Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2023 Linaro Limited
4 *
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6 *
7 * Thermal subsystem debug support
8 */
9#include <linux/debugfs.h>
10#include <linux/ktime.h>
11#include <linux/list.h>
12#include <linux/minmax.h>
13#include <linux/mutex.h>
14#include <linux/thermal.h>
15
16#include "thermal_core.h"
17
18static struct dentry *d_root;
19static struct dentry *d_cdev;
20static struct dentry *d_tz;
21
22/*
23 * Length of the string containing the thermal zone id or the cooling
24 * device id, including the ending nul character. We can reasonably
25 * assume there won't be more than 256 thermal zones as the maximum
26 * observed today is around 32.
27 */
28#define IDSLENGTH 4
29
30/*
31 * The cooling device transition list is stored in a hash table where
32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
33 * have dozen of states but some can have much more, so a hash table
34 * is more adequate in this case, because the cost of browsing the entire
35 * list when storing the transitions may not be negligible.
36 */
37#define CDEVSTATS_HASH_SIZE 16
38
39/**
40 * struct cdev_debugfs - per cooling device statistics structure
41 * A cooling device can have a high number of states. Showing the
42 * transitions on a matrix based representation can be overkill given
43 * most of the transitions won't happen and we end up with a matrix
44 * filled with zero. Instead, we show the transitions which actually
45 * happened.
46 *
47 * Every transition updates the current_state and the timestamp. The
48 * transitions and the durations are stored in lists.
49 *
50 * @total: the number of transitions for this cooling device
51 * @current_state: the current cooling device state
52 * @timestamp: the state change timestamp
53 * @transitions: an array of lists containing the state transitions
54 * @durations: an array of lists containing the residencies of each state
55 */
56struct cdev_debugfs {
57 u32 total;
58 int current_state;
59 ktime_t timestamp;
60 struct list_head transitions[CDEVSTATS_HASH_SIZE];
61 struct list_head durations[CDEVSTATS_HASH_SIZE];
62};
63
64/**
65 * struct cdev_record - Common structure for cooling device entry
66 *
67 * The following common structure allows to store the information
68 * related to the transitions and to the state residencies. They are
69 * identified with a id which is associated to a value. It is used as
70 * nodes for the "transitions" and "durations" above.
71 *
72 * @node: node to insert the structure in a list
73 * @id: identifier of the value which can be a state or a transition
74 * @residency: a ktime_t representing a state residency duration
75 * @count: a number of occurrences
76 */
77struct cdev_record {
78 struct list_head node;
79 int id;
80 union {
81 ktime_t residency;
82 u64 count;
83 };
84};
85
86/**
87 * struct trip_stats - Thermal trip statistics
88 *
89 * The trip_stats structure has the relevant information to show the
90 * statistics related to temperature going above a trip point.
91 *
92 * @timestamp: the trip crossing timestamp
93 * @duration: total time when the zone temperature was above the trip point
94 * @count: the number of times the zone temperature was above the trip point
95 * @max: maximum recorded temperature above the trip point
96 * @min: minimum recorded temperature above the trip point
97 * @avg: average temperature above the trip point
98 */
99struct trip_stats {
100 ktime_t timestamp;
101 ktime_t duration;
102 int count;
103 int max;
104 int min;
105 int avg;
106};
107
108/**
109 * struct tz_episode - A mitigation episode information
110 *
111 * The tz_episode structure describes a mitigation episode. A
112 * mitigation episode begins the trip point with the lower temperature
113 * is crossed the way up and ends when it is crossed the way
114 * down. During this episode we can have multiple trip points crossed
115 * the way up and down if there are multiple trip described in the
116 * firmware after the lowest temperature trip point.
117 *
118 * @timestamp: first trip point crossed the way up
119 * @duration: total duration of the mitigation episode
120 * @node: a list element to be added to the list of tz events
121 * @trip_stats: per trip point statistics, flexible array
122 */
123struct tz_episode {
124 ktime_t timestamp;
125 ktime_t duration;
126 struct list_head node;
127 struct trip_stats trip_stats[];
128};
129
130/**
131 * struct tz_debugfs - Store all mitigation episodes for a thermal zone
132 *
133 * The tz_debugfs structure contains the list of the mitigation
134 * episodes and has to track which trip point has been crossed in
135 * order to handle correctly nested trip point mitigation episodes.
136 *
137 * We keep the history of the trip point crossed in an array and as we
138 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
139 * we keep track of the current position in the history array.
140 *
141 * @tz_episodes: a list of thermal mitigation episodes
142 * @trips_crossed: an array of trip points crossed by id
143 * @nr_trips: the number of trip points currently being crossed
144 */
145struct tz_debugfs {
146 struct list_head tz_episodes;
147 int *trips_crossed;
148 int nr_trips;
149};
150
151/**
152 * struct thermal_debugfs - High level structure for a thermal object in debugfs
153 *
154 * The thermal_debugfs structure is the common structure used by the
155 * cooling device or the thermal zone to store the statistics.
156 *
157 * @d_top: top directory of the thermal object directory
158 * @lock: per object lock to protect the internals
159 *
160 * @cdev_dbg: a cooling device debug structure
161 * @tz_dbg: a thermal zone debug structure
162 */
163struct thermal_debugfs {
164 struct dentry *d_top;
165 struct mutex lock;
166 union {
167 struct cdev_debugfs cdev_dbg;
168 struct tz_debugfs tz_dbg;
169 };
170};
171
172void thermal_debug_init(void)
173{
174 d_root = debugfs_create_dir("thermal", NULL);
175 if (!d_root)
176 return;
177
178 d_cdev = debugfs_create_dir("cooling_devices", d_root);
179 if (!d_cdev)
180 return;
181
182 d_tz = debugfs_create_dir("thermal_zones", d_root);
183}
184
185static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
186{
187 struct thermal_debugfs *thermal_dbg;
188 char ids[IDSLENGTH];
189
190 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
191 if (!thermal_dbg)
192 return NULL;
193
194 mutex_init(&thermal_dbg->lock);
195
196 snprintf(ids, IDSLENGTH, "%d", id);
197
198 thermal_dbg->d_top = debugfs_create_dir(ids, d);
199 if (!thermal_dbg->d_top) {
200 kfree(thermal_dbg);
201 return NULL;
202 }
203
204 return thermal_dbg;
205}
206
207static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
208{
209 if (!thermal_dbg)
210 return;
211
212 debugfs_remove(thermal_dbg->d_top);
213
214 kfree(thermal_dbg);
215}
216
217static struct cdev_record *
218thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
219 struct list_head *lists, int id)
220{
221 struct cdev_record *cdev_record;
222
223 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
224 if (!cdev_record)
225 return NULL;
226
227 cdev_record->id = id;
228 INIT_LIST_HEAD(&cdev_record->node);
229 list_add_tail(&cdev_record->node,
230 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
231
232 return cdev_record;
233}
234
235static struct cdev_record *
236thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
237 struct list_head *lists, int id)
238{
239 struct cdev_record *entry;
240
241 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
242 if (entry->id == id)
243 return entry;
244
245 return NULL;
246}
247
248static struct cdev_record *
249thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
250 struct list_head *lists, int id)
251{
252 struct cdev_record *cdev_record;
253
254 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
255 if (cdev_record)
256 return cdev_record;
257
258 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
259}
260
261static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
262{
263 int i;
264 struct cdev_record *entry, *tmp;
265
266 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
267
268 list_for_each_entry_safe(entry, tmp,
269 &cdev_dbg->transitions[i], node) {
270 list_del(&entry->node);
271 kfree(entry);
272 }
273
274 list_for_each_entry_safe(entry, tmp,
275 &cdev_dbg->durations[i], node) {
276 list_del(&entry->node);
277 kfree(entry);
278 }
279 }
280
281 cdev_dbg->total = 0;
282}
283
284static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
285{
286 struct thermal_debugfs *thermal_dbg = s->private;
287
288 mutex_lock(&thermal_dbg->lock);
289
290 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
291}
292
293static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
294{
295 (*pos)++;
296
297 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
298}
299
300static void cdev_seq_stop(struct seq_file *s, void *v)
301{
302 struct thermal_debugfs *thermal_dbg = s->private;
303
304 mutex_unlock(&thermal_dbg->lock);
305}
306
307static int cdev_tt_seq_show(struct seq_file *s, void *v)
308{
309 struct thermal_debugfs *thermal_dbg = s->private;
310 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
311 struct list_head *transitions = cdev_dbg->transitions;
312 struct cdev_record *entry;
313 int i = *(loff_t *)v;
314
315 if (!i)
316 seq_puts(s, "Transition\tOccurences\n");
317
318 list_for_each_entry(entry, &transitions[i], node) {
319 /*
320 * Assuming maximum cdev states is 1024, the longer
321 * string for a transition would be "1024->1024\0"
322 */
323 char buffer[11];
324
325 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
326 entry->id >> 16, entry->id & 0xFFFF);
327
328 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
329 }
330
331 return 0;
332}
333
334static const struct seq_operations tt_sops = {
335 .start = cdev_seq_start,
336 .next = cdev_seq_next,
337 .stop = cdev_seq_stop,
338 .show = cdev_tt_seq_show,
339};
340
341DEFINE_SEQ_ATTRIBUTE(tt);
342
343static int cdev_dt_seq_show(struct seq_file *s, void *v)
344{
345 struct thermal_debugfs *thermal_dbg = s->private;
346 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
347 struct list_head *durations = cdev_dbg->durations;
348 struct cdev_record *entry;
349 int i = *(loff_t *)v;
350
351 if (!i)
352 seq_puts(s, "State\tResidency\n");
353
354 list_for_each_entry(entry, &durations[i], node) {
355 s64 duration = ktime_to_ms(entry->residency);
356
357 if (entry->id == cdev_dbg->current_state)
358 duration += ktime_ms_delta(ktime_get(),
359 cdev_dbg->timestamp);
360
361 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
362 }
363
364 return 0;
365}
366
367static const struct seq_operations dt_sops = {
368 .start = cdev_seq_start,
369 .next = cdev_seq_next,
370 .stop = cdev_seq_stop,
371 .show = cdev_dt_seq_show,
372};
373
374DEFINE_SEQ_ATTRIBUTE(dt);
375
376static int cdev_clear_set(void *data, u64 val)
377{
378 struct thermal_debugfs *thermal_dbg = data;
379
380 if (!val)
381 return -EINVAL;
382
383 mutex_lock(&thermal_dbg->lock);
384
385 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
386
387 mutex_unlock(&thermal_dbg->lock);
388
389 return 0;
390}
391
392DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
393
394/**
395 * thermal_debug_cdev_state_update - Update a cooling device state change
396 *
397 * Computes a transition and the duration of the previous state residency.
398 *
399 * @cdev : a pointer to a cooling device
400 * @new_state: an integer corresponding to the new cooling device state
401 */
402void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
403 int new_state)
404{
405 struct thermal_debugfs *thermal_dbg = cdev->debugfs;
406 struct cdev_debugfs *cdev_dbg;
407 struct cdev_record *cdev_record;
408 int transition, old_state;
409
410 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
411 return;
412
413 mutex_lock(&thermal_dbg->lock);
414
415 cdev_dbg = &thermal_dbg->cdev_dbg;
416
417 old_state = cdev_dbg->current_state;
418
419 /*
420 * Get the old state information in the durations list. If
421 * this one does not exist, a new allocated one will be
422 * returned. Recompute the total duration in the old state and
423 * get a new timestamp for the new state.
424 */
425 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
426 cdev_dbg->durations,
427 old_state);
428 if (cdev_record) {
429 ktime_t now = ktime_get();
430 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
431 cdev_record->residency = ktime_add(cdev_record->residency, delta);
432 cdev_dbg->timestamp = now;
433 }
434
435 cdev_dbg->current_state = new_state;
436 transition = (old_state << 16) | new_state;
437
438 /*
439 * Get the transition in the transitions list. If this one
440 * does not exist, a new allocated one will be returned.
441 * Increment the occurrence of this transition which is stored
442 * in the value field.
443 */
444 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
445 cdev_dbg->transitions,
446 transition);
447 if (cdev_record)
448 cdev_record->count++;
449
450 cdev_dbg->total++;
451
452 mutex_unlock(&thermal_dbg->lock);
453}
454
455/**
456 * thermal_debug_cdev_add - Add a cooling device debugfs entry
457 *
458 * Allocates a cooling device object for debug, initializes the
459 * statistics and create the entries in sysfs.
460 * @cdev: a pointer to a cooling device
461 */
462void thermal_debug_cdev_add(struct thermal_cooling_device *cdev)
463{
464 struct thermal_debugfs *thermal_dbg;
465 struct cdev_debugfs *cdev_dbg;
466 int i;
467
468 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
469 if (!thermal_dbg)
470 return;
471
472 cdev_dbg = &thermal_dbg->cdev_dbg;
473
474 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
475 INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
476 INIT_LIST_HEAD(&cdev_dbg->durations[i]);
477 }
478
479 cdev_dbg->current_state = 0;
480 cdev_dbg->timestamp = ktime_get();
481
482 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
483 thermal_dbg, &tt_fops);
484
485 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
486 thermal_dbg, &dt_fops);
487
488 debugfs_create_file("clear", 0200, thermal_dbg->d_top,
489 thermal_dbg, &cdev_clear_fops);
490
491 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
492 &cdev_dbg->total);
493
494 cdev->debugfs = thermal_dbg;
495}
496
497/**
498 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
499 *
500 * Frees the statistics memory data and remove the debugfs entry
501 *
502 * @cdev: a pointer to a cooling device
503 */
504void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
505{
506 struct thermal_debugfs *thermal_dbg = cdev->debugfs;
507
508 if (!thermal_dbg)
509 return;
510
511 mutex_lock(&thermal_dbg->lock);
512
513 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
514 cdev->debugfs = NULL;
515
516 mutex_unlock(&thermal_dbg->lock);
517
518 thermal_debugfs_remove_id(thermal_dbg);
519}
520
521static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
522 ktime_t now)
523{
524 struct tz_episode *tze;
525 int i;
526
527 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
528 if (!tze)
529 return NULL;
530
531 INIT_LIST_HEAD(&tze->node);
532 tze->timestamp = now;
533
534 for (i = 0; i < tz->num_trips; i++) {
535 tze->trip_stats[i].min = INT_MAX;
536 tze->trip_stats[i].max = INT_MIN;
537 }
538
539 return tze;
540}
541
542void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
543 const struct thermal_trip *trip)
544{
545 struct tz_episode *tze;
546 struct tz_debugfs *tz_dbg;
547 struct thermal_debugfs *thermal_dbg = tz->debugfs;
548 int temperature = tz->temperature;
549 int trip_id = thermal_zone_trip_id(tz, trip);
550 ktime_t now = ktime_get();
551
552 if (!thermal_dbg)
553 return;
554
555 mutex_lock(&thermal_dbg->lock);
556
557 tz_dbg = &thermal_dbg->tz_dbg;
558
559 /*
560 * The mitigation is starting. A mitigation can contain
561 * several episodes where each of them is related to a
562 * temperature crossing a trip point. The episodes are
563 * nested. That means when the temperature is crossing the
564 * first trip point, the duration begins to be measured. If
565 * the temperature continues to increase and reaches the
566 * second trip point, the duration of the first trip must be
567 * also accumulated.
568 *
569 * eg.
570 *
571 * temp
572 * ^
573 * | --------
574 * trip 2 / \ ------
575 * | /| |\ /| |\
576 * trip 1 / | | `---- | | \
577 * | /| | | | | |\
578 * trip 0 / | | | | | | \
579 * | /| | | | | | | |\
580 * | / | | | | | | | | `--
581 * | / | | | | | | | |
582 * |----- | | | | | | | |
583 * | | | | | | | | |
584 * --------|-|-|--------|--------|------|-|-|------------------> time
585 * | | |<--t2-->| |<-t2'>| | |
586 * | | | |
587 * | |<------------t1------------>| |
588 * | |
589 * |<-------------t0--------------->|
590 *
591 */
592 if (!tz_dbg->nr_trips) {
593 tze = thermal_debugfs_tz_event_alloc(tz, now);
594 if (!tze)
595 goto unlock;
596
597 list_add(&tze->node, &tz_dbg->tz_episodes);
598 }
599
600 /*
601 * Each time a trip point is crossed the way up, the trip_id
602 * is stored in the trip_crossed array and the nr_trips is
603 * incremented. A nr_trips equal to zero means we are entering
604 * a mitigation episode.
605 *
606 * The trip ids may not be in the ascending order but the
607 * result in the array trips_crossed will be in the ascending
608 * temperature order. The function detecting when a trip point
609 * is crossed the way down will handle the very rare case when
610 * the trip points may have been reordered during this
611 * mitigation episode.
612 */
613 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
614
615 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
616 tze->trip_stats[trip_id].timestamp = now;
617 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, temperature);
618 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, temperature);
619 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
620 (temperature - tze->trip_stats[trip_id].avg) /
621 tze->trip_stats[trip_id].count;
622
623unlock:
624 mutex_unlock(&thermal_dbg->lock);
625}
626
627void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
628 const struct thermal_trip *trip)
629{
630 struct thermal_debugfs *thermal_dbg = tz->debugfs;
631 struct tz_episode *tze;
632 struct tz_debugfs *tz_dbg;
633 ktime_t delta, now = ktime_get();
634 int trip_id = thermal_zone_trip_id(tz, trip);
635 int i;
636
637 if (!thermal_dbg)
638 return;
639
640 mutex_lock(&thermal_dbg->lock);
641
642 tz_dbg = &thermal_dbg->tz_dbg;
643
644 /*
645 * The temperature crosses the way down but there was not
646 * mitigation detected before. That may happen when the
647 * temperature is greater than a trip point when registering a
648 * thermal zone, which is a common use case as the kernel has
649 * no mitigation mechanism yet at boot time.
650 */
651 if (!tz_dbg->nr_trips)
652 goto out;
653
654 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
655 if (tz_dbg->trips_crossed[i] == trip_id)
656 break;
657 }
658
659 if (i < 0)
660 goto out;
661
662 tz_dbg->nr_trips--;
663
664 if (i < tz_dbg->nr_trips)
665 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
666
667 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
668
669 delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp);
670
671 tze->trip_stats[trip_id].duration =
672 ktime_add(delta, tze->trip_stats[trip_id].duration);
673
674 /*
675 * This event closes the mitigation as we are crossing the
676 * last trip point the way down.
677 */
678 if (!tz_dbg->nr_trips)
679 tze->duration = ktime_sub(now, tze->timestamp);
680
681out:
682 mutex_unlock(&thermal_dbg->lock);
683}
684
685void thermal_debug_update_temp(struct thermal_zone_device *tz)
686{
687 struct thermal_debugfs *thermal_dbg = tz->debugfs;
688 struct tz_episode *tze;
689 struct tz_debugfs *tz_dbg;
690 int trip_id, i;
691
692 if (!thermal_dbg)
693 return;
694
695 mutex_lock(&thermal_dbg->lock);
696
697 tz_dbg = &thermal_dbg->tz_dbg;
698
699 if (!tz_dbg->nr_trips)
700 goto out;
701
702 for (i = 0; i < tz_dbg->nr_trips; i++) {
703 trip_id = tz_dbg->trips_crossed[i];
704 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
705 tze->trip_stats[trip_id].count++;
706 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature);
707 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature);
708 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
709 (tz->temperature - tze->trip_stats[trip_id].avg) /
710 tze->trip_stats[trip_id].count;
711 }
712out:
713 mutex_unlock(&thermal_dbg->lock);
714}
715
716static void *tze_seq_start(struct seq_file *s, loff_t *pos)
717{
718 struct thermal_zone_device *tz = s->private;
719 struct thermal_debugfs *thermal_dbg = tz->debugfs;
720 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
721
722 mutex_lock(&thermal_dbg->lock);
723
724 return seq_list_start(&tz_dbg->tz_episodes, *pos);
725}
726
727static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
728{
729 struct thermal_zone_device *tz = s->private;
730 struct thermal_debugfs *thermal_dbg = tz->debugfs;
731 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
732
733 return seq_list_next(v, &tz_dbg->tz_episodes, pos);
734}
735
736static void tze_seq_stop(struct seq_file *s, void *v)
737{
738 struct thermal_zone_device *tz = s->private;
739 struct thermal_debugfs *thermal_dbg = tz->debugfs;
740
741 mutex_unlock(&thermal_dbg->lock);
742}
743
744static int tze_seq_show(struct seq_file *s, void *v)
745{
746 struct thermal_zone_device *tz = s->private;
747 struct thermal_trip *trip;
748 struct tz_episode *tze;
749 const char *type;
750 int trip_id;
751
752 tze = list_entry((struct list_head *)v, struct tz_episode, node);
753
754 seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n",
755 ktime_to_us(tze->timestamp),
756 ktime_to_ms(tze->duration));
757
758 seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n");
759
760 for_each_trip(tz, trip) {
761 /*
762 * There is no possible mitigation happening at the
763 * critical trip point, so the stats will be always
764 * zero, skip this trip point
765 */
766 if (trip->type == THERMAL_TRIP_CRITICAL)
767 continue;
768
769 if (trip->type == THERMAL_TRIP_PASSIVE)
770 type = "passive";
771 else if (trip->type == THERMAL_TRIP_ACTIVE)
772 type = "active";
773 else
774 type = "hot";
775
776 trip_id = thermal_zone_trip_id(tz, trip);
777
778 seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n",
779 4 , trip_id,
780 8, type,
781 9, trip->temperature,
782 9, trip->hysteresis,
783 10, ktime_to_ms(tze->trip_stats[trip_id].duration),
784 9, tze->trip_stats[trip_id].avg,
785 9, tze->trip_stats[trip_id].min,
786 9, tze->trip_stats[trip_id].max);
787 }
788
789 return 0;
790}
791
792static const struct seq_operations tze_sops = {
793 .start = tze_seq_start,
794 .next = tze_seq_next,
795 .stop = tze_seq_stop,
796 .show = tze_seq_show,
797};
798
799DEFINE_SEQ_ATTRIBUTE(tze);
800
801void thermal_debug_tz_add(struct thermal_zone_device *tz)
802{
803 struct thermal_debugfs *thermal_dbg;
804 struct tz_debugfs *tz_dbg;
805
806 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
807 if (!thermal_dbg)
808 return;
809
810 tz_dbg = &thermal_dbg->tz_dbg;
811
812 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
813 if (!tz_dbg->trips_crossed) {
814 thermal_debugfs_remove_id(thermal_dbg);
815 return;
816 }
817
818 INIT_LIST_HEAD(&tz_dbg->tz_episodes);
819
820 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, tz, &tze_fops);
821
822 tz->debugfs = thermal_dbg;
823}
824
825void thermal_debug_tz_remove(struct thermal_zone_device *tz)
826{
827 struct thermal_debugfs *thermal_dbg = tz->debugfs;
828
829 if (!thermal_dbg)
830 return;
831
832 mutex_lock(&thermal_dbg->lock);
833
834 tz->debugfs = NULL;
835
836 mutex_unlock(&thermal_dbg->lock);
837
838 thermal_debugfs_remove_id(thermal_dbg);
839}