Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 
 
 
 248#include <linux/kernel.h>
 249#include <linux/module.h>
 250#include <linux/types.h>
 251#include <linux/fcntl.h>
 252#include <linux/poll.h>
 
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/bootmem.h>
 262#include <linux/highmem.h>
 263#include <linux/swap.h>
 264#include <linux/cache.h>
 265#include <linux/err.h>
 266#include <linux/crypto.h>
 267#include <linux/time.h>
 268#include <linux/slab.h>
 
 
 269
 270#include <net/icmp.h>
 
 271#include <net/tcp.h>
 272#include <net/xfrm.h>
 273#include <net/ip.h>
 274#include <net/netdma.h>
 275#include <net/sock.h>
 276
 277#include <asm/uaccess.h>
 278#include <asm/ioctls.h>
 279
 280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 281
 282struct percpu_counter tcp_orphan_count;
 283EXPORT_SYMBOL_GPL(tcp_orphan_count);
 284
 285long sysctl_tcp_mem[3] __read_mostly;
 286int sysctl_tcp_wmem[3] __read_mostly;
 287int sysctl_tcp_rmem[3] __read_mostly;
 288
 289EXPORT_SYMBOL(sysctl_tcp_mem);
 290EXPORT_SYMBOL(sysctl_tcp_rmem);
 291EXPORT_SYMBOL(sysctl_tcp_wmem);
 292
 293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 294EXPORT_SYMBOL(tcp_memory_allocated);
 295
 
 
 
 
 
 296/*
 297 * Current number of TCP sockets.
 298 */
 299struct percpu_counter tcp_sockets_allocated;
 300EXPORT_SYMBOL(tcp_sockets_allocated);
 301
 302/*
 303 * TCP splice context
 304 */
 305struct tcp_splice_state {
 306	struct pipe_inode_info *pipe;
 307	size_t len;
 308	unsigned int flags;
 309};
 310
 311/*
 312 * Pressure flag: try to collapse.
 313 * Technical note: it is used by multiple contexts non atomically.
 314 * All the __sk_mem_schedule() is of this nature: accounting
 315 * is strict, actions are advisory and have some latency.
 316 */
 317int tcp_memory_pressure __read_mostly;
 318EXPORT_SYMBOL(tcp_memory_pressure);
 319
 320void tcp_enter_memory_pressure(struct sock *sk)
 321{
 322	if (!tcp_memory_pressure) {
 
 
 
 
 
 
 
 
 323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 324		tcp_memory_pressure = 1;
 325	}
 326}
 327EXPORT_SYMBOL(tcp_enter_memory_pressure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329/* Convert seconds to retransmits based on initial and max timeout */
 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 331{
 332	u8 res = 0;
 333
 334	if (seconds > 0) {
 335		int period = timeout;
 336
 337		res = 1;
 338		while (seconds > period && res < 255) {
 339			res++;
 340			timeout <<= 1;
 341			if (timeout > rto_max)
 342				timeout = rto_max;
 343			period += timeout;
 344		}
 345	}
 346	return res;
 347}
 348
 349/* Convert retransmits to seconds based on initial and max timeout */
 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 351{
 352	int period = 0;
 353
 354	if (retrans > 0) {
 355		period = timeout;
 356		while (--retrans) {
 357			timeout <<= 1;
 358			if (timeout > rto_max)
 359				timeout = rto_max;
 360			period += timeout;
 361		}
 362	}
 363	return period;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 *	Wait for a TCP event.
 368 *
 369 *	Note that we don't need to lock the socket, as the upper poll layers
 370 *	take care of normal races (between the test and the event) and we don't
 371 *	go look at any of the socket buffers directly.
 372 */
 373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 374{
 375	unsigned int mask;
 376	struct sock *sk = sock->sk;
 377	struct tcp_sock *tp = tcp_sk(sk);
 
 378
 379	sock_poll_wait(file, sk_sleep(sk), wait);
 380	if (sk->sk_state == TCP_LISTEN)
 
 
 381		return inet_csk_listen_poll(sk);
 382
 383	/* Socket is not locked. We are protected from async events
 384	 * by poll logic and correct handling of state changes
 385	 * made by other threads is impossible in any case.
 386	 */
 387
 388	mask = 0;
 389
 390	/*
 391	 * POLLHUP is certainly not done right. But poll() doesn't
 392	 * have a notion of HUP in just one direction, and for a
 393	 * socket the read side is more interesting.
 394	 *
 395	 * Some poll() documentation says that POLLHUP is incompatible
 396	 * with the POLLOUT/POLLWR flags, so somebody should check this
 397	 * all. But careful, it tends to be safer to return too many
 398	 * bits than too few, and you can easily break real applications
 399	 * if you don't tell them that something has hung up!
 400	 *
 401	 * Check-me.
 402	 *
 403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 404	 * our fs/select.c). It means that after we received EOF,
 405	 * poll always returns immediately, making impossible poll() on write()
 406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 407	 * if and only if shutdown has been made in both directions.
 408	 * Actually, it is interesting to look how Solaris and DUX
 409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 410	 * then we could set it on SND_SHUTDOWN. BTW examples given
 411	 * in Stevens' books assume exactly this behaviour, it explains
 412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 413	 *
 414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 415	 * blocking on fresh not-connected or disconnected socket. --ANK
 416	 */
 417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 418		mask |= POLLHUP;
 419	if (sk->sk_shutdown & RCV_SHUTDOWN)
 420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 421
 422	/* Connected? */
 423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
 
 424		int target = sock_rcvlowat(sk, 0, INT_MAX);
 425
 426		if (tp->urg_seq == tp->copied_seq &&
 427		    !sock_flag(sk, SOCK_URGINLINE) &&
 428		    tp->urg_data)
 429			target++;
 430
 431		/* Potential race condition. If read of tp below will
 432		 * escape above sk->sk_state, we can be illegally awaken
 433		 * in SYN_* states. */
 434		if (tp->rcv_nxt - tp->copied_seq >= target)
 435			mask |= POLLIN | POLLRDNORM;
 436
 437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 439				mask |= POLLOUT | POLLWRNORM;
 440			} else {  /* send SIGIO later */
 441				set_bit(SOCK_ASYNC_NOSPACE,
 442					&sk->sk_socket->flags);
 443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 444
 445				/* Race breaker. If space is freed after
 446				 * wspace test but before the flags are set,
 447				 * IO signal will be lost.
 
 448				 */
 449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
 450					mask |= POLLOUT | POLLWRNORM;
 
 451			}
 452		} else
 453			mask |= POLLOUT | POLLWRNORM;
 454
 455		if (tp->urg_data & TCP_URG_VALID)
 456			mask |= POLLPRI;
 
 
 
 
 
 
 457	}
 458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 459	smp_rmb();
 460	if (sk->sk_err)
 461		mask |= POLLERR;
 462
 463	return mask;
 464}
 465EXPORT_SYMBOL(tcp_poll);
 466
 467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 468{
 469	struct tcp_sock *tp = tcp_sk(sk);
 470	int answ;
 
 471
 472	switch (cmd) {
 473	case SIOCINQ:
 474		if (sk->sk_state == TCP_LISTEN)
 475			return -EINVAL;
 476
 477		lock_sock(sk);
 478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 479			answ = 0;
 480		else if (sock_flag(sk, SOCK_URGINLINE) ||
 481			 !tp->urg_data ||
 482			 before(tp->urg_seq, tp->copied_seq) ||
 483			 !before(tp->urg_seq, tp->rcv_nxt)) {
 484			struct sk_buff *skb;
 485
 486			answ = tp->rcv_nxt - tp->copied_seq;
 487
 488			/* Subtract 1, if FIN is in queue. */
 489			skb = skb_peek_tail(&sk->sk_receive_queue);
 490			if (answ && skb)
 491				answ -= tcp_hdr(skb)->fin;
 492		} else
 493			answ = tp->urg_seq - tp->copied_seq;
 494		release_sock(sk);
 495		break;
 496	case SIOCATMARK:
 497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 498		break;
 499	case SIOCOUTQ:
 500		if (sk->sk_state == TCP_LISTEN)
 501			return -EINVAL;
 502
 503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 504			answ = 0;
 505		else
 506			answ = tp->write_seq - tp->snd_una;
 507		break;
 508	case SIOCOUTQNSD:
 509		if (sk->sk_state == TCP_LISTEN)
 510			return -EINVAL;
 511
 512		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 513			answ = 0;
 514		else
 515			answ = tp->write_seq - tp->snd_nxt;
 516		break;
 517	default:
 518		return -ENOIOCTLCMD;
 519	}
 520
 521	return put_user(answ, (int __user *)arg);
 522}
 523EXPORT_SYMBOL(tcp_ioctl);
 524
 525static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 526{
 527	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
 528	tp->pushed_seq = tp->write_seq;
 529}
 530
 531static inline int forced_push(struct tcp_sock *tp)
 532{
 533	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 534}
 535
 536static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 537{
 538	struct tcp_sock *tp = tcp_sk(sk);
 539	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 540
 541	skb->csum    = 0;
 542	tcb->seq     = tcb->end_seq = tp->write_seq;
 543	tcb->flags   = TCPHDR_ACK;
 544	tcb->sacked  = 0;
 545	skb_header_release(skb);
 546	tcp_add_write_queue_tail(sk, skb);
 547	sk->sk_wmem_queued += skb->truesize;
 548	sk_mem_charge(sk, skb->truesize);
 549	if (tp->nonagle & TCP_NAGLE_PUSH)
 550		tp->nonagle &= ~TCP_NAGLE_PUSH;
 
 
 551}
 552
 553static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 554{
 555	if (flags & MSG_OOB)
 556		tp->snd_up = tp->write_seq;
 557}
 558
 559static inline void tcp_push(struct sock *sk, int flags, int mss_now,
 560			    int nonagle)
 
 
 
 
 
 
 
 
 
 
 561{
 562	if (tcp_send_head(sk)) {
 563		struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 564
 565		if (!(flags & MSG_MORE) || forced_push(tp))
 566			tcp_mark_push(tp, tcp_write_queue_tail(sk));
 
 
 
 567
 568		tcp_mark_urg(tp, flags);
 569		__tcp_push_pending_frames(sk, mss_now,
 570					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571	}
 
 
 
 
 
 572}
 573
 574static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 575				unsigned int offset, size_t len)
 576{
 577	struct tcp_splice_state *tss = rd_desc->arg.data;
 578	int ret;
 579
 580	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 581			      tss->flags);
 582	if (ret > 0)
 583		rd_desc->count -= ret;
 584	return ret;
 585}
 586
 587static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 588{
 589	/* Store TCP splice context information in read_descriptor_t. */
 590	read_descriptor_t rd_desc = {
 591		.arg.data = tss,
 592		.count	  = tss->len,
 593	};
 594
 595	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 596}
 597
 598/**
 599 *  tcp_splice_read - splice data from TCP socket to a pipe
 600 * @sock:	socket to splice from
 601 * @ppos:	position (not valid)
 602 * @pipe:	pipe to splice to
 603 * @len:	number of bytes to splice
 604 * @flags:	splice modifier flags
 605 *
 606 * Description:
 607 *    Will read pages from given socket and fill them into a pipe.
 608 *
 609 **/
 610ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 611			struct pipe_inode_info *pipe, size_t len,
 612			unsigned int flags)
 613{
 614	struct sock *sk = sock->sk;
 615	struct tcp_splice_state tss = {
 616		.pipe = pipe,
 617		.len = len,
 618		.flags = flags,
 619	};
 620	long timeo;
 621	ssize_t spliced;
 622	int ret;
 623
 624	sock_rps_record_flow(sk);
 625	/*
 626	 * We can't seek on a socket input
 627	 */
 628	if (unlikely(*ppos))
 629		return -ESPIPE;
 630
 631	ret = spliced = 0;
 632
 633	lock_sock(sk);
 634
 635	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 636	while (tss.len) {
 637		ret = __tcp_splice_read(sk, &tss);
 638		if (ret < 0)
 639			break;
 640		else if (!ret) {
 641			if (spliced)
 642				break;
 643			if (sock_flag(sk, SOCK_DONE))
 644				break;
 645			if (sk->sk_err) {
 646				ret = sock_error(sk);
 647				break;
 648			}
 649			if (sk->sk_shutdown & RCV_SHUTDOWN)
 650				break;
 651			if (sk->sk_state == TCP_CLOSE) {
 652				/*
 653				 * This occurs when user tries to read
 654				 * from never connected socket.
 655				 */
 656				if (!sock_flag(sk, SOCK_DONE))
 657					ret = -ENOTCONN;
 658				break;
 659			}
 660			if (!timeo) {
 661				ret = -EAGAIN;
 662				break;
 663			}
 664			sk_wait_data(sk, &timeo);
 
 
 
 
 
 
 665			if (signal_pending(current)) {
 666				ret = sock_intr_errno(timeo);
 667				break;
 668			}
 669			continue;
 670		}
 671		tss.len -= ret;
 672		spliced += ret;
 673
 674		if (!timeo)
 675			break;
 676		release_sock(sk);
 677		lock_sock(sk);
 678
 679		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 680		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 681		    signal_pending(current))
 682			break;
 683	}
 684
 685	release_sock(sk);
 686
 687	if (spliced)
 688		return spliced;
 689
 690	return ret;
 691}
 692EXPORT_SYMBOL(tcp_splice_read);
 693
 694struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 
 695{
 696	struct sk_buff *skb;
 697
 698	/* The TCP header must be at least 32-bit aligned.  */
 699	size = ALIGN(size, 4);
 700
 
 
 
 701	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 702	if (skb) {
 703		if (sk_wmem_schedule(sk, skb->truesize)) {
 
 
 
 
 
 
 
 
 
 704			/*
 705			 * Make sure that we have exactly size bytes
 706			 * available to the caller, no more, no less.
 707			 */
 708			skb_reserve(skb, skb_tailroom(skb) - size);
 
 709			return skb;
 710		}
 711		__kfree_skb(skb);
 712	} else {
 713		sk->sk_prot->enter_memory_pressure(sk);
 714		sk_stream_moderate_sndbuf(sk);
 715	}
 716	return NULL;
 717}
 718
 719static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 720				       int large_allowed)
 721{
 722	struct tcp_sock *tp = tcp_sk(sk);
 723	u32 xmit_size_goal, old_size_goal;
 724
 725	xmit_size_goal = mss_now;
 
 726
 727	if (large_allowed && sk_can_gso(sk)) {
 728		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
 729				  inet_csk(sk)->icsk_af_ops->net_header_len -
 730				  inet_csk(sk)->icsk_ext_hdr_len -
 731				  tp->tcp_header_len);
 732
 733		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 734
 735		/* We try hard to avoid divides here */
 736		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 737
 738		if (likely(old_size_goal <= xmit_size_goal &&
 739			   old_size_goal + mss_now > xmit_size_goal)) {
 740			xmit_size_goal = old_size_goal;
 741		} else {
 742			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
 743			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 744		}
 745	}
 746
 747	return max(xmit_size_goal, mss_now);
 748}
 749
 750static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 751{
 752	int mss_now;
 753
 754	mss_now = tcp_current_mss(sk);
 755	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 756
 757	return mss_now;
 758}
 759
 760static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
 761			 size_t psize, int flags)
 762{
 763	struct tcp_sock *tp = tcp_sk(sk);
 764	int mss_now, size_goal;
 765	int err;
 766	ssize_t copied;
 767	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 768
 769	/* Wait for a connection to finish. */
 770	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 771		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 772			goto out_err;
 
 773
 774	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 775
 776	mss_now = tcp_send_mss(sk, &size_goal, flags);
 777	copied = 0;
 778
 779	err = -EPIPE;
 780	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 781		goto out_err;
 782
 783	while (psize > 0) {
 784		struct sk_buff *skb = tcp_write_queue_tail(sk);
 785		struct page *page = pages[poffset / PAGE_SIZE];
 786		int copy, i, can_coalesce;
 787		int offset = poffset % PAGE_SIZE;
 788		int size = min_t(size_t, psize, PAGE_SIZE - offset);
 789
 790		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 
 791new_segment:
 792			if (!sk_stream_memory_free(sk))
 793				goto wait_for_sndbuf;
 794
 795			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 
 796			if (!skb)
 797				goto wait_for_memory;
 798
 799			skb_entail(sk, skb);
 800			copy = size_goal;
 801		}
 802
 803		if (copy > size)
 804			copy = size;
 805
 806		i = skb_shinfo(skb)->nr_frags;
 807		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 808		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 809			tcp_mark_push(tp, skb);
 810			goto new_segment;
 811		}
 812		if (!sk_wmem_schedule(sk, copy))
 813			goto wait_for_memory;
 814
 815		if (can_coalesce) {
 816			skb_shinfo(skb)->frags[i - 1].size += copy;
 817		} else {
 818			get_page(page);
 819			skb_fill_page_desc(skb, i, page, offset, copy);
 820		}
 821
 
 
 
 822		skb->len += copy;
 823		skb->data_len += copy;
 824		skb->truesize += copy;
 825		sk->sk_wmem_queued += copy;
 826		sk_mem_charge(sk, copy);
 827		skb->ip_summed = CHECKSUM_PARTIAL;
 828		tp->write_seq += copy;
 829		TCP_SKB_CB(skb)->end_seq += copy;
 830		skb_shinfo(skb)->gso_segs = 0;
 831
 832		if (!copied)
 833			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
 834
 835		copied += copy;
 836		poffset += copy;
 837		if (!(psize -= copy))
 
 838			goto out;
 839
 840		if (skb->len < size_goal || (flags & MSG_OOB))
 841			continue;
 842
 843		if (forced_push(tp)) {
 844			tcp_mark_push(tp, skb);
 845			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 846		} else if (skb == tcp_send_head(sk))
 847			tcp_push_one(sk, mss_now);
 848		continue;
 849
 850wait_for_sndbuf:
 851		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 852wait_for_memory:
 853		if (copied)
 854			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 855
 856		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 
 857			goto do_error;
 858
 859		mss_now = tcp_send_mss(sk, &size_goal, flags);
 860	}
 861
 862out:
 863	if (copied)
 864		tcp_push(sk, flags, mss_now, tp->nonagle);
 
 
 
 865	return copied;
 866
 867do_error:
 868	if (copied)
 869		goto out;
 870out_err:
 
 
 
 
 
 
 871	return sk_stream_error(sk, flags, err);
 872}
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874int tcp_sendpage(struct sock *sk, struct page *page, int offset,
 875		 size_t size, int flags)
 876{
 877	ssize_t res;
 878
 879	if (!(sk->sk_route_caps & NETIF_F_SG) ||
 880	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
 881		return sock_no_sendpage(sk->sk_socket, page, offset, size,
 882					flags);
 883
 884	lock_sock(sk);
 885	res = do_tcp_sendpages(sk, &page, offset, size, flags);
 886	release_sock(sk);
 887	return res;
 
 888}
 889EXPORT_SYMBOL(tcp_sendpage);
 890
 891#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
 892#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894static inline int select_size(struct sock *sk, int sg)
 895{
 896	struct tcp_sock *tp = tcp_sk(sk);
 897	int tmp = tp->mss_cache;
 
 
 898
 899	if (sg) {
 900		if (sk_can_gso(sk))
 901			tmp = 0;
 902		else {
 903			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
 
 
 904
 905			if (tmp >= pgbreak &&
 906			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
 907				tmp = pgbreak;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908		}
 909	}
 910
 911	return tmp;
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 915		size_t size)
 916{
 917	struct iovec *iov;
 918	struct tcp_sock *tp = tcp_sk(sk);
 
 919	struct sk_buff *skb;
 920	int iovlen, flags;
 921	int mss_now, size_goal;
 922	int sg, err, copied;
 
 
 923	long timeo;
 924
 925	lock_sock(sk);
 926
 927	flags = msg->msg_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 929
 930	/* Wait for a connection to finish. */
 931	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 932		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933			goto out_err;
 934
 935	/* This should be in poll */
 936	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 937
 938	mss_now = tcp_send_mss(sk, &size_goal, flags);
 
 
 
 
 
 
 
 
 
 
 939
 940	/* Ok commence sending. */
 941	iovlen = msg->msg_iovlen;
 942	iov = msg->msg_iov;
 943	copied = 0;
 944
 
 
 
 945	err = -EPIPE;
 946	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 947		goto out_err;
 948
 949	sg = sk->sk_route_caps & NETIF_F_SG;
 950
 951	while (--iovlen >= 0) {
 952		size_t seglen = iov->iov_len;
 953		unsigned char __user *from = iov->iov_base;
 954
 955		iov++;
 956
 957		while (seglen > 0) {
 958			int copy = 0;
 959			int max = size_goal;
 960
 961			skb = tcp_write_queue_tail(sk);
 962			if (tcp_send_head(sk)) {
 963				if (skb->ip_summed == CHECKSUM_NONE)
 964					max = mss_now;
 965				copy = max - skb->len;
 966			}
 967
 968			if (copy <= 0) {
 969new_segment:
 970				/* Allocate new segment. If the interface is SG,
 971				 * allocate skb fitting to single page.
 972				 */
 973				if (!sk_stream_memory_free(sk))
 974					goto wait_for_sndbuf;
 975
 976				skb = sk_stream_alloc_skb(sk,
 977							  select_size(sk, sg),
 978							  sk->sk_allocation);
 979				if (!skb)
 980					goto wait_for_memory;
 
 
 
 
 
 981
 982				/*
 983				 * Check whether we can use HW checksum.
 984				 */
 985				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
 986					skb->ip_summed = CHECKSUM_PARTIAL;
 987
 988				skb_entail(sk, skb);
 989				copy = size_goal;
 990				max = size_goal;
 991			}
 992
 993			/* Try to append data to the end of skb. */
 994			if (copy > seglen)
 995				copy = seglen;
 996
 997			/* Where to copy to? */
 998			if (skb_tailroom(skb) > 0) {
 999				/* We have some space in skb head. Superb! */
1000				if (copy > skb_tailroom(skb))
1001					copy = skb_tailroom(skb);
1002				err = skb_add_data_nocache(sk, skb, from, copy);
1003				if (err)
1004					goto do_fault;
1005			} else {
1006				int merge = 0;
1007				int i = skb_shinfo(skb)->nr_frags;
1008				struct page *page = TCP_PAGE(sk);
1009				int off = TCP_OFF(sk);
1010
1011				if (skb_can_coalesce(skb, i, page, off) &&
1012				    off != PAGE_SIZE) {
1013					/* We can extend the last page
1014					 * fragment. */
1015					merge = 1;
1016				} else if (i == MAX_SKB_FRAGS || !sg) {
1017					/* Need to add new fragment and cannot
1018					 * do this because interface is non-SG,
1019					 * or because all the page slots are
1020					 * busy. */
1021					tcp_mark_push(tp, skb);
1022					goto new_segment;
1023				} else if (page) {
1024					if (off == PAGE_SIZE) {
1025						put_page(page);
1026						TCP_PAGE(sk) = page = NULL;
1027						off = 0;
1028					}
1029				} else
1030					off = 0;
1031
1032				if (copy > PAGE_SIZE - off)
1033					copy = PAGE_SIZE - off;
 
 
 
 
 
1034
1035				if (!sk_wmem_schedule(sk, copy))
1036					goto wait_for_memory;
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038				if (!page) {
1039					/* Allocate new cache page. */
1040					if (!(page = sk_stream_alloc_page(sk)))
1041						goto wait_for_memory;
1042				}
1043
1044				/* Time to copy data. We are close to
1045				 * the end! */
1046				err = skb_copy_to_page_nocache(sk, from, skb,
1047							       page, off, copy);
1048				if (err) {
1049					/* If this page was new, give it to the
1050					 * socket so it does not get leaked.
1051					 */
1052					if (!TCP_PAGE(sk)) {
1053						TCP_PAGE(sk) = page;
1054						TCP_OFF(sk) = 0;
1055					}
1056					goto do_error;
1057				}
 
 
1058
1059				/* Update the skb. */
1060				if (merge) {
1061					skb_shinfo(skb)->frags[i - 1].size +=
1062									copy;
1063				} else {
1064					skb_fill_page_desc(skb, i, page, off, copy);
1065					if (TCP_PAGE(sk)) {
1066						get_page(page);
1067					} else if (off + copy < PAGE_SIZE) {
1068						get_page(page);
1069						TCP_PAGE(sk) = page;
1070					}
1071				}
1072
1073				TCP_OFF(sk) = off + copy;
1074			}
1075
1076			if (!copied)
1077				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
 
 
 
 
1078
1079			tp->write_seq += copy;
1080			TCP_SKB_CB(skb)->end_seq += copy;
1081			skb_shinfo(skb)->gso_segs = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083			from += copy;
1084			copied += copy;
1085			if ((seglen -= copy) == 0 && iovlen == 0)
1086				goto out;
1087
1088			if (skb->len < max || (flags & MSG_OOB))
1089				continue;
 
1090
1091			if (forced_push(tp)) {
1092				tcp_mark_push(tp, skb);
1093				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094			} else if (skb == tcp_send_head(sk))
1095				tcp_push_one(sk, mss_now);
 
 
 
1096			continue;
1097
 
 
 
 
 
 
 
1098wait_for_sndbuf:
1099			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100wait_for_memory:
1101			if (copied)
1102				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 
1103
1104			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1105				goto do_error;
 
1106
1107			mss_now = tcp_send_mss(sk, &size_goal, flags);
1108		}
1109	}
1110
1111out:
1112	if (copied)
1113		tcp_push(sk, flags, mss_now, tp->nonagle);
1114	release_sock(sk);
1115	return copied;
 
 
 
1116
1117do_fault:
1118	if (!skb->len) {
1119		tcp_unlink_write_queue(skb, sk);
1120		/* It is the one place in all of TCP, except connection
1121		 * reset, where we can be unlinking the send_head.
1122		 */
1123		tcp_check_send_head(sk, skb);
1124		sk_wmem_free_skb(sk, skb);
1125	}
1126
1127do_error:
1128	if (copied)
1129		goto out;
1130out_err:
 
1131	err = sk_stream_error(sk, flags, err);
1132	release_sock(sk);
 
 
 
 
 
1133	return err;
1134}
 
 
 
 
 
 
 
 
 
 
 
 
1135EXPORT_SYMBOL(tcp_sendmsg);
1136
1137/*
1138 *	Handle reading urgent data. BSD has very simple semantics for
1139 *	this, no blocking and very strange errors 8)
1140 */
1141
1142static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1143{
1144	struct tcp_sock *tp = tcp_sk(sk);
1145
1146	/* No URG data to read. */
1147	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1148	    tp->urg_data == TCP_URG_READ)
1149		return -EINVAL;	/* Yes this is right ! */
1150
1151	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1152		return -ENOTCONN;
1153
1154	if (tp->urg_data & TCP_URG_VALID) {
1155		int err = 0;
1156		char c = tp->urg_data;
1157
1158		if (!(flags & MSG_PEEK))
1159			tp->urg_data = TCP_URG_READ;
1160
1161		/* Read urgent data. */
1162		msg->msg_flags |= MSG_OOB;
1163
1164		if (len > 0) {
1165			if (!(flags & MSG_TRUNC))
1166				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1167			len = 1;
1168		} else
1169			msg->msg_flags |= MSG_TRUNC;
1170
1171		return err ? -EFAULT : len;
1172	}
1173
1174	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1175		return 0;
1176
1177	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1178	 * the available implementations agree in this case:
1179	 * this call should never block, independent of the
1180	 * blocking state of the socket.
1181	 * Mike <pall@rz.uni-karlsruhe.de>
1182	 */
1183	return -EAGAIN;
1184}
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186/* Clean up the receive buffer for full frames taken by the user,
1187 * then send an ACK if necessary.  COPIED is the number of bytes
1188 * tcp_recvmsg has given to the user so far, it speeds up the
1189 * calculation of whether or not we must ACK for the sake of
1190 * a window update.
1191 */
1192void tcp_cleanup_rbuf(struct sock *sk, int copied)
1193{
1194	struct tcp_sock *tp = tcp_sk(sk);
1195	int time_to_ack = 0;
1196
1197#if TCP_DEBUG
1198	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1199
1200	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1201	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1203#endif
1204
1205	if (inet_csk_ack_scheduled(sk)) {
1206		const struct inet_connection_sock *icsk = inet_csk(sk);
1207		   /* Delayed ACKs frequently hit locked sockets during bulk
1208		    * receive. */
1209		if (icsk->icsk_ack.blocked ||
1210		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212		    /*
1213		     * If this read emptied read buffer, we send ACK, if
1214		     * connection is not bidirectional, user drained
1215		     * receive buffer and there was a small segment
1216		     * in queue.
1217		     */
1218		    (copied > 0 &&
1219		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221		       !icsk->icsk_ack.pingpong)) &&
1222		      !atomic_read(&sk->sk_rmem_alloc)))
1223			time_to_ack = 1;
1224	}
1225
1226	/* We send an ACK if we can now advertise a non-zero window
1227	 * which has been raised "significantly".
1228	 *
1229	 * Even if window raised up to infinity, do not send window open ACK
1230	 * in states, where we will not receive more. It is useless.
1231	 */
1232	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233		__u32 rcv_window_now = tcp_receive_window(tp);
1234
1235		/* Optimize, __tcp_select_window() is not cheap. */
1236		if (2*rcv_window_now <= tp->window_clamp) {
1237			__u32 new_window = __tcp_select_window(sk);
1238
1239			/* Send ACK now, if this read freed lots of space
1240			 * in our buffer. Certainly, new_window is new window.
1241			 * We can advertise it now, if it is not less than current one.
1242			 * "Lots" means "at least twice" here.
1243			 */
1244			if (new_window && new_window >= 2 * rcv_window_now)
1245				time_to_ack = 1;
1246		}
1247	}
1248	if (time_to_ack)
1249		tcp_send_ack(sk);
1250}
1251
1252static void tcp_prequeue_process(struct sock *sk)
1253{
1254	struct sk_buff *skb;
1255	struct tcp_sock *tp = tcp_sk(sk);
1256
1257	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258
1259	/* RX process wants to run with disabled BHs, though it is not
1260	 * necessary */
1261	local_bh_disable();
1262	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263		sk_backlog_rcv(sk, skb);
1264	local_bh_enable();
1265
1266	/* Clear memory counter. */
1267	tp->ucopy.memory = 0;
1268}
1269
1270#ifdef CONFIG_NET_DMA
1271static void tcp_service_net_dma(struct sock *sk, bool wait)
1272{
1273	dma_cookie_t done, used;
1274	dma_cookie_t last_issued;
1275	struct tcp_sock *tp = tcp_sk(sk);
1276
1277	if (!tp->ucopy.dma_chan)
1278		return;
1279
1280	last_issued = tp->ucopy.dma_cookie;
1281	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282
1283	do {
1284		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285					      last_issued, &done,
1286					      &used) == DMA_SUCCESS) {
1287			/* Safe to free early-copied skbs now */
1288			__skb_queue_purge(&sk->sk_async_wait_queue);
1289			break;
1290		} else {
1291			struct sk_buff *skb;
1292			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293			       (dma_async_is_complete(skb->dma_cookie, done,
1294						      used) == DMA_SUCCESS)) {
1295				__skb_dequeue(&sk->sk_async_wait_queue);
1296				kfree_skb(skb);
1297			}
1298		}
1299	} while (wait);
1300}
1301#endif
1302
1303static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304{
1305	struct sk_buff *skb;
1306	u32 offset;
1307
1308	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309		offset = seq - TCP_SKB_CB(skb)->seq;
1310		if (tcp_hdr(skb)->syn)
 
1311			offset--;
1312		if (offset < skb->len || tcp_hdr(skb)->fin) {
 
1313			*off = offset;
1314			return skb;
1315		}
 
 
 
 
 
1316	}
1317	return NULL;
1318}
1319
1320/*
1321 * This routine provides an alternative to tcp_recvmsg() for routines
1322 * that would like to handle copying from skbuffs directly in 'sendfile'
1323 * fashion.
1324 * Note:
1325 *	- It is assumed that the socket was locked by the caller.
1326 *	- The routine does not block.
1327 *	- At present, there is no support for reading OOB data
1328 *	  or for 'peeking' the socket using this routine
1329 *	  (although both would be easy to implement).
1330 */
1331int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332		  sk_read_actor_t recv_actor)
1333{
1334	struct sk_buff *skb;
1335	struct tcp_sock *tp = tcp_sk(sk);
1336	u32 seq = tp->copied_seq;
1337	u32 offset;
1338	int copied = 0;
1339
1340	if (sk->sk_state == TCP_LISTEN)
1341		return -ENOTCONN;
1342	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343		if (offset < skb->len) {
1344			int used;
1345			size_t len;
1346
1347			len = skb->len - offset;
1348			/* Stop reading if we hit a patch of urgent data */
1349			if (tp->urg_data) {
1350				u32 urg_offset = tp->urg_seq - seq;
1351				if (urg_offset < len)
1352					len = urg_offset;
1353				if (!len)
1354					break;
1355			}
1356			used = recv_actor(desc, skb, offset, len);
1357			if (used < 0) {
1358				if (!copied)
1359					copied = used;
1360				break;
1361			} else if (used <= len) {
1362				seq += used;
1363				copied += used;
1364				offset += used;
1365			}
1366			/*
1367			 * If recv_actor drops the lock (e.g. TCP splice
1368			 * receive) the skb pointer might be invalid when
1369			 * getting here: tcp_collapse might have deleted it
1370			 * while aggregating skbs from the socket queue.
1371			 */
1372			skb = tcp_recv_skb(sk, seq-1, &offset);
1373			if (!skb || (offset+1 != skb->len))
1374				break;
 
 
 
 
 
1375		}
1376		if (tcp_hdr(skb)->fin) {
1377			sk_eat_skb(sk, skb, 0);
1378			++seq;
1379			break;
1380		}
1381		sk_eat_skb(sk, skb, 0);
1382		if (!desc->count)
1383			break;
1384		tp->copied_seq = seq;
1385	}
1386	tp->copied_seq = seq;
1387
1388	tcp_rcv_space_adjust(sk);
1389
1390	/* Clean up data we have read: This will do ACK frames. */
1391	if (copied > 0)
 
1392		tcp_cleanup_rbuf(sk, copied);
 
1393	return copied;
1394}
1395EXPORT_SYMBOL(tcp_read_sock);
1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397/*
1398 *	This routine copies from a sock struct into the user buffer.
1399 *
1400 *	Technical note: in 2.3 we work on _locked_ socket, so that
1401 *	tricks with *seq access order and skb->users are not required.
1402 *	Probably, code can be easily improved even more.
1403 */
1404
1405int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406		size_t len, int nonblock, int flags, int *addr_len)
1407{
1408	struct tcp_sock *tp = tcp_sk(sk);
1409	int copied = 0;
1410	u32 peek_seq;
1411	u32 *seq;
1412	unsigned long used;
1413	int err;
1414	int target;		/* Read at least this many bytes */
1415	long timeo;
1416	struct task_struct *user_recv = NULL;
1417	int copied_early = 0;
1418	struct sk_buff *skb;
1419	u32 urg_hole = 0;
 
 
 
 
 
 
 
 
 
1420
1421	lock_sock(sk);
1422
1423	err = -ENOTCONN;
1424	if (sk->sk_state == TCP_LISTEN)
1425		goto out;
1426
1427	timeo = sock_rcvtimeo(sk, nonblock);
1428
1429	/* Urgent data needs to be handled specially. */
1430	if (flags & MSG_OOB)
1431		goto recv_urg;
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433	seq = &tp->copied_seq;
1434	if (flags & MSG_PEEK) {
1435		peek_seq = tp->copied_seq;
1436		seq = &peek_seq;
1437	}
1438
1439	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440
1441#ifdef CONFIG_NET_DMA
1442	tp->ucopy.dma_chan = NULL;
1443	preempt_disable();
1444	skb = skb_peek_tail(&sk->sk_receive_queue);
1445	{
1446		int available = 0;
1447
1448		if (skb)
1449			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450		if ((available < target) &&
1451		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452		    !sysctl_tcp_low_latency &&
1453		    dma_find_channel(DMA_MEMCPY)) {
1454			preempt_enable_no_resched();
1455			tp->ucopy.pinned_list =
1456					dma_pin_iovec_pages(msg->msg_iov, len);
1457		} else {
1458			preempt_enable_no_resched();
1459		}
1460	}
1461#endif
1462
1463	do {
1464		u32 offset;
1465
1466		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467		if (tp->urg_data && tp->urg_seq == *seq) {
1468			if (copied)
1469				break;
1470			if (signal_pending(current)) {
1471				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472				break;
1473			}
1474		}
1475
1476		/* Next get a buffer. */
1477
 
1478		skb_queue_walk(&sk->sk_receive_queue, skb) {
 
1479			/* Now that we have two receive queues this
1480			 * shouldn't happen.
1481			 */
1482			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485				 flags))
1486				break;
1487
1488			offset = *seq - TCP_SKB_CB(skb)->seq;
1489			if (tcp_hdr(skb)->syn)
 
1490				offset--;
 
1491			if (offset < skb->len)
1492				goto found_ok_skb;
1493			if (tcp_hdr(skb)->fin)
1494				goto found_fin_ok;
1495			WARN(!(flags & MSG_PEEK),
1496			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498		}
1499
1500		/* Well, if we have backlog, try to process it now yet. */
1501
1502		if (copied >= target && !sk->sk_backlog.tail)
1503			break;
1504
1505		if (copied) {
1506			if (sk->sk_err ||
1507			    sk->sk_state == TCP_CLOSE ||
1508			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509			    !timeo ||
1510			    signal_pending(current))
1511				break;
1512		} else {
1513			if (sock_flag(sk, SOCK_DONE))
1514				break;
1515
1516			if (sk->sk_err) {
1517				copied = sock_error(sk);
1518				break;
1519			}
1520
1521			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522				break;
1523
1524			if (sk->sk_state == TCP_CLOSE) {
1525				if (!sock_flag(sk, SOCK_DONE)) {
1526					/* This occurs when user tries to read
1527					 * from never connected socket.
1528					 */
1529					copied = -ENOTCONN;
1530					break;
1531				}
1532				break;
1533			}
1534
1535			if (!timeo) {
1536				copied = -EAGAIN;
1537				break;
1538			}
1539
1540			if (signal_pending(current)) {
1541				copied = sock_intr_errno(timeo);
1542				break;
1543			}
1544		}
1545
1546		tcp_cleanup_rbuf(sk, copied);
1547
1548		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549			/* Install new reader */
1550			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551				user_recv = current;
1552				tp->ucopy.task = user_recv;
1553				tp->ucopy.iov = msg->msg_iov;
1554			}
1555
1556			tp->ucopy.len = len;
1557
1558			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560
1561			/* Ugly... If prequeue is not empty, we have to
1562			 * process it before releasing socket, otherwise
1563			 * order will be broken at second iteration.
1564			 * More elegant solution is required!!!
1565			 *
1566			 * Look: we have the following (pseudo)queues:
1567			 *
1568			 * 1. packets in flight
1569			 * 2. backlog
1570			 * 3. prequeue
1571			 * 4. receive_queue
1572			 *
1573			 * Each queue can be processed only if the next ones
1574			 * are empty. At this point we have empty receive_queue.
1575			 * But prequeue _can_ be not empty after 2nd iteration,
1576			 * when we jumped to start of loop because backlog
1577			 * processing added something to receive_queue.
1578			 * We cannot release_sock(), because backlog contains
1579			 * packets arrived _after_ prequeued ones.
1580			 *
1581			 * Shortly, algorithm is clear --- to process all
1582			 * the queues in order. We could make it more directly,
1583			 * requeueing packets from backlog to prequeue, if
1584			 * is not empty. It is more elegant, but eats cycles,
1585			 * unfortunately.
1586			 */
1587			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588				goto do_prequeue;
1589
1590			/* __ Set realtime policy in scheduler __ */
1591		}
1592
1593#ifdef CONFIG_NET_DMA
1594		if (tp->ucopy.dma_chan)
1595			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596#endif
1597		if (copied >= target) {
1598			/* Do not sleep, just process backlog. */
1599			release_sock(sk);
1600			lock_sock(sk);
1601		} else
1602			sk_wait_data(sk, &timeo);
1603
1604#ifdef CONFIG_NET_DMA
1605		tcp_service_net_dma(sk, false);  /* Don't block */
1606		tp->ucopy.wakeup = 0;
1607#endif
1608
1609		if (user_recv) {
1610			int chunk;
1611
1612			/* __ Restore normal policy in scheduler __ */
1613
1614			if ((chunk = len - tp->ucopy.len) != 0) {
1615				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616				len -= chunk;
1617				copied += chunk;
1618			}
1619
1620			if (tp->rcv_nxt == tp->copied_seq &&
1621			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622do_prequeue:
1623				tcp_prequeue_process(sk);
1624
1625				if ((chunk = len - tp->ucopy.len) != 0) {
1626					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627					len -= chunk;
1628					copied += chunk;
1629				}
1630			}
1631		}
 
1632		if ((flags & MSG_PEEK) &&
1633		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634			if (net_ratelimit())
1635				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636				       current->comm, task_pid_nr(current));
1637			peek_seq = tp->copied_seq;
1638		}
1639		continue;
1640
1641	found_ok_skb:
1642		/* Ok so how much can we use? */
1643		used = skb->len - offset;
1644		if (len < used)
1645			used = len;
1646
1647		/* Do we have urgent data here? */
1648		if (tp->urg_data) {
1649			u32 urg_offset = tp->urg_seq - *seq;
1650			if (urg_offset < used) {
1651				if (!urg_offset) {
1652					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653						++*seq;
1654						urg_hole++;
1655						offset++;
1656						used--;
1657						if (!used)
1658							goto skip_copy;
1659					}
1660				} else
1661					used = urg_offset;
1662			}
1663		}
1664
1665		if (!(flags & MSG_TRUNC)) {
1666#ifdef CONFIG_NET_DMA
1667			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669
1670			if (tp->ucopy.dma_chan) {
1671				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672					tp->ucopy.dma_chan, skb, offset,
1673					msg->msg_iov, used,
1674					tp->ucopy.pinned_list);
1675
1676				if (tp->ucopy.dma_cookie < 0) {
1677
1678					printk(KERN_ALERT "dma_cookie < 0\n");
1679
1680					/* Exception. Bailout! */
1681					if (!copied)
1682						copied = -EFAULT;
1683					break;
1684				}
1685
1686				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687
1688				if ((offset + used) == skb->len)
1689					copied_early = 1;
1690
1691			} else
1692#endif
1693			{
1694				err = skb_copy_datagram_iovec(skb, offset,
1695						msg->msg_iov, used);
1696				if (err) {
1697					/* Exception. Bailout! */
1698					if (!copied)
1699						copied = -EFAULT;
1700					break;
1701				}
1702			}
1703		}
1704
1705		*seq += used;
1706		copied += used;
1707		len -= used;
1708
1709		tcp_rcv_space_adjust(sk);
1710
1711skip_copy:
1712		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713			tp->urg_data = 0;
1714			tcp_fast_path_check(sk);
1715		}
1716		if (used + offset < skb->len)
1717			continue;
1718
1719		if (tcp_hdr(skb)->fin)
1720			goto found_fin_ok;
1721		if (!(flags & MSG_PEEK)) {
1722			sk_eat_skb(sk, skb, copied_early);
1723			copied_early = 0;
1724		}
 
 
 
 
1725		continue;
1726
1727	found_fin_ok:
1728		/* Process the FIN. */
1729		++*seq;
1730		if (!(flags & MSG_PEEK)) {
1731			sk_eat_skb(sk, skb, copied_early);
1732			copied_early = 0;
1733		}
1734		break;
1735	} while (len > 0);
1736
1737	if (user_recv) {
1738		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739			int chunk;
1740
1741			tp->ucopy.len = copied > 0 ? len : 0;
1742
1743			tcp_prequeue_process(sk);
1744
1745			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747				len -= chunk;
1748				copied += chunk;
1749			}
1750		}
1751
1752		tp->ucopy.task = NULL;
1753		tp->ucopy.len = 0;
1754	}
1755
1756#ifdef CONFIG_NET_DMA
1757	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758	tp->ucopy.dma_chan = NULL;
1759
1760	if (tp->ucopy.pinned_list) {
1761		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762		tp->ucopy.pinned_list = NULL;
1763	}
1764#endif
1765
1766	/* According to UNIX98, msg_name/msg_namelen are ignored
1767	 * on connected socket. I was just happy when found this 8) --ANK
1768	 */
1769
 
 
 
1770	/* Clean up data we have read: This will do ACK frames. */
1771	tcp_cleanup_rbuf(sk, copied);
1772
1773	release_sock(sk);
1774	return copied;
1775
1776out:
1777	release_sock(sk);
1778	return err;
1779
1780recv_urg:
1781	err = tcp_recv_urg(sk, msg, len, flags);
1782	goto out;
 
 
 
 
1783}
1784EXPORT_SYMBOL(tcp_recvmsg);
1785
1786void tcp_set_state(struct sock *sk, int state)
1787{
1788	int oldstate = sk->sk_state;
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790	switch (state) {
1791	case TCP_ESTABLISHED:
1792		if (oldstate != TCP_ESTABLISHED)
1793			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794		break;
1795
1796	case TCP_CLOSE:
1797		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799
1800		sk->sk_prot->unhash(sk);
1801		if (inet_csk(sk)->icsk_bind_hash &&
1802		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803			inet_put_port(sk);
1804		/* fall through */
1805	default:
1806		if (oldstate == TCP_ESTABLISHED)
1807			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808	}
1809
1810	/* Change state AFTER socket is unhashed to avoid closed
1811	 * socket sitting in hash tables.
1812	 */
1813	sk->sk_state = state;
1814
1815#ifdef STATE_TRACE
1816	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817#endif
1818}
1819EXPORT_SYMBOL_GPL(tcp_set_state);
1820
1821/*
1822 *	State processing on a close. This implements the state shift for
1823 *	sending our FIN frame. Note that we only send a FIN for some
1824 *	states. A shutdown() may have already sent the FIN, or we may be
1825 *	closed.
1826 */
1827
1828static const unsigned char new_state[16] = {
1829  /* current state:        new state:      action:	*/
1830  /* (Invalid)		*/ TCP_CLOSE,
1831  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837  /* TCP_CLOSE		*/ TCP_CLOSE,
1838  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840  /* TCP_LISTEN		*/ TCP_CLOSE,
1841  /* TCP_CLOSING	*/ TCP_CLOSING,
 
1842};
1843
1844static int tcp_close_state(struct sock *sk)
1845{
1846	int next = (int)new_state[sk->sk_state];
1847	int ns = next & TCP_STATE_MASK;
1848
1849	tcp_set_state(sk, ns);
1850
1851	return next & TCP_ACTION_FIN;
1852}
1853
1854/*
1855 *	Shutdown the sending side of a connection. Much like close except
1856 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857 */
1858
1859void tcp_shutdown(struct sock *sk, int how)
1860{
1861	/*	We need to grab some memory, and put together a FIN,
1862	 *	and then put it into the queue to be sent.
1863	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864	 */
1865	if (!(how & SEND_SHUTDOWN))
1866		return;
1867
1868	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869	if ((1 << sk->sk_state) &
1870	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872		/* Clear out any half completed packets.  FIN if needed. */
1873		if (tcp_close_state(sk))
1874			tcp_send_fin(sk);
1875	}
1876}
1877EXPORT_SYMBOL(tcp_shutdown);
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879void tcp_close(struct sock *sk, long timeout)
1880{
1881	struct sk_buff *skb;
1882	int data_was_unread = 0;
1883	int state;
1884
1885	lock_sock(sk);
1886	sk->sk_shutdown = SHUTDOWN_MASK;
1887
1888	if (sk->sk_state == TCP_LISTEN) {
1889		tcp_set_state(sk, TCP_CLOSE);
1890
1891		/* Special case. */
1892		inet_csk_listen_stop(sk);
1893
1894		goto adjudge_to_death;
1895	}
1896
1897	/*  We need to flush the recv. buffs.  We do this only on the
1898	 *  descriptor close, not protocol-sourced closes, because the
1899	 *  reader process may not have drained the data yet!
1900	 */
1901	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1902		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1903			  tcp_hdr(skb)->fin;
 
 
1904		data_was_unread += len;
1905		__kfree_skb(skb);
1906	}
1907
1908	sk_mem_reclaim(sk);
1909
1910	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1911	if (sk->sk_state == TCP_CLOSE)
1912		goto adjudge_to_death;
1913
1914	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1915	 * data was lost. To witness the awful effects of the old behavior of
1916	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1917	 * GET in an FTP client, suspend the process, wait for the client to
1918	 * advertise a zero window, then kill -9 the FTP client, wheee...
1919	 * Note: timeout is always zero in such a case.
1920	 */
1921	if (data_was_unread) {
 
 
1922		/* Unread data was tossed, zap the connection. */
1923		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1924		tcp_set_state(sk, TCP_CLOSE);
1925		tcp_send_active_reset(sk, sk->sk_allocation);
1926	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1927		/* Check zero linger _after_ checking for unread data. */
1928		sk->sk_prot->disconnect(sk, 0);
1929		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1930	} else if (tcp_close_state(sk)) {
1931		/* We FIN if the application ate all the data before
1932		 * zapping the connection.
1933		 */
1934
1935		/* RED-PEN. Formally speaking, we have broken TCP state
1936		 * machine. State transitions:
1937		 *
1938		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1939		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1940		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1941		 *
1942		 * are legal only when FIN has been sent (i.e. in window),
1943		 * rather than queued out of window. Purists blame.
1944		 *
1945		 * F.e. "RFC state" is ESTABLISHED,
1946		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1947		 *
1948		 * The visible declinations are that sometimes
1949		 * we enter time-wait state, when it is not required really
1950		 * (harmless), do not send active resets, when they are
1951		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1952		 * they look as CLOSING or LAST_ACK for Linux)
1953		 * Probably, I missed some more holelets.
1954		 * 						--ANK
 
 
 
 
1955		 */
1956		tcp_send_fin(sk);
1957	}
1958
1959	sk_stream_wait_close(sk, timeout);
1960
1961adjudge_to_death:
1962	state = sk->sk_state;
1963	sock_hold(sk);
1964	sock_orphan(sk);
1965
1966	/* It is the last release_sock in its life. It will remove backlog. */
1967	release_sock(sk);
1968
1969
1970	/* Now socket is owned by kernel and we acquire BH lock
1971	   to finish close. No need to check for user refs.
1972	 */
1973	local_bh_disable();
1974	bh_lock_sock(sk);
1975	WARN_ON(sock_owned_by_user(sk));
1976
1977	percpu_counter_inc(sk->sk_prot->orphan_count);
1978
1979	/* Have we already been destroyed by a softirq or backlog? */
1980	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1981		goto out;
1982
1983	/*	This is a (useful) BSD violating of the RFC. There is a
1984	 *	problem with TCP as specified in that the other end could
1985	 *	keep a socket open forever with no application left this end.
1986	 *	We use a 3 minute timeout (about the same as BSD) then kill
1987	 *	our end. If they send after that then tough - BUT: long enough
1988	 *	that we won't make the old 4*rto = almost no time - whoops
1989	 *	reset mistake.
1990	 *
1991	 *	Nope, it was not mistake. It is really desired behaviour
1992	 *	f.e. on http servers, when such sockets are useless, but
1993	 *	consume significant resources. Let's do it with special
1994	 *	linger2	option.					--ANK
1995	 */
1996
1997	if (sk->sk_state == TCP_FIN_WAIT2) {
1998		struct tcp_sock *tp = tcp_sk(sk);
1999		if (tp->linger2 < 0) {
2000			tcp_set_state(sk, TCP_CLOSE);
2001			tcp_send_active_reset(sk, GFP_ATOMIC);
2002			NET_INC_STATS_BH(sock_net(sk),
2003					LINUX_MIB_TCPABORTONLINGER);
2004		} else {
2005			const int tmo = tcp_fin_time(sk);
2006
2007			if (tmo > TCP_TIMEWAIT_LEN) {
2008				inet_csk_reset_keepalive_timer(sk,
2009						tmo - TCP_TIMEWAIT_LEN);
2010			} else {
2011				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2012				goto out;
2013			}
2014		}
2015	}
2016	if (sk->sk_state != TCP_CLOSE) {
2017		sk_mem_reclaim(sk);
2018		if (tcp_too_many_orphans(sk, 0)) {
2019			if (net_ratelimit())
2020				printk(KERN_INFO "TCP: too many of orphaned "
2021				       "sockets\n");
2022			tcp_set_state(sk, TCP_CLOSE);
2023			tcp_send_active_reset(sk, GFP_ATOMIC);
2024			NET_INC_STATS_BH(sock_net(sk),
2025					LINUX_MIB_TCPABORTONMEMORY);
 
 
 
2026		}
2027	}
2028
2029	if (sk->sk_state == TCP_CLOSE)
 
 
 
 
 
 
 
2030		inet_csk_destroy_sock(sk);
 
2031	/* Otherwise, socket is reprieved until protocol close. */
2032
2033out:
2034	bh_unlock_sock(sk);
2035	local_bh_enable();
2036	sock_put(sk);
2037}
2038EXPORT_SYMBOL(tcp_close);
2039
2040/* These states need RST on ABORT according to RFC793 */
2041
2042static inline int tcp_need_reset(int state)
2043{
2044	return (1 << state) &
2045	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047}
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049int tcp_disconnect(struct sock *sk, int flags)
2050{
2051	struct inet_sock *inet = inet_sk(sk);
2052	struct inet_connection_sock *icsk = inet_csk(sk);
2053	struct tcp_sock *tp = tcp_sk(sk);
2054	int err = 0;
2055	int old_state = sk->sk_state;
2056
2057	if (old_state != TCP_CLOSE)
2058		tcp_set_state(sk, TCP_CLOSE);
2059
2060	/* ABORT function of RFC793 */
2061	if (old_state == TCP_LISTEN) {
2062		inet_csk_listen_stop(sk);
 
 
2063	} else if (tcp_need_reset(old_state) ||
2064		   (tp->snd_nxt != tp->write_seq &&
2065		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067		 * states
2068		 */
2069		tcp_send_active_reset(sk, gfp_any());
2070		sk->sk_err = ECONNRESET;
2071	} else if (old_state == TCP_SYN_SENT)
2072		sk->sk_err = ECONNRESET;
2073
2074	tcp_clear_xmit_timers(sk);
2075	__skb_queue_purge(&sk->sk_receive_queue);
2076	tcp_write_queue_purge(sk);
2077	__skb_queue_purge(&tp->out_of_order_queue);
2078#ifdef CONFIG_NET_DMA
2079	__skb_queue_purge(&sk->sk_async_wait_queue);
2080#endif
2081
2082	inet->inet_dport = 0;
2083
2084	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085		inet_reset_saddr(sk);
2086
2087	sk->sk_shutdown = 0;
2088	sock_reset_flag(sk, SOCK_DONE);
2089	tp->srtt = 0;
2090	if ((tp->write_seq += tp->max_window + 2) == 0)
 
2091		tp->write_seq = 1;
2092	icsk->icsk_backoff = 0;
2093	tp->snd_cwnd = 2;
2094	icsk->icsk_probes_out = 0;
2095	tp->packets_out = 0;
2096	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097	tp->snd_cwnd_cnt = 0;
2098	tp->bytes_acked = 0;
2099	tp->window_clamp = 0;
2100	tcp_set_ca_state(sk, TCP_CA_Open);
 
2101	tcp_clear_retrans(tp);
2102	inet_csk_delack_init(sk);
2103	tcp_init_send_head(sk);
 
 
 
2104	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105	__sk_dst_reset(sk);
 
 
 
 
 
 
 
2106
2107	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108
 
 
 
 
 
 
2109	sk->sk_error_report(sk);
2110	return err;
2111}
2112EXPORT_SYMBOL(tcp_disconnect);
2113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114/*
2115 *	Socket option code for TCP.
2116 */
2117static int do_tcp_setsockopt(struct sock *sk, int level,
2118		int optname, char __user *optval, unsigned int optlen)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	struct inet_connection_sock *icsk = inet_csk(sk);
 
2122	int val;
2123	int err = 0;
2124
2125	/* These are data/string values, all the others are ints */
2126	switch (optname) {
2127	case TCP_CONGESTION: {
2128		char name[TCP_CA_NAME_MAX];
2129
2130		if (optlen < 1)
2131			return -EINVAL;
2132
2133		val = strncpy_from_user(name, optval,
2134					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135		if (val < 0)
2136			return -EFAULT;
2137		name[val] = 0;
2138
2139		lock_sock(sk);
2140		err = tcp_set_congestion_control(sk, name);
2141		release_sock(sk);
2142		return err;
2143	}
2144	case TCP_COOKIE_TRANSACTIONS: {
2145		struct tcp_cookie_transactions ctd;
2146		struct tcp_cookie_values *cvp = NULL;
2147
2148		if (sizeof(ctd) > optlen)
2149			return -EINVAL;
2150		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151			return -EFAULT;
2152
2153		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155			return -EINVAL;
2156
2157		if (ctd.tcpct_cookie_desired == 0) {
2158			/* default to global value */
2159		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162			return -EINVAL;
2163		}
2164
2165		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166			/* Supercedes all other values */
2167			lock_sock(sk);
2168			if (tp->cookie_values != NULL) {
2169				kref_put(&tp->cookie_values->kref,
2170					 tcp_cookie_values_release);
2171				tp->cookie_values = NULL;
2172			}
2173			tp->rx_opt.cookie_in_always = 0; /* false */
2174			tp->rx_opt.cookie_out_never = 1; /* true */
2175			release_sock(sk);
2176			return err;
2177		}
2178
2179		/* Allocate ancillary memory before locking.
2180		 */
2181		if (ctd.tcpct_used > 0 ||
2182		    (tp->cookie_values == NULL &&
2183		     (sysctl_tcp_cookie_size > 0 ||
2184		      ctd.tcpct_cookie_desired > 0 ||
2185		      ctd.tcpct_s_data_desired > 0))) {
2186			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187				      GFP_KERNEL);
2188			if (cvp == NULL)
2189				return -ENOMEM;
2190
2191			kref_init(&cvp->kref);
2192		}
2193		lock_sock(sk);
2194		tp->rx_opt.cookie_in_always =
2195			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196		tp->rx_opt.cookie_out_never = 0; /* false */
2197
2198		if (tp->cookie_values != NULL) {
2199			if (cvp != NULL) {
2200				/* Changed values are recorded by a changed
2201				 * pointer, ensuring the cookie will differ,
2202				 * without separately hashing each value later.
2203				 */
2204				kref_put(&tp->cookie_values->kref,
2205					 tcp_cookie_values_release);
2206			} else {
2207				cvp = tp->cookie_values;
2208			}
2209		}
2210
2211		if (cvp != NULL) {
2212			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213
2214			if (ctd.tcpct_used > 0) {
2215				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216				       ctd.tcpct_used);
2217				cvp->s_data_desired = ctd.tcpct_used;
2218				cvp->s_data_constant = 1; /* true */
2219			} else {
2220				/* No constant payload data. */
2221				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222				cvp->s_data_constant = 0; /* false */
2223			}
2224
2225			tp->cookie_values = cvp;
2226		}
2227		release_sock(sk);
2228		return err;
2229	}
2230	default:
2231		/* fallthru */
2232		break;
2233	}
2234
2235	if (optlen < sizeof(int))
2236		return -EINVAL;
2237
2238	if (get_user(val, (int __user *)optval))
2239		return -EFAULT;
2240
2241	lock_sock(sk);
2242
2243	switch (optname) {
2244	case TCP_MAXSEG:
2245		/* Values greater than interface MTU won't take effect. However
2246		 * at the point when this call is done we typically don't yet
2247		 * know which interface is going to be used */
2248		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
 
2249			err = -EINVAL;
2250			break;
2251		}
2252		tp->rx_opt.user_mss = val;
2253		break;
2254
2255	case TCP_NODELAY:
2256		if (val) {
2257			/* TCP_NODELAY is weaker than TCP_CORK, so that
2258			 * this option on corked socket is remembered, but
2259			 * it is not activated until cork is cleared.
2260			 *
2261			 * However, when TCP_NODELAY is set we make
2262			 * an explicit push, which overrides even TCP_CORK
2263			 * for currently queued segments.
2264			 */
2265			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266			tcp_push_pending_frames(sk);
2267		} else {
2268			tp->nonagle &= ~TCP_NAGLE_OFF;
2269		}
2270		break;
2271
2272	case TCP_THIN_LINEAR_TIMEOUTS:
2273		if (val < 0 || val > 1)
2274			err = -EINVAL;
2275		else
2276			tp->thin_lto = val;
2277		break;
2278
2279	case TCP_THIN_DUPACK:
2280		if (val < 0 || val > 1)
2281			err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282		else
2283			tp->thin_dupack = val;
2284		break;
2285
2286	case TCP_CORK:
2287		/* When set indicates to always queue non-full frames.
2288		 * Later the user clears this option and we transmit
2289		 * any pending partial frames in the queue.  This is
2290		 * meant to be used alongside sendfile() to get properly
2291		 * filled frames when the user (for example) must write
2292		 * out headers with a write() call first and then use
2293		 * sendfile to send out the data parts.
2294		 *
2295		 * TCP_CORK can be set together with TCP_NODELAY and it is
2296		 * stronger than TCP_NODELAY.
2297		 */
2298		if (val) {
2299			tp->nonagle |= TCP_NAGLE_CORK;
2300		} else {
2301			tp->nonagle &= ~TCP_NAGLE_CORK;
2302			if (tp->nonagle&TCP_NAGLE_OFF)
2303				tp->nonagle |= TCP_NAGLE_PUSH;
2304			tcp_push_pending_frames(sk);
2305		}
2306		break;
2307
2308	case TCP_KEEPIDLE:
2309		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2310			err = -EINVAL;
2311		else {
2312			tp->keepalive_time = val * HZ;
2313			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314			    !((1 << sk->sk_state) &
2315			      (TCPF_CLOSE | TCPF_LISTEN))) {
2316				u32 elapsed = keepalive_time_elapsed(tp);
2317				if (tp->keepalive_time > elapsed)
2318					elapsed = tp->keepalive_time - elapsed;
2319				else
2320					elapsed = 0;
2321				inet_csk_reset_keepalive_timer(sk, elapsed);
2322			}
2323		}
2324		break;
2325	case TCP_KEEPINTVL:
2326		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327			err = -EINVAL;
2328		else
2329			tp->keepalive_intvl = val * HZ;
2330		break;
2331	case TCP_KEEPCNT:
2332		if (val < 1 || val > MAX_TCP_KEEPCNT)
2333			err = -EINVAL;
2334		else
2335			tp->keepalive_probes = val;
2336		break;
2337	case TCP_SYNCNT:
2338		if (val < 1 || val > MAX_TCP_SYNCNT)
2339			err = -EINVAL;
2340		else
2341			icsk->icsk_syn_retries = val;
2342		break;
2343
 
 
 
 
 
 
 
2344	case TCP_LINGER2:
2345		if (val < 0)
2346			tp->linger2 = -1;
2347		else if (val > sysctl_tcp_fin_timeout / HZ)
2348			tp->linger2 = 0;
2349		else
2350			tp->linger2 = val * HZ;
2351		break;
2352
2353	case TCP_DEFER_ACCEPT:
2354		/* Translate value in seconds to number of retransmits */
2355		icsk->icsk_accept_queue.rskq_defer_accept =
2356			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357					TCP_RTO_MAX / HZ);
2358		break;
2359
2360	case TCP_WINDOW_CLAMP:
2361		if (!val) {
2362			if (sk->sk_state != TCP_CLOSE) {
2363				err = -EINVAL;
2364				break;
2365			}
2366			tp->window_clamp = 0;
2367		} else
2368			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369						SOCK_MIN_RCVBUF / 2 : val;
2370		break;
2371
2372	case TCP_QUICKACK:
2373		if (!val) {
2374			icsk->icsk_ack.pingpong = 1;
2375		} else {
2376			icsk->icsk_ack.pingpong = 0;
2377			if ((1 << sk->sk_state) &
2378			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379			    inet_csk_ack_scheduled(sk)) {
2380				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381				tcp_cleanup_rbuf(sk, 1);
2382				if (!(val & 1))
2383					icsk->icsk_ack.pingpong = 1;
2384			}
2385		}
2386		break;
2387
2388#ifdef CONFIG_TCP_MD5SIG
2389	case TCP_MD5SIG:
2390		/* Read the IP->Key mappings from userspace */
2391		err = tp->af_specific->md5_parse(sk, optval, optlen);
 
 
 
2392		break;
2393#endif
2394	case TCP_USER_TIMEOUT:
2395		/* Cap the max timeout in ms TCP will retry/retrans
2396		 * before giving up and aborting (ETIMEDOUT) a connection.
2397		 */
2398		icsk->icsk_user_timeout = msecs_to_jiffies(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399		break;
2400	default:
2401		err = -ENOPROTOOPT;
2402		break;
2403	}
2404
2405	release_sock(sk);
2406	return err;
2407}
2408
2409int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2410		   unsigned int optlen)
2411{
2412	struct inet_connection_sock *icsk = inet_csk(sk);
2413
2414	if (level != SOL_TCP)
2415		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2416						     optval, optlen);
2417	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2418}
2419EXPORT_SYMBOL(tcp_setsockopt);
2420
2421#ifdef CONFIG_COMPAT
2422int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2423			  char __user *optval, unsigned int optlen)
2424{
2425	if (level != SOL_TCP)
2426		return inet_csk_compat_setsockopt(sk, level, optname,
2427						  optval, optlen);
2428	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429}
2430EXPORT_SYMBOL(compat_tcp_setsockopt);
2431#endif
2432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433/* Return information about state of tcp endpoint in API format. */
2434void tcp_get_info(struct sock *sk, struct tcp_info *info)
2435{
2436	struct tcp_sock *tp = tcp_sk(sk);
2437	const struct inet_connection_sock *icsk = inet_csk(sk);
2438	u32 now = tcp_time_stamp;
 
 
 
2439
2440	memset(info, 0, sizeof(*info));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441
2442	info->tcpi_state = sk->sk_state;
2443	info->tcpi_ca_state = icsk->icsk_ca_state;
2444	info->tcpi_retransmits = icsk->icsk_retransmits;
2445	info->tcpi_probes = icsk->icsk_probes_out;
2446	info->tcpi_backoff = icsk->icsk_backoff;
2447
2448	if (tp->rx_opt.tstamp_ok)
2449		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2450	if (tcp_is_sack(tp))
2451		info->tcpi_options |= TCPI_OPT_SACK;
2452	if (tp->rx_opt.wscale_ok) {
2453		info->tcpi_options |= TCPI_OPT_WSCALE;
2454		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2455		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2456	}
2457
2458	if (tp->ecn_flags&TCP_ECN_OK)
2459		info->tcpi_options |= TCPI_OPT_ECN;
 
 
 
 
2460
2461	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2462	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2463	info->tcpi_snd_mss = tp->mss_cache;
2464	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2465
2466	if (sk->sk_state == TCP_LISTEN) {
2467		info->tcpi_unacked = sk->sk_ack_backlog;
2468		info->tcpi_sacked = sk->sk_max_ack_backlog;
2469	} else {
2470		info->tcpi_unacked = tp->packets_out;
2471		info->tcpi_sacked = tp->sacked_out;
2472	}
2473	info->tcpi_lost = tp->lost_out;
2474	info->tcpi_retrans = tp->retrans_out;
2475	info->tcpi_fackets = tp->fackets_out;
2476
 
2477	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2478	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2479	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2480
2481	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2482	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2483	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2484	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2485	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2486	info->tcpi_snd_cwnd = tp->snd_cwnd;
2487	info->tcpi_advmss = tp->advmss;
2488	info->tcpi_reordering = tp->reordering;
2489
2490	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2491	info->tcpi_rcv_space = tp->rcvq_space.space;
2492
2493	info->tcpi_total_retrans = tp->total_retrans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494}
2495EXPORT_SYMBOL_GPL(tcp_get_info);
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497static int do_tcp_getsockopt(struct sock *sk, int level,
2498		int optname, char __user *optval, int __user *optlen)
2499{
2500	struct inet_connection_sock *icsk = inet_csk(sk);
2501	struct tcp_sock *tp = tcp_sk(sk);
 
2502	int val, len;
2503
2504	if (get_user(len, optlen))
2505		return -EFAULT;
2506
2507	len = min_t(unsigned int, len, sizeof(int));
2508
2509	if (len < 0)
2510		return -EINVAL;
2511
2512	switch (optname) {
2513	case TCP_MAXSEG:
2514		val = tp->mss_cache;
2515		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2516			val = tp->rx_opt.user_mss;
 
 
2517		break;
2518	case TCP_NODELAY:
2519		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2520		break;
2521	case TCP_CORK:
2522		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2523		break;
2524	case TCP_KEEPIDLE:
2525		val = keepalive_time_when(tp) / HZ;
2526		break;
2527	case TCP_KEEPINTVL:
2528		val = keepalive_intvl_when(tp) / HZ;
2529		break;
2530	case TCP_KEEPCNT:
2531		val = keepalive_probes(tp);
2532		break;
2533	case TCP_SYNCNT:
2534		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2535		break;
2536	case TCP_LINGER2:
2537		val = tp->linger2;
2538		if (val >= 0)
2539			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2540		break;
2541	case TCP_DEFER_ACCEPT:
2542		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2543				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2544		break;
2545	case TCP_WINDOW_CLAMP:
2546		val = tp->window_clamp;
2547		break;
2548	case TCP_INFO: {
2549		struct tcp_info info;
2550
2551		if (get_user(len, optlen))
2552			return -EFAULT;
2553
2554		tcp_get_info(sk, &info);
2555
2556		len = min_t(unsigned int, len, sizeof(info));
2557		if (put_user(len, optlen))
2558			return -EFAULT;
2559		if (copy_to_user(optval, &info, len))
2560			return -EFAULT;
2561		return 0;
2562	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563	case TCP_QUICKACK:
2564		val = !icsk->icsk_ack.pingpong;
2565		break;
2566
2567	case TCP_CONGESTION:
2568		if (get_user(len, optlen))
2569			return -EFAULT;
2570		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2571		if (put_user(len, optlen))
2572			return -EFAULT;
2573		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2574			return -EFAULT;
2575		return 0;
2576
2577	case TCP_COOKIE_TRANSACTIONS: {
2578		struct tcp_cookie_transactions ctd;
2579		struct tcp_cookie_values *cvp = tp->cookie_values;
2580
2581		if (get_user(len, optlen))
2582			return -EFAULT;
2583		if (len < sizeof(ctd))
2584			return -EINVAL;
2585
2586		memset(&ctd, 0, sizeof(ctd));
2587		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2588				   TCP_COOKIE_IN_ALWAYS : 0)
2589				| (tp->rx_opt.cookie_out_never ?
2590				   TCP_COOKIE_OUT_NEVER : 0);
 
 
 
2591
2592		if (cvp != NULL) {
2593			ctd.tcpct_flags |= (cvp->s_data_in ?
2594					    TCP_S_DATA_IN : 0)
2595					 | (cvp->s_data_out ?
2596					    TCP_S_DATA_OUT : 0);
2597
2598			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2599			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2600
2601			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2602			       cvp->cookie_pair_size);
2603			ctd.tcpct_used = cvp->cookie_pair_size;
2604		}
 
 
 
2605
2606		if (put_user(sizeof(ctd), optlen))
 
2607			return -EFAULT;
2608		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2609			return -EFAULT;
2610		return 0;
2611	}
2612	case TCP_THIN_LINEAR_TIMEOUTS:
2613		val = tp->thin_lto;
2614		break;
 
2615	case TCP_THIN_DUPACK:
2616		val = tp->thin_dupack;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617		break;
2618
2619	case TCP_USER_TIMEOUT:
2620		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2621		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622	default:
2623		return -ENOPROTOOPT;
2624	}
2625
2626	if (put_user(len, optlen))
2627		return -EFAULT;
2628	if (copy_to_user(optval, &val, len))
2629		return -EFAULT;
2630	return 0;
2631}
2632
2633int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2634		   int __user *optlen)
2635{
2636	struct inet_connection_sock *icsk = inet_csk(sk);
2637
2638	if (level != SOL_TCP)
2639		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2640						     optval, optlen);
2641	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642}
2643EXPORT_SYMBOL(tcp_getsockopt);
2644
2645#ifdef CONFIG_COMPAT
2646int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2647			  char __user *optval, int __user *optlen)
2648{
2649	if (level != SOL_TCP)
2650		return inet_csk_compat_getsockopt(sk, level, optname,
2651						  optval, optlen);
2652	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2653}
2654EXPORT_SYMBOL(compat_tcp_getsockopt);
2655#endif
2656
2657struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2658{
2659	struct sk_buff *segs = ERR_PTR(-EINVAL);
2660	struct tcphdr *th;
2661	unsigned thlen;
2662	unsigned int seq;
2663	__be32 delta;
2664	unsigned int oldlen;
2665	unsigned int mss;
2666
2667	if (!pskb_may_pull(skb, sizeof(*th)))
2668		goto out;
2669
2670	th = tcp_hdr(skb);
2671	thlen = th->doff * 4;
2672	if (thlen < sizeof(*th))
2673		goto out;
2674
2675	if (!pskb_may_pull(skb, thlen))
2676		goto out;
2677
2678	oldlen = (u16)~skb->len;
2679	__skb_pull(skb, thlen);
2680
2681	mss = skb_shinfo(skb)->gso_size;
2682	if (unlikely(skb->len <= mss))
2683		goto out;
2684
2685	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2686		/* Packet is from an untrusted source, reset gso_segs. */
2687		int type = skb_shinfo(skb)->gso_type;
2688
2689		if (unlikely(type &
2690			     ~(SKB_GSO_TCPV4 |
2691			       SKB_GSO_DODGY |
2692			       SKB_GSO_TCP_ECN |
2693			       SKB_GSO_TCPV6 |
2694			       0) ||
2695			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2696			goto out;
2697
2698		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2699
2700		segs = NULL;
2701		goto out;
2702	}
2703
2704	segs = skb_segment(skb, features);
2705	if (IS_ERR(segs))
2706		goto out;
2707
2708	delta = htonl(oldlen + (thlen + mss));
2709
2710	skb = segs;
2711	th = tcp_hdr(skb);
2712	seq = ntohl(th->seq);
2713
2714	do {
2715		th->fin = th->psh = 0;
2716
2717		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2718				       (__force u32)delta));
2719		if (skb->ip_summed != CHECKSUM_PARTIAL)
2720			th->check =
2721			     csum_fold(csum_partial(skb_transport_header(skb),
2722						    thlen, skb->csum));
2723
2724		seq += mss;
2725		skb = skb->next;
2726		th = tcp_hdr(skb);
2727
2728		th->seq = htonl(seq);
2729		th->cwr = 0;
2730	} while (skb->next);
2731
2732	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2733		      skb->data_len);
2734	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735				(__force u32)delta));
2736	if (skb->ip_summed != CHECKSUM_PARTIAL)
2737		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2738						   thlen, skb->csum));
2739
2740out:
2741	return segs;
2742}
2743EXPORT_SYMBOL(tcp_tso_segment);
2744
2745struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2746{
2747	struct sk_buff **pp = NULL;
2748	struct sk_buff *p;
2749	struct tcphdr *th;
2750	struct tcphdr *th2;
2751	unsigned int len;
2752	unsigned int thlen;
2753	__be32 flags;
2754	unsigned int mss = 1;
2755	unsigned int hlen;
2756	unsigned int off;
2757	int flush = 1;
2758	int i;
2759
2760	off = skb_gro_offset(skb);
2761	hlen = off + sizeof(*th);
2762	th = skb_gro_header_fast(skb, off);
2763	if (skb_gro_header_hard(skb, hlen)) {
2764		th = skb_gro_header_slow(skb, hlen, off);
2765		if (unlikely(!th))
2766			goto out;
2767	}
2768
2769	thlen = th->doff * 4;
2770	if (thlen < sizeof(*th))
2771		goto out;
2772
2773	hlen = off + thlen;
2774	if (skb_gro_header_hard(skb, hlen)) {
2775		th = skb_gro_header_slow(skb, hlen, off);
2776		if (unlikely(!th))
2777			goto out;
2778	}
2779
2780	skb_gro_pull(skb, thlen);
2781
2782	len = skb_gro_len(skb);
2783	flags = tcp_flag_word(th);
2784
2785	for (; (p = *head); head = &p->next) {
2786		if (!NAPI_GRO_CB(p)->same_flow)
2787			continue;
2788
2789		th2 = tcp_hdr(p);
 
 
2790
2791		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2792			NAPI_GRO_CB(p)->same_flow = 0;
2793			continue;
 
 
 
 
 
2794		}
 
 
2795
2796		goto found;
2797	}
2798
2799	goto out_check_final;
2800
2801found:
2802	flush = NAPI_GRO_CB(p)->flush;
2803	flush |= (__force int)(flags & TCP_FLAG_CWR);
2804	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2805		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2806	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2807	for (i = sizeof(*th); i < thlen; i += 4)
2808		flush |= *(u32 *)((u8 *)th + i) ^
2809			 *(u32 *)((u8 *)th2 + i);
2810
2811	mss = skb_shinfo(p)->gso_size;
2812
2813	flush |= (len - 1) >= mss;
2814	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2815
2816	if (flush || skb_gro_receive(head, skb)) {
2817		mss = 1;
2818		goto out_check_final;
2819	}
2820
2821	p = *head;
2822	th2 = tcp_hdr(p);
2823	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2824
2825out_check_final:
2826	flush = len < mss;
2827	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2828					TCP_FLAG_RST | TCP_FLAG_SYN |
2829					TCP_FLAG_FIN));
2830
2831	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2832		pp = head;
2833
2834out:
2835	NAPI_GRO_CB(skb)->flush |= flush;
2836
2837	return pp;
2838}
2839EXPORT_SYMBOL(tcp_gro_receive);
2840
2841int tcp_gro_complete(struct sk_buff *skb)
2842{
2843	struct tcphdr *th = tcp_hdr(skb);
2844
2845	skb->csum_start = skb_transport_header(skb) - skb->head;
2846	skb->csum_offset = offsetof(struct tcphdr, check);
2847	skb->ip_summed = CHECKSUM_PARTIAL;
2848
2849	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2850
2851	if (th->cwr)
2852		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2853
2854	return 0;
2855}
2856EXPORT_SYMBOL(tcp_gro_complete);
2857
2858#ifdef CONFIG_TCP_MD5SIG
2859static unsigned long tcp_md5sig_users;
2860static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2861static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2862
2863static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2864{
2865	int cpu;
2866	for_each_possible_cpu(cpu) {
2867		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2868		if (p) {
2869			if (p->md5_desc.tfm)
2870				crypto_free_hash(p->md5_desc.tfm);
2871			kfree(p);
2872		}
2873	}
2874	free_percpu(pool);
2875}
2876
2877void tcp_free_md5sig_pool(void)
2878{
2879	struct tcp_md5sig_pool * __percpu *pool = NULL;
2880
2881	spin_lock_bh(&tcp_md5sig_pool_lock);
2882	if (--tcp_md5sig_users == 0) {
2883		pool = tcp_md5sig_pool;
2884		tcp_md5sig_pool = NULL;
2885	}
2886	spin_unlock_bh(&tcp_md5sig_pool_lock);
2887	if (pool)
2888		__tcp_free_md5sig_pool(pool);
 
 
2889}
2890EXPORT_SYMBOL(tcp_free_md5sig_pool);
2891
2892static struct tcp_md5sig_pool * __percpu *
2893__tcp_alloc_md5sig_pool(struct sock *sk)
2894{
2895	int cpu;
2896	struct tcp_md5sig_pool * __percpu *pool;
2897
2898	pool = alloc_percpu(struct tcp_md5sig_pool *);
2899	if (!pool)
2900		return NULL;
2901
2902	for_each_possible_cpu(cpu) {
2903		struct tcp_md5sig_pool *p;
2904		struct crypto_hash *hash;
2905
2906		p = kzalloc(sizeof(*p), sk->sk_allocation);
2907		if (!p)
2908			goto out_free;
2909		*per_cpu_ptr(pool, cpu) = p;
2910
2911		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2912		if (!hash || IS_ERR(hash))
2913			goto out_free;
2914
2915		p->md5_desc.tfm = hash;
2916	}
2917	return pool;
2918out_free:
2919	__tcp_free_md5sig_pool(pool);
2920	return NULL;
2921}
2922
2923struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2924{
2925	struct tcp_md5sig_pool * __percpu *pool;
2926	int alloc = 0;
2927
2928retry:
2929	spin_lock_bh(&tcp_md5sig_pool_lock);
2930	pool = tcp_md5sig_pool;
2931	if (tcp_md5sig_users++ == 0) {
2932		alloc = 1;
2933		spin_unlock_bh(&tcp_md5sig_pool_lock);
2934	} else if (!pool) {
2935		tcp_md5sig_users--;
2936		spin_unlock_bh(&tcp_md5sig_pool_lock);
2937		cpu_relax();
2938		goto retry;
2939	} else
2940		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941
2942	if (alloc) {
2943		/* we cannot hold spinlock here because this may sleep. */
2944		struct tcp_md5sig_pool * __percpu *p;
2945
2946		p = __tcp_alloc_md5sig_pool(sk);
2947		spin_lock_bh(&tcp_md5sig_pool_lock);
2948		if (!p) {
2949			tcp_md5sig_users--;
2950			spin_unlock_bh(&tcp_md5sig_pool_lock);
2951			return NULL;
2952		}
2953		pool = tcp_md5sig_pool;
2954		if (pool) {
2955			/* oops, it has already been assigned. */
2956			spin_unlock_bh(&tcp_md5sig_pool_lock);
2957			__tcp_free_md5sig_pool(p);
2958		} else {
2959			tcp_md5sig_pool = pool = p;
2960			spin_unlock_bh(&tcp_md5sig_pool_lock);
2961		}
2962	}
2963	return pool;
2964}
2965EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2966
2967
2968/**
2969 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2970 *
2971 *	We use percpu structure, so if we succeed, we exit with preemption
2972 *	and BH disabled, to make sure another thread or softirq handling
2973 *	wont try to get same context.
2974 */
2975struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2976{
2977	struct tcp_md5sig_pool * __percpu *p;
2978
2979	local_bh_disable();
2980
2981	spin_lock(&tcp_md5sig_pool_lock);
2982	p = tcp_md5sig_pool;
2983	if (p)
2984		tcp_md5sig_users++;
2985	spin_unlock(&tcp_md5sig_pool_lock);
2986
2987	if (p)
2988		return *this_cpu_ptr(p);
2989
2990	local_bh_enable();
2991	return NULL;
2992}
2993EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994
2995void tcp_put_md5sig_pool(void)
2996{
2997	local_bh_enable();
2998	tcp_free_md5sig_pool();
2999}
3000EXPORT_SYMBOL(tcp_put_md5sig_pool);
3001
3002int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3003			struct tcphdr *th)
3004{
3005	struct scatterlist sg;
3006	int err;
3007
3008	__sum16 old_checksum = th->check;
3009	th->check = 0;
3010	/* options aren't included in the hash */
3011	sg_init_one(&sg, th, sizeof(struct tcphdr));
3012	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3013	th->check = old_checksum;
3014	return err;
3015}
3016EXPORT_SYMBOL(tcp_md5_hash_header);
3017
3018int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3019			  struct sk_buff *skb, unsigned header_len)
3020{
3021	struct scatterlist sg;
3022	const struct tcphdr *tp = tcp_hdr(skb);
3023	struct hash_desc *desc = &hp->md5_desc;
3024	unsigned i;
3025	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3026				       skb_headlen(skb) - header_len : 0;
3027	const struct skb_shared_info *shi = skb_shinfo(skb);
3028	struct sk_buff *frag_iter;
3029
3030	sg_init_table(&sg, 1);
3031
3032	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3033	if (crypto_hash_update(desc, &sg, head_data_len))
 
3034		return 1;
3035
3036	for (i = 0; i < shi->nr_frags; ++i) {
3037		const struct skb_frag_struct *f = &shi->frags[i];
3038		sg_set_page(&sg, f->page, f->size, f->page_offset);
3039		if (crypto_hash_update(desc, &sg, f->size))
 
 
 
 
 
3040			return 1;
3041	}
3042
3043	skb_walk_frags(skb, frag_iter)
3044		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045			return 1;
3046
3047	return 0;
3048}
3049EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050
3051int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3052{
3053	struct scatterlist sg;
3054
3055	sg_init_one(&sg, key->key, key->keylen);
3056	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
 
3057}
3058EXPORT_SYMBOL(tcp_md5_hash_key);
3059
3060#endif
3061
3062/**
3063 * Each Responder maintains up to two secret values concurrently for
3064 * efficient secret rollover.  Each secret value has 4 states:
3065 *
3066 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3067 *    Generates new Responder-Cookies, but not yet used for primary
3068 *    verification.  This is a short-term state, typically lasting only
3069 *    one round trip time (RTT).
3070 *
3071 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3072 *    Used both for generation and primary verification.
3073 *
3074 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3075 *    Used for verification, until the first failure that can be
3076 *    verified by the newer Generating secret.  At that time, this
3077 *    cookie's state is changed to Secondary, and the Generating
3078 *    cookie's state is changed to Primary.  This is a short-term state,
3079 *    typically lasting only one round trip time (RTT).
3080 *
3081 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3082 *    Used for secondary verification, after primary verification
3083 *    failures.  This state lasts no more than twice the Maximum Segment
3084 *    Lifetime (2MSL).  Then, the secret is discarded.
3085 */
3086struct tcp_cookie_secret {
3087	/* The secret is divided into two parts.  The digest part is the
3088	 * equivalent of previously hashing a secret and saving the state,
3089	 * and serves as an initialization vector (IV).  The message part
3090	 * serves as the trailing secret.
3091	 */
3092	u32				secrets[COOKIE_WORKSPACE_WORDS];
3093	unsigned long			expires;
3094};
3095
3096#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3097#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3098#define TCP_SECRET_LIFE (HZ * 600)
3099
3100static struct tcp_cookie_secret tcp_secret_one;
3101static struct tcp_cookie_secret tcp_secret_two;
3102
3103/* Essentially a circular list, without dynamic allocation. */
3104static struct tcp_cookie_secret *tcp_secret_generating;
3105static struct tcp_cookie_secret *tcp_secret_primary;
3106static struct tcp_cookie_secret *tcp_secret_retiring;
3107static struct tcp_cookie_secret *tcp_secret_secondary;
3108
3109static DEFINE_SPINLOCK(tcp_secret_locker);
3110
3111/* Select a pseudo-random word in the cookie workspace.
3112 */
3113static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3114{
3115	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3116}
3117
3118/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3119 * Called in softirq context.
3120 * Returns: 0 for success.
3121 */
3122int tcp_cookie_generator(u32 *bakery)
3123{
3124	unsigned long jiffy = jiffies;
3125
3126	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3127		spin_lock_bh(&tcp_secret_locker);
3128		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3129			/* refreshed by another */
3130			memcpy(bakery,
3131			       &tcp_secret_generating->secrets[0],
3132			       COOKIE_WORKSPACE_WORDS);
3133		} else {
3134			/* still needs refreshing */
3135			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3136
3137			/* The first time, paranoia assumes that the
3138			 * randomization function isn't as strong.  But,
3139			 * this secret initialization is delayed until
3140			 * the last possible moment (packet arrival).
3141			 * Although that time is observable, it is
3142			 * unpredictably variable.  Mash in the most
3143			 * volatile clock bits available, and expire the
3144			 * secret extra quickly.
3145			 */
3146			if (unlikely(tcp_secret_primary->expires ==
3147				     tcp_secret_secondary->expires)) {
3148				struct timespec tv;
3149
3150				getnstimeofday(&tv);
3151				bakery[COOKIE_DIGEST_WORDS+0] ^=
3152					(u32)tv.tv_nsec;
3153
3154				tcp_secret_secondary->expires = jiffy
3155					+ TCP_SECRET_1MSL
3156					+ (0x0f & tcp_cookie_work(bakery, 0));
3157			} else {
3158				tcp_secret_secondary->expires = jiffy
3159					+ TCP_SECRET_LIFE
3160					+ (0xff & tcp_cookie_work(bakery, 1));
3161				tcp_secret_primary->expires = jiffy
3162					+ TCP_SECRET_2MSL
3163					+ (0x1f & tcp_cookie_work(bakery, 2));
3164			}
3165			memcpy(&tcp_secret_secondary->secrets[0],
3166			       bakery, COOKIE_WORKSPACE_WORDS);
3167
3168			rcu_assign_pointer(tcp_secret_generating,
3169					   tcp_secret_secondary);
3170			rcu_assign_pointer(tcp_secret_retiring,
3171					   tcp_secret_primary);
3172			/*
3173			 * Neither call_rcu() nor synchronize_rcu() needed.
3174			 * Retiring data is not freed.  It is replaced after
3175			 * further (locked) pointer updates, and a quiet time
3176			 * (minimum 1MSL, maximum LIFE - 2MSL).
3177			 */
3178		}
3179		spin_unlock_bh(&tcp_secret_locker);
3180	} else {
3181		rcu_read_lock_bh();
3182		memcpy(bakery,
3183		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3184		       COOKIE_WORKSPACE_WORDS);
3185		rcu_read_unlock_bh();
3186	}
3187	return 0;
3188}
3189EXPORT_SYMBOL(tcp_cookie_generator);
3190
3191void tcp_done(struct sock *sk)
3192{
 
 
3193	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3195
3196	tcp_set_state(sk, TCP_CLOSE);
3197	tcp_clear_xmit_timers(sk);
 
 
3198
3199	sk->sk_shutdown = SHUTDOWN_MASK;
3200
3201	if (!sock_flag(sk, SOCK_DEAD))
3202		sk->sk_state_change(sk);
3203	else
3204		inet_csk_destroy_sock(sk);
3205}
3206EXPORT_SYMBOL_GPL(tcp_done);
3207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208extern struct tcp_congestion_ops tcp_reno;
3209
3210static __initdata unsigned long thash_entries;
3211static int __init set_thash_entries(char *str)
3212{
 
 
3213	if (!str)
3214		return 0;
3215	thash_entries = simple_strtoul(str, &str, 0);
 
 
 
 
3216	return 1;
3217}
3218__setup("thash_entries=", set_thash_entries);
3219
 
 
 
 
 
 
 
 
 
 
3220void __init tcp_init(void)
3221{
3222	struct sk_buff *skb = NULL;
3223	unsigned long limit;
3224	int i, max_share, cnt;
3225	unsigned long jiffy = jiffies;
3226
3227	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
 
3228
3229	percpu_counter_init(&tcp_sockets_allocated, 0);
3230	percpu_counter_init(&tcp_orphan_count, 0);
 
 
 
 
3231	tcp_hashinfo.bind_bucket_cachep =
3232		kmem_cache_create("tcp_bind_bucket",
3233				  sizeof(struct inet_bind_bucket), 0,
3234				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3235
3236	/* Size and allocate the main established and bind bucket
3237	 * hash tables.
3238	 *
3239	 * The methodology is similar to that of the buffer cache.
3240	 */
3241	tcp_hashinfo.ehash =
3242		alloc_large_system_hash("TCP established",
3243					sizeof(struct inet_ehash_bucket),
3244					thash_entries,
3245					(totalram_pages >= 128 * 1024) ?
3246					13 : 15,
3247					0,
3248					NULL,
3249					&tcp_hashinfo.ehash_mask,
 
3250					thash_entries ? 0 : 512 * 1024);
3251	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3252		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3253		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3254	}
3255	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3256		panic("TCP: failed to alloc ehash_locks");
3257	tcp_hashinfo.bhash =
3258		alloc_large_system_hash("TCP bind",
3259					sizeof(struct inet_bind_hashbucket),
3260					tcp_hashinfo.ehash_mask + 1,
3261					(totalram_pages >= 128 * 1024) ?
3262					13 : 15,
3263					0,
3264					&tcp_hashinfo.bhash_size,
3265					NULL,
 
3266					64 * 1024);
3267	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3268	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3269		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3270		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3271	}
3272
3273
3274	cnt = tcp_hashinfo.ehash_mask + 1;
3275
3276	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3277	sysctl_tcp_max_orphans = cnt / 2;
3278	sysctl_max_syn_backlog = max(128, cnt / 256);
3279
3280	limit = nr_free_buffer_pages() / 8;
3281	limit = max(limit, 128UL);
3282	sysctl_tcp_mem[0] = limit / 4 * 3;
3283	sysctl_tcp_mem[1] = limit;
3284	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3285
 
3286	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3287	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3288	max_share = min(4UL*1024*1024, limit);
3289
3290	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3291	sysctl_tcp_wmem[1] = 16*1024;
3292	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3293
3294	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3295	sysctl_tcp_rmem[1] = 87380;
3296	sysctl_tcp_rmem[2] = max(87380, max_share);
3297
3298	printk(KERN_INFO "TCP: Hash tables configured "
3299	       "(established %u bind %u)\n",
3300	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3301
3302	tcp_register_congestion_control(&tcp_reno);
3303
3304	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3305	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3306	tcp_secret_one.expires = jiffy; /* past due */
3307	tcp_secret_two.expires = jiffy; /* past due */
3308	tcp_secret_generating = &tcp_secret_one;
3309	tcp_secret_primary = &tcp_secret_one;
3310	tcp_secret_retiring = &tcp_secret_two;
3311	tcp_secret_secondary = &tcp_secret_two;
3312}
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <crypto/hash.h>
 251#include <linux/kernel.h>
 252#include <linux/module.h>
 253#include <linux/types.h>
 254#include <linux/fcntl.h>
 255#include <linux/poll.h>
 256#include <linux/inet_diag.h>
 257#include <linux/init.h>
 258#include <linux/fs.h>
 259#include <linux/skbuff.h>
 260#include <linux/scatterlist.h>
 261#include <linux/splice.h>
 262#include <linux/net.h>
 263#include <linux/socket.h>
 264#include <linux/random.h>
 265#include <linux/bootmem.h>
 266#include <linux/highmem.h>
 267#include <linux/swap.h>
 268#include <linux/cache.h>
 269#include <linux/err.h>
 
 270#include <linux/time.h>
 271#include <linux/slab.h>
 272#include <linux/errqueue.h>
 273#include <linux/static_key.h>
 274
 275#include <net/icmp.h>
 276#include <net/inet_common.h>
 277#include <net/tcp.h>
 278#include <net/xfrm.h>
 279#include <net/ip.h>
 
 280#include <net/sock.h>
 281
 282#include <linux/uaccess.h>
 283#include <asm/ioctls.h>
 284#include <net/busy_poll.h>
 
 285
 286struct percpu_counter tcp_orphan_count;
 287EXPORT_SYMBOL_GPL(tcp_orphan_count);
 288
 289long sysctl_tcp_mem[3] __read_mostly;
 
 
 
 290EXPORT_SYMBOL(sysctl_tcp_mem);
 
 
 291
 292atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 293EXPORT_SYMBOL(tcp_memory_allocated);
 294
 295#if IS_ENABLED(CONFIG_SMC)
 296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 297EXPORT_SYMBOL(tcp_have_smc);
 298#endif
 299
 300/*
 301 * Current number of TCP sockets.
 302 */
 303struct percpu_counter tcp_sockets_allocated;
 304EXPORT_SYMBOL(tcp_sockets_allocated);
 305
 306/*
 307 * TCP splice context
 308 */
 309struct tcp_splice_state {
 310	struct pipe_inode_info *pipe;
 311	size_t len;
 312	unsigned int flags;
 313};
 314
 315/*
 316 * Pressure flag: try to collapse.
 317 * Technical note: it is used by multiple contexts non atomically.
 318 * All the __sk_mem_schedule() is of this nature: accounting
 319 * is strict, actions are advisory and have some latency.
 320 */
 321unsigned long tcp_memory_pressure __read_mostly;
 322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 323
 324void tcp_enter_memory_pressure(struct sock *sk)
 325{
 326	unsigned long val;
 327
 328	if (tcp_memory_pressure)
 329		return;
 330	val = jiffies;
 331
 332	if (!val)
 333		val--;
 334	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 335		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 
 
 336}
 337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 338
 339void tcp_leave_memory_pressure(struct sock *sk)
 340{
 341	unsigned long val;
 342
 343	if (!tcp_memory_pressure)
 344		return;
 345	val = xchg(&tcp_memory_pressure, 0);
 346	if (val)
 347		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 348			      jiffies_to_msecs(jiffies - val));
 349}
 350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 351
 352/* Convert seconds to retransmits based on initial and max timeout */
 353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 354{
 355	u8 res = 0;
 356
 357	if (seconds > 0) {
 358		int period = timeout;
 359
 360		res = 1;
 361		while (seconds > period && res < 255) {
 362			res++;
 363			timeout <<= 1;
 364			if (timeout > rto_max)
 365				timeout = rto_max;
 366			period += timeout;
 367		}
 368	}
 369	return res;
 370}
 371
 372/* Convert retransmits to seconds based on initial and max timeout */
 373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 374{
 375	int period = 0;
 376
 377	if (retrans > 0) {
 378		period = timeout;
 379		while (--retrans) {
 380			timeout <<= 1;
 381			if (timeout > rto_max)
 382				timeout = rto_max;
 383			period += timeout;
 384		}
 385	}
 386	return period;
 387}
 388
 389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 390{
 391	u32 rate = READ_ONCE(tp->rate_delivered);
 392	u32 intv = READ_ONCE(tp->rate_interval_us);
 393	u64 rate64 = 0;
 394
 395	if (rate && intv) {
 396		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 397		do_div(rate64, intv);
 398	}
 399	return rate64;
 400}
 401
 402/* Address-family independent initialization for a tcp_sock.
 403 *
 404 * NOTE: A lot of things set to zero explicitly by call to
 405 *       sk_alloc() so need not be done here.
 406 */
 407void tcp_init_sock(struct sock *sk)
 408{
 409	struct inet_connection_sock *icsk = inet_csk(sk);
 410	struct tcp_sock *tp = tcp_sk(sk);
 411
 412	tp->out_of_order_queue = RB_ROOT;
 413	sk->tcp_rtx_queue = RB_ROOT;
 414	tcp_init_xmit_timers(sk);
 415	INIT_LIST_HEAD(&tp->tsq_node);
 416	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 417
 418	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 419	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 420	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 421
 422	/* So many TCP implementations out there (incorrectly) count the
 423	 * initial SYN frame in their delayed-ACK and congestion control
 424	 * algorithms that we must have the following bandaid to talk
 425	 * efficiently to them.  -DaveM
 426	 */
 427	tp->snd_cwnd = TCP_INIT_CWND;
 428
 429	/* There's a bubble in the pipe until at least the first ACK. */
 430	tp->app_limited = ~0U;
 431
 432	/* See draft-stevens-tcpca-spec-01 for discussion of the
 433	 * initialization of these values.
 434	 */
 435	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 436	tp->snd_cwnd_clamp = ~0;
 437	tp->mss_cache = TCP_MSS_DEFAULT;
 438
 439	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 440	tcp_assign_congestion_control(sk);
 441
 442	tp->tsoffset = 0;
 443	tp->rack.reo_wnd_steps = 1;
 444
 445	sk->sk_state = TCP_CLOSE;
 446
 447	sk->sk_write_space = sk_stream_write_space;
 448	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 449
 450	icsk->icsk_sync_mss = tcp_sync_mss;
 451
 452	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
 453	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
 454
 455	sk_sockets_allocated_inc(sk);
 456	sk->sk_route_forced_caps = NETIF_F_GSO;
 457}
 458EXPORT_SYMBOL(tcp_init_sock);
 459
 460void tcp_init_transfer(struct sock *sk, int bpf_op)
 461{
 462	struct inet_connection_sock *icsk = inet_csk(sk);
 463
 464	tcp_mtup_init(sk);
 465	icsk->icsk_af_ops->rebuild_header(sk);
 466	tcp_init_metrics(sk);
 467	tcp_call_bpf(sk, bpf_op, 0, NULL);
 468	tcp_init_congestion_control(sk);
 469	tcp_init_buffer_space(sk);
 470}
 471
 472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 473{
 474	struct sk_buff *skb = tcp_write_queue_tail(sk);
 475
 476	if (tsflags && skb) {
 477		struct skb_shared_info *shinfo = skb_shinfo(skb);
 478		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 479
 480		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 481		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 482			tcb->txstamp_ack = 1;
 483		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 484			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 485	}
 486}
 487
 488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
 489					  int target, struct sock *sk)
 490{
 491	return (tp->rcv_nxt - tp->copied_seq >= target) ||
 492		(sk->sk_prot->stream_memory_read ?
 493		sk->sk_prot->stream_memory_read(sk) : false);
 494}
 495
 496/*
 497 *	Wait for a TCP event.
 498 *
 499 *	Note that we don't need to lock the socket, as the upper poll layers
 500 *	take care of normal races (between the test and the event) and we don't
 501 *	go look at any of the socket buffers directly.
 502 */
 503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 504{
 505	__poll_t mask;
 506	struct sock *sk = sock->sk;
 507	const struct tcp_sock *tp = tcp_sk(sk);
 508	int state;
 509
 510	sock_poll_wait(file, sk_sleep(sk), wait);
 511
 512	state = inet_sk_state_load(sk);
 513	if (state == TCP_LISTEN)
 514		return inet_csk_listen_poll(sk);
 515
 516	/* Socket is not locked. We are protected from async events
 517	 * by poll logic and correct handling of state changes
 518	 * made by other threads is impossible in any case.
 519	 */
 520
 521	mask = 0;
 522
 523	/*
 524	 * EPOLLHUP is certainly not done right. But poll() doesn't
 525	 * have a notion of HUP in just one direction, and for a
 526	 * socket the read side is more interesting.
 527	 *
 528	 * Some poll() documentation says that EPOLLHUP is incompatible
 529	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 530	 * all. But careful, it tends to be safer to return too many
 531	 * bits than too few, and you can easily break real applications
 532	 * if you don't tell them that something has hung up!
 533	 *
 534	 * Check-me.
 535	 *
 536	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 537	 * our fs/select.c). It means that after we received EOF,
 538	 * poll always returns immediately, making impossible poll() on write()
 539	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 540	 * if and only if shutdown has been made in both directions.
 541	 * Actually, it is interesting to look how Solaris and DUX
 542	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 543	 * then we could set it on SND_SHUTDOWN. BTW examples given
 544	 * in Stevens' books assume exactly this behaviour, it explains
 545	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 546	 *
 547	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 548	 * blocking on fresh not-connected or disconnected socket. --ANK
 549	 */
 550	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 551		mask |= EPOLLHUP;
 552	if (sk->sk_shutdown & RCV_SHUTDOWN)
 553		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 554
 555	/* Connected or passive Fast Open socket? */
 556	if (state != TCP_SYN_SENT &&
 557	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
 558		int target = sock_rcvlowat(sk, 0, INT_MAX);
 559
 560		if (tp->urg_seq == tp->copied_seq &&
 561		    !sock_flag(sk, SOCK_URGINLINE) &&
 562		    tp->urg_data)
 563			target++;
 564
 565		if (tcp_stream_is_readable(tp, target, sk))
 566			mask |= EPOLLIN | EPOLLRDNORM;
 
 
 
 567
 568		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 569			if (sk_stream_is_writeable(sk)) {
 570				mask |= EPOLLOUT | EPOLLWRNORM;
 571			} else {  /* send SIGIO later */
 572				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 573				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 574
 575				/* Race breaker. If space is freed after
 576				 * wspace test but before the flags are set,
 577				 * IO signal will be lost. Memory barrier
 578				 * pairs with the input side.
 579				 */
 580				smp_mb__after_atomic();
 581				if (sk_stream_is_writeable(sk))
 582					mask |= EPOLLOUT | EPOLLWRNORM;
 583			}
 584		} else
 585			mask |= EPOLLOUT | EPOLLWRNORM;
 586
 587		if (tp->urg_data & TCP_URG_VALID)
 588			mask |= EPOLLPRI;
 589	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 590		/* Active TCP fastopen socket with defer_connect
 591		 * Return EPOLLOUT so application can call write()
 592		 * in order for kernel to generate SYN+data
 593		 */
 594		mask |= EPOLLOUT | EPOLLWRNORM;
 595	}
 596	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 597	smp_rmb();
 598	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
 599		mask |= EPOLLERR;
 600
 601	return mask;
 602}
 603EXPORT_SYMBOL(tcp_poll);
 604
 605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 606{
 607	struct tcp_sock *tp = tcp_sk(sk);
 608	int answ;
 609	bool slow;
 610
 611	switch (cmd) {
 612	case SIOCINQ:
 613		if (sk->sk_state == TCP_LISTEN)
 614			return -EINVAL;
 615
 616		slow = lock_sock_fast(sk);
 617		answ = tcp_inq(sk);
 618		unlock_sock_fast(sk, slow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		break;
 620	case SIOCATMARK:
 621		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 622		break;
 623	case SIOCOUTQ:
 624		if (sk->sk_state == TCP_LISTEN)
 625			return -EINVAL;
 626
 627		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 628			answ = 0;
 629		else
 630			answ = tp->write_seq - tp->snd_una;
 631		break;
 632	case SIOCOUTQNSD:
 633		if (sk->sk_state == TCP_LISTEN)
 634			return -EINVAL;
 635
 636		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 637			answ = 0;
 638		else
 639			answ = tp->write_seq - tp->snd_nxt;
 640		break;
 641	default:
 642		return -ENOIOCTLCMD;
 643	}
 644
 645	return put_user(answ, (int __user *)arg);
 646}
 647EXPORT_SYMBOL(tcp_ioctl);
 648
 649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 650{
 651	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 652	tp->pushed_seq = tp->write_seq;
 653}
 654
 655static inline bool forced_push(const struct tcp_sock *tp)
 656{
 657	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 658}
 659
 660static void skb_entail(struct sock *sk, struct sk_buff *skb)
 661{
 662	struct tcp_sock *tp = tcp_sk(sk);
 663	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 664
 665	skb->csum    = 0;
 666	tcb->seq     = tcb->end_seq = tp->write_seq;
 667	tcb->tcp_flags = TCPHDR_ACK;
 668	tcb->sacked  = 0;
 669	__skb_header_release(skb);
 670	tcp_add_write_queue_tail(sk, skb);
 671	sk->sk_wmem_queued += skb->truesize;
 672	sk_mem_charge(sk, skb->truesize);
 673	if (tp->nonagle & TCP_NAGLE_PUSH)
 674		tp->nonagle &= ~TCP_NAGLE_PUSH;
 675
 676	tcp_slow_start_after_idle_check(sk);
 677}
 678
 679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 680{
 681	if (flags & MSG_OOB)
 682		tp->snd_up = tp->write_seq;
 683}
 684
 685/* If a not yet filled skb is pushed, do not send it if
 686 * we have data packets in Qdisc or NIC queues :
 687 * Because TX completion will happen shortly, it gives a chance
 688 * to coalesce future sendmsg() payload into this skb, without
 689 * need for a timer, and with no latency trade off.
 690 * As packets containing data payload have a bigger truesize
 691 * than pure acks (dataless) packets, the last checks prevent
 692 * autocorking if we only have an ACK in Qdisc/NIC queues,
 693 * or if TX completion was delayed after we processed ACK packet.
 694 */
 695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 696				int size_goal)
 697{
 698	return skb->len < size_goal &&
 699	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
 700	       !tcp_rtx_queue_empty(sk) &&
 701	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
 702}
 703
 704static void tcp_push(struct sock *sk, int flags, int mss_now,
 705		     int nonagle, int size_goal)
 706{
 707	struct tcp_sock *tp = tcp_sk(sk);
 708	struct sk_buff *skb;
 709
 710	skb = tcp_write_queue_tail(sk);
 711	if (!skb)
 712		return;
 713	if (!(flags & MSG_MORE) || forced_push(tp))
 714		tcp_mark_push(tp, skb);
 715
 716	tcp_mark_urg(tp, flags);
 717
 718	if (tcp_should_autocork(sk, skb, size_goal)) {
 719
 720		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 721		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 722			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 723			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 724		}
 725		/* It is possible TX completion already happened
 726		 * before we set TSQ_THROTTLED.
 727		 */
 728		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 729			return;
 730	}
 731
 732	if (flags & MSG_MORE)
 733		nonagle = TCP_NAGLE_CORK;
 734
 735	__tcp_push_pending_frames(sk, mss_now, nonagle);
 736}
 737
 738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 739				unsigned int offset, size_t len)
 740{
 741	struct tcp_splice_state *tss = rd_desc->arg.data;
 742	int ret;
 743
 744	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 745			      min(rd_desc->count, len), tss->flags);
 746	if (ret > 0)
 747		rd_desc->count -= ret;
 748	return ret;
 749}
 750
 751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 752{
 753	/* Store TCP splice context information in read_descriptor_t. */
 754	read_descriptor_t rd_desc = {
 755		.arg.data = tss,
 756		.count	  = tss->len,
 757	};
 758
 759	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 760}
 761
 762/**
 763 *  tcp_splice_read - splice data from TCP socket to a pipe
 764 * @sock:	socket to splice from
 765 * @ppos:	position (not valid)
 766 * @pipe:	pipe to splice to
 767 * @len:	number of bytes to splice
 768 * @flags:	splice modifier flags
 769 *
 770 * Description:
 771 *    Will read pages from given socket and fill them into a pipe.
 772 *
 773 **/
 774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 775			struct pipe_inode_info *pipe, size_t len,
 776			unsigned int flags)
 777{
 778	struct sock *sk = sock->sk;
 779	struct tcp_splice_state tss = {
 780		.pipe = pipe,
 781		.len = len,
 782		.flags = flags,
 783	};
 784	long timeo;
 785	ssize_t spliced;
 786	int ret;
 787
 788	sock_rps_record_flow(sk);
 789	/*
 790	 * We can't seek on a socket input
 791	 */
 792	if (unlikely(*ppos))
 793		return -ESPIPE;
 794
 795	ret = spliced = 0;
 796
 797	lock_sock(sk);
 798
 799	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 800	while (tss.len) {
 801		ret = __tcp_splice_read(sk, &tss);
 802		if (ret < 0)
 803			break;
 804		else if (!ret) {
 805			if (spliced)
 806				break;
 807			if (sock_flag(sk, SOCK_DONE))
 808				break;
 809			if (sk->sk_err) {
 810				ret = sock_error(sk);
 811				break;
 812			}
 813			if (sk->sk_shutdown & RCV_SHUTDOWN)
 814				break;
 815			if (sk->sk_state == TCP_CLOSE) {
 816				/*
 817				 * This occurs when user tries to read
 818				 * from never connected socket.
 819				 */
 820				if (!sock_flag(sk, SOCK_DONE))
 821					ret = -ENOTCONN;
 822				break;
 823			}
 824			if (!timeo) {
 825				ret = -EAGAIN;
 826				break;
 827			}
 828			/* if __tcp_splice_read() got nothing while we have
 829			 * an skb in receive queue, we do not want to loop.
 830			 * This might happen with URG data.
 831			 */
 832			if (!skb_queue_empty(&sk->sk_receive_queue))
 833				break;
 834			sk_wait_data(sk, &timeo, NULL);
 835			if (signal_pending(current)) {
 836				ret = sock_intr_errno(timeo);
 837				break;
 838			}
 839			continue;
 840		}
 841		tss.len -= ret;
 842		spliced += ret;
 843
 844		if (!timeo)
 845			break;
 846		release_sock(sk);
 847		lock_sock(sk);
 848
 849		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 850		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 851		    signal_pending(current))
 852			break;
 853	}
 854
 855	release_sock(sk);
 856
 857	if (spliced)
 858		return spliced;
 859
 860	return ret;
 861}
 862EXPORT_SYMBOL(tcp_splice_read);
 863
 864struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 865				    bool force_schedule)
 866{
 867	struct sk_buff *skb;
 868
 869	/* The TCP header must be at least 32-bit aligned.  */
 870	size = ALIGN(size, 4);
 871
 872	if (unlikely(tcp_under_memory_pressure(sk)))
 873		sk_mem_reclaim_partial(sk);
 874
 875	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 876	if (likely(skb)) {
 877		bool mem_scheduled;
 878
 879		if (force_schedule) {
 880			mem_scheduled = true;
 881			sk_forced_mem_schedule(sk, skb->truesize);
 882		} else {
 883			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 884		}
 885		if (likely(mem_scheduled)) {
 886			skb_reserve(skb, sk->sk_prot->max_header);
 887			/*
 888			 * Make sure that we have exactly size bytes
 889			 * available to the caller, no more, no less.
 890			 */
 891			skb->reserved_tailroom = skb->end - skb->tail - size;
 892			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 893			return skb;
 894		}
 895		__kfree_skb(skb);
 896	} else {
 897		sk->sk_prot->enter_memory_pressure(sk);
 898		sk_stream_moderate_sndbuf(sk);
 899	}
 900	return NULL;
 901}
 902
 903static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 904				       int large_allowed)
 905{
 906	struct tcp_sock *tp = tcp_sk(sk);
 907	u32 new_size_goal, size_goal;
 908
 909	if (!large_allowed)
 910		return mss_now;
 911
 912	/* Note : tcp_tso_autosize() will eventually split this later */
 913	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
 914	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
 
 
 915
 916	/* We try hard to avoid divides here */
 917	size_goal = tp->gso_segs * mss_now;
 918	if (unlikely(new_size_goal < size_goal ||
 919		     new_size_goal >= size_goal + mss_now)) {
 920		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 921				     sk->sk_gso_max_segs);
 922		size_goal = tp->gso_segs * mss_now;
 
 
 
 
 
 923	}
 924
 925	return max(size_goal, mss_now);
 926}
 927
 928static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 929{
 930	int mss_now;
 931
 932	mss_now = tcp_current_mss(sk);
 933	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 934
 935	return mss_now;
 936}
 937
 938ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 939			 size_t size, int flags)
 940{
 941	struct tcp_sock *tp = tcp_sk(sk);
 942	int mss_now, size_goal;
 943	int err;
 944	ssize_t copied;
 945	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 946
 947	/* Wait for a connection to finish. One exception is TCP Fast Open
 948	 * (passive side) where data is allowed to be sent before a connection
 949	 * is fully established.
 950	 */
 951	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 952	    !tcp_passive_fastopen(sk)) {
 953		err = sk_stream_wait_connect(sk, &timeo);
 954		if (err != 0)
 955			goto out_err;
 956	}
 957
 958	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 959
 960	mss_now = tcp_send_mss(sk, &size_goal, flags);
 961	copied = 0;
 962
 963	err = -EPIPE;
 964	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 965		goto out_err;
 966
 967	while (size > 0) {
 968		struct sk_buff *skb = tcp_write_queue_tail(sk);
 969		int copy, i;
 970		bool can_coalesce;
 
 
 971
 972		if (!skb || (copy = size_goal - skb->len) <= 0 ||
 973		    !tcp_skb_can_collapse_to(skb)) {
 974new_segment:
 975			if (!sk_stream_memory_free(sk))
 976				goto wait_for_sndbuf;
 977
 978			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
 979					tcp_rtx_and_write_queues_empty(sk));
 980			if (!skb)
 981				goto wait_for_memory;
 982
 983			skb_entail(sk, skb);
 984			copy = size_goal;
 985		}
 986
 987		if (copy > size)
 988			copy = size;
 989
 990		i = skb_shinfo(skb)->nr_frags;
 991		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 992		if (!can_coalesce && i >= sysctl_max_skb_frags) {
 993			tcp_mark_push(tp, skb);
 994			goto new_segment;
 995		}
 996		if (!sk_wmem_schedule(sk, copy))
 997			goto wait_for_memory;
 998
 999		if (can_coalesce) {
1000			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001		} else {
1002			get_page(page);
1003			skb_fill_page_desc(skb, i, page, offset, copy);
1004		}
1005
1006		if (!(flags & MSG_NO_SHARED_FRAGS))
1007			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008
1009		skb->len += copy;
1010		skb->data_len += copy;
1011		skb->truesize += copy;
1012		sk->sk_wmem_queued += copy;
1013		sk_mem_charge(sk, copy);
1014		skb->ip_summed = CHECKSUM_PARTIAL;
1015		tp->write_seq += copy;
1016		TCP_SKB_CB(skb)->end_seq += copy;
1017		tcp_skb_pcount_set(skb, 0);
1018
1019		if (!copied)
1020			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021
1022		copied += copy;
1023		offset += copy;
1024		size -= copy;
1025		if (!size)
1026			goto out;
1027
1028		if (skb->len < size_goal || (flags & MSG_OOB))
1029			continue;
1030
1031		if (forced_push(tp)) {
1032			tcp_mark_push(tp, skb);
1033			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034		} else if (skb == tcp_send_head(sk))
1035			tcp_push_one(sk, mss_now);
1036		continue;
1037
1038wait_for_sndbuf:
1039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040wait_for_memory:
1041		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042			 TCP_NAGLE_PUSH, size_goal);
1043
1044		err = sk_stream_wait_memory(sk, &timeo);
1045		if (err != 0)
1046			goto do_error;
1047
1048		mss_now = tcp_send_mss(sk, &size_goal, flags);
1049	}
1050
1051out:
1052	if (copied) {
1053		tcp_tx_timestamp(sk, sk->sk_tsflags);
1054		if (!(flags & MSG_SENDPAGE_NOTLAST))
1055			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056	}
1057	return copied;
1058
1059do_error:
1060	if (copied)
1061		goto out;
1062out_err:
1063	/* make sure we wake any epoll edge trigger waiter */
1064	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065		     err == -EAGAIN)) {
1066		sk->sk_write_space(sk);
1067		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068	}
1069	return sk_stream_error(sk, flags, err);
1070}
1071EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072
1073int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074			size_t size, int flags)
1075{
1076	if (!(sk->sk_route_caps & NETIF_F_SG))
1077		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078
1079	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080
1081	return do_tcp_sendpages(sk, page, offset, size, flags);
1082}
1083EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084
1085int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086		 size_t size, int flags)
1087{
1088	int ret;
 
 
 
 
 
1089
1090	lock_sock(sk);
1091	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092	release_sock(sk);
1093
1094	return ret;
1095}
1096EXPORT_SYMBOL(tcp_sendpage);
1097
1098/* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1100 *
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1107 */
1108static int linear_payload_sz(bool first_skb)
1109{
1110	if (first_skb)
1111		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112	return 0;
1113}
1114
1115static int select_size(bool first_skb, bool zc)
1116{
1117	if (zc)
1118		return 0;
1119	return linear_payload_sz(first_skb);
1120}
1121
1122void tcp_free_fastopen_req(struct tcp_sock *tp)
1123{
1124	if (tp->fastopen_req) {
1125		kfree(tp->fastopen_req);
1126		tp->fastopen_req = NULL;
1127	}
1128}
1129
1130static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131				int *copied, size_t size)
1132{
1133	struct tcp_sock *tp = tcp_sk(sk);
1134	struct inet_sock *inet = inet_sk(sk);
1135	struct sockaddr *uaddr = msg->msg_name;
1136	int err, flags;
1137
1138	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140	     uaddr->sa_family == AF_UNSPEC))
1141		return -EOPNOTSUPP;
1142	if (tp->fastopen_req)
1143		return -EALREADY; /* Another Fast Open is in progress */
1144
1145	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146				   sk->sk_allocation);
1147	if (unlikely(!tp->fastopen_req))
1148		return -ENOBUFS;
1149	tp->fastopen_req->data = msg;
1150	tp->fastopen_req->size = size;
1151
1152	if (inet->defer_connect) {
1153		err = tcp_connect(sk);
1154		/* Same failure procedure as in tcp_v4/6_connect */
1155		if (err) {
1156			tcp_set_state(sk, TCP_CLOSE);
1157			inet->inet_dport = 0;
1158			sk->sk_route_caps = 0;
1159		}
1160	}
1161	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163				    msg->msg_namelen, flags, 1);
1164	/* fastopen_req could already be freed in __inet_stream_connect
1165	 * if the connection times out or gets rst
1166	 */
1167	if (tp->fastopen_req) {
1168		*copied = tp->fastopen_req->copied;
1169		tcp_free_fastopen_req(tp);
1170		inet->defer_connect = 0;
1171	}
1172	return err;
1173}
1174
1175int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
 
1176{
 
1177	struct tcp_sock *tp = tcp_sk(sk);
1178	struct ubuf_info *uarg = NULL;
1179	struct sk_buff *skb;
1180	struct sockcm_cookie sockc;
1181	int flags, err, copied = 0;
1182	int mss_now = 0, size_goal, copied_syn = 0;
1183	bool process_backlog = false;
1184	bool zc = false;
1185	long timeo;
1186
 
 
1187	flags = msg->msg_flags;
1188
1189	if (flags & MSG_ZEROCOPY && size) {
1190		if (sk->sk_state != TCP_ESTABLISHED) {
1191			err = -EINVAL;
1192			goto out_err;
1193		}
1194
1195		skb = tcp_write_queue_tail(sk);
1196		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197		if (!uarg) {
1198			err = -ENOBUFS;
1199			goto out_err;
1200		}
1201
1202		zc = sk->sk_route_caps & NETIF_F_SG;
1203		if (!zc)
1204			uarg->zerocopy = 0;
1205	}
1206
1207	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208	    !tp->repair) {
1209		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210		if (err == -EINPROGRESS && copied_syn > 0)
1211			goto out;
1212		else if (err)
1213			goto out_err;
1214	}
1215
1216	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217
1218	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1219
1220	/* Wait for a connection to finish. One exception is TCP Fast Open
1221	 * (passive side) where data is allowed to be sent before a connection
1222	 * is fully established.
1223	 */
1224	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225	    !tcp_passive_fastopen(sk)) {
1226		err = sk_stream_wait_connect(sk, &timeo);
1227		if (err != 0)
1228			goto do_error;
1229	}
1230
1231	if (unlikely(tp->repair)) {
1232		if (tp->repair_queue == TCP_RECV_QUEUE) {
1233			copied = tcp_send_rcvq(sk, msg, size);
1234			goto out_nopush;
1235		}
1236
1237		err = -EINVAL;
1238		if (tp->repair_queue == TCP_NO_QUEUE)
1239			goto out_err;
1240
1241		/* 'common' sending to sendq */
1242	}
1243
1244	sockc.tsflags = sk->sk_tsflags;
1245	if (msg->msg_controllen) {
1246		err = sock_cmsg_send(sk, msg, &sockc);
1247		if (unlikely(err)) {
1248			err = -EINVAL;
1249			goto out_err;
1250		}
1251	}
1252
1253	/* This should be in poll */
1254	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255
1256	/* Ok commence sending. */
 
 
1257	copied = 0;
1258
1259restart:
1260	mss_now = tcp_send_mss(sk, &size_goal, flags);
1261
1262	err = -EPIPE;
1263	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264		goto do_error;
 
 
1265
1266	while (msg_data_left(msg)) {
1267		int copy = 0;
 
1268
1269		skb = tcp_write_queue_tail(sk);
1270		if (skb)
1271			copy = size_goal - skb->len;
 
 
1272
1273		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274			bool first_skb;
1275			int linear;
 
 
 
1276
 
1277new_segment:
1278			/* Allocate new segment. If the interface is SG,
1279			 * allocate skb fitting to single page.
1280			 */
1281			if (!sk_stream_memory_free(sk))
1282				goto wait_for_sndbuf;
1283
1284			if (process_backlog && sk_flush_backlog(sk)) {
1285				process_backlog = false;
1286				goto restart;
1287			}
1288			first_skb = tcp_rtx_and_write_queues_empty(sk);
1289			linear = select_size(first_skb, zc);
1290			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291						  first_skb);
1292			if (!skb)
1293				goto wait_for_memory;
1294
1295			process_backlog = true;
1296			skb->ip_summed = CHECKSUM_PARTIAL;
 
 
 
1297
1298			skb_entail(sk, skb);
1299			copy = size_goal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
1301			/* All packets are restored as if they have
1302			 * already been sent. skb_mstamp isn't set to
1303			 * avoid wrong rtt estimation.
1304			 */
1305			if (tp->repair)
1306				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307		}
1308
1309		/* Try to append data to the end of skb. */
1310		if (copy > msg_data_left(msg))
1311			copy = msg_data_left(msg);
1312
1313		/* Where to copy to? */
1314		if (skb_availroom(skb) > 0 && !zc) {
1315			/* We have some space in skb head. Superb! */
1316			copy = min_t(int, copy, skb_availroom(skb));
1317			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318			if (err)
1319				goto do_fault;
1320		} else if (!zc) {
1321			bool merge = true;
1322			int i = skb_shinfo(skb)->nr_frags;
1323			struct page_frag *pfrag = sk_page_frag(sk);
1324
1325			if (!sk_page_frag_refill(sk, pfrag))
1326				goto wait_for_memory;
 
 
 
1327
1328			if (!skb_can_coalesce(skb, i, pfrag->page,
1329					      pfrag->offset)) {
1330				if (i >= sysctl_max_skb_frags) {
1331					tcp_mark_push(tp, skb);
1332					goto new_segment;
 
 
 
 
 
 
 
 
1333				}
1334				merge = false;
1335			}
1336
1337			copy = min_t(int, copy, pfrag->size - pfrag->offset);
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339			if (!sk_wmem_schedule(sk, copy))
1340				goto wait_for_memory;
1341
1342			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343						       pfrag->page,
1344						       pfrag->offset,
1345						       copy);
1346			if (err)
1347				goto do_error;
1348
1349			/* Update the skb. */
1350			if (merge) {
1351				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352			} else {
1353				skb_fill_page_desc(skb, i, pfrag->page,
1354						   pfrag->offset, copy);
1355				page_ref_inc(pfrag->page);
1356			}
1357			pfrag->offset += copy;
1358		} else {
1359			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360			if (err == -EMSGSIZE || err == -EEXIST) {
1361				tcp_mark_push(tp, skb);
1362				goto new_segment;
1363			}
1364			if (err < 0)
1365				goto do_error;
1366			copy = err;
1367		}
1368
1369		if (!copied)
1370			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
 
 
1371
1372		tp->write_seq += copy;
1373		TCP_SKB_CB(skb)->end_seq += copy;
1374		tcp_skb_pcount_set(skb, 0);
1375
1376		copied += copy;
1377		if (!msg_data_left(msg)) {
1378			if (unlikely(flags & MSG_EOR))
1379				TCP_SKB_CB(skb)->eor = 1;
1380			goto out;
1381		}
1382
1383		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384			continue;
1385
1386		if (forced_push(tp)) {
1387			tcp_mark_push(tp, skb);
1388			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389		} else if (skb == tcp_send_head(sk))
1390			tcp_push_one(sk, mss_now);
1391		continue;
1392
1393wait_for_sndbuf:
1394		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395wait_for_memory:
1396		if (copied)
1397			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398				 TCP_NAGLE_PUSH, size_goal);
1399
1400		err = sk_stream_wait_memory(sk, &timeo);
1401		if (err != 0)
1402			goto do_error;
1403
1404		mss_now = tcp_send_mss(sk, &size_goal, flags);
 
1405	}
1406
1407out:
1408	if (copied) {
1409		tcp_tx_timestamp(sk, sockc.tsflags);
1410		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411	}
1412out_nopush:
1413	sock_zerocopy_put(uarg);
1414	return copied + copied_syn;
1415
1416do_fault:
1417	if (!skb->len) {
1418		tcp_unlink_write_queue(skb, sk);
1419		/* It is the one place in all of TCP, except connection
1420		 * reset, where we can be unlinking the send_head.
1421		 */
1422		tcp_check_send_head(sk, skb);
1423		sk_wmem_free_skb(sk, skb);
1424	}
1425
1426do_error:
1427	if (copied + copied_syn)
1428		goto out;
1429out_err:
1430	sock_zerocopy_put_abort(uarg);
1431	err = sk_stream_error(sk, flags, err);
1432	/* make sure we wake any epoll edge trigger waiter */
1433	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434		     err == -EAGAIN)) {
1435		sk->sk_write_space(sk);
1436		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437	}
1438	return err;
1439}
1440EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
1442int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443{
1444	int ret;
1445
1446	lock_sock(sk);
1447	ret = tcp_sendmsg_locked(sk, msg, size);
1448	release_sock(sk);
1449
1450	return ret;
1451}
1452EXPORT_SYMBOL(tcp_sendmsg);
1453
1454/*
1455 *	Handle reading urgent data. BSD has very simple semantics for
1456 *	this, no blocking and very strange errors 8)
1457 */
1458
1459static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460{
1461	struct tcp_sock *tp = tcp_sk(sk);
1462
1463	/* No URG data to read. */
1464	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465	    tp->urg_data == TCP_URG_READ)
1466		return -EINVAL;	/* Yes this is right ! */
1467
1468	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469		return -ENOTCONN;
1470
1471	if (tp->urg_data & TCP_URG_VALID) {
1472		int err = 0;
1473		char c = tp->urg_data;
1474
1475		if (!(flags & MSG_PEEK))
1476			tp->urg_data = TCP_URG_READ;
1477
1478		/* Read urgent data. */
1479		msg->msg_flags |= MSG_OOB;
1480
1481		if (len > 0) {
1482			if (!(flags & MSG_TRUNC))
1483				err = memcpy_to_msg(msg, &c, 1);
1484			len = 1;
1485		} else
1486			msg->msg_flags |= MSG_TRUNC;
1487
1488		return err ? -EFAULT : len;
1489	}
1490
1491	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492		return 0;
1493
1494	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495	 * the available implementations agree in this case:
1496	 * this call should never block, independent of the
1497	 * blocking state of the socket.
1498	 * Mike <pall@rz.uni-karlsruhe.de>
1499	 */
1500	return -EAGAIN;
1501}
1502
1503static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504{
1505	struct sk_buff *skb;
1506	int copied = 0, err = 0;
1507
1508	/* XXX -- need to support SO_PEEK_OFF */
1509
1510	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512		if (err)
1513			return err;
1514		copied += skb->len;
1515	}
1516
1517	skb_queue_walk(&sk->sk_write_queue, skb) {
1518		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519		if (err)
1520			break;
1521
1522		copied += skb->len;
1523	}
1524
1525	return err ?: copied;
1526}
1527
1528/* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary.  COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
1534static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535{
1536	struct tcp_sock *tp = tcp_sk(sk);
1537	bool time_to_ack = false;
1538
 
1539	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
 
1544
1545	if (inet_csk_ack_scheduled(sk)) {
1546		const struct inet_connection_sock *icsk = inet_csk(sk);
1547		   /* Delayed ACKs frequently hit locked sockets during bulk
1548		    * receive. */
1549		if (icsk->icsk_ack.blocked ||
1550		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552		    /*
1553		     * If this read emptied read buffer, we send ACK, if
1554		     * connection is not bidirectional, user drained
1555		     * receive buffer and there was a small segment
1556		     * in queue.
1557		     */
1558		    (copied > 0 &&
1559		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561		       !icsk->icsk_ack.pingpong)) &&
1562		      !atomic_read(&sk->sk_rmem_alloc)))
1563			time_to_ack = true;
1564	}
1565
1566	/* We send an ACK if we can now advertise a non-zero window
1567	 * which has been raised "significantly".
1568	 *
1569	 * Even if window raised up to infinity, do not send window open ACK
1570	 * in states, where we will not receive more. It is useless.
1571	 */
1572	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573		__u32 rcv_window_now = tcp_receive_window(tp);
1574
1575		/* Optimize, __tcp_select_window() is not cheap. */
1576		if (2*rcv_window_now <= tp->window_clamp) {
1577			__u32 new_window = __tcp_select_window(sk);
1578
1579			/* Send ACK now, if this read freed lots of space
1580			 * in our buffer. Certainly, new_window is new window.
1581			 * We can advertise it now, if it is not less than current one.
1582			 * "Lots" means "at least twice" here.
1583			 */
1584			if (new_window && new_window >= 2 * rcv_window_now)
1585				time_to_ack = true;
1586		}
1587	}
1588	if (time_to_ack)
1589		tcp_send_ack(sk);
1590}
1591
1592static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593{
1594	struct sk_buff *skb;
1595	u32 offset;
1596
1597	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598		offset = seq - TCP_SKB_CB(skb)->seq;
1599		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600			pr_err_once("%s: found a SYN, please report !\n", __func__);
1601			offset--;
1602		}
1603		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604			*off = offset;
1605			return skb;
1606		}
1607		/* This looks weird, but this can happen if TCP collapsing
1608		 * splitted a fat GRO packet, while we released socket lock
1609		 * in skb_splice_bits()
1610		 */
1611		sk_eat_skb(sk, skb);
1612	}
1613	return NULL;
1614}
1615
1616/*
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 *	- It is assumed that the socket was locked by the caller.
1622 *	- The routine does not block.
1623 *	- At present, there is no support for reading OOB data
1624 *	  or for 'peeking' the socket using this routine
1625 *	  (although both would be easy to implement).
1626 */
1627int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628		  sk_read_actor_t recv_actor)
1629{
1630	struct sk_buff *skb;
1631	struct tcp_sock *tp = tcp_sk(sk);
1632	u32 seq = tp->copied_seq;
1633	u32 offset;
1634	int copied = 0;
1635
1636	if (sk->sk_state == TCP_LISTEN)
1637		return -ENOTCONN;
1638	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639		if (offset < skb->len) {
1640			int used;
1641			size_t len;
1642
1643			len = skb->len - offset;
1644			/* Stop reading if we hit a patch of urgent data */
1645			if (tp->urg_data) {
1646				u32 urg_offset = tp->urg_seq - seq;
1647				if (urg_offset < len)
1648					len = urg_offset;
1649				if (!len)
1650					break;
1651			}
1652			used = recv_actor(desc, skb, offset, len);
1653			if (used <= 0) {
1654				if (!copied)
1655					copied = used;
1656				break;
1657			} else if (used <= len) {
1658				seq += used;
1659				copied += used;
1660				offset += used;
1661			}
1662			/* If recv_actor drops the lock (e.g. TCP splice
 
1663			 * receive) the skb pointer might be invalid when
1664			 * getting here: tcp_collapse might have deleted it
1665			 * while aggregating skbs from the socket queue.
1666			 */
1667			skb = tcp_recv_skb(sk, seq - 1, &offset);
1668			if (!skb)
1669				break;
1670			/* TCP coalescing might have appended data to the skb.
1671			 * Try to splice more frags
1672			 */
1673			if (offset + 1 != skb->len)
1674				continue;
1675		}
1676		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677			sk_eat_skb(sk, skb);
1678			++seq;
1679			break;
1680		}
1681		sk_eat_skb(sk, skb);
1682		if (!desc->count)
1683			break;
1684		tp->copied_seq = seq;
1685	}
1686	tp->copied_seq = seq;
1687
1688	tcp_rcv_space_adjust(sk);
1689
1690	/* Clean up data we have read: This will do ACK frames. */
1691	if (copied > 0) {
1692		tcp_recv_skb(sk, seq, &offset);
1693		tcp_cleanup_rbuf(sk, copied);
1694	}
1695	return copied;
1696}
1697EXPORT_SYMBOL(tcp_read_sock);
1698
1699int tcp_peek_len(struct socket *sock)
1700{
1701	return tcp_inq(sock->sk);
1702}
1703EXPORT_SYMBOL(tcp_peek_len);
1704
1705static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706				    struct scm_timestamping *tss)
1707{
1708	if (skb->tstamp)
1709		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710	else
1711		tss->ts[0] = (struct timespec) {0};
1712
1713	if (skb_hwtstamps(skb)->hwtstamp)
1714		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715	else
1716		tss->ts[2] = (struct timespec) {0};
1717}
1718
1719/* Similar to __sock_recv_timestamp, but does not require an skb */
1720static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721			       struct scm_timestamping *tss)
1722{
1723	struct timeval tv;
1724	bool has_timestamping = false;
1725
1726	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730					 sizeof(tss->ts[0]), &tss->ts[0]);
1731			} else {
1732				tv.tv_sec = tss->ts[0].tv_sec;
1733				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734
1735				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736					 sizeof(tv), &tv);
1737			}
1738		}
1739
1740		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741			has_timestamping = true;
1742		else
1743			tss->ts[0] = (struct timespec) {0};
1744	}
1745
1746	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748			has_timestamping = true;
1749		else
1750			tss->ts[2] = (struct timespec) {0};
1751	}
1752
1753	if (has_timestamping) {
1754		tss->ts[1] = (struct timespec) {0};
1755		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756			 sizeof(*tss), tss);
1757	}
1758}
1759
1760/*
1761 *	This routine copies from a sock struct into the user buffer.
1762 *
1763 *	Technical note: in 2.3 we work on _locked_ socket, so that
1764 *	tricks with *seq access order and skb->users are not required.
1765 *	Probably, code can be easily improved even more.
1766 */
1767
1768int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769		int flags, int *addr_len)
1770{
1771	struct tcp_sock *tp = tcp_sk(sk);
1772	int copied = 0;
1773	u32 peek_seq;
1774	u32 *seq;
1775	unsigned long used;
1776	int err;
1777	int target;		/* Read at least this many bytes */
1778	long timeo;
1779	struct sk_buff *skb, *last;
 
 
1780	u32 urg_hole = 0;
1781	struct scm_timestamping tss;
1782	bool has_tss = false;
1783
1784	if (unlikely(flags & MSG_ERRQUEUE))
1785		return inet_recv_error(sk, msg, len, addr_len);
1786
1787	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788	    (sk->sk_state == TCP_ESTABLISHED))
1789		sk_busy_loop(sk, nonblock);
1790
1791	lock_sock(sk);
1792
1793	err = -ENOTCONN;
1794	if (sk->sk_state == TCP_LISTEN)
1795		goto out;
1796
1797	timeo = sock_rcvtimeo(sk, nonblock);
1798
1799	/* Urgent data needs to be handled specially. */
1800	if (flags & MSG_OOB)
1801		goto recv_urg;
1802
1803	if (unlikely(tp->repair)) {
1804		err = -EPERM;
1805		if (!(flags & MSG_PEEK))
1806			goto out;
1807
1808		if (tp->repair_queue == TCP_SEND_QUEUE)
1809			goto recv_sndq;
1810
1811		err = -EINVAL;
1812		if (tp->repair_queue == TCP_NO_QUEUE)
1813			goto out;
1814
1815		/* 'common' recv queue MSG_PEEK-ing */
1816	}
1817
1818	seq = &tp->copied_seq;
1819	if (flags & MSG_PEEK) {
1820		peek_seq = tp->copied_seq;
1821		seq = &peek_seq;
1822	}
1823
1824	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826	do {
1827		u32 offset;
1828
1829		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830		if (tp->urg_data && tp->urg_seq == *seq) {
1831			if (copied)
1832				break;
1833			if (signal_pending(current)) {
1834				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835				break;
1836			}
1837		}
1838
1839		/* Next get a buffer. */
1840
1841		last = skb_peek_tail(&sk->sk_receive_queue);
1842		skb_queue_walk(&sk->sk_receive_queue, skb) {
1843			last = skb;
1844			/* Now that we have two receive queues this
1845			 * shouldn't happen.
1846			 */
1847			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850				 flags))
1851				break;
1852
1853			offset = *seq - TCP_SKB_CB(skb)->seq;
1854			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855				pr_err_once("%s: found a SYN, please report !\n", __func__);
1856				offset--;
1857			}
1858			if (offset < skb->len)
1859				goto found_ok_skb;
1860			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861				goto found_fin_ok;
1862			WARN(!(flags & MSG_PEEK),
1863			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865		}
1866
1867		/* Well, if we have backlog, try to process it now yet. */
1868
1869		if (copied >= target && !sk->sk_backlog.tail)
1870			break;
1871
1872		if (copied) {
1873			if (sk->sk_err ||
1874			    sk->sk_state == TCP_CLOSE ||
1875			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876			    !timeo ||
1877			    signal_pending(current))
1878				break;
1879		} else {
1880			if (sock_flag(sk, SOCK_DONE))
1881				break;
1882
1883			if (sk->sk_err) {
1884				copied = sock_error(sk);
1885				break;
1886			}
1887
1888			if (sk->sk_shutdown & RCV_SHUTDOWN)
1889				break;
1890
1891			if (sk->sk_state == TCP_CLOSE) {
1892				if (!sock_flag(sk, SOCK_DONE)) {
1893					/* This occurs when user tries to read
1894					 * from never connected socket.
1895					 */
1896					copied = -ENOTCONN;
1897					break;
1898				}
1899				break;
1900			}
1901
1902			if (!timeo) {
1903				copied = -EAGAIN;
1904				break;
1905			}
1906
1907			if (signal_pending(current)) {
1908				copied = sock_intr_errno(timeo);
1909				break;
1910			}
1911		}
1912
1913		tcp_cleanup_rbuf(sk, copied);
1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915		if (copied >= target) {
1916			/* Do not sleep, just process backlog. */
1917			release_sock(sk);
1918			lock_sock(sk);
1919		} else {
1920			sk_wait_data(sk, &timeo, last);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921		}
1922
1923		if ((flags & MSG_PEEK) &&
1924		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926					    current->comm,
1927					    task_pid_nr(current));
1928			peek_seq = tp->copied_seq;
1929		}
1930		continue;
1931
1932	found_ok_skb:
1933		/* Ok so how much can we use? */
1934		used = skb->len - offset;
1935		if (len < used)
1936			used = len;
1937
1938		/* Do we have urgent data here? */
1939		if (tp->urg_data) {
1940			u32 urg_offset = tp->urg_seq - *seq;
1941			if (urg_offset < used) {
1942				if (!urg_offset) {
1943					if (!sock_flag(sk, SOCK_URGINLINE)) {
1944						++*seq;
1945						urg_hole++;
1946						offset++;
1947						used--;
1948						if (!used)
1949							goto skip_copy;
1950					}
1951				} else
1952					used = urg_offset;
1953			}
1954		}
1955
1956		if (!(flags & MSG_TRUNC)) {
1957			err = skb_copy_datagram_msg(skb, offset, msg, used);
1958			if (err) {
1959				/* Exception. Bailout! */
1960				if (!copied)
1961					copied = -EFAULT;
1962				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963			}
1964		}
1965
1966		*seq += used;
1967		copied += used;
1968		len -= used;
1969
1970		tcp_rcv_space_adjust(sk);
1971
1972skip_copy:
1973		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974			tp->urg_data = 0;
1975			tcp_fast_path_check(sk);
1976		}
1977		if (used + offset < skb->len)
1978			continue;
1979
1980		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981			tcp_update_recv_tstamps(skb, &tss);
1982			has_tss = true;
 
 
1983		}
1984		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985			goto found_fin_ok;
1986		if (!(flags & MSG_PEEK))
1987			sk_eat_skb(sk, skb);
1988		continue;
1989
1990	found_fin_ok:
1991		/* Process the FIN. */
1992		++*seq;
1993		if (!(flags & MSG_PEEK))
1994			sk_eat_skb(sk, skb);
 
 
1995		break;
1996	} while (len > 0);
1997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998	/* According to UNIX98, msg_name/msg_namelen are ignored
1999	 * on connected socket. I was just happy when found this 8) --ANK
2000	 */
2001
2002	if (has_tss)
2003		tcp_recv_timestamp(msg, sk, &tss);
2004
2005	/* Clean up data we have read: This will do ACK frames. */
2006	tcp_cleanup_rbuf(sk, copied);
2007
2008	release_sock(sk);
2009	return copied;
2010
2011out:
2012	release_sock(sk);
2013	return err;
2014
2015recv_urg:
2016	err = tcp_recv_urg(sk, msg, len, flags);
2017	goto out;
2018
2019recv_sndq:
2020	err = tcp_peek_sndq(sk, msg, len);
2021	goto out;
2022}
2023EXPORT_SYMBOL(tcp_recvmsg);
2024
2025void tcp_set_state(struct sock *sk, int state)
2026{
2027	int oldstate = sk->sk_state;
2028
2029	/* We defined a new enum for TCP states that are exported in BPF
2030	 * so as not force the internal TCP states to be frozen. The
2031	 * following checks will detect if an internal state value ever
2032	 * differs from the BPF value. If this ever happens, then we will
2033	 * need to remap the internal value to the BPF value before calling
2034	 * tcp_call_bpf_2arg.
2035	 */
2036	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049
2050	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052
2053	switch (state) {
2054	case TCP_ESTABLISHED:
2055		if (oldstate != TCP_ESTABLISHED)
2056			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057		break;
2058
2059	case TCP_CLOSE:
2060		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062
2063		sk->sk_prot->unhash(sk);
2064		if (inet_csk(sk)->icsk_bind_hash &&
2065		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066			inet_put_port(sk);
2067		/* fall through */
2068	default:
2069		if (oldstate == TCP_ESTABLISHED)
2070			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071	}
2072
2073	/* Change state AFTER socket is unhashed to avoid closed
2074	 * socket sitting in hash tables.
2075	 */
2076	inet_sk_state_store(sk, state);
2077
2078#ifdef STATE_TRACE
2079	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080#endif
2081}
2082EXPORT_SYMBOL_GPL(tcp_set_state);
2083
2084/*
2085 *	State processing on a close. This implements the state shift for
2086 *	sending our FIN frame. Note that we only send a FIN for some
2087 *	states. A shutdown() may have already sent the FIN, or we may be
2088 *	closed.
2089 */
2090
2091static const unsigned char new_state[16] = {
2092  /* current state:        new state:      action:	*/
2093  [0 /* (Invalid) */]	= TCP_CLOSE,
2094  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095  [TCP_SYN_SENT]	= TCP_CLOSE,
2096  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2098  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2099  [TCP_TIME_WAIT]	= TCP_CLOSE,
2100  [TCP_CLOSE]		= TCP_CLOSE,
2101  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2102  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2103  [TCP_LISTEN]		= TCP_CLOSE,
2104  [TCP_CLOSING]		= TCP_CLOSING,
2105  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2106};
2107
2108static int tcp_close_state(struct sock *sk)
2109{
2110	int next = (int)new_state[sk->sk_state];
2111	int ns = next & TCP_STATE_MASK;
2112
2113	tcp_set_state(sk, ns);
2114
2115	return next & TCP_ACTION_FIN;
2116}
2117
2118/*
2119 *	Shutdown the sending side of a connection. Much like close except
2120 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121 */
2122
2123void tcp_shutdown(struct sock *sk, int how)
2124{
2125	/*	We need to grab some memory, and put together a FIN,
2126	 *	and then put it into the queue to be sent.
2127	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128	 */
2129	if (!(how & SEND_SHUTDOWN))
2130		return;
2131
2132	/* If we've already sent a FIN, or it's a closed state, skip this. */
2133	if ((1 << sk->sk_state) &
2134	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136		/* Clear out any half completed packets.  FIN if needed. */
2137		if (tcp_close_state(sk))
2138			tcp_send_fin(sk);
2139	}
2140}
2141EXPORT_SYMBOL(tcp_shutdown);
2142
2143bool tcp_check_oom(struct sock *sk, int shift)
2144{
2145	bool too_many_orphans, out_of_socket_memory;
2146
2147	too_many_orphans = tcp_too_many_orphans(sk, shift);
2148	out_of_socket_memory = tcp_out_of_memory(sk);
2149
2150	if (too_many_orphans)
2151		net_info_ratelimited("too many orphaned sockets\n");
2152	if (out_of_socket_memory)
2153		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154	return too_many_orphans || out_of_socket_memory;
2155}
2156
2157void tcp_close(struct sock *sk, long timeout)
2158{
2159	struct sk_buff *skb;
2160	int data_was_unread = 0;
2161	int state;
2162
2163	lock_sock(sk);
2164	sk->sk_shutdown = SHUTDOWN_MASK;
2165
2166	if (sk->sk_state == TCP_LISTEN) {
2167		tcp_set_state(sk, TCP_CLOSE);
2168
2169		/* Special case. */
2170		inet_csk_listen_stop(sk);
2171
2172		goto adjudge_to_death;
2173	}
2174
2175	/*  We need to flush the recv. buffs.  We do this only on the
2176	 *  descriptor close, not protocol-sourced closes, because the
2177	 *  reader process may not have drained the data yet!
2178	 */
2179	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181
2182		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183			len--;
2184		data_was_unread += len;
2185		__kfree_skb(skb);
2186	}
2187
2188	sk_mem_reclaim(sk);
2189
2190	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191	if (sk->sk_state == TCP_CLOSE)
2192		goto adjudge_to_death;
2193
2194	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2195	 * data was lost. To witness the awful effects of the old behavior of
2196	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197	 * GET in an FTP client, suspend the process, wait for the client to
2198	 * advertise a zero window, then kill -9 the FTP client, wheee...
2199	 * Note: timeout is always zero in such a case.
2200	 */
2201	if (unlikely(tcp_sk(sk)->repair)) {
2202		sk->sk_prot->disconnect(sk, 0);
2203	} else if (data_was_unread) {
2204		/* Unread data was tossed, zap the connection. */
2205		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206		tcp_set_state(sk, TCP_CLOSE);
2207		tcp_send_active_reset(sk, sk->sk_allocation);
2208	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209		/* Check zero linger _after_ checking for unread data. */
2210		sk->sk_prot->disconnect(sk, 0);
2211		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212	} else if (tcp_close_state(sk)) {
2213		/* We FIN if the application ate all the data before
2214		 * zapping the connection.
2215		 */
2216
2217		/* RED-PEN. Formally speaking, we have broken TCP state
2218		 * machine. State transitions:
2219		 *
2220		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2222		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223		 *
2224		 * are legal only when FIN has been sent (i.e. in window),
2225		 * rather than queued out of window. Purists blame.
2226		 *
2227		 * F.e. "RFC state" is ESTABLISHED,
2228		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229		 *
2230		 * The visible declinations are that sometimes
2231		 * we enter time-wait state, when it is not required really
2232		 * (harmless), do not send active resets, when they are
2233		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234		 * they look as CLOSING or LAST_ACK for Linux)
2235		 * Probably, I missed some more holelets.
2236		 * 						--ANK
2237		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238		 * in a single packet! (May consider it later but will
2239		 * probably need API support or TCP_CORK SYN-ACK until
2240		 * data is written and socket is closed.)
2241		 */
2242		tcp_send_fin(sk);
2243	}
2244
2245	sk_stream_wait_close(sk, timeout);
2246
2247adjudge_to_death:
2248	state = sk->sk_state;
2249	sock_hold(sk);
2250	sock_orphan(sk);
2251
2252	/* It is the last release_sock in its life. It will remove backlog. */
2253	release_sock(sk);
2254
2255
2256	/* Now socket is owned by kernel and we acquire BH lock
2257	 *  to finish close. No need to check for user refs.
2258	 */
2259	local_bh_disable();
2260	bh_lock_sock(sk);
2261	WARN_ON(sock_owned_by_user(sk));
2262
2263	percpu_counter_inc(sk->sk_prot->orphan_count);
2264
2265	/* Have we already been destroyed by a softirq or backlog? */
2266	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267		goto out;
2268
2269	/*	This is a (useful) BSD violating of the RFC. There is a
2270	 *	problem with TCP as specified in that the other end could
2271	 *	keep a socket open forever with no application left this end.
2272	 *	We use a 1 minute timeout (about the same as BSD) then kill
2273	 *	our end. If they send after that then tough - BUT: long enough
2274	 *	that we won't make the old 4*rto = almost no time - whoops
2275	 *	reset mistake.
2276	 *
2277	 *	Nope, it was not mistake. It is really desired behaviour
2278	 *	f.e. on http servers, when such sockets are useless, but
2279	 *	consume significant resources. Let's do it with special
2280	 *	linger2	option.					--ANK
2281	 */
2282
2283	if (sk->sk_state == TCP_FIN_WAIT2) {
2284		struct tcp_sock *tp = tcp_sk(sk);
2285		if (tp->linger2 < 0) {
2286			tcp_set_state(sk, TCP_CLOSE);
2287			tcp_send_active_reset(sk, GFP_ATOMIC);
2288			__NET_INC_STATS(sock_net(sk),
2289					LINUX_MIB_TCPABORTONLINGER);
2290		} else {
2291			const int tmo = tcp_fin_time(sk);
2292
2293			if (tmo > TCP_TIMEWAIT_LEN) {
2294				inet_csk_reset_keepalive_timer(sk,
2295						tmo - TCP_TIMEWAIT_LEN);
2296			} else {
2297				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298				goto out;
2299			}
2300		}
2301	}
2302	if (sk->sk_state != TCP_CLOSE) {
2303		sk_mem_reclaim(sk);
2304		if (tcp_check_oom(sk, 0)) {
 
 
 
2305			tcp_set_state(sk, TCP_CLOSE);
2306			tcp_send_active_reset(sk, GFP_ATOMIC);
2307			__NET_INC_STATS(sock_net(sk),
2308					LINUX_MIB_TCPABORTONMEMORY);
2309		} else if (!check_net(sock_net(sk))) {
2310			/* Not possible to send reset; just close */
2311			tcp_set_state(sk, TCP_CLOSE);
2312		}
2313	}
2314
2315	if (sk->sk_state == TCP_CLOSE) {
2316		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2317		/* We could get here with a non-NULL req if the socket is
2318		 * aborted (e.g., closed with unread data) before 3WHS
2319		 * finishes.
2320		 */
2321		if (req)
2322			reqsk_fastopen_remove(sk, req, false);
2323		inet_csk_destroy_sock(sk);
2324	}
2325	/* Otherwise, socket is reprieved until protocol close. */
2326
2327out:
2328	bh_unlock_sock(sk);
2329	local_bh_enable();
2330	sock_put(sk);
2331}
2332EXPORT_SYMBOL(tcp_close);
2333
2334/* These states need RST on ABORT according to RFC793 */
2335
2336static inline bool tcp_need_reset(int state)
2337{
2338	return (1 << state) &
2339	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341}
2342
2343static void tcp_rtx_queue_purge(struct sock *sk)
2344{
2345	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346
2347	while (p) {
2348		struct sk_buff *skb = rb_to_skb(p);
2349
2350		p = rb_next(p);
2351		/* Since we are deleting whole queue, no need to
2352		 * list_del(&skb->tcp_tsorted_anchor)
2353		 */
2354		tcp_rtx_queue_unlink(skb, sk);
2355		sk_wmem_free_skb(sk, skb);
2356	}
2357}
2358
2359void tcp_write_queue_purge(struct sock *sk)
2360{
2361	struct sk_buff *skb;
2362
2363	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365		tcp_skb_tsorted_anchor_cleanup(skb);
2366		sk_wmem_free_skb(sk, skb);
2367	}
2368	tcp_rtx_queue_purge(sk);
2369	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370	sk_mem_reclaim(sk);
2371	tcp_clear_all_retrans_hints(tcp_sk(sk));
2372	tcp_sk(sk)->packets_out = 0;
2373}
2374
2375int tcp_disconnect(struct sock *sk, int flags)
2376{
2377	struct inet_sock *inet = inet_sk(sk);
2378	struct inet_connection_sock *icsk = inet_csk(sk);
2379	struct tcp_sock *tp = tcp_sk(sk);
2380	int err = 0;
2381	int old_state = sk->sk_state;
2382
2383	if (old_state != TCP_CLOSE)
2384		tcp_set_state(sk, TCP_CLOSE);
2385
2386	/* ABORT function of RFC793 */
2387	if (old_state == TCP_LISTEN) {
2388		inet_csk_listen_stop(sk);
2389	} else if (unlikely(tp->repair)) {
2390		sk->sk_err = ECONNABORTED;
2391	} else if (tcp_need_reset(old_state) ||
2392		   (tp->snd_nxt != tp->write_seq &&
2393		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394		/* The last check adjusts for discrepancy of Linux wrt. RFC
2395		 * states
2396		 */
2397		tcp_send_active_reset(sk, gfp_any());
2398		sk->sk_err = ECONNRESET;
2399	} else if (old_state == TCP_SYN_SENT)
2400		sk->sk_err = ECONNRESET;
2401
2402	tcp_clear_xmit_timers(sk);
2403	__skb_queue_purge(&sk->sk_receive_queue);
2404	tcp_write_queue_purge(sk);
2405	tcp_fastopen_active_disable_ofo_check(sk);
2406	skb_rbtree_purge(&tp->out_of_order_queue);
 
 
2407
2408	inet->inet_dport = 0;
2409
2410	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411		inet_reset_saddr(sk);
2412
2413	sk->sk_shutdown = 0;
2414	sock_reset_flag(sk, SOCK_DONE);
2415	tp->srtt_us = 0;
2416	tp->write_seq += tp->max_window + 2;
2417	if (tp->write_seq == 0)
2418		tp->write_seq = 1;
2419	icsk->icsk_backoff = 0;
2420	tp->snd_cwnd = 2;
2421	icsk->icsk_probes_out = 0;
 
2422	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2423	tp->snd_cwnd_cnt = 0;
 
2424	tp->window_clamp = 0;
2425	tcp_set_ca_state(sk, TCP_CA_Open);
2426	tp->is_sack_reneg = 0;
2427	tcp_clear_retrans(tp);
2428	inet_csk_delack_init(sk);
2429	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430	 * issue in __tcp_select_window()
2431	 */
2432	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434	__sk_dst_reset(sk);
2435	dst_release(sk->sk_rx_dst);
2436	sk->sk_rx_dst = NULL;
2437	tcp_saved_syn_free(tp);
2438
2439	/* Clean up fastopen related fields */
2440	tcp_free_fastopen_req(tp);
2441	inet->defer_connect = 0;
2442
2443	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444
2445	if (sk->sk_frag.page) {
2446		put_page(sk->sk_frag.page);
2447		sk->sk_frag.page = NULL;
2448		sk->sk_frag.offset = 0;
2449	}
2450
2451	sk->sk_error_report(sk);
2452	return err;
2453}
2454EXPORT_SYMBOL(tcp_disconnect);
2455
2456static inline bool tcp_can_repair_sock(const struct sock *sk)
2457{
2458	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459		(sk->sk_state != TCP_LISTEN);
2460}
2461
2462static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463{
2464	struct tcp_repair_window opt;
2465
2466	if (!tp->repair)
2467		return -EPERM;
2468
2469	if (len != sizeof(opt))
2470		return -EINVAL;
2471
2472	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473		return -EFAULT;
2474
2475	if (opt.max_window < opt.snd_wnd)
2476		return -EINVAL;
2477
2478	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479		return -EINVAL;
2480
2481	if (after(opt.rcv_wup, tp->rcv_nxt))
2482		return -EINVAL;
2483
2484	tp->snd_wl1	= opt.snd_wl1;
2485	tp->snd_wnd	= opt.snd_wnd;
2486	tp->max_window	= opt.max_window;
2487
2488	tp->rcv_wnd	= opt.rcv_wnd;
2489	tp->rcv_wup	= opt.rcv_wup;
2490
2491	return 0;
2492}
2493
2494static int tcp_repair_options_est(struct sock *sk,
2495		struct tcp_repair_opt __user *optbuf, unsigned int len)
2496{
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct tcp_repair_opt opt;
2499
2500	while (len >= sizeof(opt)) {
2501		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502			return -EFAULT;
2503
2504		optbuf++;
2505		len -= sizeof(opt);
2506
2507		switch (opt.opt_code) {
2508		case TCPOPT_MSS:
2509			tp->rx_opt.mss_clamp = opt.opt_val;
2510			tcp_mtup_init(sk);
2511			break;
2512		case TCPOPT_WINDOW:
2513			{
2514				u16 snd_wscale = opt.opt_val & 0xFFFF;
2515				u16 rcv_wscale = opt.opt_val >> 16;
2516
2517				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518					return -EFBIG;
2519
2520				tp->rx_opt.snd_wscale = snd_wscale;
2521				tp->rx_opt.rcv_wscale = rcv_wscale;
2522				tp->rx_opt.wscale_ok = 1;
2523			}
2524			break;
2525		case TCPOPT_SACK_PERM:
2526			if (opt.opt_val != 0)
2527				return -EINVAL;
2528
2529			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2530			break;
2531		case TCPOPT_TIMESTAMP:
2532			if (opt.opt_val != 0)
2533				return -EINVAL;
2534
2535			tp->rx_opt.tstamp_ok = 1;
2536			break;
2537		}
2538	}
2539
2540	return 0;
2541}
2542
2543/*
2544 *	Socket option code for TCP.
2545 */
2546static int do_tcp_setsockopt(struct sock *sk, int level,
2547		int optname, char __user *optval, unsigned int optlen)
2548{
2549	struct tcp_sock *tp = tcp_sk(sk);
2550	struct inet_connection_sock *icsk = inet_csk(sk);
2551	struct net *net = sock_net(sk);
2552	int val;
2553	int err = 0;
2554
2555	/* These are data/string values, all the others are ints */
2556	switch (optname) {
2557	case TCP_CONGESTION: {
2558		char name[TCP_CA_NAME_MAX];
2559
2560		if (optlen < 1)
2561			return -EINVAL;
2562
2563		val = strncpy_from_user(name, optval,
2564					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565		if (val < 0)
2566			return -EFAULT;
2567		name[val] = 0;
2568
2569		lock_sock(sk);
2570		err = tcp_set_congestion_control(sk, name, true, true);
2571		release_sock(sk);
2572		return err;
2573	}
2574	case TCP_ULP: {
2575		char name[TCP_ULP_NAME_MAX];
 
 
 
 
 
 
 
 
 
 
2576
2577		if (optlen < 1)
 
 
 
 
2578			return -EINVAL;
 
2579
2580		val = strncpy_from_user(name, optval,
2581					min_t(long, TCP_ULP_NAME_MAX - 1,
2582					      optlen));
2583		if (val < 0)
2584			return -EFAULT;
2585		name[val] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586
 
 
2587		lock_sock(sk);
2588		err = tcp_set_ulp(sk, name);
2589		release_sock(sk);
2590		return err;
2591	}
2592	case TCP_FASTOPEN_KEY: {
2593		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
 
 
 
 
 
 
 
 
 
 
2594
2595		if (optlen != sizeof(key))
2596			return -EINVAL;
2597
2598		if (copy_from_user(key, optval, optlen))
2599			return -EFAULT;
 
 
 
 
 
 
 
 
2600
2601		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
 
 
 
2602	}
2603	default:
2604		/* fallthru */
2605		break;
2606	}
2607
2608	if (optlen < sizeof(int))
2609		return -EINVAL;
2610
2611	if (get_user(val, (int __user *)optval))
2612		return -EFAULT;
2613
2614	lock_sock(sk);
2615
2616	switch (optname) {
2617	case TCP_MAXSEG:
2618		/* Values greater than interface MTU won't take effect. However
2619		 * at the point when this call is done we typically don't yet
2620		 * know which interface is going to be used
2621		 */
2622		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623			err = -EINVAL;
2624			break;
2625		}
2626		tp->rx_opt.user_mss = val;
2627		break;
2628
2629	case TCP_NODELAY:
2630		if (val) {
2631			/* TCP_NODELAY is weaker than TCP_CORK, so that
2632			 * this option on corked socket is remembered, but
2633			 * it is not activated until cork is cleared.
2634			 *
2635			 * However, when TCP_NODELAY is set we make
2636			 * an explicit push, which overrides even TCP_CORK
2637			 * for currently queued segments.
2638			 */
2639			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640			tcp_push_pending_frames(sk);
2641		} else {
2642			tp->nonagle &= ~TCP_NAGLE_OFF;
2643		}
2644		break;
2645
2646	case TCP_THIN_LINEAR_TIMEOUTS:
2647		if (val < 0 || val > 1)
2648			err = -EINVAL;
2649		else
2650			tp->thin_lto = val;
2651		break;
2652
2653	case TCP_THIN_DUPACK:
2654		if (val < 0 || val > 1)
2655			err = -EINVAL;
2656		break;
2657
2658	case TCP_REPAIR:
2659		if (!tcp_can_repair_sock(sk))
2660			err = -EPERM;
2661		else if (val == 1) {
2662			tp->repair = 1;
2663			sk->sk_reuse = SK_FORCE_REUSE;
2664			tp->repair_queue = TCP_NO_QUEUE;
2665		} else if (val == 0) {
2666			tp->repair = 0;
2667			sk->sk_reuse = SK_NO_REUSE;
2668			tcp_send_window_probe(sk);
2669		} else
2670			err = -EINVAL;
2671
2672		break;
2673
2674	case TCP_REPAIR_QUEUE:
2675		if (!tp->repair)
2676			err = -EPERM;
2677		else if ((unsigned int)val < TCP_QUEUES_NR)
2678			tp->repair_queue = val;
2679		else
2680			err = -EINVAL;
2681		break;
2682
2683	case TCP_QUEUE_SEQ:
2684		if (sk->sk_state != TCP_CLOSE)
2685			err = -EPERM;
2686		else if (tp->repair_queue == TCP_SEND_QUEUE)
2687			tp->write_seq = val;
2688		else if (tp->repair_queue == TCP_RECV_QUEUE)
2689			tp->rcv_nxt = val;
2690		else
2691			err = -EINVAL;
2692		break;
2693
2694	case TCP_REPAIR_OPTIONS:
2695		if (!tp->repair)
2696			err = -EINVAL;
2697		else if (sk->sk_state == TCP_ESTABLISHED)
2698			err = tcp_repair_options_est(sk,
2699					(struct tcp_repair_opt __user *)optval,
2700					optlen);
2701		else
2702			err = -EPERM;
2703		break;
2704
2705	case TCP_CORK:
2706		/* When set indicates to always queue non-full frames.
2707		 * Later the user clears this option and we transmit
2708		 * any pending partial frames in the queue.  This is
2709		 * meant to be used alongside sendfile() to get properly
2710		 * filled frames when the user (for example) must write
2711		 * out headers with a write() call first and then use
2712		 * sendfile to send out the data parts.
2713		 *
2714		 * TCP_CORK can be set together with TCP_NODELAY and it is
2715		 * stronger than TCP_NODELAY.
2716		 */
2717		if (val) {
2718			tp->nonagle |= TCP_NAGLE_CORK;
2719		} else {
2720			tp->nonagle &= ~TCP_NAGLE_CORK;
2721			if (tp->nonagle&TCP_NAGLE_OFF)
2722				tp->nonagle |= TCP_NAGLE_PUSH;
2723			tcp_push_pending_frames(sk);
2724		}
2725		break;
2726
2727	case TCP_KEEPIDLE:
2728		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729			err = -EINVAL;
2730		else {
2731			tp->keepalive_time = val * HZ;
2732			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733			    !((1 << sk->sk_state) &
2734			      (TCPF_CLOSE | TCPF_LISTEN))) {
2735				u32 elapsed = keepalive_time_elapsed(tp);
2736				if (tp->keepalive_time > elapsed)
2737					elapsed = tp->keepalive_time - elapsed;
2738				else
2739					elapsed = 0;
2740				inet_csk_reset_keepalive_timer(sk, elapsed);
2741			}
2742		}
2743		break;
2744	case TCP_KEEPINTVL:
2745		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746			err = -EINVAL;
2747		else
2748			tp->keepalive_intvl = val * HZ;
2749		break;
2750	case TCP_KEEPCNT:
2751		if (val < 1 || val > MAX_TCP_KEEPCNT)
2752			err = -EINVAL;
2753		else
2754			tp->keepalive_probes = val;
2755		break;
2756	case TCP_SYNCNT:
2757		if (val < 1 || val > MAX_TCP_SYNCNT)
2758			err = -EINVAL;
2759		else
2760			icsk->icsk_syn_retries = val;
2761		break;
2762
2763	case TCP_SAVE_SYN:
2764		if (val < 0 || val > 1)
2765			err = -EINVAL;
2766		else
2767			tp->save_syn = val;
2768		break;
2769
2770	case TCP_LINGER2:
2771		if (val < 0)
2772			tp->linger2 = -1;
2773		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774			tp->linger2 = 0;
2775		else
2776			tp->linger2 = val * HZ;
2777		break;
2778
2779	case TCP_DEFER_ACCEPT:
2780		/* Translate value in seconds to number of retransmits */
2781		icsk->icsk_accept_queue.rskq_defer_accept =
2782			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783					TCP_RTO_MAX / HZ);
2784		break;
2785
2786	case TCP_WINDOW_CLAMP:
2787		if (!val) {
2788			if (sk->sk_state != TCP_CLOSE) {
2789				err = -EINVAL;
2790				break;
2791			}
2792			tp->window_clamp = 0;
2793		} else
2794			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795						SOCK_MIN_RCVBUF / 2 : val;
2796		break;
2797
2798	case TCP_QUICKACK:
2799		if (!val) {
2800			icsk->icsk_ack.pingpong = 1;
2801		} else {
2802			icsk->icsk_ack.pingpong = 0;
2803			if ((1 << sk->sk_state) &
2804			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805			    inet_csk_ack_scheduled(sk)) {
2806				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807				tcp_cleanup_rbuf(sk, 1);
2808				if (!(val & 1))
2809					icsk->icsk_ack.pingpong = 1;
2810			}
2811		}
2812		break;
2813
2814#ifdef CONFIG_TCP_MD5SIG
2815	case TCP_MD5SIG:
2816	case TCP_MD5SIG_EXT:
2817		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819		else
2820			err = -EINVAL;
2821		break;
2822#endif
2823	case TCP_USER_TIMEOUT:
2824		/* Cap the max time in ms TCP will retry or probe the window
2825		 * before giving up and aborting (ETIMEDOUT) a connection.
2826		 */
2827		if (val < 0)
2828			err = -EINVAL;
2829		else
2830			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831		break;
2832
2833	case TCP_FASTOPEN:
2834		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835		    TCPF_LISTEN))) {
2836			tcp_fastopen_init_key_once(net);
2837
2838			fastopen_queue_tune(sk, val);
2839		} else {
2840			err = -EINVAL;
2841		}
2842		break;
2843	case TCP_FASTOPEN_CONNECT:
2844		if (val > 1 || val < 0) {
2845			err = -EINVAL;
2846		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2847			if (sk->sk_state == TCP_CLOSE)
2848				tp->fastopen_connect = val;
2849			else
2850				err = -EINVAL;
2851		} else {
2852			err = -EOPNOTSUPP;
2853		}
2854		break;
2855	case TCP_FASTOPEN_NO_COOKIE:
2856		if (val > 1 || val < 0)
2857			err = -EINVAL;
2858		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859			err = -EINVAL;
2860		else
2861			tp->fastopen_no_cookie = val;
2862		break;
2863	case TCP_TIMESTAMP:
2864		if (!tp->repair)
2865			err = -EPERM;
2866		else
2867			tp->tsoffset = val - tcp_time_stamp_raw();
2868		break;
2869	case TCP_REPAIR_WINDOW:
2870		err = tcp_repair_set_window(tp, optval, optlen);
2871		break;
2872	case TCP_NOTSENT_LOWAT:
2873		tp->notsent_lowat = val;
2874		sk->sk_write_space(sk);
2875		break;
2876	default:
2877		err = -ENOPROTOOPT;
2878		break;
2879	}
2880
2881	release_sock(sk);
2882	return err;
2883}
2884
2885int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886		   unsigned int optlen)
2887{
2888	const struct inet_connection_sock *icsk = inet_csk(sk);
2889
2890	if (level != SOL_TCP)
2891		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892						     optval, optlen);
2893	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894}
2895EXPORT_SYMBOL(tcp_setsockopt);
2896
2897#ifdef CONFIG_COMPAT
2898int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899			  char __user *optval, unsigned int optlen)
2900{
2901	if (level != SOL_TCP)
2902		return inet_csk_compat_setsockopt(sk, level, optname,
2903						  optval, optlen);
2904	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905}
2906EXPORT_SYMBOL(compat_tcp_setsockopt);
2907#endif
2908
2909static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910				      struct tcp_info *info)
2911{
2912	u64 stats[__TCP_CHRONO_MAX], total = 0;
2913	enum tcp_chrono i;
2914
2915	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916		stats[i] = tp->chrono_stat[i - 1];
2917		if (i == tp->chrono_type)
2918			stats[i] += tcp_jiffies32 - tp->chrono_start;
2919		stats[i] *= USEC_PER_SEC / HZ;
2920		total += stats[i];
2921	}
2922
2923	info->tcpi_busy_time = total;
2924	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926}
2927
2928/* Return information about state of tcp endpoint in API format. */
2929void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930{
2931	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932	const struct inet_connection_sock *icsk = inet_csk(sk);
2933	u32 now;
2934	u64 rate64;
2935	bool slow;
2936	u32 rate;
2937
2938	memset(info, 0, sizeof(*info));
2939	if (sk->sk_type != SOCK_STREAM)
2940		return;
2941
2942	info->tcpi_state = inet_sk_state_load(sk);
2943
2944	/* Report meaningful fields for all TCP states, including listeners */
2945	rate = READ_ONCE(sk->sk_pacing_rate);
2946	rate64 = rate != ~0U ? rate : ~0ULL;
2947	info->tcpi_pacing_rate = rate64;
2948
2949	rate = READ_ONCE(sk->sk_max_pacing_rate);
2950	rate64 = rate != ~0U ? rate : ~0ULL;
2951	info->tcpi_max_pacing_rate = rate64;
2952
2953	info->tcpi_reordering = tp->reordering;
2954	info->tcpi_snd_cwnd = tp->snd_cwnd;
2955
2956	if (info->tcpi_state == TCP_LISTEN) {
2957		/* listeners aliased fields :
2958		 * tcpi_unacked -> Number of children ready for accept()
2959		 * tcpi_sacked  -> max backlog
2960		 */
2961		info->tcpi_unacked = sk->sk_ack_backlog;
2962		info->tcpi_sacked = sk->sk_max_ack_backlog;
2963		return;
2964	}
2965
2966	slow = lock_sock_fast(sk);
2967
 
2968	info->tcpi_ca_state = icsk->icsk_ca_state;
2969	info->tcpi_retransmits = icsk->icsk_retransmits;
2970	info->tcpi_probes = icsk->icsk_probes_out;
2971	info->tcpi_backoff = icsk->icsk_backoff;
2972
2973	if (tp->rx_opt.tstamp_ok)
2974		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975	if (tcp_is_sack(tp))
2976		info->tcpi_options |= TCPI_OPT_SACK;
2977	if (tp->rx_opt.wscale_ok) {
2978		info->tcpi_options |= TCPI_OPT_WSCALE;
2979		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981	}
2982
2983	if (tp->ecn_flags & TCP_ECN_OK)
2984		info->tcpi_options |= TCPI_OPT_ECN;
2985	if (tp->ecn_flags & TCP_ECN_SEEN)
2986		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987	if (tp->syn_data_acked)
2988		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989
2990	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992	info->tcpi_snd_mss = tp->mss_cache;
2993	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994
2995	info->tcpi_unacked = tp->packets_out;
2996	info->tcpi_sacked = tp->sacked_out;
2997
 
 
 
 
2998	info->tcpi_lost = tp->lost_out;
2999	info->tcpi_retrans = tp->retrans_out;
 
3000
3001	now = tcp_jiffies32;
3002	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005
3006	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008	info->tcpi_rtt = tp->srtt_us >> 3;
3009	info->tcpi_rttvar = tp->mdev_us >> 2;
3010	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
 
3011	info->tcpi_advmss = tp->advmss;
 
3012
3013	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014	info->tcpi_rcv_space = tp->rcvq_space.space;
3015
3016	info->tcpi_total_retrans = tp->total_retrans;
3017
3018	info->tcpi_bytes_acked = tp->bytes_acked;
3019	info->tcpi_bytes_received = tp->bytes_received;
3020	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021	tcp_get_info_chrono_stats(tp, info);
3022
3023	info->tcpi_segs_out = tp->segs_out;
3024	info->tcpi_segs_in = tp->segs_in;
3025
3026	info->tcpi_min_rtt = tcp_min_rtt(tp);
3027	info->tcpi_data_segs_in = tp->data_segs_in;
3028	info->tcpi_data_segs_out = tp->data_segs_out;
3029
3030	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031	rate64 = tcp_compute_delivery_rate(tp);
3032	if (rate64)
3033		info->tcpi_delivery_rate = rate64;
3034	unlock_sock_fast(sk, slow);
3035}
3036EXPORT_SYMBOL_GPL(tcp_get_info);
3037
3038struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3039{
3040	const struct tcp_sock *tp = tcp_sk(sk);
3041	struct sk_buff *stats;
3042	struct tcp_info info;
3043	u64 rate64;
3044	u32 rate;
3045
3046	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047			  5 * nla_total_size(sizeof(u32)) +
3048			  3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049	if (!stats)
3050		return NULL;
3051
3052	tcp_get_info_chrono_stats(tp, &info);
3053	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054			  info.tcpi_busy_time, TCP_NLA_PAD);
3055	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060			  tp->data_segs_out, TCP_NLA_PAD);
3061	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062			  tp->total_retrans, TCP_NLA_PAD);
3063
3064	rate = READ_ONCE(sk->sk_pacing_rate);
3065	rate64 = rate != ~0U ? rate : ~0ULL;
3066	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067
3068	rate64 = tcp_compute_delivery_rate(tp);
3069	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070
3071	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074
3075	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3078
3079	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3081	return stats;
3082}
3083
3084static int do_tcp_getsockopt(struct sock *sk, int level,
3085		int optname, char __user *optval, int __user *optlen)
3086{
3087	struct inet_connection_sock *icsk = inet_csk(sk);
3088	struct tcp_sock *tp = tcp_sk(sk);
3089	struct net *net = sock_net(sk);
3090	int val, len;
3091
3092	if (get_user(len, optlen))
3093		return -EFAULT;
3094
3095	len = min_t(unsigned int, len, sizeof(int));
3096
3097	if (len < 0)
3098		return -EINVAL;
3099
3100	switch (optname) {
3101	case TCP_MAXSEG:
3102		val = tp->mss_cache;
3103		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104			val = tp->rx_opt.user_mss;
3105		if (tp->repair)
3106			val = tp->rx_opt.mss_clamp;
3107		break;
3108	case TCP_NODELAY:
3109		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110		break;
3111	case TCP_CORK:
3112		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113		break;
3114	case TCP_KEEPIDLE:
3115		val = keepalive_time_when(tp) / HZ;
3116		break;
3117	case TCP_KEEPINTVL:
3118		val = keepalive_intvl_when(tp) / HZ;
3119		break;
3120	case TCP_KEEPCNT:
3121		val = keepalive_probes(tp);
3122		break;
3123	case TCP_SYNCNT:
3124		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3125		break;
3126	case TCP_LINGER2:
3127		val = tp->linger2;
3128		if (val >= 0)
3129			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130		break;
3131	case TCP_DEFER_ACCEPT:
3132		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134		break;
3135	case TCP_WINDOW_CLAMP:
3136		val = tp->window_clamp;
3137		break;
3138	case TCP_INFO: {
3139		struct tcp_info info;
3140
3141		if (get_user(len, optlen))
3142			return -EFAULT;
3143
3144		tcp_get_info(sk, &info);
3145
3146		len = min_t(unsigned int, len, sizeof(info));
3147		if (put_user(len, optlen))
3148			return -EFAULT;
3149		if (copy_to_user(optval, &info, len))
3150			return -EFAULT;
3151		return 0;
3152	}
3153	case TCP_CC_INFO: {
3154		const struct tcp_congestion_ops *ca_ops;
3155		union tcp_cc_info info;
3156		size_t sz = 0;
3157		int attr;
3158
3159		if (get_user(len, optlen))
3160			return -EFAULT;
3161
3162		ca_ops = icsk->icsk_ca_ops;
3163		if (ca_ops && ca_ops->get_info)
3164			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165
3166		len = min_t(unsigned int, len, sz);
3167		if (put_user(len, optlen))
3168			return -EFAULT;
3169		if (copy_to_user(optval, &info, len))
3170			return -EFAULT;
3171		return 0;
3172	}
3173	case TCP_QUICKACK:
3174		val = !icsk->icsk_ack.pingpong;
3175		break;
3176
3177	case TCP_CONGESTION:
3178		if (get_user(len, optlen))
3179			return -EFAULT;
3180		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181		if (put_user(len, optlen))
3182			return -EFAULT;
3183		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184			return -EFAULT;
3185		return 0;
3186
3187	case TCP_ULP:
 
 
 
3188		if (get_user(len, optlen))
3189			return -EFAULT;
3190		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191		if (!icsk->icsk_ulp_ops) {
3192			if (put_user(0, optlen))
3193				return -EFAULT;
3194			return 0;
3195		}
3196		if (put_user(len, optlen))
3197			return -EFAULT;
3198		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199			return -EFAULT;
3200		return 0;
3201
3202	case TCP_FASTOPEN_KEY: {
3203		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204		struct tcp_fastopen_context *ctx;
 
 
3205
3206		if (get_user(len, optlen))
3207			return -EFAULT;
3208
3209		rcu_read_lock();
3210		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211		if (ctx)
3212			memcpy(key, ctx->key, sizeof(key));
3213		else
3214			len = 0;
3215		rcu_read_unlock();
3216
3217		len = min_t(unsigned int, len, sizeof(key));
3218		if (put_user(len, optlen))
3219			return -EFAULT;
3220		if (copy_to_user(optval, key, len))
3221			return -EFAULT;
3222		return 0;
3223	}
3224	case TCP_THIN_LINEAR_TIMEOUTS:
3225		val = tp->thin_lto;
3226		break;
3227
3228	case TCP_THIN_DUPACK:
3229		val = 0;
3230		break;
3231
3232	case TCP_REPAIR:
3233		val = tp->repair;
3234		break;
3235
3236	case TCP_REPAIR_QUEUE:
3237		if (tp->repair)
3238			val = tp->repair_queue;
3239		else
3240			return -EINVAL;
3241		break;
3242
3243	case TCP_REPAIR_WINDOW: {
3244		struct tcp_repair_window opt;
3245
3246		if (get_user(len, optlen))
3247			return -EFAULT;
3248
3249		if (len != sizeof(opt))
3250			return -EINVAL;
3251
3252		if (!tp->repair)
3253			return -EPERM;
3254
3255		opt.snd_wl1	= tp->snd_wl1;
3256		opt.snd_wnd	= tp->snd_wnd;
3257		opt.max_window	= tp->max_window;
3258		opt.rcv_wnd	= tp->rcv_wnd;
3259		opt.rcv_wup	= tp->rcv_wup;
3260
3261		if (copy_to_user(optval, &opt, len))
3262			return -EFAULT;
3263		return 0;
3264	}
3265	case TCP_QUEUE_SEQ:
3266		if (tp->repair_queue == TCP_SEND_QUEUE)
3267			val = tp->write_seq;
3268		else if (tp->repair_queue == TCP_RECV_QUEUE)
3269			val = tp->rcv_nxt;
3270		else
3271			return -EINVAL;
3272		break;
3273
3274	case TCP_USER_TIMEOUT:
3275		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276		break;
3277
3278	case TCP_FASTOPEN:
3279		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280		break;
3281
3282	case TCP_FASTOPEN_CONNECT:
3283		val = tp->fastopen_connect;
3284		break;
3285
3286	case TCP_FASTOPEN_NO_COOKIE:
3287		val = tp->fastopen_no_cookie;
3288		break;
3289
3290	case TCP_TIMESTAMP:
3291		val = tcp_time_stamp_raw() + tp->tsoffset;
3292		break;
3293	case TCP_NOTSENT_LOWAT:
3294		val = tp->notsent_lowat;
3295		break;
3296	case TCP_SAVE_SYN:
3297		val = tp->save_syn;
3298		break;
3299	case TCP_SAVED_SYN: {
3300		if (get_user(len, optlen))
3301			return -EFAULT;
3302
3303		lock_sock(sk);
3304		if (tp->saved_syn) {
3305			if (len < tp->saved_syn[0]) {
3306				if (put_user(tp->saved_syn[0], optlen)) {
3307					release_sock(sk);
3308					return -EFAULT;
3309				}
3310				release_sock(sk);
3311				return -EINVAL;
3312			}
3313			len = tp->saved_syn[0];
3314			if (put_user(len, optlen)) {
3315				release_sock(sk);
3316				return -EFAULT;
3317			}
3318			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319				release_sock(sk);
3320				return -EFAULT;
3321			}
3322			tcp_saved_syn_free(tp);
3323			release_sock(sk);
3324		} else {
3325			release_sock(sk);
3326			len = 0;
3327			if (put_user(len, optlen))
3328				return -EFAULT;
3329		}
3330		return 0;
3331	}
3332	default:
3333		return -ENOPROTOOPT;
3334	}
3335
3336	if (put_user(len, optlen))
3337		return -EFAULT;
3338	if (copy_to_user(optval, &val, len))
3339		return -EFAULT;
3340	return 0;
3341}
3342
3343int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344		   int __user *optlen)
3345{
3346	struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348	if (level != SOL_TCP)
3349		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350						     optval, optlen);
3351	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352}
3353EXPORT_SYMBOL(tcp_getsockopt);
3354
3355#ifdef CONFIG_COMPAT
3356int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357			  char __user *optval, int __user *optlen)
3358{
3359	if (level != SOL_TCP)
3360		return inet_csk_compat_getsockopt(sk, level, optname,
3361						  optval, optlen);
3362	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363}
3364EXPORT_SYMBOL(compat_tcp_getsockopt);
3365#endif
3366
3367#ifdef CONFIG_TCP_MD5SIG
3368static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369static DEFINE_MUTEX(tcp_md5sig_mutex);
3370static bool tcp_md5sig_pool_populated = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371
3372static void __tcp_alloc_md5sig_pool(void)
3373{
3374	struct crypto_ahash *hash;
3375	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378	if (IS_ERR(hash))
3379		return;
3380
3381	for_each_possible_cpu(cpu) {
3382		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383		struct ahash_request *req;
3384
3385		if (!scratch) {
3386			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387					       sizeof(struct tcphdr),
3388					       GFP_KERNEL,
3389					       cpu_to_node(cpu));
3390			if (!scratch)
3391				return;
3392			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393		}
3394		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395			continue;
3396
3397		req = ahash_request_alloc(hash, GFP_KERNEL);
3398		if (!req)
3399			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400
3401		ahash_request_set_callback(req, 0, NULL, NULL);
 
 
3402
3403		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
 
 
 
3404	}
3405	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3406	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407	 */
3408	smp_wmb();
3409	tcp_md5sig_pool_populated = true;
3410}
 
3411
3412bool tcp_alloc_md5sig_pool(void)
 
3413{
3414	if (unlikely(!tcp_md5sig_pool_populated)) {
3415		mutex_lock(&tcp_md5sig_mutex);
3416
3417		if (!tcp_md5sig_pool_populated)
3418			__tcp_alloc_md5sig_pool();
 
3419
3420		mutex_unlock(&tcp_md5sig_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421	}
3422	return tcp_md5sig_pool_populated;
3423}
3424EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425
3426
3427/**
3428 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3429 *
3430 *	We use percpu structure, so if we succeed, we exit with preemption
3431 *	and BH disabled, to make sure another thread or softirq handling
3432 *	wont try to get same context.
3433 */
3434struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435{
 
 
3436	local_bh_disable();
3437
3438	if (tcp_md5sig_pool_populated) {
3439		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440		smp_rmb();
3441		return this_cpu_ptr(&tcp_md5sig_pool);
3442	}
 
 
 
 
3443	local_bh_enable();
3444	return NULL;
3445}
3446EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449			  const struct sk_buff *skb, unsigned int header_len)
3450{
3451	struct scatterlist sg;
3452	const struct tcphdr *tp = tcp_hdr(skb);
3453	struct ahash_request *req = hp->md5_req;
3454	unsigned int i;
3455	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456					   skb_headlen(skb) - header_len : 0;
3457	const struct skb_shared_info *shi = skb_shinfo(skb);
3458	struct sk_buff *frag_iter;
3459
3460	sg_init_table(&sg, 1);
3461
3462	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464	if (crypto_ahash_update(req))
3465		return 1;
3466
3467	for (i = 0; i < shi->nr_frags; ++i) {
3468		const struct skb_frag_struct *f = &shi->frags[i];
3469		unsigned int offset = f->page_offset;
3470		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471
3472		sg_set_page(&sg, page, skb_frag_size(f),
3473			    offset_in_page(offset));
3474		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475		if (crypto_ahash_update(req))
3476			return 1;
3477	}
3478
3479	skb_walk_frags(skb, frag_iter)
3480		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481			return 1;
3482
3483	return 0;
3484}
3485EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486
3487int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488{
3489	struct scatterlist sg;
3490
3491	sg_init_one(&sg, key->key, key->keylen);
3492	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493	return crypto_ahash_update(hp->md5_req);
3494}
3495EXPORT_SYMBOL(tcp_md5_hash_key);
3496
3497#endif
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499void tcp_done(struct sock *sk)
3500{
3501	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3502
3503	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505
3506	tcp_set_state(sk, TCP_CLOSE);
3507	tcp_clear_xmit_timers(sk);
3508	if (req)
3509		reqsk_fastopen_remove(sk, req, false);
3510
3511	sk->sk_shutdown = SHUTDOWN_MASK;
3512
3513	if (!sock_flag(sk, SOCK_DEAD))
3514		sk->sk_state_change(sk);
3515	else
3516		inet_csk_destroy_sock(sk);
3517}
3518EXPORT_SYMBOL_GPL(tcp_done);
3519
3520int tcp_abort(struct sock *sk, int err)
3521{
3522	if (!sk_fullsock(sk)) {
3523		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524			struct request_sock *req = inet_reqsk(sk);
3525
3526			local_bh_disable();
3527			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528							  req);
3529			local_bh_enable();
3530			return 0;
3531		}
3532		return -EOPNOTSUPP;
3533	}
3534
3535	/* Don't race with userspace socket closes such as tcp_close. */
3536	lock_sock(sk);
3537
3538	if (sk->sk_state == TCP_LISTEN) {
3539		tcp_set_state(sk, TCP_CLOSE);
3540		inet_csk_listen_stop(sk);
3541	}
3542
3543	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544	local_bh_disable();
3545	bh_lock_sock(sk);
3546
3547	if (!sock_flag(sk, SOCK_DEAD)) {
3548		sk->sk_err = err;
3549		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3550		smp_wmb();
3551		sk->sk_error_report(sk);
3552		if (tcp_need_reset(sk->sk_state))
3553			tcp_send_active_reset(sk, GFP_ATOMIC);
3554		tcp_done(sk);
3555	}
3556
3557	bh_unlock_sock(sk);
3558	local_bh_enable();
3559	tcp_write_queue_purge(sk);
3560	release_sock(sk);
3561	return 0;
3562}
3563EXPORT_SYMBOL_GPL(tcp_abort);
3564
3565extern struct tcp_congestion_ops tcp_reno;
3566
3567static __initdata unsigned long thash_entries;
3568static int __init set_thash_entries(char *str)
3569{
3570	ssize_t ret;
3571
3572	if (!str)
3573		return 0;
3574
3575	ret = kstrtoul(str, 0, &thash_entries);
3576	if (ret)
3577		return 0;
3578
3579	return 1;
3580}
3581__setup("thash_entries=", set_thash_entries);
3582
3583static void __init tcp_init_mem(void)
3584{
3585	unsigned long limit = nr_free_buffer_pages() / 16;
3586
3587	limit = max(limit, 128UL);
3588	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3589	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3590	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3591}
3592
3593void __init tcp_init(void)
3594{
3595	int max_rshare, max_wshare, cnt;
3596	unsigned long limit;
3597	unsigned int i;
 
3598
3599	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600		     FIELD_SIZEOF(struct sk_buff, cb));
3601
3602	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604	inet_hashinfo_init(&tcp_hashinfo);
3605	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606			    thash_entries, 21,  /* one slot per 2 MB*/
3607			    0, 64 * 1024);
3608	tcp_hashinfo.bind_bucket_cachep =
3609		kmem_cache_create("tcp_bind_bucket",
3610				  sizeof(struct inet_bind_bucket), 0,
3611				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3612
3613	/* Size and allocate the main established and bind bucket
3614	 * hash tables.
3615	 *
3616	 * The methodology is similar to that of the buffer cache.
3617	 */
3618	tcp_hashinfo.ehash =
3619		alloc_large_system_hash("TCP established",
3620					sizeof(struct inet_ehash_bucket),
3621					thash_entries,
3622					17, /* one slot per 128 KB of memory */
 
3623					0,
3624					NULL,
3625					&tcp_hashinfo.ehash_mask,
3626					0,
3627					thash_entries ? 0 : 512 * 1024);
3628	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630
 
3631	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632		panic("TCP: failed to alloc ehash_locks");
3633	tcp_hashinfo.bhash =
3634		alloc_large_system_hash("TCP bind",
3635					sizeof(struct inet_bind_hashbucket),
3636					tcp_hashinfo.ehash_mask + 1,
3637					17, /* one slot per 128 KB of memory */
 
3638					0,
3639					&tcp_hashinfo.bhash_size,
3640					NULL,
3641					0,
3642					64 * 1024);
3643	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3644	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3647	}
3648
3649
3650	cnt = tcp_hashinfo.ehash_mask + 1;
 
 
3651	sysctl_tcp_max_orphans = cnt / 2;
 
 
 
 
 
 
 
3652
3653	tcp_init_mem();
3654	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3655	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656	max_wshare = min(4UL*1024*1024, limit);
3657	max_rshare = min(6UL*1024*1024, limit);
3658
3659	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662
3663	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666
3667	pr_info("Hash tables configured (established %u bind %u)\n",
3668		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669
3670	tcp_v4_init();
3671	tcp_metrics_init();
3672	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673	tcp_tasklet_init();
 
 
 
 
 
 
3674}