Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2023 Linaro Limited
  4 *
  5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
  6 *
  7 * Thermal subsystem debug support
  8 */
  9#include <linux/debugfs.h>
 10#include <linux/ktime.h>
 11#include <linux/list.h>
 12#include <linux/minmax.h>
 13#include <linux/mutex.h>
 14#include <linux/thermal.h>
 15
 16#include "thermal_core.h"
 17
 18static struct dentry *d_root;
 19static struct dentry *d_cdev;
 20static struct dentry *d_tz;
 21
 22/*
 23 * Length of the string containing the thermal zone id or the cooling
 24 * device id, including the ending nul character. We can reasonably
 25 * assume there won't be more than 256 thermal zones as the maximum
 26 * observed today is around 32.
 27 */
 28#define IDSLENGTH 4
 29
 30/*
 31 * The cooling device transition list is stored in a hash table where
 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
 33 * have dozen of states but some can have much more, so a hash table
 34 * is more adequate in this case, because the cost of browsing the entire
 35 * list when storing the transitions may not be negligible.
 36 */
 37#define CDEVSTATS_HASH_SIZE 16
 38
 39/**
 40 * struct cdev_debugfs - per cooling device statistics structure
 41 * A cooling device can have a high number of states. Showing the
 42 * transitions on a matrix based representation can be overkill given
 43 * most of the transitions won't happen and we end up with a matrix
 44 * filled with zero. Instead, we show the transitions which actually
 45 * happened.
 46 *
 47 * Every transition updates the current_state and the timestamp. The
 48 * transitions and the durations are stored in lists.
 49 *
 50 * @total: the number of transitions for this cooling device
 51 * @current_state: the current cooling device state
 52 * @timestamp: the state change timestamp
 53 * @transitions: an array of lists containing the state transitions
 54 * @durations: an array of lists containing the residencies of each state
 55 */
 56struct cdev_debugfs {
 57	u32 total;
 58	int current_state;
 59	ktime_t timestamp;
 60	struct list_head transitions[CDEVSTATS_HASH_SIZE];
 61	struct list_head durations[CDEVSTATS_HASH_SIZE];
 62};
 63
 64/**
 65 * struct cdev_record - Common structure for cooling device entry
 66 *
 67 * The following common structure allows to store the information
 68 * related to the transitions and to the state residencies. They are
 69 * identified with a id which is associated to a value. It is used as
 70 * nodes for the "transitions" and "durations" above.
 71 *
 72 * @node: node to insert the structure in a list
 73 * @id: identifier of the value which can be a state or a transition
 74 * @residency: a ktime_t representing a state residency duration
 75 * @count: a number of occurrences
 76 */
 77struct cdev_record {
 78	struct list_head node;
 79	int id;
 80	union {
 81                ktime_t residency;
 82                u64 count;
 83        };
 84};
 85
 86/**
 87 * struct trip_stats - Thermal trip statistics
 88 *
 89 * The trip_stats structure has the relevant information to show the
 90 * statistics related to temperature going above a trip point.
 91 *
 92 * @timestamp: the trip crossing timestamp
 93 * @duration: total time when the zone temperature was above the trip point
 94 * @count: the number of times the zone temperature was above the trip point
 95 * @max: maximum recorded temperature above the trip point
 96 * @min: minimum recorded temperature above the trip point
 97 * @avg: average temperature above the trip point
 98 */
 99struct trip_stats {
100	ktime_t timestamp;
101	ktime_t duration;
102	int count;
103	int max;
104	int min;
105	int avg;
106};
107
108/**
109 * struct tz_episode - A mitigation episode information
110 *
111 * The tz_episode structure describes a mitigation episode. A
112 * mitigation episode begins the trip point with the lower temperature
113 * is crossed the way up and ends when it is crossed the way
114 * down. During this episode we can have multiple trip points crossed
115 * the way up and down if there are multiple trip described in the
116 * firmware after the lowest temperature trip point.
117 *
118 * @timestamp: first trip point crossed the way up
119 * @duration: total duration of the mitigation episode
120 * @node: a list element to be added to the list of tz events
121 * @trip_stats: per trip point statistics, flexible array
122 */
123struct tz_episode {
124	ktime_t timestamp;
125	ktime_t duration;
126	struct list_head node;
127	struct trip_stats trip_stats[];
128};
129
130/**
131 * struct tz_debugfs - Store all mitigation episodes for a thermal zone
132 *
133 * The tz_debugfs structure contains the list of the mitigation
134 * episodes and has to track which trip point has been crossed in
135 * order to handle correctly nested trip point mitigation episodes.
136 *
137 * We keep the history of the trip point crossed in an array and as we
138 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
139 * we keep track of the current position in the history array.
140 *
141 * @tz_episodes: a list of thermal mitigation episodes
142 * @tz: thermal zone this object belongs to
143 * @trips_crossed: an array of trip points crossed by id
144 * @nr_trips: the number of trip points currently being crossed
145 */
146struct tz_debugfs {
147	struct list_head tz_episodes;
148	struct thermal_zone_device *tz;
149	int *trips_crossed;
150	int nr_trips;
151};
152
153/**
154 * struct thermal_debugfs - High level structure for a thermal object in debugfs
155 *
156 * The thermal_debugfs structure is the common structure used by the
157 * cooling device or the thermal zone to store the statistics.
158 *
159 * @d_top: top directory of the thermal object directory
160 * @lock: per object lock to protect the internals
161 *
162 * @cdev_dbg: a cooling device debug structure
163 * @tz_dbg: a thermal zone debug structure
164 */
165struct thermal_debugfs {
166	struct dentry *d_top;
167	struct mutex lock;
168	union {
169		struct cdev_debugfs cdev_dbg;
170		struct tz_debugfs tz_dbg;
171	};
172};
173
174void thermal_debug_init(void)
175{
176	d_root = debugfs_create_dir("thermal", NULL);
177	if (!d_root)
178		return;
179
180	d_cdev = debugfs_create_dir("cooling_devices", d_root);
181	if (!d_cdev)
182		return;
183
184	d_tz = debugfs_create_dir("thermal_zones", d_root);
185}
186
187static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
188{
189	struct thermal_debugfs *thermal_dbg;
190	char ids[IDSLENGTH];
191
192	thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
193	if (!thermal_dbg)
194		return NULL;
195
196	mutex_init(&thermal_dbg->lock);
197
198	snprintf(ids, IDSLENGTH, "%d", id);
199
200	thermal_dbg->d_top = debugfs_create_dir(ids, d);
201	if (!thermal_dbg->d_top) {
202		kfree(thermal_dbg);
203		return NULL;
204	}
205
206	return thermal_dbg;
207}
208
209static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
210{
211	if (!thermal_dbg)
212		return;
213
214	debugfs_remove(thermal_dbg->d_top);
215
216	kfree(thermal_dbg);
217}
218
219static struct cdev_record *
220thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
221				  struct list_head *lists, int id)
222{
223	struct cdev_record *cdev_record;
224
225	cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
226	if (!cdev_record)
227		return NULL;
228
229	cdev_record->id = id;
230	INIT_LIST_HEAD(&cdev_record->node);
231	list_add_tail(&cdev_record->node,
232		      &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
233
234	return cdev_record;
235}
236
237static struct cdev_record *
238thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
239				 struct list_head *lists, int id)
240{
241	struct cdev_record *entry;
242
243	list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
244		if (entry->id == id)
245			return entry;
246
247	return NULL;
248}
249
250static struct cdev_record *
251thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
252				struct list_head *lists, int id)
253{
254	struct cdev_record *cdev_record;
255
256	cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
257	if (cdev_record)
258		return cdev_record;
259
260	return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
261}
262
263static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
264{
265	int i;
266	struct cdev_record *entry, *tmp;
267
268	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
269
270		list_for_each_entry_safe(entry, tmp,
271					 &cdev_dbg->transitions[i], node) {
272			list_del(&entry->node);
273			kfree(entry);
274		}
275
276		list_for_each_entry_safe(entry, tmp,
277					 &cdev_dbg->durations[i], node) {
278			list_del(&entry->node);
279			kfree(entry);
280		}
281	}
282
283	cdev_dbg->total = 0;
284}
285
286static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
287{
288	struct thermal_debugfs *thermal_dbg = s->private;
289
290	mutex_lock(&thermal_dbg->lock);
291
292	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
293}
294
295static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
296{
297	(*pos)++;
298
299	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
300}
301
302static void cdev_seq_stop(struct seq_file *s, void *v)
303{
304	struct thermal_debugfs *thermal_dbg = s->private;
305
306	mutex_unlock(&thermal_dbg->lock);
307}
308
309static int cdev_tt_seq_show(struct seq_file *s, void *v)
310{
311	struct thermal_debugfs *thermal_dbg = s->private;
312	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
313	struct list_head *transitions = cdev_dbg->transitions;
314	struct cdev_record *entry;
315	int i = *(loff_t *)v;
316
317	if (!i)
318		seq_puts(s, "Transition\tOccurences\n");
319
320	list_for_each_entry(entry, &transitions[i], node) {
321		/*
322		 * Assuming maximum cdev states is 1024, the longer
323		 * string for a transition would be "1024->1024\0"
324		 */
325		char buffer[11];
326
327		snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
328			 entry->id >> 16, entry->id & 0xFFFF);
329
330		seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
331	}
332
333	return 0;
334}
335
336static const struct seq_operations tt_sops = {
337	.start = cdev_seq_start,
338	.next = cdev_seq_next,
339	.stop = cdev_seq_stop,
340	.show = cdev_tt_seq_show,
341};
342
343DEFINE_SEQ_ATTRIBUTE(tt);
344
345static int cdev_dt_seq_show(struct seq_file *s, void *v)
346{
347	struct thermal_debugfs *thermal_dbg = s->private;
348	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
349	struct list_head *durations = cdev_dbg->durations;
350	struct cdev_record *entry;
351	int i = *(loff_t *)v;
352
353	if (!i)
354		seq_puts(s, "State\tResidency\n");
355
356	list_for_each_entry(entry, &durations[i], node) {
357		s64 duration = ktime_to_ms(entry->residency);
358
359		if (entry->id == cdev_dbg->current_state)
360			duration += ktime_ms_delta(ktime_get(),
361						   cdev_dbg->timestamp);
362
363		seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
364	}
365
366	return 0;
367}
368
369static const struct seq_operations dt_sops = {
370	.start = cdev_seq_start,
371	.next = cdev_seq_next,
372	.stop = cdev_seq_stop,
373	.show = cdev_dt_seq_show,
374};
375
376DEFINE_SEQ_ATTRIBUTE(dt);
377
378static int cdev_clear_set(void *data, u64 val)
379{
380	struct thermal_debugfs *thermal_dbg = data;
381
382	if (!val)
383		return -EINVAL;
384
385	mutex_lock(&thermal_dbg->lock);
386
387	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
388
389	mutex_unlock(&thermal_dbg->lock);
390
391	return 0;
392}
393
394DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
395
396/**
397 * thermal_debug_cdev_state_update - Update a cooling device state change
398 *
399 * Computes a transition and the duration of the previous state residency.
400 *
401 * @cdev : a pointer to a cooling device
402 * @new_state: an integer corresponding to the new cooling device state
403 */
404void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
405				     int new_state)
406{
407	struct thermal_debugfs *thermal_dbg = cdev->debugfs;
408	struct cdev_debugfs *cdev_dbg;
409	struct cdev_record *cdev_record;
410	int transition, old_state;
411
412	if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
413		return;
414
415	mutex_lock(&thermal_dbg->lock);
416
417	cdev_dbg = &thermal_dbg->cdev_dbg;
418
419	old_state = cdev_dbg->current_state;
420
421	/*
422	 * Get the old state information in the durations list. If
423	 * this one does not exist, a new allocated one will be
424	 * returned. Recompute the total duration in the old state and
425	 * get a new timestamp for the new state.
426	 */
427	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
428						      cdev_dbg->durations,
429						      old_state);
430	if (cdev_record) {
431		ktime_t now = ktime_get();
432		ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
433		cdev_record->residency = ktime_add(cdev_record->residency, delta);
434		cdev_dbg->timestamp = now;
435	}
436
437	cdev_dbg->current_state = new_state;
438
439	/*
440	 * Create a record for the new state if it is not there, so its
441	 * duration will be printed by cdev_dt_seq_show() as expected if it
442	 * runs before the next state transition.
443	 */
444	thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state);
445
446	transition = (old_state << 16) | new_state;
447
448	/*
449	 * Get the transition in the transitions list. If this one
450	 * does not exist, a new allocated one will be returned.
451	 * Increment the occurrence of this transition which is stored
452	 * in the value field.
453	 */
454	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
455						      cdev_dbg->transitions,
456						      transition);
457	if (cdev_record)
458		cdev_record->count++;
459
460	cdev_dbg->total++;
461
462	mutex_unlock(&thermal_dbg->lock);
463}
464
465/**
466 * thermal_debug_cdev_add - Add a cooling device debugfs entry
467 *
468 * Allocates a cooling device object for debug, initializes the
469 * statistics and create the entries in sysfs.
470 * @cdev: a pointer to a cooling device
471 * @state: current state of the cooling device
472 */
473void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state)
474{
475	struct thermal_debugfs *thermal_dbg;
476	struct cdev_debugfs *cdev_dbg;
477	int i;
478
479	thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
480	if (!thermal_dbg)
481		return;
482
483	cdev_dbg = &thermal_dbg->cdev_dbg;
484
485	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
486		INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
487		INIT_LIST_HEAD(&cdev_dbg->durations[i]);
488	}
489
490	cdev_dbg->current_state = state;
491	cdev_dbg->timestamp = ktime_get();
492
493	/*
494	 * Create a record for the initial cooling device state, so its
495	 * duration will be printed by cdev_dt_seq_show() as expected if it
496	 * runs before the first state transition.
497	 */
498	thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state);
499
500	debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
501			    thermal_dbg, &tt_fops);
502
503	debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
504			    thermal_dbg, &dt_fops);
505
506	debugfs_create_file("clear", 0200, thermal_dbg->d_top,
507			    thermal_dbg, &cdev_clear_fops);
508
509	debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
510			   &cdev_dbg->total);
511
512	cdev->debugfs = thermal_dbg;
513}
514
515/**
516 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
517 *
518 * Frees the statistics memory data and remove the debugfs entry
519 *
520 * @cdev: a pointer to a cooling device
521 */
522void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
523{
524	struct thermal_debugfs *thermal_dbg;
525
526	mutex_lock(&cdev->lock);
527
528	thermal_dbg = cdev->debugfs;
529	if (!thermal_dbg) {
530		mutex_unlock(&cdev->lock);
531		return;
532	}
533
534	cdev->debugfs = NULL;
535
536	mutex_unlock(&cdev->lock);
537
538	mutex_lock(&thermal_dbg->lock);
539
540	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
541
542	mutex_unlock(&thermal_dbg->lock);
543
544	thermal_debugfs_remove_id(thermal_dbg);
545}
546
547static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
548							ktime_t now)
549{
550	struct tz_episode *tze;
551	int i;
552
553	tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
554	if (!tze)
555		return NULL;
556
557	INIT_LIST_HEAD(&tze->node);
558	tze->timestamp = now;
559
560	for (i = 0; i < tz->num_trips; i++) {
561		tze->trip_stats[i].min = INT_MAX;
562		tze->trip_stats[i].max = INT_MIN;
563	}
564
565	return tze;
566}
567
568void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
569			      const struct thermal_trip *trip)
570{
571	struct tz_episode *tze;
572	struct tz_debugfs *tz_dbg;
573	struct thermal_debugfs *thermal_dbg = tz->debugfs;
574	int trip_id = thermal_zone_trip_id(tz, trip);
575	ktime_t now = ktime_get();
576
577	if (!thermal_dbg)
578		return;
579
580	mutex_lock(&thermal_dbg->lock);
581
582	tz_dbg = &thermal_dbg->tz_dbg;
583
584	/*
585	 * The mitigation is starting. A mitigation can contain
586	 * several episodes where each of them is related to a
587	 * temperature crossing a trip point. The episodes are
588	 * nested. That means when the temperature is crossing the
589	 * first trip point, the duration begins to be measured. If
590	 * the temperature continues to increase and reaches the
591	 * second trip point, the duration of the first trip must be
592	 * also accumulated.
593	 *
594	 * eg.
595	 *
596	 * temp
597	 *   ^
598	 *   |             --------
599	 * trip 2         /        \         ------
600	 *   |           /|        |\      /|      |\
601	 * trip 1       / |        | `----  |      | \
602	 *   |         /| |        |        |      | |\
603	 * trip 0     / | |        |        |      | | \
604	 *   |       /| | |        |        |      | | |\
605	 *   |      / | | |        |        |      | | | `--
606	 *   |     /  | | |        |        |      | | |
607	 *   |-----   | | |        |        |      | | |
608	 *   |        | | |        |        |      | | |
609	 *    --------|-|-|--------|--------|------|-|-|------------------> time
610	 *            | | |<--t2-->|        |<-t2'>| | |
611	 *            | |                            | |
612	 *            | |<------------t1------------>| |
613	 *            |                                |
614	 *            |<-------------t0--------------->|
615	 *
616	 */
617	if (!tz_dbg->nr_trips) {
618		tze = thermal_debugfs_tz_event_alloc(tz, now);
619		if (!tze)
620			goto unlock;
621
622		list_add(&tze->node, &tz_dbg->tz_episodes);
623	}
624
625	/*
626	 * Each time a trip point is crossed the way up, the trip_id
627	 * is stored in the trip_crossed array and the nr_trips is
628	 * incremented. A nr_trips equal to zero means we are entering
629	 * a mitigation episode.
630	 *
631	 * The trip ids may not be in the ascending order but the
632	 * result in the array trips_crossed will be in the ascending
633	 * temperature order. The function detecting when a trip point
634	 * is crossed the way down will handle the very rare case when
635	 * the trip points may have been reordered during this
636	 * mitigation episode.
637	 */
638	tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
639
640	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
641	tze->trip_stats[trip_id].timestamp = now;
642
643unlock:
644	mutex_unlock(&thermal_dbg->lock);
645}
646
647void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
648				const struct thermal_trip *trip)
649{
650	struct thermal_debugfs *thermal_dbg = tz->debugfs;
651	struct tz_episode *tze;
652	struct tz_debugfs *tz_dbg;
653	ktime_t delta, now = ktime_get();
654	int trip_id = thermal_zone_trip_id(tz, trip);
655	int i;
656
657	if (!thermal_dbg)
658		return;
659
660	mutex_lock(&thermal_dbg->lock);
661
662	tz_dbg = &thermal_dbg->tz_dbg;
663
664	/*
665	 * The temperature crosses the way down but there was not
666	 * mitigation detected before. That may happen when the
667	 * temperature is greater than a trip point when registering a
668	 * thermal zone, which is a common use case as the kernel has
669	 * no mitigation mechanism yet at boot time.
670	 */
671	if (!tz_dbg->nr_trips)
672		goto out;
673
674	for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
675		if (tz_dbg->trips_crossed[i] == trip_id)
676			break;
677	}
678
679	if (i < 0)
680		goto out;
681
682	tz_dbg->nr_trips--;
683
684	if (i < tz_dbg->nr_trips)
685		tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
686
687	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
688
689	delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp);
690
691	tze->trip_stats[trip_id].duration =
692		ktime_add(delta, tze->trip_stats[trip_id].duration);
693
694	/*
695	 * This event closes the mitigation as we are crossing the
696	 * last trip point the way down.
697	 */
698	if (!tz_dbg->nr_trips)
699		tze->duration = ktime_sub(now, tze->timestamp);
700
701out:
702	mutex_unlock(&thermal_dbg->lock);
703}
704
705void thermal_debug_update_temp(struct thermal_zone_device *tz)
706{
707	struct thermal_debugfs *thermal_dbg = tz->debugfs;
708	struct tz_episode *tze;
709	struct tz_debugfs *tz_dbg;
710	int trip_id, i;
711
712	if (!thermal_dbg)
713		return;
714
715	mutex_lock(&thermal_dbg->lock);
716
717	tz_dbg = &thermal_dbg->tz_dbg;
718
719	if (!tz_dbg->nr_trips)
720		goto out;
721
722	for (i = 0; i < tz_dbg->nr_trips; i++) {
723		trip_id = tz_dbg->trips_crossed[i];
724		tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
725		tze->trip_stats[trip_id].count++;
726		tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature);
727		tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature);
728		tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
729			(tz->temperature - tze->trip_stats[trip_id].avg) /
730			tze->trip_stats[trip_id].count;
731	}
732out:
733	mutex_unlock(&thermal_dbg->lock);
734}
735
736static void *tze_seq_start(struct seq_file *s, loff_t *pos)
737{
738	struct thermal_debugfs *thermal_dbg = s->private;
739	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
740
741	mutex_lock(&thermal_dbg->lock);
742
743	return seq_list_start(&tz_dbg->tz_episodes, *pos);
744}
745
746static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
747{
748	struct thermal_debugfs *thermal_dbg = s->private;
749	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
750
751	return seq_list_next(v, &tz_dbg->tz_episodes, pos);
752}
753
754static void tze_seq_stop(struct seq_file *s, void *v)
755{
756	struct thermal_debugfs *thermal_dbg = s->private;
757
758	mutex_unlock(&thermal_dbg->lock);
759}
760
761static int tze_seq_show(struct seq_file *s, void *v)
762{
763	struct thermal_debugfs *thermal_dbg = s->private;
764	struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz;
765	struct thermal_trip *trip;
766	struct tz_episode *tze;
767	const char *type;
768	int trip_id;
769
770	tze = list_entry((struct list_head *)v, struct tz_episode, node);
771
772	seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n",
773		   ktime_to_us(tze->timestamp),
774		   ktime_to_ms(tze->duration));
775
776	seq_printf(s, "| trip |     type | temp(°mC) | hyst(°mC) |  duration  |  avg(°mC) |  min(°mC) |  max(°mC) |\n");
777
778	for_each_trip(tz, trip) {
779		/*
780		 * There is no possible mitigation happening at the
781		 * critical trip point, so the stats will be always
782		 * zero, skip this trip point
783		 */
784		if (trip->type == THERMAL_TRIP_CRITICAL)
785			continue;
786
787		if (trip->type == THERMAL_TRIP_PASSIVE)
788			type = "passive";
789		else if (trip->type == THERMAL_TRIP_ACTIVE)
790			type = "active";
791		else
792			type = "hot";
793
794		trip_id = thermal_zone_trip_id(tz, trip);
795
796		seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n",
797			   4 , trip_id,
798			   8, type,
799			   9, trip->temperature,
800			   9, trip->hysteresis,
801			   10, ktime_to_ms(tze->trip_stats[trip_id].duration),
802			   9, tze->trip_stats[trip_id].avg,
803			   9, tze->trip_stats[trip_id].min,
804			   9, tze->trip_stats[trip_id].max);
805	}
806
807	return 0;
808}
809
810static const struct seq_operations tze_sops = {
811	.start = tze_seq_start,
812	.next = tze_seq_next,
813	.stop = tze_seq_stop,
814	.show = tze_seq_show,
815};
816
817DEFINE_SEQ_ATTRIBUTE(tze);
818
819void thermal_debug_tz_add(struct thermal_zone_device *tz)
820{
821	struct thermal_debugfs *thermal_dbg;
822	struct tz_debugfs *tz_dbg;
823
824	thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
825	if (!thermal_dbg)
826		return;
827
828	tz_dbg = &thermal_dbg->tz_dbg;
829
830	tz_dbg->tz = tz;
831
832	tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
833	if (!tz_dbg->trips_crossed) {
834		thermal_debugfs_remove_id(thermal_dbg);
835		return;
836	}
837
838	INIT_LIST_HEAD(&tz_dbg->tz_episodes);
839
840	debugfs_create_file("mitigations", 0400, thermal_dbg->d_top,
841			    thermal_dbg, &tze_fops);
842
843	tz->debugfs = thermal_dbg;
844}
845
846void thermal_debug_tz_remove(struct thermal_zone_device *tz)
847{
848	struct thermal_debugfs *thermal_dbg;
849	struct tz_episode *tze, *tmp;
850	struct tz_debugfs *tz_dbg;
851	int *trips_crossed;
852
853	mutex_lock(&tz->lock);
854
855	thermal_dbg = tz->debugfs;
856	if (!thermal_dbg) {
857		mutex_unlock(&tz->lock);
858		return;
859	}
860
861	tz->debugfs = NULL;
862
863	mutex_unlock(&tz->lock);
864
865	tz_dbg = &thermal_dbg->tz_dbg;
866
867	mutex_lock(&thermal_dbg->lock);
868
869	trips_crossed = tz_dbg->trips_crossed;
870
871	list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) {
872		list_del(&tze->node);
873		kfree(tze);
874	}
875
876	mutex_unlock(&thermal_dbg->lock);
877
878	thermal_debugfs_remove_id(thermal_dbg);
879	kfree(trips_crossed);
880}