Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 
 
 248#include <linux/kernel.h>
 249#include <linux/module.h>
 250#include <linux/types.h>
 251#include <linux/fcntl.h>
 252#include <linux/poll.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/bootmem.h>
 262#include <linux/highmem.h>
 263#include <linux/swap.h>
 264#include <linux/cache.h>
 265#include <linux/err.h>
 266#include <linux/crypto.h>
 267#include <linux/time.h>
 268#include <linux/slab.h>
 269
 270#include <net/icmp.h>
 
 271#include <net/tcp.h>
 272#include <net/xfrm.h>
 273#include <net/ip.h>
 274#include <net/netdma.h>
 275#include <net/sock.h>
 276
 277#include <asm/uaccess.h>
 278#include <asm/ioctls.h>
 
 279
 280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 281
 
 
 
 
 282struct percpu_counter tcp_orphan_count;
 283EXPORT_SYMBOL_GPL(tcp_orphan_count);
 284
 285long sysctl_tcp_mem[3] __read_mostly;
 286int sysctl_tcp_wmem[3] __read_mostly;
 287int sysctl_tcp_rmem[3] __read_mostly;
 288
 289EXPORT_SYMBOL(sysctl_tcp_mem);
 290EXPORT_SYMBOL(sysctl_tcp_rmem);
 291EXPORT_SYMBOL(sysctl_tcp_wmem);
 292
 293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 294EXPORT_SYMBOL(tcp_memory_allocated);
 295
 296/*
 297 * Current number of TCP sockets.
 298 */
 299struct percpu_counter tcp_sockets_allocated;
 300EXPORT_SYMBOL(tcp_sockets_allocated);
 301
 302/*
 303 * TCP splice context
 304 */
 305struct tcp_splice_state {
 306	struct pipe_inode_info *pipe;
 307	size_t len;
 308	unsigned int flags;
 309};
 310
 311/*
 312 * Pressure flag: try to collapse.
 313 * Technical note: it is used by multiple contexts non atomically.
 314 * All the __sk_mem_schedule() is of this nature: accounting
 315 * is strict, actions are advisory and have some latency.
 316 */
 317int tcp_memory_pressure __read_mostly;
 318EXPORT_SYMBOL(tcp_memory_pressure);
 319
 320void tcp_enter_memory_pressure(struct sock *sk)
 321{
 322	if (!tcp_memory_pressure) {
 323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 324		tcp_memory_pressure = 1;
 325	}
 326}
 327EXPORT_SYMBOL(tcp_enter_memory_pressure);
 328
 329/* Convert seconds to retransmits based on initial and max timeout */
 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 331{
 332	u8 res = 0;
 333
 334	if (seconds > 0) {
 335		int period = timeout;
 336
 337		res = 1;
 338		while (seconds > period && res < 255) {
 339			res++;
 340			timeout <<= 1;
 341			if (timeout > rto_max)
 342				timeout = rto_max;
 343			period += timeout;
 344		}
 345	}
 346	return res;
 347}
 348
 349/* Convert retransmits to seconds based on initial and max timeout */
 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 351{
 352	int period = 0;
 353
 354	if (retrans > 0) {
 355		period = timeout;
 356		while (--retrans) {
 357			timeout <<= 1;
 358			if (timeout > rto_max)
 359				timeout = rto_max;
 360			period += timeout;
 361		}
 362	}
 363	return period;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 *	Wait for a TCP event.
 368 *
 369 *	Note that we don't need to lock the socket, as the upper poll layers
 370 *	take care of normal races (between the test and the event) and we don't
 371 *	go look at any of the socket buffers directly.
 372 */
 373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 374{
 375	unsigned int mask;
 376	struct sock *sk = sock->sk;
 377	struct tcp_sock *tp = tcp_sk(sk);
 
 
 378
 379	sock_poll_wait(file, sk_sleep(sk), wait);
 380	if (sk->sk_state == TCP_LISTEN)
 381		return inet_csk_listen_poll(sk);
 382
 383	/* Socket is not locked. We are protected from async events
 384	 * by poll logic and correct handling of state changes
 385	 * made by other threads is impossible in any case.
 386	 */
 387
 388	mask = 0;
 389
 390	/*
 391	 * POLLHUP is certainly not done right. But poll() doesn't
 392	 * have a notion of HUP in just one direction, and for a
 393	 * socket the read side is more interesting.
 394	 *
 395	 * Some poll() documentation says that POLLHUP is incompatible
 396	 * with the POLLOUT/POLLWR flags, so somebody should check this
 397	 * all. But careful, it tends to be safer to return too many
 398	 * bits than too few, and you can easily break real applications
 399	 * if you don't tell them that something has hung up!
 400	 *
 401	 * Check-me.
 402	 *
 403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 404	 * our fs/select.c). It means that after we received EOF,
 405	 * poll always returns immediately, making impossible poll() on write()
 406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 407	 * if and only if shutdown has been made in both directions.
 408	 * Actually, it is interesting to look how Solaris and DUX
 409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 410	 * then we could set it on SND_SHUTDOWN. BTW examples given
 411	 * in Stevens' books assume exactly this behaviour, it explains
 412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 413	 *
 414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 415	 * blocking on fresh not-connected or disconnected socket. --ANK
 416	 */
 417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 418		mask |= POLLHUP;
 419	if (sk->sk_shutdown & RCV_SHUTDOWN)
 420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 421
 422	/* Connected? */
 423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
 
 424		int target = sock_rcvlowat(sk, 0, INT_MAX);
 425
 426		if (tp->urg_seq == tp->copied_seq &&
 427		    !sock_flag(sk, SOCK_URGINLINE) &&
 428		    tp->urg_data)
 429			target++;
 430
 431		/* Potential race condition. If read of tp below will
 432		 * escape above sk->sk_state, we can be illegally awaken
 433		 * in SYN_* states. */
 434		if (tp->rcv_nxt - tp->copied_seq >= target)
 435			mask |= POLLIN | POLLRDNORM;
 436
 437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 439				mask |= POLLOUT | POLLWRNORM;
 440			} else {  /* send SIGIO later */
 441				set_bit(SOCK_ASYNC_NOSPACE,
 442					&sk->sk_socket->flags);
 443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 444
 445				/* Race breaker. If space is freed after
 446				 * wspace test but before the flags are set,
 447				 * IO signal will be lost.
 448				 */
 449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
 450					mask |= POLLOUT | POLLWRNORM;
 451			}
 452		} else
 453			mask |= POLLOUT | POLLWRNORM;
 454
 455		if (tp->urg_data & TCP_URG_VALID)
 456			mask |= POLLPRI;
 457	}
 458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 459	smp_rmb();
 460	if (sk->sk_err)
 461		mask |= POLLERR;
 462
 463	return mask;
 464}
 465EXPORT_SYMBOL(tcp_poll);
 466
 467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 468{
 469	struct tcp_sock *tp = tcp_sk(sk);
 470	int answ;
 
 471
 472	switch (cmd) {
 473	case SIOCINQ:
 474		if (sk->sk_state == TCP_LISTEN)
 475			return -EINVAL;
 476
 477		lock_sock(sk);
 478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 479			answ = 0;
 480		else if (sock_flag(sk, SOCK_URGINLINE) ||
 481			 !tp->urg_data ||
 482			 before(tp->urg_seq, tp->copied_seq) ||
 483			 !before(tp->urg_seq, tp->rcv_nxt)) {
 484			struct sk_buff *skb;
 485
 486			answ = tp->rcv_nxt - tp->copied_seq;
 487
 488			/* Subtract 1, if FIN is in queue. */
 489			skb = skb_peek_tail(&sk->sk_receive_queue);
 490			if (answ && skb)
 491				answ -= tcp_hdr(skb)->fin;
 492		} else
 493			answ = tp->urg_seq - tp->copied_seq;
 494		release_sock(sk);
 495		break;
 496	case SIOCATMARK:
 497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 498		break;
 499	case SIOCOUTQ:
 500		if (sk->sk_state == TCP_LISTEN)
 501			return -EINVAL;
 502
 503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 504			answ = 0;
 505		else
 506			answ = tp->write_seq - tp->snd_una;
 507		break;
 508	case SIOCOUTQNSD:
 509		if (sk->sk_state == TCP_LISTEN)
 510			return -EINVAL;
 511
 512		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 513			answ = 0;
 514		else
 515			answ = tp->write_seq - tp->snd_nxt;
 516		break;
 517	default:
 518		return -ENOIOCTLCMD;
 519	}
 520
 521	return put_user(answ, (int __user *)arg);
 522}
 523EXPORT_SYMBOL(tcp_ioctl);
 524
 525static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 526{
 527	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
 528	tp->pushed_seq = tp->write_seq;
 529}
 530
 531static inline int forced_push(struct tcp_sock *tp)
 532{
 533	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 534}
 535
 536static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 537{
 538	struct tcp_sock *tp = tcp_sk(sk);
 539	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 540
 541	skb->csum    = 0;
 542	tcb->seq     = tcb->end_seq = tp->write_seq;
 543	tcb->flags   = TCPHDR_ACK;
 544	tcb->sacked  = 0;
 545	skb_header_release(skb);
 546	tcp_add_write_queue_tail(sk, skb);
 547	sk->sk_wmem_queued += skb->truesize;
 548	sk_mem_charge(sk, skb->truesize);
 549	if (tp->nonagle & TCP_NAGLE_PUSH)
 550		tp->nonagle &= ~TCP_NAGLE_PUSH;
 551}
 552
 553static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 554{
 555	if (flags & MSG_OOB)
 556		tp->snd_up = tp->write_seq;
 557}
 558
 559static inline void tcp_push(struct sock *sk, int flags, int mss_now,
 560			    int nonagle)
 
 
 
 
 
 
 
 
 
 
 561{
 562	if (tcp_send_head(sk)) {
 563		struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 564
 565		if (!(flags & MSG_MORE) || forced_push(tp))
 566			tcp_mark_push(tp, tcp_write_queue_tail(sk));
 567
 568		tcp_mark_urg(tp, flags);
 569		__tcp_push_pending_frames(sk, mss_now,
 570					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571	}
 
 
 
 
 
 572}
 573
 574static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 575				unsigned int offset, size_t len)
 576{
 577	struct tcp_splice_state *tss = rd_desc->arg.data;
 578	int ret;
 579
 580	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 581			      tss->flags);
 582	if (ret > 0)
 583		rd_desc->count -= ret;
 584	return ret;
 585}
 586
 587static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 588{
 589	/* Store TCP splice context information in read_descriptor_t. */
 590	read_descriptor_t rd_desc = {
 591		.arg.data = tss,
 592		.count	  = tss->len,
 593	};
 594
 595	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 596}
 597
 598/**
 599 *  tcp_splice_read - splice data from TCP socket to a pipe
 600 * @sock:	socket to splice from
 601 * @ppos:	position (not valid)
 602 * @pipe:	pipe to splice to
 603 * @len:	number of bytes to splice
 604 * @flags:	splice modifier flags
 605 *
 606 * Description:
 607 *    Will read pages from given socket and fill them into a pipe.
 608 *
 609 **/
 610ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 611			struct pipe_inode_info *pipe, size_t len,
 612			unsigned int flags)
 613{
 614	struct sock *sk = sock->sk;
 615	struct tcp_splice_state tss = {
 616		.pipe = pipe,
 617		.len = len,
 618		.flags = flags,
 619	};
 620	long timeo;
 621	ssize_t spliced;
 622	int ret;
 623
 624	sock_rps_record_flow(sk);
 625	/*
 626	 * We can't seek on a socket input
 627	 */
 628	if (unlikely(*ppos))
 629		return -ESPIPE;
 630
 631	ret = spliced = 0;
 632
 633	lock_sock(sk);
 634
 635	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 636	while (tss.len) {
 637		ret = __tcp_splice_read(sk, &tss);
 638		if (ret < 0)
 639			break;
 640		else if (!ret) {
 641			if (spliced)
 642				break;
 643			if (sock_flag(sk, SOCK_DONE))
 644				break;
 645			if (sk->sk_err) {
 646				ret = sock_error(sk);
 647				break;
 648			}
 649			if (sk->sk_shutdown & RCV_SHUTDOWN)
 650				break;
 651			if (sk->sk_state == TCP_CLOSE) {
 652				/*
 653				 * This occurs when user tries to read
 654				 * from never connected socket.
 655				 */
 656				if (!sock_flag(sk, SOCK_DONE))
 657					ret = -ENOTCONN;
 658				break;
 659			}
 660			if (!timeo) {
 661				ret = -EAGAIN;
 662				break;
 663			}
 664			sk_wait_data(sk, &timeo);
 665			if (signal_pending(current)) {
 666				ret = sock_intr_errno(timeo);
 667				break;
 668			}
 669			continue;
 670		}
 671		tss.len -= ret;
 672		spliced += ret;
 673
 674		if (!timeo)
 675			break;
 676		release_sock(sk);
 677		lock_sock(sk);
 678
 679		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 680		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 681		    signal_pending(current))
 682			break;
 683	}
 684
 685	release_sock(sk);
 686
 687	if (spliced)
 688		return spliced;
 689
 690	return ret;
 691}
 692EXPORT_SYMBOL(tcp_splice_read);
 693
 694struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 695{
 696	struct sk_buff *skb;
 697
 698	/* The TCP header must be at least 32-bit aligned.  */
 699	size = ALIGN(size, 4);
 700
 701	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 702	if (skb) {
 703		if (sk_wmem_schedule(sk, skb->truesize)) {
 
 704			/*
 705			 * Make sure that we have exactly size bytes
 706			 * available to the caller, no more, no less.
 707			 */
 708			skb_reserve(skb, skb_tailroom(skb) - size);
 709			return skb;
 710		}
 711		__kfree_skb(skb);
 712	} else {
 713		sk->sk_prot->enter_memory_pressure(sk);
 714		sk_stream_moderate_sndbuf(sk);
 715	}
 716	return NULL;
 717}
 718
 719static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 720				       int large_allowed)
 721{
 722	struct tcp_sock *tp = tcp_sk(sk);
 723	u32 xmit_size_goal, old_size_goal;
 724
 725	xmit_size_goal = mss_now;
 726
 727	if (large_allowed && sk_can_gso(sk)) {
 728		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
 729				  inet_csk(sk)->icsk_af_ops->net_header_len -
 730				  inet_csk(sk)->icsk_ext_hdr_len -
 731				  tp->tcp_header_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 734
 735		/* We try hard to avoid divides here */
 736		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 737
 738		if (likely(old_size_goal <= xmit_size_goal &&
 739			   old_size_goal + mss_now > xmit_size_goal)) {
 740			xmit_size_goal = old_size_goal;
 741		} else {
 742			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
 
 
 743			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 744		}
 745	}
 746
 747	return max(xmit_size_goal, mss_now);
 748}
 749
 750static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 751{
 752	int mss_now;
 753
 754	mss_now = tcp_current_mss(sk);
 755	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 756
 757	return mss_now;
 758}
 759
 760static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
 761			 size_t psize, int flags)
 762{
 763	struct tcp_sock *tp = tcp_sk(sk);
 764	int mss_now, size_goal;
 765	int err;
 766	ssize_t copied;
 767	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 768
 769	/* Wait for a connection to finish. */
 770	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 
 
 
 
 771		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 772			goto out_err;
 
 773
 774	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 775
 776	mss_now = tcp_send_mss(sk, &size_goal, flags);
 777	copied = 0;
 778
 779	err = -EPIPE;
 780	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 781		goto out_err;
 782
 783	while (psize > 0) {
 784		struct sk_buff *skb = tcp_write_queue_tail(sk);
 785		struct page *page = pages[poffset / PAGE_SIZE];
 786		int copy, i, can_coalesce;
 787		int offset = poffset % PAGE_SIZE;
 788		int size = min_t(size_t, psize, PAGE_SIZE - offset);
 789
 790		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 791new_segment:
 792			if (!sk_stream_memory_free(sk))
 793				goto wait_for_sndbuf;
 794
 795			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 796			if (!skb)
 797				goto wait_for_memory;
 798
 799			skb_entail(sk, skb);
 800			copy = size_goal;
 801		}
 802
 803		if (copy > size)
 804			copy = size;
 805
 806		i = skb_shinfo(skb)->nr_frags;
 807		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 808		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 809			tcp_mark_push(tp, skb);
 810			goto new_segment;
 811		}
 812		if (!sk_wmem_schedule(sk, copy))
 813			goto wait_for_memory;
 814
 815		if (can_coalesce) {
 816			skb_shinfo(skb)->frags[i - 1].size += copy;
 817		} else {
 818			get_page(page);
 819			skb_fill_page_desc(skb, i, page, offset, copy);
 820		}
 
 821
 822		skb->len += copy;
 823		skb->data_len += copy;
 824		skb->truesize += copy;
 825		sk->sk_wmem_queued += copy;
 826		sk_mem_charge(sk, copy);
 827		skb->ip_summed = CHECKSUM_PARTIAL;
 828		tp->write_seq += copy;
 829		TCP_SKB_CB(skb)->end_seq += copy;
 830		skb_shinfo(skb)->gso_segs = 0;
 831
 832		if (!copied)
 833			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
 834
 835		copied += copy;
 836		poffset += copy;
 837		if (!(psize -= copy))
 838			goto out;
 839
 840		if (skb->len < size_goal || (flags & MSG_OOB))
 841			continue;
 842
 843		if (forced_push(tp)) {
 844			tcp_mark_push(tp, skb);
 845			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 846		} else if (skb == tcp_send_head(sk))
 847			tcp_push_one(sk, mss_now);
 848		continue;
 849
 850wait_for_sndbuf:
 851		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 852wait_for_memory:
 853		if (copied)
 854			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 855
 856		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 857			goto do_error;
 858
 859		mss_now = tcp_send_mss(sk, &size_goal, flags);
 860	}
 861
 862out:
 863	if (copied)
 864		tcp_push(sk, flags, mss_now, tp->nonagle);
 865	return copied;
 866
 867do_error:
 868	if (copied)
 869		goto out;
 870out_err:
 871	return sk_stream_error(sk, flags, err);
 872}
 873
 874int tcp_sendpage(struct sock *sk, struct page *page, int offset,
 875		 size_t size, int flags)
 876{
 877	ssize_t res;
 878
 879	if (!(sk->sk_route_caps & NETIF_F_SG) ||
 880	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
 881		return sock_no_sendpage(sk->sk_socket, page, offset, size,
 882					flags);
 883
 884	lock_sock(sk);
 885	res = do_tcp_sendpages(sk, &page, offset, size, flags);
 886	release_sock(sk);
 887	return res;
 888}
 889EXPORT_SYMBOL(tcp_sendpage);
 890
 891#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
 892#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
 893
 894static inline int select_size(struct sock *sk, int sg)
 895{
 896	struct tcp_sock *tp = tcp_sk(sk);
 897	int tmp = tp->mss_cache;
 898
 899	if (sg) {
 900		if (sk_can_gso(sk))
 901			tmp = 0;
 902		else {
 
 
 
 903			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
 904
 905			if (tmp >= pgbreak &&
 906			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
 907				tmp = pgbreak;
 908		}
 909	}
 910
 911	return tmp;
 912}
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 915		size_t size)
 916{
 917	struct iovec *iov;
 918	struct tcp_sock *tp = tcp_sk(sk);
 919	struct sk_buff *skb;
 920	int iovlen, flags;
 921	int mss_now, size_goal;
 922	int sg, err, copied;
 923	long timeo;
 924
 925	lock_sock(sk);
 926
 927	flags = msg->msg_flags;
 
 
 
 
 
 
 
 
 
 928	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 929
 930	/* Wait for a connection to finish. */
 931	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 
 
 
 
 932		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 
 
 
 
 
 
 933			goto out_err;
 934
 
 
 
 935	/* This should be in poll */
 936	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 937
 938	mss_now = tcp_send_mss(sk, &size_goal, flags);
 939
 940	/* Ok commence sending. */
 941	iovlen = msg->msg_iovlen;
 942	iov = msg->msg_iov;
 943	copied = 0;
 944
 945	err = -EPIPE;
 946	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 947		goto out_err;
 948
 949	sg = sk->sk_route_caps & NETIF_F_SG;
 950
 951	while (--iovlen >= 0) {
 952		size_t seglen = iov->iov_len;
 953		unsigned char __user *from = iov->iov_base;
 954
 955		iov++;
 
 
 
 
 
 
 
 
 
 956
 957		while (seglen > 0) {
 958			int copy = 0;
 959			int max = size_goal;
 960
 961			skb = tcp_write_queue_tail(sk);
 962			if (tcp_send_head(sk)) {
 963				if (skb->ip_summed == CHECKSUM_NONE)
 964					max = mss_now;
 965				copy = max - skb->len;
 966			}
 967
 968			if (copy <= 0) {
 969new_segment:
 970				/* Allocate new segment. If the interface is SG,
 971				 * allocate skb fitting to single page.
 972				 */
 973				if (!sk_stream_memory_free(sk))
 974					goto wait_for_sndbuf;
 975
 976				skb = sk_stream_alloc_skb(sk,
 977							  select_size(sk, sg),
 978							  sk->sk_allocation);
 979				if (!skb)
 980					goto wait_for_memory;
 981
 982				/*
 
 
 
 
 
 
 
 983				 * Check whether we can use HW checksum.
 984				 */
 985				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
 986					skb->ip_summed = CHECKSUM_PARTIAL;
 987
 988				skb_entail(sk, skb);
 989				copy = size_goal;
 990				max = size_goal;
 991			}
 992
 993			/* Try to append data to the end of skb. */
 994			if (copy > seglen)
 995				copy = seglen;
 996
 997			/* Where to copy to? */
 998			if (skb_tailroom(skb) > 0) {
 999				/* We have some space in skb head. Superb! */
1000				if (copy > skb_tailroom(skb))
1001					copy = skb_tailroom(skb);
1002				err = skb_add_data_nocache(sk, skb, from, copy);
1003				if (err)
1004					goto do_fault;
1005			} else {
1006				int merge = 0;
1007				int i = skb_shinfo(skb)->nr_frags;
1008				struct page *page = TCP_PAGE(sk);
1009				int off = TCP_OFF(sk);
 
 
1010
1011				if (skb_can_coalesce(skb, i, page, off) &&
1012				    off != PAGE_SIZE) {
1013					/* We can extend the last page
1014					 * fragment. */
1015					merge = 1;
1016				} else if (i == MAX_SKB_FRAGS || !sg) {
1017					/* Need to add new fragment and cannot
1018					 * do this because interface is non-SG,
1019					 * or because all the page slots are
1020					 * busy. */
1021					tcp_mark_push(tp, skb);
1022					goto new_segment;
1023				} else if (page) {
1024					if (off == PAGE_SIZE) {
1025						put_page(page);
1026						TCP_PAGE(sk) = page = NULL;
1027						off = 0;
1028					}
1029				} else
1030					off = 0;
1031
1032				if (copy > PAGE_SIZE - off)
1033					copy = PAGE_SIZE - off;
1034
1035				if (!sk_wmem_schedule(sk, copy))
1036					goto wait_for_memory;
1037
1038				if (!page) {
1039					/* Allocate new cache page. */
1040					if (!(page = sk_stream_alloc_page(sk)))
1041						goto wait_for_memory;
1042				}
1043
1044				/* Time to copy data. We are close to
1045				 * the end! */
1046				err = skb_copy_to_page_nocache(sk, from, skb,
1047							       page, off, copy);
1048				if (err) {
1049					/* If this page was new, give it to the
1050					 * socket so it does not get leaked.
1051					 */
1052					if (!TCP_PAGE(sk)) {
1053						TCP_PAGE(sk) = page;
1054						TCP_OFF(sk) = 0;
1055					}
1056					goto do_error;
1057				}
1058
1059				/* Update the skb. */
1060				if (merge) {
1061					skb_shinfo(skb)->frags[i - 1].size +=
1062									copy;
1063				} else {
1064					skb_fill_page_desc(skb, i, page, off, copy);
1065					if (TCP_PAGE(sk)) {
1066						get_page(page);
1067					} else if (off + copy < PAGE_SIZE) {
1068						get_page(page);
1069						TCP_PAGE(sk) = page;
1070					}
1071				}
1072
1073				TCP_OFF(sk) = off + copy;
1074			}
1075
1076			if (!copied)
1077				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1078
1079			tp->write_seq += copy;
1080			TCP_SKB_CB(skb)->end_seq += copy;
1081			skb_shinfo(skb)->gso_segs = 0;
1082
1083			from += copy;
1084			copied += copy;
1085			if ((seglen -= copy) == 0 && iovlen == 0)
1086				goto out;
1087
1088			if (skb->len < max || (flags & MSG_OOB))
1089				continue;
1090
1091			if (forced_push(tp)) {
1092				tcp_mark_push(tp, skb);
1093				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094			} else if (skb == tcp_send_head(sk))
1095				tcp_push_one(sk, mss_now);
1096			continue;
1097
1098wait_for_sndbuf:
1099			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100wait_for_memory:
1101			if (copied)
1102				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 
1103
1104			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1105				goto do_error;
1106
1107			mss_now = tcp_send_mss(sk, &size_goal, flags);
1108		}
1109	}
1110
1111out:
1112	if (copied)
1113		tcp_push(sk, flags, mss_now, tp->nonagle);
1114	release_sock(sk);
1115	return copied;
1116
1117do_fault:
1118	if (!skb->len) {
1119		tcp_unlink_write_queue(skb, sk);
1120		/* It is the one place in all of TCP, except connection
1121		 * reset, where we can be unlinking the send_head.
1122		 */
1123		tcp_check_send_head(sk, skb);
1124		sk_wmem_free_skb(sk, skb);
1125	}
1126
1127do_error:
1128	if (copied)
1129		goto out;
1130out_err:
1131	err = sk_stream_error(sk, flags, err);
1132	release_sock(sk);
1133	return err;
1134}
1135EXPORT_SYMBOL(tcp_sendmsg);
1136
1137/*
1138 *	Handle reading urgent data. BSD has very simple semantics for
1139 *	this, no blocking and very strange errors 8)
1140 */
1141
1142static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1143{
1144	struct tcp_sock *tp = tcp_sk(sk);
1145
1146	/* No URG data to read. */
1147	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1148	    tp->urg_data == TCP_URG_READ)
1149		return -EINVAL;	/* Yes this is right ! */
1150
1151	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1152		return -ENOTCONN;
1153
1154	if (tp->urg_data & TCP_URG_VALID) {
1155		int err = 0;
1156		char c = tp->urg_data;
1157
1158		if (!(flags & MSG_PEEK))
1159			tp->urg_data = TCP_URG_READ;
1160
1161		/* Read urgent data. */
1162		msg->msg_flags |= MSG_OOB;
1163
1164		if (len > 0) {
1165			if (!(flags & MSG_TRUNC))
1166				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1167			len = 1;
1168		} else
1169			msg->msg_flags |= MSG_TRUNC;
1170
1171		return err ? -EFAULT : len;
1172	}
1173
1174	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1175		return 0;
1176
1177	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1178	 * the available implementations agree in this case:
1179	 * this call should never block, independent of the
1180	 * blocking state of the socket.
1181	 * Mike <pall@rz.uni-karlsruhe.de>
1182	 */
1183	return -EAGAIN;
1184}
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186/* Clean up the receive buffer for full frames taken by the user,
1187 * then send an ACK if necessary.  COPIED is the number of bytes
1188 * tcp_recvmsg has given to the user so far, it speeds up the
1189 * calculation of whether or not we must ACK for the sake of
1190 * a window update.
1191 */
1192void tcp_cleanup_rbuf(struct sock *sk, int copied)
1193{
1194	struct tcp_sock *tp = tcp_sk(sk);
1195	int time_to_ack = 0;
1196
1197#if TCP_DEBUG
1198	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1199
1200	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1201	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1203#endif
1204
1205	if (inet_csk_ack_scheduled(sk)) {
1206		const struct inet_connection_sock *icsk = inet_csk(sk);
1207		   /* Delayed ACKs frequently hit locked sockets during bulk
1208		    * receive. */
1209		if (icsk->icsk_ack.blocked ||
1210		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212		    /*
1213		     * If this read emptied read buffer, we send ACK, if
1214		     * connection is not bidirectional, user drained
1215		     * receive buffer and there was a small segment
1216		     * in queue.
1217		     */
1218		    (copied > 0 &&
1219		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221		       !icsk->icsk_ack.pingpong)) &&
1222		      !atomic_read(&sk->sk_rmem_alloc)))
1223			time_to_ack = 1;
1224	}
1225
1226	/* We send an ACK if we can now advertise a non-zero window
1227	 * which has been raised "significantly".
1228	 *
1229	 * Even if window raised up to infinity, do not send window open ACK
1230	 * in states, where we will not receive more. It is useless.
1231	 */
1232	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233		__u32 rcv_window_now = tcp_receive_window(tp);
1234
1235		/* Optimize, __tcp_select_window() is not cheap. */
1236		if (2*rcv_window_now <= tp->window_clamp) {
1237			__u32 new_window = __tcp_select_window(sk);
1238
1239			/* Send ACK now, if this read freed lots of space
1240			 * in our buffer. Certainly, new_window is new window.
1241			 * We can advertise it now, if it is not less than current one.
1242			 * "Lots" means "at least twice" here.
1243			 */
1244			if (new_window && new_window >= 2 * rcv_window_now)
1245				time_to_ack = 1;
1246		}
1247	}
1248	if (time_to_ack)
1249		tcp_send_ack(sk);
1250}
1251
1252static void tcp_prequeue_process(struct sock *sk)
1253{
1254	struct sk_buff *skb;
1255	struct tcp_sock *tp = tcp_sk(sk);
1256
1257	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258
1259	/* RX process wants to run with disabled BHs, though it is not
1260	 * necessary */
1261	local_bh_disable();
1262	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263		sk_backlog_rcv(sk, skb);
1264	local_bh_enable();
1265
1266	/* Clear memory counter. */
1267	tp->ucopy.memory = 0;
1268}
1269
1270#ifdef CONFIG_NET_DMA
1271static void tcp_service_net_dma(struct sock *sk, bool wait)
1272{
1273	dma_cookie_t done, used;
1274	dma_cookie_t last_issued;
1275	struct tcp_sock *tp = tcp_sk(sk);
1276
1277	if (!tp->ucopy.dma_chan)
1278		return;
1279
1280	last_issued = tp->ucopy.dma_cookie;
1281	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282
1283	do {
1284		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285					      last_issued, &done,
1286					      &used) == DMA_SUCCESS) {
1287			/* Safe to free early-copied skbs now */
1288			__skb_queue_purge(&sk->sk_async_wait_queue);
1289			break;
1290		} else {
1291			struct sk_buff *skb;
1292			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293			       (dma_async_is_complete(skb->dma_cookie, done,
1294						      used) == DMA_SUCCESS)) {
1295				__skb_dequeue(&sk->sk_async_wait_queue);
1296				kfree_skb(skb);
1297			}
1298		}
1299	} while (wait);
1300}
1301#endif
1302
1303static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304{
1305	struct sk_buff *skb;
1306	u32 offset;
1307
1308	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309		offset = seq - TCP_SKB_CB(skb)->seq;
1310		if (tcp_hdr(skb)->syn)
1311			offset--;
1312		if (offset < skb->len || tcp_hdr(skb)->fin) {
1313			*off = offset;
1314			return skb;
1315		}
 
 
 
 
 
1316	}
1317	return NULL;
1318}
1319
1320/*
1321 * This routine provides an alternative to tcp_recvmsg() for routines
1322 * that would like to handle copying from skbuffs directly in 'sendfile'
1323 * fashion.
1324 * Note:
1325 *	- It is assumed that the socket was locked by the caller.
1326 *	- The routine does not block.
1327 *	- At present, there is no support for reading OOB data
1328 *	  or for 'peeking' the socket using this routine
1329 *	  (although both would be easy to implement).
1330 */
1331int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332		  sk_read_actor_t recv_actor)
1333{
1334	struct sk_buff *skb;
1335	struct tcp_sock *tp = tcp_sk(sk);
1336	u32 seq = tp->copied_seq;
1337	u32 offset;
1338	int copied = 0;
1339
1340	if (sk->sk_state == TCP_LISTEN)
1341		return -ENOTCONN;
1342	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343		if (offset < skb->len) {
1344			int used;
1345			size_t len;
1346
1347			len = skb->len - offset;
1348			/* Stop reading if we hit a patch of urgent data */
1349			if (tp->urg_data) {
1350				u32 urg_offset = tp->urg_seq - seq;
1351				if (urg_offset < len)
1352					len = urg_offset;
1353				if (!len)
1354					break;
1355			}
1356			used = recv_actor(desc, skb, offset, len);
1357			if (used < 0) {
1358				if (!copied)
1359					copied = used;
1360				break;
1361			} else if (used <= len) {
1362				seq += used;
1363				copied += used;
1364				offset += used;
1365			}
1366			/*
1367			 * If recv_actor drops the lock (e.g. TCP splice
1368			 * receive) the skb pointer might be invalid when
1369			 * getting here: tcp_collapse might have deleted it
1370			 * while aggregating skbs from the socket queue.
1371			 */
1372			skb = tcp_recv_skb(sk, seq-1, &offset);
1373			if (!skb || (offset+1 != skb->len))
1374				break;
 
 
 
 
 
1375		}
1376		if (tcp_hdr(skb)->fin) {
1377			sk_eat_skb(sk, skb, 0);
1378			++seq;
1379			break;
1380		}
1381		sk_eat_skb(sk, skb, 0);
1382		if (!desc->count)
1383			break;
1384		tp->copied_seq = seq;
1385	}
1386	tp->copied_seq = seq;
1387
1388	tcp_rcv_space_adjust(sk);
1389
1390	/* Clean up data we have read: This will do ACK frames. */
1391	if (copied > 0)
 
1392		tcp_cleanup_rbuf(sk, copied);
 
1393	return copied;
1394}
1395EXPORT_SYMBOL(tcp_read_sock);
1396
1397/*
1398 *	This routine copies from a sock struct into the user buffer.
1399 *
1400 *	Technical note: in 2.3 we work on _locked_ socket, so that
1401 *	tricks with *seq access order and skb->users are not required.
1402 *	Probably, code can be easily improved even more.
1403 */
1404
1405int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406		size_t len, int nonblock, int flags, int *addr_len)
1407{
1408	struct tcp_sock *tp = tcp_sk(sk);
1409	int copied = 0;
1410	u32 peek_seq;
1411	u32 *seq;
1412	unsigned long used;
1413	int err;
1414	int target;		/* Read at least this many bytes */
1415	long timeo;
1416	struct task_struct *user_recv = NULL;
1417	int copied_early = 0;
1418	struct sk_buff *skb;
1419	u32 urg_hole = 0;
1420
 
 
 
 
1421	lock_sock(sk);
1422
1423	err = -ENOTCONN;
1424	if (sk->sk_state == TCP_LISTEN)
1425		goto out;
1426
1427	timeo = sock_rcvtimeo(sk, nonblock);
1428
1429	/* Urgent data needs to be handled specially. */
1430	if (flags & MSG_OOB)
1431		goto recv_urg;
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433	seq = &tp->copied_seq;
1434	if (flags & MSG_PEEK) {
1435		peek_seq = tp->copied_seq;
1436		seq = &peek_seq;
1437	}
1438
1439	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440
1441#ifdef CONFIG_NET_DMA
1442	tp->ucopy.dma_chan = NULL;
1443	preempt_disable();
1444	skb = skb_peek_tail(&sk->sk_receive_queue);
1445	{
1446		int available = 0;
1447
1448		if (skb)
1449			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450		if ((available < target) &&
1451		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452		    !sysctl_tcp_low_latency &&
1453		    dma_find_channel(DMA_MEMCPY)) {
1454			preempt_enable_no_resched();
1455			tp->ucopy.pinned_list =
1456					dma_pin_iovec_pages(msg->msg_iov, len);
1457		} else {
1458			preempt_enable_no_resched();
1459		}
1460	}
1461#endif
1462
1463	do {
1464		u32 offset;
1465
1466		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467		if (tp->urg_data && tp->urg_seq == *seq) {
1468			if (copied)
1469				break;
1470			if (signal_pending(current)) {
1471				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472				break;
1473			}
1474		}
1475
1476		/* Next get a buffer. */
1477
1478		skb_queue_walk(&sk->sk_receive_queue, skb) {
1479			/* Now that we have two receive queues this
1480			 * shouldn't happen.
1481			 */
1482			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485				 flags))
1486				break;
1487
1488			offset = *seq - TCP_SKB_CB(skb)->seq;
1489			if (tcp_hdr(skb)->syn)
1490				offset--;
1491			if (offset < skb->len)
1492				goto found_ok_skb;
1493			if (tcp_hdr(skb)->fin)
1494				goto found_fin_ok;
1495			WARN(!(flags & MSG_PEEK),
1496			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498		}
1499
1500		/* Well, if we have backlog, try to process it now yet. */
1501
1502		if (copied >= target && !sk->sk_backlog.tail)
1503			break;
1504
1505		if (copied) {
1506			if (sk->sk_err ||
1507			    sk->sk_state == TCP_CLOSE ||
1508			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509			    !timeo ||
1510			    signal_pending(current))
1511				break;
1512		} else {
1513			if (sock_flag(sk, SOCK_DONE))
1514				break;
1515
1516			if (sk->sk_err) {
1517				copied = sock_error(sk);
1518				break;
1519			}
1520
1521			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522				break;
1523
1524			if (sk->sk_state == TCP_CLOSE) {
1525				if (!sock_flag(sk, SOCK_DONE)) {
1526					/* This occurs when user tries to read
1527					 * from never connected socket.
1528					 */
1529					copied = -ENOTCONN;
1530					break;
1531				}
1532				break;
1533			}
1534
1535			if (!timeo) {
1536				copied = -EAGAIN;
1537				break;
1538			}
1539
1540			if (signal_pending(current)) {
1541				copied = sock_intr_errno(timeo);
1542				break;
1543			}
1544		}
1545
1546		tcp_cleanup_rbuf(sk, copied);
1547
1548		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549			/* Install new reader */
1550			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551				user_recv = current;
1552				tp->ucopy.task = user_recv;
1553				tp->ucopy.iov = msg->msg_iov;
1554			}
1555
1556			tp->ucopy.len = len;
1557
1558			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560
1561			/* Ugly... If prequeue is not empty, we have to
1562			 * process it before releasing socket, otherwise
1563			 * order will be broken at second iteration.
1564			 * More elegant solution is required!!!
1565			 *
1566			 * Look: we have the following (pseudo)queues:
1567			 *
1568			 * 1. packets in flight
1569			 * 2. backlog
1570			 * 3. prequeue
1571			 * 4. receive_queue
1572			 *
1573			 * Each queue can be processed only if the next ones
1574			 * are empty. At this point we have empty receive_queue.
1575			 * But prequeue _can_ be not empty after 2nd iteration,
1576			 * when we jumped to start of loop because backlog
1577			 * processing added something to receive_queue.
1578			 * We cannot release_sock(), because backlog contains
1579			 * packets arrived _after_ prequeued ones.
1580			 *
1581			 * Shortly, algorithm is clear --- to process all
1582			 * the queues in order. We could make it more directly,
1583			 * requeueing packets from backlog to prequeue, if
1584			 * is not empty. It is more elegant, but eats cycles,
1585			 * unfortunately.
1586			 */
1587			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588				goto do_prequeue;
1589
1590			/* __ Set realtime policy in scheduler __ */
1591		}
1592
1593#ifdef CONFIG_NET_DMA
1594		if (tp->ucopy.dma_chan)
1595			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
 
 
 
 
 
 
1596#endif
1597		if (copied >= target) {
1598			/* Do not sleep, just process backlog. */
1599			release_sock(sk);
1600			lock_sock(sk);
1601		} else
1602			sk_wait_data(sk, &timeo);
1603
1604#ifdef CONFIG_NET_DMA
1605		tcp_service_net_dma(sk, false);  /* Don't block */
1606		tp->ucopy.wakeup = 0;
1607#endif
1608
1609		if (user_recv) {
1610			int chunk;
1611
1612			/* __ Restore normal policy in scheduler __ */
1613
1614			if ((chunk = len - tp->ucopy.len) != 0) {
1615				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616				len -= chunk;
1617				copied += chunk;
1618			}
1619
1620			if (tp->rcv_nxt == tp->copied_seq &&
1621			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622do_prequeue:
1623				tcp_prequeue_process(sk);
1624
1625				if ((chunk = len - tp->ucopy.len) != 0) {
1626					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627					len -= chunk;
1628					copied += chunk;
1629				}
1630			}
1631		}
1632		if ((flags & MSG_PEEK) &&
1633		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634			if (net_ratelimit())
1635				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636				       current->comm, task_pid_nr(current));
1637			peek_seq = tp->copied_seq;
1638		}
1639		continue;
1640
1641	found_ok_skb:
1642		/* Ok so how much can we use? */
1643		used = skb->len - offset;
1644		if (len < used)
1645			used = len;
1646
1647		/* Do we have urgent data here? */
1648		if (tp->urg_data) {
1649			u32 urg_offset = tp->urg_seq - *seq;
1650			if (urg_offset < used) {
1651				if (!urg_offset) {
1652					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653						++*seq;
1654						urg_hole++;
1655						offset++;
1656						used--;
1657						if (!used)
1658							goto skip_copy;
1659					}
1660				} else
1661					used = urg_offset;
1662			}
1663		}
1664
1665		if (!(flags & MSG_TRUNC)) {
1666#ifdef CONFIG_NET_DMA
1667			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669
1670			if (tp->ucopy.dma_chan) {
1671				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672					tp->ucopy.dma_chan, skb, offset,
1673					msg->msg_iov, used,
1674					tp->ucopy.pinned_list);
1675
1676				if (tp->ucopy.dma_cookie < 0) {
1677
1678					printk(KERN_ALERT "dma_cookie < 0\n");
 
1679
1680					/* Exception. Bailout! */
1681					if (!copied)
1682						copied = -EFAULT;
1683					break;
1684				}
1685
1686				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687
1688				if ((offset + used) == skb->len)
1689					copied_early = 1;
1690
1691			} else
1692#endif
1693			{
1694				err = skb_copy_datagram_iovec(skb, offset,
1695						msg->msg_iov, used);
1696				if (err) {
1697					/* Exception. Bailout! */
1698					if (!copied)
1699						copied = -EFAULT;
1700					break;
1701				}
1702			}
1703		}
1704
1705		*seq += used;
1706		copied += used;
1707		len -= used;
1708
1709		tcp_rcv_space_adjust(sk);
1710
1711skip_copy:
1712		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713			tp->urg_data = 0;
1714			tcp_fast_path_check(sk);
1715		}
1716		if (used + offset < skb->len)
1717			continue;
1718
1719		if (tcp_hdr(skb)->fin)
1720			goto found_fin_ok;
1721		if (!(flags & MSG_PEEK)) {
1722			sk_eat_skb(sk, skb, copied_early);
1723			copied_early = 0;
1724		}
1725		continue;
1726
1727	found_fin_ok:
1728		/* Process the FIN. */
1729		++*seq;
1730		if (!(flags & MSG_PEEK)) {
1731			sk_eat_skb(sk, skb, copied_early);
1732			copied_early = 0;
1733		}
1734		break;
1735	} while (len > 0);
1736
1737	if (user_recv) {
1738		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739			int chunk;
1740
1741			tp->ucopy.len = copied > 0 ? len : 0;
1742
1743			tcp_prequeue_process(sk);
1744
1745			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747				len -= chunk;
1748				copied += chunk;
1749			}
1750		}
1751
1752		tp->ucopy.task = NULL;
1753		tp->ucopy.len = 0;
1754	}
1755
1756#ifdef CONFIG_NET_DMA
1757	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758	tp->ucopy.dma_chan = NULL;
1759
1760	if (tp->ucopy.pinned_list) {
1761		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762		tp->ucopy.pinned_list = NULL;
1763	}
1764#endif
1765
1766	/* According to UNIX98, msg_name/msg_namelen are ignored
1767	 * on connected socket. I was just happy when found this 8) --ANK
1768	 */
1769
1770	/* Clean up data we have read: This will do ACK frames. */
1771	tcp_cleanup_rbuf(sk, copied);
1772
1773	release_sock(sk);
1774	return copied;
1775
1776out:
1777	release_sock(sk);
1778	return err;
1779
1780recv_urg:
1781	err = tcp_recv_urg(sk, msg, len, flags);
1782	goto out;
 
 
 
 
1783}
1784EXPORT_SYMBOL(tcp_recvmsg);
1785
1786void tcp_set_state(struct sock *sk, int state)
1787{
1788	int oldstate = sk->sk_state;
1789
1790	switch (state) {
1791	case TCP_ESTABLISHED:
1792		if (oldstate != TCP_ESTABLISHED)
1793			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794		break;
1795
1796	case TCP_CLOSE:
1797		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799
1800		sk->sk_prot->unhash(sk);
1801		if (inet_csk(sk)->icsk_bind_hash &&
1802		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803			inet_put_port(sk);
1804		/* fall through */
1805	default:
1806		if (oldstate == TCP_ESTABLISHED)
1807			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808	}
1809
1810	/* Change state AFTER socket is unhashed to avoid closed
1811	 * socket sitting in hash tables.
1812	 */
1813	sk->sk_state = state;
1814
1815#ifdef STATE_TRACE
1816	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817#endif
1818}
1819EXPORT_SYMBOL_GPL(tcp_set_state);
1820
1821/*
1822 *	State processing on a close. This implements the state shift for
1823 *	sending our FIN frame. Note that we only send a FIN for some
1824 *	states. A shutdown() may have already sent the FIN, or we may be
1825 *	closed.
1826 */
1827
1828static const unsigned char new_state[16] = {
1829  /* current state:        new state:      action:	*/
1830  /* (Invalid)		*/ TCP_CLOSE,
1831  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837  /* TCP_CLOSE		*/ TCP_CLOSE,
1838  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840  /* TCP_LISTEN		*/ TCP_CLOSE,
1841  /* TCP_CLOSING	*/ TCP_CLOSING,
1842};
1843
1844static int tcp_close_state(struct sock *sk)
1845{
1846	int next = (int)new_state[sk->sk_state];
1847	int ns = next & TCP_STATE_MASK;
1848
1849	tcp_set_state(sk, ns);
1850
1851	return next & TCP_ACTION_FIN;
1852}
1853
1854/*
1855 *	Shutdown the sending side of a connection. Much like close except
1856 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857 */
1858
1859void tcp_shutdown(struct sock *sk, int how)
1860{
1861	/*	We need to grab some memory, and put together a FIN,
1862	 *	and then put it into the queue to be sent.
1863	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864	 */
1865	if (!(how & SEND_SHUTDOWN))
1866		return;
1867
1868	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869	if ((1 << sk->sk_state) &
1870	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872		/* Clear out any half completed packets.  FIN if needed. */
1873		if (tcp_close_state(sk))
1874			tcp_send_fin(sk);
1875	}
1876}
1877EXPORT_SYMBOL(tcp_shutdown);
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879void tcp_close(struct sock *sk, long timeout)
1880{
1881	struct sk_buff *skb;
1882	int data_was_unread = 0;
1883	int state;
1884
1885	lock_sock(sk);
1886	sk->sk_shutdown = SHUTDOWN_MASK;
1887
1888	if (sk->sk_state == TCP_LISTEN) {
1889		tcp_set_state(sk, TCP_CLOSE);
1890
1891		/* Special case. */
1892		inet_csk_listen_stop(sk);
1893
1894		goto adjudge_to_death;
1895	}
1896
1897	/*  We need to flush the recv. buffs.  We do this only on the
1898	 *  descriptor close, not protocol-sourced closes, because the
1899	 *  reader process may not have drained the data yet!
1900	 */
1901	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1902		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1903			  tcp_hdr(skb)->fin;
1904		data_was_unread += len;
1905		__kfree_skb(skb);
1906	}
1907
1908	sk_mem_reclaim(sk);
1909
1910	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1911	if (sk->sk_state == TCP_CLOSE)
1912		goto adjudge_to_death;
1913
1914	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1915	 * data was lost. To witness the awful effects of the old behavior of
1916	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1917	 * GET in an FTP client, suspend the process, wait for the client to
1918	 * advertise a zero window, then kill -9 the FTP client, wheee...
1919	 * Note: timeout is always zero in such a case.
1920	 */
1921	if (data_was_unread) {
 
 
1922		/* Unread data was tossed, zap the connection. */
1923		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1924		tcp_set_state(sk, TCP_CLOSE);
1925		tcp_send_active_reset(sk, sk->sk_allocation);
1926	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1927		/* Check zero linger _after_ checking for unread data. */
1928		sk->sk_prot->disconnect(sk, 0);
1929		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1930	} else if (tcp_close_state(sk)) {
1931		/* We FIN if the application ate all the data before
1932		 * zapping the connection.
1933		 */
1934
1935		/* RED-PEN. Formally speaking, we have broken TCP state
1936		 * machine. State transitions:
1937		 *
1938		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1939		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1940		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1941		 *
1942		 * are legal only when FIN has been sent (i.e. in window),
1943		 * rather than queued out of window. Purists blame.
1944		 *
1945		 * F.e. "RFC state" is ESTABLISHED,
1946		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1947		 *
1948		 * The visible declinations are that sometimes
1949		 * we enter time-wait state, when it is not required really
1950		 * (harmless), do not send active resets, when they are
1951		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1952		 * they look as CLOSING or LAST_ACK for Linux)
1953		 * Probably, I missed some more holelets.
1954		 * 						--ANK
 
 
 
 
1955		 */
1956		tcp_send_fin(sk);
1957	}
1958
1959	sk_stream_wait_close(sk, timeout);
1960
1961adjudge_to_death:
1962	state = sk->sk_state;
1963	sock_hold(sk);
1964	sock_orphan(sk);
1965
1966	/* It is the last release_sock in its life. It will remove backlog. */
1967	release_sock(sk);
1968
1969
1970	/* Now socket is owned by kernel and we acquire BH lock
1971	   to finish close. No need to check for user refs.
1972	 */
1973	local_bh_disable();
1974	bh_lock_sock(sk);
1975	WARN_ON(sock_owned_by_user(sk));
1976
1977	percpu_counter_inc(sk->sk_prot->orphan_count);
1978
1979	/* Have we already been destroyed by a softirq or backlog? */
1980	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1981		goto out;
1982
1983	/*	This is a (useful) BSD violating of the RFC. There is a
1984	 *	problem with TCP as specified in that the other end could
1985	 *	keep a socket open forever with no application left this end.
1986	 *	We use a 3 minute timeout (about the same as BSD) then kill
1987	 *	our end. If they send after that then tough - BUT: long enough
1988	 *	that we won't make the old 4*rto = almost no time - whoops
1989	 *	reset mistake.
1990	 *
1991	 *	Nope, it was not mistake. It is really desired behaviour
1992	 *	f.e. on http servers, when such sockets are useless, but
1993	 *	consume significant resources. Let's do it with special
1994	 *	linger2	option.					--ANK
1995	 */
1996
1997	if (sk->sk_state == TCP_FIN_WAIT2) {
1998		struct tcp_sock *tp = tcp_sk(sk);
1999		if (tp->linger2 < 0) {
2000			tcp_set_state(sk, TCP_CLOSE);
2001			tcp_send_active_reset(sk, GFP_ATOMIC);
2002			NET_INC_STATS_BH(sock_net(sk),
2003					LINUX_MIB_TCPABORTONLINGER);
2004		} else {
2005			const int tmo = tcp_fin_time(sk);
2006
2007			if (tmo > TCP_TIMEWAIT_LEN) {
2008				inet_csk_reset_keepalive_timer(sk,
2009						tmo - TCP_TIMEWAIT_LEN);
2010			} else {
2011				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2012				goto out;
2013			}
2014		}
2015	}
2016	if (sk->sk_state != TCP_CLOSE) {
2017		sk_mem_reclaim(sk);
2018		if (tcp_too_many_orphans(sk, 0)) {
2019			if (net_ratelimit())
2020				printk(KERN_INFO "TCP: too many of orphaned "
2021				       "sockets\n");
2022			tcp_set_state(sk, TCP_CLOSE);
2023			tcp_send_active_reset(sk, GFP_ATOMIC);
2024			NET_INC_STATS_BH(sock_net(sk),
2025					LINUX_MIB_TCPABORTONMEMORY);
2026		}
2027	}
2028
2029	if (sk->sk_state == TCP_CLOSE)
 
 
 
 
 
 
 
2030		inet_csk_destroy_sock(sk);
 
2031	/* Otherwise, socket is reprieved until protocol close. */
2032
2033out:
2034	bh_unlock_sock(sk);
2035	local_bh_enable();
2036	sock_put(sk);
2037}
2038EXPORT_SYMBOL(tcp_close);
2039
2040/* These states need RST on ABORT according to RFC793 */
2041
2042static inline int tcp_need_reset(int state)
2043{
2044	return (1 << state) &
2045	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047}
2048
2049int tcp_disconnect(struct sock *sk, int flags)
2050{
2051	struct inet_sock *inet = inet_sk(sk);
2052	struct inet_connection_sock *icsk = inet_csk(sk);
2053	struct tcp_sock *tp = tcp_sk(sk);
2054	int err = 0;
2055	int old_state = sk->sk_state;
2056
2057	if (old_state != TCP_CLOSE)
2058		tcp_set_state(sk, TCP_CLOSE);
2059
2060	/* ABORT function of RFC793 */
2061	if (old_state == TCP_LISTEN) {
2062		inet_csk_listen_stop(sk);
 
 
2063	} else if (tcp_need_reset(old_state) ||
2064		   (tp->snd_nxt != tp->write_seq &&
2065		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067		 * states
2068		 */
2069		tcp_send_active_reset(sk, gfp_any());
2070		sk->sk_err = ECONNRESET;
2071	} else if (old_state == TCP_SYN_SENT)
2072		sk->sk_err = ECONNRESET;
2073
2074	tcp_clear_xmit_timers(sk);
2075	__skb_queue_purge(&sk->sk_receive_queue);
2076	tcp_write_queue_purge(sk);
2077	__skb_queue_purge(&tp->out_of_order_queue);
2078#ifdef CONFIG_NET_DMA
2079	__skb_queue_purge(&sk->sk_async_wait_queue);
2080#endif
2081
2082	inet->inet_dport = 0;
2083
2084	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085		inet_reset_saddr(sk);
2086
2087	sk->sk_shutdown = 0;
2088	sock_reset_flag(sk, SOCK_DONE);
2089	tp->srtt = 0;
2090	if ((tp->write_seq += tp->max_window + 2) == 0)
2091		tp->write_seq = 1;
2092	icsk->icsk_backoff = 0;
2093	tp->snd_cwnd = 2;
2094	icsk->icsk_probes_out = 0;
2095	tp->packets_out = 0;
2096	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097	tp->snd_cwnd_cnt = 0;
2098	tp->bytes_acked = 0;
2099	tp->window_clamp = 0;
2100	tcp_set_ca_state(sk, TCP_CA_Open);
2101	tcp_clear_retrans(tp);
2102	inet_csk_delack_init(sk);
2103	tcp_init_send_head(sk);
2104	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105	__sk_dst_reset(sk);
2106
2107	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108
2109	sk->sk_error_report(sk);
2110	return err;
2111}
2112EXPORT_SYMBOL(tcp_disconnect);
2113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114/*
2115 *	Socket option code for TCP.
2116 */
2117static int do_tcp_setsockopt(struct sock *sk, int level,
2118		int optname, char __user *optval, unsigned int optlen)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	struct inet_connection_sock *icsk = inet_csk(sk);
2122	int val;
2123	int err = 0;
2124
2125	/* These are data/string values, all the others are ints */
2126	switch (optname) {
2127	case TCP_CONGESTION: {
2128		char name[TCP_CA_NAME_MAX];
2129
2130		if (optlen < 1)
2131			return -EINVAL;
2132
2133		val = strncpy_from_user(name, optval,
2134					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135		if (val < 0)
2136			return -EFAULT;
2137		name[val] = 0;
2138
2139		lock_sock(sk);
2140		err = tcp_set_congestion_control(sk, name);
2141		release_sock(sk);
2142		return err;
2143	}
2144	case TCP_COOKIE_TRANSACTIONS: {
2145		struct tcp_cookie_transactions ctd;
2146		struct tcp_cookie_values *cvp = NULL;
2147
2148		if (sizeof(ctd) > optlen)
2149			return -EINVAL;
2150		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151			return -EFAULT;
2152
2153		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155			return -EINVAL;
2156
2157		if (ctd.tcpct_cookie_desired == 0) {
2158			/* default to global value */
2159		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162			return -EINVAL;
2163		}
2164
2165		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166			/* Supercedes all other values */
2167			lock_sock(sk);
2168			if (tp->cookie_values != NULL) {
2169				kref_put(&tp->cookie_values->kref,
2170					 tcp_cookie_values_release);
2171				tp->cookie_values = NULL;
2172			}
2173			tp->rx_opt.cookie_in_always = 0; /* false */
2174			tp->rx_opt.cookie_out_never = 1; /* true */
2175			release_sock(sk);
2176			return err;
2177		}
2178
2179		/* Allocate ancillary memory before locking.
2180		 */
2181		if (ctd.tcpct_used > 0 ||
2182		    (tp->cookie_values == NULL &&
2183		     (sysctl_tcp_cookie_size > 0 ||
2184		      ctd.tcpct_cookie_desired > 0 ||
2185		      ctd.tcpct_s_data_desired > 0))) {
2186			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187				      GFP_KERNEL);
2188			if (cvp == NULL)
2189				return -ENOMEM;
2190
2191			kref_init(&cvp->kref);
2192		}
2193		lock_sock(sk);
2194		tp->rx_opt.cookie_in_always =
2195			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196		tp->rx_opt.cookie_out_never = 0; /* false */
2197
2198		if (tp->cookie_values != NULL) {
2199			if (cvp != NULL) {
2200				/* Changed values are recorded by a changed
2201				 * pointer, ensuring the cookie will differ,
2202				 * without separately hashing each value later.
2203				 */
2204				kref_put(&tp->cookie_values->kref,
2205					 tcp_cookie_values_release);
2206			} else {
2207				cvp = tp->cookie_values;
2208			}
2209		}
2210
2211		if (cvp != NULL) {
2212			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213
2214			if (ctd.tcpct_used > 0) {
2215				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216				       ctd.tcpct_used);
2217				cvp->s_data_desired = ctd.tcpct_used;
2218				cvp->s_data_constant = 1; /* true */
2219			} else {
2220				/* No constant payload data. */
2221				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222				cvp->s_data_constant = 0; /* false */
2223			}
2224
2225			tp->cookie_values = cvp;
2226		}
2227		release_sock(sk);
2228		return err;
2229	}
2230	default:
2231		/* fallthru */
2232		break;
2233	}
2234
2235	if (optlen < sizeof(int))
2236		return -EINVAL;
2237
2238	if (get_user(val, (int __user *)optval))
2239		return -EFAULT;
2240
2241	lock_sock(sk);
2242
2243	switch (optname) {
2244	case TCP_MAXSEG:
2245		/* Values greater than interface MTU won't take effect. However
2246		 * at the point when this call is done we typically don't yet
2247		 * know which interface is going to be used */
2248		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2249			err = -EINVAL;
2250			break;
2251		}
2252		tp->rx_opt.user_mss = val;
2253		break;
2254
2255	case TCP_NODELAY:
2256		if (val) {
2257			/* TCP_NODELAY is weaker than TCP_CORK, so that
2258			 * this option on corked socket is remembered, but
2259			 * it is not activated until cork is cleared.
2260			 *
2261			 * However, when TCP_NODELAY is set we make
2262			 * an explicit push, which overrides even TCP_CORK
2263			 * for currently queued segments.
2264			 */
2265			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266			tcp_push_pending_frames(sk);
2267		} else {
2268			tp->nonagle &= ~TCP_NAGLE_OFF;
2269		}
2270		break;
2271
2272	case TCP_THIN_LINEAR_TIMEOUTS:
2273		if (val < 0 || val > 1)
2274			err = -EINVAL;
2275		else
2276			tp->thin_lto = val;
2277		break;
2278
2279	case TCP_THIN_DUPACK:
2280		if (val < 0 || val > 1)
2281			err = -EINVAL;
2282		else
2283			tp->thin_dupack = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284		break;
2285
2286	case TCP_CORK:
2287		/* When set indicates to always queue non-full frames.
2288		 * Later the user clears this option and we transmit
2289		 * any pending partial frames in the queue.  This is
2290		 * meant to be used alongside sendfile() to get properly
2291		 * filled frames when the user (for example) must write
2292		 * out headers with a write() call first and then use
2293		 * sendfile to send out the data parts.
2294		 *
2295		 * TCP_CORK can be set together with TCP_NODELAY and it is
2296		 * stronger than TCP_NODELAY.
2297		 */
2298		if (val) {
2299			tp->nonagle |= TCP_NAGLE_CORK;
2300		} else {
2301			tp->nonagle &= ~TCP_NAGLE_CORK;
2302			if (tp->nonagle&TCP_NAGLE_OFF)
2303				tp->nonagle |= TCP_NAGLE_PUSH;
2304			tcp_push_pending_frames(sk);
2305		}
2306		break;
2307
2308	case TCP_KEEPIDLE:
2309		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2310			err = -EINVAL;
2311		else {
2312			tp->keepalive_time = val * HZ;
2313			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314			    !((1 << sk->sk_state) &
2315			      (TCPF_CLOSE | TCPF_LISTEN))) {
2316				u32 elapsed = keepalive_time_elapsed(tp);
2317				if (tp->keepalive_time > elapsed)
2318					elapsed = tp->keepalive_time - elapsed;
2319				else
2320					elapsed = 0;
2321				inet_csk_reset_keepalive_timer(sk, elapsed);
2322			}
2323		}
2324		break;
2325	case TCP_KEEPINTVL:
2326		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327			err = -EINVAL;
2328		else
2329			tp->keepalive_intvl = val * HZ;
2330		break;
2331	case TCP_KEEPCNT:
2332		if (val < 1 || val > MAX_TCP_KEEPCNT)
2333			err = -EINVAL;
2334		else
2335			tp->keepalive_probes = val;
2336		break;
2337	case TCP_SYNCNT:
2338		if (val < 1 || val > MAX_TCP_SYNCNT)
2339			err = -EINVAL;
2340		else
2341			icsk->icsk_syn_retries = val;
2342		break;
2343
2344	case TCP_LINGER2:
2345		if (val < 0)
2346			tp->linger2 = -1;
2347		else if (val > sysctl_tcp_fin_timeout / HZ)
2348			tp->linger2 = 0;
2349		else
2350			tp->linger2 = val * HZ;
2351		break;
2352
2353	case TCP_DEFER_ACCEPT:
2354		/* Translate value in seconds to number of retransmits */
2355		icsk->icsk_accept_queue.rskq_defer_accept =
2356			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357					TCP_RTO_MAX / HZ);
2358		break;
2359
2360	case TCP_WINDOW_CLAMP:
2361		if (!val) {
2362			if (sk->sk_state != TCP_CLOSE) {
2363				err = -EINVAL;
2364				break;
2365			}
2366			tp->window_clamp = 0;
2367		} else
2368			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369						SOCK_MIN_RCVBUF / 2 : val;
2370		break;
2371
2372	case TCP_QUICKACK:
2373		if (!val) {
2374			icsk->icsk_ack.pingpong = 1;
2375		} else {
2376			icsk->icsk_ack.pingpong = 0;
2377			if ((1 << sk->sk_state) &
2378			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379			    inet_csk_ack_scheduled(sk)) {
2380				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381				tcp_cleanup_rbuf(sk, 1);
2382				if (!(val & 1))
2383					icsk->icsk_ack.pingpong = 1;
2384			}
2385		}
2386		break;
2387
2388#ifdef CONFIG_TCP_MD5SIG
2389	case TCP_MD5SIG:
2390		/* Read the IP->Key mappings from userspace */
2391		err = tp->af_specific->md5_parse(sk, optval, optlen);
2392		break;
2393#endif
2394	case TCP_USER_TIMEOUT:
2395		/* Cap the max timeout in ms TCP will retry/retrans
2396		 * before giving up and aborting (ETIMEDOUT) a connection.
2397		 */
2398		icsk->icsk_user_timeout = msecs_to_jiffies(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399		break;
2400	default:
2401		err = -ENOPROTOOPT;
2402		break;
2403	}
2404
2405	release_sock(sk);
2406	return err;
2407}
2408
2409int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2410		   unsigned int optlen)
2411{
2412	struct inet_connection_sock *icsk = inet_csk(sk);
2413
2414	if (level != SOL_TCP)
2415		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2416						     optval, optlen);
2417	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2418}
2419EXPORT_SYMBOL(tcp_setsockopt);
2420
2421#ifdef CONFIG_COMPAT
2422int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2423			  char __user *optval, unsigned int optlen)
2424{
2425	if (level != SOL_TCP)
2426		return inet_csk_compat_setsockopt(sk, level, optname,
2427						  optval, optlen);
2428	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429}
2430EXPORT_SYMBOL(compat_tcp_setsockopt);
2431#endif
2432
2433/* Return information about state of tcp endpoint in API format. */
2434void tcp_get_info(struct sock *sk, struct tcp_info *info)
2435{
2436	struct tcp_sock *tp = tcp_sk(sk);
2437	const struct inet_connection_sock *icsk = inet_csk(sk);
2438	u32 now = tcp_time_stamp;
2439
2440	memset(info, 0, sizeof(*info));
2441
2442	info->tcpi_state = sk->sk_state;
2443	info->tcpi_ca_state = icsk->icsk_ca_state;
2444	info->tcpi_retransmits = icsk->icsk_retransmits;
2445	info->tcpi_probes = icsk->icsk_probes_out;
2446	info->tcpi_backoff = icsk->icsk_backoff;
2447
2448	if (tp->rx_opt.tstamp_ok)
2449		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2450	if (tcp_is_sack(tp))
2451		info->tcpi_options |= TCPI_OPT_SACK;
2452	if (tp->rx_opt.wscale_ok) {
2453		info->tcpi_options |= TCPI_OPT_WSCALE;
2454		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2455		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2456	}
2457
2458	if (tp->ecn_flags&TCP_ECN_OK)
2459		info->tcpi_options |= TCPI_OPT_ECN;
 
 
 
 
2460
2461	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2462	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2463	info->tcpi_snd_mss = tp->mss_cache;
2464	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2465
2466	if (sk->sk_state == TCP_LISTEN) {
2467		info->tcpi_unacked = sk->sk_ack_backlog;
2468		info->tcpi_sacked = sk->sk_max_ack_backlog;
2469	} else {
2470		info->tcpi_unacked = tp->packets_out;
2471		info->tcpi_sacked = tp->sacked_out;
2472	}
2473	info->tcpi_lost = tp->lost_out;
2474	info->tcpi_retrans = tp->retrans_out;
2475	info->tcpi_fackets = tp->fackets_out;
2476
2477	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2478	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2479	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2480
2481	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2482	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2483	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2484	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2485	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2486	info->tcpi_snd_cwnd = tp->snd_cwnd;
2487	info->tcpi_advmss = tp->advmss;
2488	info->tcpi_reordering = tp->reordering;
2489
2490	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2491	info->tcpi_rcv_space = tp->rcvq_space.space;
2492
2493	info->tcpi_total_retrans = tp->total_retrans;
 
 
 
 
 
2494}
2495EXPORT_SYMBOL_GPL(tcp_get_info);
2496
2497static int do_tcp_getsockopt(struct sock *sk, int level,
2498		int optname, char __user *optval, int __user *optlen)
2499{
2500	struct inet_connection_sock *icsk = inet_csk(sk);
2501	struct tcp_sock *tp = tcp_sk(sk);
2502	int val, len;
2503
2504	if (get_user(len, optlen))
2505		return -EFAULT;
2506
2507	len = min_t(unsigned int, len, sizeof(int));
2508
2509	if (len < 0)
2510		return -EINVAL;
2511
2512	switch (optname) {
2513	case TCP_MAXSEG:
2514		val = tp->mss_cache;
2515		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2516			val = tp->rx_opt.user_mss;
 
 
2517		break;
2518	case TCP_NODELAY:
2519		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2520		break;
2521	case TCP_CORK:
2522		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2523		break;
2524	case TCP_KEEPIDLE:
2525		val = keepalive_time_when(tp) / HZ;
2526		break;
2527	case TCP_KEEPINTVL:
2528		val = keepalive_intvl_when(tp) / HZ;
2529		break;
2530	case TCP_KEEPCNT:
2531		val = keepalive_probes(tp);
2532		break;
2533	case TCP_SYNCNT:
2534		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2535		break;
2536	case TCP_LINGER2:
2537		val = tp->linger2;
2538		if (val >= 0)
2539			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2540		break;
2541	case TCP_DEFER_ACCEPT:
2542		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2543				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2544		break;
2545	case TCP_WINDOW_CLAMP:
2546		val = tp->window_clamp;
2547		break;
2548	case TCP_INFO: {
2549		struct tcp_info info;
2550
2551		if (get_user(len, optlen))
2552			return -EFAULT;
2553
2554		tcp_get_info(sk, &info);
2555
2556		len = min_t(unsigned int, len, sizeof(info));
2557		if (put_user(len, optlen))
2558			return -EFAULT;
2559		if (copy_to_user(optval, &info, len))
2560			return -EFAULT;
2561		return 0;
2562	}
2563	case TCP_QUICKACK:
2564		val = !icsk->icsk_ack.pingpong;
2565		break;
2566
2567	case TCP_CONGESTION:
2568		if (get_user(len, optlen))
2569			return -EFAULT;
2570		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2571		if (put_user(len, optlen))
2572			return -EFAULT;
2573		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2574			return -EFAULT;
2575		return 0;
2576
2577	case TCP_COOKIE_TRANSACTIONS: {
2578		struct tcp_cookie_transactions ctd;
2579		struct tcp_cookie_values *cvp = tp->cookie_values;
2580
2581		if (get_user(len, optlen))
2582			return -EFAULT;
2583		if (len < sizeof(ctd))
2584			return -EINVAL;
2585
2586		memset(&ctd, 0, sizeof(ctd));
2587		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2588				   TCP_COOKIE_IN_ALWAYS : 0)
2589				| (tp->rx_opt.cookie_out_never ?
2590				   TCP_COOKIE_OUT_NEVER : 0);
2591
2592		if (cvp != NULL) {
2593			ctd.tcpct_flags |= (cvp->s_data_in ?
2594					    TCP_S_DATA_IN : 0)
2595					 | (cvp->s_data_out ?
2596					    TCP_S_DATA_OUT : 0);
2597
2598			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2599			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2600
2601			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2602			       cvp->cookie_pair_size);
2603			ctd.tcpct_used = cvp->cookie_pair_size;
2604		}
2605
2606		if (put_user(sizeof(ctd), optlen))
2607			return -EFAULT;
2608		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2609			return -EFAULT;
2610		return 0;
2611	}
2612	case TCP_THIN_LINEAR_TIMEOUTS:
2613		val = tp->thin_lto;
2614		break;
2615	case TCP_THIN_DUPACK:
2616		val = tp->thin_dupack;
2617		break;
2618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	case TCP_USER_TIMEOUT:
2620		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2621		break;
 
 
 
 
 
 
2622	default:
2623		return -ENOPROTOOPT;
2624	}
2625
2626	if (put_user(len, optlen))
2627		return -EFAULT;
2628	if (copy_to_user(optval, &val, len))
2629		return -EFAULT;
2630	return 0;
2631}
2632
2633int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2634		   int __user *optlen)
2635{
2636	struct inet_connection_sock *icsk = inet_csk(sk);
2637
2638	if (level != SOL_TCP)
2639		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2640						     optval, optlen);
2641	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642}
2643EXPORT_SYMBOL(tcp_getsockopt);
2644
2645#ifdef CONFIG_COMPAT
2646int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2647			  char __user *optval, int __user *optlen)
2648{
2649	if (level != SOL_TCP)
2650		return inet_csk_compat_getsockopt(sk, level, optname,
2651						  optval, optlen);
2652	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2653}
2654EXPORT_SYMBOL(compat_tcp_getsockopt);
2655#endif
2656
2657struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2658{
2659	struct sk_buff *segs = ERR_PTR(-EINVAL);
2660	struct tcphdr *th;
2661	unsigned thlen;
2662	unsigned int seq;
2663	__be32 delta;
2664	unsigned int oldlen;
2665	unsigned int mss;
2666
2667	if (!pskb_may_pull(skb, sizeof(*th)))
2668		goto out;
2669
2670	th = tcp_hdr(skb);
2671	thlen = th->doff * 4;
2672	if (thlen < sizeof(*th))
2673		goto out;
2674
2675	if (!pskb_may_pull(skb, thlen))
2676		goto out;
2677
2678	oldlen = (u16)~skb->len;
2679	__skb_pull(skb, thlen);
2680
2681	mss = skb_shinfo(skb)->gso_size;
2682	if (unlikely(skb->len <= mss))
2683		goto out;
2684
2685	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2686		/* Packet is from an untrusted source, reset gso_segs. */
2687		int type = skb_shinfo(skb)->gso_type;
2688
2689		if (unlikely(type &
2690			     ~(SKB_GSO_TCPV4 |
2691			       SKB_GSO_DODGY |
2692			       SKB_GSO_TCP_ECN |
2693			       SKB_GSO_TCPV6 |
2694			       0) ||
2695			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2696			goto out;
2697
2698		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2699
2700		segs = NULL;
2701		goto out;
2702	}
2703
2704	segs = skb_segment(skb, features);
2705	if (IS_ERR(segs))
2706		goto out;
2707
2708	delta = htonl(oldlen + (thlen + mss));
2709
2710	skb = segs;
2711	th = tcp_hdr(skb);
2712	seq = ntohl(th->seq);
2713
2714	do {
2715		th->fin = th->psh = 0;
2716
2717		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2718				       (__force u32)delta));
2719		if (skb->ip_summed != CHECKSUM_PARTIAL)
2720			th->check =
2721			     csum_fold(csum_partial(skb_transport_header(skb),
2722						    thlen, skb->csum));
2723
2724		seq += mss;
2725		skb = skb->next;
2726		th = tcp_hdr(skb);
2727
2728		th->seq = htonl(seq);
2729		th->cwr = 0;
2730	} while (skb->next);
2731
2732	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2733		      skb->data_len);
2734	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735				(__force u32)delta));
2736	if (skb->ip_summed != CHECKSUM_PARTIAL)
2737		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2738						   thlen, skb->csum));
2739
2740out:
2741	return segs;
2742}
2743EXPORT_SYMBOL(tcp_tso_segment);
2744
2745struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2746{
2747	struct sk_buff **pp = NULL;
2748	struct sk_buff *p;
2749	struct tcphdr *th;
2750	struct tcphdr *th2;
2751	unsigned int len;
2752	unsigned int thlen;
2753	__be32 flags;
2754	unsigned int mss = 1;
2755	unsigned int hlen;
2756	unsigned int off;
2757	int flush = 1;
2758	int i;
2759
2760	off = skb_gro_offset(skb);
2761	hlen = off + sizeof(*th);
2762	th = skb_gro_header_fast(skb, off);
2763	if (skb_gro_header_hard(skb, hlen)) {
2764		th = skb_gro_header_slow(skb, hlen, off);
2765		if (unlikely(!th))
2766			goto out;
2767	}
2768
2769	thlen = th->doff * 4;
2770	if (thlen < sizeof(*th))
2771		goto out;
2772
2773	hlen = off + thlen;
2774	if (skb_gro_header_hard(skb, hlen)) {
2775		th = skb_gro_header_slow(skb, hlen, off);
2776		if (unlikely(!th))
2777			goto out;
2778	}
2779
2780	skb_gro_pull(skb, thlen);
2781
2782	len = skb_gro_len(skb);
2783	flags = tcp_flag_word(th);
2784
2785	for (; (p = *head); head = &p->next) {
2786		if (!NAPI_GRO_CB(p)->same_flow)
2787			continue;
2788
2789		th2 = tcp_hdr(p);
2790
2791		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2792			NAPI_GRO_CB(p)->same_flow = 0;
2793			continue;
2794		}
2795
2796		goto found;
2797	}
2798
2799	goto out_check_final;
2800
2801found:
2802	flush = NAPI_GRO_CB(p)->flush;
2803	flush |= (__force int)(flags & TCP_FLAG_CWR);
2804	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2805		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2806	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2807	for (i = sizeof(*th); i < thlen; i += 4)
2808		flush |= *(u32 *)((u8 *)th + i) ^
2809			 *(u32 *)((u8 *)th2 + i);
2810
2811	mss = skb_shinfo(p)->gso_size;
2812
2813	flush |= (len - 1) >= mss;
2814	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2815
2816	if (flush || skb_gro_receive(head, skb)) {
2817		mss = 1;
2818		goto out_check_final;
2819	}
2820
2821	p = *head;
2822	th2 = tcp_hdr(p);
2823	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2824
2825out_check_final:
2826	flush = len < mss;
2827	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2828					TCP_FLAG_RST | TCP_FLAG_SYN |
2829					TCP_FLAG_FIN));
2830
2831	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2832		pp = head;
2833
2834out:
2835	NAPI_GRO_CB(skb)->flush |= flush;
2836
2837	return pp;
2838}
2839EXPORT_SYMBOL(tcp_gro_receive);
2840
2841int tcp_gro_complete(struct sk_buff *skb)
2842{
2843	struct tcphdr *th = tcp_hdr(skb);
2844
2845	skb->csum_start = skb_transport_header(skb) - skb->head;
2846	skb->csum_offset = offsetof(struct tcphdr, check);
2847	skb->ip_summed = CHECKSUM_PARTIAL;
2848
2849	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2850
2851	if (th->cwr)
2852		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2853
2854	return 0;
2855}
2856EXPORT_SYMBOL(tcp_gro_complete);
2857
2858#ifdef CONFIG_TCP_MD5SIG
2859static unsigned long tcp_md5sig_users;
2860static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2861static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2862
2863static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2864{
2865	int cpu;
2866	for_each_possible_cpu(cpu) {
2867		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2868		if (p) {
2869			if (p->md5_desc.tfm)
2870				crypto_free_hash(p->md5_desc.tfm);
2871			kfree(p);
2872		}
2873	}
2874	free_percpu(pool);
2875}
2876
2877void tcp_free_md5sig_pool(void)
2878{
2879	struct tcp_md5sig_pool * __percpu *pool = NULL;
2880
2881	spin_lock_bh(&tcp_md5sig_pool_lock);
2882	if (--tcp_md5sig_users == 0) {
2883		pool = tcp_md5sig_pool;
2884		tcp_md5sig_pool = NULL;
2885	}
2886	spin_unlock_bh(&tcp_md5sig_pool_lock);
2887	if (pool)
2888		__tcp_free_md5sig_pool(pool);
2889}
2890EXPORT_SYMBOL(tcp_free_md5sig_pool);
2891
2892static struct tcp_md5sig_pool * __percpu *
2893__tcp_alloc_md5sig_pool(struct sock *sk)
2894{
2895	int cpu;
2896	struct tcp_md5sig_pool * __percpu *pool;
2897
2898	pool = alloc_percpu(struct tcp_md5sig_pool *);
2899	if (!pool)
2900		return NULL;
2901
2902	for_each_possible_cpu(cpu) {
2903		struct tcp_md5sig_pool *p;
2904		struct crypto_hash *hash;
2905
2906		p = kzalloc(sizeof(*p), sk->sk_allocation);
2907		if (!p)
2908			goto out_free;
2909		*per_cpu_ptr(pool, cpu) = p;
2910
2911		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2912		if (!hash || IS_ERR(hash))
2913			goto out_free;
2914
2915		p->md5_desc.tfm = hash;
2916	}
2917	return pool;
 
 
 
 
 
2918out_free:
2919	__tcp_free_md5sig_pool(pool);
2920	return NULL;
2921}
2922
2923struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2924{
2925	struct tcp_md5sig_pool * __percpu *pool;
2926	int alloc = 0;
2927
2928retry:
2929	spin_lock_bh(&tcp_md5sig_pool_lock);
2930	pool = tcp_md5sig_pool;
2931	if (tcp_md5sig_users++ == 0) {
2932		alloc = 1;
2933		spin_unlock_bh(&tcp_md5sig_pool_lock);
2934	} else if (!pool) {
2935		tcp_md5sig_users--;
2936		spin_unlock_bh(&tcp_md5sig_pool_lock);
2937		cpu_relax();
2938		goto retry;
2939	} else
2940		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941
2942	if (alloc) {
2943		/* we cannot hold spinlock here because this may sleep. */
2944		struct tcp_md5sig_pool * __percpu *p;
2945
2946		p = __tcp_alloc_md5sig_pool(sk);
2947		spin_lock_bh(&tcp_md5sig_pool_lock);
2948		if (!p) {
2949			tcp_md5sig_users--;
2950			spin_unlock_bh(&tcp_md5sig_pool_lock);
2951			return NULL;
2952		}
2953		pool = tcp_md5sig_pool;
2954		if (pool) {
2955			/* oops, it has already been assigned. */
2956			spin_unlock_bh(&tcp_md5sig_pool_lock);
2957			__tcp_free_md5sig_pool(p);
2958		} else {
2959			tcp_md5sig_pool = pool = p;
2960			spin_unlock_bh(&tcp_md5sig_pool_lock);
2961		}
2962	}
2963	return pool;
2964}
2965EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2966
2967
2968/**
2969 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2970 *
2971 *	We use percpu structure, so if we succeed, we exit with preemption
2972 *	and BH disabled, to make sure another thread or softirq handling
2973 *	wont try to get same context.
2974 */
2975struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2976{
2977	struct tcp_md5sig_pool * __percpu *p;
2978
2979	local_bh_disable();
2980
2981	spin_lock(&tcp_md5sig_pool_lock);
2982	p = tcp_md5sig_pool;
2983	if (p)
2984		tcp_md5sig_users++;
2985	spin_unlock(&tcp_md5sig_pool_lock);
2986
2987	if (p)
2988		return *this_cpu_ptr(p);
2989
2990	local_bh_enable();
2991	return NULL;
2992}
2993EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994
2995void tcp_put_md5sig_pool(void)
2996{
2997	local_bh_enable();
2998	tcp_free_md5sig_pool();
2999}
3000EXPORT_SYMBOL(tcp_put_md5sig_pool);
3001
3002int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3003			struct tcphdr *th)
3004{
3005	struct scatterlist sg;
 
3006	int err;
3007
3008	__sum16 old_checksum = th->check;
3009	th->check = 0;
 
 
3010	/* options aren't included in the hash */
3011	sg_init_one(&sg, th, sizeof(struct tcphdr));
3012	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3013	th->check = old_checksum;
3014	return err;
3015}
3016EXPORT_SYMBOL(tcp_md5_hash_header);
3017
3018int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3019			  struct sk_buff *skb, unsigned header_len)
3020{
3021	struct scatterlist sg;
3022	const struct tcphdr *tp = tcp_hdr(skb);
3023	struct hash_desc *desc = &hp->md5_desc;
3024	unsigned i;
3025	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3026				       skb_headlen(skb) - header_len : 0;
3027	const struct skb_shared_info *shi = skb_shinfo(skb);
3028	struct sk_buff *frag_iter;
3029
3030	sg_init_table(&sg, 1);
3031
3032	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3033	if (crypto_hash_update(desc, &sg, head_data_len))
3034		return 1;
3035
3036	for (i = 0; i < shi->nr_frags; ++i) {
3037		const struct skb_frag_struct *f = &shi->frags[i];
3038		sg_set_page(&sg, f->page, f->size, f->page_offset);
3039		if (crypto_hash_update(desc, &sg, f->size))
 
 
 
 
3040			return 1;
3041	}
3042
3043	skb_walk_frags(skb, frag_iter)
3044		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045			return 1;
3046
3047	return 0;
3048}
3049EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050
3051int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3052{
3053	struct scatterlist sg;
3054
3055	sg_init_one(&sg, key->key, key->keylen);
3056	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3057}
3058EXPORT_SYMBOL(tcp_md5_hash_key);
3059
3060#endif
3061
3062/**
3063 * Each Responder maintains up to two secret values concurrently for
3064 * efficient secret rollover.  Each secret value has 4 states:
3065 *
3066 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3067 *    Generates new Responder-Cookies, but not yet used for primary
3068 *    verification.  This is a short-term state, typically lasting only
3069 *    one round trip time (RTT).
3070 *
3071 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3072 *    Used both for generation and primary verification.
3073 *
3074 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3075 *    Used for verification, until the first failure that can be
3076 *    verified by the newer Generating secret.  At that time, this
3077 *    cookie's state is changed to Secondary, and the Generating
3078 *    cookie's state is changed to Primary.  This is a short-term state,
3079 *    typically lasting only one round trip time (RTT).
3080 *
3081 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3082 *    Used for secondary verification, after primary verification
3083 *    failures.  This state lasts no more than twice the Maximum Segment
3084 *    Lifetime (2MSL).  Then, the secret is discarded.
3085 */
3086struct tcp_cookie_secret {
3087	/* The secret is divided into two parts.  The digest part is the
3088	 * equivalent of previously hashing a secret and saving the state,
3089	 * and serves as an initialization vector (IV).  The message part
3090	 * serves as the trailing secret.
3091	 */
3092	u32				secrets[COOKIE_WORKSPACE_WORDS];
3093	unsigned long			expires;
3094};
3095
3096#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3097#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3098#define TCP_SECRET_LIFE (HZ * 600)
3099
3100static struct tcp_cookie_secret tcp_secret_one;
3101static struct tcp_cookie_secret tcp_secret_two;
3102
3103/* Essentially a circular list, without dynamic allocation. */
3104static struct tcp_cookie_secret *tcp_secret_generating;
3105static struct tcp_cookie_secret *tcp_secret_primary;
3106static struct tcp_cookie_secret *tcp_secret_retiring;
3107static struct tcp_cookie_secret *tcp_secret_secondary;
3108
3109static DEFINE_SPINLOCK(tcp_secret_locker);
3110
3111/* Select a pseudo-random word in the cookie workspace.
3112 */
3113static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3114{
3115	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3116}
3117
3118/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3119 * Called in softirq context.
3120 * Returns: 0 for success.
3121 */
3122int tcp_cookie_generator(u32 *bakery)
3123{
3124	unsigned long jiffy = jiffies;
3125
3126	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3127		spin_lock_bh(&tcp_secret_locker);
3128		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3129			/* refreshed by another */
3130			memcpy(bakery,
3131			       &tcp_secret_generating->secrets[0],
3132			       COOKIE_WORKSPACE_WORDS);
3133		} else {
3134			/* still needs refreshing */
3135			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3136
3137			/* The first time, paranoia assumes that the
3138			 * randomization function isn't as strong.  But,
3139			 * this secret initialization is delayed until
3140			 * the last possible moment (packet arrival).
3141			 * Although that time is observable, it is
3142			 * unpredictably variable.  Mash in the most
3143			 * volatile clock bits available, and expire the
3144			 * secret extra quickly.
3145			 */
3146			if (unlikely(tcp_secret_primary->expires ==
3147				     tcp_secret_secondary->expires)) {
3148				struct timespec tv;
3149
3150				getnstimeofday(&tv);
3151				bakery[COOKIE_DIGEST_WORDS+0] ^=
3152					(u32)tv.tv_nsec;
3153
3154				tcp_secret_secondary->expires = jiffy
3155					+ TCP_SECRET_1MSL
3156					+ (0x0f & tcp_cookie_work(bakery, 0));
3157			} else {
3158				tcp_secret_secondary->expires = jiffy
3159					+ TCP_SECRET_LIFE
3160					+ (0xff & tcp_cookie_work(bakery, 1));
3161				tcp_secret_primary->expires = jiffy
3162					+ TCP_SECRET_2MSL
3163					+ (0x1f & tcp_cookie_work(bakery, 2));
3164			}
3165			memcpy(&tcp_secret_secondary->secrets[0],
3166			       bakery, COOKIE_WORKSPACE_WORDS);
3167
3168			rcu_assign_pointer(tcp_secret_generating,
3169					   tcp_secret_secondary);
3170			rcu_assign_pointer(tcp_secret_retiring,
3171					   tcp_secret_primary);
3172			/*
3173			 * Neither call_rcu() nor synchronize_rcu() needed.
3174			 * Retiring data is not freed.  It is replaced after
3175			 * further (locked) pointer updates, and a quiet time
3176			 * (minimum 1MSL, maximum LIFE - 2MSL).
3177			 */
3178		}
3179		spin_unlock_bh(&tcp_secret_locker);
3180	} else {
3181		rcu_read_lock_bh();
3182		memcpy(bakery,
3183		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3184		       COOKIE_WORKSPACE_WORDS);
3185		rcu_read_unlock_bh();
3186	}
3187	return 0;
3188}
3189EXPORT_SYMBOL(tcp_cookie_generator);
3190
3191void tcp_done(struct sock *sk)
3192{
 
 
3193	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3195
3196	tcp_set_state(sk, TCP_CLOSE);
3197	tcp_clear_xmit_timers(sk);
 
 
3198
3199	sk->sk_shutdown = SHUTDOWN_MASK;
3200
3201	if (!sock_flag(sk, SOCK_DEAD))
3202		sk->sk_state_change(sk);
3203	else
3204		inet_csk_destroy_sock(sk);
3205}
3206EXPORT_SYMBOL_GPL(tcp_done);
3207
3208extern struct tcp_congestion_ops tcp_reno;
3209
3210static __initdata unsigned long thash_entries;
3211static int __init set_thash_entries(char *str)
3212{
 
 
3213	if (!str)
3214		return 0;
3215	thash_entries = simple_strtoul(str, &str, 0);
 
 
 
 
3216	return 1;
3217}
3218__setup("thash_entries=", set_thash_entries);
3219
 
 
 
 
 
 
 
 
 
3220void __init tcp_init(void)
3221{
3222	struct sk_buff *skb = NULL;
3223	unsigned long limit;
3224	int i, max_share, cnt;
3225	unsigned long jiffy = jiffies;
3226
3227	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3228
3229	percpu_counter_init(&tcp_sockets_allocated, 0);
3230	percpu_counter_init(&tcp_orphan_count, 0);
3231	tcp_hashinfo.bind_bucket_cachep =
3232		kmem_cache_create("tcp_bind_bucket",
3233				  sizeof(struct inet_bind_bucket), 0,
3234				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3235
3236	/* Size and allocate the main established and bind bucket
3237	 * hash tables.
3238	 *
3239	 * The methodology is similar to that of the buffer cache.
3240	 */
3241	tcp_hashinfo.ehash =
3242		alloc_large_system_hash("TCP established",
3243					sizeof(struct inet_ehash_bucket),
3244					thash_entries,
3245					(totalram_pages >= 128 * 1024) ?
3246					13 : 15,
3247					0,
3248					NULL,
3249					&tcp_hashinfo.ehash_mask,
 
3250					thash_entries ? 0 : 512 * 1024);
3251	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3252		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3253		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3254	}
3255	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3256		panic("TCP: failed to alloc ehash_locks");
3257	tcp_hashinfo.bhash =
3258		alloc_large_system_hash("TCP bind",
3259					sizeof(struct inet_bind_hashbucket),
3260					tcp_hashinfo.ehash_mask + 1,
3261					(totalram_pages >= 128 * 1024) ?
3262					13 : 15,
3263					0,
3264					&tcp_hashinfo.bhash_size,
3265					NULL,
 
3266					64 * 1024);
3267	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3268	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3269		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3270		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3271	}
3272
3273
3274	cnt = tcp_hashinfo.ehash_mask + 1;
3275
3276	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3277	sysctl_tcp_max_orphans = cnt / 2;
3278	sysctl_max_syn_backlog = max(128, cnt / 256);
3279
3280	limit = nr_free_buffer_pages() / 8;
3281	limit = max(limit, 128UL);
3282	sysctl_tcp_mem[0] = limit / 4 * 3;
3283	sysctl_tcp_mem[1] = limit;
3284	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3285
3286	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3287	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3288	max_share = min(4UL*1024*1024, limit);
 
3289
3290	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3291	sysctl_tcp_wmem[1] = 16*1024;
3292	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3293
3294	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3295	sysctl_tcp_rmem[1] = 87380;
3296	sysctl_tcp_rmem[2] = max(87380, max_share);
 
 
 
3297
3298	printk(KERN_INFO "TCP: Hash tables configured "
3299	       "(established %u bind %u)\n",
3300	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3301
3302	tcp_register_congestion_control(&tcp_reno);
3303
3304	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3305	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3306	tcp_secret_one.expires = jiffy; /* past due */
3307	tcp_secret_two.expires = jiffy; /* past due */
3308	tcp_secret_generating = &tcp_secret_one;
3309	tcp_secret_primary = &tcp_secret_one;
3310	tcp_secret_retiring = &tcp_secret_two;
3311	tcp_secret_secondary = &tcp_secret_two;
3312}
v3.15
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 250#include <linux/kernel.h>
 251#include <linux/module.h>
 252#include <linux/types.h>
 253#include <linux/fcntl.h>
 254#include <linux/poll.h>
 255#include <linux/init.h>
 256#include <linux/fs.h>
 257#include <linux/skbuff.h>
 258#include <linux/scatterlist.h>
 259#include <linux/splice.h>
 260#include <linux/net.h>
 261#include <linux/socket.h>
 262#include <linux/random.h>
 263#include <linux/bootmem.h>
 264#include <linux/highmem.h>
 265#include <linux/swap.h>
 266#include <linux/cache.h>
 267#include <linux/err.h>
 268#include <linux/crypto.h>
 269#include <linux/time.h>
 270#include <linux/slab.h>
 271
 272#include <net/icmp.h>
 273#include <net/inet_common.h>
 274#include <net/tcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/netdma.h>
 278#include <net/sock.h>
 279
 280#include <asm/uaccess.h>
 281#include <asm/ioctls.h>
 282#include <net/busy_poll.h>
 283
 284int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 285
 286int sysctl_tcp_min_tso_segs __read_mostly = 2;
 287
 288int sysctl_tcp_autocorking __read_mostly = 1;
 289
 290struct percpu_counter tcp_orphan_count;
 291EXPORT_SYMBOL_GPL(tcp_orphan_count);
 292
 293long sysctl_tcp_mem[3] __read_mostly;
 294int sysctl_tcp_wmem[3] __read_mostly;
 295int sysctl_tcp_rmem[3] __read_mostly;
 296
 297EXPORT_SYMBOL(sysctl_tcp_mem);
 298EXPORT_SYMBOL(sysctl_tcp_rmem);
 299EXPORT_SYMBOL(sysctl_tcp_wmem);
 300
 301atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 302EXPORT_SYMBOL(tcp_memory_allocated);
 303
 304/*
 305 * Current number of TCP sockets.
 306 */
 307struct percpu_counter tcp_sockets_allocated;
 308EXPORT_SYMBOL(tcp_sockets_allocated);
 309
 310/*
 311 * TCP splice context
 312 */
 313struct tcp_splice_state {
 314	struct pipe_inode_info *pipe;
 315	size_t len;
 316	unsigned int flags;
 317};
 318
 319/*
 320 * Pressure flag: try to collapse.
 321 * Technical note: it is used by multiple contexts non atomically.
 322 * All the __sk_mem_schedule() is of this nature: accounting
 323 * is strict, actions are advisory and have some latency.
 324 */
 325int tcp_memory_pressure __read_mostly;
 326EXPORT_SYMBOL(tcp_memory_pressure);
 327
 328void tcp_enter_memory_pressure(struct sock *sk)
 329{
 330	if (!tcp_memory_pressure) {
 331		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 332		tcp_memory_pressure = 1;
 333	}
 334}
 335EXPORT_SYMBOL(tcp_enter_memory_pressure);
 336
 337/* Convert seconds to retransmits based on initial and max timeout */
 338static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 339{
 340	u8 res = 0;
 341
 342	if (seconds > 0) {
 343		int period = timeout;
 344
 345		res = 1;
 346		while (seconds > period && res < 255) {
 347			res++;
 348			timeout <<= 1;
 349			if (timeout > rto_max)
 350				timeout = rto_max;
 351			period += timeout;
 352		}
 353	}
 354	return res;
 355}
 356
 357/* Convert retransmits to seconds based on initial and max timeout */
 358static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 359{
 360	int period = 0;
 361
 362	if (retrans > 0) {
 363		period = timeout;
 364		while (--retrans) {
 365			timeout <<= 1;
 366			if (timeout > rto_max)
 367				timeout = rto_max;
 368			period += timeout;
 369		}
 370	}
 371	return period;
 372}
 373
 374/* Address-family independent initialization for a tcp_sock.
 375 *
 376 * NOTE: A lot of things set to zero explicitly by call to
 377 *       sk_alloc() so need not be done here.
 378 */
 379void tcp_init_sock(struct sock *sk)
 380{
 381	struct inet_connection_sock *icsk = inet_csk(sk);
 382	struct tcp_sock *tp = tcp_sk(sk);
 383
 384	__skb_queue_head_init(&tp->out_of_order_queue);
 385	tcp_init_xmit_timers(sk);
 386	tcp_prequeue_init(tp);
 387	INIT_LIST_HEAD(&tp->tsq_node);
 388
 389	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 390	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 391
 392	/* So many TCP implementations out there (incorrectly) count the
 393	 * initial SYN frame in their delayed-ACK and congestion control
 394	 * algorithms that we must have the following bandaid to talk
 395	 * efficiently to them.  -DaveM
 396	 */
 397	tp->snd_cwnd = TCP_INIT_CWND;
 398
 399	/* See draft-stevens-tcpca-spec-01 for discussion of the
 400	 * initialization of these values.
 401	 */
 402	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 403	tp->snd_cwnd_clamp = ~0;
 404	tp->mss_cache = TCP_MSS_DEFAULT;
 405
 406	tp->reordering = sysctl_tcp_reordering;
 407	tcp_enable_early_retrans(tp);
 408	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
 409
 410	tp->tsoffset = 0;
 411
 412	sk->sk_state = TCP_CLOSE;
 413
 414	sk->sk_write_space = sk_stream_write_space;
 415	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 416
 417	icsk->icsk_sync_mss = tcp_sync_mss;
 418
 419	sk->sk_sndbuf = sysctl_tcp_wmem[1];
 420	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
 421
 422	local_bh_disable();
 423	sock_update_memcg(sk);
 424	sk_sockets_allocated_inc(sk);
 425	local_bh_enable();
 426}
 427EXPORT_SYMBOL(tcp_init_sock);
 428
 429/*
 430 *	Wait for a TCP event.
 431 *
 432 *	Note that we don't need to lock the socket, as the upper poll layers
 433 *	take care of normal races (between the test and the event) and we don't
 434 *	go look at any of the socket buffers directly.
 435 */
 436unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 437{
 438	unsigned int mask;
 439	struct sock *sk = sock->sk;
 440	const struct tcp_sock *tp = tcp_sk(sk);
 441
 442	sock_rps_record_flow(sk);
 443
 444	sock_poll_wait(file, sk_sleep(sk), wait);
 445	if (sk->sk_state == TCP_LISTEN)
 446		return inet_csk_listen_poll(sk);
 447
 448	/* Socket is not locked. We are protected from async events
 449	 * by poll logic and correct handling of state changes
 450	 * made by other threads is impossible in any case.
 451	 */
 452
 453	mask = 0;
 454
 455	/*
 456	 * POLLHUP is certainly not done right. But poll() doesn't
 457	 * have a notion of HUP in just one direction, and for a
 458	 * socket the read side is more interesting.
 459	 *
 460	 * Some poll() documentation says that POLLHUP is incompatible
 461	 * with the POLLOUT/POLLWR flags, so somebody should check this
 462	 * all. But careful, it tends to be safer to return too many
 463	 * bits than too few, and you can easily break real applications
 464	 * if you don't tell them that something has hung up!
 465	 *
 466	 * Check-me.
 467	 *
 468	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 469	 * our fs/select.c). It means that after we received EOF,
 470	 * poll always returns immediately, making impossible poll() on write()
 471	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 472	 * if and only if shutdown has been made in both directions.
 473	 * Actually, it is interesting to look how Solaris and DUX
 474	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 475	 * then we could set it on SND_SHUTDOWN. BTW examples given
 476	 * in Stevens' books assume exactly this behaviour, it explains
 477	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 478	 *
 479	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 480	 * blocking on fresh not-connected or disconnected socket. --ANK
 481	 */
 482	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 483		mask |= POLLHUP;
 484	if (sk->sk_shutdown & RCV_SHUTDOWN)
 485		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 486
 487	/* Connected or passive Fast Open socket? */
 488	if (sk->sk_state != TCP_SYN_SENT &&
 489	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
 490		int target = sock_rcvlowat(sk, 0, INT_MAX);
 491
 492		if (tp->urg_seq == tp->copied_seq &&
 493		    !sock_flag(sk, SOCK_URGINLINE) &&
 494		    tp->urg_data)
 495			target++;
 496
 497		/* Potential race condition. If read of tp below will
 498		 * escape above sk->sk_state, we can be illegally awaken
 499		 * in SYN_* states. */
 500		if (tp->rcv_nxt - tp->copied_seq >= target)
 501			mask |= POLLIN | POLLRDNORM;
 502
 503		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 504			if (sk_stream_is_writeable(sk)) {
 505				mask |= POLLOUT | POLLWRNORM;
 506			} else {  /* send SIGIO later */
 507				set_bit(SOCK_ASYNC_NOSPACE,
 508					&sk->sk_socket->flags);
 509				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 510
 511				/* Race breaker. If space is freed after
 512				 * wspace test but before the flags are set,
 513				 * IO signal will be lost.
 514				 */
 515				if (sk_stream_is_writeable(sk))
 516					mask |= POLLOUT | POLLWRNORM;
 517			}
 518		} else
 519			mask |= POLLOUT | POLLWRNORM;
 520
 521		if (tp->urg_data & TCP_URG_VALID)
 522			mask |= POLLPRI;
 523	}
 524	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 525	smp_rmb();
 526	if (sk->sk_err)
 527		mask |= POLLERR;
 528
 529	return mask;
 530}
 531EXPORT_SYMBOL(tcp_poll);
 532
 533int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 534{
 535	struct tcp_sock *tp = tcp_sk(sk);
 536	int answ;
 537	bool slow;
 538
 539	switch (cmd) {
 540	case SIOCINQ:
 541		if (sk->sk_state == TCP_LISTEN)
 542			return -EINVAL;
 543
 544		slow = lock_sock_fast(sk);
 545		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 546			answ = 0;
 547		else if (sock_flag(sk, SOCK_URGINLINE) ||
 548			 !tp->urg_data ||
 549			 before(tp->urg_seq, tp->copied_seq) ||
 550			 !before(tp->urg_seq, tp->rcv_nxt)) {
 
 551
 552			answ = tp->rcv_nxt - tp->copied_seq;
 553
 554			/* Subtract 1, if FIN was received */
 555			if (answ && sock_flag(sk, SOCK_DONE))
 556				answ--;
 
 557		} else
 558			answ = tp->urg_seq - tp->copied_seq;
 559		unlock_sock_fast(sk, slow);
 560		break;
 561	case SIOCATMARK:
 562		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 563		break;
 564	case SIOCOUTQ:
 565		if (sk->sk_state == TCP_LISTEN)
 566			return -EINVAL;
 567
 568		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 569			answ = 0;
 570		else
 571			answ = tp->write_seq - tp->snd_una;
 572		break;
 573	case SIOCOUTQNSD:
 574		if (sk->sk_state == TCP_LISTEN)
 575			return -EINVAL;
 576
 577		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 578			answ = 0;
 579		else
 580			answ = tp->write_seq - tp->snd_nxt;
 581		break;
 582	default:
 583		return -ENOIOCTLCMD;
 584	}
 585
 586	return put_user(answ, (int __user *)arg);
 587}
 588EXPORT_SYMBOL(tcp_ioctl);
 589
 590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 591{
 592	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 593	tp->pushed_seq = tp->write_seq;
 594}
 595
 596static inline bool forced_push(const struct tcp_sock *tp)
 597{
 598	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 599}
 600
 601static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 602{
 603	struct tcp_sock *tp = tcp_sk(sk);
 604	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 605
 606	skb->csum    = 0;
 607	tcb->seq     = tcb->end_seq = tp->write_seq;
 608	tcb->tcp_flags = TCPHDR_ACK;
 609	tcb->sacked  = 0;
 610	skb_header_release(skb);
 611	tcp_add_write_queue_tail(sk, skb);
 612	sk->sk_wmem_queued += skb->truesize;
 613	sk_mem_charge(sk, skb->truesize);
 614	if (tp->nonagle & TCP_NAGLE_PUSH)
 615		tp->nonagle &= ~TCP_NAGLE_PUSH;
 616}
 617
 618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 619{
 620	if (flags & MSG_OOB)
 621		tp->snd_up = tp->write_seq;
 622}
 623
 624/* If a not yet filled skb is pushed, do not send it if
 625 * we have data packets in Qdisc or NIC queues :
 626 * Because TX completion will happen shortly, it gives a chance
 627 * to coalesce future sendmsg() payload into this skb, without
 628 * need for a timer, and with no latency trade off.
 629 * As packets containing data payload have a bigger truesize
 630 * than pure acks (dataless) packets, the last checks prevent
 631 * autocorking if we only have an ACK in Qdisc/NIC queues,
 632 * or if TX completion was delayed after we processed ACK packet.
 633 */
 634static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 635				int size_goal)
 636{
 637	return skb->len < size_goal &&
 638	       sysctl_tcp_autocorking &&
 639	       skb != tcp_write_queue_head(sk) &&
 640	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
 641}
 642
 643static void tcp_push(struct sock *sk, int flags, int mss_now,
 644		     int nonagle, int size_goal)
 645{
 646	struct tcp_sock *tp = tcp_sk(sk);
 647	struct sk_buff *skb;
 648
 649	if (!tcp_send_head(sk))
 650		return;
 651
 652	skb = tcp_write_queue_tail(sk);
 653	if (!(flags & MSG_MORE) || forced_push(tp))
 654		tcp_mark_push(tp, skb);
 655
 656	tcp_mark_urg(tp, flags);
 657
 658	if (tcp_should_autocork(sk, skb, size_goal)) {
 659
 660		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 661		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
 662			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 663			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
 664		}
 665		/* It is possible TX completion already happened
 666		 * before we set TSQ_THROTTLED.
 667		 */
 668		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
 669			return;
 670	}
 671
 672	if (flags & MSG_MORE)
 673		nonagle = TCP_NAGLE_CORK;
 674
 675	__tcp_push_pending_frames(sk, mss_now, nonagle);
 676}
 677
 678static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 679				unsigned int offset, size_t len)
 680{
 681	struct tcp_splice_state *tss = rd_desc->arg.data;
 682	int ret;
 683
 684	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 685			      tss->flags);
 686	if (ret > 0)
 687		rd_desc->count -= ret;
 688	return ret;
 689}
 690
 691static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 692{
 693	/* Store TCP splice context information in read_descriptor_t. */
 694	read_descriptor_t rd_desc = {
 695		.arg.data = tss,
 696		.count	  = tss->len,
 697	};
 698
 699	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 700}
 701
 702/**
 703 *  tcp_splice_read - splice data from TCP socket to a pipe
 704 * @sock:	socket to splice from
 705 * @ppos:	position (not valid)
 706 * @pipe:	pipe to splice to
 707 * @len:	number of bytes to splice
 708 * @flags:	splice modifier flags
 709 *
 710 * Description:
 711 *    Will read pages from given socket and fill them into a pipe.
 712 *
 713 **/
 714ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 715			struct pipe_inode_info *pipe, size_t len,
 716			unsigned int flags)
 717{
 718	struct sock *sk = sock->sk;
 719	struct tcp_splice_state tss = {
 720		.pipe = pipe,
 721		.len = len,
 722		.flags = flags,
 723	};
 724	long timeo;
 725	ssize_t spliced;
 726	int ret;
 727
 728	sock_rps_record_flow(sk);
 729	/*
 730	 * We can't seek on a socket input
 731	 */
 732	if (unlikely(*ppos))
 733		return -ESPIPE;
 734
 735	ret = spliced = 0;
 736
 737	lock_sock(sk);
 738
 739	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 740	while (tss.len) {
 741		ret = __tcp_splice_read(sk, &tss);
 742		if (ret < 0)
 743			break;
 744		else if (!ret) {
 745			if (spliced)
 746				break;
 747			if (sock_flag(sk, SOCK_DONE))
 748				break;
 749			if (sk->sk_err) {
 750				ret = sock_error(sk);
 751				break;
 752			}
 753			if (sk->sk_shutdown & RCV_SHUTDOWN)
 754				break;
 755			if (sk->sk_state == TCP_CLOSE) {
 756				/*
 757				 * This occurs when user tries to read
 758				 * from never connected socket.
 759				 */
 760				if (!sock_flag(sk, SOCK_DONE))
 761					ret = -ENOTCONN;
 762				break;
 763			}
 764			if (!timeo) {
 765				ret = -EAGAIN;
 766				break;
 767			}
 768			sk_wait_data(sk, &timeo);
 769			if (signal_pending(current)) {
 770				ret = sock_intr_errno(timeo);
 771				break;
 772			}
 773			continue;
 774		}
 775		tss.len -= ret;
 776		spliced += ret;
 777
 778		if (!timeo)
 779			break;
 780		release_sock(sk);
 781		lock_sock(sk);
 782
 783		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 784		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 785		    signal_pending(current))
 786			break;
 787	}
 788
 789	release_sock(sk);
 790
 791	if (spliced)
 792		return spliced;
 793
 794	return ret;
 795}
 796EXPORT_SYMBOL(tcp_splice_read);
 797
 798struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 799{
 800	struct sk_buff *skb;
 801
 802	/* The TCP header must be at least 32-bit aligned.  */
 803	size = ALIGN(size, 4);
 804
 805	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 806	if (skb) {
 807		if (sk_wmem_schedule(sk, skb->truesize)) {
 808			skb_reserve(skb, sk->sk_prot->max_header);
 809			/*
 810			 * Make sure that we have exactly size bytes
 811			 * available to the caller, no more, no less.
 812			 */
 813			skb->reserved_tailroom = skb->end - skb->tail - size;
 814			return skb;
 815		}
 816		__kfree_skb(skb);
 817	} else {
 818		sk->sk_prot->enter_memory_pressure(sk);
 819		sk_stream_moderate_sndbuf(sk);
 820	}
 821	return NULL;
 822}
 823
 824static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 825				       int large_allowed)
 826{
 827	struct tcp_sock *tp = tcp_sk(sk);
 828	u32 xmit_size_goal, old_size_goal;
 829
 830	xmit_size_goal = mss_now;
 831
 832	if (large_allowed && sk_can_gso(sk)) {
 833		u32 gso_size, hlen;
 834
 835		/* Maybe we should/could use sk->sk_prot->max_header here ? */
 836		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
 837		       inet_csk(sk)->icsk_ext_hdr_len +
 838		       tp->tcp_header_len;
 839
 840		/* Goal is to send at least one packet per ms,
 841		 * not one big TSO packet every 100 ms.
 842		 * This preserves ACK clocking and is consistent
 843		 * with tcp_tso_should_defer() heuristic.
 844		 */
 845		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
 846		gso_size = max_t(u32, gso_size,
 847				 sysctl_tcp_min_tso_segs * mss_now);
 848
 849		xmit_size_goal = min_t(u32, gso_size,
 850				       sk->sk_gso_max_size - 1 - hlen);
 851
 852		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 853
 854		/* We try hard to avoid divides here */
 855		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 856
 857		if (likely(old_size_goal <= xmit_size_goal &&
 858			   old_size_goal + mss_now > xmit_size_goal)) {
 859			xmit_size_goal = old_size_goal;
 860		} else {
 861			tp->xmit_size_goal_segs =
 862				min_t(u16, xmit_size_goal / mss_now,
 863				      sk->sk_gso_max_segs);
 864			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 865		}
 866	}
 867
 868	return max(xmit_size_goal, mss_now);
 869}
 870
 871static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 872{
 873	int mss_now;
 874
 875	mss_now = tcp_current_mss(sk);
 876	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 877
 878	return mss_now;
 879}
 880
 881static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 882				size_t size, int flags)
 883{
 884	struct tcp_sock *tp = tcp_sk(sk);
 885	int mss_now, size_goal;
 886	int err;
 887	ssize_t copied;
 888	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 889
 890	/* Wait for a connection to finish. One exception is TCP Fast Open
 891	 * (passive side) where data is allowed to be sent before a connection
 892	 * is fully established.
 893	 */
 894	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 895	    !tcp_passive_fastopen(sk)) {
 896		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 897			goto out_err;
 898	}
 899
 900	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 901
 902	mss_now = tcp_send_mss(sk, &size_goal, flags);
 903	copied = 0;
 904
 905	err = -EPIPE;
 906	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 907		goto out_err;
 908
 909	while (size > 0) {
 910		struct sk_buff *skb = tcp_write_queue_tail(sk);
 911		int copy, i;
 912		bool can_coalesce;
 
 
 913
 914		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 915new_segment:
 916			if (!sk_stream_memory_free(sk))
 917				goto wait_for_sndbuf;
 918
 919			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 920			if (!skb)
 921				goto wait_for_memory;
 922
 923			skb_entail(sk, skb);
 924			copy = size_goal;
 925		}
 926
 927		if (copy > size)
 928			copy = size;
 929
 930		i = skb_shinfo(skb)->nr_frags;
 931		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 932		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 933			tcp_mark_push(tp, skb);
 934			goto new_segment;
 935		}
 936		if (!sk_wmem_schedule(sk, copy))
 937			goto wait_for_memory;
 938
 939		if (can_coalesce) {
 940			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
 941		} else {
 942			get_page(page);
 943			skb_fill_page_desc(skb, i, page, offset, copy);
 944		}
 945		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
 946
 947		skb->len += copy;
 948		skb->data_len += copy;
 949		skb->truesize += copy;
 950		sk->sk_wmem_queued += copy;
 951		sk_mem_charge(sk, copy);
 952		skb->ip_summed = CHECKSUM_PARTIAL;
 953		tp->write_seq += copy;
 954		TCP_SKB_CB(skb)->end_seq += copy;
 955		skb_shinfo(skb)->gso_segs = 0;
 956
 957		if (!copied)
 958			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
 959
 960		copied += copy;
 961		offset += copy;
 962		if (!(size -= copy))
 963			goto out;
 964
 965		if (skb->len < size_goal || (flags & MSG_OOB))
 966			continue;
 967
 968		if (forced_push(tp)) {
 969			tcp_mark_push(tp, skb);
 970			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 971		} else if (skb == tcp_send_head(sk))
 972			tcp_push_one(sk, mss_now);
 973		continue;
 974
 975wait_for_sndbuf:
 976		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 977wait_for_memory:
 978		tcp_push(sk, flags & ~MSG_MORE, mss_now,
 979			 TCP_NAGLE_PUSH, size_goal);
 980
 981		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 982			goto do_error;
 983
 984		mss_now = tcp_send_mss(sk, &size_goal, flags);
 985	}
 986
 987out:
 988	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
 989		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
 990	return copied;
 991
 992do_error:
 993	if (copied)
 994		goto out;
 995out_err:
 996	return sk_stream_error(sk, flags, err);
 997}
 998
 999int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1000		 size_t size, int flags)
1001{
1002	ssize_t res;
1003
1004	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1005	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1006		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1007					flags);
1008
1009	lock_sock(sk);
1010	res = do_tcp_sendpages(sk, page, offset, size, flags);
1011	release_sock(sk);
1012	return res;
1013}
1014EXPORT_SYMBOL(tcp_sendpage);
1015
1016static inline int select_size(const struct sock *sk, bool sg)
 
 
 
1017{
1018	const struct tcp_sock *tp = tcp_sk(sk);
1019	int tmp = tp->mss_cache;
1020
1021	if (sg) {
1022		if (sk_can_gso(sk)) {
1023			/* Small frames wont use a full page:
1024			 * Payload will immediately follow tcp header.
1025			 */
1026			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1027		} else {
1028			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1029
1030			if (tmp >= pgbreak &&
1031			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1032				tmp = pgbreak;
1033		}
1034	}
1035
1036	return tmp;
1037}
1038
1039void tcp_free_fastopen_req(struct tcp_sock *tp)
1040{
1041	if (tp->fastopen_req != NULL) {
1042		kfree(tp->fastopen_req);
1043		tp->fastopen_req = NULL;
1044	}
1045}
1046
1047static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1048				int *copied, size_t size)
1049{
1050	struct tcp_sock *tp = tcp_sk(sk);
1051	int err, flags;
1052
1053	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1054		return -EOPNOTSUPP;
1055	if (tp->fastopen_req != NULL)
1056		return -EALREADY; /* Another Fast Open is in progress */
1057
1058	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1059				   sk->sk_allocation);
1060	if (unlikely(tp->fastopen_req == NULL))
1061		return -ENOBUFS;
1062	tp->fastopen_req->data = msg;
1063	tp->fastopen_req->size = size;
1064
1065	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1066	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1067				    msg->msg_namelen, flags);
1068	*copied = tp->fastopen_req->copied;
1069	tcp_free_fastopen_req(tp);
1070	return err;
1071}
1072
1073int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1074		size_t size)
1075{
1076	struct iovec *iov;
1077	struct tcp_sock *tp = tcp_sk(sk);
1078	struct sk_buff *skb;
1079	int iovlen, flags, err, copied = 0;
1080	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1081	bool sg;
1082	long timeo;
1083
1084	lock_sock(sk);
1085
1086	flags = msg->msg_flags;
1087	if (flags & MSG_FASTOPEN) {
1088		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1089		if (err == -EINPROGRESS && copied_syn > 0)
1090			goto out;
1091		else if (err)
1092			goto out_err;
1093		offset = copied_syn;
1094	}
1095
1096	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097
1098	/* Wait for a connection to finish. One exception is TCP Fast Open
1099	 * (passive side) where data is allowed to be sent before a connection
1100	 * is fully established.
1101	 */
1102	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103	    !tcp_passive_fastopen(sk)) {
1104		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1105			goto do_error;
1106	}
1107
1108	if (unlikely(tp->repair)) {
1109		if (tp->repair_queue == TCP_RECV_QUEUE) {
1110			copied = tcp_send_rcvq(sk, msg, size);
1111			goto out;
1112		}
1113
1114		err = -EINVAL;
1115		if (tp->repair_queue == TCP_NO_QUEUE)
1116			goto out_err;
1117
1118		/* 'common' sending to sendq */
1119	}
1120
1121	/* This should be in poll */
1122	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1123
1124	mss_now = tcp_send_mss(sk, &size_goal, flags);
1125
1126	/* Ok commence sending. */
1127	iovlen = msg->msg_iovlen;
1128	iov = msg->msg_iov;
1129	copied = 0;
1130
1131	err = -EPIPE;
1132	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133		goto out_err;
1134
1135	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1136
1137	while (--iovlen >= 0) {
1138		size_t seglen = iov->iov_len;
1139		unsigned char __user *from = iov->iov_base;
1140
1141		iov++;
1142		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1143			if (offset >= seglen) {
1144				offset -= seglen;
1145				continue;
1146			}
1147			seglen -= offset;
1148			from += offset;
1149			offset = 0;
1150		}
1151
1152		while (seglen > 0) {
1153			int copy = 0;
1154			int max = size_goal;
1155
1156			skb = tcp_write_queue_tail(sk);
1157			if (tcp_send_head(sk)) {
1158				if (skb->ip_summed == CHECKSUM_NONE)
1159					max = mss_now;
1160				copy = max - skb->len;
1161			}
1162
1163			if (copy <= 0) {
1164new_segment:
1165				/* Allocate new segment. If the interface is SG,
1166				 * allocate skb fitting to single page.
1167				 */
1168				if (!sk_stream_memory_free(sk))
1169					goto wait_for_sndbuf;
1170
1171				skb = sk_stream_alloc_skb(sk,
1172							  select_size(sk, sg),
1173							  sk->sk_allocation);
1174				if (!skb)
1175					goto wait_for_memory;
1176
1177				/*
1178				 * All packets are restored as if they have
1179				 * already been sent.
1180				 */
1181				if (tp->repair)
1182					TCP_SKB_CB(skb)->when = tcp_time_stamp;
1183
1184				/*
1185				 * Check whether we can use HW checksum.
1186				 */
1187				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1188					skb->ip_summed = CHECKSUM_PARTIAL;
1189
1190				skb_entail(sk, skb);
1191				copy = size_goal;
1192				max = size_goal;
1193			}
1194
1195			/* Try to append data to the end of skb. */
1196			if (copy > seglen)
1197				copy = seglen;
1198
1199			/* Where to copy to? */
1200			if (skb_availroom(skb) > 0) {
1201				/* We have some space in skb head. Superb! */
1202				copy = min_t(int, copy, skb_availroom(skb));
 
1203				err = skb_add_data_nocache(sk, skb, from, copy);
1204				if (err)
1205					goto do_fault;
1206			} else {
1207				bool merge = true;
1208				int i = skb_shinfo(skb)->nr_frags;
1209				struct page_frag *pfrag = sk_page_frag(sk);
1210
1211				if (!sk_page_frag_refill(sk, pfrag))
1212					goto wait_for_memory;
1213
1214				if (!skb_can_coalesce(skb, i, pfrag->page,
1215						      pfrag->offset)) {
1216					if (i == MAX_SKB_FRAGS || !sg) {
1217						tcp_mark_push(tp, skb);
1218						goto new_segment;
 
 
 
 
 
 
 
 
 
 
 
 
1219					}
1220					merge = false;
1221				}
1222
1223				copy = min_t(int, copy, pfrag->size - pfrag->offset);
 
1224
1225				if (!sk_wmem_schedule(sk, copy))
1226					goto wait_for_memory;
1227
 
 
 
 
 
 
 
 
1228				err = skb_copy_to_page_nocache(sk, from, skb,
1229							       pfrag->page,
1230							       pfrag->offset,
1231							       copy);
1232				if (err)
 
 
 
 
 
1233					goto do_error;
 
1234
1235				/* Update the skb. */
1236				if (merge) {
1237					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
 
1238				} else {
1239					skb_fill_page_desc(skb, i, pfrag->page,
1240							   pfrag->offset, copy);
1241					get_page(pfrag->page);
 
 
 
 
1242				}
1243				pfrag->offset += copy;
 
1244			}
1245
1246			if (!copied)
1247				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1248
1249			tp->write_seq += copy;
1250			TCP_SKB_CB(skb)->end_seq += copy;
1251			skb_shinfo(skb)->gso_segs = 0;
1252
1253			from += copy;
1254			copied += copy;
1255			if ((seglen -= copy) == 0 && iovlen == 0)
1256				goto out;
1257
1258			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1259				continue;
1260
1261			if (forced_push(tp)) {
1262				tcp_mark_push(tp, skb);
1263				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1264			} else if (skb == tcp_send_head(sk))
1265				tcp_push_one(sk, mss_now);
1266			continue;
1267
1268wait_for_sndbuf:
1269			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1270wait_for_memory:
1271			if (copied)
1272				tcp_push(sk, flags & ~MSG_MORE, mss_now,
1273					 TCP_NAGLE_PUSH, size_goal);
1274
1275			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1276				goto do_error;
1277
1278			mss_now = tcp_send_mss(sk, &size_goal, flags);
1279		}
1280	}
1281
1282out:
1283	if (copied)
1284		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1285	release_sock(sk);
1286	return copied + copied_syn;
1287
1288do_fault:
1289	if (!skb->len) {
1290		tcp_unlink_write_queue(skb, sk);
1291		/* It is the one place in all of TCP, except connection
1292		 * reset, where we can be unlinking the send_head.
1293		 */
1294		tcp_check_send_head(sk, skb);
1295		sk_wmem_free_skb(sk, skb);
1296	}
1297
1298do_error:
1299	if (copied + copied_syn)
1300		goto out;
1301out_err:
1302	err = sk_stream_error(sk, flags, err);
1303	release_sock(sk);
1304	return err;
1305}
1306EXPORT_SYMBOL(tcp_sendmsg);
1307
1308/*
1309 *	Handle reading urgent data. BSD has very simple semantics for
1310 *	this, no blocking and very strange errors 8)
1311 */
1312
1313static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1314{
1315	struct tcp_sock *tp = tcp_sk(sk);
1316
1317	/* No URG data to read. */
1318	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1319	    tp->urg_data == TCP_URG_READ)
1320		return -EINVAL;	/* Yes this is right ! */
1321
1322	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1323		return -ENOTCONN;
1324
1325	if (tp->urg_data & TCP_URG_VALID) {
1326		int err = 0;
1327		char c = tp->urg_data;
1328
1329		if (!(flags & MSG_PEEK))
1330			tp->urg_data = TCP_URG_READ;
1331
1332		/* Read urgent data. */
1333		msg->msg_flags |= MSG_OOB;
1334
1335		if (len > 0) {
1336			if (!(flags & MSG_TRUNC))
1337				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1338			len = 1;
1339		} else
1340			msg->msg_flags |= MSG_TRUNC;
1341
1342		return err ? -EFAULT : len;
1343	}
1344
1345	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1346		return 0;
1347
1348	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1349	 * the available implementations agree in this case:
1350	 * this call should never block, independent of the
1351	 * blocking state of the socket.
1352	 * Mike <pall@rz.uni-karlsruhe.de>
1353	 */
1354	return -EAGAIN;
1355}
1356
1357static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1358{
1359	struct sk_buff *skb;
1360	int copied = 0, err = 0;
1361
1362	/* XXX -- need to support SO_PEEK_OFF */
1363
1364	skb_queue_walk(&sk->sk_write_queue, skb) {
1365		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1366		if (err)
1367			break;
1368
1369		copied += skb->len;
1370	}
1371
1372	return err ?: copied;
1373}
1374
1375/* Clean up the receive buffer for full frames taken by the user,
1376 * then send an ACK if necessary.  COPIED is the number of bytes
1377 * tcp_recvmsg has given to the user so far, it speeds up the
1378 * calculation of whether or not we must ACK for the sake of
1379 * a window update.
1380 */
1381void tcp_cleanup_rbuf(struct sock *sk, int copied)
1382{
1383	struct tcp_sock *tp = tcp_sk(sk);
1384	bool time_to_ack = false;
1385
 
1386	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1387
1388	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1389	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1390	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
 
1391
1392	if (inet_csk_ack_scheduled(sk)) {
1393		const struct inet_connection_sock *icsk = inet_csk(sk);
1394		   /* Delayed ACKs frequently hit locked sockets during bulk
1395		    * receive. */
1396		if (icsk->icsk_ack.blocked ||
1397		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1398		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1399		    /*
1400		     * If this read emptied read buffer, we send ACK, if
1401		     * connection is not bidirectional, user drained
1402		     * receive buffer and there was a small segment
1403		     * in queue.
1404		     */
1405		    (copied > 0 &&
1406		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1407		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1408		       !icsk->icsk_ack.pingpong)) &&
1409		      !atomic_read(&sk->sk_rmem_alloc)))
1410			time_to_ack = true;
1411	}
1412
1413	/* We send an ACK if we can now advertise a non-zero window
1414	 * which has been raised "significantly".
1415	 *
1416	 * Even if window raised up to infinity, do not send window open ACK
1417	 * in states, where we will not receive more. It is useless.
1418	 */
1419	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1420		__u32 rcv_window_now = tcp_receive_window(tp);
1421
1422		/* Optimize, __tcp_select_window() is not cheap. */
1423		if (2*rcv_window_now <= tp->window_clamp) {
1424			__u32 new_window = __tcp_select_window(sk);
1425
1426			/* Send ACK now, if this read freed lots of space
1427			 * in our buffer. Certainly, new_window is new window.
1428			 * We can advertise it now, if it is not less than current one.
1429			 * "Lots" means "at least twice" here.
1430			 */
1431			if (new_window && new_window >= 2 * rcv_window_now)
1432				time_to_ack = true;
1433		}
1434	}
1435	if (time_to_ack)
1436		tcp_send_ack(sk);
1437}
1438
1439static void tcp_prequeue_process(struct sock *sk)
1440{
1441	struct sk_buff *skb;
1442	struct tcp_sock *tp = tcp_sk(sk);
1443
1444	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1445
1446	/* RX process wants to run with disabled BHs, though it is not
1447	 * necessary */
1448	local_bh_disable();
1449	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1450		sk_backlog_rcv(sk, skb);
1451	local_bh_enable();
1452
1453	/* Clear memory counter. */
1454	tp->ucopy.memory = 0;
1455}
1456
1457#ifdef CONFIG_NET_DMA
1458static void tcp_service_net_dma(struct sock *sk, bool wait)
1459{
1460	dma_cookie_t done, used;
1461	dma_cookie_t last_issued;
1462	struct tcp_sock *tp = tcp_sk(sk);
1463
1464	if (!tp->ucopy.dma_chan)
1465		return;
1466
1467	last_issued = tp->ucopy.dma_cookie;
1468	dma_async_issue_pending(tp->ucopy.dma_chan);
1469
1470	do {
1471		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1472					      last_issued, &done,
1473					      &used) == DMA_COMPLETE) {
1474			/* Safe to free early-copied skbs now */
1475			__skb_queue_purge(&sk->sk_async_wait_queue);
1476			break;
1477		} else {
1478			struct sk_buff *skb;
1479			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1480			       (dma_async_is_complete(skb->dma_cookie, done,
1481						      used) == DMA_COMPLETE)) {
1482				__skb_dequeue(&sk->sk_async_wait_queue);
1483				kfree_skb(skb);
1484			}
1485		}
1486	} while (wait);
1487}
1488#endif
1489
1490static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1491{
1492	struct sk_buff *skb;
1493	u32 offset;
1494
1495	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1496		offset = seq - TCP_SKB_CB(skb)->seq;
1497		if (tcp_hdr(skb)->syn)
1498			offset--;
1499		if (offset < skb->len || tcp_hdr(skb)->fin) {
1500			*off = offset;
1501			return skb;
1502		}
1503		/* This looks weird, but this can happen if TCP collapsing
1504		 * splitted a fat GRO packet, while we released socket lock
1505		 * in skb_splice_bits()
1506		 */
1507		sk_eat_skb(sk, skb, false);
1508	}
1509	return NULL;
1510}
1511
1512/*
1513 * This routine provides an alternative to tcp_recvmsg() for routines
1514 * that would like to handle copying from skbuffs directly in 'sendfile'
1515 * fashion.
1516 * Note:
1517 *	- It is assumed that the socket was locked by the caller.
1518 *	- The routine does not block.
1519 *	- At present, there is no support for reading OOB data
1520 *	  or for 'peeking' the socket using this routine
1521 *	  (although both would be easy to implement).
1522 */
1523int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1524		  sk_read_actor_t recv_actor)
1525{
1526	struct sk_buff *skb;
1527	struct tcp_sock *tp = tcp_sk(sk);
1528	u32 seq = tp->copied_seq;
1529	u32 offset;
1530	int copied = 0;
1531
1532	if (sk->sk_state == TCP_LISTEN)
1533		return -ENOTCONN;
1534	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1535		if (offset < skb->len) {
1536			int used;
1537			size_t len;
1538
1539			len = skb->len - offset;
1540			/* Stop reading if we hit a patch of urgent data */
1541			if (tp->urg_data) {
1542				u32 urg_offset = tp->urg_seq - seq;
1543				if (urg_offset < len)
1544					len = urg_offset;
1545				if (!len)
1546					break;
1547			}
1548			used = recv_actor(desc, skb, offset, len);
1549			if (used <= 0) {
1550				if (!copied)
1551					copied = used;
1552				break;
1553			} else if (used <= len) {
1554				seq += used;
1555				copied += used;
1556				offset += used;
1557			}
1558			/* If recv_actor drops the lock (e.g. TCP splice
 
1559			 * receive) the skb pointer might be invalid when
1560			 * getting here: tcp_collapse might have deleted it
1561			 * while aggregating skbs from the socket queue.
1562			 */
1563			skb = tcp_recv_skb(sk, seq - 1, &offset);
1564			if (!skb)
1565				break;
1566			/* TCP coalescing might have appended data to the skb.
1567			 * Try to splice more frags
1568			 */
1569			if (offset + 1 != skb->len)
1570				continue;
1571		}
1572		if (tcp_hdr(skb)->fin) {
1573			sk_eat_skb(sk, skb, false);
1574			++seq;
1575			break;
1576		}
1577		sk_eat_skb(sk, skb, false);
1578		if (!desc->count)
1579			break;
1580		tp->copied_seq = seq;
1581	}
1582	tp->copied_seq = seq;
1583
1584	tcp_rcv_space_adjust(sk);
1585
1586	/* Clean up data we have read: This will do ACK frames. */
1587	if (copied > 0) {
1588		tcp_recv_skb(sk, seq, &offset);
1589		tcp_cleanup_rbuf(sk, copied);
1590	}
1591	return copied;
1592}
1593EXPORT_SYMBOL(tcp_read_sock);
1594
1595/*
1596 *	This routine copies from a sock struct into the user buffer.
1597 *
1598 *	Technical note: in 2.3 we work on _locked_ socket, so that
1599 *	tricks with *seq access order and skb->users are not required.
1600 *	Probably, code can be easily improved even more.
1601 */
1602
1603int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1604		size_t len, int nonblock, int flags, int *addr_len)
1605{
1606	struct tcp_sock *tp = tcp_sk(sk);
1607	int copied = 0;
1608	u32 peek_seq;
1609	u32 *seq;
1610	unsigned long used;
1611	int err;
1612	int target;		/* Read at least this many bytes */
1613	long timeo;
1614	struct task_struct *user_recv = NULL;
1615	bool copied_early = false;
1616	struct sk_buff *skb;
1617	u32 urg_hole = 0;
1618
1619	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1620	    (sk->sk_state == TCP_ESTABLISHED))
1621		sk_busy_loop(sk, nonblock);
1622
1623	lock_sock(sk);
1624
1625	err = -ENOTCONN;
1626	if (sk->sk_state == TCP_LISTEN)
1627		goto out;
1628
1629	timeo = sock_rcvtimeo(sk, nonblock);
1630
1631	/* Urgent data needs to be handled specially. */
1632	if (flags & MSG_OOB)
1633		goto recv_urg;
1634
1635	if (unlikely(tp->repair)) {
1636		err = -EPERM;
1637		if (!(flags & MSG_PEEK))
1638			goto out;
1639
1640		if (tp->repair_queue == TCP_SEND_QUEUE)
1641			goto recv_sndq;
1642
1643		err = -EINVAL;
1644		if (tp->repair_queue == TCP_NO_QUEUE)
1645			goto out;
1646
1647		/* 'common' recv queue MSG_PEEK-ing */
1648	}
1649
1650	seq = &tp->copied_seq;
1651	if (flags & MSG_PEEK) {
1652		peek_seq = tp->copied_seq;
1653		seq = &peek_seq;
1654	}
1655
1656	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1657
1658#ifdef CONFIG_NET_DMA
1659	tp->ucopy.dma_chan = NULL;
1660	preempt_disable();
1661	skb = skb_peek_tail(&sk->sk_receive_queue);
1662	{
1663		int available = 0;
1664
1665		if (skb)
1666			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1667		if ((available < target) &&
1668		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1669		    !sysctl_tcp_low_latency &&
1670		    net_dma_find_channel()) {
1671			preempt_enable();
1672			tp->ucopy.pinned_list =
1673					dma_pin_iovec_pages(msg->msg_iov, len);
1674		} else {
1675			preempt_enable();
1676		}
1677	}
1678#endif
1679
1680	do {
1681		u32 offset;
1682
1683		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1684		if (tp->urg_data && tp->urg_seq == *seq) {
1685			if (copied)
1686				break;
1687			if (signal_pending(current)) {
1688				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1689				break;
1690			}
1691		}
1692
1693		/* Next get a buffer. */
1694
1695		skb_queue_walk(&sk->sk_receive_queue, skb) {
1696			/* Now that we have two receive queues this
1697			 * shouldn't happen.
1698			 */
1699			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1700				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1701				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1702				 flags))
1703				break;
1704
1705			offset = *seq - TCP_SKB_CB(skb)->seq;
1706			if (tcp_hdr(skb)->syn)
1707				offset--;
1708			if (offset < skb->len)
1709				goto found_ok_skb;
1710			if (tcp_hdr(skb)->fin)
1711				goto found_fin_ok;
1712			WARN(!(flags & MSG_PEEK),
1713			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1714			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1715		}
1716
1717		/* Well, if we have backlog, try to process it now yet. */
1718
1719		if (copied >= target && !sk->sk_backlog.tail)
1720			break;
1721
1722		if (copied) {
1723			if (sk->sk_err ||
1724			    sk->sk_state == TCP_CLOSE ||
1725			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1726			    !timeo ||
1727			    signal_pending(current))
1728				break;
1729		} else {
1730			if (sock_flag(sk, SOCK_DONE))
1731				break;
1732
1733			if (sk->sk_err) {
1734				copied = sock_error(sk);
1735				break;
1736			}
1737
1738			if (sk->sk_shutdown & RCV_SHUTDOWN)
1739				break;
1740
1741			if (sk->sk_state == TCP_CLOSE) {
1742				if (!sock_flag(sk, SOCK_DONE)) {
1743					/* This occurs when user tries to read
1744					 * from never connected socket.
1745					 */
1746					copied = -ENOTCONN;
1747					break;
1748				}
1749				break;
1750			}
1751
1752			if (!timeo) {
1753				copied = -EAGAIN;
1754				break;
1755			}
1756
1757			if (signal_pending(current)) {
1758				copied = sock_intr_errno(timeo);
1759				break;
1760			}
1761		}
1762
1763		tcp_cleanup_rbuf(sk, copied);
1764
1765		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1766			/* Install new reader */
1767			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1768				user_recv = current;
1769				tp->ucopy.task = user_recv;
1770				tp->ucopy.iov = msg->msg_iov;
1771			}
1772
1773			tp->ucopy.len = len;
1774
1775			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1776				!(flags & (MSG_PEEK | MSG_TRUNC)));
1777
1778			/* Ugly... If prequeue is not empty, we have to
1779			 * process it before releasing socket, otherwise
1780			 * order will be broken at second iteration.
1781			 * More elegant solution is required!!!
1782			 *
1783			 * Look: we have the following (pseudo)queues:
1784			 *
1785			 * 1. packets in flight
1786			 * 2. backlog
1787			 * 3. prequeue
1788			 * 4. receive_queue
1789			 *
1790			 * Each queue can be processed only if the next ones
1791			 * are empty. At this point we have empty receive_queue.
1792			 * But prequeue _can_ be not empty after 2nd iteration,
1793			 * when we jumped to start of loop because backlog
1794			 * processing added something to receive_queue.
1795			 * We cannot release_sock(), because backlog contains
1796			 * packets arrived _after_ prequeued ones.
1797			 *
1798			 * Shortly, algorithm is clear --- to process all
1799			 * the queues in order. We could make it more directly,
1800			 * requeueing packets from backlog to prequeue, if
1801			 * is not empty. It is more elegant, but eats cycles,
1802			 * unfortunately.
1803			 */
1804			if (!skb_queue_empty(&tp->ucopy.prequeue))
1805				goto do_prequeue;
1806
1807			/* __ Set realtime policy in scheduler __ */
1808		}
1809
1810#ifdef CONFIG_NET_DMA
1811		if (tp->ucopy.dma_chan) {
1812			if (tp->rcv_wnd == 0 &&
1813			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1814				tcp_service_net_dma(sk, true);
1815				tcp_cleanup_rbuf(sk, copied);
1816			} else
1817				dma_async_issue_pending(tp->ucopy.dma_chan);
1818		}
1819#endif
1820		if (copied >= target) {
1821			/* Do not sleep, just process backlog. */
1822			release_sock(sk);
1823			lock_sock(sk);
1824		} else
1825			sk_wait_data(sk, &timeo);
1826
1827#ifdef CONFIG_NET_DMA
1828		tcp_service_net_dma(sk, false);  /* Don't block */
1829		tp->ucopy.wakeup = 0;
1830#endif
1831
1832		if (user_recv) {
1833			int chunk;
1834
1835			/* __ Restore normal policy in scheduler __ */
1836
1837			if ((chunk = len - tp->ucopy.len) != 0) {
1838				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1839				len -= chunk;
1840				copied += chunk;
1841			}
1842
1843			if (tp->rcv_nxt == tp->copied_seq &&
1844			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1845do_prequeue:
1846				tcp_prequeue_process(sk);
1847
1848				if ((chunk = len - tp->ucopy.len) != 0) {
1849					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1850					len -= chunk;
1851					copied += chunk;
1852				}
1853			}
1854		}
1855		if ((flags & MSG_PEEK) &&
1856		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1857			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1858					    current->comm,
1859					    task_pid_nr(current));
1860			peek_seq = tp->copied_seq;
1861		}
1862		continue;
1863
1864	found_ok_skb:
1865		/* Ok so how much can we use? */
1866		used = skb->len - offset;
1867		if (len < used)
1868			used = len;
1869
1870		/* Do we have urgent data here? */
1871		if (tp->urg_data) {
1872			u32 urg_offset = tp->urg_seq - *seq;
1873			if (urg_offset < used) {
1874				if (!urg_offset) {
1875					if (!sock_flag(sk, SOCK_URGINLINE)) {
1876						++*seq;
1877						urg_hole++;
1878						offset++;
1879						used--;
1880						if (!used)
1881							goto skip_copy;
1882					}
1883				} else
1884					used = urg_offset;
1885			}
1886		}
1887
1888		if (!(flags & MSG_TRUNC)) {
1889#ifdef CONFIG_NET_DMA
1890			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1891				tp->ucopy.dma_chan = net_dma_find_channel();
1892
1893			if (tp->ucopy.dma_chan) {
1894				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1895					tp->ucopy.dma_chan, skb, offset,
1896					msg->msg_iov, used,
1897					tp->ucopy.pinned_list);
1898
1899				if (tp->ucopy.dma_cookie < 0) {
1900
1901					pr_alert("%s: dma_cookie < 0\n",
1902						 __func__);
1903
1904					/* Exception. Bailout! */
1905					if (!copied)
1906						copied = -EFAULT;
1907					break;
1908				}
1909
1910				dma_async_issue_pending(tp->ucopy.dma_chan);
1911
1912				if ((offset + used) == skb->len)
1913					copied_early = true;
1914
1915			} else
1916#endif
1917			{
1918				err = skb_copy_datagram_iovec(skb, offset,
1919						msg->msg_iov, used);
1920				if (err) {
1921					/* Exception. Bailout! */
1922					if (!copied)
1923						copied = -EFAULT;
1924					break;
1925				}
1926			}
1927		}
1928
1929		*seq += used;
1930		copied += used;
1931		len -= used;
1932
1933		tcp_rcv_space_adjust(sk);
1934
1935skip_copy:
1936		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1937			tp->urg_data = 0;
1938			tcp_fast_path_check(sk);
1939		}
1940		if (used + offset < skb->len)
1941			continue;
1942
1943		if (tcp_hdr(skb)->fin)
1944			goto found_fin_ok;
1945		if (!(flags & MSG_PEEK)) {
1946			sk_eat_skb(sk, skb, copied_early);
1947			copied_early = false;
1948		}
1949		continue;
1950
1951	found_fin_ok:
1952		/* Process the FIN. */
1953		++*seq;
1954		if (!(flags & MSG_PEEK)) {
1955			sk_eat_skb(sk, skb, copied_early);
1956			copied_early = false;
1957		}
1958		break;
1959	} while (len > 0);
1960
1961	if (user_recv) {
1962		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1963			int chunk;
1964
1965			tp->ucopy.len = copied > 0 ? len : 0;
1966
1967			tcp_prequeue_process(sk);
1968
1969			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1970				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1971				len -= chunk;
1972				copied += chunk;
1973			}
1974		}
1975
1976		tp->ucopy.task = NULL;
1977		tp->ucopy.len = 0;
1978	}
1979
1980#ifdef CONFIG_NET_DMA
1981	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1982	tp->ucopy.dma_chan = NULL;
1983
1984	if (tp->ucopy.pinned_list) {
1985		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1986		tp->ucopy.pinned_list = NULL;
1987	}
1988#endif
1989
1990	/* According to UNIX98, msg_name/msg_namelen are ignored
1991	 * on connected socket. I was just happy when found this 8) --ANK
1992	 */
1993
1994	/* Clean up data we have read: This will do ACK frames. */
1995	tcp_cleanup_rbuf(sk, copied);
1996
1997	release_sock(sk);
1998	return copied;
1999
2000out:
2001	release_sock(sk);
2002	return err;
2003
2004recv_urg:
2005	err = tcp_recv_urg(sk, msg, len, flags);
2006	goto out;
2007
2008recv_sndq:
2009	err = tcp_peek_sndq(sk, msg, len);
2010	goto out;
2011}
2012EXPORT_SYMBOL(tcp_recvmsg);
2013
2014void tcp_set_state(struct sock *sk, int state)
2015{
2016	int oldstate = sk->sk_state;
2017
2018	switch (state) {
2019	case TCP_ESTABLISHED:
2020		if (oldstate != TCP_ESTABLISHED)
2021			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2022		break;
2023
2024	case TCP_CLOSE:
2025		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2026			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2027
2028		sk->sk_prot->unhash(sk);
2029		if (inet_csk(sk)->icsk_bind_hash &&
2030		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2031			inet_put_port(sk);
2032		/* fall through */
2033	default:
2034		if (oldstate == TCP_ESTABLISHED)
2035			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2036	}
2037
2038	/* Change state AFTER socket is unhashed to avoid closed
2039	 * socket sitting in hash tables.
2040	 */
2041	sk->sk_state = state;
2042
2043#ifdef STATE_TRACE
2044	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2045#endif
2046}
2047EXPORT_SYMBOL_GPL(tcp_set_state);
2048
2049/*
2050 *	State processing on a close. This implements the state shift for
2051 *	sending our FIN frame. Note that we only send a FIN for some
2052 *	states. A shutdown() may have already sent the FIN, or we may be
2053 *	closed.
2054 */
2055
2056static const unsigned char new_state[16] = {
2057  /* current state:        new state:      action:	*/
2058  /* (Invalid)		*/ TCP_CLOSE,
2059  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2060  /* TCP_SYN_SENT	*/ TCP_CLOSE,
2061  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2062  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2063  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2064  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2065  /* TCP_CLOSE		*/ TCP_CLOSE,
2066  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2067  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2068  /* TCP_LISTEN		*/ TCP_CLOSE,
2069  /* TCP_CLOSING	*/ TCP_CLOSING,
2070};
2071
2072static int tcp_close_state(struct sock *sk)
2073{
2074	int next = (int)new_state[sk->sk_state];
2075	int ns = next & TCP_STATE_MASK;
2076
2077	tcp_set_state(sk, ns);
2078
2079	return next & TCP_ACTION_FIN;
2080}
2081
2082/*
2083 *	Shutdown the sending side of a connection. Much like close except
2084 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2085 */
2086
2087void tcp_shutdown(struct sock *sk, int how)
2088{
2089	/*	We need to grab some memory, and put together a FIN,
2090	 *	and then put it into the queue to be sent.
2091	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2092	 */
2093	if (!(how & SEND_SHUTDOWN))
2094		return;
2095
2096	/* If we've already sent a FIN, or it's a closed state, skip this. */
2097	if ((1 << sk->sk_state) &
2098	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2099	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2100		/* Clear out any half completed packets.  FIN if needed. */
2101		if (tcp_close_state(sk))
2102			tcp_send_fin(sk);
2103	}
2104}
2105EXPORT_SYMBOL(tcp_shutdown);
2106
2107bool tcp_check_oom(struct sock *sk, int shift)
2108{
2109	bool too_many_orphans, out_of_socket_memory;
2110
2111	too_many_orphans = tcp_too_many_orphans(sk, shift);
2112	out_of_socket_memory = tcp_out_of_memory(sk);
2113
2114	if (too_many_orphans)
2115		net_info_ratelimited("too many orphaned sockets\n");
2116	if (out_of_socket_memory)
2117		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2118	return too_many_orphans || out_of_socket_memory;
2119}
2120
2121void tcp_close(struct sock *sk, long timeout)
2122{
2123	struct sk_buff *skb;
2124	int data_was_unread = 0;
2125	int state;
2126
2127	lock_sock(sk);
2128	sk->sk_shutdown = SHUTDOWN_MASK;
2129
2130	if (sk->sk_state == TCP_LISTEN) {
2131		tcp_set_state(sk, TCP_CLOSE);
2132
2133		/* Special case. */
2134		inet_csk_listen_stop(sk);
2135
2136		goto adjudge_to_death;
2137	}
2138
2139	/*  We need to flush the recv. buffs.  We do this only on the
2140	 *  descriptor close, not protocol-sourced closes, because the
2141	 *  reader process may not have drained the data yet!
2142	 */
2143	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2144		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2145			  tcp_hdr(skb)->fin;
2146		data_was_unread += len;
2147		__kfree_skb(skb);
2148	}
2149
2150	sk_mem_reclaim(sk);
2151
2152	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2153	if (sk->sk_state == TCP_CLOSE)
2154		goto adjudge_to_death;
2155
2156	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2157	 * data was lost. To witness the awful effects of the old behavior of
2158	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2159	 * GET in an FTP client, suspend the process, wait for the client to
2160	 * advertise a zero window, then kill -9 the FTP client, wheee...
2161	 * Note: timeout is always zero in such a case.
2162	 */
2163	if (unlikely(tcp_sk(sk)->repair)) {
2164		sk->sk_prot->disconnect(sk, 0);
2165	} else if (data_was_unread) {
2166		/* Unread data was tossed, zap the connection. */
2167		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2168		tcp_set_state(sk, TCP_CLOSE);
2169		tcp_send_active_reset(sk, sk->sk_allocation);
2170	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2171		/* Check zero linger _after_ checking for unread data. */
2172		sk->sk_prot->disconnect(sk, 0);
2173		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2174	} else if (tcp_close_state(sk)) {
2175		/* We FIN if the application ate all the data before
2176		 * zapping the connection.
2177		 */
2178
2179		/* RED-PEN. Formally speaking, we have broken TCP state
2180		 * machine. State transitions:
2181		 *
2182		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2183		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2184		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2185		 *
2186		 * are legal only when FIN has been sent (i.e. in window),
2187		 * rather than queued out of window. Purists blame.
2188		 *
2189		 * F.e. "RFC state" is ESTABLISHED,
2190		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2191		 *
2192		 * The visible declinations are that sometimes
2193		 * we enter time-wait state, when it is not required really
2194		 * (harmless), do not send active resets, when they are
2195		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2196		 * they look as CLOSING or LAST_ACK for Linux)
2197		 * Probably, I missed some more holelets.
2198		 * 						--ANK
2199		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2200		 * in a single packet! (May consider it later but will
2201		 * probably need API support or TCP_CORK SYN-ACK until
2202		 * data is written and socket is closed.)
2203		 */
2204		tcp_send_fin(sk);
2205	}
2206
2207	sk_stream_wait_close(sk, timeout);
2208
2209adjudge_to_death:
2210	state = sk->sk_state;
2211	sock_hold(sk);
2212	sock_orphan(sk);
2213
2214	/* It is the last release_sock in its life. It will remove backlog. */
2215	release_sock(sk);
2216
2217
2218	/* Now socket is owned by kernel and we acquire BH lock
2219	   to finish close. No need to check for user refs.
2220	 */
2221	local_bh_disable();
2222	bh_lock_sock(sk);
2223	WARN_ON(sock_owned_by_user(sk));
2224
2225	percpu_counter_inc(sk->sk_prot->orphan_count);
2226
2227	/* Have we already been destroyed by a softirq or backlog? */
2228	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2229		goto out;
2230
2231	/*	This is a (useful) BSD violating of the RFC. There is a
2232	 *	problem with TCP as specified in that the other end could
2233	 *	keep a socket open forever with no application left this end.
2234	 *	We use a 1 minute timeout (about the same as BSD) then kill
2235	 *	our end. If they send after that then tough - BUT: long enough
2236	 *	that we won't make the old 4*rto = almost no time - whoops
2237	 *	reset mistake.
2238	 *
2239	 *	Nope, it was not mistake. It is really desired behaviour
2240	 *	f.e. on http servers, when such sockets are useless, but
2241	 *	consume significant resources. Let's do it with special
2242	 *	linger2	option.					--ANK
2243	 */
2244
2245	if (sk->sk_state == TCP_FIN_WAIT2) {
2246		struct tcp_sock *tp = tcp_sk(sk);
2247		if (tp->linger2 < 0) {
2248			tcp_set_state(sk, TCP_CLOSE);
2249			tcp_send_active_reset(sk, GFP_ATOMIC);
2250			NET_INC_STATS_BH(sock_net(sk),
2251					LINUX_MIB_TCPABORTONLINGER);
2252		} else {
2253			const int tmo = tcp_fin_time(sk);
2254
2255			if (tmo > TCP_TIMEWAIT_LEN) {
2256				inet_csk_reset_keepalive_timer(sk,
2257						tmo - TCP_TIMEWAIT_LEN);
2258			} else {
2259				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2260				goto out;
2261			}
2262		}
2263	}
2264	if (sk->sk_state != TCP_CLOSE) {
2265		sk_mem_reclaim(sk);
2266		if (tcp_check_oom(sk, 0)) {
 
 
 
2267			tcp_set_state(sk, TCP_CLOSE);
2268			tcp_send_active_reset(sk, GFP_ATOMIC);
2269			NET_INC_STATS_BH(sock_net(sk),
2270					LINUX_MIB_TCPABORTONMEMORY);
2271		}
2272	}
2273
2274	if (sk->sk_state == TCP_CLOSE) {
2275		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2276		/* We could get here with a non-NULL req if the socket is
2277		 * aborted (e.g., closed with unread data) before 3WHS
2278		 * finishes.
2279		 */
2280		if (req != NULL)
2281			reqsk_fastopen_remove(sk, req, false);
2282		inet_csk_destroy_sock(sk);
2283	}
2284	/* Otherwise, socket is reprieved until protocol close. */
2285
2286out:
2287	bh_unlock_sock(sk);
2288	local_bh_enable();
2289	sock_put(sk);
2290}
2291EXPORT_SYMBOL(tcp_close);
2292
2293/* These states need RST on ABORT according to RFC793 */
2294
2295static inline bool tcp_need_reset(int state)
2296{
2297	return (1 << state) &
2298	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2299		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2300}
2301
2302int tcp_disconnect(struct sock *sk, int flags)
2303{
2304	struct inet_sock *inet = inet_sk(sk);
2305	struct inet_connection_sock *icsk = inet_csk(sk);
2306	struct tcp_sock *tp = tcp_sk(sk);
2307	int err = 0;
2308	int old_state = sk->sk_state;
2309
2310	if (old_state != TCP_CLOSE)
2311		tcp_set_state(sk, TCP_CLOSE);
2312
2313	/* ABORT function of RFC793 */
2314	if (old_state == TCP_LISTEN) {
2315		inet_csk_listen_stop(sk);
2316	} else if (unlikely(tp->repair)) {
2317		sk->sk_err = ECONNABORTED;
2318	} else if (tcp_need_reset(old_state) ||
2319		   (tp->snd_nxt != tp->write_seq &&
2320		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2321		/* The last check adjusts for discrepancy of Linux wrt. RFC
2322		 * states
2323		 */
2324		tcp_send_active_reset(sk, gfp_any());
2325		sk->sk_err = ECONNRESET;
2326	} else if (old_state == TCP_SYN_SENT)
2327		sk->sk_err = ECONNRESET;
2328
2329	tcp_clear_xmit_timers(sk);
2330	__skb_queue_purge(&sk->sk_receive_queue);
2331	tcp_write_queue_purge(sk);
2332	__skb_queue_purge(&tp->out_of_order_queue);
2333#ifdef CONFIG_NET_DMA
2334	__skb_queue_purge(&sk->sk_async_wait_queue);
2335#endif
2336
2337	inet->inet_dport = 0;
2338
2339	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2340		inet_reset_saddr(sk);
2341
2342	sk->sk_shutdown = 0;
2343	sock_reset_flag(sk, SOCK_DONE);
2344	tp->srtt_us = 0;
2345	if ((tp->write_seq += tp->max_window + 2) == 0)
2346		tp->write_seq = 1;
2347	icsk->icsk_backoff = 0;
2348	tp->snd_cwnd = 2;
2349	icsk->icsk_probes_out = 0;
2350	tp->packets_out = 0;
2351	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2352	tp->snd_cwnd_cnt = 0;
 
2353	tp->window_clamp = 0;
2354	tcp_set_ca_state(sk, TCP_CA_Open);
2355	tcp_clear_retrans(tp);
2356	inet_csk_delack_init(sk);
2357	tcp_init_send_head(sk);
2358	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2359	__sk_dst_reset(sk);
2360
2361	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2362
2363	sk->sk_error_report(sk);
2364	return err;
2365}
2366EXPORT_SYMBOL(tcp_disconnect);
2367
2368void tcp_sock_destruct(struct sock *sk)
2369{
2370	inet_sock_destruct(sk);
2371
2372	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2373}
2374
2375static inline bool tcp_can_repair_sock(const struct sock *sk)
2376{
2377	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2378		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2379}
2380
2381static int tcp_repair_options_est(struct tcp_sock *tp,
2382		struct tcp_repair_opt __user *optbuf, unsigned int len)
2383{
2384	struct tcp_repair_opt opt;
2385
2386	while (len >= sizeof(opt)) {
2387		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2388			return -EFAULT;
2389
2390		optbuf++;
2391		len -= sizeof(opt);
2392
2393		switch (opt.opt_code) {
2394		case TCPOPT_MSS:
2395			tp->rx_opt.mss_clamp = opt.opt_val;
2396			break;
2397		case TCPOPT_WINDOW:
2398			{
2399				u16 snd_wscale = opt.opt_val & 0xFFFF;
2400				u16 rcv_wscale = opt.opt_val >> 16;
2401
2402				if (snd_wscale > 14 || rcv_wscale > 14)
2403					return -EFBIG;
2404
2405				tp->rx_opt.snd_wscale = snd_wscale;
2406				tp->rx_opt.rcv_wscale = rcv_wscale;
2407				tp->rx_opt.wscale_ok = 1;
2408			}
2409			break;
2410		case TCPOPT_SACK_PERM:
2411			if (opt.opt_val != 0)
2412				return -EINVAL;
2413
2414			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2415			if (sysctl_tcp_fack)
2416				tcp_enable_fack(tp);
2417			break;
2418		case TCPOPT_TIMESTAMP:
2419			if (opt.opt_val != 0)
2420				return -EINVAL;
2421
2422			tp->rx_opt.tstamp_ok = 1;
2423			break;
2424		}
2425	}
2426
2427	return 0;
2428}
2429
2430/*
2431 *	Socket option code for TCP.
2432 */
2433static int do_tcp_setsockopt(struct sock *sk, int level,
2434		int optname, char __user *optval, unsigned int optlen)
2435{
2436	struct tcp_sock *tp = tcp_sk(sk);
2437	struct inet_connection_sock *icsk = inet_csk(sk);
2438	int val;
2439	int err = 0;
2440
2441	/* These are data/string values, all the others are ints */
2442	switch (optname) {
2443	case TCP_CONGESTION: {
2444		char name[TCP_CA_NAME_MAX];
2445
2446		if (optlen < 1)
2447			return -EINVAL;
2448
2449		val = strncpy_from_user(name, optval,
2450					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2451		if (val < 0)
2452			return -EFAULT;
2453		name[val] = 0;
2454
2455		lock_sock(sk);
2456		err = tcp_set_congestion_control(sk, name);
2457		release_sock(sk);
2458		return err;
2459	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	default:
2461		/* fallthru */
2462		break;
2463	}
2464
2465	if (optlen < sizeof(int))
2466		return -EINVAL;
2467
2468	if (get_user(val, (int __user *)optval))
2469		return -EFAULT;
2470
2471	lock_sock(sk);
2472
2473	switch (optname) {
2474	case TCP_MAXSEG:
2475		/* Values greater than interface MTU won't take effect. However
2476		 * at the point when this call is done we typically don't yet
2477		 * know which interface is going to be used */
2478		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2479			err = -EINVAL;
2480			break;
2481		}
2482		tp->rx_opt.user_mss = val;
2483		break;
2484
2485	case TCP_NODELAY:
2486		if (val) {
2487			/* TCP_NODELAY is weaker than TCP_CORK, so that
2488			 * this option on corked socket is remembered, but
2489			 * it is not activated until cork is cleared.
2490			 *
2491			 * However, when TCP_NODELAY is set we make
2492			 * an explicit push, which overrides even TCP_CORK
2493			 * for currently queued segments.
2494			 */
2495			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2496			tcp_push_pending_frames(sk);
2497		} else {
2498			tp->nonagle &= ~TCP_NAGLE_OFF;
2499		}
2500		break;
2501
2502	case TCP_THIN_LINEAR_TIMEOUTS:
2503		if (val < 0 || val > 1)
2504			err = -EINVAL;
2505		else
2506			tp->thin_lto = val;
2507		break;
2508
2509	case TCP_THIN_DUPACK:
2510		if (val < 0 || val > 1)
2511			err = -EINVAL;
2512		else {
2513			tp->thin_dupack = val;
2514			if (tp->thin_dupack)
2515				tcp_disable_early_retrans(tp);
2516		}
2517		break;
2518
2519	case TCP_REPAIR:
2520		if (!tcp_can_repair_sock(sk))
2521			err = -EPERM;
2522		else if (val == 1) {
2523			tp->repair = 1;
2524			sk->sk_reuse = SK_FORCE_REUSE;
2525			tp->repair_queue = TCP_NO_QUEUE;
2526		} else if (val == 0) {
2527			tp->repair = 0;
2528			sk->sk_reuse = SK_NO_REUSE;
2529			tcp_send_window_probe(sk);
2530		} else
2531			err = -EINVAL;
2532
2533		break;
2534
2535	case TCP_REPAIR_QUEUE:
2536		if (!tp->repair)
2537			err = -EPERM;
2538		else if (val < TCP_QUEUES_NR)
2539			tp->repair_queue = val;
2540		else
2541			err = -EINVAL;
2542		break;
2543
2544	case TCP_QUEUE_SEQ:
2545		if (sk->sk_state != TCP_CLOSE)
2546			err = -EPERM;
2547		else if (tp->repair_queue == TCP_SEND_QUEUE)
2548			tp->write_seq = val;
2549		else if (tp->repair_queue == TCP_RECV_QUEUE)
2550			tp->rcv_nxt = val;
2551		else
2552			err = -EINVAL;
2553		break;
2554
2555	case TCP_REPAIR_OPTIONS:
2556		if (!tp->repair)
2557			err = -EINVAL;
2558		else if (sk->sk_state == TCP_ESTABLISHED)
2559			err = tcp_repair_options_est(tp,
2560					(struct tcp_repair_opt __user *)optval,
2561					optlen);
2562		else
2563			err = -EPERM;
2564		break;
2565
2566	case TCP_CORK:
2567		/* When set indicates to always queue non-full frames.
2568		 * Later the user clears this option and we transmit
2569		 * any pending partial frames in the queue.  This is
2570		 * meant to be used alongside sendfile() to get properly
2571		 * filled frames when the user (for example) must write
2572		 * out headers with a write() call first and then use
2573		 * sendfile to send out the data parts.
2574		 *
2575		 * TCP_CORK can be set together with TCP_NODELAY and it is
2576		 * stronger than TCP_NODELAY.
2577		 */
2578		if (val) {
2579			tp->nonagle |= TCP_NAGLE_CORK;
2580		} else {
2581			tp->nonagle &= ~TCP_NAGLE_CORK;
2582			if (tp->nonagle&TCP_NAGLE_OFF)
2583				tp->nonagle |= TCP_NAGLE_PUSH;
2584			tcp_push_pending_frames(sk);
2585		}
2586		break;
2587
2588	case TCP_KEEPIDLE:
2589		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2590			err = -EINVAL;
2591		else {
2592			tp->keepalive_time = val * HZ;
2593			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2594			    !((1 << sk->sk_state) &
2595			      (TCPF_CLOSE | TCPF_LISTEN))) {
2596				u32 elapsed = keepalive_time_elapsed(tp);
2597				if (tp->keepalive_time > elapsed)
2598					elapsed = tp->keepalive_time - elapsed;
2599				else
2600					elapsed = 0;
2601				inet_csk_reset_keepalive_timer(sk, elapsed);
2602			}
2603		}
2604		break;
2605	case TCP_KEEPINTVL:
2606		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2607			err = -EINVAL;
2608		else
2609			tp->keepalive_intvl = val * HZ;
2610		break;
2611	case TCP_KEEPCNT:
2612		if (val < 1 || val > MAX_TCP_KEEPCNT)
2613			err = -EINVAL;
2614		else
2615			tp->keepalive_probes = val;
2616		break;
2617	case TCP_SYNCNT:
2618		if (val < 1 || val > MAX_TCP_SYNCNT)
2619			err = -EINVAL;
2620		else
2621			icsk->icsk_syn_retries = val;
2622		break;
2623
2624	case TCP_LINGER2:
2625		if (val < 0)
2626			tp->linger2 = -1;
2627		else if (val > sysctl_tcp_fin_timeout / HZ)
2628			tp->linger2 = 0;
2629		else
2630			tp->linger2 = val * HZ;
2631		break;
2632
2633	case TCP_DEFER_ACCEPT:
2634		/* Translate value in seconds to number of retransmits */
2635		icsk->icsk_accept_queue.rskq_defer_accept =
2636			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2637					TCP_RTO_MAX / HZ);
2638		break;
2639
2640	case TCP_WINDOW_CLAMP:
2641		if (!val) {
2642			if (sk->sk_state != TCP_CLOSE) {
2643				err = -EINVAL;
2644				break;
2645			}
2646			tp->window_clamp = 0;
2647		} else
2648			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2649						SOCK_MIN_RCVBUF / 2 : val;
2650		break;
2651
2652	case TCP_QUICKACK:
2653		if (!val) {
2654			icsk->icsk_ack.pingpong = 1;
2655		} else {
2656			icsk->icsk_ack.pingpong = 0;
2657			if ((1 << sk->sk_state) &
2658			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2659			    inet_csk_ack_scheduled(sk)) {
2660				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2661				tcp_cleanup_rbuf(sk, 1);
2662				if (!(val & 1))
2663					icsk->icsk_ack.pingpong = 1;
2664			}
2665		}
2666		break;
2667
2668#ifdef CONFIG_TCP_MD5SIG
2669	case TCP_MD5SIG:
2670		/* Read the IP->Key mappings from userspace */
2671		err = tp->af_specific->md5_parse(sk, optval, optlen);
2672		break;
2673#endif
2674	case TCP_USER_TIMEOUT:
2675		/* Cap the max timeout in ms TCP will retry/retrans
2676		 * before giving up and aborting (ETIMEDOUT) a connection.
2677		 */
2678		if (val < 0)
2679			err = -EINVAL;
2680		else
2681			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2682		break;
2683
2684	case TCP_FASTOPEN:
2685		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2686		    TCPF_LISTEN)))
2687			err = fastopen_init_queue(sk, val);
2688		else
2689			err = -EINVAL;
2690		break;
2691	case TCP_TIMESTAMP:
2692		if (!tp->repair)
2693			err = -EPERM;
2694		else
2695			tp->tsoffset = val - tcp_time_stamp;
2696		break;
2697	case TCP_NOTSENT_LOWAT:
2698		tp->notsent_lowat = val;
2699		sk->sk_write_space(sk);
2700		break;
2701	default:
2702		err = -ENOPROTOOPT;
2703		break;
2704	}
2705
2706	release_sock(sk);
2707	return err;
2708}
2709
2710int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2711		   unsigned int optlen)
2712{
2713	const struct inet_connection_sock *icsk = inet_csk(sk);
2714
2715	if (level != SOL_TCP)
2716		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2717						     optval, optlen);
2718	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2719}
2720EXPORT_SYMBOL(tcp_setsockopt);
2721
2722#ifdef CONFIG_COMPAT
2723int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2724			  char __user *optval, unsigned int optlen)
2725{
2726	if (level != SOL_TCP)
2727		return inet_csk_compat_setsockopt(sk, level, optname,
2728						  optval, optlen);
2729	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2730}
2731EXPORT_SYMBOL(compat_tcp_setsockopt);
2732#endif
2733
2734/* Return information about state of tcp endpoint in API format. */
2735void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2736{
2737	const struct tcp_sock *tp = tcp_sk(sk);
2738	const struct inet_connection_sock *icsk = inet_csk(sk);
2739	u32 now = tcp_time_stamp;
2740
2741	memset(info, 0, sizeof(*info));
2742
2743	info->tcpi_state = sk->sk_state;
2744	info->tcpi_ca_state = icsk->icsk_ca_state;
2745	info->tcpi_retransmits = icsk->icsk_retransmits;
2746	info->tcpi_probes = icsk->icsk_probes_out;
2747	info->tcpi_backoff = icsk->icsk_backoff;
2748
2749	if (tp->rx_opt.tstamp_ok)
2750		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2751	if (tcp_is_sack(tp))
2752		info->tcpi_options |= TCPI_OPT_SACK;
2753	if (tp->rx_opt.wscale_ok) {
2754		info->tcpi_options |= TCPI_OPT_WSCALE;
2755		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2756		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2757	}
2758
2759	if (tp->ecn_flags & TCP_ECN_OK)
2760		info->tcpi_options |= TCPI_OPT_ECN;
2761	if (tp->ecn_flags & TCP_ECN_SEEN)
2762		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2763	if (tp->syn_data_acked)
2764		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2765
2766	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2767	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2768	info->tcpi_snd_mss = tp->mss_cache;
2769	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2770
2771	if (sk->sk_state == TCP_LISTEN) {
2772		info->tcpi_unacked = sk->sk_ack_backlog;
2773		info->tcpi_sacked = sk->sk_max_ack_backlog;
2774	} else {
2775		info->tcpi_unacked = tp->packets_out;
2776		info->tcpi_sacked = tp->sacked_out;
2777	}
2778	info->tcpi_lost = tp->lost_out;
2779	info->tcpi_retrans = tp->retrans_out;
2780	info->tcpi_fackets = tp->fackets_out;
2781
2782	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2783	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2784	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2785
2786	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2787	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2788	info->tcpi_rtt = tp->srtt_us >> 3;
2789	info->tcpi_rttvar = tp->mdev_us >> 2;
2790	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2791	info->tcpi_snd_cwnd = tp->snd_cwnd;
2792	info->tcpi_advmss = tp->advmss;
2793	info->tcpi_reordering = tp->reordering;
2794
2795	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2796	info->tcpi_rcv_space = tp->rcvq_space.space;
2797
2798	info->tcpi_total_retrans = tp->total_retrans;
2799
2800	info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2801					sk->sk_pacing_rate : ~0ULL;
2802	info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2803					sk->sk_max_pacing_rate : ~0ULL;
2804}
2805EXPORT_SYMBOL_GPL(tcp_get_info);
2806
2807static int do_tcp_getsockopt(struct sock *sk, int level,
2808		int optname, char __user *optval, int __user *optlen)
2809{
2810	struct inet_connection_sock *icsk = inet_csk(sk);
2811	struct tcp_sock *tp = tcp_sk(sk);
2812	int val, len;
2813
2814	if (get_user(len, optlen))
2815		return -EFAULT;
2816
2817	len = min_t(unsigned int, len, sizeof(int));
2818
2819	if (len < 0)
2820		return -EINVAL;
2821
2822	switch (optname) {
2823	case TCP_MAXSEG:
2824		val = tp->mss_cache;
2825		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2826			val = tp->rx_opt.user_mss;
2827		if (tp->repair)
2828			val = tp->rx_opt.mss_clamp;
2829		break;
2830	case TCP_NODELAY:
2831		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2832		break;
2833	case TCP_CORK:
2834		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2835		break;
2836	case TCP_KEEPIDLE:
2837		val = keepalive_time_when(tp) / HZ;
2838		break;
2839	case TCP_KEEPINTVL:
2840		val = keepalive_intvl_when(tp) / HZ;
2841		break;
2842	case TCP_KEEPCNT:
2843		val = keepalive_probes(tp);
2844		break;
2845	case TCP_SYNCNT:
2846		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2847		break;
2848	case TCP_LINGER2:
2849		val = tp->linger2;
2850		if (val >= 0)
2851			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2852		break;
2853	case TCP_DEFER_ACCEPT:
2854		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2855				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2856		break;
2857	case TCP_WINDOW_CLAMP:
2858		val = tp->window_clamp;
2859		break;
2860	case TCP_INFO: {
2861		struct tcp_info info;
2862
2863		if (get_user(len, optlen))
2864			return -EFAULT;
2865
2866		tcp_get_info(sk, &info);
2867
2868		len = min_t(unsigned int, len, sizeof(info));
2869		if (put_user(len, optlen))
2870			return -EFAULT;
2871		if (copy_to_user(optval, &info, len))
2872			return -EFAULT;
2873		return 0;
2874	}
2875	case TCP_QUICKACK:
2876		val = !icsk->icsk_ack.pingpong;
2877		break;
2878
2879	case TCP_CONGESTION:
2880		if (get_user(len, optlen))
2881			return -EFAULT;
2882		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2883		if (put_user(len, optlen))
2884			return -EFAULT;
2885		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2886			return -EFAULT;
2887		return 0;
2888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2889	case TCP_THIN_LINEAR_TIMEOUTS:
2890		val = tp->thin_lto;
2891		break;
2892	case TCP_THIN_DUPACK:
2893		val = tp->thin_dupack;
2894		break;
2895
2896	case TCP_REPAIR:
2897		val = tp->repair;
2898		break;
2899
2900	case TCP_REPAIR_QUEUE:
2901		if (tp->repair)
2902			val = tp->repair_queue;
2903		else
2904			return -EINVAL;
2905		break;
2906
2907	case TCP_QUEUE_SEQ:
2908		if (tp->repair_queue == TCP_SEND_QUEUE)
2909			val = tp->write_seq;
2910		else if (tp->repair_queue == TCP_RECV_QUEUE)
2911			val = tp->rcv_nxt;
2912		else
2913			return -EINVAL;
2914		break;
2915
2916	case TCP_USER_TIMEOUT:
2917		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2918		break;
2919	case TCP_TIMESTAMP:
2920		val = tcp_time_stamp + tp->tsoffset;
2921		break;
2922	case TCP_NOTSENT_LOWAT:
2923		val = tp->notsent_lowat;
2924		break;
2925	default:
2926		return -ENOPROTOOPT;
2927	}
2928
2929	if (put_user(len, optlen))
2930		return -EFAULT;
2931	if (copy_to_user(optval, &val, len))
2932		return -EFAULT;
2933	return 0;
2934}
2935
2936int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2937		   int __user *optlen)
2938{
2939	struct inet_connection_sock *icsk = inet_csk(sk);
2940
2941	if (level != SOL_TCP)
2942		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2943						     optval, optlen);
2944	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2945}
2946EXPORT_SYMBOL(tcp_getsockopt);
2947
2948#ifdef CONFIG_COMPAT
2949int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2950			  char __user *optval, int __user *optlen)
2951{
2952	if (level != SOL_TCP)
2953		return inet_csk_compat_getsockopt(sk, level, optname,
2954						  optval, optlen);
2955	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2956}
2957EXPORT_SYMBOL(compat_tcp_getsockopt);
2958#endif
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960#ifdef CONFIG_TCP_MD5SIG
2961static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2962static DEFINE_MUTEX(tcp_md5sig_mutex);
 
2963
2964static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2965{
2966	int cpu;
 
 
 
 
 
 
 
 
 
 
2967
2968	for_each_possible_cpu(cpu) {
2969		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
 
2970
2971		if (p->md5_desc.tfm)
2972			crypto_free_hash(p->md5_desc.tfm);
 
 
2973	}
2974	free_percpu(pool);
 
 
2975}
 
2976
2977static void __tcp_alloc_md5sig_pool(void)
 
2978{
2979	int cpu;
2980	struct tcp_md5sig_pool __percpu *pool;
2981
2982	pool = alloc_percpu(struct tcp_md5sig_pool);
2983	if (!pool)
2984		return;
2985
2986	for_each_possible_cpu(cpu) {
 
2987		struct crypto_hash *hash;
2988
 
 
 
 
 
2989		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2990		if (IS_ERR_OR_NULL(hash))
2991			goto out_free;
2992
2993		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2994	}
2995	/* before setting tcp_md5sig_pool, we must commit all writes
2996	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2997	 */
2998	smp_wmb();
2999	tcp_md5sig_pool = pool;
3000	return;
3001out_free:
3002	__tcp_free_md5sig_pool(pool);
 
3003}
3004
3005bool tcp_alloc_md5sig_pool(void)
3006{
3007	if (unlikely(!tcp_md5sig_pool)) {
3008		mutex_lock(&tcp_md5sig_mutex);
3009
3010		if (!tcp_md5sig_pool)
3011			__tcp_alloc_md5sig_pool();
3012
3013		mutex_unlock(&tcp_md5sig_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014	}
3015	return tcp_md5sig_pool != NULL;
3016}
3017EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3018
3019
3020/**
3021 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3022 *
3023 *	We use percpu structure, so if we succeed, we exit with preemption
3024 *	and BH disabled, to make sure another thread or softirq handling
3025 *	wont try to get same context.
3026 */
3027struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3028{
3029	struct tcp_md5sig_pool __percpu *p;
3030
3031	local_bh_disable();
3032	p = ACCESS_ONCE(tcp_md5sig_pool);
 
 
 
 
 
 
3033	if (p)
3034		return __this_cpu_ptr(p);
3035
3036	local_bh_enable();
3037	return NULL;
3038}
3039EXPORT_SYMBOL(tcp_get_md5sig_pool);
3040
 
 
 
 
 
 
 
3041int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3042			const struct tcphdr *th)
3043{
3044	struct scatterlist sg;
3045	struct tcphdr hdr;
3046	int err;
3047
3048	/* We are not allowed to change tcphdr, make a local copy */
3049	memcpy(&hdr, th, sizeof(hdr));
3050	hdr.check = 0;
3051
3052	/* options aren't included in the hash */
3053	sg_init_one(&sg, &hdr, sizeof(hdr));
3054	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
 
3055	return err;
3056}
3057EXPORT_SYMBOL(tcp_md5_hash_header);
3058
3059int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3060			  const struct sk_buff *skb, unsigned int header_len)
3061{
3062	struct scatterlist sg;
3063	const struct tcphdr *tp = tcp_hdr(skb);
3064	struct hash_desc *desc = &hp->md5_desc;
3065	unsigned int i;
3066	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3067					   skb_headlen(skb) - header_len : 0;
3068	const struct skb_shared_info *shi = skb_shinfo(skb);
3069	struct sk_buff *frag_iter;
3070
3071	sg_init_table(&sg, 1);
3072
3073	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3074	if (crypto_hash_update(desc, &sg, head_data_len))
3075		return 1;
3076
3077	for (i = 0; i < shi->nr_frags; ++i) {
3078		const struct skb_frag_struct *f = &shi->frags[i];
3079		unsigned int offset = f->page_offset;
3080		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3081
3082		sg_set_page(&sg, page, skb_frag_size(f),
3083			    offset_in_page(offset));
3084		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3085			return 1;
3086	}
3087
3088	skb_walk_frags(skb, frag_iter)
3089		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3090			return 1;
3091
3092	return 0;
3093}
3094EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3095
3096int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3097{
3098	struct scatterlist sg;
3099
3100	sg_init_one(&sg, key->key, key->keylen);
3101	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3102}
3103EXPORT_SYMBOL(tcp_md5_hash_key);
3104
3105#endif
3106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107void tcp_done(struct sock *sk)
3108{
3109	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3110
3111	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3112		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3113
3114	tcp_set_state(sk, TCP_CLOSE);
3115	tcp_clear_xmit_timers(sk);
3116	if (req != NULL)
3117		reqsk_fastopen_remove(sk, req, false);
3118
3119	sk->sk_shutdown = SHUTDOWN_MASK;
3120
3121	if (!sock_flag(sk, SOCK_DEAD))
3122		sk->sk_state_change(sk);
3123	else
3124		inet_csk_destroy_sock(sk);
3125}
3126EXPORT_SYMBOL_GPL(tcp_done);
3127
3128extern struct tcp_congestion_ops tcp_reno;
3129
3130static __initdata unsigned long thash_entries;
3131static int __init set_thash_entries(char *str)
3132{
3133	ssize_t ret;
3134
3135	if (!str)
3136		return 0;
3137
3138	ret = kstrtoul(str, 0, &thash_entries);
3139	if (ret)
3140		return 0;
3141
3142	return 1;
3143}
3144__setup("thash_entries=", set_thash_entries);
3145
3146static void tcp_init_mem(void)
3147{
3148	unsigned long limit = nr_free_buffer_pages() / 8;
3149	limit = max(limit, 128UL);
3150	sysctl_tcp_mem[0] = limit / 4 * 3;
3151	sysctl_tcp_mem[1] = limit;
3152	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3153}
3154
3155void __init tcp_init(void)
3156{
3157	struct sk_buff *skb = NULL;
3158	unsigned long limit;
3159	int max_rshare, max_wshare, cnt;
3160	unsigned int i;
3161
3162	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3163
3164	percpu_counter_init(&tcp_sockets_allocated, 0);
3165	percpu_counter_init(&tcp_orphan_count, 0);
3166	tcp_hashinfo.bind_bucket_cachep =
3167		kmem_cache_create("tcp_bind_bucket",
3168				  sizeof(struct inet_bind_bucket), 0,
3169				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3170
3171	/* Size and allocate the main established and bind bucket
3172	 * hash tables.
3173	 *
3174	 * The methodology is similar to that of the buffer cache.
3175	 */
3176	tcp_hashinfo.ehash =
3177		alloc_large_system_hash("TCP established",
3178					sizeof(struct inet_ehash_bucket),
3179					thash_entries,
3180					17, /* one slot per 128 KB of memory */
 
3181					0,
3182					NULL,
3183					&tcp_hashinfo.ehash_mask,
3184					0,
3185					thash_entries ? 0 : 512 * 1024);
3186	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3187		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3188
 
3189	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3190		panic("TCP: failed to alloc ehash_locks");
3191	tcp_hashinfo.bhash =
3192		alloc_large_system_hash("TCP bind",
3193					sizeof(struct inet_bind_hashbucket),
3194					tcp_hashinfo.ehash_mask + 1,
3195					17, /* one slot per 128 KB of memory */
 
3196					0,
3197					&tcp_hashinfo.bhash_size,
3198					NULL,
3199					0,
3200					64 * 1024);
3201	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3202	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3203		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3204		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3205	}
3206
3207
3208	cnt = tcp_hashinfo.ehash_mask + 1;
3209
3210	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3211	sysctl_tcp_max_orphans = cnt / 2;
3212	sysctl_max_syn_backlog = max(128, cnt / 256);
3213
3214	tcp_init_mem();
 
 
 
 
 
3215	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3216	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3217	max_wshare = min(4UL*1024*1024, limit);
3218	max_rshare = min(6UL*1024*1024, limit);
3219
3220	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3221	sysctl_tcp_wmem[1] = 16*1024;
3222	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3223
3224	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3225	sysctl_tcp_rmem[1] = 87380;
3226	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3227
3228	pr_info("Hash tables configured (established %u bind %u)\n",
3229		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3230
3231	tcp_metrics_init();
 
 
3232
3233	tcp_register_congestion_control(&tcp_reno);
3234
3235	tcp_tasklet_init();
 
 
 
 
 
 
 
3236}