Loading...
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/i2c.h>
33#include "drmP.h"
34#include "drm_edid.h"
35#include "drm_edid_modes.h"
36
37#define version_greater(edid, maj, min) \
38 (((edid)->version > (maj)) || \
39 ((edid)->version == (maj) && (edid)->revision > (min)))
40
41#define EDID_EST_TIMINGS 16
42#define EDID_STD_TIMINGS 8
43#define EDID_DETAILED_TIMINGS 4
44
45/*
46 * EDID blocks out in the wild have a variety of bugs, try to collect
47 * them here (note that userspace may work around broken monitors first,
48 * but fixes should make their way here so that the kernel "just works"
49 * on as many displays as possible).
50 */
51
52/* First detailed mode wrong, use largest 60Hz mode */
53#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
54/* Reported 135MHz pixel clock is too high, needs adjustment */
55#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
56/* Prefer the largest mode at 75 Hz */
57#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
58/* Detail timing is in cm not mm */
59#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
60/* Detailed timing descriptors have bogus size values, so just take the
61 * maximum size and use that.
62 */
63#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
64/* Monitor forgot to set the first detailed is preferred bit. */
65#define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
66/* use +hsync +vsync for detailed mode */
67#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
68
69struct detailed_mode_closure {
70 struct drm_connector *connector;
71 struct edid *edid;
72 bool preferred;
73 u32 quirks;
74 int modes;
75};
76
77#define LEVEL_DMT 0
78#define LEVEL_GTF 1
79#define LEVEL_GTF2 2
80#define LEVEL_CVT 3
81
82static struct edid_quirk {
83 char *vendor;
84 int product_id;
85 u32 quirks;
86} edid_quirk_list[] = {
87 /* Acer AL1706 */
88 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
89 /* Acer F51 */
90 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
91 /* Unknown Acer */
92 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
93
94 /* Belinea 10 15 55 */
95 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
96 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
97
98 /* Envision Peripherals, Inc. EN-7100e */
99 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
100 /* Envision EN2028 */
101 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
102
103 /* Funai Electronics PM36B */
104 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
105 EDID_QUIRK_DETAILED_IN_CM },
106
107 /* LG Philips LCD LP154W01-A5 */
108 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
109 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
110
111 /* Philips 107p5 CRT */
112 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
113
114 /* Proview AY765C */
115 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116
117 /* Samsung SyncMaster 205BW. Note: irony */
118 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
119 /* Samsung SyncMaster 22[5-6]BW */
120 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
121 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
122};
123
124/*** DDC fetch and block validation ***/
125
126static const u8 edid_header[] = {
127 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
128};
129
130 /*
131 * Sanity check the header of the base EDID block. Return 8 if the header
132 * is perfect, down to 0 if it's totally wrong.
133 */
134int drm_edid_header_is_valid(const u8 *raw_edid)
135{
136 int i, score = 0;
137
138 for (i = 0; i < sizeof(edid_header); i++)
139 if (raw_edid[i] == edid_header[i])
140 score++;
141
142 return score;
143}
144EXPORT_SYMBOL(drm_edid_header_is_valid);
145
146
147/*
148 * Sanity check the EDID block (base or extension). Return 0 if the block
149 * doesn't check out, or 1 if it's valid.
150 */
151static bool
152drm_edid_block_valid(u8 *raw_edid)
153{
154 int i;
155 u8 csum = 0;
156 struct edid *edid = (struct edid *)raw_edid;
157
158 if (raw_edid[0] == 0x00) {
159 int score = drm_edid_header_is_valid(raw_edid);
160 if (score == 8) ;
161 else if (score >= 6) {
162 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
163 memcpy(raw_edid, edid_header, sizeof(edid_header));
164 } else {
165 goto bad;
166 }
167 }
168
169 for (i = 0; i < EDID_LENGTH; i++)
170 csum += raw_edid[i];
171 if (csum) {
172 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
173
174 /* allow CEA to slide through, switches mangle this */
175 if (raw_edid[0] != 0x02)
176 goto bad;
177 }
178
179 /* per-block-type checks */
180 switch (raw_edid[0]) {
181 case 0: /* base */
182 if (edid->version != 1) {
183 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
184 goto bad;
185 }
186
187 if (edid->revision > 4)
188 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
189 break;
190
191 default:
192 break;
193 }
194
195 return 1;
196
197bad:
198 if (raw_edid) {
199 printk(KERN_ERR "Raw EDID:\n");
200 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
201 raw_edid, EDID_LENGTH, false);
202 }
203 return 0;
204}
205
206/**
207 * drm_edid_is_valid - sanity check EDID data
208 * @edid: EDID data
209 *
210 * Sanity-check an entire EDID record (including extensions)
211 */
212bool drm_edid_is_valid(struct edid *edid)
213{
214 int i;
215 u8 *raw = (u8 *)edid;
216
217 if (!edid)
218 return false;
219
220 for (i = 0; i <= edid->extensions; i++)
221 if (!drm_edid_block_valid(raw + i * EDID_LENGTH))
222 return false;
223
224 return true;
225}
226EXPORT_SYMBOL(drm_edid_is_valid);
227
228#define DDC_ADDR 0x50
229#define DDC_SEGMENT_ADDR 0x30
230/**
231 * Get EDID information via I2C.
232 *
233 * \param adapter : i2c device adaptor
234 * \param buf : EDID data buffer to be filled
235 * \param len : EDID data buffer length
236 * \return 0 on success or -1 on failure.
237 *
238 * Try to fetch EDID information by calling i2c driver function.
239 */
240static int
241drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
242 int block, int len)
243{
244 unsigned char start = block * EDID_LENGTH;
245 int ret, retries = 5;
246
247 /* The core i2c driver will automatically retry the transfer if the
248 * adapter reports EAGAIN. However, we find that bit-banging transfers
249 * are susceptible to errors under a heavily loaded machine and
250 * generate spurious NAKs and timeouts. Retrying the transfer
251 * of the individual block a few times seems to overcome this.
252 */
253 do {
254 struct i2c_msg msgs[] = {
255 {
256 .addr = DDC_ADDR,
257 .flags = 0,
258 .len = 1,
259 .buf = &start,
260 }, {
261 .addr = DDC_ADDR,
262 .flags = I2C_M_RD,
263 .len = len,
264 .buf = buf,
265 }
266 };
267 ret = i2c_transfer(adapter, msgs, 2);
268 } while (ret != 2 && --retries);
269
270 return ret == 2 ? 0 : -1;
271}
272
273static bool drm_edid_is_zero(u8 *in_edid, int length)
274{
275 int i;
276 u32 *raw_edid = (u32 *)in_edid;
277
278 for (i = 0; i < length / 4; i++)
279 if (*(raw_edid + i) != 0)
280 return false;
281 return true;
282}
283
284static u8 *
285drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
286{
287 int i, j = 0, valid_extensions = 0;
288 u8 *block, *new;
289
290 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
291 return NULL;
292
293 /* base block fetch */
294 for (i = 0; i < 4; i++) {
295 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
296 goto out;
297 if (drm_edid_block_valid(block))
298 break;
299 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
300 connector->null_edid_counter++;
301 goto carp;
302 }
303 }
304 if (i == 4)
305 goto carp;
306
307 /* if there's no extensions, we're done */
308 if (block[0x7e] == 0)
309 return block;
310
311 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
312 if (!new)
313 goto out;
314 block = new;
315
316 for (j = 1; j <= block[0x7e]; j++) {
317 for (i = 0; i < 4; i++) {
318 if (drm_do_probe_ddc_edid(adapter,
319 block + (valid_extensions + 1) * EDID_LENGTH,
320 j, EDID_LENGTH))
321 goto out;
322 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH)) {
323 valid_extensions++;
324 break;
325 }
326 }
327 if (i == 4)
328 dev_warn(connector->dev->dev,
329 "%s: Ignoring invalid EDID block %d.\n",
330 drm_get_connector_name(connector), j);
331 }
332
333 if (valid_extensions != block[0x7e]) {
334 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
335 block[0x7e] = valid_extensions;
336 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
337 if (!new)
338 goto out;
339 block = new;
340 }
341
342 return block;
343
344carp:
345 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
346 drm_get_connector_name(connector), j);
347
348out:
349 kfree(block);
350 return NULL;
351}
352
353/**
354 * Probe DDC presence.
355 *
356 * \param adapter : i2c device adaptor
357 * \return 1 on success
358 */
359static bool
360drm_probe_ddc(struct i2c_adapter *adapter)
361{
362 unsigned char out;
363
364 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
365}
366
367/**
368 * drm_get_edid - get EDID data, if available
369 * @connector: connector we're probing
370 * @adapter: i2c adapter to use for DDC
371 *
372 * Poke the given i2c channel to grab EDID data if possible. If found,
373 * attach it to the connector.
374 *
375 * Return edid data or NULL if we couldn't find any.
376 */
377struct edid *drm_get_edid(struct drm_connector *connector,
378 struct i2c_adapter *adapter)
379{
380 struct edid *edid = NULL;
381
382 if (drm_probe_ddc(adapter))
383 edid = (struct edid *)drm_do_get_edid(connector, adapter);
384
385 connector->display_info.raw_edid = (char *)edid;
386
387 return edid;
388
389}
390EXPORT_SYMBOL(drm_get_edid);
391
392/*** EDID parsing ***/
393
394/**
395 * edid_vendor - match a string against EDID's obfuscated vendor field
396 * @edid: EDID to match
397 * @vendor: vendor string
398 *
399 * Returns true if @vendor is in @edid, false otherwise
400 */
401static bool edid_vendor(struct edid *edid, char *vendor)
402{
403 char edid_vendor[3];
404
405 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
406 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
407 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
408 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
409
410 return !strncmp(edid_vendor, vendor, 3);
411}
412
413/**
414 * edid_get_quirks - return quirk flags for a given EDID
415 * @edid: EDID to process
416 *
417 * This tells subsequent routines what fixes they need to apply.
418 */
419static u32 edid_get_quirks(struct edid *edid)
420{
421 struct edid_quirk *quirk;
422 int i;
423
424 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
425 quirk = &edid_quirk_list[i];
426
427 if (edid_vendor(edid, quirk->vendor) &&
428 (EDID_PRODUCT_ID(edid) == quirk->product_id))
429 return quirk->quirks;
430 }
431
432 return 0;
433}
434
435#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
436#define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
437
438/**
439 * edid_fixup_preferred - set preferred modes based on quirk list
440 * @connector: has mode list to fix up
441 * @quirks: quirks list
442 *
443 * Walk the mode list for @connector, clearing the preferred status
444 * on existing modes and setting it anew for the right mode ala @quirks.
445 */
446static void edid_fixup_preferred(struct drm_connector *connector,
447 u32 quirks)
448{
449 struct drm_display_mode *t, *cur_mode, *preferred_mode;
450 int target_refresh = 0;
451
452 if (list_empty(&connector->probed_modes))
453 return;
454
455 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
456 target_refresh = 60;
457 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
458 target_refresh = 75;
459
460 preferred_mode = list_first_entry(&connector->probed_modes,
461 struct drm_display_mode, head);
462
463 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
464 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
465
466 if (cur_mode == preferred_mode)
467 continue;
468
469 /* Largest mode is preferred */
470 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
471 preferred_mode = cur_mode;
472
473 /* At a given size, try to get closest to target refresh */
474 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
475 MODE_REFRESH_DIFF(cur_mode, target_refresh) <
476 MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
477 preferred_mode = cur_mode;
478 }
479 }
480
481 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
482}
483
484struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
485 int hsize, int vsize, int fresh)
486{
487 struct drm_display_mode *mode = NULL;
488 int i;
489
490 for (i = 0; i < drm_num_dmt_modes; i++) {
491 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
492 if (hsize == ptr->hdisplay &&
493 vsize == ptr->vdisplay &&
494 fresh == drm_mode_vrefresh(ptr)) {
495 /* get the expected default mode */
496 mode = drm_mode_duplicate(dev, ptr);
497 break;
498 }
499 }
500 return mode;
501}
502EXPORT_SYMBOL(drm_mode_find_dmt);
503
504typedef void detailed_cb(struct detailed_timing *timing, void *closure);
505
506static void
507cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
508{
509 int i, n = 0;
510 u8 rev = ext[0x01], d = ext[0x02];
511 u8 *det_base = ext + d;
512
513 switch (rev) {
514 case 0:
515 /* can't happen */
516 return;
517 case 1:
518 /* have to infer how many blocks we have, check pixel clock */
519 for (i = 0; i < 6; i++)
520 if (det_base[18*i] || det_base[18*i+1])
521 n++;
522 break;
523 default:
524 /* explicit count */
525 n = min(ext[0x03] & 0x0f, 6);
526 break;
527 }
528
529 for (i = 0; i < n; i++)
530 cb((struct detailed_timing *)(det_base + 18 * i), closure);
531}
532
533static void
534vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
535{
536 unsigned int i, n = min((int)ext[0x02], 6);
537 u8 *det_base = ext + 5;
538
539 if (ext[0x01] != 1)
540 return; /* unknown version */
541
542 for (i = 0; i < n; i++)
543 cb((struct detailed_timing *)(det_base + 18 * i), closure);
544}
545
546static void
547drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
548{
549 int i;
550 struct edid *edid = (struct edid *)raw_edid;
551
552 if (edid == NULL)
553 return;
554
555 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
556 cb(&(edid->detailed_timings[i]), closure);
557
558 for (i = 1; i <= raw_edid[0x7e]; i++) {
559 u8 *ext = raw_edid + (i * EDID_LENGTH);
560 switch (*ext) {
561 case CEA_EXT:
562 cea_for_each_detailed_block(ext, cb, closure);
563 break;
564 case VTB_EXT:
565 vtb_for_each_detailed_block(ext, cb, closure);
566 break;
567 default:
568 break;
569 }
570 }
571}
572
573static void
574is_rb(struct detailed_timing *t, void *data)
575{
576 u8 *r = (u8 *)t;
577 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
578 if (r[15] & 0x10)
579 *(bool *)data = true;
580}
581
582/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
583static bool
584drm_monitor_supports_rb(struct edid *edid)
585{
586 if (edid->revision >= 4) {
587 bool ret;
588 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
589 return ret;
590 }
591
592 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
593}
594
595static void
596find_gtf2(struct detailed_timing *t, void *data)
597{
598 u8 *r = (u8 *)t;
599 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
600 *(u8 **)data = r;
601}
602
603/* Secondary GTF curve kicks in above some break frequency */
604static int
605drm_gtf2_hbreak(struct edid *edid)
606{
607 u8 *r = NULL;
608 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
609 return r ? (r[12] * 2) : 0;
610}
611
612static int
613drm_gtf2_2c(struct edid *edid)
614{
615 u8 *r = NULL;
616 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
617 return r ? r[13] : 0;
618}
619
620static int
621drm_gtf2_m(struct edid *edid)
622{
623 u8 *r = NULL;
624 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
625 return r ? (r[15] << 8) + r[14] : 0;
626}
627
628static int
629drm_gtf2_k(struct edid *edid)
630{
631 u8 *r = NULL;
632 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
633 return r ? r[16] : 0;
634}
635
636static int
637drm_gtf2_2j(struct edid *edid)
638{
639 u8 *r = NULL;
640 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
641 return r ? r[17] : 0;
642}
643
644/**
645 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
646 * @edid: EDID block to scan
647 */
648static int standard_timing_level(struct edid *edid)
649{
650 if (edid->revision >= 2) {
651 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
652 return LEVEL_CVT;
653 if (drm_gtf2_hbreak(edid))
654 return LEVEL_GTF2;
655 return LEVEL_GTF;
656 }
657 return LEVEL_DMT;
658}
659
660/*
661 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
662 * monitors fill with ascii space (0x20) instead.
663 */
664static int
665bad_std_timing(u8 a, u8 b)
666{
667 return (a == 0x00 && b == 0x00) ||
668 (a == 0x01 && b == 0x01) ||
669 (a == 0x20 && b == 0x20);
670}
671
672/**
673 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
674 * @t: standard timing params
675 * @timing_level: standard timing level
676 *
677 * Take the standard timing params (in this case width, aspect, and refresh)
678 * and convert them into a real mode using CVT/GTF/DMT.
679 */
680static struct drm_display_mode *
681drm_mode_std(struct drm_connector *connector, struct edid *edid,
682 struct std_timing *t, int revision)
683{
684 struct drm_device *dev = connector->dev;
685 struct drm_display_mode *m, *mode = NULL;
686 int hsize, vsize;
687 int vrefresh_rate;
688 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
689 >> EDID_TIMING_ASPECT_SHIFT;
690 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
691 >> EDID_TIMING_VFREQ_SHIFT;
692 int timing_level = standard_timing_level(edid);
693
694 if (bad_std_timing(t->hsize, t->vfreq_aspect))
695 return NULL;
696
697 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
698 hsize = t->hsize * 8 + 248;
699 /* vrefresh_rate = vfreq + 60 */
700 vrefresh_rate = vfreq + 60;
701 /* the vdisplay is calculated based on the aspect ratio */
702 if (aspect_ratio == 0) {
703 if (revision < 3)
704 vsize = hsize;
705 else
706 vsize = (hsize * 10) / 16;
707 } else if (aspect_ratio == 1)
708 vsize = (hsize * 3) / 4;
709 else if (aspect_ratio == 2)
710 vsize = (hsize * 4) / 5;
711 else
712 vsize = (hsize * 9) / 16;
713
714 /* HDTV hack, part 1 */
715 if (vrefresh_rate == 60 &&
716 ((hsize == 1360 && vsize == 765) ||
717 (hsize == 1368 && vsize == 769))) {
718 hsize = 1366;
719 vsize = 768;
720 }
721
722 /*
723 * If this connector already has a mode for this size and refresh
724 * rate (because it came from detailed or CVT info), use that
725 * instead. This way we don't have to guess at interlace or
726 * reduced blanking.
727 */
728 list_for_each_entry(m, &connector->probed_modes, head)
729 if (m->hdisplay == hsize && m->vdisplay == vsize &&
730 drm_mode_vrefresh(m) == vrefresh_rate)
731 return NULL;
732
733 /* HDTV hack, part 2 */
734 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
735 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
736 false);
737 mode->hdisplay = 1366;
738 mode->hsync_start = mode->hsync_start - 1;
739 mode->hsync_end = mode->hsync_end - 1;
740 return mode;
741 }
742
743 /* check whether it can be found in default mode table */
744 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate);
745 if (mode)
746 return mode;
747
748 switch (timing_level) {
749 case LEVEL_DMT:
750 break;
751 case LEVEL_GTF:
752 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
753 break;
754 case LEVEL_GTF2:
755 /*
756 * This is potentially wrong if there's ever a monitor with
757 * more than one ranges section, each claiming a different
758 * secondary GTF curve. Please don't do that.
759 */
760 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
761 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
762 kfree(mode);
763 mode = drm_gtf_mode_complex(dev, hsize, vsize,
764 vrefresh_rate, 0, 0,
765 drm_gtf2_m(edid),
766 drm_gtf2_2c(edid),
767 drm_gtf2_k(edid),
768 drm_gtf2_2j(edid));
769 }
770 break;
771 case LEVEL_CVT:
772 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
773 false);
774 break;
775 }
776 return mode;
777}
778
779/*
780 * EDID is delightfully ambiguous about how interlaced modes are to be
781 * encoded. Our internal representation is of frame height, but some
782 * HDTV detailed timings are encoded as field height.
783 *
784 * The format list here is from CEA, in frame size. Technically we
785 * should be checking refresh rate too. Whatever.
786 */
787static void
788drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
789 struct detailed_pixel_timing *pt)
790{
791 int i;
792 static const struct {
793 int w, h;
794 } cea_interlaced[] = {
795 { 1920, 1080 },
796 { 720, 480 },
797 { 1440, 480 },
798 { 2880, 480 },
799 { 720, 576 },
800 { 1440, 576 },
801 { 2880, 576 },
802 };
803
804 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
805 return;
806
807 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
808 if ((mode->hdisplay == cea_interlaced[i].w) &&
809 (mode->vdisplay == cea_interlaced[i].h / 2)) {
810 mode->vdisplay *= 2;
811 mode->vsync_start *= 2;
812 mode->vsync_end *= 2;
813 mode->vtotal *= 2;
814 mode->vtotal |= 1;
815 }
816 }
817
818 mode->flags |= DRM_MODE_FLAG_INTERLACE;
819}
820
821/**
822 * drm_mode_detailed - create a new mode from an EDID detailed timing section
823 * @dev: DRM device (needed to create new mode)
824 * @edid: EDID block
825 * @timing: EDID detailed timing info
826 * @quirks: quirks to apply
827 *
828 * An EDID detailed timing block contains enough info for us to create and
829 * return a new struct drm_display_mode.
830 */
831static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
832 struct edid *edid,
833 struct detailed_timing *timing,
834 u32 quirks)
835{
836 struct drm_display_mode *mode;
837 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
838 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
839 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
840 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
841 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
842 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
843 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
844 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4;
845 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
846
847 /* ignore tiny modes */
848 if (hactive < 64 || vactive < 64)
849 return NULL;
850
851 if (pt->misc & DRM_EDID_PT_STEREO) {
852 printk(KERN_WARNING "stereo mode not supported\n");
853 return NULL;
854 }
855 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
856 printk(KERN_WARNING "composite sync not supported\n");
857 }
858
859 /* it is incorrect if hsync/vsync width is zero */
860 if (!hsync_pulse_width || !vsync_pulse_width) {
861 DRM_DEBUG_KMS("Incorrect Detailed timing. "
862 "Wrong Hsync/Vsync pulse width\n");
863 return NULL;
864 }
865 mode = drm_mode_create(dev);
866 if (!mode)
867 return NULL;
868
869 mode->type = DRM_MODE_TYPE_DRIVER;
870
871 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
872 timing->pixel_clock = cpu_to_le16(1088);
873
874 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
875
876 mode->hdisplay = hactive;
877 mode->hsync_start = mode->hdisplay + hsync_offset;
878 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
879 mode->htotal = mode->hdisplay + hblank;
880
881 mode->vdisplay = vactive;
882 mode->vsync_start = mode->vdisplay + vsync_offset;
883 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
884 mode->vtotal = mode->vdisplay + vblank;
885
886 /* Some EDIDs have bogus h/vtotal values */
887 if (mode->hsync_end > mode->htotal)
888 mode->htotal = mode->hsync_end + 1;
889 if (mode->vsync_end > mode->vtotal)
890 mode->vtotal = mode->vsync_end + 1;
891
892 drm_mode_do_interlace_quirk(mode, pt);
893
894 drm_mode_set_name(mode);
895
896 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
897 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
898 }
899
900 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
901 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
902 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
903 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
904
905 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
906 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
907
908 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
909 mode->width_mm *= 10;
910 mode->height_mm *= 10;
911 }
912
913 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
914 mode->width_mm = edid->width_cm * 10;
915 mode->height_mm = edid->height_cm * 10;
916 }
917
918 return mode;
919}
920
921static bool
922mode_is_rb(const struct drm_display_mode *mode)
923{
924 return (mode->htotal - mode->hdisplay == 160) &&
925 (mode->hsync_end - mode->hdisplay == 80) &&
926 (mode->hsync_end - mode->hsync_start == 32) &&
927 (mode->vsync_start - mode->vdisplay == 3);
928}
929
930static bool
931mode_in_hsync_range(const struct drm_display_mode *mode,
932 struct edid *edid, u8 *t)
933{
934 int hsync, hmin, hmax;
935
936 hmin = t[7];
937 if (edid->revision >= 4)
938 hmin += ((t[4] & 0x04) ? 255 : 0);
939 hmax = t[8];
940 if (edid->revision >= 4)
941 hmax += ((t[4] & 0x08) ? 255 : 0);
942 hsync = drm_mode_hsync(mode);
943
944 return (hsync <= hmax && hsync >= hmin);
945}
946
947static bool
948mode_in_vsync_range(const struct drm_display_mode *mode,
949 struct edid *edid, u8 *t)
950{
951 int vsync, vmin, vmax;
952
953 vmin = t[5];
954 if (edid->revision >= 4)
955 vmin += ((t[4] & 0x01) ? 255 : 0);
956 vmax = t[6];
957 if (edid->revision >= 4)
958 vmax += ((t[4] & 0x02) ? 255 : 0);
959 vsync = drm_mode_vrefresh(mode);
960
961 return (vsync <= vmax && vsync >= vmin);
962}
963
964static u32
965range_pixel_clock(struct edid *edid, u8 *t)
966{
967 /* unspecified */
968 if (t[9] == 0 || t[9] == 255)
969 return 0;
970
971 /* 1.4 with CVT support gives us real precision, yay */
972 if (edid->revision >= 4 && t[10] == 0x04)
973 return (t[9] * 10000) - ((t[12] >> 2) * 250);
974
975 /* 1.3 is pathetic, so fuzz up a bit */
976 return t[9] * 10000 + 5001;
977}
978
979static bool
980mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
981 struct detailed_timing *timing)
982{
983 u32 max_clock;
984 u8 *t = (u8 *)timing;
985
986 if (!mode_in_hsync_range(mode, edid, t))
987 return false;
988
989 if (!mode_in_vsync_range(mode, edid, t))
990 return false;
991
992 if ((max_clock = range_pixel_clock(edid, t)))
993 if (mode->clock > max_clock)
994 return false;
995
996 /* 1.4 max horizontal check */
997 if (edid->revision >= 4 && t[10] == 0x04)
998 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
999 return false;
1000
1001 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1002 return false;
1003
1004 return true;
1005}
1006
1007/*
1008 * XXX If drm_dmt_modes ever regrows the CVT-R modes (and it will) this will
1009 * need to account for them.
1010 */
1011static int
1012drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1013 struct detailed_timing *timing)
1014{
1015 int i, modes = 0;
1016 struct drm_display_mode *newmode;
1017 struct drm_device *dev = connector->dev;
1018
1019 for (i = 0; i < drm_num_dmt_modes; i++) {
1020 if (mode_in_range(drm_dmt_modes + i, edid, timing)) {
1021 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1022 if (newmode) {
1023 drm_mode_probed_add(connector, newmode);
1024 modes++;
1025 }
1026 }
1027 }
1028
1029 return modes;
1030}
1031
1032static void
1033do_inferred_modes(struct detailed_timing *timing, void *c)
1034{
1035 struct detailed_mode_closure *closure = c;
1036 struct detailed_non_pixel *data = &timing->data.other_data;
1037 int gtf = (closure->edid->features & DRM_EDID_FEATURE_DEFAULT_GTF);
1038
1039 if (gtf && data->type == EDID_DETAIL_MONITOR_RANGE)
1040 closure->modes += drm_gtf_modes_for_range(closure->connector,
1041 closure->edid,
1042 timing);
1043}
1044
1045static int
1046add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1047{
1048 struct detailed_mode_closure closure = {
1049 connector, edid, 0, 0, 0
1050 };
1051
1052 if (version_greater(edid, 1, 0))
1053 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1054 &closure);
1055
1056 return closure.modes;
1057}
1058
1059static int
1060drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1061{
1062 int i, j, m, modes = 0;
1063 struct drm_display_mode *mode;
1064 u8 *est = ((u8 *)timing) + 5;
1065
1066 for (i = 0; i < 6; i++) {
1067 for (j = 7; j > 0; j--) {
1068 m = (i * 8) + (7 - j);
1069 if (m >= ARRAY_SIZE(est3_modes))
1070 break;
1071 if (est[i] & (1 << j)) {
1072 mode = drm_mode_find_dmt(connector->dev,
1073 est3_modes[m].w,
1074 est3_modes[m].h,
1075 est3_modes[m].r
1076 /*, est3_modes[m].rb */);
1077 if (mode) {
1078 drm_mode_probed_add(connector, mode);
1079 modes++;
1080 }
1081 }
1082 }
1083 }
1084
1085 return modes;
1086}
1087
1088static void
1089do_established_modes(struct detailed_timing *timing, void *c)
1090{
1091 struct detailed_mode_closure *closure = c;
1092 struct detailed_non_pixel *data = &timing->data.other_data;
1093
1094 if (data->type == EDID_DETAIL_EST_TIMINGS)
1095 closure->modes += drm_est3_modes(closure->connector, timing);
1096}
1097
1098/**
1099 * add_established_modes - get est. modes from EDID and add them
1100 * @edid: EDID block to scan
1101 *
1102 * Each EDID block contains a bitmap of the supported "established modes" list
1103 * (defined above). Tease them out and add them to the global modes list.
1104 */
1105static int
1106add_established_modes(struct drm_connector *connector, struct edid *edid)
1107{
1108 struct drm_device *dev = connector->dev;
1109 unsigned long est_bits = edid->established_timings.t1 |
1110 (edid->established_timings.t2 << 8) |
1111 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
1112 int i, modes = 0;
1113 struct detailed_mode_closure closure = {
1114 connector, edid, 0, 0, 0
1115 };
1116
1117 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
1118 if (est_bits & (1<<i)) {
1119 struct drm_display_mode *newmode;
1120 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
1121 if (newmode) {
1122 drm_mode_probed_add(connector, newmode);
1123 modes++;
1124 }
1125 }
1126 }
1127
1128 if (version_greater(edid, 1, 0))
1129 drm_for_each_detailed_block((u8 *)edid,
1130 do_established_modes, &closure);
1131
1132 return modes + closure.modes;
1133}
1134
1135static void
1136do_standard_modes(struct detailed_timing *timing, void *c)
1137{
1138 struct detailed_mode_closure *closure = c;
1139 struct detailed_non_pixel *data = &timing->data.other_data;
1140 struct drm_connector *connector = closure->connector;
1141 struct edid *edid = closure->edid;
1142
1143 if (data->type == EDID_DETAIL_STD_MODES) {
1144 int i;
1145 for (i = 0; i < 6; i++) {
1146 struct std_timing *std;
1147 struct drm_display_mode *newmode;
1148
1149 std = &data->data.timings[i];
1150 newmode = drm_mode_std(connector, edid, std,
1151 edid->revision);
1152 if (newmode) {
1153 drm_mode_probed_add(connector, newmode);
1154 closure->modes++;
1155 }
1156 }
1157 }
1158}
1159
1160/**
1161 * add_standard_modes - get std. modes from EDID and add them
1162 * @edid: EDID block to scan
1163 *
1164 * Standard modes can be calculated using the appropriate standard (DMT,
1165 * GTF or CVT. Grab them from @edid and add them to the list.
1166 */
1167static int
1168add_standard_modes(struct drm_connector *connector, struct edid *edid)
1169{
1170 int i, modes = 0;
1171 struct detailed_mode_closure closure = {
1172 connector, edid, 0, 0, 0
1173 };
1174
1175 for (i = 0; i < EDID_STD_TIMINGS; i++) {
1176 struct drm_display_mode *newmode;
1177
1178 newmode = drm_mode_std(connector, edid,
1179 &edid->standard_timings[i],
1180 edid->revision);
1181 if (newmode) {
1182 drm_mode_probed_add(connector, newmode);
1183 modes++;
1184 }
1185 }
1186
1187 if (version_greater(edid, 1, 0))
1188 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
1189 &closure);
1190
1191 /* XXX should also look for standard codes in VTB blocks */
1192
1193 return modes + closure.modes;
1194}
1195
1196static int drm_cvt_modes(struct drm_connector *connector,
1197 struct detailed_timing *timing)
1198{
1199 int i, j, modes = 0;
1200 struct drm_display_mode *newmode;
1201 struct drm_device *dev = connector->dev;
1202 struct cvt_timing *cvt;
1203 const int rates[] = { 60, 85, 75, 60, 50 };
1204 const u8 empty[3] = { 0, 0, 0 };
1205
1206 for (i = 0; i < 4; i++) {
1207 int uninitialized_var(width), height;
1208 cvt = &(timing->data.other_data.data.cvt[i]);
1209
1210 if (!memcmp(cvt->code, empty, 3))
1211 continue;
1212
1213 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
1214 switch (cvt->code[1] & 0x0c) {
1215 case 0x00:
1216 width = height * 4 / 3;
1217 break;
1218 case 0x04:
1219 width = height * 16 / 9;
1220 break;
1221 case 0x08:
1222 width = height * 16 / 10;
1223 break;
1224 case 0x0c:
1225 width = height * 15 / 9;
1226 break;
1227 }
1228
1229 for (j = 1; j < 5; j++) {
1230 if (cvt->code[2] & (1 << j)) {
1231 newmode = drm_cvt_mode(dev, width, height,
1232 rates[j], j == 0,
1233 false, false);
1234 if (newmode) {
1235 drm_mode_probed_add(connector, newmode);
1236 modes++;
1237 }
1238 }
1239 }
1240 }
1241
1242 return modes;
1243}
1244
1245static void
1246do_cvt_mode(struct detailed_timing *timing, void *c)
1247{
1248 struct detailed_mode_closure *closure = c;
1249 struct detailed_non_pixel *data = &timing->data.other_data;
1250
1251 if (data->type == EDID_DETAIL_CVT_3BYTE)
1252 closure->modes += drm_cvt_modes(closure->connector, timing);
1253}
1254
1255static int
1256add_cvt_modes(struct drm_connector *connector, struct edid *edid)
1257{
1258 struct detailed_mode_closure closure = {
1259 connector, edid, 0, 0, 0
1260 };
1261
1262 if (version_greater(edid, 1, 2))
1263 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
1264
1265 /* XXX should also look for CVT codes in VTB blocks */
1266
1267 return closure.modes;
1268}
1269
1270static void
1271do_detailed_mode(struct detailed_timing *timing, void *c)
1272{
1273 struct detailed_mode_closure *closure = c;
1274 struct drm_display_mode *newmode;
1275
1276 if (timing->pixel_clock) {
1277 newmode = drm_mode_detailed(closure->connector->dev,
1278 closure->edid, timing,
1279 closure->quirks);
1280 if (!newmode)
1281 return;
1282
1283 if (closure->preferred)
1284 newmode->type |= DRM_MODE_TYPE_PREFERRED;
1285
1286 drm_mode_probed_add(closure->connector, newmode);
1287 closure->modes++;
1288 closure->preferred = 0;
1289 }
1290}
1291
1292/*
1293 * add_detailed_modes - Add modes from detailed timings
1294 * @connector: attached connector
1295 * @edid: EDID block to scan
1296 * @quirks: quirks to apply
1297 */
1298static int
1299add_detailed_modes(struct drm_connector *connector, struct edid *edid,
1300 u32 quirks)
1301{
1302 struct detailed_mode_closure closure = {
1303 connector,
1304 edid,
1305 1,
1306 quirks,
1307 0
1308 };
1309
1310 if (closure.preferred && !version_greater(edid, 1, 3))
1311 closure.preferred =
1312 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
1313
1314 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
1315
1316 return closure.modes;
1317}
1318
1319#define HDMI_IDENTIFIER 0x000C03
1320#define AUDIO_BLOCK 0x01
1321#define VENDOR_BLOCK 0x03
1322#define EDID_BASIC_AUDIO (1 << 6)
1323
1324/**
1325 * Search EDID for CEA extension block.
1326 */
1327u8 *drm_find_cea_extension(struct edid *edid)
1328{
1329 u8 *edid_ext = NULL;
1330 int i;
1331
1332 /* No EDID or EDID extensions */
1333 if (edid == NULL || edid->extensions == 0)
1334 return NULL;
1335
1336 /* Find CEA extension */
1337 for (i = 0; i < edid->extensions; i++) {
1338 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
1339 if (edid_ext[0] == CEA_EXT)
1340 break;
1341 }
1342
1343 if (i == edid->extensions)
1344 return NULL;
1345
1346 return edid_ext;
1347}
1348EXPORT_SYMBOL(drm_find_cea_extension);
1349
1350/**
1351 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
1352 * @edid: monitor EDID information
1353 *
1354 * Parse the CEA extension according to CEA-861-B.
1355 * Return true if HDMI, false if not or unknown.
1356 */
1357bool drm_detect_hdmi_monitor(struct edid *edid)
1358{
1359 u8 *edid_ext;
1360 int i, hdmi_id;
1361 int start_offset, end_offset;
1362 bool is_hdmi = false;
1363
1364 edid_ext = drm_find_cea_extension(edid);
1365 if (!edid_ext)
1366 goto end;
1367
1368 /* Data block offset in CEA extension block */
1369 start_offset = 4;
1370 end_offset = edid_ext[2];
1371
1372 /*
1373 * Because HDMI identifier is in Vendor Specific Block,
1374 * search it from all data blocks of CEA extension.
1375 */
1376 for (i = start_offset; i < end_offset;
1377 /* Increased by data block len */
1378 i += ((edid_ext[i] & 0x1f) + 1)) {
1379 /* Find vendor specific block */
1380 if ((edid_ext[i] >> 5) == VENDOR_BLOCK) {
1381 hdmi_id = edid_ext[i + 1] | (edid_ext[i + 2] << 8) |
1382 edid_ext[i + 3] << 16;
1383 /* Find HDMI identifier */
1384 if (hdmi_id == HDMI_IDENTIFIER)
1385 is_hdmi = true;
1386 break;
1387 }
1388 }
1389
1390end:
1391 return is_hdmi;
1392}
1393EXPORT_SYMBOL(drm_detect_hdmi_monitor);
1394
1395/**
1396 * drm_detect_monitor_audio - check monitor audio capability
1397 *
1398 * Monitor should have CEA extension block.
1399 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
1400 * audio' only. If there is any audio extension block and supported
1401 * audio format, assume at least 'basic audio' support, even if 'basic
1402 * audio' is not defined in EDID.
1403 *
1404 */
1405bool drm_detect_monitor_audio(struct edid *edid)
1406{
1407 u8 *edid_ext;
1408 int i, j;
1409 bool has_audio = false;
1410 int start_offset, end_offset;
1411
1412 edid_ext = drm_find_cea_extension(edid);
1413 if (!edid_ext)
1414 goto end;
1415
1416 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
1417
1418 if (has_audio) {
1419 DRM_DEBUG_KMS("Monitor has basic audio support\n");
1420 goto end;
1421 }
1422
1423 /* Data block offset in CEA extension block */
1424 start_offset = 4;
1425 end_offset = edid_ext[2];
1426
1427 for (i = start_offset; i < end_offset;
1428 i += ((edid_ext[i] & 0x1f) + 1)) {
1429 if ((edid_ext[i] >> 5) == AUDIO_BLOCK) {
1430 has_audio = true;
1431 for (j = 1; j < (edid_ext[i] & 0x1f); j += 3)
1432 DRM_DEBUG_KMS("CEA audio format %d\n",
1433 (edid_ext[i + j] >> 3) & 0xf);
1434 goto end;
1435 }
1436 }
1437end:
1438 return has_audio;
1439}
1440EXPORT_SYMBOL(drm_detect_monitor_audio);
1441
1442/**
1443 * drm_add_display_info - pull display info out if present
1444 * @edid: EDID data
1445 * @info: display info (attached to connector)
1446 *
1447 * Grab any available display info and stuff it into the drm_display_info
1448 * structure that's part of the connector. Useful for tracking bpp and
1449 * color spaces.
1450 */
1451static void drm_add_display_info(struct edid *edid,
1452 struct drm_display_info *info)
1453{
1454 u8 *edid_ext;
1455
1456 info->width_mm = edid->width_cm * 10;
1457 info->height_mm = edid->height_cm * 10;
1458
1459 /* driver figures it out in this case */
1460 info->bpc = 0;
1461 info->color_formats = 0;
1462
1463 /* Only defined for 1.4 with digital displays */
1464 if (edid->revision < 4)
1465 return;
1466
1467 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
1468 return;
1469
1470 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
1471 case DRM_EDID_DIGITAL_DEPTH_6:
1472 info->bpc = 6;
1473 break;
1474 case DRM_EDID_DIGITAL_DEPTH_8:
1475 info->bpc = 8;
1476 break;
1477 case DRM_EDID_DIGITAL_DEPTH_10:
1478 info->bpc = 10;
1479 break;
1480 case DRM_EDID_DIGITAL_DEPTH_12:
1481 info->bpc = 12;
1482 break;
1483 case DRM_EDID_DIGITAL_DEPTH_14:
1484 info->bpc = 14;
1485 break;
1486 case DRM_EDID_DIGITAL_DEPTH_16:
1487 info->bpc = 16;
1488 break;
1489 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
1490 default:
1491 info->bpc = 0;
1492 break;
1493 }
1494
1495 info->color_formats = DRM_COLOR_FORMAT_RGB444;
1496 if (info->color_formats & DRM_EDID_FEATURE_RGB_YCRCB444)
1497 info->color_formats = DRM_COLOR_FORMAT_YCRCB444;
1498 if (info->color_formats & DRM_EDID_FEATURE_RGB_YCRCB422)
1499 info->color_formats = DRM_COLOR_FORMAT_YCRCB422;
1500
1501 /* Get data from CEA blocks if present */
1502 edid_ext = drm_find_cea_extension(edid);
1503 if (!edid_ext)
1504 return;
1505
1506 info->cea_rev = edid_ext[1];
1507}
1508
1509/**
1510 * drm_add_edid_modes - add modes from EDID data, if available
1511 * @connector: connector we're probing
1512 * @edid: edid data
1513 *
1514 * Add the specified modes to the connector's mode list.
1515 *
1516 * Return number of modes added or 0 if we couldn't find any.
1517 */
1518int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
1519{
1520 int num_modes = 0;
1521 u32 quirks;
1522
1523 if (edid == NULL) {
1524 return 0;
1525 }
1526 if (!drm_edid_is_valid(edid)) {
1527 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
1528 drm_get_connector_name(connector));
1529 return 0;
1530 }
1531
1532 quirks = edid_get_quirks(edid);
1533
1534 /*
1535 * EDID spec says modes should be preferred in this order:
1536 * - preferred detailed mode
1537 * - other detailed modes from base block
1538 * - detailed modes from extension blocks
1539 * - CVT 3-byte code modes
1540 * - standard timing codes
1541 * - established timing codes
1542 * - modes inferred from GTF or CVT range information
1543 *
1544 * We get this pretty much right.
1545 *
1546 * XXX order for additional mode types in extension blocks?
1547 */
1548 num_modes += add_detailed_modes(connector, edid, quirks);
1549 num_modes += add_cvt_modes(connector, edid);
1550 num_modes += add_standard_modes(connector, edid);
1551 num_modes += add_established_modes(connector, edid);
1552 num_modes += add_inferred_modes(connector, edid);
1553
1554 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
1555 edid_fixup_preferred(connector, quirks);
1556
1557 drm_add_display_info(edid, &connector->display_info);
1558
1559 return num_modes;
1560}
1561EXPORT_SYMBOL(drm_add_edid_modes);
1562
1563/**
1564 * drm_add_modes_noedid - add modes for the connectors without EDID
1565 * @connector: connector we're probing
1566 * @hdisplay: the horizontal display limit
1567 * @vdisplay: the vertical display limit
1568 *
1569 * Add the specified modes to the connector's mode list. Only when the
1570 * hdisplay/vdisplay is not beyond the given limit, it will be added.
1571 *
1572 * Return number of modes added or 0 if we couldn't find any.
1573 */
1574int drm_add_modes_noedid(struct drm_connector *connector,
1575 int hdisplay, int vdisplay)
1576{
1577 int i, count, num_modes = 0;
1578 struct drm_display_mode *mode;
1579 struct drm_device *dev = connector->dev;
1580
1581 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
1582 if (hdisplay < 0)
1583 hdisplay = 0;
1584 if (vdisplay < 0)
1585 vdisplay = 0;
1586
1587 for (i = 0; i < count; i++) {
1588 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1589 if (hdisplay && vdisplay) {
1590 /*
1591 * Only when two are valid, they will be used to check
1592 * whether the mode should be added to the mode list of
1593 * the connector.
1594 */
1595 if (ptr->hdisplay > hdisplay ||
1596 ptr->vdisplay > vdisplay)
1597 continue;
1598 }
1599 if (drm_mode_vrefresh(ptr) > 61)
1600 continue;
1601 mode = drm_mode_duplicate(dev, ptr);
1602 if (mode) {
1603 drm_mode_probed_add(connector, mode);
1604 num_modes++;
1605 }
1606 }
1607 return num_modes;
1608}
1609EXPORT_SYMBOL(drm_add_modes_noedid);
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/bitfield.h>
32#include <linux/cec.h>
33#include <linux/hdmi.h>
34#include <linux/i2c.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/slab.h>
39#include <linux/vga_switcheroo.h>
40
41#include <drm/drm_displayid.h>
42#include <drm/drm_drv.h>
43#include <drm/drm_edid.h>
44#include <drm/drm_eld.h>
45#include <drm/drm_encoder.h>
46#include <drm/drm_print.h>
47
48#include "drm_crtc_internal.h"
49#include "drm_internal.h"
50
51static int oui(u8 first, u8 second, u8 third)
52{
53 return (first << 16) | (second << 8) | third;
54}
55
56#define EDID_EST_TIMINGS 16
57#define EDID_STD_TIMINGS 8
58#define EDID_DETAILED_TIMINGS 4
59
60/*
61 * EDID blocks out in the wild have a variety of bugs, try to collect
62 * them here (note that userspace may work around broken monitors first,
63 * but fixes should make their way here so that the kernel "just works"
64 * on as many displays as possible).
65 */
66
67/* First detailed mode wrong, use largest 60Hz mode */
68#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
69/* Reported 135MHz pixel clock is too high, needs adjustment */
70#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
71/* Prefer the largest mode at 75 Hz */
72#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
73/* Detail timing is in cm not mm */
74#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
75/* Detailed timing descriptors have bogus size values, so just take the
76 * maximum size and use that.
77 */
78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
79/* use +hsync +vsync for detailed mode */
80#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
81/* Force reduced-blanking timings for detailed modes */
82#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
83/* Force 8bpc */
84#define EDID_QUIRK_FORCE_8BPC (1 << 8)
85/* Force 12bpc */
86#define EDID_QUIRK_FORCE_12BPC (1 << 9)
87/* Force 6bpc */
88#define EDID_QUIRK_FORCE_6BPC (1 << 10)
89/* Force 10bpc */
90#define EDID_QUIRK_FORCE_10BPC (1 << 11)
91/* Non desktop display (i.e. HMD) */
92#define EDID_QUIRK_NON_DESKTOP (1 << 12)
93/* Cap the DSC target bitrate to 15bpp */
94#define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
95
96#define MICROSOFT_IEEE_OUI 0xca125c
97
98struct detailed_mode_closure {
99 struct drm_connector *connector;
100 const struct drm_edid *drm_edid;
101 bool preferred;
102 int modes;
103};
104
105#define LEVEL_DMT 0
106#define LEVEL_GTF 1
107#define LEVEL_GTF2 2
108#define LEVEL_CVT 3
109
110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111{ \
112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113 product_id), \
114 .quirks = _quirks \
115}
116
117static const struct edid_quirk {
118 u32 panel_id;
119 u32 quirks;
120} edid_quirk_list[] = {
121 /* Acer AL1706 */
122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123 /* Acer F51 */
124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125
126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128
129 /* BenQ GW2765 */
130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131
132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134
135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137
138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140
141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143
144 /* Belinea 10 15 55 */
145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147
148 /* Envision Peripherals, Inc. EN-7100e */
149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 /* Envision EN2028 */
151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152
153 /* Funai Electronics PM36B */
154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 EDID_QUIRK_DETAILED_IN_CM),
156
157 /* LG 27GP950 */
158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159
160 /* LG 27GN950 */
161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162
163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165
166 /* LG Philips LCD LP154W01-A5 */
167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169
170 /* Samsung SyncMaster 205BW. Note: irony */
171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 /* Samsung SyncMaster 22[5-6]BW */
173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175
176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178
179 /* ViewSonic VA2026w */
180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181
182 /* Medion MD 30217 PG */
183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184
185 /* Lenovo G50 */
186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187
188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190
191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193
194 /* Valve Index Headset */
195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212
213 /* HTC Vive and Vive Pro VR Headsets */
214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216
217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222
223 /* Windows Mixed Reality Headsets */
224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230
231 /* Sony PlayStation VR Headset */
232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233
234 /* Sensics VR Headsets */
235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236
237 /* OSVR HDK and HDK2 VR Headsets */
238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240};
241
242/*
243 * Autogenerated from the DMT spec.
244 * This table is copied from xfree86/modes/xf86EdidModes.c.
245 */
246static const struct drm_display_mode drm_dmt_modes[] = {
247 /* 0x01 - 640x350@85Hz */
248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 736, 832, 0, 350, 382, 385, 445, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 0x02 - 640x400@85Hz */
252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 736, 832, 0, 400, 401, 404, 445, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 0x03 - 720x400@85Hz */
256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 828, 936, 0, 400, 401, 404, 446, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 0x04 - 640x480@60Hz */
260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 752, 800, 0, 480, 490, 492, 525, 0,
262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 /* 0x05 - 640x480@72Hz */
264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 704, 832, 0, 480, 489, 492, 520, 0,
266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 /* 0x06 - 640x480@75Hz */
268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 720, 840, 0, 480, 481, 484, 500, 0,
270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 /* 0x07 - 640x480@85Hz */
272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 752, 832, 0, 480, 481, 484, 509, 0,
274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 /* 0x08 - 800x600@56Hz */
276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 896, 1024, 0, 600, 601, 603, 625, 0,
278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 0x09 - 800x600@60Hz */
280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 968, 1056, 0, 600, 601, 605, 628, 0,
282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 0x0a - 800x600@72Hz */
284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 976, 1040, 0, 600, 637, 643, 666, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 /* 0x0b - 800x600@75Hz */
288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 896, 1056, 0, 600, 601, 604, 625, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 /* 0x0c - 800x600@85Hz */
292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 896, 1048, 0, 600, 601, 604, 631, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 0x0d - 800x600@120Hz RB */
296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 880, 960, 0, 600, 603, 607, 636, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 0x0e - 848x480@60Hz */
300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 976, 1088, 0, 480, 486, 494, 517, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 /* 0x0f - 1024x768@43Hz, interlace */
304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 1208, 1264, 0, 768, 768, 776, 817, 0,
306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 DRM_MODE_FLAG_INTERLACE) },
308 /* 0x10 - 1024x768@60Hz */
309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 1184, 1344, 0, 768, 771, 777, 806, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 /* 0x11 - 1024x768@70Hz */
313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 1184, 1328, 0, 768, 771, 777, 806, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 /* 0x12 - 1024x768@75Hz */
317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 1136, 1312, 0, 768, 769, 772, 800, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 0x13 - 1024x768@85Hz */
321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 1168, 1376, 0, 768, 769, 772, 808, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 /* 0x14 - 1024x768@120Hz RB */
325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 1104, 1184, 0, 768, 771, 775, 813, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 0x15 - 1152x864@75Hz */
329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 1344, 1600, 0, 864, 865, 868, 900, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 0x55 - 1280x720@60Hz */
333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 1430, 1650, 0, 720, 725, 730, 750, 0,
335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x16 - 1280x768@60Hz RB */
337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 1360, 1440, 0, 768, 771, 778, 790, 0,
339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 /* 0x17 - 1280x768@60Hz */
341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 1472, 1664, 0, 768, 771, 778, 798, 0,
343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 /* 0x18 - 1280x768@75Hz */
345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 1488, 1696, 0, 768, 771, 778, 805, 0,
347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 0x19 - 1280x768@85Hz */
349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 1496, 1712, 0, 768, 771, 778, 809, 0,
351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 0x1a - 1280x768@120Hz RB */
353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 1360, 1440, 0, 768, 771, 778, 813, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 /* 0x1b - 1280x800@60Hz RB */
357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 1360, 1440, 0, 800, 803, 809, 823, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 /* 0x1c - 1280x800@60Hz */
361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 1480, 1680, 0, 800, 803, 809, 831, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 0x1d - 1280x800@75Hz */
365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 1488, 1696, 0, 800, 803, 809, 838, 0,
367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 /* 0x1e - 1280x800@85Hz */
369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 1496, 1712, 0, 800, 803, 809, 843, 0,
371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x1f - 1280x800@120Hz RB */
373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 1360, 1440, 0, 800, 803, 809, 847, 0,
375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 /* 0x20 - 1280x960@60Hz */
377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 1488, 1800, 0, 960, 961, 964, 1000, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 0x21 - 1280x960@85Hz */
381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 1504, 1728, 0, 960, 961, 964, 1011, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x22 - 1280x960@120Hz RB */
385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 1360, 1440, 0, 960, 963, 967, 1017, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 0x23 - 1280x1024@60Hz */
389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x24 - 1280x1024@75Hz */
393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 0x25 - 1280x1024@85Hz */
397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 /* 0x26 - 1280x1024@120Hz RB */
401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 /* 0x27 - 1360x768@60Hz */
405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 1536, 1792, 0, 768, 771, 777, 795, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 0x28 - 1360x768@120Hz RB */
409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 1440, 1520, 0, 768, 771, 776, 813, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 0x51 - 1366x768@60Hz */
413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 1579, 1792, 0, 768, 771, 774, 798, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 /* 0x56 - 1366x768@60Hz */
417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 1436, 1500, 0, 768, 769, 772, 800, 0,
419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x29 - 1400x1050@60Hz RB */
421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 /* 0x2a - 1400x1050@60Hz */
425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 0x2b - 1400x1050@75Hz */
429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x2c - 1400x1050@85Hz */
433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x2d - 1400x1050@120Hz RB */
437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x2e - 1440x900@60Hz RB */
441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 1520, 1600, 0, 900, 903, 909, 926, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 0x2f - 1440x900@60Hz */
445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 1672, 1904, 0, 900, 903, 909, 934, 0,
447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 /* 0x30 - 1440x900@75Hz */
449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 1688, 1936, 0, 900, 903, 909, 942, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 0x31 - 1440x900@85Hz */
453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 1696, 1952, 0, 900, 903, 909, 948, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 0x32 - 1440x900@120Hz RB */
457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 1520, 1600, 0, 900, 903, 909, 953, 0,
459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 /* 0x53 - 1600x900@60Hz */
461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 1704, 1800, 0, 900, 901, 904, 1000, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 /* 0x33 - 1600x1200@60Hz */
465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x34 - 1600x1200@65Hz */
469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x35 - 1600x1200@70Hz */
473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 /* 0x36 - 1600x1200@75Hz */
477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x37 - 1600x1200@85Hz */
481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 /* 0x38 - 1600x1200@120Hz RB */
485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 /* 0x39 - 1680x1050@60Hz RB */
489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 /* 0x3a - 1680x1050@60Hz */
493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 /* 0x3b - 1680x1050@75Hz */
497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 /* 0x3c - 1680x1050@85Hz */
501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 /* 0x3d - 1680x1050@120Hz RB */
505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 /* 0x3e - 1792x1344@60Hz */
509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 /* 0x3f - 1792x1344@75Hz */
513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 /* 0x40 - 1792x1344@120Hz RB */
517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 /* 0x41 - 1856x1392@60Hz */
521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 /* 0x42 - 1856x1392@75Hz */
525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 /* 0x43 - 1856x1392@120Hz RB */
529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 /* 0x52 - 1920x1080@60Hz */
533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 /* 0x44 - 1920x1200@60Hz RB */
537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 /* 0x45 - 1920x1200@60Hz */
541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 /* 0x46 - 1920x1200@75Hz */
545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 /* 0x47 - 1920x1200@85Hz */
549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 /* 0x48 - 1920x1200@120Hz RB */
553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 /* 0x49 - 1920x1440@60Hz */
557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 /* 0x4a - 1920x1440@75Hz */
561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 /* 0x4b - 1920x1440@120Hz RB */
565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 /* 0x54 - 2048x1152@60Hz */
569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 /* 0x4c - 2560x1600@60Hz RB */
573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 /* 0x4d - 2560x1600@60Hz */
577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 /* 0x4e - 2560x1600@75Hz */
581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 /* 0x4f - 2560x1600@85Hz */
585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 /* 0x50 - 2560x1600@120Hz RB */
589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 /* 0x57 - 4096x2160@60Hz RB */
593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 /* 0x58 - 4096x2160@59.94Hz RB */
597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600};
601
602/*
603 * These more or less come from the DMT spec. The 720x400 modes are
604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607 * mode.
608 *
609 * The DMT modes have been fact-checked; the rest are mild guesses.
610 */
611static const struct drm_display_mode edid_est_modes[] = {
612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 968, 1056, 0, 600, 601, 605, 628, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 896, 1024, 0, 600, 601, 603, 625, 0,
617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 720, 840, 0, 480, 481, 484, 500, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 704, 832, 0, 480, 489, 492, 520, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 768, 864, 0, 480, 483, 486, 525, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 752, 800, 0, 480, 490, 492, 525, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 846, 900, 0, 400, 421, 423, 449, 0,
632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 846, 900, 0, 400, 412, 414, 449, 0,
635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 1136, 1312, 0, 768, 769, 772, 800, 0,
641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 1184, 1328, 0, 768, 771, 777, 806, 0,
644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 1184, 1344, 0, 768, 771, 777, 806, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 1208, 1264, 0, 768, 768, 776, 817, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 928, 1152, 0, 624, 625, 628, 667, 0,
653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 896, 1056, 0, 600, 601, 604, 625, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 976, 1040, 0, 600, 637, 643, 666, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 1344, 1600, 0, 864, 865, 868, 900, 0,
662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663};
664
665struct minimode {
666 short w;
667 short h;
668 short r;
669 short rb;
670};
671
672static const struct minimode est3_modes[] = {
673 /* byte 6 */
674 { 640, 350, 85, 0 },
675 { 640, 400, 85, 0 },
676 { 720, 400, 85, 0 },
677 { 640, 480, 85, 0 },
678 { 848, 480, 60, 0 },
679 { 800, 600, 85, 0 },
680 { 1024, 768, 85, 0 },
681 { 1152, 864, 75, 0 },
682 /* byte 7 */
683 { 1280, 768, 60, 1 },
684 { 1280, 768, 60, 0 },
685 { 1280, 768, 75, 0 },
686 { 1280, 768, 85, 0 },
687 { 1280, 960, 60, 0 },
688 { 1280, 960, 85, 0 },
689 { 1280, 1024, 60, 0 },
690 { 1280, 1024, 85, 0 },
691 /* byte 8 */
692 { 1360, 768, 60, 0 },
693 { 1440, 900, 60, 1 },
694 { 1440, 900, 60, 0 },
695 { 1440, 900, 75, 0 },
696 { 1440, 900, 85, 0 },
697 { 1400, 1050, 60, 1 },
698 { 1400, 1050, 60, 0 },
699 { 1400, 1050, 75, 0 },
700 /* byte 9 */
701 { 1400, 1050, 85, 0 },
702 { 1680, 1050, 60, 1 },
703 { 1680, 1050, 60, 0 },
704 { 1680, 1050, 75, 0 },
705 { 1680, 1050, 85, 0 },
706 { 1600, 1200, 60, 0 },
707 { 1600, 1200, 65, 0 },
708 { 1600, 1200, 70, 0 },
709 /* byte 10 */
710 { 1600, 1200, 75, 0 },
711 { 1600, 1200, 85, 0 },
712 { 1792, 1344, 60, 0 },
713 { 1792, 1344, 75, 0 },
714 { 1856, 1392, 60, 0 },
715 { 1856, 1392, 75, 0 },
716 { 1920, 1200, 60, 1 },
717 { 1920, 1200, 60, 0 },
718 /* byte 11 */
719 { 1920, 1200, 75, 0 },
720 { 1920, 1200, 85, 0 },
721 { 1920, 1440, 60, 0 },
722 { 1920, 1440, 75, 0 },
723};
724
725static const struct minimode extra_modes[] = {
726 { 1024, 576, 60, 0 },
727 { 1366, 768, 60, 0 },
728 { 1600, 900, 60, 0 },
729 { 1680, 945, 60, 0 },
730 { 1920, 1080, 60, 0 },
731 { 2048, 1152, 60, 0 },
732 { 2048, 1536, 60, 0 },
733};
734
735/*
736 * From CEA/CTA-861 spec.
737 *
738 * Do not access directly, instead always use cea_mode_for_vic().
739 */
740static const struct drm_display_mode edid_cea_modes_1[] = {
741 /* 1 - 640x480@60Hz 4:3 */
742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 752, 800, 0, 480, 490, 492, 525, 0,
744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 /* 2 - 720x480@60Hz 4:3 */
747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 798, 858, 0, 480, 489, 495, 525, 0,
749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 /* 3 - 720x480@60Hz 16:9 */
752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 798, 858, 0, 480, 489, 495, 525, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 /* 4 - 1280x720@60Hz 16:9 */
757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 1430, 1650, 0, 720, 725, 730, 750, 0,
759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 5 - 1920x1080i@60Hz 16:9 */
762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 DRM_MODE_FLAG_INTERLACE),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 /* 6 - 720(1440)x480i@60Hz 4:3 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 /* 7 - 720(1440)x480i@60Hz 16:9 */
774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 480, 488, 494, 525, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 /* 8 - 720(1440)x240@60Hz 4:3 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 /* 9 - 720(1440)x240@60Hz 16:9 */
786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 801, 858, 0, 240, 244, 247, 262, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_DBLCLK),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 /* 10 - 2880x480i@60Hz 4:3 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 /* 11 - 2880x480i@60Hz 16:9 */
798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 480, 488, 494, 525, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 DRM_MODE_FLAG_INTERLACE),
802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 /* 12 - 2880x240@60Hz 4:3 */
804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 3204, 3432, 0, 240, 244, 247, 262, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 /* 13 - 2880x240@60Hz 16:9 */
809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 3204, 3432, 0, 240, 244, 247, 262, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 /* 14 - 1440x480@60Hz 4:3 */
814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 1596, 1716, 0, 480, 489, 495, 525, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 /* 15 - 1440x480@60Hz 16:9 */
819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 1596, 1716, 0, 480, 489, 495, 525, 0,
821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 /* 16 - 1920x1080@60Hz 16:9 */
824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 /* 17 - 720x576@50Hz 4:3 */
829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 796, 864, 0, 576, 581, 586, 625, 0,
831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 /* 18 - 720x576@50Hz 16:9 */
834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 796, 864, 0, 576, 581, 586, 625, 0,
836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 /* 19 - 1280x720@50Hz 16:9 */
839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 1760, 1980, 0, 720, 725, 730, 750, 0,
841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 20 - 1920x1080i@50Hz 16:9 */
844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 DRM_MODE_FLAG_INTERLACE),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 21 - 720(1440)x576i@50Hz 4:3 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 /* 22 - 720(1440)x576i@50Hz 16:9 */
856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 576, 580, 586, 625, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 /* 23 - 720(1440)x288@50Hz 4:3 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 /* 24 - 720(1440)x288@50Hz 16:9 */
868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 795, 864, 0, 288, 290, 293, 312, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_DBLCLK),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 25 - 2880x576i@50Hz 4:3 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 26 - 2880x576i@50Hz 16:9 */
880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 576, 580, 586, 625, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 DRM_MODE_FLAG_INTERLACE),
884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 27 - 2880x288@50Hz 4:3 */
886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 3180, 3456, 0, 288, 290, 293, 312, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 /* 28 - 2880x288@50Hz 16:9 */
891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 3180, 3456, 0, 288, 290, 293, 312, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 29 - 1440x576@50Hz 4:3 */
896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 1592, 1728, 0, 576, 581, 586, 625, 0,
898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 /* 30 - 1440x576@50Hz 16:9 */
901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 1592, 1728, 0, 576, 581, 586, 625, 0,
903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 /* 31 - 1920x1080@50Hz 16:9 */
906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 /* 32 - 1920x1080@24Hz 16:9 */
911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 /* 33 - 1920x1080@25Hz 16:9 */
916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 /* 34 - 1920x1080@30Hz 16:9 */
921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 /* 35 - 2880x480@60Hz 4:3 */
926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 3192, 3432, 0, 480, 489, 495, 525, 0,
928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 /* 36 - 2880x480@60Hz 16:9 */
931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 3192, 3432, 0, 480, 489, 495, 525, 0,
933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 /* 37 - 2880x576@50Hz 4:3 */
936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 3184, 3456, 0, 576, 581, 586, 625, 0,
938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 /* 38 - 2880x576@50Hz 16:9 */
941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 3184, 3456, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 39 - 1920x1080i@50Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 40 - 1920x1080i@100Hz 16:9 */
952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 DRM_MODE_FLAG_INTERLACE),
956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 /* 41 - 1280x720@100Hz 16:9 */
958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 1760, 1980, 0, 720, 725, 730, 750, 0,
960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 42 - 720x576@100Hz 4:3 */
963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 796, 864, 0, 576, 581, 586, 625, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 /* 43 - 720x576@100Hz 16:9 */
968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 796, 864, 0, 576, 581, 586, 625, 0,
970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 44 - 720(1440)x576i@100Hz 4:3 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 45 - 720(1440)x576i@100Hz 16:9 */
979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 795, 864, 0, 576, 580, 586, 625, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 46 - 1920x1080i@120Hz 16:9 */
985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 DRM_MODE_FLAG_INTERLACE),
989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 47 - 1280x720@120Hz 16:9 */
991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 1430, 1650, 0, 720, 725, 730, 750, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 48 - 720x480@120Hz 4:3 */
996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 798, 858, 0, 480, 489, 495, 525, 0,
998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 /* 49 - 720x480@120Hz 16:9 */
1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 798, 858, 0, 480, 489, 495, 525, 0,
1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 50 - 720(1440)x480i@120Hz 4:3 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 /* 51 - 720(1440)x480i@120Hz 16:9 */
1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 801, 858, 0, 480, 488, 494, 525, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 /* 52 - 720x576@200Hz 4:3 */
1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 796, 864, 0, 576, 581, 586, 625, 0,
1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 /* 53 - 720x576@200Hz 16:9 */
1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 796, 864, 0, 576, 581, 586, 625, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 /* 54 - 720(1440)x576i@200Hz 4:3 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 /* 55 - 720(1440)x576i@200Hz 16:9 */
1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 795, 864, 0, 576, 580, 586, 625, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 /* 56 - 720x480@240Hz 4:3 */
1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 798, 858, 0, 480, 489, 495, 525, 0,
1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 /* 57 - 720x480@240Hz 16:9 */
1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 798, 858, 0, 480, 489, 495, 525, 0,
1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 /* 58 - 720(1440)x480i@240Hz 4:3 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 /* 59 - 720(1440)x480i@240Hz 16:9 */
1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 801, 858, 0, 480, 488, 494, 525, 0,
1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 /* 60 - 1280x720@24Hz 16:9 */
1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 3080, 3300, 0, 720, 725, 730, 750, 0,
1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 /* 61 - 1280x720@25Hz 16:9 */
1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 3740, 3960, 0, 720, 725, 730, 750, 0,
1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 /* 62 - 1280x720@30Hz 16:9 */
1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 3080, 3300, 0, 720, 725, 730, 750, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 /* 63 - 1920x1080@120Hz 16:9 */
1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 /* 64 - 1920x1080@100Hz 16:9 */
1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 /* 65 - 1280x720@24Hz 64:27 */
1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 3080, 3300, 0, 720, 725, 730, 750, 0,
1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 /* 66 - 1280x720@25Hz 64:27 */
1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 3740, 3960, 0, 720, 725, 730, 750, 0,
1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 /* 67 - 1280x720@30Hz 64:27 */
1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 3080, 3300, 0, 720, 725, 730, 750, 0,
1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 /* 68 - 1280x720@50Hz 64:27 */
1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 1760, 1980, 0, 720, 725, 730, 750, 0,
1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 /* 69 - 1280x720@60Hz 64:27 */
1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 1430, 1650, 0, 720, 725, 730, 750, 0,
1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 /* 70 - 1280x720@100Hz 64:27 */
1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 1760, 1980, 0, 720, 725, 730, 750, 0,
1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 /* 71 - 1280x720@120Hz 64:27 */
1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 1430, 1650, 0, 720, 725, 730, 750, 0,
1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 /* 72 - 1920x1080@24Hz 64:27 */
1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 /* 73 - 1920x1080@25Hz 64:27 */
1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 /* 74 - 1920x1080@30Hz 64:27 */
1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 /* 75 - 1920x1080@50Hz 64:27 */
1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 /* 76 - 1920x1080@60Hz 64:27 */
1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 /* 77 - 1920x1080@100Hz 64:27 */
1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 /* 78 - 1920x1080@120Hz 64:27 */
1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 /* 79 - 1680x720@24Hz 64:27 */
1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 3080, 3300, 0, 720, 725, 730, 750, 0,
1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 /* 80 - 1680x720@25Hz 64:27 */
1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 2948, 3168, 0, 720, 725, 730, 750, 0,
1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 /* 81 - 1680x720@30Hz 64:27 */
1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 2420, 2640, 0, 720, 725, 730, 750, 0,
1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 /* 82 - 1680x720@50Hz 64:27 */
1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 1980, 2200, 0, 720, 725, 730, 750, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 /* 83 - 1680x720@60Hz 64:27 */
1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 1980, 2200, 0, 720, 725, 730, 750, 0,
1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 /* 84 - 1680x720@100Hz 64:27 */
1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 1780, 2000, 0, 720, 725, 730, 825, 0,
1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 /* 85 - 1680x720@120Hz 64:27 */
1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 1780, 2000, 0, 720, 725, 730, 825, 0,
1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 /* 86 - 2560x1080@24Hz 64:27 */
1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 /* 87 - 2560x1080@25Hz 64:27 */
1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 /* 88 - 2560x1080@30Hz 64:27 */
1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 /* 89 - 2560x1080@50Hz 64:27 */
1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 /* 90 - 2560x1080@60Hz 64:27 */
1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 /* 91 - 2560x1080@100Hz 64:27 */
1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 /* 92 - 2560x1080@120Hz 64:27 */
1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 /* 93 - 3840x2160@24Hz 16:9 */
1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 /* 94 - 3840x2160@25Hz 16:9 */
1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 /* 95 - 3840x2160@30Hz 16:9 */
1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 /* 96 - 3840x2160@50Hz 16:9 */
1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 /* 97 - 3840x2160@60Hz 16:9 */
1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 /* 98 - 4096x2160@24Hz 256:135 */
1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 /* 99 - 4096x2160@25Hz 256:135 */
1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 /* 100 - 4096x2160@30Hz 256:135 */
1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 /* 101 - 4096x2160@50Hz 256:135 */
1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 /* 102 - 4096x2160@60Hz 256:135 */
1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 /* 103 - 3840x2160@24Hz 64:27 */
1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 /* 104 - 3840x2160@25Hz 64:27 */
1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 /* 105 - 3840x2160@30Hz 64:27 */
1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 /* 106 - 3840x2160@50Hz 64:27 */
1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 /* 107 - 3840x2160@60Hz 64:27 */
1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 /* 108 - 1280x720@48Hz 16:9 */
1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 2280, 2500, 0, 720, 725, 730, 750, 0,
1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 /* 109 - 1280x720@48Hz 64:27 */
1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 2280, 2500, 0, 720, 725, 730, 750, 0,
1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 /* 110 - 1680x720@48Hz 64:27 */
1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 2530, 2750, 0, 720, 725, 730, 750, 0,
1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 /* 111 - 1920x1080@48Hz 16:9 */
1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 /* 112 - 1920x1080@48Hz 64:27 */
1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 /* 113 - 2560x1080@48Hz 64:27 */
1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 /* 114 - 3840x2160@48Hz 16:9 */
1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 /* 115 - 4096x2160@48Hz 256:135 */
1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 /* 116 - 3840x2160@48Hz 64:27 */
1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 /* 117 - 3840x2160@100Hz 16:9 */
1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 /* 118 - 3840x2160@120Hz 16:9 */
1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 /* 119 - 3840x2160@100Hz 64:27 */
1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 /* 120 - 3840x2160@120Hz 64:27 */
1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 /* 121 - 5120x2160@24Hz 64:27 */
1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 /* 122 - 5120x2160@25Hz 64:27 */
1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 /* 123 - 5120x2160@30Hz 64:27 */
1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 /* 124 - 5120x2160@48Hz 64:27 */
1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 /* 125 - 5120x2160@50Hz 64:27 */
1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 /* 126 - 5120x2160@60Hz 64:27 */
1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 /* 127 - 5120x2160@100Hz 64:27 */
1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409 /* 193 - 5120x2160@120Hz 64:27 */
1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 /* 194 - 7680x4320@24Hz 16:9 */
1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 /* 195 - 7680x4320@25Hz 16:9 */
1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 /* 196 - 7680x4320@30Hz 16:9 */
1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 /* 197 - 7680x4320@48Hz 16:9 */
1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 /* 198 - 7680x4320@50Hz 16:9 */
1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 /* 199 - 7680x4320@60Hz 16:9 */
1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 /* 200 - 7680x4320@100Hz 16:9 */
1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 /* 201 - 7680x4320@120Hz 16:9 */
1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 /* 202 - 7680x4320@24Hz 64:27 */
1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 /* 203 - 7680x4320@25Hz 64:27 */
1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 /* 204 - 7680x4320@30Hz 64:27 */
1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 /* 205 - 7680x4320@48Hz 64:27 */
1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 /* 206 - 7680x4320@50Hz 64:27 */
1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 /* 207 - 7680x4320@60Hz 64:27 */
1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 /* 208 - 7680x4320@100Hz 64:27 */
1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 /* 209 - 7680x4320@120Hz 64:27 */
1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 /* 210 - 10240x4320@24Hz 64:27 */
1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 /* 211 - 10240x4320@25Hz 64:27 */
1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 /* 212 - 10240x4320@30Hz 64:27 */
1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 /* 213 - 10240x4320@48Hz 64:27 */
1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 /* 214 - 10240x4320@50Hz 64:27 */
1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 /* 215 - 10240x4320@60Hz 64:27 */
1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 /* 216 - 10240x4320@100Hz 64:27 */
1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 /* 217 - 10240x4320@120Hz 64:27 */
1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 /* 218 - 4096x2160@100Hz 256:135 */
1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 /* 219 - 4096x2160@120Hz 256:135 */
1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550 /* 0 - dummy, VICs start at 1 */
1551 { },
1552 /* 1 - 3840x2160@30Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4016, 4104, 4400, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 2 - 3840x2160@25Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 4896, 4984, 5280, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 3 - 3840x2160@24Hz */
1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 3840, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 /* 4 - 4096x2160@24Hz (SMPTE) */
1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 4096, 5116, 5204, 5500, 0,
1573 2160, 2168, 2178, 2250, 0,
1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584 /* Size allocated for edid */
1585 size_t size;
1586 const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593 int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595 return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600 return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605 return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610 return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615 return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622 return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627 return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633 int num_blocks;
1634
1635 /* Starting point */
1636 num_blocks = edid_block_count(drm_edid->edid);
1637
1638 /* HF-EEODB override */
1639 if (drm_edid->size >= edid_size_by_blocks(2)) {
1640 int eeodb;
1641
1642 /*
1643 * Note: HF-EEODB may specify a smaller extension count than the
1644 * regular one. Unlike in buffer allocation, here we can use it.
1645 */
1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 if (eeodb)
1648 num_blocks = eeodb;
1649 }
1650
1651 return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657 /* Limit by allocated size */
1658 return min(__drm_edid_block_count(drm_edid),
1659 (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665 return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670 return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674 int index)
1675{
1676 return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 const struct edid *edid)
1685{
1686 if (!edid)
1687 return NULL;
1688
1689 memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691 drm_edid->edid = edid;
1692 drm_edid->size = edid_size(edid);
1693
1694 return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 * // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710 const struct drm_edid *drm_edid;
1711
1712 /* Current block index. */
1713 int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 struct drm_edid_iter *iter)
1718{
1719 memset(iter, 0, sizeof(*iter));
1720
1721 iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726 const void *block = NULL;
1727
1728 if (!iter->drm_edid)
1729 return NULL;
1730
1731 if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734 return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter) \
1738 while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742 memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751 memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764 const struct edid *edid = _edid;
1765 int i, score = 0;
1766
1767 for (i = 0; i < sizeof(edid_header); i++) {
1768 if (edid->header[i] == edid_header[i])
1769 score++;
1770 }
1771
1772 return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
1782{
1783 const u8 *block = _block;
1784 int i;
1785 u8 csum = 0, crc = 0;
1786
1787 for (i = 0; i < EDID_LENGTH - 1; i++)
1788 csum += block[i];
1789
1790 crc = 0x100 - csum;
1791
1792 return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797 const struct edid *block = _block;
1798
1799 return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804 const u8 *block = _block;
1805
1806 return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811 return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823 int edid1_len, edid2_len;
1824 bool edid1_present = edid1 != NULL;
1825 bool edid2_present = edid2 != NULL;
1826
1827 if (edid1_present != edid2_present)
1828 return false;
1829
1830 if (edid1) {
1831 edid1_len = edid_size(edid1);
1832 edid2_len = edid_size(edid2);
1833
1834 if (edid1_len != edid2_len)
1835 return false;
1836
1837 if (memcmp(edid1, edid2, edid1_len))
1838 return false;
1839 }
1840
1841 return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846 EDID_BLOCK_OK = 0,
1847 EDID_BLOCK_READ_FAIL,
1848 EDID_BLOCK_NULL,
1849 EDID_BLOCK_ZERO,
1850 EDID_BLOCK_HEADER_CORRUPT,
1851 EDID_BLOCK_HEADER_REPAIR,
1852 EDID_BLOCK_HEADER_FIXED,
1853 EDID_BLOCK_CHECKSUM,
1854 EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858 bool is_base_block)
1859{
1860 const struct edid *block = _block;
1861
1862 if (!block)
1863 return EDID_BLOCK_NULL;
1864
1865 if (is_base_block) {
1866 int score = drm_edid_header_is_valid(block);
1867
1868 if (score < clamp(edid_fixup, 0, 8)) {
1869 if (edid_block_is_zero(block))
1870 return EDID_BLOCK_ZERO;
1871 else
1872 return EDID_BLOCK_HEADER_CORRUPT;
1873 }
1874
1875 if (score < 8)
1876 return EDID_BLOCK_HEADER_REPAIR;
1877 }
1878
1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 if (edid_block_is_zero(block))
1881 return EDID_BLOCK_ZERO;
1882 else
1883 return EDID_BLOCK_CHECKSUM;
1884 }
1885
1886 if (is_base_block) {
1887 if (block->version != 1)
1888 return EDID_BLOCK_VERSION;
1889 }
1890
1891 return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896 return status == EDID_BLOCK_OK ||
1897 status == EDID_BLOCK_HEADER_FIXED ||
1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903 return edid_block_status_valid(edid_block_check(block, base),
1904 edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908 const struct edid *block,
1909 int block_num)
1910{
1911 switch (status) {
1912 case EDID_BLOCK_OK:
1913 break;
1914 case EDID_BLOCK_READ_FAIL:
1915 pr_debug("EDID block %d read failed\n", block_num);
1916 break;
1917 case EDID_BLOCK_NULL:
1918 pr_debug("EDID block %d pointer is NULL\n", block_num);
1919 break;
1920 case EDID_BLOCK_ZERO:
1921 pr_notice("EDID block %d is all zeroes\n", block_num);
1922 break;
1923 case EDID_BLOCK_HEADER_CORRUPT:
1924 pr_notice("EDID has corrupt header\n");
1925 break;
1926 case EDID_BLOCK_HEADER_REPAIR:
1927 pr_debug("EDID corrupt header needs repair\n");
1928 break;
1929 case EDID_BLOCK_HEADER_FIXED:
1930 pr_debug("EDID corrupt header fixed\n");
1931 break;
1932 case EDID_BLOCK_CHECKSUM:
1933 if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 block_num, edid_block_tag(block),
1936 edid_block_compute_checksum(block));
1937 } else {
1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 block_num, edid_block_tag(block),
1940 edid_block_compute_checksum(block));
1941 }
1942 break;
1943 case EDID_BLOCK_VERSION:
1944 pr_notice("EDID has major version %d, instead of 1\n",
1945 block->version);
1946 break;
1947 default:
1948 WARN(1, "EDID block %d unknown edid block status code %d\n",
1949 block_num, status);
1950 break;
1951 }
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956 enum edid_block_status status;
1957 char prefix[20];
1958
1959 status = edid_block_check(block, block_num == 0);
1960 if (status == EDID_BLOCK_ZERO)
1961 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 sprintf(prefix, "\t[%02x] BAD ", block_num);
1964 else
1965 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984 bool *edid_corrupt)
1985{
1986 struct edid *block = (struct edid *)_block;
1987 enum edid_block_status status;
1988 bool is_base_block = block_num == 0;
1989 bool valid;
1990
1991 if (WARN_ON(!block))
1992 return false;
1993
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 edid_header_fix(block);
1998
1999 /* Retry with fixed header, update status if that worked. */
2000 status = edid_block_check(block, is_base_block);
2001 if (status == EDID_BLOCK_OK)
2002 status = EDID_BLOCK_HEADER_FIXED;
2003 }
2004
2005 if (edid_corrupt) {
2006 /*
2007 * Unknown major version isn't corrupt but we can't use it. Only
2008 * the base block can reset edid_corrupt to false.
2009 */
2010 if (is_base_block &&
2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 *edid_corrupt = false;
2013 else if (status != EDID_BLOCK_OK)
2014 *edid_corrupt = true;
2015 }
2016
2017 edid_block_status_print(status, block, block_num);
2018
2019 /* Determine whether we can use this block with this status. */
2020 valid = edid_block_status_valid(status, edid_block_tag(block));
2021
2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 pr_notice("Raw EDID:\n");
2024 edid_block_dump(KERN_NOTICE, block, block_num);
2025 }
2026
2027 return valid;
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041 int i;
2042
2043 if (!edid)
2044 return false;
2045
2046 for (i = 0; i < edid_block_count(edid); i++) {
2047 void *block = (void *)edid_block_data(edid, i);
2048
2049 if (!drm_edid_block_valid(block, i, true, NULL))
2050 return false;
2051 }
2052
2053 return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068 int i;
2069
2070 if (!drm_edid)
2071 return false;
2072
2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 return false;
2075
2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 const void *block = drm_edid_block_data(drm_edid, i);
2078
2079 if (!edid_block_valid(block, i == 0))
2080 return false;
2081 }
2082
2083 return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 size_t *alloc_size)
2089{
2090 struct edid *new;
2091 int i, valid_blocks = 0;
2092
2093 /*
2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 * back to regular extension count here. We don't want to start
2096 * modifying the HF-EEODB extension too.
2097 */
2098 for (i = 0; i < edid_block_count(edid); i++) {
2099 const void *src_block = edid_block_data(edid, i);
2100
2101 if (edid_block_valid(src_block, i == 0)) {
2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104 memmove(dst_block, src_block, EDID_LENGTH);
2105 valid_blocks++;
2106 }
2107 }
2108
2109 /* We already trusted the base block to be valid here... */
2110 if (WARN_ON(!valid_blocks)) {
2111 kfree(edid);
2112 return NULL;
2113 }
2114
2115 edid->extensions = valid_blocks - 1;
2116 edid->checksum = edid_block_compute_checksum(edid);
2117
2118 *alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 if (!new)
2122 kfree(edid);
2123
2124 return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142 struct i2c_adapter *adapter = data;
2143 unsigned char start = block * EDID_LENGTH;
2144 unsigned char segment = block >> 1;
2145 unsigned char xfers = segment ? 3 : 2;
2146 int ret, retries = 5;
2147
2148 /*
2149 * The core I2C driver will automatically retry the transfer if the
2150 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 * are susceptible to errors under a heavily loaded machine and
2152 * generate spurious NAKs and timeouts. Retrying the transfer
2153 * of the individual block a few times seems to overcome this.
2154 */
2155 do {
2156 struct i2c_msg msgs[] = {
2157 {
2158 .addr = DDC_SEGMENT_ADDR,
2159 .flags = 0,
2160 .len = 1,
2161 .buf = &segment,
2162 }, {
2163 .addr = DDC_ADDR,
2164 .flags = 0,
2165 .len = 1,
2166 .buf = &start,
2167 }, {
2168 .addr = DDC_ADDR,
2169 .flags = I2C_M_RD,
2170 .len = len,
2171 .buf = buf,
2172 }
2173 };
2174
2175 /*
2176 * Avoid sending the segment addr to not upset non-compliant
2177 * DDC monitors.
2178 */
2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181 if (ret == -ENXIO) {
2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 adapter->name);
2184 break;
2185 }
2186 } while (ret != xfers && --retries);
2187
2188 return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192 const struct edid *edid, int num_blocks)
2193{
2194 int i;
2195 u8 last_block;
2196
2197 /*
2198 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 * of 0x7e in the EDID of the _index_ of the last block in the
2201 * combined chunk of memory.
2202 */
2203 last_block = edid->extensions;
2204
2205 /* Calculate real checksum for the last edid extension block data */
2206 if (last_block < num_blocks)
2207 connector->real_edid_checksum =
2208 edid_block_compute_checksum(edid + last_block);
2209
2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 return;
2212
2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 connector->base.id, connector->name);
2215 for (i = 0; i < num_blocks; i++)
2216 edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222 const struct drm_edid *override = NULL;
2223
2224 mutex_lock(&connector->edid_override_mutex);
2225
2226 if (connector->edid_override)
2227 override = drm_edid_dup(connector->edid_override);
2228
2229 mutex_unlock(&connector->edid_override_mutex);
2230
2231 if (!override)
2232 override = drm_edid_load_firmware(connector);
2233
2234 return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240 const struct drm_edid *drm_edid;
2241
2242 mutex_lock(&connector->edid_override_mutex);
2243
2244 drm_edid = connector->edid_override;
2245 if (drm_edid)
2246 seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248 mutex_unlock(&connector->edid_override_mutex);
2249
2250 return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 size_t size)
2256{
2257 const struct drm_edid *drm_edid;
2258
2259 drm_edid = drm_edid_alloc(edid, size);
2260 if (!drm_edid_valid(drm_edid)) {
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 connector->base.id, connector->name);
2263 drm_edid_free(drm_edid);
2264 return -EINVAL;
2265 }
2266
2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 connector->base.id, connector->name);
2269
2270 mutex_lock(&connector->edid_override_mutex);
2271
2272 drm_edid_free(connector->edid_override);
2273 connector->edid_override = drm_edid;
2274
2275 mutex_unlock(&connector->edid_override_mutex);
2276
2277 return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 connector->base.id, connector->name);
2285
2286 mutex_lock(&connector->edid_override_mutex);
2287
2288 drm_edid_free(connector->edid_override);
2289 connector->edid_override = NULL;
2290
2291 mutex_unlock(&connector->edid_override_mutex);
2292
2293 return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309 const struct drm_edid *override;
2310 int num_modes = 0;
2311
2312 override = drm_edid_override_get(connector);
2313 if (override) {
2314 if (drm_edid_connector_update(connector, override) == 0)
2315 num_modes = drm_edid_connector_add_modes(connector);
2316
2317 drm_edid_free(override);
2318
2319 drm_dbg_kms(connector->dev,
2320 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 connector->base.id, connector->name, num_modes);
2322 }
2323
2324 return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 read_block_fn read_block,
2332 void *context)
2333{
2334 enum edid_block_status status;
2335 bool is_base_block = block_num == 0;
2336 int try;
2337
2338 for (try = 0; try < 4; try++) {
2339 if (read_block(context, block, block_num, EDID_LENGTH))
2340 return EDID_BLOCK_READ_FAIL;
2341
2342 status = edid_block_check(block, is_base_block);
2343 if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 edid_header_fix(block);
2345
2346 /* Retry with fixed header, update status if that worked. */
2347 status = edid_block_check(block, is_base_block);
2348 if (status == EDID_BLOCK_OK)
2349 status = EDID_BLOCK_HEADER_FIXED;
2350 }
2351
2352 if (edid_block_status_valid(status, edid_block_tag(block)))
2353 break;
2354
2355 /* Fail early for unrepairable base block all zeros. */
2356 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357 break;
2358 }
2359
2360 return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 read_block_fn read_block, void *context,
2365 size_t *size)
2366{
2367 enum edid_block_status status;
2368 int i, num_blocks, invalid_blocks = 0;
2369 const struct drm_edid *override;
2370 struct edid *edid, *new;
2371 size_t alloc_size = EDID_LENGTH;
2372
2373 override = drm_edid_override_get(connector);
2374 if (override) {
2375 alloc_size = override->size;
2376 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 drm_edid_free(override);
2378 if (!edid)
2379 return NULL;
2380 goto ok;
2381 }
2382
2383 edid = kmalloc(alloc_size, GFP_KERNEL);
2384 if (!edid)
2385 return NULL;
2386
2387 status = edid_block_read(edid, 0, read_block, context);
2388
2389 edid_block_status_print(status, edid, 0);
2390
2391 if (status == EDID_BLOCK_READ_FAIL)
2392 goto fail;
2393
2394 /* FIXME: Clarify what a corrupt EDID actually means. */
2395 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 connector->edid_corrupt = false;
2397 else
2398 connector->edid_corrupt = true;
2399
2400 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 if (status == EDID_BLOCK_ZERO)
2402 connector->null_edid_counter++;
2403
2404 connector_bad_edid(connector, edid, 1);
2405 goto fail;
2406 }
2407
2408 if (!edid_extension_block_count(edid))
2409 goto ok;
2410
2411 alloc_size = edid_size(edid);
2412 new = krealloc(edid, alloc_size, GFP_KERNEL);
2413 if (!new)
2414 goto fail;
2415 edid = new;
2416
2417 num_blocks = edid_block_count(edid);
2418 for (i = 1; i < num_blocks; i++) {
2419 void *block = (void *)edid_block_data(edid, i);
2420
2421 status = edid_block_read(block, i, read_block, context);
2422
2423 edid_block_status_print(status, block, i);
2424
2425 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 if (status == EDID_BLOCK_READ_FAIL)
2427 goto fail;
2428 invalid_blocks++;
2429 } else if (i == 1) {
2430 /*
2431 * If the first EDID extension is a CTA extension, and
2432 * the first Data Block is HF-EEODB, override the
2433 * extension block count.
2434 *
2435 * Note: HF-EEODB could specify a smaller extension
2436 * count too, but we can't risk allocating a smaller
2437 * amount.
2438 */
2439 int eeodb = edid_hfeeodb_block_count(edid);
2440
2441 if (eeodb > num_blocks) {
2442 num_blocks = eeodb;
2443 alloc_size = edid_size_by_blocks(num_blocks);
2444 new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 if (!new)
2446 goto fail;
2447 edid = new;
2448 }
2449 }
2450 }
2451
2452 if (invalid_blocks) {
2453 connector_bad_edid(connector, edid, num_blocks);
2454
2455 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456 }
2457
2458ok:
2459 if (size)
2460 *size = alloc_size;
2461
2462 return edid;
2463
2464fail:
2465 kfree(edid);
2466 return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490 read_block_fn read_block,
2491 void *context)
2492{
2493 return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509 if (!drm_edid || !drm_edid->size)
2510 return NULL;
2511
2512 /*
2513 * Do not return pointers where relying on EDID extension count would
2514 * lead to buffer overflow.
2515 */
2516 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517 return NULL;
2518
2519 return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526 struct drm_edid *drm_edid;
2527
2528 if (!edid || !size || size < EDID_LENGTH)
2529 return NULL;
2530
2531 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532 if (drm_edid) {
2533 drm_edid->edid = edid;
2534 drm_edid->size = size;
2535 }
2536
2537 return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556 const struct drm_edid *drm_edid;
2557
2558 if (!edid || !size || size < EDID_LENGTH)
2559 return NULL;
2560
2561 edid = kmemdup(edid, size, GFP_KERNEL);
2562 if (!edid)
2563 return NULL;
2564
2565 drm_edid = _drm_edid_alloc(edid, size);
2566 if (!drm_edid)
2567 kfree(edid);
2568
2569 return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583 if (!drm_edid)
2584 return NULL;
2585
2586 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596 if (!drm_edid)
2597 return;
2598
2599 kfree(drm_edid->edid);
2600 kfree(drm_edid);
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613 unsigned char out;
2614
2615 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible. If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630 struct i2c_adapter *adapter)
2631{
2632 struct edid *edid;
2633
2634 if (connector->force == DRM_FORCE_OFF)
2635 return NULL;
2636
2637 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638 return NULL;
2639
2640 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641 drm_connector_update_edid_property(connector, edid);
2642 return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670 read_block_fn read_block,
2671 void *context)
2672{
2673 const struct drm_edid *drm_edid;
2674 struct edid *edid;
2675 size_t size = 0;
2676
2677 edid = _drm_do_get_edid(connector, read_block, context, &size);
2678 if (!edid)
2679 return NULL;
2680
2681 /* Sanity check for now */
2682 drm_WARN_ON(connector->dev, !size);
2683
2684 drm_edid = _drm_edid_alloc(edid, size);
2685 if (!drm_edid)
2686 kfree(edid);
2687
2688 return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711 struct i2c_adapter *adapter)
2712{
2713 const struct drm_edid *drm_edid;
2714
2715 if (connector->force == DRM_FORCE_OFF)
2716 return NULL;
2717
2718 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719 return NULL;
2720
2721 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723 /* Note: Do *not* call connector updates here. */
2724
2725 return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745 if (drm_WARN_ON(connector->dev, !connector->ddc))
2746 return NULL;
2747
2748 return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754 /*
2755 * We represent the ID as a 32-bit number so it can easily be compared
2756 * with "==".
2757 *
2758 * NOTE that we deal with endianness differently for the top half
2759 * of this ID than for the bottom half. The bottom half (the product
2760 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762 * gets stored as big endian because that makes
2763 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764 * to write (it's easier to extract the ASCII). It doesn't really
2765 * matter, though, as long as the number here is unique.
2766 */
2767 return (u32)edid->mfg_id[0] << 24 |
2768 (u32)edid->mfg_id[1] << 16 |
2769 (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 * See the functions drm_edid_encode_panel_id() and
2792 * drm_edid_decode_panel_id() for some details on the structure of this
2793 * ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798 enum edid_block_status status;
2799 void *base_block;
2800 u32 panel_id = 0;
2801
2802 /*
2803 * There are no manufacturer IDs of 0, so if there is a problem reading
2804 * the EDID then we'll just return 0.
2805 */
2806
2807 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808 if (!base_block)
2809 return 0;
2810
2811 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813 edid_block_status_print(status, base_block, 0);
2814
2815 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816 panel_id = edid_extract_panel_id(base_block);
2817 else
2818 edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820 kfree(base_block);
2821
2822 return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838 struct i2c_adapter *adapter)
2839{
2840 struct drm_device *dev = connector->dev;
2841 struct pci_dev *pdev = to_pci_dev(dev->dev);
2842 struct edid *edid;
2843
2844 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845 return NULL;
2846
2847 vga_switcheroo_lock_ddc(pdev);
2848 edid = drm_get_edid(connector, adapter);
2849 vga_switcheroo_unlock_ddc(pdev);
2850
2851 return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867 struct i2c_adapter *adapter)
2868{
2869 struct drm_device *dev = connector->dev;
2870 struct pci_dev *pdev = to_pci_dev(dev->dev);
2871 const struct drm_edid *drm_edid;
2872
2873 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874 return NULL;
2875
2876 vga_switcheroo_lock_ddc(pdev);
2877 drm_edid = drm_edid_read_ddc(connector, adapter);
2878 vga_switcheroo_unlock_ddc(pdev);
2879
2880 return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892 if (!edid)
2893 return NULL;
2894
2895 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910 const struct edid_quirk *quirk;
2911 int i;
2912
2913 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914 quirk = &edid_quirk_list[i];
2915 if (quirk->panel_id == panel_id)
2916 return quirk->quirks;
2917 }
2918
2919 return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
2930{
2931 const struct drm_display_info *info = &connector->display_info;
2932 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933 int target_refresh = 0;
2934 int cur_vrefresh, preferred_vrefresh;
2935
2936 if (list_empty(&connector->probed_modes))
2937 return;
2938
2939 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940 target_refresh = 60;
2941 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942 target_refresh = 75;
2943
2944 preferred_mode = list_first_entry(&connector->probed_modes,
2945 struct drm_display_mode, head);
2946
2947 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950 if (cur_mode == preferred_mode)
2951 continue;
2952
2953 /* Largest mode is preferred */
2954 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955 preferred_mode = cur_mode;
2956
2957 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959 /* At a given size, try to get closest to target refresh */
2960 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963 preferred_mode = cur_mode;
2964 }
2965 }
2966
2967 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973 return (mode->htotal - mode->hdisplay == 160) &&
2974 (mode->hsync_end - mode->hdisplay == 80) &&
2975 (mode->hsync_end - mode->hsync_start == 32) &&
2976 (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992 int hsize, int vsize, int fresh,
2993 bool rb)
2994{
2995 int i;
2996
2997 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000 if (hsize != ptr->hdisplay)
3001 continue;
3002 if (vsize != ptr->vdisplay)
3003 continue;
3004 if (fresh != drm_mode_vrefresh(ptr))
3005 continue;
3006 if (rb != mode_is_rb(ptr))
3007 continue;
3008
3009 return drm_mode_duplicate(dev, ptr);
3010 }
3011
3012 return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022 return descriptor->pixel_clock == 0 &&
3023 descriptor->data.other_data.pad1 == 0 &&
3024 descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031 return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039 int i, n;
3040 u8 d = ext[0x02];
3041 const u8 *det_base = ext + d;
3042
3043 if (d < 4 || d > 127)
3044 return;
3045
3046 n = (127 - d) / 18;
3047 for (i = 0; i < n; i++)
3048 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054 unsigned int i, n = min((int)ext[0x02], 6);
3055 const u8 *det_base = ext + 5;
3056
3057 if (ext[0x01] != 1)
3058 return; /* unknown version */
3059
3060 for (i = 0; i < n; i++)
3061 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065 detailed_cb *cb, void *closure)
3066{
3067 struct drm_edid_iter edid_iter;
3068 const u8 *ext;
3069 int i;
3070
3071 if (!drm_edid)
3072 return;
3073
3074 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075 cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077 drm_edid_iter_begin(drm_edid, &edid_iter);
3078 drm_edid_iter_for_each(ext, &edid_iter) {
3079 switch (*ext) {
3080 case CEA_EXT:
3081 cea_for_each_detailed_block(ext, cb, closure);
3082 break;
3083 case VTB_EXT:
3084 vtb_for_each_detailed_block(ext, cb, closure);
3085 break;
3086 default:
3087 break;
3088 }
3089 }
3090 drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096 bool *res = data;
3097
3098 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099 return;
3100
3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106 *res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113 if (drm_edid->edid->revision >= 4) {
3114 bool ret = false;
3115
3116 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117 return ret;
3118 }
3119
3120 return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126 const struct detailed_timing **res = data;
3127
3128 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129 return;
3130
3131 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134 *res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141 const struct detailed_timing *descriptor = NULL;
3142
3143 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153 const struct detailed_timing *descriptor = NULL;
3154
3155 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165 const struct detailed_timing *descriptor = NULL;
3166
3167 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177 const struct detailed_timing *descriptor = NULL;
3178
3179 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189 const struct detailed_timing *descriptor = NULL;
3190
3191 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
3200{
3201 int *res = data;
3202
3203 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204 return;
3205
3206 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208 switch (descriptor->data.other_data.data.range.flags) {
3209 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210 *res = LEVEL_GTF;
3211 break;
3212 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213 *res = LEVEL_GTF2;
3214 break;
3215 case DRM_EDID_CVT_SUPPORT_FLAG:
3216 *res = LEVEL_CVT;
3217 break;
3218 default:
3219 break;
3220 }
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226 const struct edid *edid = drm_edid->edid;
3227
3228 if (edid->revision >= 4) {
3229 /*
3230 * If the range descriptor doesn't
3231 * indicate otherwise default to CVT
3232 */
3233 int ret = LEVEL_CVT;
3234
3235 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237 return ret;
3238 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239 return LEVEL_GTF2;
3240 } else if (edid->revision >= 2) {
3241 return LEVEL_GTF;
3242 } else {
3243 return LEVEL_DMT;
3244 }
3245}
3246
3247/*
3248 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254 return (a == 0x00 && b == 0x00) ||
3255 (a == 0x01 && b == 0x01) ||
3256 (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261 if (mode->htotal <= 0)
3262 return 0;
3263
3264 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269 const struct drm_edid *drm_edid,
3270 int hsize, int vsize, int vrefresh_rate)
3271{
3272 struct drm_display_mode *mode;
3273
3274 /*
3275 * This is potentially wrong if there's ever a monitor with
3276 * more than one ranges section, each claiming a different
3277 * secondary GTF curve. Please don't do that.
3278 */
3279 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280 if (!mode)
3281 return NULL;
3282
3283 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284 drm_mode_destroy(dev, mode);
3285 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286 vrefresh_rate, 0, 0,
3287 drm_gtf2_m(drm_edid),
3288 drm_gtf2_2c(drm_edid),
3289 drm_gtf2_k(drm_edid),
3290 drm_gtf2_2j(drm_edid));
3291 }
3292
3293 return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301 const struct drm_edid *drm_edid,
3302 const struct std_timing *t)
3303{
3304 struct drm_device *dev = connector->dev;
3305 struct drm_display_mode *m, *mode = NULL;
3306 int hsize, vsize;
3307 int vrefresh_rate;
3308 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309 >> EDID_TIMING_ASPECT_SHIFT;
3310 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311 >> EDID_TIMING_VFREQ_SHIFT;
3312 int timing_level = standard_timing_level(drm_edid);
3313
3314 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315 return NULL;
3316
3317 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318 hsize = t->hsize * 8 + 248;
3319 /* vrefresh_rate = vfreq + 60 */
3320 vrefresh_rate = vfreq + 60;
3321 /* the vdisplay is calculated based on the aspect ratio */
3322 if (aspect_ratio == 0) {
3323 if (drm_edid->edid->revision < 3)
3324 vsize = hsize;
3325 else
3326 vsize = (hsize * 10) / 16;
3327 } else if (aspect_ratio == 1)
3328 vsize = (hsize * 3) / 4;
3329 else if (aspect_ratio == 2)
3330 vsize = (hsize * 4) / 5;
3331 else
3332 vsize = (hsize * 9) / 16;
3333
3334 /* HDTV hack, part 1 */
3335 if (vrefresh_rate == 60 &&
3336 ((hsize == 1360 && vsize == 765) ||
3337 (hsize == 1368 && vsize == 769))) {
3338 hsize = 1366;
3339 vsize = 768;
3340 }
3341
3342 /*
3343 * If this connector already has a mode for this size and refresh
3344 * rate (because it came from detailed or CVT info), use that
3345 * instead. This way we don't have to guess at interlace or
3346 * reduced blanking.
3347 */
3348 list_for_each_entry(m, &connector->probed_modes, head)
3349 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350 drm_mode_vrefresh(m) == vrefresh_rate)
3351 return NULL;
3352
3353 /* HDTV hack, part 2 */
3354 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356 false);
3357 if (!mode)
3358 return NULL;
3359 mode->hdisplay = 1366;
3360 mode->hsync_start = mode->hsync_start - 1;
3361 mode->hsync_end = mode->hsync_end - 1;
3362 return mode;
3363 }
3364
3365 /* check whether it can be found in default mode table */
3366 if (drm_monitor_supports_rb(drm_edid)) {
3367 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368 true);
3369 if (mode)
3370 return mode;
3371 }
3372 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373 if (mode)
3374 return mode;
3375
3376 /* okay, generate it */
3377 switch (timing_level) {
3378 case LEVEL_DMT:
3379 break;
3380 case LEVEL_GTF:
3381 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382 break;
3383 case LEVEL_GTF2:
3384 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385 break;
3386 case LEVEL_CVT:
3387 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388 false);
3389 break;
3390 }
3391 return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded. Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size. Technically we
3400 * should be checking refresh rate too. Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404 const struct detailed_pixel_timing *pt)
3405{
3406 int i;
3407 static const struct {
3408 int w, h;
3409 } cea_interlaced[] = {
3410 { 1920, 1080 },
3411 { 720, 480 },
3412 { 1440, 480 },
3413 { 2880, 480 },
3414 { 720, 576 },
3415 { 1440, 576 },
3416 { 2880, 576 },
3417 };
3418
3419 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420 return;
3421
3422 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423 if ((mode->hdisplay == cea_interlaced[i].w) &&
3424 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425 mode->vdisplay *= 2;
3426 mode->vsync_start *= 2;
3427 mode->vsync_end *= 2;
3428 mode->vtotal *= 2;
3429 mode->vtotal |= 1;
3430 }
3431 }
3432
3433 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442 const struct drm_edid *drm_edid,
3443 const struct detailed_timing *timing)
3444{
3445 const struct drm_display_info *info = &connector->display_info;
3446 struct drm_device *dev = connector->dev;
3447 struct drm_display_mode *mode;
3448 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458 /* ignore tiny modes */
3459 if (hactive < 64 || vactive < 64)
3460 return NULL;
3461
3462 if (pt->misc & DRM_EDID_PT_STEREO) {
3463 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464 connector->base.id, connector->name);
3465 return NULL;
3466 }
3467 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469 connector->base.id, connector->name);
3470 }
3471
3472 /* it is incorrect if hsync/vsync width is zero */
3473 if (!hsync_pulse_width || !vsync_pulse_width) {
3474 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475 connector->base.id, connector->name);
3476 return NULL;
3477 }
3478
3479 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481 if (!mode)
3482 return NULL;
3483
3484 goto set_size;
3485 }
3486
3487 mode = drm_mode_create(dev);
3488 if (!mode)
3489 return NULL;
3490
3491 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492 mode->clock = 1088 * 10;
3493 else
3494 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496 mode->hdisplay = hactive;
3497 mode->hsync_start = mode->hdisplay + hsync_offset;
3498 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499 mode->htotal = mode->hdisplay + hblank;
3500
3501 mode->vdisplay = vactive;
3502 mode->vsync_start = mode->vdisplay + vsync_offset;
3503 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504 mode->vtotal = mode->vdisplay + vblank;
3505
3506 /* Some EDIDs have bogus h/vsync_end values */
3507 if (mode->hsync_end > mode->htotal) {
3508 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509 connector->base.id, connector->name,
3510 mode->hsync_end, mode->htotal);
3511 mode->hsync_end = mode->htotal;
3512 }
3513 if (mode->vsync_end > mode->vtotal) {
3514 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515 connector->base.id, connector->name,
3516 mode->vsync_end, mode->vtotal);
3517 mode->vsync_end = mode->vtotal;
3518 }
3519
3520 drm_mode_do_interlace_quirk(mode, pt);
3521
3522 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524 } else {
3525 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529 }
3530
3531set_size:
3532 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536 mode->width_mm *= 10;
3537 mode->height_mm *= 10;
3538 }
3539
3540 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541 mode->width_mm = drm_edid->edid->width_cm * 10;
3542 mode->height_mm = drm_edid->edid->height_cm * 10;
3543 }
3544
3545 mode->type = DRM_MODE_TYPE_DRIVER;
3546 drm_mode_set_name(mode);
3547
3548 return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553 const struct edid *edid, const u8 *t)
3554{
3555 int hsync, hmin, hmax;
3556
3557 hmin = t[7];
3558 if (edid->revision >= 4)
3559 hmin += ((t[4] & 0x04) ? 255 : 0);
3560 hmax = t[8];
3561 if (edid->revision >= 4)
3562 hmax += ((t[4] & 0x08) ? 255 : 0);
3563 hsync = drm_mode_hsync(mode);
3564
3565 return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570 const struct edid *edid, const u8 *t)
3571{
3572 int vsync, vmin, vmax;
3573
3574 vmin = t[5];
3575 if (edid->revision >= 4)
3576 vmin += ((t[4] & 0x01) ? 255 : 0);
3577 vmax = t[6];
3578 if (edid->revision >= 4)
3579 vmax += ((t[4] & 0x02) ? 255 : 0);
3580 vsync = drm_mode_vrefresh(mode);
3581
3582 return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588 /* unspecified */
3589 if (t[9] == 0 || t[9] == 255)
3590 return 0;
3591
3592 /* 1.4 with CVT support gives us real precision, yay */
3593 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596 /* 1.3 is pathetic, so fuzz up a bit */
3597 return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3603{
3604 const struct edid *edid = drm_edid->edid;
3605 u32 max_clock;
3606 const u8 *t = (const u8 *)timing;
3607
3608 if (!mode_in_hsync_range(mode, edid, t))
3609 return false;
3610
3611 if (!mode_in_vsync_range(mode, edid, t))
3612 return false;
3613
3614 max_clock = range_pixel_clock(edid, t);
3615 if (max_clock)
3616 if (mode->clock > max_clock)
3617 return false;
3618
3619 /* 1.4 max horizontal check */
3620 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3621 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3622 return false;
3623
3624 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3625 return false;
3626
3627 return true;
3628}
3629
3630static bool valid_inferred_mode(const struct drm_connector *connector,
3631 const struct drm_display_mode *mode)
3632{
3633 const struct drm_display_mode *m;
3634 bool ok = false;
3635
3636 list_for_each_entry(m, &connector->probed_modes, head) {
3637 if (mode->hdisplay == m->hdisplay &&
3638 mode->vdisplay == m->vdisplay &&
3639 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3640 return false; /* duplicated */
3641 if (mode->hdisplay <= m->hdisplay &&
3642 mode->vdisplay <= m->vdisplay)
3643 ok = true;
3644 }
3645 return ok;
3646}
3647
3648static int drm_dmt_modes_for_range(struct drm_connector *connector,
3649 const struct drm_edid *drm_edid,
3650 const struct detailed_timing *timing)
3651{
3652 int i, modes = 0;
3653 struct drm_display_mode *newmode;
3654 struct drm_device *dev = connector->dev;
3655
3656 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3657 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3658 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3659 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3660 if (newmode) {
3661 drm_mode_probed_add(connector, newmode);
3662 modes++;
3663 }
3664 }
3665 }
3666
3667 return modes;
3668}
3669
3670/* fix up 1366x768 mode from 1368x768;
3671 * GFT/CVT can't express 1366 width which isn't dividable by 8
3672 */
3673void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3674{
3675 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3676 mode->hdisplay = 1366;
3677 mode->hsync_start--;
3678 mode->hsync_end--;
3679 drm_mode_set_name(mode);
3680 }
3681}
3682
3683static int drm_gtf_modes_for_range(struct drm_connector *connector,
3684 const struct drm_edid *drm_edid,
3685 const struct detailed_timing *timing)
3686{
3687 int i, modes = 0;
3688 struct drm_display_mode *newmode;
3689 struct drm_device *dev = connector->dev;
3690
3691 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3692 const struct minimode *m = &extra_modes[i];
3693
3694 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3695 if (!newmode)
3696 return modes;
3697
3698 drm_mode_fixup_1366x768(newmode);
3699 if (!mode_in_range(newmode, drm_edid, timing) ||
3700 !valid_inferred_mode(connector, newmode)) {
3701 drm_mode_destroy(dev, newmode);
3702 continue;
3703 }
3704
3705 drm_mode_probed_add(connector, newmode);
3706 modes++;
3707 }
3708
3709 return modes;
3710}
3711
3712static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3713 const struct drm_edid *drm_edid,
3714 const struct detailed_timing *timing)
3715{
3716 int i, modes = 0;
3717 struct drm_display_mode *newmode;
3718 struct drm_device *dev = connector->dev;
3719
3720 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3721 const struct minimode *m = &extra_modes[i];
3722
3723 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3724 if (!newmode)
3725 return modes;
3726
3727 drm_mode_fixup_1366x768(newmode);
3728 if (!mode_in_range(newmode, drm_edid, timing) ||
3729 !valid_inferred_mode(connector, newmode)) {
3730 drm_mode_destroy(dev, newmode);
3731 continue;
3732 }
3733
3734 drm_mode_probed_add(connector, newmode);
3735 modes++;
3736 }
3737
3738 return modes;
3739}
3740
3741static int drm_cvt_modes_for_range(struct drm_connector *connector,
3742 const struct drm_edid *drm_edid,
3743 const struct detailed_timing *timing)
3744{
3745 int i, modes = 0;
3746 struct drm_display_mode *newmode;
3747 struct drm_device *dev = connector->dev;
3748 bool rb = drm_monitor_supports_rb(drm_edid);
3749
3750 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3751 const struct minimode *m = &extra_modes[i];
3752
3753 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3754 if (!newmode)
3755 return modes;
3756
3757 drm_mode_fixup_1366x768(newmode);
3758 if (!mode_in_range(newmode, drm_edid, timing) ||
3759 !valid_inferred_mode(connector, newmode)) {
3760 drm_mode_destroy(dev, newmode);
3761 continue;
3762 }
3763
3764 drm_mode_probed_add(connector, newmode);
3765 modes++;
3766 }
3767
3768 return modes;
3769}
3770
3771static void
3772do_inferred_modes(const struct detailed_timing *timing, void *c)
3773{
3774 struct detailed_mode_closure *closure = c;
3775 const struct detailed_non_pixel *data = &timing->data.other_data;
3776 const struct detailed_data_monitor_range *range = &data->data.range;
3777
3778 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3779 return;
3780
3781 closure->modes += drm_dmt_modes_for_range(closure->connector,
3782 closure->drm_edid,
3783 timing);
3784
3785 if (closure->drm_edid->edid->revision < 2)
3786 return; /* GTF not defined yet */
3787
3788 switch (range->flags) {
3789 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3790 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3791 closure->drm_edid,
3792 timing);
3793 break;
3794 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3795 closure->modes += drm_gtf_modes_for_range(closure->connector,
3796 closure->drm_edid,
3797 timing);
3798 break;
3799 case DRM_EDID_CVT_SUPPORT_FLAG:
3800 if (closure->drm_edid->edid->revision < 4)
3801 break;
3802
3803 closure->modes += drm_cvt_modes_for_range(closure->connector,
3804 closure->drm_edid,
3805 timing);
3806 break;
3807 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3808 default:
3809 break;
3810 }
3811}
3812
3813static int add_inferred_modes(struct drm_connector *connector,
3814 const struct drm_edid *drm_edid)
3815{
3816 struct detailed_mode_closure closure = {
3817 .connector = connector,
3818 .drm_edid = drm_edid,
3819 };
3820
3821 if (drm_edid->edid->revision >= 1)
3822 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3823
3824 return closure.modes;
3825}
3826
3827static int
3828drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3829{
3830 int i, j, m, modes = 0;
3831 struct drm_display_mode *mode;
3832 const u8 *est = ((const u8 *)timing) + 6;
3833
3834 for (i = 0; i < 6; i++) {
3835 for (j = 7; j >= 0; j--) {
3836 m = (i * 8) + (7 - j);
3837 if (m >= ARRAY_SIZE(est3_modes))
3838 break;
3839 if (est[i] & (1 << j)) {
3840 mode = drm_mode_find_dmt(connector->dev,
3841 est3_modes[m].w,
3842 est3_modes[m].h,
3843 est3_modes[m].r,
3844 est3_modes[m].rb);
3845 if (mode) {
3846 drm_mode_probed_add(connector, mode);
3847 modes++;
3848 }
3849 }
3850 }
3851 }
3852
3853 return modes;
3854}
3855
3856static void
3857do_established_modes(const struct detailed_timing *timing, void *c)
3858{
3859 struct detailed_mode_closure *closure = c;
3860
3861 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3862 return;
3863
3864 closure->modes += drm_est3_modes(closure->connector, timing);
3865}
3866
3867/*
3868 * Get established modes from EDID and add them. Each EDID block contains a
3869 * bitmap of the supported "established modes" list (defined above). Tease them
3870 * out and add them to the global modes list.
3871 */
3872static int add_established_modes(struct drm_connector *connector,
3873 const struct drm_edid *drm_edid)
3874{
3875 struct drm_device *dev = connector->dev;
3876 const struct edid *edid = drm_edid->edid;
3877 unsigned long est_bits = edid->established_timings.t1 |
3878 (edid->established_timings.t2 << 8) |
3879 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3880 int i, modes = 0;
3881 struct detailed_mode_closure closure = {
3882 .connector = connector,
3883 .drm_edid = drm_edid,
3884 };
3885
3886 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3887 if (est_bits & (1<<i)) {
3888 struct drm_display_mode *newmode;
3889
3890 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3891 if (newmode) {
3892 drm_mode_probed_add(connector, newmode);
3893 modes++;
3894 }
3895 }
3896 }
3897
3898 if (edid->revision >= 1)
3899 drm_for_each_detailed_block(drm_edid, do_established_modes,
3900 &closure);
3901
3902 return modes + closure.modes;
3903}
3904
3905static void
3906do_standard_modes(const struct detailed_timing *timing, void *c)
3907{
3908 struct detailed_mode_closure *closure = c;
3909 const struct detailed_non_pixel *data = &timing->data.other_data;
3910 struct drm_connector *connector = closure->connector;
3911 int i;
3912
3913 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3914 return;
3915
3916 for (i = 0; i < 6; i++) {
3917 const struct std_timing *std = &data->data.timings[i];
3918 struct drm_display_mode *newmode;
3919
3920 newmode = drm_mode_std(connector, closure->drm_edid, std);
3921 if (newmode) {
3922 drm_mode_probed_add(connector, newmode);
3923 closure->modes++;
3924 }
3925 }
3926}
3927
3928/*
3929 * Get standard modes from EDID and add them. Standard modes can be calculated
3930 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3931 * add them to the list.
3932 */
3933static int add_standard_modes(struct drm_connector *connector,
3934 const struct drm_edid *drm_edid)
3935{
3936 int i, modes = 0;
3937 struct detailed_mode_closure closure = {
3938 .connector = connector,
3939 .drm_edid = drm_edid,
3940 };
3941
3942 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3943 struct drm_display_mode *newmode;
3944
3945 newmode = drm_mode_std(connector, drm_edid,
3946 &drm_edid->edid->standard_timings[i]);
3947 if (newmode) {
3948 drm_mode_probed_add(connector, newmode);
3949 modes++;
3950 }
3951 }
3952
3953 if (drm_edid->edid->revision >= 1)
3954 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3955 &closure);
3956
3957 /* XXX should also look for standard codes in VTB blocks */
3958
3959 return modes + closure.modes;
3960}
3961
3962static int drm_cvt_modes(struct drm_connector *connector,
3963 const struct detailed_timing *timing)
3964{
3965 int i, j, modes = 0;
3966 struct drm_display_mode *newmode;
3967 struct drm_device *dev = connector->dev;
3968 const struct cvt_timing *cvt;
3969 static const int rates[] = { 60, 85, 75, 60, 50 };
3970 const u8 empty[3] = { 0, 0, 0 };
3971
3972 for (i = 0; i < 4; i++) {
3973 int width, height;
3974
3975 cvt = &(timing->data.other_data.data.cvt[i]);
3976
3977 if (!memcmp(cvt->code, empty, 3))
3978 continue;
3979
3980 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3981 switch (cvt->code[1] & 0x0c) {
3982 /* default - because compiler doesn't see that we've enumerated all cases */
3983 default:
3984 case 0x00:
3985 width = height * 4 / 3;
3986 break;
3987 case 0x04:
3988 width = height * 16 / 9;
3989 break;
3990 case 0x08:
3991 width = height * 16 / 10;
3992 break;
3993 case 0x0c:
3994 width = height * 15 / 9;
3995 break;
3996 }
3997
3998 for (j = 1; j < 5; j++) {
3999 if (cvt->code[2] & (1 << j)) {
4000 newmode = drm_cvt_mode(dev, width, height,
4001 rates[j], j == 0,
4002 false, false);
4003 if (newmode) {
4004 drm_mode_probed_add(connector, newmode);
4005 modes++;
4006 }
4007 }
4008 }
4009 }
4010
4011 return modes;
4012}
4013
4014static void
4015do_cvt_mode(const struct detailed_timing *timing, void *c)
4016{
4017 struct detailed_mode_closure *closure = c;
4018
4019 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4020 return;
4021
4022 closure->modes += drm_cvt_modes(closure->connector, timing);
4023}
4024
4025static int
4026add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4027{
4028 struct detailed_mode_closure closure = {
4029 .connector = connector,
4030 .drm_edid = drm_edid,
4031 };
4032
4033 if (drm_edid->edid->revision >= 3)
4034 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4035
4036 /* XXX should also look for CVT codes in VTB blocks */
4037
4038 return closure.modes;
4039}
4040
4041static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4042 struct drm_display_mode *mode);
4043
4044static void
4045do_detailed_mode(const struct detailed_timing *timing, void *c)
4046{
4047 struct detailed_mode_closure *closure = c;
4048 struct drm_display_mode *newmode;
4049
4050 if (!is_detailed_timing_descriptor(timing))
4051 return;
4052
4053 newmode = drm_mode_detailed(closure->connector,
4054 closure->drm_edid, timing);
4055 if (!newmode)
4056 return;
4057
4058 if (closure->preferred)
4059 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4060
4061 /*
4062 * Detailed modes are limited to 10kHz pixel clock resolution,
4063 * so fix up anything that looks like CEA/HDMI mode, but the clock
4064 * is just slightly off.
4065 */
4066 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4067
4068 drm_mode_probed_add(closure->connector, newmode);
4069 closure->modes++;
4070 closure->preferred = false;
4071}
4072
4073/*
4074 * add_detailed_modes - Add modes from detailed timings
4075 * @connector: attached connector
4076 * @drm_edid: EDID block to scan
4077 */
4078static int add_detailed_modes(struct drm_connector *connector,
4079 const struct drm_edid *drm_edid)
4080{
4081 struct detailed_mode_closure closure = {
4082 .connector = connector,
4083 .drm_edid = drm_edid,
4084 };
4085
4086 if (drm_edid->edid->revision >= 4)
4087 closure.preferred = true; /* first detailed timing is always preferred */
4088 else
4089 closure.preferred =
4090 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4091
4092 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4093
4094 return closure.modes;
4095}
4096
4097/* CTA-861-H Table 60 - CTA Tag Codes */
4098#define CTA_DB_AUDIO 1
4099#define CTA_DB_VIDEO 2
4100#define CTA_DB_VENDOR 3
4101#define CTA_DB_SPEAKER 4
4102#define CTA_DB_EXTENDED_TAG 7
4103
4104/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4105#define CTA_EXT_DB_VIDEO_CAP 0
4106#define CTA_EXT_DB_VENDOR 1
4107#define CTA_EXT_DB_HDR_STATIC_METADATA 6
4108#define CTA_EXT_DB_420_VIDEO_DATA 14
4109#define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4110#define CTA_EXT_DB_HF_EEODB 0x78
4111#define CTA_EXT_DB_HF_SCDB 0x79
4112
4113#define EDID_BASIC_AUDIO (1 << 6)
4114#define EDID_CEA_YCRCB444 (1 << 5)
4115#define EDID_CEA_YCRCB422 (1 << 4)
4116#define EDID_CEA_VCDB_QS (1 << 6)
4117
4118/*
4119 * Search EDID for CEA extension block.
4120 *
4121 * FIXME: Prefer not returning pointers to raw EDID data.
4122 */
4123const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4124 int ext_id, int *ext_index)
4125{
4126 const u8 *edid_ext = NULL;
4127 int i;
4128
4129 /* No EDID or EDID extensions */
4130 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4131 return NULL;
4132
4133 /* Find CEA extension */
4134 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4135 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4136 if (edid_block_tag(edid_ext) == ext_id)
4137 break;
4138 }
4139
4140 if (i >= drm_edid_extension_block_count(drm_edid))
4141 return NULL;
4142
4143 *ext_index = i + 1;
4144
4145 return edid_ext;
4146}
4147
4148/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4149static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4150{
4151 const struct displayid_block *block;
4152 struct displayid_iter iter;
4153 int ext_index = 0;
4154 bool found = false;
4155
4156 /* Look for a top level CEA extension block */
4157 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4158 return true;
4159
4160 /* CEA blocks can also be found embedded in a DisplayID block */
4161 displayid_iter_edid_begin(drm_edid, &iter);
4162 displayid_iter_for_each(block, &iter) {
4163 if (block->tag == DATA_BLOCK_CTA) {
4164 found = true;
4165 break;
4166 }
4167 }
4168 displayid_iter_end(&iter);
4169
4170 return found;
4171}
4172
4173static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4174{
4175 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4176 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4177
4178 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4179 return &edid_cea_modes_1[vic - 1];
4180 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4181 return &edid_cea_modes_193[vic - 193];
4182 return NULL;
4183}
4184
4185static u8 cea_num_vics(void)
4186{
4187 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4188}
4189
4190static u8 cea_next_vic(u8 vic)
4191{
4192 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4193 vic = 193;
4194 return vic;
4195}
4196
4197/*
4198 * Calculate the alternate clock for the CEA mode
4199 * (60Hz vs. 59.94Hz etc.)
4200 */
4201static unsigned int
4202cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4203{
4204 unsigned int clock = cea_mode->clock;
4205
4206 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4207 return clock;
4208
4209 /*
4210 * edid_cea_modes contains the 59.94Hz
4211 * variant for 240 and 480 line modes,
4212 * and the 60Hz variant otherwise.
4213 */
4214 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4215 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4216 else
4217 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4218
4219 return clock;
4220}
4221
4222static bool
4223cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4224{
4225 /*
4226 * For certain VICs the spec allows the vertical
4227 * front porch to vary by one or two lines.
4228 *
4229 * cea_modes[] stores the variant with the shortest
4230 * vertical front porch. We can adjust the mode to
4231 * get the other variants by simply increasing the
4232 * vertical front porch length.
4233 */
4234 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4235 cea_mode_for_vic(9)->vtotal != 262 ||
4236 cea_mode_for_vic(12)->vtotal != 262 ||
4237 cea_mode_for_vic(13)->vtotal != 262 ||
4238 cea_mode_for_vic(23)->vtotal != 312 ||
4239 cea_mode_for_vic(24)->vtotal != 312 ||
4240 cea_mode_for_vic(27)->vtotal != 312 ||
4241 cea_mode_for_vic(28)->vtotal != 312);
4242
4243 if (((vic == 8 || vic == 9 ||
4244 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4245 ((vic == 23 || vic == 24 ||
4246 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4247 mode->vsync_start++;
4248 mode->vsync_end++;
4249 mode->vtotal++;
4250
4251 return true;
4252 }
4253
4254 return false;
4255}
4256
4257static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4258 unsigned int clock_tolerance)
4259{
4260 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4261 u8 vic;
4262
4263 if (!to_match->clock)
4264 return 0;
4265
4266 if (to_match->picture_aspect_ratio)
4267 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4268
4269 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4270 struct drm_display_mode cea_mode;
4271 unsigned int clock1, clock2;
4272
4273 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4274
4275 /* Check both 60Hz and 59.94Hz */
4276 clock1 = cea_mode.clock;
4277 clock2 = cea_mode_alternate_clock(&cea_mode);
4278
4279 if (abs(to_match->clock - clock1) > clock_tolerance &&
4280 abs(to_match->clock - clock2) > clock_tolerance)
4281 continue;
4282
4283 do {
4284 if (drm_mode_match(to_match, &cea_mode, match_flags))
4285 return vic;
4286 } while (cea_mode_alternate_timings(vic, &cea_mode));
4287 }
4288
4289 return 0;
4290}
4291
4292/**
4293 * drm_match_cea_mode - look for a CEA mode matching given mode
4294 * @to_match: display mode
4295 *
4296 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4297 * mode.
4298 */
4299u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4300{
4301 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4302 u8 vic;
4303
4304 if (!to_match->clock)
4305 return 0;
4306
4307 if (to_match->picture_aspect_ratio)
4308 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4309
4310 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4311 struct drm_display_mode cea_mode;
4312 unsigned int clock1, clock2;
4313
4314 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4315
4316 /* Check both 60Hz and 59.94Hz */
4317 clock1 = cea_mode.clock;
4318 clock2 = cea_mode_alternate_clock(&cea_mode);
4319
4320 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4321 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4322 continue;
4323
4324 do {
4325 if (drm_mode_match(to_match, &cea_mode, match_flags))
4326 return vic;
4327 } while (cea_mode_alternate_timings(vic, &cea_mode));
4328 }
4329
4330 return 0;
4331}
4332EXPORT_SYMBOL(drm_match_cea_mode);
4333
4334static bool drm_valid_cea_vic(u8 vic)
4335{
4336 return cea_mode_for_vic(vic) != NULL;
4337}
4338
4339static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4340{
4341 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4342
4343 if (mode)
4344 return mode->picture_aspect_ratio;
4345
4346 return HDMI_PICTURE_ASPECT_NONE;
4347}
4348
4349static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4350{
4351 return edid_4k_modes[video_code].picture_aspect_ratio;
4352}
4353
4354/*
4355 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4356 * specific block).
4357 */
4358static unsigned int
4359hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4360{
4361 return cea_mode_alternate_clock(hdmi_mode);
4362}
4363
4364static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4365 unsigned int clock_tolerance)
4366{
4367 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4368 u8 vic;
4369
4370 if (!to_match->clock)
4371 return 0;
4372
4373 if (to_match->picture_aspect_ratio)
4374 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4375
4376 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4377 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4378 unsigned int clock1, clock2;
4379
4380 /* Make sure to also match alternate clocks */
4381 clock1 = hdmi_mode->clock;
4382 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4383
4384 if (abs(to_match->clock - clock1) > clock_tolerance &&
4385 abs(to_match->clock - clock2) > clock_tolerance)
4386 continue;
4387
4388 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4389 return vic;
4390 }
4391
4392 return 0;
4393}
4394
4395/*
4396 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4397 * @to_match: display mode
4398 *
4399 * An HDMI mode is one defined in the HDMI vendor specific block.
4400 *
4401 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4402 */
4403static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4404{
4405 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4406 u8 vic;
4407
4408 if (!to_match->clock)
4409 return 0;
4410
4411 if (to_match->picture_aspect_ratio)
4412 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4413
4414 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4415 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4416 unsigned int clock1, clock2;
4417
4418 /* Make sure to also match alternate clocks */
4419 clock1 = hdmi_mode->clock;
4420 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4421
4422 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4423 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4424 drm_mode_match(to_match, hdmi_mode, match_flags))
4425 return vic;
4426 }
4427 return 0;
4428}
4429
4430static bool drm_valid_hdmi_vic(u8 vic)
4431{
4432 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4433}
4434
4435static int add_alternate_cea_modes(struct drm_connector *connector,
4436 const struct drm_edid *drm_edid)
4437{
4438 struct drm_device *dev = connector->dev;
4439 struct drm_display_mode *mode, *tmp;
4440 LIST_HEAD(list);
4441 int modes = 0;
4442
4443 /* Don't add CTA modes if the CTA extension block is missing */
4444 if (!drm_edid_has_cta_extension(drm_edid))
4445 return 0;
4446
4447 /*
4448 * Go through all probed modes and create a new mode
4449 * with the alternate clock for certain CEA modes.
4450 */
4451 list_for_each_entry(mode, &connector->probed_modes, head) {
4452 const struct drm_display_mode *cea_mode = NULL;
4453 struct drm_display_mode *newmode;
4454 u8 vic = drm_match_cea_mode(mode);
4455 unsigned int clock1, clock2;
4456
4457 if (drm_valid_cea_vic(vic)) {
4458 cea_mode = cea_mode_for_vic(vic);
4459 clock2 = cea_mode_alternate_clock(cea_mode);
4460 } else {
4461 vic = drm_match_hdmi_mode(mode);
4462 if (drm_valid_hdmi_vic(vic)) {
4463 cea_mode = &edid_4k_modes[vic];
4464 clock2 = hdmi_mode_alternate_clock(cea_mode);
4465 }
4466 }
4467
4468 if (!cea_mode)
4469 continue;
4470
4471 clock1 = cea_mode->clock;
4472
4473 if (clock1 == clock2)
4474 continue;
4475
4476 if (mode->clock != clock1 && mode->clock != clock2)
4477 continue;
4478
4479 newmode = drm_mode_duplicate(dev, cea_mode);
4480 if (!newmode)
4481 continue;
4482
4483 /* Carry over the stereo flags */
4484 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4485
4486 /*
4487 * The current mode could be either variant. Make
4488 * sure to pick the "other" clock for the new mode.
4489 */
4490 if (mode->clock != clock1)
4491 newmode->clock = clock1;
4492 else
4493 newmode->clock = clock2;
4494
4495 list_add_tail(&newmode->head, &list);
4496 }
4497
4498 list_for_each_entry_safe(mode, tmp, &list, head) {
4499 list_del(&mode->head);
4500 drm_mode_probed_add(connector, mode);
4501 modes++;
4502 }
4503
4504 return modes;
4505}
4506
4507static u8 svd_to_vic(u8 svd)
4508{
4509 /* 0-6 bit vic, 7th bit native mode indicator */
4510 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4511 return svd & 127;
4512
4513 return svd;
4514}
4515
4516/*
4517 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4518 * the EDID, or NULL on errors.
4519 */
4520static struct drm_display_mode *
4521drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4522{
4523 const struct drm_display_info *info = &connector->display_info;
4524 struct drm_device *dev = connector->dev;
4525
4526 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4527 return NULL;
4528
4529 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4530}
4531
4532/*
4533 * do_y420vdb_modes - Parse YCBCR 420 only modes
4534 * @connector: connector corresponding to the HDMI sink
4535 * @svds: start of the data block of CEA YCBCR 420 VDB
4536 * @len: length of the CEA YCBCR 420 VDB
4537 *
4538 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4539 * which contains modes which can be supported in YCBCR 420
4540 * output format only.
4541 */
4542static int do_y420vdb_modes(struct drm_connector *connector,
4543 const u8 *svds, u8 svds_len)
4544{
4545 struct drm_device *dev = connector->dev;
4546 int modes = 0, i;
4547
4548 for (i = 0; i < svds_len; i++) {
4549 u8 vic = svd_to_vic(svds[i]);
4550 struct drm_display_mode *newmode;
4551
4552 if (!drm_valid_cea_vic(vic))
4553 continue;
4554
4555 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4556 if (!newmode)
4557 break;
4558 drm_mode_probed_add(connector, newmode);
4559 modes++;
4560 }
4561
4562 return modes;
4563}
4564
4565/**
4566 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4567 * @dev: DRM device
4568 * @video_code: CEA VIC of the mode
4569 *
4570 * Creates a new mode matching the specified CEA VIC.
4571 *
4572 * Returns: A new drm_display_mode on success or NULL on failure
4573 */
4574struct drm_display_mode *
4575drm_display_mode_from_cea_vic(struct drm_device *dev,
4576 u8 video_code)
4577{
4578 const struct drm_display_mode *cea_mode;
4579 struct drm_display_mode *newmode;
4580
4581 cea_mode = cea_mode_for_vic(video_code);
4582 if (!cea_mode)
4583 return NULL;
4584
4585 newmode = drm_mode_duplicate(dev, cea_mode);
4586 if (!newmode)
4587 return NULL;
4588
4589 return newmode;
4590}
4591EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4592
4593/* Add modes based on VICs parsed in parse_cta_vdb() */
4594static int add_cta_vdb_modes(struct drm_connector *connector)
4595{
4596 const struct drm_display_info *info = &connector->display_info;
4597 int i, modes = 0;
4598
4599 if (!info->vics)
4600 return 0;
4601
4602 for (i = 0; i < info->vics_len; i++) {
4603 struct drm_display_mode *mode;
4604
4605 mode = drm_display_mode_from_vic_index(connector, i);
4606 if (mode) {
4607 drm_mode_probed_add(connector, mode);
4608 modes++;
4609 }
4610 }
4611
4612 return modes;
4613}
4614
4615struct stereo_mandatory_mode {
4616 int width, height, vrefresh;
4617 unsigned int flags;
4618};
4619
4620static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4621 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4622 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4623 { 1920, 1080, 50,
4624 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625 { 1920, 1080, 60,
4626 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4627 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4629 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4630 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4631};
4632
4633static bool
4634stereo_match_mandatory(const struct drm_display_mode *mode,
4635 const struct stereo_mandatory_mode *stereo_mode)
4636{
4637 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4638
4639 return mode->hdisplay == stereo_mode->width &&
4640 mode->vdisplay == stereo_mode->height &&
4641 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4642 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4643}
4644
4645static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4646{
4647 struct drm_device *dev = connector->dev;
4648 const struct drm_display_mode *mode;
4649 struct list_head stereo_modes;
4650 int modes = 0, i;
4651
4652 INIT_LIST_HEAD(&stereo_modes);
4653
4654 list_for_each_entry(mode, &connector->probed_modes, head) {
4655 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4656 const struct stereo_mandatory_mode *mandatory;
4657 struct drm_display_mode *new_mode;
4658
4659 if (!stereo_match_mandatory(mode,
4660 &stereo_mandatory_modes[i]))
4661 continue;
4662
4663 mandatory = &stereo_mandatory_modes[i];
4664 new_mode = drm_mode_duplicate(dev, mode);
4665 if (!new_mode)
4666 continue;
4667
4668 new_mode->flags |= mandatory->flags;
4669 list_add_tail(&new_mode->head, &stereo_modes);
4670 modes++;
4671 }
4672 }
4673
4674 list_splice_tail(&stereo_modes, &connector->probed_modes);
4675
4676 return modes;
4677}
4678
4679static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4680{
4681 struct drm_device *dev = connector->dev;
4682 struct drm_display_mode *newmode;
4683
4684 if (!drm_valid_hdmi_vic(vic)) {
4685 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4686 connector->base.id, connector->name, vic);
4687 return 0;
4688 }
4689
4690 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4691 if (!newmode)
4692 return 0;
4693
4694 drm_mode_probed_add(connector, newmode);
4695
4696 return 1;
4697}
4698
4699static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4700 int vic_index)
4701{
4702 struct drm_display_mode *newmode;
4703 int modes = 0;
4704
4705 if (structure & (1 << 0)) {
4706 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4707 if (newmode) {
4708 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4709 drm_mode_probed_add(connector, newmode);
4710 modes++;
4711 }
4712 }
4713 if (structure & (1 << 6)) {
4714 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4715 if (newmode) {
4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 drm_mode_probed_add(connector, newmode);
4718 modes++;
4719 }
4720 }
4721 if (structure & (1 << 8)) {
4722 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4723 if (newmode) {
4724 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4725 drm_mode_probed_add(connector, newmode);
4726 modes++;
4727 }
4728 }
4729
4730 return modes;
4731}
4732
4733static bool hdmi_vsdb_latency_present(const u8 *db)
4734{
4735 return db[8] & BIT(7);
4736}
4737
4738static bool hdmi_vsdb_i_latency_present(const u8 *db)
4739{
4740 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4741}
4742
4743static int hdmi_vsdb_latency_length(const u8 *db)
4744{
4745 if (hdmi_vsdb_i_latency_present(db))
4746 return 4;
4747 else if (hdmi_vsdb_latency_present(db))
4748 return 2;
4749 else
4750 return 0;
4751}
4752
4753/*
4754 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4755 * @connector: connector corresponding to the HDMI sink
4756 * @db: start of the CEA vendor specific block
4757 * @len: length of the CEA block payload, ie. one can access up to db[len]
4758 *
4759 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4760 * also adds the stereo 3d modes when applicable.
4761 */
4762static int
4763do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4764{
4765 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4766 u8 vic_len, hdmi_3d_len = 0;
4767 u16 mask;
4768 u16 structure_all;
4769
4770 if (len < 8)
4771 goto out;
4772
4773 /* no HDMI_Video_Present */
4774 if (!(db[8] & (1 << 5)))
4775 goto out;
4776
4777 offset += hdmi_vsdb_latency_length(db);
4778
4779 /* the declared length is not long enough for the 2 first bytes
4780 * of additional video format capabilities */
4781 if (len < (8 + offset + 2))
4782 goto out;
4783
4784 /* 3D_Present */
4785 offset++;
4786 if (db[8 + offset] & (1 << 7)) {
4787 modes += add_hdmi_mandatory_stereo_modes(connector);
4788
4789 /* 3D_Multi_present */
4790 multi_present = (db[8 + offset] & 0x60) >> 5;
4791 }
4792
4793 offset++;
4794 vic_len = db[8 + offset] >> 5;
4795 hdmi_3d_len = db[8 + offset] & 0x1f;
4796
4797 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4798 u8 vic;
4799
4800 vic = db[9 + offset + i];
4801 modes += add_hdmi_mode(connector, vic);
4802 }
4803 offset += 1 + vic_len;
4804
4805 if (multi_present == 1)
4806 multi_len = 2;
4807 else if (multi_present == 2)
4808 multi_len = 4;
4809 else
4810 multi_len = 0;
4811
4812 if (len < (8 + offset + hdmi_3d_len - 1))
4813 goto out;
4814
4815 if (hdmi_3d_len < multi_len)
4816 goto out;
4817
4818 if (multi_present == 1 || multi_present == 2) {
4819 /* 3D_Structure_ALL */
4820 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4821
4822 /* check if 3D_MASK is present */
4823 if (multi_present == 2)
4824 mask = (db[10 + offset] << 8) | db[11 + offset];
4825 else
4826 mask = 0xffff;
4827
4828 for (i = 0; i < 16; i++) {
4829 if (mask & (1 << i))
4830 modes += add_3d_struct_modes(connector,
4831 structure_all, i);
4832 }
4833 }
4834
4835 offset += multi_len;
4836
4837 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4838 int vic_index;
4839 struct drm_display_mode *newmode = NULL;
4840 unsigned int newflag = 0;
4841 bool detail_present;
4842
4843 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4844
4845 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4846 break;
4847
4848 /* 2D_VIC_order_X */
4849 vic_index = db[8 + offset + i] >> 4;
4850
4851 /* 3D_Structure_X */
4852 switch (db[8 + offset + i] & 0x0f) {
4853 case 0:
4854 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4855 break;
4856 case 6:
4857 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4858 break;
4859 case 8:
4860 /* 3D_Detail_X */
4861 if ((db[9 + offset + i] >> 4) == 1)
4862 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4863 break;
4864 }
4865
4866 if (newflag != 0) {
4867 newmode = drm_display_mode_from_vic_index(connector,
4868 vic_index);
4869
4870 if (newmode) {
4871 newmode->flags |= newflag;
4872 drm_mode_probed_add(connector, newmode);
4873 modes++;
4874 }
4875 }
4876
4877 if (detail_present)
4878 i++;
4879 }
4880
4881out:
4882 return modes;
4883}
4884
4885static int
4886cea_revision(const u8 *cea)
4887{
4888 /*
4889 * FIXME is this correct for the DispID variant?
4890 * The DispID spec doesn't really specify whether
4891 * this is the revision of the CEA extension or
4892 * the DispID CEA data block. And the only value
4893 * given as an example is 0.
4894 */
4895 return cea[1];
4896}
4897
4898/*
4899 * CTA Data Block iterator.
4900 *
4901 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4902 * CTA Data Blocks.
4903 *
4904 * struct cea_db *db:
4905 * struct cea_db_iter iter;
4906 *
4907 * cea_db_iter_edid_begin(edid, &iter);
4908 * cea_db_iter_for_each(db, &iter) {
4909 * // do stuff with db
4910 * }
4911 * cea_db_iter_end(&iter);
4912 */
4913struct cea_db_iter {
4914 struct drm_edid_iter edid_iter;
4915 struct displayid_iter displayid_iter;
4916
4917 /* Current Data Block Collection. */
4918 const u8 *collection;
4919
4920 /* Current Data Block index in current collection. */
4921 int index;
4922
4923 /* End index in current collection. */
4924 int end;
4925};
4926
4927/* CTA-861-H section 7.4 CTA Data BLock Collection */
4928struct cea_db {
4929 u8 tag_length;
4930 u8 data[];
4931} __packed;
4932
4933static int cea_db_tag(const struct cea_db *db)
4934{
4935 return db->tag_length >> 5;
4936}
4937
4938static int cea_db_payload_len(const void *_db)
4939{
4940 /* FIXME: Transition to passing struct cea_db * everywhere. */
4941 const struct cea_db *db = _db;
4942
4943 return db->tag_length & 0x1f;
4944}
4945
4946static const void *cea_db_data(const struct cea_db *db)
4947{
4948 return db->data;
4949}
4950
4951static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4952{
4953 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4954 cea_db_payload_len(db) >= 1 &&
4955 db->data[0] == tag;
4956}
4957
4958static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4959{
4960 const u8 *data = cea_db_data(db);
4961
4962 return cea_db_tag(db) == CTA_DB_VENDOR &&
4963 cea_db_payload_len(db) >= 3 &&
4964 oui(data[2], data[1], data[0]) == vendor_oui;
4965}
4966
4967static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4968 struct cea_db_iter *iter)
4969{
4970 memset(iter, 0, sizeof(*iter));
4971
4972 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4973 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4974}
4975
4976static const struct cea_db *
4977__cea_db_iter_current_block(const struct cea_db_iter *iter)
4978{
4979 const struct cea_db *db;
4980
4981 if (!iter->collection)
4982 return NULL;
4983
4984 db = (const struct cea_db *)&iter->collection[iter->index];
4985
4986 if (iter->index + sizeof(*db) <= iter->end &&
4987 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4988 return db;
4989
4990 return NULL;
4991}
4992
4993/*
4994 * References:
4995 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4996 */
4997static int cea_db_collection_size(const u8 *cta)
4998{
4999 u8 d = cta[2];
5000
5001 if (d < 4 || d > 127)
5002 return 0;
5003
5004 return d - 4;
5005}
5006
5007/*
5008 * References:
5009 * - VESA E-EDID v1.4
5010 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5011 */
5012static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5013{
5014 const u8 *ext;
5015
5016 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5017 int size;
5018
5019 /* Only support CTA Extension revision 3+ */
5020 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5021 continue;
5022
5023 size = cea_db_collection_size(ext);
5024 if (!size)
5025 continue;
5026
5027 iter->index = 4;
5028 iter->end = iter->index + size;
5029
5030 return ext;
5031 }
5032
5033 return NULL;
5034}
5035
5036/*
5037 * References:
5038 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5039 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5040 *
5041 * Note that the above do not specify any connection between DisplayID Data
5042 * Block revision and CTA Extension versions.
5043 */
5044static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5045{
5046 const struct displayid_block *block;
5047
5048 displayid_iter_for_each(block, &iter->displayid_iter) {
5049 if (block->tag != DATA_BLOCK_CTA)
5050 continue;
5051
5052 /*
5053 * The displayid iterator has already verified the block bounds
5054 * in displayid_iter_block().
5055 */
5056 iter->index = sizeof(*block);
5057 iter->end = iter->index + block->num_bytes;
5058
5059 return block;
5060 }
5061
5062 return NULL;
5063}
5064
5065static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5066{
5067 const struct cea_db *db;
5068
5069 if (iter->collection) {
5070 /* Current collection should always be valid. */
5071 db = __cea_db_iter_current_block(iter);
5072 if (WARN_ON(!db)) {
5073 iter->collection = NULL;
5074 return NULL;
5075 }
5076
5077 /* Next block in CTA Data Block Collection */
5078 iter->index += sizeof(*db) + cea_db_payload_len(db);
5079
5080 db = __cea_db_iter_current_block(iter);
5081 if (db)
5082 return db;
5083 }
5084
5085 for (;;) {
5086 /*
5087 * Find the next CTA Data Block Collection. First iterate all
5088 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5089 *
5090 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5091 * Extension, it's recommended that DisplayID extensions are
5092 * exposed after all of the CTA Extensions.
5093 */
5094 iter->collection = __cea_db_iter_edid_next(iter);
5095 if (!iter->collection)
5096 iter->collection = __cea_db_iter_displayid_next(iter);
5097
5098 if (!iter->collection)
5099 return NULL;
5100
5101 db = __cea_db_iter_current_block(iter);
5102 if (db)
5103 return db;
5104 }
5105}
5106
5107#define cea_db_iter_for_each(__db, __iter) \
5108 while (((__db) = __cea_db_iter_next(__iter)))
5109
5110static void cea_db_iter_end(struct cea_db_iter *iter)
5111{
5112 displayid_iter_end(&iter->displayid_iter);
5113 drm_edid_iter_end(&iter->edid_iter);
5114
5115 memset(iter, 0, sizeof(*iter));
5116}
5117
5118static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5119{
5120 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5121 cea_db_payload_len(db) >= 5;
5122}
5123
5124static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5125{
5126 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5127 cea_db_payload_len(db) >= 7;
5128}
5129
5130static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5131{
5132 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5133 cea_db_payload_len(db) >= 2;
5134}
5135
5136static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5137{
5138 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5139 cea_db_payload_len(db) == 21;
5140}
5141
5142static bool cea_db_is_vcdb(const struct cea_db *db)
5143{
5144 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5145 cea_db_payload_len(db) == 2;
5146}
5147
5148static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5149{
5150 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5151 cea_db_payload_len(db) >= 7;
5152}
5153
5154static bool cea_db_is_y420cmdb(const struct cea_db *db)
5155{
5156 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5157}
5158
5159static bool cea_db_is_y420vdb(const struct cea_db *db)
5160{
5161 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5162}
5163
5164static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5165{
5166 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5167 cea_db_payload_len(db) >= 3;
5168}
5169
5170/*
5171 * Get the HF-EEODB override extension block count from EDID.
5172 *
5173 * The passed in EDID may be partially read, as long as it has at least two
5174 * blocks (base block and one extension block) if EDID extension count is > 0.
5175 *
5176 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5177 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5178 * iterators instead.
5179 *
5180 * References:
5181 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5182 */
5183static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5184{
5185 const u8 *cta;
5186
5187 /* No extensions according to base block, no HF-EEODB. */
5188 if (!edid_extension_block_count(edid))
5189 return 0;
5190
5191 /* HF-EEODB is always in the first EDID extension block only */
5192 cta = edid_extension_block_data(edid, 0);
5193 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5194 return 0;
5195
5196 /* Need to have the data block collection, and at least 3 bytes. */
5197 if (cea_db_collection_size(cta) < 3)
5198 return 0;
5199
5200 /*
5201 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5202 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5203 * through 6 of Block 1 of the E-EDID.
5204 */
5205 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5206 return 0;
5207
5208 return cta[4 + 2];
5209}
5210
5211/*
5212 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5213 *
5214 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5215 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5216 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5217 * support YCBCR420 output too.
5218 */
5219static void parse_cta_y420cmdb(struct drm_connector *connector,
5220 const struct cea_db *db, u64 *y420cmdb_map)
5221{
5222 struct drm_display_info *info = &connector->display_info;
5223 int i, map_len = cea_db_payload_len(db) - 1;
5224 const u8 *data = cea_db_data(db) + 1;
5225 u64 map = 0;
5226
5227 if (map_len == 0) {
5228 /* All CEA modes support ycbcr420 sampling also.*/
5229 map = U64_MAX;
5230 goto out;
5231 }
5232
5233 /*
5234 * This map indicates which of the existing CEA block modes
5235 * from VDB can support YCBCR420 output too. So if bit=0 is
5236 * set, first mode from VDB can support YCBCR420 output too.
5237 * We will parse and keep this map, before parsing VDB itself
5238 * to avoid going through the same block again and again.
5239 *
5240 * Spec is not clear about max possible size of this block.
5241 * Clamping max bitmap block size at 8 bytes. Every byte can
5242 * address 8 CEA modes, in this way this map can address
5243 * 8*8 = first 64 SVDs.
5244 */
5245 if (WARN_ON_ONCE(map_len > 8))
5246 map_len = 8;
5247
5248 for (i = 0; i < map_len; i++)
5249 map |= (u64)data[i] << (8 * i);
5250
5251out:
5252 if (map)
5253 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5254
5255 *y420cmdb_map = map;
5256}
5257
5258static int add_cea_modes(struct drm_connector *connector,
5259 const struct drm_edid *drm_edid)
5260{
5261 const struct cea_db *db;
5262 struct cea_db_iter iter;
5263 int modes;
5264
5265 /* CTA VDB block VICs parsed earlier */
5266 modes = add_cta_vdb_modes(connector);
5267
5268 cea_db_iter_edid_begin(drm_edid, &iter);
5269 cea_db_iter_for_each(db, &iter) {
5270 if (cea_db_is_hdmi_vsdb(db)) {
5271 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5272 cea_db_payload_len(db));
5273 } else if (cea_db_is_y420vdb(db)) {
5274 const u8 *vdb420 = cea_db_data(db) + 1;
5275
5276 /* Add 4:2:0(only) modes present in EDID */
5277 modes += do_y420vdb_modes(connector, vdb420,
5278 cea_db_payload_len(db) - 1);
5279 }
5280 }
5281 cea_db_iter_end(&iter);
5282
5283 return modes;
5284}
5285
5286static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5287 struct drm_display_mode *mode)
5288{
5289 const struct drm_display_mode *cea_mode;
5290 int clock1, clock2, clock;
5291 u8 vic;
5292 const char *type;
5293
5294 /*
5295 * allow 5kHz clock difference either way to account for
5296 * the 10kHz clock resolution limit of detailed timings.
5297 */
5298 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5299 if (drm_valid_cea_vic(vic)) {
5300 type = "CEA";
5301 cea_mode = cea_mode_for_vic(vic);
5302 clock1 = cea_mode->clock;
5303 clock2 = cea_mode_alternate_clock(cea_mode);
5304 } else {
5305 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5306 if (drm_valid_hdmi_vic(vic)) {
5307 type = "HDMI";
5308 cea_mode = &edid_4k_modes[vic];
5309 clock1 = cea_mode->clock;
5310 clock2 = hdmi_mode_alternate_clock(cea_mode);
5311 } else {
5312 return;
5313 }
5314 }
5315
5316 /* pick whichever is closest */
5317 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5318 clock = clock1;
5319 else
5320 clock = clock2;
5321
5322 if (mode->clock == clock)
5323 return;
5324
5325 drm_dbg_kms(connector->dev,
5326 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5327 connector->base.id, connector->name,
5328 type, vic, mode->clock, clock);
5329 mode->clock = clock;
5330}
5331
5332static void drm_calculate_luminance_range(struct drm_connector *connector)
5333{
5334 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5335 struct drm_luminance_range_info *luminance_range =
5336 &connector->display_info.luminance_range;
5337 static const u8 pre_computed_values[] = {
5338 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5339 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5340 };
5341 u32 max_avg, min_cll, max, min, q, r;
5342
5343 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5344 return;
5345
5346 max_avg = hdr_metadata->max_fall;
5347 min_cll = hdr_metadata->min_cll;
5348
5349 /*
5350 * From the specification (CTA-861-G), for calculating the maximum
5351 * luminance we need to use:
5352 * Luminance = 50*2**(CV/32)
5353 * Where CV is a one-byte value.
5354 * For calculating this expression we may need float point precision;
5355 * to avoid this complexity level, we take advantage that CV is divided
5356 * by a constant. From the Euclids division algorithm, we know that CV
5357 * can be written as: CV = 32*q + r. Next, we replace CV in the
5358 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5359 * need to pre-compute the value of r/32. For pre-computing the values
5360 * We just used the following Ruby line:
5361 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5362 * The results of the above expressions can be verified at
5363 * pre_computed_values.
5364 */
5365 q = max_avg >> 5;
5366 r = max_avg % 32;
5367 max = (1 << q) * pre_computed_values[r];
5368
5369 /* min luminance: maxLum * (CV/255)^2 / 100 */
5370 q = DIV_ROUND_CLOSEST(min_cll, 255);
5371 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5372
5373 luminance_range->min_luminance = min;
5374 luminance_range->max_luminance = max;
5375}
5376
5377static uint8_t eotf_supported(const u8 *edid_ext)
5378{
5379 return edid_ext[2] &
5380 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5381 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5382 BIT(HDMI_EOTF_SMPTE_ST2084) |
5383 BIT(HDMI_EOTF_BT_2100_HLG));
5384}
5385
5386static uint8_t hdr_metadata_type(const u8 *edid_ext)
5387{
5388 return edid_ext[3] &
5389 BIT(HDMI_STATIC_METADATA_TYPE1);
5390}
5391
5392static void
5393drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5394{
5395 u16 len;
5396
5397 len = cea_db_payload_len(db);
5398
5399 connector->hdr_sink_metadata.hdmi_type1.eotf =
5400 eotf_supported(db);
5401 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5402 hdr_metadata_type(db);
5403
5404 if (len >= 4)
5405 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5406 if (len >= 5)
5407 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5408 if (len >= 6) {
5409 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5410
5411 /* Calculate only when all values are available */
5412 drm_calculate_luminance_range(connector);
5413 }
5414}
5415
5416/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5417static void
5418drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5419{
5420 u8 len = cea_db_payload_len(db);
5421
5422 if (len >= 6 && (db[6] & (1 << 7)))
5423 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5424
5425 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5426 connector->latency_present[0] = true;
5427 connector->video_latency[0] = db[9];
5428 connector->audio_latency[0] = db[10];
5429 }
5430
5431 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5432 connector->latency_present[1] = true;
5433 connector->video_latency[1] = db[11];
5434 connector->audio_latency[1] = db[12];
5435 }
5436
5437 drm_dbg_kms(connector->dev,
5438 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5439 connector->base.id, connector->name,
5440 connector->latency_present[0], connector->latency_present[1],
5441 connector->video_latency[0], connector->video_latency[1],
5442 connector->audio_latency[0], connector->audio_latency[1]);
5443}
5444
5445static void
5446monitor_name(const struct detailed_timing *timing, void *data)
5447{
5448 const char **res = data;
5449
5450 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5451 return;
5452
5453 *res = timing->data.other_data.data.str.str;
5454}
5455
5456static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5457{
5458 const char *edid_name = NULL;
5459 int mnl;
5460
5461 if (!drm_edid || !name)
5462 return 0;
5463
5464 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5465 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5466 if (edid_name[mnl] == 0x0a)
5467 break;
5468
5469 name[mnl] = edid_name[mnl];
5470 }
5471
5472 return mnl;
5473}
5474
5475/**
5476 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5477 * @edid: monitor EDID information
5478 * @name: pointer to a character array to hold the name of the monitor
5479 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5480 *
5481 */
5482void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5483{
5484 int name_length = 0;
5485
5486 if (bufsize <= 0)
5487 return;
5488
5489 if (edid) {
5490 char buf[13];
5491 struct drm_edid drm_edid = {
5492 .edid = edid,
5493 .size = edid_size(edid),
5494 };
5495
5496 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5497 memcpy(name, buf, name_length);
5498 }
5499
5500 name[name_length] = '\0';
5501}
5502EXPORT_SYMBOL(drm_edid_get_monitor_name);
5503
5504static void clear_eld(struct drm_connector *connector)
5505{
5506 memset(connector->eld, 0, sizeof(connector->eld));
5507
5508 connector->latency_present[0] = false;
5509 connector->latency_present[1] = false;
5510 connector->video_latency[0] = 0;
5511 connector->audio_latency[0] = 0;
5512 connector->video_latency[1] = 0;
5513 connector->audio_latency[1] = 0;
5514}
5515
5516/*
5517 * Get 3-byte SAD buffer from struct cea_sad.
5518 */
5519void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5520{
5521 sad[0] = cta_sad->format << 3 | cta_sad->channels;
5522 sad[1] = cta_sad->freq;
5523 sad[2] = cta_sad->byte2;
5524}
5525
5526/*
5527 * Set struct cea_sad from 3-byte SAD buffer.
5528 */
5529void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5530{
5531 cta_sad->format = (sad[0] & 0x78) >> 3;
5532 cta_sad->channels = sad[0] & 0x07;
5533 cta_sad->freq = sad[1] & 0x7f;
5534 cta_sad->byte2 = sad[2];
5535}
5536
5537/*
5538 * drm_edid_to_eld - build ELD from EDID
5539 * @connector: connector corresponding to the HDMI/DP sink
5540 * @drm_edid: EDID to parse
5541 *
5542 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5543 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5544 */
5545static void drm_edid_to_eld(struct drm_connector *connector,
5546 const struct drm_edid *drm_edid)
5547{
5548 const struct drm_display_info *info = &connector->display_info;
5549 const struct cea_db *db;
5550 struct cea_db_iter iter;
5551 uint8_t *eld = connector->eld;
5552 int total_sad_count = 0;
5553 int mnl;
5554
5555 if (!drm_edid)
5556 return;
5557
5558 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5559 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5560 connector->base.id, connector->name,
5561 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5562
5563 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5564 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5565
5566 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5567
5568 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5569 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5570 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5571 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5572
5573 cea_db_iter_edid_begin(drm_edid, &iter);
5574 cea_db_iter_for_each(db, &iter) {
5575 const u8 *data = cea_db_data(db);
5576 int len = cea_db_payload_len(db);
5577 int sad_count;
5578
5579 switch (cea_db_tag(db)) {
5580 case CTA_DB_AUDIO:
5581 /* Audio Data Block, contains SADs */
5582 sad_count = min(len / 3, 15 - total_sad_count);
5583 if (sad_count >= 1)
5584 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5585 data, sad_count * 3);
5586 total_sad_count += sad_count;
5587 break;
5588 case CTA_DB_SPEAKER:
5589 /* Speaker Allocation Data Block */
5590 if (len >= 1)
5591 eld[DRM_ELD_SPEAKER] = data[0];
5592 break;
5593 case CTA_DB_VENDOR:
5594 /* HDMI Vendor-Specific Data Block */
5595 if (cea_db_is_hdmi_vsdb(db))
5596 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5597 break;
5598 default:
5599 break;
5600 }
5601 }
5602 cea_db_iter_end(&iter);
5603
5604 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5605
5606 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5607 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5608 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5609 else
5610 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5611
5612 eld[DRM_ELD_BASELINE_ELD_LEN] =
5613 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5614
5615 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5616 connector->base.id, connector->name,
5617 drm_eld_size(eld), total_sad_count);
5618}
5619
5620static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5621 struct cea_sad **psads)
5622{
5623 const struct cea_db *db;
5624 struct cea_db_iter iter;
5625 int count = 0;
5626
5627 cea_db_iter_edid_begin(drm_edid, &iter);
5628 cea_db_iter_for_each(db, &iter) {
5629 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5630 struct cea_sad *sads;
5631 int i;
5632
5633 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5634 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5635 *psads = sads;
5636 if (!sads)
5637 return -ENOMEM;
5638 for (i = 0; i < count; i++)
5639 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5640 break;
5641 }
5642 }
5643 cea_db_iter_end(&iter);
5644
5645 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5646
5647 return count;
5648}
5649
5650/**
5651 * drm_edid_to_sad - extracts SADs from EDID
5652 * @edid: EDID to parse
5653 * @sads: pointer that will be set to the extracted SADs
5654 *
5655 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5656 *
5657 * Note: The returned pointer needs to be freed using kfree().
5658 *
5659 * Return: The number of found SADs or negative number on error.
5660 */
5661int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5662{
5663 struct drm_edid drm_edid;
5664
5665 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5666}
5667EXPORT_SYMBOL(drm_edid_to_sad);
5668
5669static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5670 u8 **sadb)
5671{
5672 const struct cea_db *db;
5673 struct cea_db_iter iter;
5674 int count = 0;
5675
5676 cea_db_iter_edid_begin(drm_edid, &iter);
5677 cea_db_iter_for_each(db, &iter) {
5678 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5679 cea_db_payload_len(db) == 3) {
5680 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5681 GFP_KERNEL);
5682 if (!*sadb)
5683 return -ENOMEM;
5684 count = cea_db_payload_len(db);
5685 break;
5686 }
5687 }
5688 cea_db_iter_end(&iter);
5689
5690 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5691
5692 return count;
5693}
5694
5695/**
5696 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5697 * @edid: EDID to parse
5698 * @sadb: pointer to the speaker block
5699 *
5700 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5701 *
5702 * Note: The returned pointer needs to be freed using kfree().
5703 *
5704 * Return: The number of found Speaker Allocation Blocks or negative number on
5705 * error.
5706 */
5707int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5708{
5709 struct drm_edid drm_edid;
5710
5711 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5712 sadb);
5713}
5714EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5715
5716/**
5717 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5718 * @connector: connector associated with the HDMI/DP sink
5719 * @mode: the display mode
5720 *
5721 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5722 * the sink doesn't support audio or video.
5723 */
5724int drm_av_sync_delay(struct drm_connector *connector,
5725 const struct drm_display_mode *mode)
5726{
5727 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5728 int a, v;
5729
5730 if (!connector->latency_present[0])
5731 return 0;
5732 if (!connector->latency_present[1])
5733 i = 0;
5734
5735 a = connector->audio_latency[i];
5736 v = connector->video_latency[i];
5737
5738 /*
5739 * HDMI/DP sink doesn't support audio or video?
5740 */
5741 if (a == 255 || v == 255)
5742 return 0;
5743
5744 /*
5745 * Convert raw EDID values to millisecond.
5746 * Treat unknown latency as 0ms.
5747 */
5748 if (a)
5749 a = min(2 * (a - 1), 500);
5750 if (v)
5751 v = min(2 * (v - 1), 500);
5752
5753 return max(v - a, 0);
5754}
5755EXPORT_SYMBOL(drm_av_sync_delay);
5756
5757static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5758{
5759 const struct cea_db *db;
5760 struct cea_db_iter iter;
5761 bool hdmi = false;
5762
5763 /*
5764 * Because HDMI identifier is in Vendor Specific Block,
5765 * search it from all data blocks of CEA extension.
5766 */
5767 cea_db_iter_edid_begin(drm_edid, &iter);
5768 cea_db_iter_for_each(db, &iter) {
5769 if (cea_db_is_hdmi_vsdb(db)) {
5770 hdmi = true;
5771 break;
5772 }
5773 }
5774 cea_db_iter_end(&iter);
5775
5776 return hdmi;
5777}
5778
5779/**
5780 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5781 * @edid: monitor EDID information
5782 *
5783 * Parse the CEA extension according to CEA-861-B.
5784 *
5785 * Drivers that have added the modes parsed from EDID to drm_display_info
5786 * should use &drm_display_info.is_hdmi instead of calling this function.
5787 *
5788 * Return: True if the monitor is HDMI, false if not or unknown.
5789 */
5790bool drm_detect_hdmi_monitor(const struct edid *edid)
5791{
5792 struct drm_edid drm_edid;
5793
5794 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5795}
5796EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5797
5798static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5799{
5800 struct drm_edid_iter edid_iter;
5801 const struct cea_db *db;
5802 struct cea_db_iter iter;
5803 const u8 *edid_ext;
5804 bool has_audio = false;
5805
5806 drm_edid_iter_begin(drm_edid, &edid_iter);
5807 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5808 if (edid_ext[0] == CEA_EXT) {
5809 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5810 if (has_audio)
5811 break;
5812 }
5813 }
5814 drm_edid_iter_end(&edid_iter);
5815
5816 if (has_audio) {
5817 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5818 goto end;
5819 }
5820
5821 cea_db_iter_edid_begin(drm_edid, &iter);
5822 cea_db_iter_for_each(db, &iter) {
5823 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5824 const u8 *data = cea_db_data(db);
5825 int i;
5826
5827 for (i = 0; i < cea_db_payload_len(db); i += 3)
5828 DRM_DEBUG_KMS("CEA audio format %d\n",
5829 (data[i] >> 3) & 0xf);
5830 has_audio = true;
5831 break;
5832 }
5833 }
5834 cea_db_iter_end(&iter);
5835
5836end:
5837 return has_audio;
5838}
5839
5840/**
5841 * drm_detect_monitor_audio - check monitor audio capability
5842 * @edid: EDID block to scan
5843 *
5844 * Monitor should have CEA extension block.
5845 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5846 * audio' only. If there is any audio extension block and supported
5847 * audio format, assume at least 'basic audio' support, even if 'basic
5848 * audio' is not defined in EDID.
5849 *
5850 * Return: True if the monitor supports audio, false otherwise.
5851 */
5852bool drm_detect_monitor_audio(const struct edid *edid)
5853{
5854 struct drm_edid drm_edid;
5855
5856 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5857}
5858EXPORT_SYMBOL(drm_detect_monitor_audio);
5859
5860
5861/**
5862 * drm_default_rgb_quant_range - default RGB quantization range
5863 * @mode: display mode
5864 *
5865 * Determine the default RGB quantization range for the mode,
5866 * as specified in CEA-861.
5867 *
5868 * Return: The default RGB quantization range for the mode
5869 */
5870enum hdmi_quantization_range
5871drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5872{
5873 /* All CEA modes other than VIC 1 use limited quantization range. */
5874 return drm_match_cea_mode(mode) > 1 ?
5875 HDMI_QUANTIZATION_RANGE_LIMITED :
5876 HDMI_QUANTIZATION_RANGE_FULL;
5877}
5878EXPORT_SYMBOL(drm_default_rgb_quant_range);
5879
5880/* CTA-861 Video Data Block (CTA VDB) */
5881static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5882{
5883 struct drm_display_info *info = &connector->display_info;
5884 int i, vic_index, len = cea_db_payload_len(db);
5885 const u8 *svds = cea_db_data(db);
5886 u8 *vics;
5887
5888 if (!len)
5889 return;
5890
5891 /* Gracefully handle multiple VDBs, however unlikely that is */
5892 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5893 if (!vics)
5894 return;
5895
5896 vic_index = info->vics_len;
5897 info->vics_len += len;
5898 info->vics = vics;
5899
5900 for (i = 0; i < len; i++) {
5901 u8 vic = svd_to_vic(svds[i]);
5902
5903 if (!drm_valid_cea_vic(vic))
5904 vic = 0;
5905
5906 info->vics[vic_index++] = vic;
5907 }
5908}
5909
5910/*
5911 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5912 *
5913 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5914 * using the VICs themselves.
5915 */
5916static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5917{
5918 struct drm_display_info *info = &connector->display_info;
5919 struct drm_hdmi_info *hdmi = &info->hdmi;
5920 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5921
5922 for (i = 0; i < len; i++) {
5923 u8 vic = info->vics[i];
5924
5925 if (vic && y420cmdb_map & BIT_ULL(i))
5926 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5927 }
5928}
5929
5930static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5931{
5932 const struct drm_display_info *info = &connector->display_info;
5933 int i;
5934
5935 if (!vic || !info->vics)
5936 return false;
5937
5938 for (i = 0; i < info->vics_len; i++) {
5939 if (info->vics[i] == vic)
5940 return true;
5941 }
5942
5943 return false;
5944}
5945
5946/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5947static void parse_cta_y420vdb(struct drm_connector *connector,
5948 const struct cea_db *db)
5949{
5950 struct drm_display_info *info = &connector->display_info;
5951 struct drm_hdmi_info *hdmi = &info->hdmi;
5952 const u8 *svds = cea_db_data(db) + 1;
5953 int i;
5954
5955 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5956 u8 vic = svd_to_vic(svds[i]);
5957
5958 if (!drm_valid_cea_vic(vic))
5959 continue;
5960
5961 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5962 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5963 }
5964}
5965
5966static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5967{
5968 struct drm_display_info *info = &connector->display_info;
5969
5970 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5971 connector->base.id, connector->name, db[2]);
5972
5973 if (db[2] & EDID_CEA_VCDB_QS)
5974 info->rgb_quant_range_selectable = true;
5975}
5976
5977static
5978void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5979{
5980 switch (max_frl_rate) {
5981 case 1:
5982 *max_lanes = 3;
5983 *max_rate_per_lane = 3;
5984 break;
5985 case 2:
5986 *max_lanes = 3;
5987 *max_rate_per_lane = 6;
5988 break;
5989 case 3:
5990 *max_lanes = 4;
5991 *max_rate_per_lane = 6;
5992 break;
5993 case 4:
5994 *max_lanes = 4;
5995 *max_rate_per_lane = 8;
5996 break;
5997 case 5:
5998 *max_lanes = 4;
5999 *max_rate_per_lane = 10;
6000 break;
6001 case 6:
6002 *max_lanes = 4;
6003 *max_rate_per_lane = 12;
6004 break;
6005 case 0:
6006 default:
6007 *max_lanes = 0;
6008 *max_rate_per_lane = 0;
6009 }
6010}
6011
6012static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6013 const u8 *db)
6014{
6015 u8 dc_mask;
6016 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6017
6018 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6019 hdmi->y420_dc_modes = dc_mask;
6020}
6021
6022static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6023 const u8 *hf_scds)
6024{
6025 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6026
6027 if (!hdmi_dsc->v_1p2)
6028 return;
6029
6030 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6031 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6032
6033 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6034 hdmi_dsc->bpc_supported = 16;
6035 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6036 hdmi_dsc->bpc_supported = 12;
6037 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6038 hdmi_dsc->bpc_supported = 10;
6039 else
6040 /* Supports min 8 BPC if DSC 1.2 is supported*/
6041 hdmi_dsc->bpc_supported = 8;
6042
6043 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6044 u8 dsc_max_slices;
6045 u8 dsc_max_frl_rate;
6046
6047 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6048 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6049 &hdmi_dsc->max_frl_rate_per_lane);
6050
6051 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6052
6053 switch (dsc_max_slices) {
6054 case 1:
6055 hdmi_dsc->max_slices = 1;
6056 hdmi_dsc->clk_per_slice = 340;
6057 break;
6058 case 2:
6059 hdmi_dsc->max_slices = 2;
6060 hdmi_dsc->clk_per_slice = 340;
6061 break;
6062 case 3:
6063 hdmi_dsc->max_slices = 4;
6064 hdmi_dsc->clk_per_slice = 340;
6065 break;
6066 case 4:
6067 hdmi_dsc->max_slices = 8;
6068 hdmi_dsc->clk_per_slice = 340;
6069 break;
6070 case 5:
6071 hdmi_dsc->max_slices = 8;
6072 hdmi_dsc->clk_per_slice = 400;
6073 break;
6074 case 6:
6075 hdmi_dsc->max_slices = 12;
6076 hdmi_dsc->clk_per_slice = 400;
6077 break;
6078 case 7:
6079 hdmi_dsc->max_slices = 16;
6080 hdmi_dsc->clk_per_slice = 400;
6081 break;
6082 case 0:
6083 default:
6084 hdmi_dsc->max_slices = 0;
6085 hdmi_dsc->clk_per_slice = 0;
6086 }
6087 }
6088
6089 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6090 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6091}
6092
6093/* Sink Capability Data Structure */
6094static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6095 const u8 *hf_scds)
6096{
6097 struct drm_display_info *info = &connector->display_info;
6098 struct drm_hdmi_info *hdmi = &info->hdmi;
6099 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6100 int max_tmds_clock = 0;
6101 u8 max_frl_rate = 0;
6102 bool dsc_support = false;
6103
6104 info->has_hdmi_infoframe = true;
6105
6106 if (hf_scds[6] & 0x80) {
6107 hdmi->scdc.supported = true;
6108 if (hf_scds[6] & 0x40)
6109 hdmi->scdc.read_request = true;
6110 }
6111
6112 /*
6113 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6114 * And as per the spec, three factors confirm this:
6115 * * Availability of a HF-VSDB block in EDID (check)
6116 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6117 * * SCDC support available (let's check)
6118 * Lets check it out.
6119 */
6120
6121 if (hf_scds[5]) {
6122 struct drm_scdc *scdc = &hdmi->scdc;
6123
6124 /* max clock is 5000 KHz times block value */
6125 max_tmds_clock = hf_scds[5] * 5000;
6126
6127 if (max_tmds_clock > 340000) {
6128 info->max_tmds_clock = max_tmds_clock;
6129 }
6130
6131 if (scdc->supported) {
6132 scdc->scrambling.supported = true;
6133
6134 /* Few sinks support scrambling for clocks < 340M */
6135 if ((hf_scds[6] & 0x8))
6136 scdc->scrambling.low_rates = true;
6137 }
6138 }
6139
6140 if (hf_scds[7]) {
6141 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6142 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6143 &hdmi->max_frl_rate_per_lane);
6144 }
6145
6146 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6147
6148 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6149 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6150 dsc_support = true;
6151 }
6152
6153 drm_dbg_kms(connector->dev,
6154 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6155 connector->base.id, connector->name,
6156 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6157}
6158
6159static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6160 const u8 *hdmi)
6161{
6162 struct drm_display_info *info = &connector->display_info;
6163 unsigned int dc_bpc = 0;
6164
6165 /* HDMI supports at least 8 bpc */
6166 info->bpc = 8;
6167
6168 if (cea_db_payload_len(hdmi) < 6)
6169 return;
6170
6171 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6172 dc_bpc = 10;
6173 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6174 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6175 connector->base.id, connector->name);
6176 }
6177
6178 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6179 dc_bpc = 12;
6180 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6181 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6182 connector->base.id, connector->name);
6183 }
6184
6185 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6186 dc_bpc = 16;
6187 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6188 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6189 connector->base.id, connector->name);
6190 }
6191
6192 if (dc_bpc == 0) {
6193 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6194 connector->base.id, connector->name);
6195 return;
6196 }
6197
6198 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6199 connector->base.id, connector->name, dc_bpc);
6200 info->bpc = dc_bpc;
6201
6202 /* YCRCB444 is optional according to spec. */
6203 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6204 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6205 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6206 connector->base.id, connector->name);
6207 }
6208
6209 /*
6210 * Spec says that if any deep color mode is supported at all,
6211 * then deep color 36 bit must be supported.
6212 */
6213 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6214 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6215 connector->base.id, connector->name);
6216 }
6217}
6218
6219/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6220static void
6221drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6222{
6223 struct drm_display_info *info = &connector->display_info;
6224 u8 len = cea_db_payload_len(db);
6225
6226 info->is_hdmi = true;
6227
6228 info->source_physical_address = (db[4] << 8) | db[5];
6229
6230 if (len >= 6)
6231 info->dvi_dual = db[6] & 1;
6232 if (len >= 7)
6233 info->max_tmds_clock = db[7] * 5000;
6234
6235 /*
6236 * Try to infer whether the sink supports HDMI infoframes.
6237 *
6238 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6239 * supports infoframes if HDMI_Video_present is set.
6240 */
6241 if (len >= 8 && db[8] & BIT(5))
6242 info->has_hdmi_infoframe = true;
6243
6244 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6245 connector->base.id, connector->name,
6246 info->dvi_dual, info->max_tmds_clock);
6247
6248 drm_parse_hdmi_deep_color_info(connector, db);
6249}
6250
6251/*
6252 * See EDID extension for head-mounted and specialized monitors, specified at:
6253 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6254 */
6255static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6256 const u8 *db)
6257{
6258 struct drm_display_info *info = &connector->display_info;
6259 u8 version = db[4];
6260 bool desktop_usage = db[5] & BIT(6);
6261
6262 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6263 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6264 info->non_desktop = true;
6265
6266 drm_dbg_kms(connector->dev,
6267 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6268 connector->base.id, connector->name, version, db[5]);
6269}
6270
6271static void drm_parse_cea_ext(struct drm_connector *connector,
6272 const struct drm_edid *drm_edid)
6273{
6274 struct drm_display_info *info = &connector->display_info;
6275 struct drm_edid_iter edid_iter;
6276 const struct cea_db *db;
6277 struct cea_db_iter iter;
6278 const u8 *edid_ext;
6279 u64 y420cmdb_map = 0;
6280
6281 drm_edid_iter_begin(drm_edid, &edid_iter);
6282 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6283 if (edid_ext[0] != CEA_EXT)
6284 continue;
6285
6286 if (!info->cea_rev)
6287 info->cea_rev = edid_ext[1];
6288
6289 if (info->cea_rev != edid_ext[1])
6290 drm_dbg_kms(connector->dev,
6291 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6292 connector->base.id, connector->name,
6293 info->cea_rev, edid_ext[1]);
6294
6295 /* The existence of a CTA extension should imply RGB support */
6296 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6297 if (edid_ext[3] & EDID_CEA_YCRCB444)
6298 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6299 if (edid_ext[3] & EDID_CEA_YCRCB422)
6300 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6301 if (edid_ext[3] & EDID_BASIC_AUDIO)
6302 info->has_audio = true;
6303
6304 }
6305 drm_edid_iter_end(&edid_iter);
6306
6307 cea_db_iter_edid_begin(drm_edid, &iter);
6308 cea_db_iter_for_each(db, &iter) {
6309 /* FIXME: convert parsers to use struct cea_db */
6310 const u8 *data = (const u8 *)db;
6311
6312 if (cea_db_is_hdmi_vsdb(db))
6313 drm_parse_hdmi_vsdb_video(connector, data);
6314 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6315 cea_db_is_hdmi_forum_scdb(db))
6316 drm_parse_hdmi_forum_scds(connector, data);
6317 else if (cea_db_is_microsoft_vsdb(db))
6318 drm_parse_microsoft_vsdb(connector, data);
6319 else if (cea_db_is_y420cmdb(db))
6320 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6321 else if (cea_db_is_y420vdb(db))
6322 parse_cta_y420vdb(connector, db);
6323 else if (cea_db_is_vcdb(db))
6324 drm_parse_vcdb(connector, data);
6325 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6326 drm_parse_hdr_metadata_block(connector, data);
6327 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6328 parse_cta_vdb(connector, db);
6329 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6330 info->has_audio = true;
6331 }
6332 cea_db_iter_end(&iter);
6333
6334 if (y420cmdb_map)
6335 update_cta_y420cmdb(connector, y420cmdb_map);
6336}
6337
6338static
6339void get_monitor_range(const struct detailed_timing *timing, void *c)
6340{
6341 struct detailed_mode_closure *closure = c;
6342 struct drm_display_info *info = &closure->connector->display_info;
6343 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6344 const struct detailed_non_pixel *data = &timing->data.other_data;
6345 const struct detailed_data_monitor_range *range = &data->data.range;
6346 const struct edid *edid = closure->drm_edid->edid;
6347
6348 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6349 return;
6350
6351 /*
6352 * These limits are used to determine the VRR refresh
6353 * rate range. Only the "range limits only" variant
6354 * of the range descriptor seems to guarantee that
6355 * any and all timings are accepted by the sink, as
6356 * opposed to just timings conforming to the indicated
6357 * formula (GTF/GTF2/CVT). Thus other variants of the
6358 * range descriptor are not accepted here.
6359 */
6360 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6361 return;
6362
6363 monitor_range->min_vfreq = range->min_vfreq;
6364 monitor_range->max_vfreq = range->max_vfreq;
6365
6366 if (edid->revision >= 4) {
6367 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6368 monitor_range->min_vfreq += 255;
6369 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6370 monitor_range->max_vfreq += 255;
6371 }
6372}
6373
6374static void drm_get_monitor_range(struct drm_connector *connector,
6375 const struct drm_edid *drm_edid)
6376{
6377 const struct drm_display_info *info = &connector->display_info;
6378 struct detailed_mode_closure closure = {
6379 .connector = connector,
6380 .drm_edid = drm_edid,
6381 };
6382
6383 if (drm_edid->edid->revision < 4)
6384 return;
6385
6386 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6387 return;
6388
6389 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6390
6391 drm_dbg_kms(connector->dev,
6392 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6393 connector->base.id, connector->name,
6394 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6395}
6396
6397static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6398 const struct displayid_block *block)
6399{
6400 struct displayid_vesa_vendor_specific_block *vesa =
6401 (struct displayid_vesa_vendor_specific_block *)block;
6402 struct drm_display_info *info = &connector->display_info;
6403
6404 if (block->num_bytes < 3) {
6405 drm_dbg_kms(connector->dev,
6406 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6407 connector->base.id, connector->name, block->num_bytes);
6408 return;
6409 }
6410
6411 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6412 return;
6413
6414 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6415 drm_dbg_kms(connector->dev,
6416 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6417 connector->base.id, connector->name);
6418 return;
6419 }
6420
6421 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6422 default:
6423 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6424 connector->base.id, connector->name);
6425 fallthrough;
6426 case 0:
6427 info->mso_stream_count = 0;
6428 break;
6429 case 1:
6430 info->mso_stream_count = 2; /* 2 or 4 links */
6431 break;
6432 case 2:
6433 info->mso_stream_count = 4; /* 4 links */
6434 break;
6435 }
6436
6437 if (!info->mso_stream_count) {
6438 info->mso_pixel_overlap = 0;
6439 return;
6440 }
6441
6442 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6443 if (info->mso_pixel_overlap > 8) {
6444 drm_dbg_kms(connector->dev,
6445 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6446 connector->base.id, connector->name,
6447 info->mso_pixel_overlap);
6448 info->mso_pixel_overlap = 8;
6449 }
6450
6451 drm_dbg_kms(connector->dev,
6452 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6453 connector->base.id, connector->name,
6454 info->mso_stream_count, info->mso_pixel_overlap);
6455}
6456
6457static void drm_update_mso(struct drm_connector *connector,
6458 const struct drm_edid *drm_edid)
6459{
6460 const struct displayid_block *block;
6461 struct displayid_iter iter;
6462
6463 displayid_iter_edid_begin(drm_edid, &iter);
6464 displayid_iter_for_each(block, &iter) {
6465 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6466 drm_parse_vesa_mso_data(connector, block);
6467 }
6468 displayid_iter_end(&iter);
6469}
6470
6471/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6472 * all of the values which would have been set from EDID
6473 */
6474static void drm_reset_display_info(struct drm_connector *connector)
6475{
6476 struct drm_display_info *info = &connector->display_info;
6477
6478 info->width_mm = 0;
6479 info->height_mm = 0;
6480
6481 info->bpc = 0;
6482 info->color_formats = 0;
6483 info->cea_rev = 0;
6484 info->max_tmds_clock = 0;
6485 info->dvi_dual = false;
6486 info->is_hdmi = false;
6487 info->has_audio = false;
6488 info->has_hdmi_infoframe = false;
6489 info->rgb_quant_range_selectable = false;
6490 memset(&info->hdmi, 0, sizeof(info->hdmi));
6491
6492 info->edid_hdmi_rgb444_dc_modes = 0;
6493 info->edid_hdmi_ycbcr444_dc_modes = 0;
6494
6495 info->non_desktop = 0;
6496 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6497 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6498
6499 info->mso_stream_count = 0;
6500 info->mso_pixel_overlap = 0;
6501 info->max_dsc_bpp = 0;
6502
6503 kfree(info->vics);
6504 info->vics = NULL;
6505 info->vics_len = 0;
6506
6507 info->quirks = 0;
6508
6509 info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6510}
6511
6512static void update_displayid_info(struct drm_connector *connector,
6513 const struct drm_edid *drm_edid)
6514{
6515 struct drm_display_info *info = &connector->display_info;
6516 const struct displayid_block *block;
6517 struct displayid_iter iter;
6518
6519 displayid_iter_edid_begin(drm_edid, &iter);
6520 displayid_iter_for_each(block, &iter) {
6521 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6522 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6523 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6524 info->non_desktop = true;
6525
6526 /*
6527 * We're only interested in the base section here, no need to
6528 * iterate further.
6529 */
6530 break;
6531 }
6532 displayid_iter_end(&iter);
6533}
6534
6535static void update_display_info(struct drm_connector *connector,
6536 const struct drm_edid *drm_edid)
6537{
6538 struct drm_display_info *info = &connector->display_info;
6539 const struct edid *edid;
6540
6541 drm_reset_display_info(connector);
6542 clear_eld(connector);
6543
6544 if (!drm_edid)
6545 return;
6546
6547 edid = drm_edid->edid;
6548
6549 info->quirks = edid_get_quirks(drm_edid);
6550
6551 info->width_mm = edid->width_cm * 10;
6552 info->height_mm = edid->height_cm * 10;
6553
6554 drm_get_monitor_range(connector, drm_edid);
6555
6556 if (edid->revision < 3)
6557 goto out;
6558
6559 if (!drm_edid_is_digital(drm_edid))
6560 goto out;
6561
6562 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6563 drm_parse_cea_ext(connector, drm_edid);
6564
6565 update_displayid_info(connector, drm_edid);
6566
6567 /*
6568 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6569 *
6570 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6571 * tells us to assume 8 bpc color depth if the EDID doesn't have
6572 * extensions which tell otherwise.
6573 */
6574 if (info->bpc == 0 && edid->revision == 3 &&
6575 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6576 info->bpc = 8;
6577 drm_dbg_kms(connector->dev,
6578 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6579 connector->base.id, connector->name, info->bpc);
6580 }
6581
6582 /* Only defined for 1.4 with digital displays */
6583 if (edid->revision < 4)
6584 goto out;
6585
6586 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6587 case DRM_EDID_DIGITAL_DEPTH_6:
6588 info->bpc = 6;
6589 break;
6590 case DRM_EDID_DIGITAL_DEPTH_8:
6591 info->bpc = 8;
6592 break;
6593 case DRM_EDID_DIGITAL_DEPTH_10:
6594 info->bpc = 10;
6595 break;
6596 case DRM_EDID_DIGITAL_DEPTH_12:
6597 info->bpc = 12;
6598 break;
6599 case DRM_EDID_DIGITAL_DEPTH_14:
6600 info->bpc = 14;
6601 break;
6602 case DRM_EDID_DIGITAL_DEPTH_16:
6603 info->bpc = 16;
6604 break;
6605 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6606 default:
6607 info->bpc = 0;
6608 break;
6609 }
6610
6611 drm_dbg_kms(connector->dev,
6612 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6613 connector->base.id, connector->name, info->bpc);
6614
6615 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6616 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6617 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6618 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6619
6620 drm_update_mso(connector, drm_edid);
6621
6622out:
6623 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6624 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6625 connector->base.id, connector->name,
6626 info->non_desktop ? " (redundant quirk)" : "");
6627 info->non_desktop = true;
6628 }
6629
6630 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6631 info->max_dsc_bpp = 15;
6632
6633 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6634 info->bpc = 6;
6635
6636 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6637 info->bpc = 8;
6638
6639 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6640 info->bpc = 10;
6641
6642 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6643 info->bpc = 12;
6644
6645 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6646 drm_edid_to_eld(connector, drm_edid);
6647}
6648
6649static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6650 struct displayid_detailed_timings_1 *timings,
6651 bool type_7)
6652{
6653 struct drm_display_mode *mode;
6654 unsigned pixel_clock = (timings->pixel_clock[0] |
6655 (timings->pixel_clock[1] << 8) |
6656 (timings->pixel_clock[2] << 16)) + 1;
6657 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6658 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6659 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6660 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6661 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6662 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6663 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6664 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6665 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6666 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6667
6668 mode = drm_mode_create(dev);
6669 if (!mode)
6670 return NULL;
6671
6672 /* resolution is kHz for type VII, and 10 kHz for type I */
6673 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6674 mode->hdisplay = hactive;
6675 mode->hsync_start = mode->hdisplay + hsync;
6676 mode->hsync_end = mode->hsync_start + hsync_width;
6677 mode->htotal = mode->hdisplay + hblank;
6678
6679 mode->vdisplay = vactive;
6680 mode->vsync_start = mode->vdisplay + vsync;
6681 mode->vsync_end = mode->vsync_start + vsync_width;
6682 mode->vtotal = mode->vdisplay + vblank;
6683
6684 mode->flags = 0;
6685 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6686 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6687 mode->type = DRM_MODE_TYPE_DRIVER;
6688
6689 if (timings->flags & 0x80)
6690 mode->type |= DRM_MODE_TYPE_PREFERRED;
6691 drm_mode_set_name(mode);
6692
6693 return mode;
6694}
6695
6696static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6697 const struct displayid_block *block)
6698{
6699 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6700 int i;
6701 int num_timings;
6702 struct drm_display_mode *newmode;
6703 int num_modes = 0;
6704 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6705 /* blocks must be multiple of 20 bytes length */
6706 if (block->num_bytes % 20)
6707 return 0;
6708
6709 num_timings = block->num_bytes / 20;
6710 for (i = 0; i < num_timings; i++) {
6711 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6712
6713 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6714 if (!newmode)
6715 continue;
6716
6717 drm_mode_probed_add(connector, newmode);
6718 num_modes++;
6719 }
6720 return num_modes;
6721}
6722
6723static int add_displayid_detailed_modes(struct drm_connector *connector,
6724 const struct drm_edid *drm_edid)
6725{
6726 const struct displayid_block *block;
6727 struct displayid_iter iter;
6728 int num_modes = 0;
6729
6730 displayid_iter_edid_begin(drm_edid, &iter);
6731 displayid_iter_for_each(block, &iter) {
6732 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6733 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6734 num_modes += add_displayid_detailed_1_modes(connector, block);
6735 }
6736 displayid_iter_end(&iter);
6737
6738 return num_modes;
6739}
6740
6741static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6742 const struct drm_edid *drm_edid)
6743{
6744 const struct drm_display_info *info = &connector->display_info;
6745 int num_modes = 0;
6746
6747 if (!drm_edid)
6748 return 0;
6749
6750 /*
6751 * EDID spec says modes should be preferred in this order:
6752 * - preferred detailed mode
6753 * - other detailed modes from base block
6754 * - detailed modes from extension blocks
6755 * - CVT 3-byte code modes
6756 * - standard timing codes
6757 * - established timing codes
6758 * - modes inferred from GTF or CVT range information
6759 *
6760 * We get this pretty much right.
6761 *
6762 * XXX order for additional mode types in extension blocks?
6763 */
6764 num_modes += add_detailed_modes(connector, drm_edid);
6765 num_modes += add_cvt_modes(connector, drm_edid);
6766 num_modes += add_standard_modes(connector, drm_edid);
6767 num_modes += add_established_modes(connector, drm_edid);
6768 num_modes += add_cea_modes(connector, drm_edid);
6769 num_modes += add_alternate_cea_modes(connector, drm_edid);
6770 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6771 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6772 num_modes += add_inferred_modes(connector, drm_edid);
6773
6774 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6775 edid_fixup_preferred(connector);
6776
6777 return num_modes;
6778}
6779
6780static void _drm_update_tile_info(struct drm_connector *connector,
6781 const struct drm_edid *drm_edid);
6782
6783static int _drm_edid_connector_property_update(struct drm_connector *connector,
6784 const struct drm_edid *drm_edid)
6785{
6786 struct drm_device *dev = connector->dev;
6787 int ret;
6788
6789 if (connector->edid_blob_ptr) {
6790 const struct edid *old_edid = connector->edid_blob_ptr->data;
6791
6792 if (old_edid) {
6793 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6794 connector->epoch_counter++;
6795 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6796 connector->base.id, connector->name,
6797 connector->epoch_counter);
6798 }
6799 }
6800 }
6801
6802 ret = drm_property_replace_global_blob(dev,
6803 &connector->edid_blob_ptr,
6804 drm_edid ? drm_edid->size : 0,
6805 drm_edid ? drm_edid->edid : NULL,
6806 &connector->base,
6807 dev->mode_config.edid_property);
6808 if (ret) {
6809 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6810 connector->base.id, connector->name, ret);
6811 goto out;
6812 }
6813
6814 ret = drm_object_property_set_value(&connector->base,
6815 dev->mode_config.non_desktop_property,
6816 connector->display_info.non_desktop);
6817 if (ret) {
6818 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6819 connector->base.id, connector->name, ret);
6820 goto out;
6821 }
6822
6823 ret = drm_connector_set_tile_property(connector);
6824 if (ret) {
6825 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6826 connector->base.id, connector->name, ret);
6827 goto out;
6828 }
6829
6830out:
6831 return ret;
6832}
6833
6834/**
6835 * drm_edid_connector_update - Update connector information from EDID
6836 * @connector: Connector
6837 * @drm_edid: EDID
6838 *
6839 * Update the connector display info, ELD, HDR metadata, relevant properties,
6840 * etc. from the passed in EDID.
6841 *
6842 * If EDID is NULL, reset the information.
6843 *
6844 * Must be called before calling drm_edid_connector_add_modes().
6845 *
6846 * Return: 0 on success, negative error on errors.
6847 */
6848int drm_edid_connector_update(struct drm_connector *connector,
6849 const struct drm_edid *drm_edid)
6850{
6851 update_display_info(connector, drm_edid);
6852
6853 _drm_update_tile_info(connector, drm_edid);
6854
6855 return _drm_edid_connector_property_update(connector, drm_edid);
6856}
6857EXPORT_SYMBOL(drm_edid_connector_update);
6858
6859/**
6860 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6861 * @connector: Connector
6862 *
6863 * Add the modes from the previously updated EDID property to the connector
6864 * probed modes list.
6865 *
6866 * drm_edid_connector_update() must have been called before this to update the
6867 * EDID property.
6868 *
6869 * Return: The number of modes added, or 0 if we couldn't find any.
6870 */
6871int drm_edid_connector_add_modes(struct drm_connector *connector)
6872{
6873 const struct drm_edid *drm_edid = NULL;
6874 int count;
6875
6876 if (connector->edid_blob_ptr)
6877 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6878 connector->edid_blob_ptr->length);
6879
6880 count = _drm_edid_connector_add_modes(connector, drm_edid);
6881
6882 drm_edid_free(drm_edid);
6883
6884 return count;
6885}
6886EXPORT_SYMBOL(drm_edid_connector_add_modes);
6887
6888/**
6889 * drm_connector_update_edid_property - update the edid property of a connector
6890 * @connector: drm connector
6891 * @edid: new value of the edid property
6892 *
6893 * This function creates a new blob modeset object and assigns its id to the
6894 * connector's edid property.
6895 * Since we also parse tile information from EDID's displayID block, we also
6896 * set the connector's tile property here. See drm_connector_set_tile_property()
6897 * for more details.
6898 *
6899 * This function is deprecated. Use drm_edid_connector_update() instead.
6900 *
6901 * Returns:
6902 * Zero on success, negative errno on failure.
6903 */
6904int drm_connector_update_edid_property(struct drm_connector *connector,
6905 const struct edid *edid)
6906{
6907 struct drm_edid drm_edid;
6908
6909 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6910}
6911EXPORT_SYMBOL(drm_connector_update_edid_property);
6912
6913/**
6914 * drm_add_edid_modes - add modes from EDID data, if available
6915 * @connector: connector we're probing
6916 * @edid: EDID data
6917 *
6918 * Add the specified modes to the connector's mode list. Also fills out the
6919 * &drm_display_info structure and ELD in @connector with any information which
6920 * can be derived from the edid.
6921 *
6922 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6923 *
6924 * Return: The number of modes added or 0 if we couldn't find any.
6925 */
6926int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6927{
6928 struct drm_edid _drm_edid;
6929 const struct drm_edid *drm_edid;
6930
6931 if (edid && !drm_edid_is_valid(edid)) {
6932 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6933 connector->base.id, connector->name);
6934 edid = NULL;
6935 }
6936
6937 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6938
6939 update_display_info(connector, drm_edid);
6940
6941 return _drm_edid_connector_add_modes(connector, drm_edid);
6942}
6943EXPORT_SYMBOL(drm_add_edid_modes);
6944
6945/**
6946 * drm_add_modes_noedid - add modes for the connectors without EDID
6947 * @connector: connector we're probing
6948 * @hdisplay: the horizontal display limit
6949 * @vdisplay: the vertical display limit
6950 *
6951 * Add the specified modes to the connector's mode list. Only when the
6952 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6953 *
6954 * Return: The number of modes added or 0 if we couldn't find any.
6955 */
6956int drm_add_modes_noedid(struct drm_connector *connector,
6957 int hdisplay, int vdisplay)
6958{
6959 int i, count, num_modes = 0;
6960 struct drm_display_mode *mode;
6961 struct drm_device *dev = connector->dev;
6962
6963 count = ARRAY_SIZE(drm_dmt_modes);
6964 if (hdisplay < 0)
6965 hdisplay = 0;
6966 if (vdisplay < 0)
6967 vdisplay = 0;
6968
6969 for (i = 0; i < count; i++) {
6970 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6971
6972 if (hdisplay && vdisplay) {
6973 /*
6974 * Only when two are valid, they will be used to check
6975 * whether the mode should be added to the mode list of
6976 * the connector.
6977 */
6978 if (ptr->hdisplay > hdisplay ||
6979 ptr->vdisplay > vdisplay)
6980 continue;
6981 }
6982 if (drm_mode_vrefresh(ptr) > 61)
6983 continue;
6984 mode = drm_mode_duplicate(dev, ptr);
6985 if (mode) {
6986 drm_mode_probed_add(connector, mode);
6987 num_modes++;
6988 }
6989 }
6990 return num_modes;
6991}
6992EXPORT_SYMBOL(drm_add_modes_noedid);
6993
6994static bool is_hdmi2_sink(const struct drm_connector *connector)
6995{
6996 /*
6997 * FIXME: sil-sii8620 doesn't have a connector around when
6998 * we need one, so we have to be prepared for a NULL connector.
6999 */
7000 if (!connector)
7001 return true;
7002
7003 return connector->display_info.hdmi.scdc.supported ||
7004 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7005}
7006
7007static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7008 const struct drm_display_mode *mode)
7009{
7010 bool has_hdmi_infoframe = connector ?
7011 connector->display_info.has_hdmi_infoframe : false;
7012
7013 if (!has_hdmi_infoframe)
7014 return 0;
7015
7016 /* No HDMI VIC when signalling 3D video format */
7017 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7018 return 0;
7019
7020 return drm_match_hdmi_mode(mode);
7021}
7022
7023static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7024 const struct drm_display_mode *mode)
7025{
7026 /*
7027 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7028 * we should send its VIC in vendor infoframes, else send the
7029 * VIC in AVI infoframes. Lets check if this mode is present in
7030 * HDMI 1.4b 4K modes
7031 */
7032 if (drm_mode_hdmi_vic(connector, mode))
7033 return 0;
7034
7035 return drm_match_cea_mode(mode);
7036}
7037
7038/*
7039 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7040 * conform to HDMI 1.4.
7041 *
7042 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7043 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7044 *
7045 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7046 * version.
7047 */
7048static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7049{
7050 if (!is_hdmi2_sink(connector) && vic > 64 &&
7051 !cta_vdb_has_vic(connector, vic))
7052 return 0;
7053
7054 return vic;
7055}
7056
7057/**
7058 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7059 * data from a DRM display mode
7060 * @frame: HDMI AVI infoframe
7061 * @connector: the connector
7062 * @mode: DRM display mode
7063 *
7064 * Return: 0 on success or a negative error code on failure.
7065 */
7066int
7067drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7068 const struct drm_connector *connector,
7069 const struct drm_display_mode *mode)
7070{
7071 enum hdmi_picture_aspect picture_aspect;
7072 u8 vic, hdmi_vic;
7073
7074 if (!frame || !mode)
7075 return -EINVAL;
7076
7077 hdmi_avi_infoframe_init(frame);
7078
7079 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7080 frame->pixel_repeat = 1;
7081
7082 vic = drm_mode_cea_vic(connector, mode);
7083 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7084
7085 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7086
7087 /*
7088 * As some drivers don't support atomic, we can't use connector state.
7089 * So just initialize the frame with default values, just the same way
7090 * as it's done with other properties here.
7091 */
7092 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7093 frame->itc = 0;
7094
7095 /*
7096 * Populate picture aspect ratio from either
7097 * user input (if specified) or from the CEA/HDMI mode lists.
7098 */
7099 picture_aspect = mode->picture_aspect_ratio;
7100 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7101 if (vic)
7102 picture_aspect = drm_get_cea_aspect_ratio(vic);
7103 else if (hdmi_vic)
7104 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7105 }
7106
7107 /*
7108 * The infoframe can't convey anything but none, 4:3
7109 * and 16:9, so if the user has asked for anything else
7110 * we can only satisfy it by specifying the right VIC.
7111 */
7112 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7113 if (vic) {
7114 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7115 return -EINVAL;
7116 } else if (hdmi_vic) {
7117 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7118 return -EINVAL;
7119 } else {
7120 return -EINVAL;
7121 }
7122
7123 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7124 }
7125
7126 frame->video_code = vic_for_avi_infoframe(connector, vic);
7127 frame->picture_aspect = picture_aspect;
7128 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7129 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7130
7131 return 0;
7132}
7133EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7134
7135/**
7136 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7137 * quantization range information
7138 * @frame: HDMI AVI infoframe
7139 * @connector: the connector
7140 * @mode: DRM display mode
7141 * @rgb_quant_range: RGB quantization range (Q)
7142 */
7143void
7144drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7145 const struct drm_connector *connector,
7146 const struct drm_display_mode *mode,
7147 enum hdmi_quantization_range rgb_quant_range)
7148{
7149 const struct drm_display_info *info = &connector->display_info;
7150
7151 /*
7152 * CEA-861:
7153 * "A Source shall not send a non-zero Q value that does not correspond
7154 * to the default RGB Quantization Range for the transmitted Picture
7155 * unless the Sink indicates support for the Q bit in a Video
7156 * Capabilities Data Block."
7157 *
7158 * HDMI 2.0 recommends sending non-zero Q when it does match the
7159 * default RGB quantization range for the mode, even when QS=0.
7160 */
7161 if (info->rgb_quant_range_selectable ||
7162 rgb_quant_range == drm_default_rgb_quant_range(mode))
7163 frame->quantization_range = rgb_quant_range;
7164 else
7165 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7166
7167 /*
7168 * CEA-861-F:
7169 * "When transmitting any RGB colorimetry, the Source should set the
7170 * YQ-field to match the RGB Quantization Range being transmitted
7171 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7172 * set YQ=1) and the Sink shall ignore the YQ-field."
7173 *
7174 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7175 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7176 * good way to tell which version of CEA-861 the sink supports, so
7177 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7178 * on CEA-861-F.
7179 */
7180 if (!is_hdmi2_sink(connector) ||
7181 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7182 frame->ycc_quantization_range =
7183 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7184 else
7185 frame->ycc_quantization_range =
7186 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7187}
7188EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7189
7190static enum hdmi_3d_structure
7191s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7192{
7193 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7194
7195 switch (layout) {
7196 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7197 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7198 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7199 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7200 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7201 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7202 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7203 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7204 case DRM_MODE_FLAG_3D_L_DEPTH:
7205 return HDMI_3D_STRUCTURE_L_DEPTH;
7206 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7207 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7208 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7209 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7210 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7211 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7212 default:
7213 return HDMI_3D_STRUCTURE_INVALID;
7214 }
7215}
7216
7217/**
7218 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7219 * data from a DRM display mode
7220 * @frame: HDMI vendor infoframe
7221 * @connector: the connector
7222 * @mode: DRM display mode
7223 *
7224 * Note that there's is a need to send HDMI vendor infoframes only when using a
7225 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7226 * function will return -EINVAL, error that can be safely ignored.
7227 *
7228 * Return: 0 on success or a negative error code on failure.
7229 */
7230int
7231drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7232 const struct drm_connector *connector,
7233 const struct drm_display_mode *mode)
7234{
7235 /*
7236 * FIXME: sil-sii8620 doesn't have a connector around when
7237 * we need one, so we have to be prepared for a NULL connector.
7238 */
7239 bool has_hdmi_infoframe = connector ?
7240 connector->display_info.has_hdmi_infoframe : false;
7241 int err;
7242
7243 if (!frame || !mode)
7244 return -EINVAL;
7245
7246 if (!has_hdmi_infoframe)
7247 return -EINVAL;
7248
7249 err = hdmi_vendor_infoframe_init(frame);
7250 if (err < 0)
7251 return err;
7252
7253 /*
7254 * Even if it's not absolutely necessary to send the infoframe
7255 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7256 * know that the sink can handle it. This is based on a
7257 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7258 * have trouble realizing that they should switch from 3D to 2D
7259 * mode if the source simply stops sending the infoframe when
7260 * it wants to switch from 3D to 2D.
7261 */
7262 frame->vic = drm_mode_hdmi_vic(connector, mode);
7263 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7264
7265 return 0;
7266}
7267EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7268
7269static void drm_parse_tiled_block(struct drm_connector *connector,
7270 const struct displayid_block *block)
7271{
7272 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7273 u16 w, h;
7274 u8 tile_v_loc, tile_h_loc;
7275 u8 num_v_tile, num_h_tile;
7276 struct drm_tile_group *tg;
7277
7278 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7279 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7280
7281 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7282 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7283 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7284 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7285
7286 connector->has_tile = true;
7287 if (tile->tile_cap & 0x80)
7288 connector->tile_is_single_monitor = true;
7289
7290 connector->num_h_tile = num_h_tile + 1;
7291 connector->num_v_tile = num_v_tile + 1;
7292 connector->tile_h_loc = tile_h_loc;
7293 connector->tile_v_loc = tile_v_loc;
7294 connector->tile_h_size = w + 1;
7295 connector->tile_v_size = h + 1;
7296
7297 drm_dbg_kms(connector->dev,
7298 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7299 connector->base.id, connector->name,
7300 tile->tile_cap,
7301 connector->tile_h_size, connector->tile_v_size,
7302 connector->num_h_tile, connector->num_v_tile,
7303 connector->tile_h_loc, connector->tile_v_loc,
7304 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7305
7306 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7307 if (!tg)
7308 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7309 if (!tg)
7310 return;
7311
7312 if (connector->tile_group != tg) {
7313 /* if we haven't got a pointer,
7314 take the reference, drop ref to old tile group */
7315 if (connector->tile_group)
7316 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7317 connector->tile_group = tg;
7318 } else {
7319 /* if same tile group, then release the ref we just took. */
7320 drm_mode_put_tile_group(connector->dev, tg);
7321 }
7322}
7323
7324static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7325 const struct displayid_block *block)
7326{
7327 return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7328 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7329 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7330 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7331}
7332
7333static void _drm_update_tile_info(struct drm_connector *connector,
7334 const struct drm_edid *drm_edid)
7335{
7336 const struct displayid_block *block;
7337 struct displayid_iter iter;
7338
7339 connector->has_tile = false;
7340
7341 displayid_iter_edid_begin(drm_edid, &iter);
7342 displayid_iter_for_each(block, &iter) {
7343 if (displayid_is_tiled_block(&iter, block))
7344 drm_parse_tiled_block(connector, block);
7345 }
7346 displayid_iter_end(&iter);
7347
7348 if (!connector->has_tile && connector->tile_group) {
7349 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7350 connector->tile_group = NULL;
7351 }
7352}
7353
7354/**
7355 * drm_edid_is_digital - is digital?
7356 * @drm_edid: The EDID
7357 *
7358 * Return true if input is digital.
7359 */
7360bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7361{
7362 return drm_edid && drm_edid->edid &&
7363 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7364}
7365EXPORT_SYMBOL(drm_edid_is_digital);