Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2023 Linaro Limited * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * * Thermal subsystem debug support */ #include <linux/debugfs.h> #include <linux/ktime.h> #include <linux/list.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/thermal.h> #include "thermal_core.h" static struct dentry *d_root; static struct dentry *d_cdev; static struct dentry *d_tz; /* * Length of the string containing the thermal zone id or the cooling * device id, including the ending nul character. We can reasonably * assume there won't be more than 256 thermal zones as the maximum * observed today is around 32. */ #define IDSLENGTH 4 /* * The cooling device transition list is stored in a hash table where * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices * have dozen of states but some can have much more, so a hash table * is more adequate in this case, because the cost of browsing the entire * list when storing the transitions may not be negligible. */ #define CDEVSTATS_HASH_SIZE 16 /** * struct cdev_debugfs - per cooling device statistics structure * A cooling device can have a high number of states. Showing the * transitions on a matrix based representation can be overkill given * most of the transitions won't happen and we end up with a matrix * filled with zero. Instead, we show the transitions which actually * happened. * * Every transition updates the current_state and the timestamp. The * transitions and the durations are stored in lists. * * @total: the number of transitions for this cooling device * @current_state: the current cooling device state * @timestamp: the state change timestamp * @transitions: an array of lists containing the state transitions * @durations: an array of lists containing the residencies of each state */ struct cdev_debugfs { u32 total; int current_state; ktime_t timestamp; struct list_head transitions[CDEVSTATS_HASH_SIZE]; struct list_head durations[CDEVSTATS_HASH_SIZE]; }; /** * struct cdev_record - Common structure for cooling device entry * * The following common structure allows to store the information * related to the transitions and to the state residencies. They are * identified with a id which is associated to a value. It is used as * nodes for the "transitions" and "durations" above. * * @node: node to insert the structure in a list * @id: identifier of the value which can be a state or a transition * @residency: a ktime_t representing a state residency duration * @count: a number of occurrences */ struct cdev_record { struct list_head node; int id; union { ktime_t residency; u64 count; }; }; /** * struct trip_stats - Thermal trip statistics * * The trip_stats structure has the relevant information to show the * statistics related to temperature going above a trip point. * * @timestamp: the trip crossing timestamp * @duration: total time when the zone temperature was above the trip point * @count: the number of times the zone temperature was above the trip point * @max: maximum recorded temperature above the trip point * @min: minimum recorded temperature above the trip point * @avg: average temperature above the trip point */ struct trip_stats { ktime_t timestamp; ktime_t duration; int count; int max; int min; int avg; }; /** * struct tz_episode - A mitigation episode information * * The tz_episode structure describes a mitigation episode. A * mitigation episode begins the trip point with the lower temperature * is crossed the way up and ends when it is crossed the way * down. During this episode we can have multiple trip points crossed * the way up and down if there are multiple trip described in the * firmware after the lowest temperature trip point. * * @timestamp: first trip point crossed the way up * @duration: total duration of the mitigation episode * @node: a list element to be added to the list of tz events * @trip_stats: per trip point statistics, flexible array */ struct tz_episode { ktime_t timestamp; ktime_t duration; struct list_head node; struct trip_stats trip_stats[]; }; /** * struct tz_debugfs - Store all mitigation episodes for a thermal zone * * The tz_debugfs structure contains the list of the mitigation * episodes and has to track which trip point has been crossed in * order to handle correctly nested trip point mitigation episodes. * * We keep the history of the trip point crossed in an array and as we * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, * we keep track of the current position in the history array. * * @tz_episodes: a list of thermal mitigation episodes * @tz: thermal zone this object belongs to * @trips_crossed: an array of trip points crossed by id * @nr_trips: the number of trip points currently being crossed */ struct tz_debugfs { struct list_head tz_episodes; struct thermal_zone_device *tz; int *trips_crossed; int nr_trips; }; /** * struct thermal_debugfs - High level structure for a thermal object in debugfs * * The thermal_debugfs structure is the common structure used by the * cooling device or the thermal zone to store the statistics. * * @d_top: top directory of the thermal object directory * @lock: per object lock to protect the internals * * @cdev_dbg: a cooling device debug structure * @tz_dbg: a thermal zone debug structure */ struct thermal_debugfs { struct dentry *d_top; struct mutex lock; union { struct cdev_debugfs cdev_dbg; struct tz_debugfs tz_dbg; }; }; void thermal_debug_init(void) { d_root = debugfs_create_dir("thermal", NULL); if (!d_root) return; d_cdev = debugfs_create_dir("cooling_devices", d_root); if (!d_cdev) return; d_tz = debugfs_create_dir("thermal_zones", d_root); } static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) { struct thermal_debugfs *thermal_dbg; char ids[IDSLENGTH]; thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); if (!thermal_dbg) return NULL; mutex_init(&thermal_dbg->lock); snprintf(ids, IDSLENGTH, "%d", id); thermal_dbg->d_top = debugfs_create_dir(ids, d); if (!thermal_dbg->d_top) { kfree(thermal_dbg); return NULL; } return thermal_dbg; } static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) { if (!thermal_dbg) return; debugfs_remove(thermal_dbg->d_top); kfree(thermal_dbg); } static struct cdev_record * thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, struct list_head *lists, int id) { struct cdev_record *cdev_record; cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); if (!cdev_record) return NULL; cdev_record->id = id; INIT_LIST_HEAD(&cdev_record->node); list_add_tail(&cdev_record->node, &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); return cdev_record; } static struct cdev_record * thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, struct list_head *lists, int id) { struct cdev_record *entry; list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) if (entry->id == id) return entry; return NULL; } static struct cdev_record * thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, struct list_head *lists, int id) { struct cdev_record *cdev_record; cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); if (cdev_record) return cdev_record; return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); } static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) { int i; struct cdev_record *entry, *tmp; for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { list_for_each_entry_safe(entry, tmp, &cdev_dbg->transitions[i], node) { list_del(&entry->node); kfree(entry); } list_for_each_entry_safe(entry, tmp, &cdev_dbg->durations[i], node) { list_del(&entry->node); kfree(entry); } } cdev_dbg->total = 0; } static void *cdev_seq_start(struct seq_file *s, loff_t *pos) { struct thermal_debugfs *thermal_dbg = s->private; mutex_lock(&thermal_dbg->lock); return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; } static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) { (*pos)++; return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; } static void cdev_seq_stop(struct seq_file *s, void *v) { struct thermal_debugfs *thermal_dbg = s->private; mutex_unlock(&thermal_dbg->lock); } static int cdev_tt_seq_show(struct seq_file *s, void *v) { struct thermal_debugfs *thermal_dbg = s->private; struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; struct list_head *transitions = cdev_dbg->transitions; struct cdev_record *entry; int i = *(loff_t *)v; if (!i) seq_puts(s, "Transition\tOccurences\n"); list_for_each_entry(entry, &transitions[i], node) { /* * Assuming maximum cdev states is 1024, the longer * string for a transition would be "1024->1024\0" */ char buffer[11]; snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", entry->id >> 16, entry->id & 0xFFFF); seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); } return 0; } static const struct seq_operations tt_sops = { .start = cdev_seq_start, .next = cdev_seq_next, .stop = cdev_seq_stop, .show = cdev_tt_seq_show, }; DEFINE_SEQ_ATTRIBUTE(tt); static int cdev_dt_seq_show(struct seq_file *s, void *v) { struct thermal_debugfs *thermal_dbg = s->private; struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; struct list_head *durations = cdev_dbg->durations; struct cdev_record *entry; int i = *(loff_t *)v; if (!i) seq_puts(s, "State\tResidency\n"); list_for_each_entry(entry, &durations[i], node) { s64 duration = ktime_to_ms(entry->residency); if (entry->id == cdev_dbg->current_state) duration += ktime_ms_delta(ktime_get(), cdev_dbg->timestamp); seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); } return 0; } static const struct seq_operations dt_sops = { .start = cdev_seq_start, .next = cdev_seq_next, .stop = cdev_seq_stop, .show = cdev_dt_seq_show, }; DEFINE_SEQ_ATTRIBUTE(dt); static int cdev_clear_set(void *data, u64 val) { struct thermal_debugfs *thermal_dbg = data; if (!val) return -EINVAL; mutex_lock(&thermal_dbg->lock); thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); mutex_unlock(&thermal_dbg->lock); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); /** * thermal_debug_cdev_state_update - Update a cooling device state change * * Computes a transition and the duration of the previous state residency. * * @cdev : a pointer to a cooling device * @new_state: an integer corresponding to the new cooling device state */ void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, int new_state) { struct thermal_debugfs *thermal_dbg = cdev->debugfs; struct cdev_debugfs *cdev_dbg; struct cdev_record *cdev_record; int transition, old_state; if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) return; mutex_lock(&thermal_dbg->lock); cdev_dbg = &thermal_dbg->cdev_dbg; old_state = cdev_dbg->current_state; /* * Get the old state information in the durations list. If * this one does not exist, a new allocated one will be * returned. Recompute the total duration in the old state and * get a new timestamp for the new state. */ cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, old_state); if (cdev_record) { ktime_t now = ktime_get(); ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); cdev_record->residency = ktime_add(cdev_record->residency, delta); cdev_dbg->timestamp = now; } cdev_dbg->current_state = new_state; /* * Create a record for the new state if it is not there, so its * duration will be printed by cdev_dt_seq_show() as expected if it * runs before the next state transition. */ thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state); transition = (old_state << 16) | new_state; /* * Get the transition in the transitions list. If this one * does not exist, a new allocated one will be returned. * Increment the occurrence of this transition which is stored * in the value field. */ cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->transitions, transition); if (cdev_record) cdev_record->count++; cdev_dbg->total++; mutex_unlock(&thermal_dbg->lock); } /** * thermal_debug_cdev_add - Add a cooling device debugfs entry * * Allocates a cooling device object for debug, initializes the * statistics and create the entries in sysfs. * @cdev: a pointer to a cooling device * @state: current state of the cooling device */ void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state) { struct thermal_debugfs *thermal_dbg; struct cdev_debugfs *cdev_dbg; int i; thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); if (!thermal_dbg) return; cdev_dbg = &thermal_dbg->cdev_dbg; for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { INIT_LIST_HEAD(&cdev_dbg->transitions[i]); INIT_LIST_HEAD(&cdev_dbg->durations[i]); } cdev_dbg->current_state = state; cdev_dbg->timestamp = ktime_get(); /* * Create a record for the initial cooling device state, so its * duration will be printed by cdev_dt_seq_show() as expected if it * runs before the first state transition. */ thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state); debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, thermal_dbg, &tt_fops); debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, thermal_dbg, &dt_fops); debugfs_create_file("clear", 0200, thermal_dbg->d_top, thermal_dbg, &cdev_clear_fops); debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, &cdev_dbg->total); cdev->debugfs = thermal_dbg; } /** * thermal_debug_cdev_remove - Remove a cooling device debugfs entry * * Frees the statistics memory data and remove the debugfs entry * * @cdev: a pointer to a cooling device */ void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) { struct thermal_debugfs *thermal_dbg; mutex_lock(&cdev->lock); thermal_dbg = cdev->debugfs; if (!thermal_dbg) { mutex_unlock(&cdev->lock); return; } cdev->debugfs = NULL; mutex_unlock(&cdev->lock); mutex_lock(&thermal_dbg->lock); thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); mutex_unlock(&thermal_dbg->lock); thermal_debugfs_remove_id(thermal_dbg); } static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, ktime_t now) { struct tz_episode *tze; int i; tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); if (!tze) return NULL; INIT_LIST_HEAD(&tze->node); tze->timestamp = now; for (i = 0; i < tz->num_trips; i++) { tze->trip_stats[i].min = INT_MAX; tze->trip_stats[i].max = INT_MIN; } return tze; } void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, const struct thermal_trip *trip) { struct tz_episode *tze; struct tz_debugfs *tz_dbg; struct thermal_debugfs *thermal_dbg = tz->debugfs; int trip_id = thermal_zone_trip_id(tz, trip); ktime_t now = ktime_get(); if (!thermal_dbg) return; mutex_lock(&thermal_dbg->lock); tz_dbg = &thermal_dbg->tz_dbg; /* * The mitigation is starting. A mitigation can contain * several episodes where each of them is related to a * temperature crossing a trip point. The episodes are * nested. That means when the temperature is crossing the * first trip point, the duration begins to be measured. If * the temperature continues to increase and reaches the * second trip point, the duration of the first trip must be * also accumulated. * * eg. * * temp * ^ * | -------- * trip 2 / \ ------ * | /| |\ /| |\ * trip 1 / | | `---- | | \ * | /| | | | | |\ * trip 0 / | | | | | | \ * | /| | | | | | | |\ * | / | | | | | | | | `-- * | / | | | | | | | | * |----- | | | | | | | | * | | | | | | | | | * --------|-|-|--------|--------|------|-|-|------------------> time * | | |<--t2-->| |<-t2'>| | | * | | | | * | |<------------t1------------>| | * | | * |<-------------t0--------------->| * */ if (!tz_dbg->nr_trips) { tze = thermal_debugfs_tz_event_alloc(tz, now); if (!tze) goto unlock; list_add(&tze->node, &tz_dbg->tz_episodes); } /* * Each time a trip point is crossed the way up, the trip_id * is stored in the trip_crossed array and the nr_trips is * incremented. A nr_trips equal to zero means we are entering * a mitigation episode. * * The trip ids may not be in the ascending order but the * result in the array trips_crossed will be in the ascending * temperature order. The function detecting when a trip point * is crossed the way down will handle the very rare case when * the trip points may have been reordered during this * mitigation episode. */ tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); tze->trip_stats[trip_id].timestamp = now; unlock: mutex_unlock(&thermal_dbg->lock); } void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, const struct thermal_trip *trip) { struct thermal_debugfs *thermal_dbg = tz->debugfs; struct tz_episode *tze; struct tz_debugfs *tz_dbg; ktime_t delta, now = ktime_get(); int trip_id = thermal_zone_trip_id(tz, trip); int i; if (!thermal_dbg) return; mutex_lock(&thermal_dbg->lock); tz_dbg = &thermal_dbg->tz_dbg; /* * The temperature crosses the way down but there was not * mitigation detected before. That may happen when the * temperature is greater than a trip point when registering a * thermal zone, which is a common use case as the kernel has * no mitigation mechanism yet at boot time. */ if (!tz_dbg->nr_trips) goto out; for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { if (tz_dbg->trips_crossed[i] == trip_id) break; } if (i < 0) goto out; tz_dbg->nr_trips--; if (i < tz_dbg->nr_trips) tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp); tze->trip_stats[trip_id].duration = ktime_add(delta, tze->trip_stats[trip_id].duration); /* * This event closes the mitigation as we are crossing the * last trip point the way down. */ if (!tz_dbg->nr_trips) tze->duration = ktime_sub(now, tze->timestamp); out: mutex_unlock(&thermal_dbg->lock); } void thermal_debug_update_temp(struct thermal_zone_device *tz) { struct thermal_debugfs *thermal_dbg = tz->debugfs; struct tz_episode *tze; struct tz_debugfs *tz_dbg; int trip_id, i; if (!thermal_dbg) return; mutex_lock(&thermal_dbg->lock); tz_dbg = &thermal_dbg->tz_dbg; if (!tz_dbg->nr_trips) goto out; for (i = 0; i < tz_dbg->nr_trips; i++) { trip_id = tz_dbg->trips_crossed[i]; tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); tze->trip_stats[trip_id].count++; tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature); tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature); tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg + (tz->temperature - tze->trip_stats[trip_id].avg) / tze->trip_stats[trip_id].count; } out: mutex_unlock(&thermal_dbg->lock); } static void *tze_seq_start(struct seq_file *s, loff_t *pos) { struct thermal_debugfs *thermal_dbg = s->private; struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; mutex_lock(&thermal_dbg->lock); return seq_list_start(&tz_dbg->tz_episodes, *pos); } static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) { struct thermal_debugfs *thermal_dbg = s->private; struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; return seq_list_next(v, &tz_dbg->tz_episodes, pos); } static void tze_seq_stop(struct seq_file *s, void *v) { struct thermal_debugfs *thermal_dbg = s->private; mutex_unlock(&thermal_dbg->lock); } static int tze_seq_show(struct seq_file *s, void *v) { struct thermal_debugfs *thermal_dbg = s->private; struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz; struct thermal_trip *trip; struct tz_episode *tze; const char *type; int trip_id; tze = list_entry((struct list_head *)v, struct tz_episode, node); seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n", ktime_to_us(tze->timestamp), ktime_to_ms(tze->duration)); seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n"); for_each_trip(tz, trip) { /* * There is no possible mitigation happening at the * critical trip point, so the stats will be always * zero, skip this trip point */ if (trip->type == THERMAL_TRIP_CRITICAL) continue; if (trip->type == THERMAL_TRIP_PASSIVE) type = "passive"; else if (trip->type == THERMAL_TRIP_ACTIVE) type = "active"; else type = "hot"; trip_id = thermal_zone_trip_id(tz, trip); seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n", 4 , trip_id, 8, type, 9, trip->temperature, 9, trip->hysteresis, 10, ktime_to_ms(tze->trip_stats[trip_id].duration), 9, tze->trip_stats[trip_id].avg, 9, tze->trip_stats[trip_id].min, 9, tze->trip_stats[trip_id].max); } return 0; } static const struct seq_operations tze_sops = { .start = tze_seq_start, .next = tze_seq_next, .stop = tze_seq_stop, .show = tze_seq_show, }; DEFINE_SEQ_ATTRIBUTE(tze); void thermal_debug_tz_add(struct thermal_zone_device *tz) { struct thermal_debugfs *thermal_dbg; struct tz_debugfs *tz_dbg; thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); if (!thermal_dbg) return; tz_dbg = &thermal_dbg->tz_dbg; tz_dbg->tz = tz; tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); if (!tz_dbg->trips_crossed) { thermal_debugfs_remove_id(thermal_dbg); return; } INIT_LIST_HEAD(&tz_dbg->tz_episodes); debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, thermal_dbg, &tze_fops); tz->debugfs = thermal_dbg; } void thermal_debug_tz_remove(struct thermal_zone_device *tz) { struct thermal_debugfs *thermal_dbg; struct tz_episode *tze, *tmp; struct tz_debugfs *tz_dbg; int *trips_crossed; mutex_lock(&tz->lock); thermal_dbg = tz->debugfs; if (!thermal_dbg) { mutex_unlock(&tz->lock); return; } tz->debugfs = NULL; mutex_unlock(&tz->lock); tz_dbg = &thermal_dbg->tz_dbg; mutex_lock(&thermal_dbg->lock); trips_crossed = tz_dbg->trips_crossed; list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) { list_del(&tze->node); kfree(tze); } mutex_unlock(&thermal_dbg->lock); thermal_debugfs_remove_id(thermal_dbg); kfree(trips_crossed); } |