Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MINMAX_H #define _LINUX_MINMAX_H #include <linux/build_bug.h> #include <linux/compiler.h> #include <linux/const.h> #include <linux/types.h> /* * min()/max()/clamp() macros must accomplish three things: * * - Avoid multiple evaluations of the arguments (so side-effects like * "x++" happen only once) when non-constant. * - Retain result as a constant expressions when called with only * constant expressions (to avoid tripping VLA warnings in stack * allocation usage). * - Perform signed v unsigned type-checking (to generate compile * errors instead of nasty runtime surprises). * - Unsigned char/short are always promoted to signed int and can be * compared against signed or unsigned arguments. * - Unsigned arguments can be compared against non-negative signed constants. * - Comparison of a signed argument against an unsigned constant fails * even if the constant is below __INT_MAX__ and could be cast to int. */ #define __typecheck(x, y) \ (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) /* is_signed_type() isn't a constexpr for pointer types */ #define __is_signed(x) \ __builtin_choose_expr(__is_constexpr(is_signed_type(typeof(x))), \ is_signed_type(typeof(x)), 0) /* True for a non-negative signed int constant */ #define __is_noneg_int(x) \ (__builtin_choose_expr(__is_constexpr(x) && __is_signed(x), x, -1) >= 0) #define __types_ok(x, y) \ (__is_signed(x) == __is_signed(y) || \ __is_signed((x) + 0) == __is_signed((y) + 0) || \ __is_noneg_int(x) || __is_noneg_int(y)) #define __cmp_op_min < #define __cmp_op_max > #define __cmp(op, x, y) ((x) __cmp_op_##op (y) ? (x) : (y)) #define __cmp_once(op, x, y, unique_x, unique_y) ({ \ typeof(x) unique_x = (x); \ typeof(y) unique_y = (y); \ static_assert(__types_ok(x, y), \ #op "(" #x ", " #y ") signedness error, fix types or consider u" #op "() before " #op "_t()"); \ __cmp(op, unique_x, unique_y); }) #define __careful_cmp(op, x, y) \ __builtin_choose_expr(__is_constexpr((x) - (y)), \ __cmp(op, x, y), \ __cmp_once(op, x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y))) #define __clamp(val, lo, hi) \ ((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val))) #define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) ({ \ typeof(val) unique_val = (val); \ typeof(lo) unique_lo = (lo); \ typeof(hi) unique_hi = (hi); \ static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \ (lo) <= (hi), true), \ "clamp() low limit " #lo " greater than high limit " #hi); \ static_assert(__types_ok(val, lo), "clamp() 'lo' signedness error"); \ static_assert(__types_ok(val, hi), "clamp() 'hi' signedness error"); \ __clamp(unique_val, unique_lo, unique_hi); }) #define __careful_clamp(val, lo, hi) ({ \ __builtin_choose_expr(__is_constexpr((val) - (lo) + (hi)), \ __clamp(val, lo, hi), \ __clamp_once(val, lo, hi, __UNIQUE_ID(__val), \ __UNIQUE_ID(__lo), __UNIQUE_ID(__hi))); }) /** * min - return minimum of two values of the same or compatible types * @x: first value * @y: second value */ #define min(x, y) __careful_cmp(min, x, y) /** * max - return maximum of two values of the same or compatible types * @x: first value * @y: second value */ #define max(x, y) __careful_cmp(max, x, y) /** * umin - return minimum of two non-negative values * Signed types are zero extended to match a larger unsigned type. * @x: first value * @y: second value */ #define umin(x, y) \ __careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull) /** * umax - return maximum of two non-negative values * @x: first value * @y: second value */ #define umax(x, y) \ __careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull) /** * min3 - return minimum of three values * @x: first value * @y: second value * @z: third value */ #define min3(x, y, z) min((typeof(x))min(x, y), z) /** * max3 - return maximum of three values * @x: first value * @y: second value * @z: third value */ #define max3(x, y, z) max((typeof(x))max(x, y), z) /** * min_not_zero - return the minimum that is _not_ zero, unless both are zero * @x: value1 * @y: value2 */ #define min_not_zero(x, y) ({ \ typeof(x) __x = (x); \ typeof(y) __y = (y); \ __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @lo: lowest allowable value * @hi: highest allowable value * * This macro does strict typechecking of @lo/@hi to make sure they are of the * same type as @val. See the unnecessary pointer comparisons. */ #define clamp(val, lo, hi) __careful_clamp(val, lo, hi) /* * ..and if you can't take the strict * types, you can specify one yourself. * * Or not use min/max/clamp at all, of course. */ /** * min_t - return minimum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define min_t(type, x, y) __careful_cmp(min, (type)(x), (type)(y)) /** * max_t - return maximum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define max_t(type, x, y) __careful_cmp(max, (type)(x), (type)(y)) /* * Do not check the array parameter using __must_be_array(). * In the following legit use-case where the "array" passed is a simple pointer, * __must_be_array() will return a failure. * --- 8< --- * int *buff * ... * min = min_array(buff, nb_items); * --- 8< --- * * The first typeof(&(array)[0]) is needed in order to support arrays of both * 'int *buff' and 'int buff[N]' types. * * The array can be an array of const items. * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order * to discard the const qualifier for the __element variable. */ #define __minmax_array(op, array, len) ({ \ typeof(&(array)[0]) __array = (array); \ typeof(len) __len = (len); \ __unqual_scalar_typeof(__array[0]) __element = __array[--__len];\ while (__len--) \ __element = op(__element, __array[__len]); \ __element; }) /** * min_array - return minimum of values present in an array * @array: array * @len: array length * * Note that @len must not be zero (empty array). */ #define min_array(array, len) __minmax_array(min, array, len) /** * max_array - return maximum of values present in an array * @array: array * @len: array length * * Note that @len must not be zero (empty array). */ #define max_array(array, len) __minmax_array(max, array, len) /** * clamp_t - return a value clamped to a given range using a given type * @type: the type of variable to use * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of type * @type to make all the comparisons. */ #define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi)) /** * clamp_val - return a value clamped to a given range using val's type * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of whatever * type the input argument @val is. This is useful when @val is an unsigned * type and @lo and @hi are literals that will otherwise be assigned a signed * integer type. */ #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) static inline bool in_range64(u64 val, u64 start, u64 len) { return (val - start) < len; } static inline bool in_range32(u32 val, u32 start, u32 len) { return (val - start) < len; } /** * in_range - Determine if a value lies within a range. * @val: Value to test. * @start: First value in range. * @len: Number of values in range. * * This is more efficient than "if (start <= val && val < (start + len))". * It also gives a different answer if @start + @len overflows the size of * the type by a sufficient amount to encompass @val. Decide for yourself * which behaviour you want, or prove that start + len never overflow. * Do not blindly replace one form with the other. */ #define in_range(val, start, len) \ ((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \ in_range32(val, start, len) : in_range64(val, start, len)) /** * swap - swap values of @a and @b * @a: first value * @b: second value */ #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) #endif /* _LINUX_MINMAX_H */ |