sk_stream_wait_close(sk, timeout);
2096
2097adjudge_to_death:
2098	state = sk->sk_state;
2099	sock_hold(sk);
2100	sock_orphan(sk);
2101
2102	/* It is the last release_sock in its life. It will remove backlog. */
2103	release_sock(sk);
2104
2105
2106	/* Now socket is owned by kernel and we acquire BH lock
2107	   to finish close. No need to check for user refs.
2108	 */
2109	local_bh_disable();
2110	bh_lock_sock(sk);
2111	WARN_ON(sock_owned_by_user(sk));
2112
2113	percpu_counter_inc(sk->sk_prot->orphan_count);
2114
2115	/* Have we already been destroyed by a softirq or backlog? */
2116	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2117		goto out;
2118
2119	/*	This is a (useful) BSD violating of the RFC. There is a
2120	 *	problem with TCP as specified in that the other end could
2121	 *	keep a socket open forever with no application left this end.
2122	 *	We use a 3 minute timeout (about the same as BSD) then kill
2123	 *	our end. If they send after that then tough - BUT: long enough
2124	 *	that we won't make the old 4*rto = almost no time - whoops
2125	 *	reset mistake.
2126	 *
2127	 *	Nope, it was not mistake. It is really desired behaviour
2128	 *	f.e. on http servers, when such sockets are useless, but
2129	 *	consume significant resources. Let's do it with special
2130	 *	linger2	option.					--ANK
2131	 */
2132
2133	if (sk->sk_state == TCP_FIN_WAIT2) {
2134		struct tcp_sock *tp = tcp_sk(sk);
2135		if (tp->linger2 < 0) {
2136			tcp_set_state(sk, TCP_CLOSE);
2137			tcp_send_active_reset(sk, GFP_ATOMIC);
2138			NET_INC_STATS_BH(sock_net(sk),
2139					LINUX_MIB_TCPABORTONLINGER);
2140		} else {
2141			const int tmo = tcp_fin_time(sk);
2142
2143			if (tmo > TCP_TIMEWAIT_LEN) {
2144				inet_csk_reset_keepalive_timer(sk,
2145						tmo - TCP_TIMEWAIT_LEN);
2146			} else {
2147				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2148				goto out;
2149			}
2150		}
2151	}
2152	if (sk->sk_state != TCP_CLOSE) {
2153		sk_mem_reclaim(sk);
2154		if (tcp_check_oom(sk, 0)) {
2155			tcp_set_state(sk, TCP_CLOSE);
2156			tcp_send_active_reset(sk, GFP_ATOMIC);
2157			NET_INC_STATS_BH(sock_net(sk),
2158					LINUX_MIB_TCPABORTONMEMORY);
2159		}
2160	}
2161
2162	if (sk->sk_state == TCP_CLOSE)
2163		inet_csk_destroy_sock(sk);
2164	/* Otherwise, socket is reprieved until protocol close. */
2165
2166out:
2167	bh_unlock_sock(sk);
2168	local_bh_enable();
2169	sock_put(sk);
2170}
2171EXPORT_SYMBOL(tcp_close);
2172
2173/* These states need RST on ABORT according to RFC793 */
2174
2175static inline bool tcp_need_reset(int state)
2176{
2177	return (1 << state) &
2178	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2179		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2180}
2181
2182int tcp_disconnect(struct sock *sk, int flags)
2183{
2184	struct inet_sock *inet = inet_sk(sk);
2185	struct inet_connection_sock *icsk = inet_csk(sk);
2186	struct tcp_sock *tp = tcp_sk(sk);
2187	int err = 0;
2188	int old_state = sk->sk_state;
2189
2190	if (old_state != TCP_CLOSE)
2191		tcp_set_state(sk, TCP_CLOSE);
2192
2193	/* ABORT function of RFC793 */
2194	if (old_state == TCP_LISTEN) {
2195		inet_csk_listen_stop(sk);
2196	} else if (unlikely(tp->repair)) {
2197		sk->sk_err = ECONNABORTED;
2198	} else if (tcp_need_reset(old_state) ||
2199		   (tp->snd_nxt != tp->write_seq &&
2200		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2201		/* The last check adjusts for discrepancy of Linux wrt. RFC
2202		 * states
2203		 */
2204		tcp_send_active_reset(sk, gfp_any());
2205		sk->sk_err = ECONNRESET;
2206	} else if (old_state == TCP_SYN_SENT)
2207		sk->sk_err = ECONNRESET;
2208
2209	tcp_clear_xmit_timers(sk);
2210	__skb_queue_purge(&sk->sk_receive_queue);
2211	tcp_write_queue_purge(sk);
2212	__skb_queue_purge(&tp->out_of_order_queue);
2213#ifdef CONFIG_NET_DMA
2214	__skb_queue_purge(&sk->sk_async_wait_queue);
2215#endif
2216
2217	inet->inet_dport = 0;
2218
2219	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2220		inet_reset_saddr(sk);
2221
2222	sk->sk_shutdown = 0;
2223	sock_reset_flag(sk, SOCK_DONE);
2224	tp->srtt = 0;
2225	if ((tp->write_seq += tp->max_window + 2) == 0)
2226		tp->write_seq = 1;
2227	icsk->icsk_backoff = 0;
2228	tp->snd_cwnd = 2;
2229	icsk->icsk_probes_out = 0;
2230	tp->packets_out = 0;
2231	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2232	tp->snd_cwnd_cnt = 0;
2233	tp->bytes_acked = 0;
2234	tp->window_clamp = 0;
2235	tcp_set_ca_state(sk, TCP_CA_Open);
2236	tcp_clear_retrans(tp);
2237	inet_csk_delack_init(sk);
2238	tcp_init_send_head(sk);
2239	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2240	__sk_dst_reset(sk);
2241
2242	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2243
2244	sk->sk_error_report(sk);
2245	return err;
2246}
2247EXPORT_SYMBOL(tcp_disconnect);
2248
2249static inline bool tcp_can_repair_sock(const struct sock *sk)
2250{
2251	return capable(CAP_NET_ADMIN) &&
2252		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2253}
2254
2255static int tcp_repair_options_est(struct tcp_sock *tp,
2256		struct tcp_repair_opt __user *optbuf, unsigned int len)
2257{
2258	struct tcp_repair_opt opt;
2259
2260	while (len >= sizeof(opt)) {
2261		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2262			return -EFAULT;
2263
2264		optbuf++;
2265		len -= sizeof(opt);
2266
2267		switch (opt.opt_code) {
2268		case TCPOPT_MSS:
2269			tp->rx_opt.mss_clamp = opt.opt_val;
2270			break;
2271		case TCPOPT_WINDOW:
2272			if (opt.opt_val > 14)
2273				return -EFBIG;
2274
2275			tp->rx_opt.snd_wscale = opt.opt_val;
2276			break;
2277		case TCPOPT_SACK_PERM:
2278			if (opt.opt_val != 0)
2279				return -EINVAL;
2280
2281			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2282			if (sysctl_tcp_fack)
2283				tcp_enable_fack(tp);
2284			break;
2285		case TCPOPT_TIMESTAMP:
2286			if (opt.opt_val != 0)
2287				return -EINVAL;
2288
2289			tp->rx_opt.tstamp_ok = 1;
2290			break;
2291		}
2292	}
2293
2294	return 0;
2295}
2296
2297/*
2298 *	Socket option code for TCP.
2299 */
2300static int do_tcp_setsockopt(struct sock *sk, int level,
2301		int optname, char __user *optval, unsigned int optlen)
2302{
2303	struct tcp_sock *tp = tcp_sk(sk);
2304	struct inet_connection_sock *icsk = inet_csk(sk);
2305	int val;
2306	int err = 0;
2307
2308	/* These are data/string values, all the others are ints */
2309	switch (optname) {
2310	case TCP_CONGESTION: {
2311		char name[TCP_CA_NAME_MAX];
2312
2313		if (optlen < 1)
2314			return -EINVAL;
2315
2316		val = strncpy_from_user(name, optval,
2317					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2318		if (val < 0)
2319			return -EFAULT;
2320		name[val] = 0;
2321
2322		lock_sock(sk);
2323		err = tcp_set_congestion_control(sk, name);
2324		release_sock(sk);
2325		return err;
2326	}
2327	case TCP_COOKIE_TRANSACTIONS: {
2328		struct tcp_cookie_transactions ctd;
2329		struct tcp_cookie_values *cvp = NULL;
2330
2331		if (sizeof(ctd) > optlen)
2332			return -EINVAL;
2333		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2334			return -EFAULT;
2335
2336		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2337		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2338			return -EINVAL;
2339
2340		if (ctd.tcpct_cookie_desired == 0) {
2341			/* default to global value */
2342		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2343			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2344			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2345			return -EINVAL;
2346		}
2347
2348		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2349			/* Supercedes all other values */
2350			lock_sock(sk);
2351			if (tp->cookie_values != NULL) {
2352				kref_put(&tp->cookie_values->kref,
2353					 tcp_cookie_values_release);
2354				tp->cookie_values = NULL;
2355			}
2356			tp->rx_opt.cookie_in_always = 0; /* false */
2357			tp->rx_opt.cookie_out_never = 1; /* true */
2358			release_sock(sk);
2359			return err;
2360		}
2361
2362		/* Allocate ancillary memory before locking.
2363		 */
2364		if (ctd.tcpct_used > 0 ||
2365		    (tp->cookie_values == NULL &&
2366		     (sysctl_tcp_cookie_size > 0 ||
2367		      ctd.tcpct_cookie_desired > 0 ||
2368		      ctd.tcpct_s_data_desired > 0))) {
2369			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2370				      GFP_KERNEL);
2371			if (cvp == NULL)
2372				return -ENOMEM;
2373
2374			kref_init(&cvp->kref);
2375		}
2376		lock_sock(sk);
2377		tp->rx_opt.cookie_in_always =
2378			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2379		tp->rx_opt.cookie_out_never = 0; /* false */
2380
2381		if (tp->cookie_values != NULL) {
2382			if (cvp != NULL) {
2383				/* Changed values are recorded by a changed
2384				 * pointer, ensuring the cookie will differ,
2385				 * without separately hashing each value later.
2386				 */
2387				kref_put(&tp->cookie_values->kref,
2388					 tcp_cookie_values_release);
2389			} else {
2390				cvp = tp->cookie_values;
2391			}
2392		}
2393
2394		if (cvp != NULL) {
2395			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2396
2397			if (ctd.tcpct_used > 0) {
2398				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2399				       ctd.tcpct_used);
2400				cvp->s_data_desired = ctd.tcpct_used;
2401				cvp->s_data_constant = 1; /* true */
2402			} else {
2403				/* No constant payload data. */
2404				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2405				cvp->s_data_constant = 0; /* false */
2406			}
2407
2408			tp->cookie_values = cvp;
2409		}
2410		release_sock(sk);
2411		return err;
2412	}
2413	default:
2414		/* fallthru */
2415		break;
2416	}
2417
2418	if (optlen < sizeof(int))
2419		return -EINVAL;
2420
2421	if (get_user(val, (int __user *)optval))
2422		return -EFAULT;
2423
2424	lock_sock(sk);
2425
2426	switch (optname) {
2427	case TCP_MAXSEG:
2428		/* Values greater than interface MTU won't take effect. However
2429		 * at the point when this call is done we typically don't yet
2430		 * know which interface is going to be used */
2431		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2432			err = -EINVAL;
2433			break;
2434		}
2435		tp->rx_opt.user_mss = val;
2436		break;
2437
2438	case TCP_NODELAY:
2439		if (val) {
2440			/* TCP_NODELAY is weaker than TCP_CORK, so that
2441			 * this option on corked socket is remembered, but
2442			 * it is not activated until cork is cleared.
2443			 *
2444			 * However, when TCP_NODELAY is set we make
2445			 * an explicit push, which overrides even TCP_CORK
2446			 * for currently queued segments.
2447			 */
2448			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2449			tcp_push_pending_frames(sk);
2450		} else {
2451			tp->nonagle &= ~TCP_NAGLE_OFF;
2452		}
2453		break;
2454
2455	case TCP_THIN_LINEAR_TIMEOUTS:
2456		if (val < 0 || val > 1)
2457			err = -EINVAL;
2458		else
2459			tp->thin_lto = val;
2460		break;
2461
2462	case TCP_THIN_DUPACK:
2463		if (val < 0 || val > 1)
2464			err = -EINVAL;
2465		else
2466			tp->thin_dupack = val;
2467			if (tp->thin_dupack)
2468				tcp_disable_early_retrans(tp);
2469		break;
2470
2471	case TCP_REPAIR:
2472		if (!tcp_can_repair_sock(sk))
2473			err = -EPERM;
2474		else if (val == 1) {
2475			tp->repair = 1;
2476			sk->sk_reuse = SK_FORCE_REUSE;
2477			tp->repair_queue = TCP_NO_QUEUE;
2478		} else if (val == 0) {
2479			tp->repair = 0;
2480			sk->sk_reuse = SK_NO_REUSE;
2481			tcp_send_window_probe(sk);
2482		} else
2483			err = -EINVAL;
2484
2485		break;
2486
2487	case TCP_REPAIR_QUEUE:
2488		if (!tp->repair)
2489			err = -EPERM;
2490		else if (val < TCP_QUEUES_NR)
2491			tp->repair_queue = val;
2492		else
2493			err = -EINVAL;
2494		break;
2495
2496	case TCP_QUEUE_SEQ:
2497		if (sk->sk_state != TCP_CLOSE)
2498			err = -EPERM;
2499		else if (tp->repair_queue == TCP_SEND_QUEUE)
2500			tp->write_seq = val;
2501		else if (tp->repair_queue == TCP_RECV_QUEUE)
2502			tp->rcv_nxt = val;
2503		else
2504			err = -EINVAL;
2505		break;
2506
2507	case TCP_REPAIR_OPTIONS:
2508		if (!tp->repair)
2509			err = -EINVAL;
2510		else if (sk->sk_state == TCP_ESTABLISHED)
2511			err = tcp_repair_options_est(tp,
2512					(struct tcp_repair_opt __user *)optval,
2513					optlen);
2514		else
2515			err = -EPERM;
2516		break;
2517
2518	case TCP_CORK:
2519		/* When set indicates to always queue non-full frames.
2520		 * Later the user clears this option and we transmit
2521		 * any pending partial frames in the queue.  This is
2522		 * meant to be used alongside sendfile() to get properly
2523		 * filled frames when the user (for example) must write
2524		 * out headers with a write() call first and then use
2525		 * sendfile to send out the data parts.
2526		 *
2527		 * TCP_CORK can be set together with TCP_NODELAY and it is
2528		 * stronger than TCP_NODELAY.
2529		 */
2530		if (val) {
2531			tp->nonagle |= TCP_NAGLE_CORK;
2532		} else {
2533			tp->nonagle &= ~TCP_NAGLE_CORK;
2534			if (tp->nonagle&TCP_NAGLE_OFF)
2535				tp->nonagle |= TCP_NAGLE_PUSH;
2536			tcp_push_pending_frames(sk);
2537		}
2538		break;
2539
2540	case TCP_KEEPIDLE:
2541		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2542			err = -EINVAL;
2543		else {
2544			tp->keepalive_time = val * HZ;
2545			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2546			    !((1 << sk->sk_state) &
2547			      (TCPF_CLOSE | TCPF_LISTEN))) {
2548				u32 elapsed = keepalive_time_elapsed(tp);
2549				if (tp->keepalive_time > elapsed)
2550					elapsed = tp->keepalive_time - elapsed;
2551				else
2552					elapsed = 0;
2553				inet_csk_reset_keepalive_timer(sk, elapsed);
2554			}
2555		}
2556		break;
2557	case TCP_KEEPINTVL:
2558		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2559			err = -EINVAL;
2560		else
2561			tp->keepalive_intvl = val * HZ;
2562		break;
2563	case TCP_KEEPCNT:
2564		if (val < 1 || val > MAX_TCP_KEEPCNT)
2565			err = -EINVAL;
2566		else
2567			tp->keepalive_probes = val;
2568		break;
2569	case TCP_SYNCNT:
2570		if (val < 1 || val > MAX_TCP_SYNCNT)
2571			err = -EINVAL;
2572		else
2573			icsk->icsk_syn_retries = val;
2574		break;
2575
2576	case TCP_LINGER2:
2577		if (val < 0)
2578			tp->linger2 = -1;
2579		else if (val > sysctl_tcp_fin_timeout / HZ)
2580			tp->linger2 = 0;
2581		else
2582			tp->linger2 = val * HZ;
2583		break;
2584
2585	case TCP_DEFER_ACCEPT:
2586		/* Translate value in seconds to number of retransmits */
2587		icsk->icsk_accept_queue.rskq_defer_accept =
2588			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2589					TCP_RTO_MAX / HZ);
2590		break;
2591
2592	case TCP_WINDOW_CLAMP:
2593		if (!val) {
2594			if (sk->sk_state != TCP_CLOSE) {
2595				err = -EINVAL;
2596				break;
2597			}
2598			tp->window_clamp = 0;
2599		} else
2600			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2601						SOCK_MIN_RCVBUF / 2 : val;
2602		break;
2603
2604	case TCP_QUICKACK:
2605		if (!val) {
2606			icsk->icsk_ack.pingpong = 1;
2607		} else {
2608			icsk->icsk_ack.pingpong = 0;
2609			if ((1 << sk->sk_state) &
2610			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2611			    inet_csk_ack_scheduled(sk)) {
2612				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2613				tcp_cleanup_rbuf(sk, 1);
2614				if (!(val & 1))
2615					icsk->icsk_ack.pingpong = 1;
2616			}
2617		}
2618		break;
2619
2620#ifdef CONFIG_TCP_MD5SIG
2621	case TCP_MD5SIG:
2622		/* Read the IP->Key mappings from userspace */
2623		err = tp->af_specific->md5_parse(sk, optval, optlen);
2624		break;
2625#endif
2626	case TCP_USER_TIMEOUT:
2627		/* Cap the max timeout in ms TCP will retry/retrans
2628		 * before giving up and aborting (ETIMEDOUT) a connection.
2629		 */
2630		if (val < 0)
2631			err = -EINVAL;
2632		else
2633			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2634		break;
2635	default:
2636		err = -ENOPROTOOPT;
2637		break;
2638	}
2639
2640	release_sock(sk);
2641	return err;
2642}
2643
2644int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2645		   unsigned int optlen)
2646{
2647	const struct inet_connection_sock *icsk = inet_csk(sk);
2648
2649	if (level != SOL_TCP)
2650		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2651						     optval, optlen);
2652	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2653}
2654EXPORT_SYMBOL(tcp_setsockopt);
2655
2656#ifdef CONFIG_COMPAT
2657int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2658			  char __user *optval, unsigned int optlen)
2659{
2660	if (level != SOL_TCP)
2661		return inet_csk_compat_setsockopt(sk, level, optname,
2662						  optval, optlen);
2663	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2664}
2665EXPORT_SYMBOL(compat_tcp_setsockopt);
2666#endif
2667
2668/* Return information about state of tcp endpoint in API format. */
2669void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2670{
2671	const struct tcp_sock *tp = tcp_sk(sk);
2672	const struct inet_connection_sock *icsk = inet_csk(sk);
2673	u32 now = tcp_time_stamp;
2674
2675	memset(info, 0, sizeof(*info));
2676
2677	info->tcpi_state = sk->sk_state;
2678	info->tcpi_ca_state = icsk->icsk_ca_state;
2679	info->tcpi_retransmits = icsk->icsk_retransmits;
2680	info->tcpi_probes = icsk->icsk_probes_out;
2681	info->tcpi_backoff = icsk->icsk_backoff;
2682
2683	if (tp->rx_opt.tstamp_ok)
2684		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2685	if (tcp_is_sack(tp))
2686		info->tcpi_options |= TCPI_OPT_SACK;
2687	if (tp->rx_opt.wscale_ok) {
2688		info->tcpi_options |= TCPI_OPT_WSCALE;
2689		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2690		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2691	}
2692
2693	if (tp->ecn_flags & TCP_ECN_OK)
2694		info->tcpi_options |= TCPI_OPT_ECN;
2695	if (tp->ecn_flags & TCP_ECN_SEEN)
2696		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2697
2698	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2699	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2700	info->tcpi_snd_mss = tp->mss_cache;
2701	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2702
2703	if (sk->sk_state == TCP_LISTEN) {
2704		info->tcpi_unacked = sk->sk_ack_backlog;
2705		info->tcpi_sacked = sk->sk_max_ack_backlog;
2706	} else {
2707		info->tcpi_unacked = tp->packets_out;
2708		info->tcpi_sacked = tp->sacked_out;
2709	}
2710	info->tcpi_lost = tp->lost_out;
2711	info->tcpi_retrans = tp->retrans_out;
2712	info->tcpi_fackets = tp->fackets_out;
2713
2714	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2715	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2716	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2717
2718	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2719	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2720	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2721	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2722	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2723	info->tcpi_snd_cwnd = tp->snd_cwnd;
2724	info->tcpi_advmss = tp->advmss;
2725	info->tcpi_reordering = tp->reordering;
2726
2727	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2728	info->tcpi_rcv_space = tp->rcvq_space.space;
2729
2730	info->tcpi_total_retrans = tp->total_retrans;
2731}
2732EXPORT_SYMBOL_GPL(tcp_get_info);
2733
2734static int do_tcp_getsockopt(struct sock *sk, int level,
2735		int optname, char __user *optval, int __user *optlen)
2736{
2737	struct inet_connection_sock *icsk = inet_csk(sk);
2738	struct tcp_sock *tp = tcp_sk(sk);
2739	int val, len;
2740
2741	if (get_user(len, optlen))
2742		return -EFAULT;
2743
2744	len = min_t(unsigned int, len, sizeof(int));
2745
2746	if (len < 0)
2747		return -EINVAL;
2748
2749	switch (optname) {
2750	case TCP_MAXSEG:
2751		val = tp->mss_cache;
2752		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2753			val = tp->rx_opt.user_mss;
2754		if (tp->repair)
2755			val = tp->rx_opt.mss_clamp;
2756		break;
2757	case TCP_NODELAY:
2758		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2759		break;
2760	case TCP_CORK:
2761		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2762		break;
2763	case TCP_KEEPIDLE:
2764		val = keepalive_time_when(tp) / HZ;
2765		break;
2766	case TCP_KEEPINTVL:
2767		val = keepalive_intvl_when(tp) / HZ;
2768		break;
2769	case TCP_KEEPCNT:
2770		val = keepalive_probes(tp);
2771		break;
2772	case TCP_SYNCNT:
2773		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2774		break;
2775	case TCP_LINGER2:
2776		val = tp->linger2;
2777		if (val >= 0)
2778			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2779		break;
2780	case TCP_DEFER_ACCEPT:
2781		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2782				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2783		break;
2784	case TCP_WINDOW_CLAMP:
2785		val = tp->window_clamp;
2786		break;
2787	case TCP_INFO: {
2788		struct tcp_info info;
2789
2790		if (get_user(len, optlen))
2791			return -EFAULT;
2792
2793		tcp_get_info(sk, &info);
2794
2795		len = min_t(unsigned int, len, sizeof(info));
2796		if (put_user(len, optlen))
2797			return -EFAULT;
2798		if (copy_to_user(optval, &info, len))
2799			return -EFAULT;
2800		return 0;
2801	}
2802	case TCP_QUICKACK:
2803		val = !icsk->icsk_ack.pingpong;
2804		break;
2805
2806	case TCP_CONGESTION:
2807		if (get_user(len, optlen))
2808			return -EFAULT;
2809		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2810		if (put_user(len, optlen))
2811			return -EFAULT;
2812		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2813			return -EFAULT;
2814		return 0;
2815
2816	case TCP_COOKIE_TRANSACTIONS: {
2817		struct tcp_cookie_transactions ctd;
2818		struct tcp_cookie_values *cvp = tp->cookie_values;
2819
2820		if (get_user(len, optlen))
2821			return -EFAULT;
2822		if (len < sizeof(ctd))
2823			return -EINVAL;
2824
2825		memset(&ctd, 0, sizeof(ctd));
2826		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2827				   TCP_COOKIE_IN_ALWAYS : 0)
2828				| (tp->rx_opt.cookie_out_never ?
2829				   TCP_COOKIE_OUT_NEVER : 0);
2830
2831		if (cvp != NULL) {
2832			ctd.tcpct_flags |= (cvp->s_data_in ?
2833					    TCP_S_DATA_IN : 0)
2834					 | (cvp->s_data_out ?
2835					    TCP_S_DATA_OUT : 0);
2836
2837			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2838			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2839
2840			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2841			       cvp->cookie_pair_size);
2842			ctd.tcpct_used = cvp->cookie_pair_size;
2843		}
2844
2845		if (put_user(sizeof(ctd), optlen))
2846			return -EFAULT;
2847		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2848			return -EFAULT;
2849		return 0;
2850	}
2851	case TCP_THIN_LINEAR_TIMEOUTS:
2852		val = tp->thin_lto;
2853		break;
2854	case TCP_THIN_DUPACK:
2855		val = tp->thin_dupack;
2856		break;
2857
2858	case TCP_REPAIR:
2859		val = tp->repair;
2860		break;
2861
2862	case TCP_REPAIR_QUEUE:
2863		if (tp->repair)
2864			val = tp->repair_queue;
2865		else
2866			return -EINVAL;
2867		break;
2868
2869	case TCP_QUEUE_SEQ:
2870		if (tp->repair_queue == TCP_SEND_QUEUE)
2871			val = tp->write_seq;
2872		else if (tp->repair_queue == TCP_RECV_QUEUE)
2873			val = tp->rcv_nxt;
2874		else
2875			return -EINVAL;
2876		break;
2877
2878	case TCP_USER_TIMEOUT:
2879		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2880		break;
2881	default:
2882		return -ENOPROTOOPT;
2883	}
2884
2885	if (put_user(len, optlen))
2886		return -EFAULT;
2887	if (copy_to_user(optval, &val, len))
2888		return -EFAULT;
2889	return 0;
2890}
2891
2892int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2893		   int __user *optlen)
2894{
2895	struct inet_connection_sock *icsk = inet_csk(sk);
2896
2897	if (level != SOL_TCP)
2898		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2899						     optval, optlen);
2900	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2901}
2902EXPORT_SYMBOL(tcp_getsockopt);
2903
2904#ifdef CONFIG_COMPAT
2905int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2906			  char __user *optval, int __user *optlen)
2907{
2908	if (level != SOL_TCP)
2909		return inet_csk_compat_getsockopt(sk, level, optname,
2910						  optval, optlen);
2911	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2912}
2913EXPORT_SYMBOL(compat_tcp_getsockopt);
2914#endif
2915
2916struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2917	netdev_features_t features)
2918{
2919	struct sk_buff *segs = ERR_PTR(-EINVAL);
2920	struct tcphdr *th;
2921	unsigned int thlen;
2922	unsigned int seq;
2923	__be32 delta;
2924	unsigned int oldlen;
2925	unsigned int mss;
2926
2927	if (!pskb_may_pull(skb, sizeof(*th)))
2928		goto out;
2929
2930	th = tcp_hdr(skb);
2931	thlen = th->doff * 4;
2932	if (thlen < sizeof(*th))
2933		goto out;
2934
2935	if (!pskb_may_pull(skb, thlen))
2936		goto out;
2937
2938	oldlen = (u16)~skb->len;
2939	__skb_pull(skb, thlen);
2940
2941	mss = skb_shinfo(skb)->gso_size;
2942	if (unlikely(skb->len <= mss))
2943		goto out;
2944
2945	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2946		/* Packet is from an untrusted source, reset gso_segs. */
2947		int type = skb_shinfo(skb)->gso_type;
2948
2949		if (unlikely(type &
2950			     ~(SKB_GSO_TCPV4 |
2951			       SKB_GSO_DODGY |
2952			       SKB_GSO_TCP_ECN |
2953			       SKB_GSO_TCPV6 |
2954			       0) ||
2955			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2956			goto out;
2957
2958		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2959
2960		segs = NULL;
2961		goto out;
2962	}
2963
2964	segs = skb_segment(skb, features);
2965	if (IS_ERR(segs))
2966		goto out;
2967
2968	delta = htonl(oldlen + (thlen + mss));
2969
2970	skb = segs;
2971	th = tcp_hdr(skb);
2972	seq = ntohl(th->seq);
2973
2974	do {
2975		th->fin = th->psh = 0;
2976
2977		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2978				       (__force u32)delta));
2979		if (skb->ip_summed != CHECKSUM_PARTIAL)
2980			th->check =
2981			     csum_fold(csum_partial(skb_transport_header(skb),
2982						    thlen, skb->csum));
2983
2984		seq += mss;
2985		skb = skb->next;
2986		th = tcp_hdr(skb);
2987
2988		th->seq = htonl(seq);
2989		th->cwr = 0;
2990	} while (skb->next);
2991
2992	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2993		      skb->data_len);
2994	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2995				(__force u32)delta));
2996	if (skb->ip_summed != CHECKSUM_PARTIAL)
2997		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2998						   thlen, skb->csum));
2999
3000out:
3001	return segs;
3002}
3003EXPORT_SYMBOL(tcp_tso_segment);
3004
3005struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3006{
3007	struct sk_buff **pp = NULL;
3008	struct sk_buff *p;
3009	struct tcphdr *th;
3010	struct tcphdr *th2;
3011	unsigned int len;
3012	unsigned int thlen;
3013	__be32 flags;
3014	unsigned int mss = 1;
3015	unsigned int hlen;
3016	unsigned int off;
3017	int flush = 1;
3018	int i;
3019
3020	off = skb_gro_offset(skb);
3021	hlen = off + sizeof(*th);
3022	th = skb_gro_header_fast(skb, off);
3023	if (skb_gro_header_hard(skb, hlen)) {
3024		th = skb_gro_header_slow(skb, hlen, off);
3025		if (unlikely(!th))
3026			goto out;
3027	}
3028
3029	thlen = th->doff * 4;
3030	if (thlen < sizeof(*th))
3031		goto out;
3032
3033	hlen = off + thlen;
3034	if (skb_gro_header_hard(skb, hlen)) {
3035		th = skb_gro_header_slow(skb, hlen, off);
3036		if (unlikely(!th))
3037			goto out;
3038	}
3039
3040	skb_gro_pull(skb, thlen);
3041
3042	len = skb_gro_len(skb);
3043	flags = tcp_flag_word(th);
3044
3045	for (; (p = *head); head = &p->next) {
3046		if (!NAPI_GRO_CB(p)->same_flow)
3047			continue;
3048
3049		th2 = tcp_hdr(p);
3050
3051		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3052			NAPI_GRO_CB(p)->same_flow = 0;
3053			continue;
3054		}
3055
3056		goto found;
3057	}
3058
3059	goto out_check_final;
3060
3061found:
3062	flush = NAPI_GRO_CB(p)->flush;
3063	flush |= (__force int)(flags & TCP_FLAG_CWR);
3064	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3065		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3066	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3067	for (i = sizeof(*th); i < thlen; i += 4)
3068		flush |= *(u32 *)((u8 *)th + i) ^
3069			 *(u32 *)((u8 *)th2 + i);
3070
3071	mss = skb_shinfo(p)->gso_size;
3072
3073	flush |= (len - 1) >= mss;
3074	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3075
3076	if (flush || skb_gro_receive(head, skb)) {
3077		mss = 1;
3078		goto out_check_final;
3079	}
3080
3081	p = *head;
3082	th2 = tcp_hdr(p);
3083	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3084
3085out_check_final:
3086	flush = len < mss;
3087	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3088					TCP_FLAG_RST | TCP_FLAG_SYN |
3089					TCP_FLAG_FIN));
3090
3091	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3092		pp = head;
3093
3094out:
3095	NAPI_GRO_CB(skb)->flush |= flush;
3096
3097	return pp;
3098}
3099EXPORT_SYMBOL(tcp_gro_receive);
3100
3101int tcp_gro_complete(struct sk_buff *skb)
3102{
3103	struct tcphdr *th = tcp_hdr(skb);
3104
3105	skb->csum_start = skb_transport_header(skb) - skb->head;
3106	skb->csum_offset = offsetof(struct tcphdr, check);
3107	skb->ip_summed = CHECKSUM_PARTIAL;
3108
3109	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3110
3111	if (th->cwr)
3112		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3113
3114	return 0;
3115}
3116EXPORT_SYMBOL(tcp_gro_complete);
3117
3118#ifdef CONFIG_TCP_MD5SIG
3119static unsigned long tcp_md5sig_users;
3120static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3121static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3122
3123static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3124{
3125	int cpu;
3126
3127	for_each_possible_cpu(cpu) {
3128		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3129
3130		if (p->md5_desc.tfm)
3131			crypto_free_hash(p->md5_desc.tfm);
3132	}
3133	free_percpu(pool);
3134}
3135
3136void tcp_free_md5sig_pool(void)
3137{
3138	struct tcp_md5sig_pool __percpu *pool = NULL;
3139
3140	spin_lock_bh(&tcp_md5sig_pool_lock);
3141	if (--tcp_md5sig_users == 0) {
3142		pool = tcp_md5sig_pool;
3143		tcp_md5sig_pool = NULL;
3144	}
3145	spin_unlock_bh(&tcp_md5sig_pool_lock);
3146	if (pool)
3147		__tcp_free_md5sig_pool(pool);
3148}
3149EXPORT_SYMBOL(tcp_free_md5sig_pool);
3150
3151static struct tcp_md5sig_pool __percpu *
3152__tcp_alloc_md5sig_pool(struct sock *sk)
3153{
3154	int cpu;
3155	struct tcp_md5sig_pool __percpu *pool;
3156
3157	pool = alloc_percpu(struct tcp_md5sig_pool);
3158	if (!pool)
3159		return NULL;
3160
3161	for_each_possible_cpu(cpu) {
3162		struct crypto_hash *hash;
3163
3164		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3165		if (!hash || IS_ERR(hash))
3166			goto out_free;
3167
3168		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3169	}
3170	return pool;
3171out_free:
3172	__tcp_free_md5sig_pool(pool);
3173	return NULL;
3174}
3175
3176struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3177{
3178	struct tcp_md5sig_pool __percpu *pool;
3179	bool alloc = false;
3180
3181retry:
3182	spin_lock_bh(&tcp_md5sig_pool_lock);
3183	pool = tcp_md5sig_pool;
3184	if (tcp_md5sig_users++ == 0) {
3185		alloc = true;
3186		spin_unlock_bh(&tcp_md5sig_pool_lock);
3187	} else if (!pool) {
3188		tcp_md5sig_users--;
3189		spin_unlock_bh(&tcp_md5sig_pool_lock);
3190		cpu_relax();
3191		goto retry;
3192	} else
3193		spin_unlock_bh(&tcp_md5sig_pool_lock);
3194
3195	if (alloc) {
3196		/* we cannot hold spinlock here because this may sleep. */
3197		struct tcp_md5sig_pool __percpu *p;
3198
3199		p = __tcp_alloc_md5sig_pool(sk);
3200		spin_lock_bh(&tcp_md5sig_pool_lock);
3201		if (!p) {
3202			tcp_md5sig_users--;
3203			spin_unlock_bh(&tcp_md5sig_pool_lock);
3204			return NULL;
3205		}
3206		pool = tcp_md5sig_pool;
3207		if (pool) {
3208			/* oops, it has already been assigned. */
3209			spin_unlock_bh(&tcp_md5sig_pool_lock);
3210			__tcp_free_md5sig_pool(p);
3211		} else {
3212			tcp_md5sig_pool = pool = p;
3213			spin_unlock_bh(&tcp_md5sig_pool_lock);
3214		}
3215	}
3216	return pool;
3217}
3218EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3219
3220
3221/**
3222 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3223 *
3224 *	We use percpu structure, so if we succeed, we exit with preemption
3225 *	and BH disabled, to make sure another thread or softirq handling
3226 *	wont try to get same context.
3227 */
3228struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3229{
3230	struct tcp_md5sig_pool __percpu *p;
3231
3232	local_bh_disable();
3233
3234	spin_lock(&tcp_md5sig_pool_lock);
3235	p = tcp_md5sig_pool;
3236	if (p)
3237		tcp_md5sig_users++;
3238	spin_unlock(&tcp_md5sig_pool_lock);
3239
3240	if (p)
3241		return this_cpu_ptr(p);
3242
3243	local_bh_enable();
3244	return NULL;
3245}
3246EXPORT_SYMBOL(tcp_get_md5sig_pool);
3247
3248void tcp_put_md5sig_pool(void)
3249{
3250	local_bh_enable();
3251	tcp_free_md5sig_pool();
3252}
3253EXPORT_SYMBOL(tcp_put_md5sig_pool);
3254
3255int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3256			const struct tcphdr *th)
3257{
3258	struct scatterlist sg;
3259	struct tcphdr hdr;
3260	int err;
3261
3262	/* We are not allowed to change tcphdr, make a local copy */
3263	memcpy(&hdr, th, sizeof(hdr));
3264	hdr.check = 0;
3265
3266	/* options aren't included in the hash */
3267	sg_init_one(&sg, &hdr, sizeof(hdr));
3268	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3269	return err;
3270}
3271EXPORT_SYMBOL(tcp_md5_hash_header);
3272
3273int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3274			  const struct sk_buff *skb, unsigned int header_len)
3275{
3276	struct scatterlist sg;
3277	const struct tcphdr *tp = tcp_hdr(skb);
3278	struct hash_desc *desc = &hp->md5_desc;
3279	unsigned int i;
3280	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3281					   skb_headlen(skb) - header_len : 0;
3282	const struct skb_shared_info *shi = skb_shinfo(skb);
3283	struct sk_buff *frag_iter;
3284
3285	sg_init_table(&sg, 1);
3286
3287	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3288	if (crypto_hash_update(desc, &sg, head_data_len))
3289		return 1;
3290
3291	for (i = 0; i < shi->nr_frags; ++i) {
3292		const struct skb_frag_struct *f = &shi->frags[i];
3293		struct page *page = skb_frag_page(f);
3294		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3295		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3296			return 1;
3297	}
3298
3299	skb_walk_frags(skb, frag_iter)
3300		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3301			return 1;
3302
3303	return 0;
3304}
3305EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3306
3307int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3308{
3309	struct scatterlist sg;
3310
3311	sg_init_one(&sg, key->key, key->keylen);
3312	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3313}
3314EXPORT_SYMBOL(tcp_md5_hash_key);
3315
3316#endif
3317
3318/**
3319 * Each Responder maintains up to two secret values concurrently for
3320 * efficient secret rollover.  Each secret value has 4 states:
3321 *
3322 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3323 *    Generates new Responder-Cookies, but not yet used for primary
3324 *    verification.  This is a short-term state, typically lasting only
3325 *    one round trip time (RTT).
3326 *
3327 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3328 *    Used both for generation and primary verification.
3329 *
3330 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3331 *    Used for verification, until the first failure that can be
3332 *    verified by the newer Generating secret.  At that time, this
3333 *    cookie's state is changed to Secondary, and the Generating
3334 *    cookie's state is changed to Primary.  This is a short-term state,
3335 *    typically lasting only one round trip time (RTT).
3336 *
3337 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3338 *    Used for secondary verification, after primary verification
3339 *    failures.  This state lasts no more than twice the Maximum Segment
3340 *    Lifetime (2MSL).  Then, the secret is discarded.
3341 */
3342struct tcp_cookie_secret {
3343	/* The secret is divided into two parts.  The digest part is the
3344	 * equivalent of previously hashing a secret and saving the state,
3345	 * and serves as an initialization vector (IV).  The message part
3346	 * serves as the trailing secret.
3347	 */
3348	u32				secrets[COOKIE_WORKSPACE_WORDS];
3349	unsigned long			expires;
3350};
3351
3352#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3353#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3354#define TCP_SECRET_LIFE (HZ * 600)
3355
3356static struct tcp_cookie_secret tcp_secret_one;
3357static struct tcp_cookie_secret tcp_secret_two;
3358
3359/* Essentially a circular list, without dynamic allocation. */
3360static struct tcp_cookie_secret *tcp_secret_generating;
3361static struct tcp_cookie_secret *tcp_secret_primary;
3362static struct tcp_cookie_secret *tcp_secret_retiring;
3363static struct tcp_cookie_secret *tcp_secret_secondary;
3364
3365static DEFINE_SPINLOCK(tcp_secret_locker);
3366
3367/* Select a pseudo-random word in the cookie workspace.
3368 */
3369static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3370{
3371	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3372}
3373
3374/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3375 * Called in softirq context.
3376 * Returns: 0 for success.
3377 */
3378int tcp_cookie_generator(u32 *bakery)
3379{
3380	unsigned long jiffy = jiffies;
3381
3382	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3383		spin_lock_bh(&tcp_secret_locker);
3384		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3385			/* refreshed by another */
3386			memcpy(bakery,
3387			       &tcp_secret_generating->secrets[0],
3388			       COOKIE_WORKSPACE_WORDS);
3389		} else {
3390			/* still needs refreshing */
3391			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3392
3393			/* The first time, paranoia assumes that the
3394			 * randomization function isn't as strong.  But,
3395			 * this secret initialization is delayed until
3396			 * the last possible moment (packet arrival).
3397			 * Although that time is observable, it is
3398			 * unpredictably variable.  Mash in the most
3399			 * volatile clock bits available, and expire the
3400			 * secret extra quickly.
3401			 */
3402			if (unlikely(tcp_secret_primary->expires ==
3403				     tcp_secret_secondary->expires)) {
3404				struct timespec tv;
3405
3406				getnstimeofday(&tv);
3407				bakery[COOKIE_DIGEST_WORDS+0] ^=
3408					(u32)tv.tv_nsec;
3409
3410				tcp_secret_secondary->expires = jiffy
3411					+ TCP_SECRET_1MSL
3412					+ (0x0f & tcp_cookie_work(bakery, 0));
3413			} else {
3414				tcp_secret_secondary->expires = jiffy
3415					+ TCP_SECRET_LIFE
3416					+ (0xff & tcp_cookie_work(bakery, 1));
3417				tcp_secret_primary->expires = jiffy
3418					+ TCP_SECRET_2MSL
3419					+ (0x1f & tcp_cookie_work(bakery, 2));
3420			}
3421			memcpy(&tcp_secret_secondary->secrets[0],
3422			       bakery, COOKIE_WORKSPACE_WORDS);
3423
3424			rcu_assign_pointer(tcp_secret_generating,
3425					   tcp_secret_secondary);
3426			rcu_assign_pointer(tcp_secret_retiring,
3427					   tcp_secret_primary);
3428			/*
3429			 * Neither call_rcu() nor synchronize_rcu() needed.
3430			 * Retiring data is not freed.  It is replaced after
3431			 * further (locked) pointer updates, and a quiet time
3432			 * (minimum 1MSL, maximum LIFE - 2MSL).
3433			 */
3434		}
3435		spin_unlock_bh(&tcp_secret_locker);
3436	} else {
3437		rcu_read_lock_bh();
3438		memcpy(bakery,
3439		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3440		       COOKIE_WORKSPACE_WORDS);
3441		rcu_read_unlock_bh();
3442	}
3443	return 0;
3444}
3445EXPORT_SYMBOL(tcp_cookie_generator);
3446
3447void tcp_done(struct sock *sk)
3448{
3449	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3450		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3451
3452	tcp_set_state(sk, TCP_CLOSE);
3453	tcp_clear_xmit_timers(sk);
3454
3455	sk->sk_shutdown = SHUTDOWN_MASK;
3456
3457	if (!sock_flag(sk, SOCK_DEAD))
3458		sk->sk_state_change(sk);
3459	else
3460		inet_csk_destroy_sock(sk);
3461}
3462EXPORT_SYMBOL_GPL(tcp_done);
3463
3464extern struct tcp_congestion_ops tcp_reno;
3465
3466static __initdata unsigned long thash_entries;
3467static int __init set_thash_entries(char *str)
3468{
3469	ssize_t ret;
3470
3471	if (!str)
3472		return 0;
3473
3474	ret = kstrtoul(str, 0, &thash_entries);
3475	if (ret)
3476		return 0;
3477
3478	return 1;
3479}
3480__setup("thash_entries=", set_thash_entries);
3481
3482void tcp_init_mem(struct net *net)
3483{
3484	unsigned long limit = nr_free_buffer_pages() / 8;
3485	limit = max(limit, 128UL);
3486	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3487	net->ipv4.sysctl_tcp_mem[1] = limit;
3488	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3489}
3490
3491void __init tcp_init(void)
3492{
3493	struct sk_buff *skb = NULL;
3494	unsigned long limit;
3495	int max_rshare, max_wshare, cnt;
3496	unsigned int i;
3497	unsigned long jiffy = jiffies;
3498
3499	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3500
3501	percpu_counter_init(&tcp_sockets_allocated, 0);
3502	percpu_counter_init(&tcp_orphan_count, 0);
3503	tcp_hashinfo.bind_bucket_cachep =
3504		kmem_cache_create("tcp_bind_bucket",
3505				  sizeof(struct inet_bind_bucket), 0,
3506				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3507
3508	/* Size and allocate the main established and bind bucket
3509	 * hash tables.
3510	 *
3511	 * The methodology is similar to that of the buffer cache.
3512	 */
3513	tcp_hashinfo.ehash =
3514		alloc_large_system_hash("TCP established",
3515					sizeof(struct inet_ehash_bucket),
3516					thash_entries,
3517					(totalram_pages >= 128 * 1024) ?
3518					13 : 15,
3519					0,
3520					NULL,
3521					&tcp_hashinfo.ehash_mask,
3522					0,
3523					thash_entries ? 0 : 512 * 1024);
3524	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3525		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3526		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3527	}
3528	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3529		panic("TCP: failed to alloc ehash_locks");
3530	tcp_hashinfo.bhash =
3531		alloc_large_system_hash("TCP bind",
3532					sizeof(struct inet_bind_hashbucket),
3533					tcp_hashinfo.ehash_mask + 1,
3534					(totalram_pages >= 128 * 1024) ?
3535					13 : 15,
3536					0,
3537					&tcp_hashinfo.bhash_size,
3538					NULL,
3539					0,
3540					64 * 1024);
3541	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3542	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3543		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3544		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3545	}
3546
3547
3548	cnt = tcp_hashinfo.ehash_mask + 1;
3549
3550	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3551	sysctl_tcp_max_orphans = cnt / 2;
3552	sysctl_max_syn_backlog = max(128, cnt / 256);
3553
3554	tcp_init_mem(&init_net);
3555	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3556	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3557	max_wshare = min(4UL*1024*1024, limit);
3558	max_rshare = min(6UL*1024*1024, limit);
3559
3560	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3561	sysctl_tcp_wmem[1] = 16*1024;
3562	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3563
3564	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3565	sysctl_tcp_rmem[1] = 87380;
3566	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3567
3568	pr_info("Hash tables configured (established %u bind %u)\n",
3569		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3570
3571	tcp_register_congestion_control(&tcp_reno);
3572
3573	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3574	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3575	tcp_secret_one.expires = jiffy; /* past due */
3576	tcp_secret_two.expires = jiffy; /* past due */
3577	tcp_secret_generating = &tcp_secret_one;
3578	tcp_secret_primary = &tcp_secret_one;
3579	tcp_secret_retiring = &tcp_secret_two;
3580	tcp_secret_secondary = &tcp_secret_two;
3581}