Loading...
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/i2c.h>
33#include "drmP.h"
34#include "drm_edid.h"
35#include "drm_edid_modes.h"
36
37#define version_greater(edid, maj, min) \
38 (((edid)->version > (maj)) || \
39 ((edid)->version == (maj) && (edid)->revision > (min)))
40
41#define EDID_EST_TIMINGS 16
42#define EDID_STD_TIMINGS 8
43#define EDID_DETAILED_TIMINGS 4
44
45/*
46 * EDID blocks out in the wild have a variety of bugs, try to collect
47 * them here (note that userspace may work around broken monitors first,
48 * but fixes should make their way here so that the kernel "just works"
49 * on as many displays as possible).
50 */
51
52/* First detailed mode wrong, use largest 60Hz mode */
53#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
54/* Reported 135MHz pixel clock is too high, needs adjustment */
55#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
56/* Prefer the largest mode at 75 Hz */
57#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
58/* Detail timing is in cm not mm */
59#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
60/* Detailed timing descriptors have bogus size values, so just take the
61 * maximum size and use that.
62 */
63#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
64/* Monitor forgot to set the first detailed is preferred bit. */
65#define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
66/* use +hsync +vsync for detailed mode */
67#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
68
69struct detailed_mode_closure {
70 struct drm_connector *connector;
71 struct edid *edid;
72 bool preferred;
73 u32 quirks;
74 int modes;
75};
76
77#define LEVEL_DMT 0
78#define LEVEL_GTF 1
79#define LEVEL_GTF2 2
80#define LEVEL_CVT 3
81
82static struct edid_quirk {
83 char *vendor;
84 int product_id;
85 u32 quirks;
86} edid_quirk_list[] = {
87 /* Acer AL1706 */
88 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
89 /* Acer F51 */
90 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
91 /* Unknown Acer */
92 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
93
94 /* Belinea 10 15 55 */
95 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
96 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
97
98 /* Envision Peripherals, Inc. EN-7100e */
99 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
100 /* Envision EN2028 */
101 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
102
103 /* Funai Electronics PM36B */
104 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
105 EDID_QUIRK_DETAILED_IN_CM },
106
107 /* LG Philips LCD LP154W01-A5 */
108 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
109 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
110
111 /* Philips 107p5 CRT */
112 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
113
114 /* Proview AY765C */
115 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116
117 /* Samsung SyncMaster 205BW. Note: irony */
118 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
119 /* Samsung SyncMaster 22[5-6]BW */
120 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
121 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
122};
123
124/*** DDC fetch and block validation ***/
125
126static const u8 edid_header[] = {
127 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
128};
129
130 /*
131 * Sanity check the header of the base EDID block. Return 8 if the header
132 * is perfect, down to 0 if it's totally wrong.
133 */
134int drm_edid_header_is_valid(const u8 *raw_edid)
135{
136 int i, score = 0;
137
138 for (i = 0; i < sizeof(edid_header); i++)
139 if (raw_edid[i] == edid_header[i])
140 score++;
141
142 return score;
143}
144EXPORT_SYMBOL(drm_edid_header_is_valid);
145
146
147/*
148 * Sanity check the EDID block (base or extension). Return 0 if the block
149 * doesn't check out, or 1 if it's valid.
150 */
151static bool
152drm_edid_block_valid(u8 *raw_edid)
153{
154 int i;
155 u8 csum = 0;
156 struct edid *edid = (struct edid *)raw_edid;
157
158 if (raw_edid[0] == 0x00) {
159 int score = drm_edid_header_is_valid(raw_edid);
160 if (score == 8) ;
161 else if (score >= 6) {
162 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
163 memcpy(raw_edid, edid_header, sizeof(edid_header));
164 } else {
165 goto bad;
166 }
167 }
168
169 for (i = 0; i < EDID_LENGTH; i++)
170 csum += raw_edid[i];
171 if (csum) {
172 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
173
174 /* allow CEA to slide through, switches mangle this */
175 if (raw_edid[0] != 0x02)
176 goto bad;
177 }
178
179 /* per-block-type checks */
180 switch (raw_edid[0]) {
181 case 0: /* base */
182 if (edid->version != 1) {
183 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
184 goto bad;
185 }
186
187 if (edid->revision > 4)
188 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
189 break;
190
191 default:
192 break;
193 }
194
195 return 1;
196
197bad:
198 if (raw_edid) {
199 printk(KERN_ERR "Raw EDID:\n");
200 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
201 raw_edid, EDID_LENGTH, false);
202 }
203 return 0;
204}
205
206/**
207 * drm_edid_is_valid - sanity check EDID data
208 * @edid: EDID data
209 *
210 * Sanity-check an entire EDID record (including extensions)
211 */
212bool drm_edid_is_valid(struct edid *edid)
213{
214 int i;
215 u8 *raw = (u8 *)edid;
216
217 if (!edid)
218 return false;
219
220 for (i = 0; i <= edid->extensions; i++)
221 if (!drm_edid_block_valid(raw + i * EDID_LENGTH))
222 return false;
223
224 return true;
225}
226EXPORT_SYMBOL(drm_edid_is_valid);
227
228#define DDC_ADDR 0x50
229#define DDC_SEGMENT_ADDR 0x30
230/**
231 * Get EDID information via I2C.
232 *
233 * \param adapter : i2c device adaptor
234 * \param buf : EDID data buffer to be filled
235 * \param len : EDID data buffer length
236 * \return 0 on success or -1 on failure.
237 *
238 * Try to fetch EDID information by calling i2c driver function.
239 */
240static int
241drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
242 int block, int len)
243{
244 unsigned char start = block * EDID_LENGTH;
245 int ret, retries = 5;
246
247 /* The core i2c driver will automatically retry the transfer if the
248 * adapter reports EAGAIN. However, we find that bit-banging transfers
249 * are susceptible to errors under a heavily loaded machine and
250 * generate spurious NAKs and timeouts. Retrying the transfer
251 * of the individual block a few times seems to overcome this.
252 */
253 do {
254 struct i2c_msg msgs[] = {
255 {
256 .addr = DDC_ADDR,
257 .flags = 0,
258 .len = 1,
259 .buf = &start,
260 }, {
261 .addr = DDC_ADDR,
262 .flags = I2C_M_RD,
263 .len = len,
264 .buf = buf,
265 }
266 };
267 ret = i2c_transfer(adapter, msgs, 2);
268 } while (ret != 2 && --retries);
269
270 return ret == 2 ? 0 : -1;
271}
272
273static bool drm_edid_is_zero(u8 *in_edid, int length)
274{
275 int i;
276 u32 *raw_edid = (u32 *)in_edid;
277
278 for (i = 0; i < length / 4; i++)
279 if (*(raw_edid + i) != 0)
280 return false;
281 return true;
282}
283
284static u8 *
285drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
286{
287 int i, j = 0, valid_extensions = 0;
288 u8 *block, *new;
289
290 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
291 return NULL;
292
293 /* base block fetch */
294 for (i = 0; i < 4; i++) {
295 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
296 goto out;
297 if (drm_edid_block_valid(block))
298 break;
299 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
300 connector->null_edid_counter++;
301 goto carp;
302 }
303 }
304 if (i == 4)
305 goto carp;
306
307 /* if there's no extensions, we're done */
308 if (block[0x7e] == 0)
309 return block;
310
311 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
312 if (!new)
313 goto out;
314 block = new;
315
316 for (j = 1; j <= block[0x7e]; j++) {
317 for (i = 0; i < 4; i++) {
318 if (drm_do_probe_ddc_edid(adapter,
319 block + (valid_extensions + 1) * EDID_LENGTH,
320 j, EDID_LENGTH))
321 goto out;
322 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH)) {
323 valid_extensions++;
324 break;
325 }
326 }
327 if (i == 4)
328 dev_warn(connector->dev->dev,
329 "%s: Ignoring invalid EDID block %d.\n",
330 drm_get_connector_name(connector), j);
331 }
332
333 if (valid_extensions != block[0x7e]) {
334 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
335 block[0x7e] = valid_extensions;
336 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
337 if (!new)
338 goto out;
339 block = new;
340 }
341
342 return block;
343
344carp:
345 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
346 drm_get_connector_name(connector), j);
347
348out:
349 kfree(block);
350 return NULL;
351}
352
353/**
354 * Probe DDC presence.
355 *
356 * \param adapter : i2c device adaptor
357 * \return 1 on success
358 */
359static bool
360drm_probe_ddc(struct i2c_adapter *adapter)
361{
362 unsigned char out;
363
364 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
365}
366
367/**
368 * drm_get_edid - get EDID data, if available
369 * @connector: connector we're probing
370 * @adapter: i2c adapter to use for DDC
371 *
372 * Poke the given i2c channel to grab EDID data if possible. If found,
373 * attach it to the connector.
374 *
375 * Return edid data or NULL if we couldn't find any.
376 */
377struct edid *drm_get_edid(struct drm_connector *connector,
378 struct i2c_adapter *adapter)
379{
380 struct edid *edid = NULL;
381
382 if (drm_probe_ddc(adapter))
383 edid = (struct edid *)drm_do_get_edid(connector, adapter);
384
385 connector->display_info.raw_edid = (char *)edid;
386
387 return edid;
388
389}
390EXPORT_SYMBOL(drm_get_edid);
391
392/*** EDID parsing ***/
393
394/**
395 * edid_vendor - match a string against EDID's obfuscated vendor field
396 * @edid: EDID to match
397 * @vendor: vendor string
398 *
399 * Returns true if @vendor is in @edid, false otherwise
400 */
401static bool edid_vendor(struct edid *edid, char *vendor)
402{
403 char edid_vendor[3];
404
405 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
406 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
407 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
408 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
409
410 return !strncmp(edid_vendor, vendor, 3);
411}
412
413/**
414 * edid_get_quirks - return quirk flags for a given EDID
415 * @edid: EDID to process
416 *
417 * This tells subsequent routines what fixes they need to apply.
418 */
419static u32 edid_get_quirks(struct edid *edid)
420{
421 struct edid_quirk *quirk;
422 int i;
423
424 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
425 quirk = &edid_quirk_list[i];
426
427 if (edid_vendor(edid, quirk->vendor) &&
428 (EDID_PRODUCT_ID(edid) == quirk->product_id))
429 return quirk->quirks;
430 }
431
432 return 0;
433}
434
435#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
436#define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
437
438/**
439 * edid_fixup_preferred - set preferred modes based on quirk list
440 * @connector: has mode list to fix up
441 * @quirks: quirks list
442 *
443 * Walk the mode list for @connector, clearing the preferred status
444 * on existing modes and setting it anew for the right mode ala @quirks.
445 */
446static void edid_fixup_preferred(struct drm_connector *connector,
447 u32 quirks)
448{
449 struct drm_display_mode *t, *cur_mode, *preferred_mode;
450 int target_refresh = 0;
451
452 if (list_empty(&connector->probed_modes))
453 return;
454
455 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
456 target_refresh = 60;
457 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
458 target_refresh = 75;
459
460 preferred_mode = list_first_entry(&connector->probed_modes,
461 struct drm_display_mode, head);
462
463 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
464 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
465
466 if (cur_mode == preferred_mode)
467 continue;
468
469 /* Largest mode is preferred */
470 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
471 preferred_mode = cur_mode;
472
473 /* At a given size, try to get closest to target refresh */
474 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
475 MODE_REFRESH_DIFF(cur_mode, target_refresh) <
476 MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
477 preferred_mode = cur_mode;
478 }
479 }
480
481 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
482}
483
484struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
485 int hsize, int vsize, int fresh)
486{
487 struct drm_display_mode *mode = NULL;
488 int i;
489
490 for (i = 0; i < drm_num_dmt_modes; i++) {
491 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
492 if (hsize == ptr->hdisplay &&
493 vsize == ptr->vdisplay &&
494 fresh == drm_mode_vrefresh(ptr)) {
495 /* get the expected default mode */
496 mode = drm_mode_duplicate(dev, ptr);
497 break;
498 }
499 }
500 return mode;
501}
502EXPORT_SYMBOL(drm_mode_find_dmt);
503
504typedef void detailed_cb(struct detailed_timing *timing, void *closure);
505
506static void
507cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
508{
509 int i, n = 0;
510 u8 rev = ext[0x01], d = ext[0x02];
511 u8 *det_base = ext + d;
512
513 switch (rev) {
514 case 0:
515 /* can't happen */
516 return;
517 case 1:
518 /* have to infer how many blocks we have, check pixel clock */
519 for (i = 0; i < 6; i++)
520 if (det_base[18*i] || det_base[18*i+1])
521 n++;
522 break;
523 default:
524 /* explicit count */
525 n = min(ext[0x03] & 0x0f, 6);
526 break;
527 }
528
529 for (i = 0; i < n; i++)
530 cb((struct detailed_timing *)(det_base + 18 * i), closure);
531}
532
533static void
534vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
535{
536 unsigned int i, n = min((int)ext[0x02], 6);
537 u8 *det_base = ext + 5;
538
539 if (ext[0x01] != 1)
540 return; /* unknown version */
541
542 for (i = 0; i < n; i++)
543 cb((struct detailed_timing *)(det_base + 18 * i), closure);
544}
545
546static void
547drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
548{
549 int i;
550 struct edid *edid = (struct edid *)raw_edid;
551
552 if (edid == NULL)
553 return;
554
555 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
556 cb(&(edid->detailed_timings[i]), closure);
557
558 for (i = 1; i <= raw_edid[0x7e]; i++) {
559 u8 *ext = raw_edid + (i * EDID_LENGTH);
560 switch (*ext) {
561 case CEA_EXT:
562 cea_for_each_detailed_block(ext, cb, closure);
563 break;
564 case VTB_EXT:
565 vtb_for_each_detailed_block(ext, cb, closure);
566 break;
567 default:
568 break;
569 }
570 }
571}
572
573static void
574is_rb(struct detailed_timing *t, void *data)
575{
576 u8 *r = (u8 *)t;
577 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
578 if (r[15] & 0x10)
579 *(bool *)data = true;
580}
581
582/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
583static bool
584drm_monitor_supports_rb(struct edid *edid)
585{
586 if (edid->revision >= 4) {
587 bool ret;
588 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
589 return ret;
590 }
591
592 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
593}
594
595static void
596find_gtf2(struct detailed_timing *t, void *data)
597{
598 u8 *r = (u8 *)t;
599 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
600 *(u8 **)data = r;
601}
602
603/* Secondary GTF curve kicks in above some break frequency */
604static int
605drm_gtf2_hbreak(struct edid *edid)
606{
607 u8 *r = NULL;
608 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
609 return r ? (r[12] * 2) : 0;
610}
611
612static int
613drm_gtf2_2c(struct edid *edid)
614{
615 u8 *r = NULL;
616 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
617 return r ? r[13] : 0;
618}
619
620static int
621drm_gtf2_m(struct edid *edid)
622{
623 u8 *r = NULL;
624 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
625 return r ? (r[15] << 8) + r[14] : 0;
626}
627
628static int
629drm_gtf2_k(struct edid *edid)
630{
631 u8 *r = NULL;
632 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
633 return r ? r[16] : 0;
634}
635
636static int
637drm_gtf2_2j(struct edid *edid)
638{
639 u8 *r = NULL;
640 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
641 return r ? r[17] : 0;
642}
643
644/**
645 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
646 * @edid: EDID block to scan
647 */
648static int standard_timing_level(struct edid *edid)
649{
650 if (edid->revision >= 2) {
651 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
652 return LEVEL_CVT;
653 if (drm_gtf2_hbreak(edid))
654 return LEVEL_GTF2;
655 return LEVEL_GTF;
656 }
657 return LEVEL_DMT;
658}
659
660/*
661 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
662 * monitors fill with ascii space (0x20) instead.
663 */
664static int
665bad_std_timing(u8 a, u8 b)
666{
667 return (a == 0x00 && b == 0x00) ||
668 (a == 0x01 && b == 0x01) ||
669 (a == 0x20 && b == 0x20);
670}
671
672/**
673 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
674 * @t: standard timing params
675 * @timing_level: standard timing level
676 *
677 * Take the standard timing params (in this case width, aspect, and refresh)
678 * and convert them into a real mode using CVT/GTF/DMT.
679 */
680static struct drm_display_mode *
681drm_mode_std(struct drm_connector *connector, struct edid *edid,
682 struct std_timing *t, int revision)
683{
684 struct drm_device *dev = connector->dev;
685 struct drm_display_mode *m, *mode = NULL;
686 int hsize, vsize;
687 int vrefresh_rate;
688 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
689 >> EDID_TIMING_ASPECT_SHIFT;
690 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
691 >> EDID_TIMING_VFREQ_SHIFT;
692 int timing_level = standard_timing_level(edid);
693
694 if (bad_std_timing(t->hsize, t->vfreq_aspect))
695 return NULL;
696
697 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
698 hsize = t->hsize * 8 + 248;
699 /* vrefresh_rate = vfreq + 60 */
700 vrefresh_rate = vfreq + 60;
701 /* the vdisplay is calculated based on the aspect ratio */
702 if (aspect_ratio == 0) {
703 if (revision < 3)
704 vsize = hsize;
705 else
706 vsize = (hsize * 10) / 16;
707 } else if (aspect_ratio == 1)
708 vsize = (hsize * 3) / 4;
709 else if (aspect_ratio == 2)
710 vsize = (hsize * 4) / 5;
711 else
712 vsize = (hsize * 9) / 16;
713
714 /* HDTV hack, part 1 */
715 if (vrefresh_rate == 60 &&
716 ((hsize == 1360 && vsize == 765) ||
717 (hsize == 1368 && vsize == 769))) {
718 hsize = 1366;
719 vsize = 768;
720 }
721
722 /*
723 * If this connector already has a mode for this size and refresh
724 * rate (because it came from detailed or CVT info), use that
725 * instead. This way we don't have to guess at interlace or
726 * reduced blanking.
727 */
728 list_for_each_entry(m, &connector->probed_modes, head)
729 if (m->hdisplay == hsize && m->vdisplay == vsize &&
730 drm_mode_vrefresh(m) == vrefresh_rate)
731 return NULL;
732
733 /* HDTV hack, part 2 */
734 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
735 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
736 false);
737 mode->hdisplay = 1366;
738 mode->hsync_start = mode->hsync_start - 1;
739 mode->hsync_end = mode->hsync_end - 1;
740 return mode;
741 }
742
743 /* check whether it can be found in default mode table */
744 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate);
745 if (mode)
746 return mode;
747
748 switch (timing_level) {
749 case LEVEL_DMT:
750 break;
751 case LEVEL_GTF:
752 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
753 break;
754 case LEVEL_GTF2:
755 /*
756 * This is potentially wrong if there's ever a monitor with
757 * more than one ranges section, each claiming a different
758 * secondary GTF curve. Please don't do that.
759 */
760 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
761 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
762 kfree(mode);
763 mode = drm_gtf_mode_complex(dev, hsize, vsize,
764 vrefresh_rate, 0, 0,
765 drm_gtf2_m(edid),
766 drm_gtf2_2c(edid),
767 drm_gtf2_k(edid),
768 drm_gtf2_2j(edid));
769 }
770 break;
771 case LEVEL_CVT:
772 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
773 false);
774 break;
775 }
776 return mode;
777}
778
779/*
780 * EDID is delightfully ambiguous about how interlaced modes are to be
781 * encoded. Our internal representation is of frame height, but some
782 * HDTV detailed timings are encoded as field height.
783 *
784 * The format list here is from CEA, in frame size. Technically we
785 * should be checking refresh rate too. Whatever.
786 */
787static void
788drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
789 struct detailed_pixel_timing *pt)
790{
791 int i;
792 static const struct {
793 int w, h;
794 } cea_interlaced[] = {
795 { 1920, 1080 },
796 { 720, 480 },
797 { 1440, 480 },
798 { 2880, 480 },
799 { 720, 576 },
800 { 1440, 576 },
801 { 2880, 576 },
802 };
803
804 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
805 return;
806
807 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
808 if ((mode->hdisplay == cea_interlaced[i].w) &&
809 (mode->vdisplay == cea_interlaced[i].h / 2)) {
810 mode->vdisplay *= 2;
811 mode->vsync_start *= 2;
812 mode->vsync_end *= 2;
813 mode->vtotal *= 2;
814 mode->vtotal |= 1;
815 }
816 }
817
818 mode->flags |= DRM_MODE_FLAG_INTERLACE;
819}
820
821/**
822 * drm_mode_detailed - create a new mode from an EDID detailed timing section
823 * @dev: DRM device (needed to create new mode)
824 * @edid: EDID block
825 * @timing: EDID detailed timing info
826 * @quirks: quirks to apply
827 *
828 * An EDID detailed timing block contains enough info for us to create and
829 * return a new struct drm_display_mode.
830 */
831static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
832 struct edid *edid,
833 struct detailed_timing *timing,
834 u32 quirks)
835{
836 struct drm_display_mode *mode;
837 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
838 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
839 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
840 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
841 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
842 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
843 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
844 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4;
845 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
846
847 /* ignore tiny modes */
848 if (hactive < 64 || vactive < 64)
849 return NULL;
850
851 if (pt->misc & DRM_EDID_PT_STEREO) {
852 printk(KERN_WARNING "stereo mode not supported\n");
853 return NULL;
854 }
855 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
856 printk(KERN_WARNING "composite sync not supported\n");
857 }
858
859 /* it is incorrect if hsync/vsync width is zero */
860 if (!hsync_pulse_width || !vsync_pulse_width) {
861 DRM_DEBUG_KMS("Incorrect Detailed timing. "
862 "Wrong Hsync/Vsync pulse width\n");
863 return NULL;
864 }
865 mode = drm_mode_create(dev);
866 if (!mode)
867 return NULL;
868
869 mode->type = DRM_MODE_TYPE_DRIVER;
870
871 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
872 timing->pixel_clock = cpu_to_le16(1088);
873
874 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
875
876 mode->hdisplay = hactive;
877 mode->hsync_start = mode->hdisplay + hsync_offset;
878 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
879 mode->htotal = mode->hdisplay + hblank;
880
881 mode->vdisplay = vactive;
882 mode->vsync_start = mode->vdisplay + vsync_offset;
883 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
884 mode->vtotal = mode->vdisplay + vblank;
885
886 /* Some EDIDs have bogus h/vtotal values */
887 if (mode->hsync_end > mode->htotal)
888 mode->htotal = mode->hsync_end + 1;
889 if (mode->vsync_end > mode->vtotal)
890 mode->vtotal = mode->vsync_end + 1;
891
892 drm_mode_do_interlace_quirk(mode, pt);
893
894 drm_mode_set_name(mode);
895
896 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
897 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
898 }
899
900 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
901 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
902 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
903 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
904
905 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
906 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
907
908 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
909 mode->width_mm *= 10;
910 mode->height_mm *= 10;
911 }
912
913 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
914 mode->width_mm = edid->width_cm * 10;
915 mode->height_mm = edid->height_cm * 10;
916 }
917
918 return mode;
919}
920
921static bool
922mode_is_rb(const struct drm_display_mode *mode)
923{
924 return (mode->htotal - mode->hdisplay == 160) &&
925 (mode->hsync_end - mode->hdisplay == 80) &&
926 (mode->hsync_end - mode->hsync_start == 32) &&
927 (mode->vsync_start - mode->vdisplay == 3);
928}
929
930static bool
931mode_in_hsync_range(const struct drm_display_mode *mode,
932 struct edid *edid, u8 *t)
933{
934 int hsync, hmin, hmax;
935
936 hmin = t[7];
937 if (edid->revision >= 4)
938 hmin += ((t[4] & 0x04) ? 255 : 0);
939 hmax = t[8];
940 if (edid->revision >= 4)
941 hmax += ((t[4] & 0x08) ? 255 : 0);
942 hsync = drm_mode_hsync(mode);
943
944 return (hsync <= hmax && hsync >= hmin);
945}
946
947static bool
948mode_in_vsync_range(const struct drm_display_mode *mode,
949 struct edid *edid, u8 *t)
950{
951 int vsync, vmin, vmax;
952
953 vmin = t[5];
954 if (edid->revision >= 4)
955 vmin += ((t[4] & 0x01) ? 255 : 0);
956 vmax = t[6];
957 if (edid->revision >= 4)
958 vmax += ((t[4] & 0x02) ? 255 : 0);
959 vsync = drm_mode_vrefresh(mode);
960
961 return (vsync <= vmax && vsync >= vmin);
962}
963
964static u32
965range_pixel_clock(struct edid *edid, u8 *t)
966{
967 /* unspecified */
968 if (t[9] == 0 || t[9] == 255)
969 return 0;
970
971 /* 1.4 with CVT support gives us real precision, yay */
972 if (edid->revision >= 4 && t[10] == 0x04)
973 return (t[9] * 10000) - ((t[12] >> 2) * 250);
974
975 /* 1.3 is pathetic, so fuzz up a bit */
976 return t[9] * 10000 + 5001;
977}
978
979static bool
980mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
981 struct detailed_timing *timing)
982{
983 u32 max_clock;
984 u8 *t = (u8 *)timing;
985
986 if (!mode_in_hsync_range(mode, edid, t))
987 return false;
988
989 if (!mode_in_vsync_range(mode, edid, t))
990 return false;
991
992 if ((max_clock = range_pixel_clock(edid, t)))
993 if (mode->clock > max_clock)
994 return false;
995
996 /* 1.4 max horizontal check */
997 if (edid->revision >= 4 && t[10] == 0x04)
998 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
999 return false;
1000
1001 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1002 return false;
1003
1004 return true;
1005}
1006
1007/*
1008 * XXX If drm_dmt_modes ever regrows the CVT-R modes (and it will) this will
1009 * need to account for them.
1010 */
1011static int
1012drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1013 struct detailed_timing *timing)
1014{
1015 int i, modes = 0;
1016 struct drm_display_mode *newmode;
1017 struct drm_device *dev = connector->dev;
1018
1019 for (i = 0; i < drm_num_dmt_modes; i++) {
1020 if (mode_in_range(drm_dmt_modes + i, edid, timing)) {
1021 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1022 if (newmode) {
1023 drm_mode_probed_add(connector, newmode);
1024 modes++;
1025 }
1026 }
1027 }
1028
1029 return modes;
1030}
1031
1032static void
1033do_inferred_modes(struct detailed_timing *timing, void *c)
1034{
1035 struct detailed_mode_closure *closure = c;
1036 struct detailed_non_pixel *data = &timing->data.other_data;
1037 int gtf = (closure->edid->features & DRM_EDID_FEATURE_DEFAULT_GTF);
1038
1039 if (gtf && data->type == EDID_DETAIL_MONITOR_RANGE)
1040 closure->modes += drm_gtf_modes_for_range(closure->connector,
1041 closure->edid,
1042 timing);
1043}
1044
1045static int
1046add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1047{
1048 struct detailed_mode_closure closure = {
1049 connector, edid, 0, 0, 0
1050 };
1051
1052 if (version_greater(edid, 1, 0))
1053 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1054 &closure);
1055
1056 return closure.modes;
1057}
1058
1059static int
1060drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1061{
1062 int i, j, m, modes = 0;
1063 struct drm_display_mode *mode;
1064 u8 *est = ((u8 *)timing) + 5;
1065
1066 for (i = 0; i < 6; i++) {
1067 for (j = 7; j > 0; j--) {
1068 m = (i * 8) + (7 - j);
1069 if (m >= ARRAY_SIZE(est3_modes))
1070 break;
1071 if (est[i] & (1 << j)) {
1072 mode = drm_mode_find_dmt(connector->dev,
1073 est3_modes[m].w,
1074 est3_modes[m].h,
1075 est3_modes[m].r
1076 /*, est3_modes[m].rb */);
1077 if (mode) {
1078 drm_mode_probed_add(connector, mode);
1079 modes++;
1080 }
1081 }
1082 }
1083 }
1084
1085 return modes;
1086}
1087
1088static void
1089do_established_modes(struct detailed_timing *timing, void *c)
1090{
1091 struct detailed_mode_closure *closure = c;
1092 struct detailed_non_pixel *data = &timing->data.other_data;
1093
1094 if (data->type == EDID_DETAIL_EST_TIMINGS)
1095 closure->modes += drm_est3_modes(closure->connector, timing);
1096}
1097
1098/**
1099 * add_established_modes - get est. modes from EDID and add them
1100 * @edid: EDID block to scan
1101 *
1102 * Each EDID block contains a bitmap of the supported "established modes" list
1103 * (defined above). Tease them out and add them to the global modes list.
1104 */
1105static int
1106add_established_modes(struct drm_connector *connector, struct edid *edid)
1107{
1108 struct drm_device *dev = connector->dev;
1109 unsigned long est_bits = edid->established_timings.t1 |
1110 (edid->established_timings.t2 << 8) |
1111 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
1112 int i, modes = 0;
1113 struct detailed_mode_closure closure = {
1114 connector, edid, 0, 0, 0
1115 };
1116
1117 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
1118 if (est_bits & (1<<i)) {
1119 struct drm_display_mode *newmode;
1120 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
1121 if (newmode) {
1122 drm_mode_probed_add(connector, newmode);
1123 modes++;
1124 }
1125 }
1126 }
1127
1128 if (version_greater(edid, 1, 0))
1129 drm_for_each_detailed_block((u8 *)edid,
1130 do_established_modes, &closure);
1131
1132 return modes + closure.modes;
1133}
1134
1135static void
1136do_standard_modes(struct detailed_timing *timing, void *c)
1137{
1138 struct detailed_mode_closure *closure = c;
1139 struct detailed_non_pixel *data = &timing->data.other_data;
1140 struct drm_connector *connector = closure->connector;
1141 struct edid *edid = closure->edid;
1142
1143 if (data->type == EDID_DETAIL_STD_MODES) {
1144 int i;
1145 for (i = 0; i < 6; i++) {
1146 struct std_timing *std;
1147 struct drm_display_mode *newmode;
1148
1149 std = &data->data.timings[i];
1150 newmode = drm_mode_std(connector, edid, std,
1151 edid->revision);
1152 if (newmode) {
1153 drm_mode_probed_add(connector, newmode);
1154 closure->modes++;
1155 }
1156 }
1157 }
1158}
1159
1160/**
1161 * add_standard_modes - get std. modes from EDID and add them
1162 * @edid: EDID block to scan
1163 *
1164 * Standard modes can be calculated using the appropriate standard (DMT,
1165 * GTF or CVT. Grab them from @edid and add them to the list.
1166 */
1167static int
1168add_standard_modes(struct drm_connector *connector, struct edid *edid)
1169{
1170 int i, modes = 0;
1171 struct detailed_mode_closure closure = {
1172 connector, edid, 0, 0, 0
1173 };
1174
1175 for (i = 0; i < EDID_STD_TIMINGS; i++) {
1176 struct drm_display_mode *newmode;
1177
1178 newmode = drm_mode_std(connector, edid,
1179 &edid->standard_timings[i],
1180 edid->revision);
1181 if (newmode) {
1182 drm_mode_probed_add(connector, newmode);
1183 modes++;
1184 }
1185 }
1186
1187 if (version_greater(edid, 1, 0))
1188 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
1189 &closure);
1190
1191 /* XXX should also look for standard codes in VTB blocks */
1192
1193 return modes + closure.modes;
1194}
1195
1196static int drm_cvt_modes(struct drm_connector *connector,
1197 struct detailed_timing *timing)
1198{
1199 int i, j, modes = 0;
1200 struct drm_display_mode *newmode;
1201 struct drm_device *dev = connector->dev;
1202 struct cvt_timing *cvt;
1203 const int rates[] = { 60, 85, 75, 60, 50 };
1204 const u8 empty[3] = { 0, 0, 0 };
1205
1206 for (i = 0; i < 4; i++) {
1207 int uninitialized_var(width), height;
1208 cvt = &(timing->data.other_data.data.cvt[i]);
1209
1210 if (!memcmp(cvt->code, empty, 3))
1211 continue;
1212
1213 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
1214 switch (cvt->code[1] & 0x0c) {
1215 case 0x00:
1216 width = height * 4 / 3;
1217 break;
1218 case 0x04:
1219 width = height * 16 / 9;
1220 break;
1221 case 0x08:
1222 width = height * 16 / 10;
1223 break;
1224 case 0x0c:
1225 width = height * 15 / 9;
1226 break;
1227 }
1228
1229 for (j = 1; j < 5; j++) {
1230 if (cvt->code[2] & (1 << j)) {
1231 newmode = drm_cvt_mode(dev, width, height,
1232 rates[j], j == 0,
1233 false, false);
1234 if (newmode) {
1235 drm_mode_probed_add(connector, newmode);
1236 modes++;
1237 }
1238 }
1239 }
1240 }
1241
1242 return modes;
1243}
1244
1245static void
1246do_cvt_mode(struct detailed_timing *timing, void *c)
1247{
1248 struct detailed_mode_closure *closure = c;
1249 struct detailed_non_pixel *data = &timing->data.other_data;
1250
1251 if (data->type == EDID_DETAIL_CVT_3BYTE)
1252 closure->modes += drm_cvt_modes(closure->connector, timing);
1253}
1254
1255static int
1256add_cvt_modes(struct drm_connector *connector, struct edid *edid)
1257{
1258 struct detailed_mode_closure closure = {
1259 connector, edid, 0, 0, 0
1260 };
1261
1262 if (version_greater(edid, 1, 2))
1263 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
1264
1265 /* XXX should also look for CVT codes in VTB blocks */
1266
1267 return closure.modes;
1268}
1269
1270static void
1271do_detailed_mode(struct detailed_timing *timing, void *c)
1272{
1273 struct detailed_mode_closure *closure = c;
1274 struct drm_display_mode *newmode;
1275
1276 if (timing->pixel_clock) {
1277 newmode = drm_mode_detailed(closure->connector->dev,
1278 closure->edid, timing,
1279 closure->quirks);
1280 if (!newmode)
1281 return;
1282
1283 if (closure->preferred)
1284 newmode->type |= DRM_MODE_TYPE_PREFERRED;
1285
1286 drm_mode_probed_add(closure->connector, newmode);
1287 closure->modes++;
1288 closure->preferred = 0;
1289 }
1290}
1291
1292/*
1293 * add_detailed_modes - Add modes from detailed timings
1294 * @connector: attached connector
1295 * @edid: EDID block to scan
1296 * @quirks: quirks to apply
1297 */
1298static int
1299add_detailed_modes(struct drm_connector *connector, struct edid *edid,
1300 u32 quirks)
1301{
1302 struct detailed_mode_closure closure = {
1303 connector,
1304 edid,
1305 1,
1306 quirks,
1307 0
1308 };
1309
1310 if (closure.preferred && !version_greater(edid, 1, 3))
1311 closure.preferred =
1312 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
1313
1314 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
1315
1316 return closure.modes;
1317}
1318
1319#define HDMI_IDENTIFIER 0x000C03
1320#define AUDIO_BLOCK 0x01
1321#define VENDOR_BLOCK 0x03
1322#define EDID_BASIC_AUDIO (1 << 6)
1323
1324/**
1325 * Search EDID for CEA extension block.
1326 */
1327u8 *drm_find_cea_extension(struct edid *edid)
1328{
1329 u8 *edid_ext = NULL;
1330 int i;
1331
1332 /* No EDID or EDID extensions */
1333 if (edid == NULL || edid->extensions == 0)
1334 return NULL;
1335
1336 /* Find CEA extension */
1337 for (i = 0; i < edid->extensions; i++) {
1338 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
1339 if (edid_ext[0] == CEA_EXT)
1340 break;
1341 }
1342
1343 if (i == edid->extensions)
1344 return NULL;
1345
1346 return edid_ext;
1347}
1348EXPORT_SYMBOL(drm_find_cea_extension);
1349
1350/**
1351 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
1352 * @edid: monitor EDID information
1353 *
1354 * Parse the CEA extension according to CEA-861-B.
1355 * Return true if HDMI, false if not or unknown.
1356 */
1357bool drm_detect_hdmi_monitor(struct edid *edid)
1358{
1359 u8 *edid_ext;
1360 int i, hdmi_id;
1361 int start_offset, end_offset;
1362 bool is_hdmi = false;
1363
1364 edid_ext = drm_find_cea_extension(edid);
1365 if (!edid_ext)
1366 goto end;
1367
1368 /* Data block offset in CEA extension block */
1369 start_offset = 4;
1370 end_offset = edid_ext[2];
1371
1372 /*
1373 * Because HDMI identifier is in Vendor Specific Block,
1374 * search it from all data blocks of CEA extension.
1375 */
1376 for (i = start_offset; i < end_offset;
1377 /* Increased by data block len */
1378 i += ((edid_ext[i] & 0x1f) + 1)) {
1379 /* Find vendor specific block */
1380 if ((edid_ext[i] >> 5) == VENDOR_BLOCK) {
1381 hdmi_id = edid_ext[i + 1] | (edid_ext[i + 2] << 8) |
1382 edid_ext[i + 3] << 16;
1383 /* Find HDMI identifier */
1384 if (hdmi_id == HDMI_IDENTIFIER)
1385 is_hdmi = true;
1386 break;
1387 }
1388 }
1389
1390end:
1391 return is_hdmi;
1392}
1393EXPORT_SYMBOL(drm_detect_hdmi_monitor);
1394
1395/**
1396 * drm_detect_monitor_audio - check monitor audio capability
1397 *
1398 * Monitor should have CEA extension block.
1399 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
1400 * audio' only. If there is any audio extension block and supported
1401 * audio format, assume at least 'basic audio' support, even if 'basic
1402 * audio' is not defined in EDID.
1403 *
1404 */
1405bool drm_detect_monitor_audio(struct edid *edid)
1406{
1407 u8 *edid_ext;
1408 int i, j;
1409 bool has_audio = false;
1410 int start_offset, end_offset;
1411
1412 edid_ext = drm_find_cea_extension(edid);
1413 if (!edid_ext)
1414 goto end;
1415
1416 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
1417
1418 if (has_audio) {
1419 DRM_DEBUG_KMS("Monitor has basic audio support\n");
1420 goto end;
1421 }
1422
1423 /* Data block offset in CEA extension block */
1424 start_offset = 4;
1425 end_offset = edid_ext[2];
1426
1427 for (i = start_offset; i < end_offset;
1428 i += ((edid_ext[i] & 0x1f) + 1)) {
1429 if ((edid_ext[i] >> 5) == AUDIO_BLOCK) {
1430 has_audio = true;
1431 for (j = 1; j < (edid_ext[i] & 0x1f); j += 3)
1432 DRM_DEBUG_KMS("CEA audio format %d\n",
1433 (edid_ext[i + j] >> 3) & 0xf);
1434 goto end;
1435 }
1436 }
1437end:
1438 return has_audio;
1439}
1440EXPORT_SYMBOL(drm_detect_monitor_audio);
1441
1442/**
1443 * drm_add_display_info - pull display info out if present
1444 * @edid: EDID data
1445 * @info: display info (attached to connector)
1446 *
1447 * Grab any available display info and stuff it into the drm_display_info
1448 * structure that's part of the connector. Useful for tracking bpp and
1449 * color spaces.
1450 */
1451static void drm_add_display_info(struct edid *edid,
1452 struct drm_display_info *info)
1453{
1454 u8 *edid_ext;
1455
1456 info->width_mm = edid->width_cm * 10;
1457 info->height_mm = edid->height_cm * 10;
1458
1459 /* driver figures it out in this case */
1460 info->bpc = 0;
1461 info->color_formats = 0;
1462
1463 /* Only defined for 1.4 with digital displays */
1464 if (edid->revision < 4)
1465 return;
1466
1467 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
1468 return;
1469
1470 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
1471 case DRM_EDID_DIGITAL_DEPTH_6:
1472 info->bpc = 6;
1473 break;
1474 case DRM_EDID_DIGITAL_DEPTH_8:
1475 info->bpc = 8;
1476 break;
1477 case DRM_EDID_DIGITAL_DEPTH_10:
1478 info->bpc = 10;
1479 break;
1480 case DRM_EDID_DIGITAL_DEPTH_12:
1481 info->bpc = 12;
1482 break;
1483 case DRM_EDID_DIGITAL_DEPTH_14:
1484 info->bpc = 14;
1485 break;
1486 case DRM_EDID_DIGITAL_DEPTH_16:
1487 info->bpc = 16;
1488 break;
1489 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
1490 default:
1491 info->bpc = 0;
1492 break;
1493 }
1494
1495 info->color_formats = DRM_COLOR_FORMAT_RGB444;
1496 if (info->color_formats & DRM_EDID_FEATURE_RGB_YCRCB444)
1497 info->color_formats = DRM_COLOR_FORMAT_YCRCB444;
1498 if (info->color_formats & DRM_EDID_FEATURE_RGB_YCRCB422)
1499 info->color_formats = DRM_COLOR_FORMAT_YCRCB422;
1500
1501 /* Get data from CEA blocks if present */
1502 edid_ext = drm_find_cea_extension(edid);
1503 if (!edid_ext)
1504 return;
1505
1506 info->cea_rev = edid_ext[1];
1507}
1508
1509/**
1510 * drm_add_edid_modes - add modes from EDID data, if available
1511 * @connector: connector we're probing
1512 * @edid: edid data
1513 *
1514 * Add the specified modes to the connector's mode list.
1515 *
1516 * Return number of modes added or 0 if we couldn't find any.
1517 */
1518int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
1519{
1520 int num_modes = 0;
1521 u32 quirks;
1522
1523 if (edid == NULL) {
1524 return 0;
1525 }
1526 if (!drm_edid_is_valid(edid)) {
1527 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
1528 drm_get_connector_name(connector));
1529 return 0;
1530 }
1531
1532 quirks = edid_get_quirks(edid);
1533
1534 /*
1535 * EDID spec says modes should be preferred in this order:
1536 * - preferred detailed mode
1537 * - other detailed modes from base block
1538 * - detailed modes from extension blocks
1539 * - CVT 3-byte code modes
1540 * - standard timing codes
1541 * - established timing codes
1542 * - modes inferred from GTF or CVT range information
1543 *
1544 * We get this pretty much right.
1545 *
1546 * XXX order for additional mode types in extension blocks?
1547 */
1548 num_modes += add_detailed_modes(connector, edid, quirks);
1549 num_modes += add_cvt_modes(connector, edid);
1550 num_modes += add_standard_modes(connector, edid);
1551 num_modes += add_established_modes(connector, edid);
1552 num_modes += add_inferred_modes(connector, edid);
1553
1554 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
1555 edid_fixup_preferred(connector, quirks);
1556
1557 drm_add_display_info(edid, &connector->display_info);
1558
1559 return num_modes;
1560}
1561EXPORT_SYMBOL(drm_add_edid_modes);
1562
1563/**
1564 * drm_add_modes_noedid - add modes for the connectors without EDID
1565 * @connector: connector we're probing
1566 * @hdisplay: the horizontal display limit
1567 * @vdisplay: the vertical display limit
1568 *
1569 * Add the specified modes to the connector's mode list. Only when the
1570 * hdisplay/vdisplay is not beyond the given limit, it will be added.
1571 *
1572 * Return number of modes added or 0 if we couldn't find any.
1573 */
1574int drm_add_modes_noedid(struct drm_connector *connector,
1575 int hdisplay, int vdisplay)
1576{
1577 int i, count, num_modes = 0;
1578 struct drm_display_mode *mode;
1579 struct drm_device *dev = connector->dev;
1580
1581 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
1582 if (hdisplay < 0)
1583 hdisplay = 0;
1584 if (vdisplay < 0)
1585 vdisplay = 0;
1586
1587 for (i = 0; i < count; i++) {
1588 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1589 if (hdisplay && vdisplay) {
1590 /*
1591 * Only when two are valid, they will be used to check
1592 * whether the mode should be added to the mode list of
1593 * the connector.
1594 */
1595 if (ptr->hdisplay > hdisplay ||
1596 ptr->vdisplay > vdisplay)
1597 continue;
1598 }
1599 if (drm_mode_vrefresh(ptr) > 61)
1600 continue;
1601 mode = drm_mode_duplicate(dev, ptr);
1602 if (mode) {
1603 drm_mode_probed_add(connector, mode);
1604 num_modes++;
1605 }
1606 }
1607 return num_modes;
1608}
1609EXPORT_SYMBOL(drm_add_modes_noedid);
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/hdmi.h>
32#include <linux/i2c.h>
33#include <linux/kernel.h>
34#include <linux/module.h>
35#include <linux/slab.h>
36#include <linux/vga_switcheroo.h>
37
38#include <drm/drm_displayid.h>
39#include <drm/drm_drv.h>
40#include <drm/drm_edid.h>
41#include <drm/drm_encoder.h>
42#include <drm/drm_print.h>
43#include <drm/drm_scdc_helper.h>
44
45#include "drm_crtc_internal.h"
46
47#define version_greater(edid, maj, min) \
48 (((edid)->version > (maj)) || \
49 ((edid)->version == (maj) && (edid)->revision > (min)))
50
51#define EDID_EST_TIMINGS 16
52#define EDID_STD_TIMINGS 8
53#define EDID_DETAILED_TIMINGS 4
54
55/*
56 * EDID blocks out in the wild have a variety of bugs, try to collect
57 * them here (note that userspace may work around broken monitors first,
58 * but fixes should make their way here so that the kernel "just works"
59 * on as many displays as possible).
60 */
61
62/* First detailed mode wrong, use largest 60Hz mode */
63#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
64/* Reported 135MHz pixel clock is too high, needs adjustment */
65#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
66/* Prefer the largest mode at 75 Hz */
67#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
68/* Detail timing is in cm not mm */
69#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
70/* Detailed timing descriptors have bogus size values, so just take the
71 * maximum size and use that.
72 */
73#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
74/* use +hsync +vsync for detailed mode */
75#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
76/* Force reduced-blanking timings for detailed modes */
77#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
78/* Force 8bpc */
79#define EDID_QUIRK_FORCE_8BPC (1 << 8)
80/* Force 12bpc */
81#define EDID_QUIRK_FORCE_12BPC (1 << 9)
82/* Force 6bpc */
83#define EDID_QUIRK_FORCE_6BPC (1 << 10)
84/* Force 10bpc */
85#define EDID_QUIRK_FORCE_10BPC (1 << 11)
86/* Non desktop display (i.e. HMD) */
87#define EDID_QUIRK_NON_DESKTOP (1 << 12)
88
89struct detailed_mode_closure {
90 struct drm_connector *connector;
91 struct edid *edid;
92 bool preferred;
93 u32 quirks;
94 int modes;
95};
96
97#define LEVEL_DMT 0
98#define LEVEL_GTF 1
99#define LEVEL_GTF2 2
100#define LEVEL_CVT 3
101
102static const struct edid_quirk {
103 char vendor[4];
104 int product_id;
105 u32 quirks;
106} edid_quirk_list[] = {
107 /* Acer AL1706 */
108 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
109 /* Acer F51 */
110 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
111
112 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
113 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
114
115 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
116 { "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
117
118 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
119 { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
120
121 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
122 { "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
123
124 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
125 { "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
126
127 /* Belinea 10 15 55 */
128 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
129 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
130
131 /* Envision Peripherals, Inc. EN-7100e */
132 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
133 /* Envision EN2028 */
134 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
135
136 /* Funai Electronics PM36B */
137 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
138 EDID_QUIRK_DETAILED_IN_CM },
139
140 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
141 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
142
143 /* LG Philips LCD LP154W01-A5 */
144 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
145 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
146
147 /* Samsung SyncMaster 205BW. Note: irony */
148 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
149 /* Samsung SyncMaster 22[5-6]BW */
150 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
151 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
152
153 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
154 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
155
156 /* ViewSonic VA2026w */
157 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
158
159 /* Medion MD 30217 PG */
160 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
161
162 /* Lenovo G50 */
163 { "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
164
165 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
166 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
167
168 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
169 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
170
171 /* Valve Index Headset */
172 { "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
173 { "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
174 { "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
175 { "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
176 { "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
177 { "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
178 { "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
179 { "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
180 { "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
181 { "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
182 { "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
183 { "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
184 { "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
185 { "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
186 { "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
187 { "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
188 { "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
189
190 /* HTC Vive and Vive Pro VR Headsets */
191 { "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
192 { "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
193
194 /* Oculus Rift DK1, DK2, and CV1 VR Headsets */
195 { "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
196 { "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
197 { "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
198
199 /* Windows Mixed Reality Headsets */
200 { "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
201 { "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
202 { "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
203 { "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
204 { "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
205 { "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
206 { "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
207 { "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
208
209 /* Sony PlayStation VR Headset */
210 { "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
211
212 /* Sensics VR Headsets */
213 { "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
214
215 /* OSVR HDK and HDK2 VR Headsets */
216 { "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
217};
218
219/*
220 * Autogenerated from the DMT spec.
221 * This table is copied from xfree86/modes/xf86EdidModes.c.
222 */
223static const struct drm_display_mode drm_dmt_modes[] = {
224 /* 0x01 - 640x350@85Hz */
225 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
226 736, 832, 0, 350, 382, 385, 445, 0,
227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
228 /* 0x02 - 640x400@85Hz */
229 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
230 736, 832, 0, 400, 401, 404, 445, 0,
231 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
232 /* 0x03 - 720x400@85Hz */
233 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
234 828, 936, 0, 400, 401, 404, 446, 0,
235 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 /* 0x04 - 640x480@60Hz */
237 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
238 752, 800, 0, 480, 490, 492, 525, 0,
239 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 /* 0x05 - 640x480@72Hz */
241 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
242 704, 832, 0, 480, 489, 492, 520, 0,
243 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
244 /* 0x06 - 640x480@75Hz */
245 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
246 720, 840, 0, 480, 481, 484, 500, 0,
247 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 0x07 - 640x480@85Hz */
249 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
250 752, 832, 0, 480, 481, 484, 509, 0,
251 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
252 /* 0x08 - 800x600@56Hz */
253 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
254 896, 1024, 0, 600, 601, 603, 625, 0,
255 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 /* 0x09 - 800x600@60Hz */
257 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
258 968, 1056, 0, 600, 601, 605, 628, 0,
259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
260 /* 0x0a - 800x600@72Hz */
261 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
262 976, 1040, 0, 600, 637, 643, 666, 0,
263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 /* 0x0b - 800x600@75Hz */
265 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
266 896, 1056, 0, 600, 601, 604, 625, 0,
267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
268 /* 0x0c - 800x600@85Hz */
269 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
270 896, 1048, 0, 600, 601, 604, 631, 0,
271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 0x0d - 800x600@120Hz RB */
273 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
274 880, 960, 0, 600, 603, 607, 636, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
276 /* 0x0e - 848x480@60Hz */
277 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
278 976, 1088, 0, 480, 486, 494, 517, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 /* 0x0f - 1024x768@43Hz, interlace */
281 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
282 1208, 1264, 0, 768, 768, 776, 817, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
284 DRM_MODE_FLAG_INTERLACE) },
285 /* 0x10 - 1024x768@60Hz */
286 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
287 1184, 1344, 0, 768, 771, 777, 806, 0,
288 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
289 /* 0x11 - 1024x768@70Hz */
290 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
291 1184, 1328, 0, 768, 771, 777, 806, 0,
292 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 /* 0x12 - 1024x768@75Hz */
294 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
295 1136, 1312, 0, 768, 769, 772, 800, 0,
296 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 /* 0x13 - 1024x768@85Hz */
298 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
299 1168, 1376, 0, 768, 769, 772, 808, 0,
300 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
301 /* 0x14 - 1024x768@120Hz RB */
302 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
303 1104, 1184, 0, 768, 771, 775, 813, 0,
304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
305 /* 0x15 - 1152x864@75Hz */
306 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
307 1344, 1600, 0, 864, 865, 868, 900, 0,
308 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
309 /* 0x55 - 1280x720@60Hz */
310 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
311 1430, 1650, 0, 720, 725, 730, 750, 0,
312 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
313 /* 0x16 - 1280x768@60Hz RB */
314 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
315 1360, 1440, 0, 768, 771, 778, 790, 0,
316 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
317 /* 0x17 - 1280x768@60Hz */
318 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
319 1472, 1664, 0, 768, 771, 778, 798, 0,
320 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
321 /* 0x18 - 1280x768@75Hz */
322 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
323 1488, 1696, 0, 768, 771, 778, 805, 0,
324 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
325 /* 0x19 - 1280x768@85Hz */
326 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
327 1496, 1712, 0, 768, 771, 778, 809, 0,
328 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 /* 0x1a - 1280x768@120Hz RB */
330 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
331 1360, 1440, 0, 768, 771, 778, 813, 0,
332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
333 /* 0x1b - 1280x800@60Hz RB */
334 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
335 1360, 1440, 0, 800, 803, 809, 823, 0,
336 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
337 /* 0x1c - 1280x800@60Hz */
338 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
339 1480, 1680, 0, 800, 803, 809, 831, 0,
340 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 /* 0x1d - 1280x800@75Hz */
342 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
343 1488, 1696, 0, 800, 803, 809, 838, 0,
344 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 /* 0x1e - 1280x800@85Hz */
346 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
347 1496, 1712, 0, 800, 803, 809, 843, 0,
348 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
349 /* 0x1f - 1280x800@120Hz RB */
350 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
351 1360, 1440, 0, 800, 803, 809, 847, 0,
352 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
353 /* 0x20 - 1280x960@60Hz */
354 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
355 1488, 1800, 0, 960, 961, 964, 1000, 0,
356 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 /* 0x21 - 1280x960@85Hz */
358 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
359 1504, 1728, 0, 960, 961, 964, 1011, 0,
360 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 /* 0x22 - 1280x960@120Hz RB */
362 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
363 1360, 1440, 0, 960, 963, 967, 1017, 0,
364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
365 /* 0x23 - 1280x1024@60Hz */
366 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
367 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
369 /* 0x24 - 1280x1024@75Hz */
370 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
371 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
372 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 /* 0x25 - 1280x1024@85Hz */
374 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
375 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
376 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 /* 0x26 - 1280x1024@120Hz RB */
378 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
379 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
380 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
381 /* 0x27 - 1360x768@60Hz */
382 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
383 1536, 1792, 0, 768, 771, 777, 795, 0,
384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
385 /* 0x28 - 1360x768@120Hz RB */
386 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
387 1440, 1520, 0, 768, 771, 776, 813, 0,
388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
389 /* 0x51 - 1366x768@60Hz */
390 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
391 1579, 1792, 0, 768, 771, 774, 798, 0,
392 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 /* 0x56 - 1366x768@60Hz */
394 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
395 1436, 1500, 0, 768, 769, 772, 800, 0,
396 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
397 /* 0x29 - 1400x1050@60Hz RB */
398 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
399 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
400 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
401 /* 0x2a - 1400x1050@60Hz */
402 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
403 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
404 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 /* 0x2b - 1400x1050@75Hz */
406 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
407 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
408 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 /* 0x2c - 1400x1050@85Hz */
410 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
411 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
412 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
413 /* 0x2d - 1400x1050@120Hz RB */
414 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
415 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
417 /* 0x2e - 1440x900@60Hz RB */
418 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
419 1520, 1600, 0, 900, 903, 909, 926, 0,
420 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
421 /* 0x2f - 1440x900@60Hz */
422 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
423 1672, 1904, 0, 900, 903, 909, 934, 0,
424 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 /* 0x30 - 1440x900@75Hz */
426 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
427 1688, 1936, 0, 900, 903, 909, 942, 0,
428 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 /* 0x31 - 1440x900@85Hz */
430 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
431 1696, 1952, 0, 900, 903, 909, 948, 0,
432 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
433 /* 0x32 - 1440x900@120Hz RB */
434 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
435 1520, 1600, 0, 900, 903, 909, 953, 0,
436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 /* 0x53 - 1600x900@60Hz */
438 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
439 1704, 1800, 0, 900, 901, 904, 1000, 0,
440 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
441 /* 0x33 - 1600x1200@60Hz */
442 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
443 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
444 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 /* 0x34 - 1600x1200@65Hz */
446 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
447 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
448 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 /* 0x35 - 1600x1200@70Hz */
450 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
451 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
453 /* 0x36 - 1600x1200@75Hz */
454 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
455 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
457 /* 0x37 - 1600x1200@85Hz */
458 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
459 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
460 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 /* 0x38 - 1600x1200@120Hz RB */
462 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
463 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
464 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
465 /* 0x39 - 1680x1050@60Hz RB */
466 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
467 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
468 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
469 /* 0x3a - 1680x1050@60Hz */
470 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
471 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
472 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 /* 0x3b - 1680x1050@75Hz */
474 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
475 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
476 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 /* 0x3c - 1680x1050@85Hz */
478 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
479 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
480 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
481 /* 0x3d - 1680x1050@120Hz RB */
482 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
483 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
485 /* 0x3e - 1792x1344@60Hz */
486 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
487 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
488 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 /* 0x3f - 1792x1344@75Hz */
490 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
491 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
492 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 /* 0x40 - 1792x1344@120Hz RB */
494 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
495 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
497 /* 0x41 - 1856x1392@60Hz */
498 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
499 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
500 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
501 /* 0x42 - 1856x1392@75Hz */
502 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
503 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
504 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
505 /* 0x43 - 1856x1392@120Hz RB */
506 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
507 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
508 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
509 /* 0x52 - 1920x1080@60Hz */
510 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
511 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
512 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
513 /* 0x44 - 1920x1200@60Hz RB */
514 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
515 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
517 /* 0x45 - 1920x1200@60Hz */
518 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
519 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
520 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 /* 0x46 - 1920x1200@75Hz */
522 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
523 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
524 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
525 /* 0x47 - 1920x1200@85Hz */
526 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
527 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
528 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
529 /* 0x48 - 1920x1200@120Hz RB */
530 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
531 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
533 /* 0x49 - 1920x1440@60Hz */
534 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
535 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
536 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
537 /* 0x4a - 1920x1440@75Hz */
538 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
539 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
541 /* 0x4b - 1920x1440@120Hz RB */
542 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
543 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
544 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
545 /* 0x54 - 2048x1152@60Hz */
546 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
547 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
548 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
549 /* 0x4c - 2560x1600@60Hz RB */
550 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
551 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
553 /* 0x4d - 2560x1600@60Hz */
554 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
555 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
556 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 /* 0x4e - 2560x1600@75Hz */
558 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
559 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
560 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
561 /* 0x4f - 2560x1600@85Hz */
562 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
563 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
564 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
565 /* 0x50 - 2560x1600@120Hz RB */
566 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
567 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
569 /* 0x57 - 4096x2160@60Hz RB */
570 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
571 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
572 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
573 /* 0x58 - 4096x2160@59.94Hz RB */
574 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
575 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
576 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
577};
578
579/*
580 * These more or less come from the DMT spec. The 720x400 modes are
581 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
582 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
583 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
584 * mode.
585 *
586 * The DMT modes have been fact-checked; the rest are mild guesses.
587 */
588static const struct drm_display_mode edid_est_modes[] = {
589 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
590 968, 1056, 0, 600, 601, 605, 628, 0,
591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
592 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
593 896, 1024, 0, 600, 601, 603, 625, 0,
594 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
595 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
596 720, 840, 0, 480, 481, 484, 500, 0,
597 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
598 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
599 704, 832, 0, 480, 489, 492, 520, 0,
600 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
601 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
602 768, 864, 0, 480, 483, 486, 525, 0,
603 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
604 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
605 752, 800, 0, 480, 490, 492, 525, 0,
606 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
607 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
608 846, 900, 0, 400, 421, 423, 449, 0,
609 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
610 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
611 846, 900, 0, 400, 412, 414, 449, 0,
612 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
613 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
614 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
615 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
616 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
617 1136, 1312, 0, 768, 769, 772, 800, 0,
618 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
619 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
620 1184, 1328, 0, 768, 771, 777, 806, 0,
621 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
622 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
623 1184, 1344, 0, 768, 771, 777, 806, 0,
624 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
625 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
626 1208, 1264, 0, 768, 768, 776, 817, 0,
627 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
628 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
629 928, 1152, 0, 624, 625, 628, 667, 0,
630 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
631 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
632 896, 1056, 0, 600, 601, 604, 625, 0,
633 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
634 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
635 976, 1040, 0, 600, 637, 643, 666, 0,
636 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
637 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
638 1344, 1600, 0, 864, 865, 868, 900, 0,
639 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
640};
641
642struct minimode {
643 short w;
644 short h;
645 short r;
646 short rb;
647};
648
649static const struct minimode est3_modes[] = {
650 /* byte 6 */
651 { 640, 350, 85, 0 },
652 { 640, 400, 85, 0 },
653 { 720, 400, 85, 0 },
654 { 640, 480, 85, 0 },
655 { 848, 480, 60, 0 },
656 { 800, 600, 85, 0 },
657 { 1024, 768, 85, 0 },
658 { 1152, 864, 75, 0 },
659 /* byte 7 */
660 { 1280, 768, 60, 1 },
661 { 1280, 768, 60, 0 },
662 { 1280, 768, 75, 0 },
663 { 1280, 768, 85, 0 },
664 { 1280, 960, 60, 0 },
665 { 1280, 960, 85, 0 },
666 { 1280, 1024, 60, 0 },
667 { 1280, 1024, 85, 0 },
668 /* byte 8 */
669 { 1360, 768, 60, 0 },
670 { 1440, 900, 60, 1 },
671 { 1440, 900, 60, 0 },
672 { 1440, 900, 75, 0 },
673 { 1440, 900, 85, 0 },
674 { 1400, 1050, 60, 1 },
675 { 1400, 1050, 60, 0 },
676 { 1400, 1050, 75, 0 },
677 /* byte 9 */
678 { 1400, 1050, 85, 0 },
679 { 1680, 1050, 60, 1 },
680 { 1680, 1050, 60, 0 },
681 { 1680, 1050, 75, 0 },
682 { 1680, 1050, 85, 0 },
683 { 1600, 1200, 60, 0 },
684 { 1600, 1200, 65, 0 },
685 { 1600, 1200, 70, 0 },
686 /* byte 10 */
687 { 1600, 1200, 75, 0 },
688 { 1600, 1200, 85, 0 },
689 { 1792, 1344, 60, 0 },
690 { 1792, 1344, 75, 0 },
691 { 1856, 1392, 60, 0 },
692 { 1856, 1392, 75, 0 },
693 { 1920, 1200, 60, 1 },
694 { 1920, 1200, 60, 0 },
695 /* byte 11 */
696 { 1920, 1200, 75, 0 },
697 { 1920, 1200, 85, 0 },
698 { 1920, 1440, 60, 0 },
699 { 1920, 1440, 75, 0 },
700};
701
702static const struct minimode extra_modes[] = {
703 { 1024, 576, 60, 0 },
704 { 1366, 768, 60, 0 },
705 { 1600, 900, 60, 0 },
706 { 1680, 945, 60, 0 },
707 { 1920, 1080, 60, 0 },
708 { 2048, 1152, 60, 0 },
709 { 2048, 1536, 60, 0 },
710};
711
712/*
713 * Probably taken from CEA-861 spec.
714 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
715 *
716 * Index using the VIC.
717 */
718static const struct drm_display_mode edid_cea_modes[] = {
719 /* 0 - dummy, VICs start at 1 */
720 { },
721 /* 1 - 640x480@60Hz 4:3 */
722 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
723 752, 800, 0, 480, 490, 492, 525, 0,
724 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
725 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
726 /* 2 - 720x480@60Hz 4:3 */
727 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
728 798, 858, 0, 480, 489, 495, 525, 0,
729 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
730 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
731 /* 3 - 720x480@60Hz 16:9 */
732 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
733 798, 858, 0, 480, 489, 495, 525, 0,
734 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
735 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
736 /* 4 - 1280x720@60Hz 16:9 */
737 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
738 1430, 1650, 0, 720, 725, 730, 750, 0,
739 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
740 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 /* 5 - 1920x1080i@60Hz 16:9 */
742 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
743 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
744 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
745 DRM_MODE_FLAG_INTERLACE),
746 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
747 /* 6 - 720(1440)x480i@60Hz 4:3 */
748 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
749 801, 858, 0, 480, 488, 494, 525, 0,
750 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
751 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
752 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
753 /* 7 - 720(1440)x480i@60Hz 16:9 */
754 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
755 801, 858, 0, 480, 488, 494, 525, 0,
756 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
757 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
758 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
759 /* 8 - 720(1440)x240@60Hz 4:3 */
760 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
761 801, 858, 0, 240, 244, 247, 262, 0,
762 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
763 DRM_MODE_FLAG_DBLCLK),
764 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
765 /* 9 - 720(1440)x240@60Hz 16:9 */
766 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
767 801, 858, 0, 240, 244, 247, 262, 0,
768 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
769 DRM_MODE_FLAG_DBLCLK),
770 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 /* 10 - 2880x480i@60Hz 4:3 */
772 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
773 3204, 3432, 0, 480, 488, 494, 525, 0,
774 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
775 DRM_MODE_FLAG_INTERLACE),
776 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
777 /* 11 - 2880x480i@60Hz 16:9 */
778 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
779 3204, 3432, 0, 480, 488, 494, 525, 0,
780 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 DRM_MODE_FLAG_INTERLACE),
782 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
783 /* 12 - 2880x240@60Hz 4:3 */
784 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
785 3204, 3432, 0, 240, 244, 247, 262, 0,
786 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
787 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
788 /* 13 - 2880x240@60Hz 16:9 */
789 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
790 3204, 3432, 0, 240, 244, 247, 262, 0,
791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
793 /* 14 - 1440x480@60Hz 4:3 */
794 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
795 1596, 1716, 0, 480, 489, 495, 525, 0,
796 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
798 /* 15 - 1440x480@60Hz 16:9 */
799 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
800 1596, 1716, 0, 480, 489, 495, 525, 0,
801 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 /* 16 - 1920x1080@60Hz 16:9 */
804 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
805 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
806 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
807 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 /* 17 - 720x576@50Hz 4:3 */
809 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
810 796, 864, 0, 576, 581, 586, 625, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
813 /* 18 - 720x576@50Hz 16:9 */
814 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
815 796, 864, 0, 576, 581, 586, 625, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
818 /* 19 - 1280x720@50Hz 16:9 */
819 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
820 1760, 1980, 0, 720, 725, 730, 750, 0,
821 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
822 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 /* 20 - 1920x1080i@50Hz 16:9 */
824 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
825 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
827 DRM_MODE_FLAG_INTERLACE),
828 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
829 /* 21 - 720(1440)x576i@50Hz 4:3 */
830 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
831 795, 864, 0, 576, 580, 586, 625, 0,
832 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
833 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
834 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
835 /* 22 - 720(1440)x576i@50Hz 16:9 */
836 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
837 795, 864, 0, 576, 580, 586, 625, 0,
838 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
839 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
840 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
841 /* 23 - 720(1440)x288@50Hz 4:3 */
842 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
843 795, 864, 0, 288, 290, 293, 312, 0,
844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 DRM_MODE_FLAG_DBLCLK),
846 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
847 /* 24 - 720(1440)x288@50Hz 16:9 */
848 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
849 795, 864, 0, 288, 290, 293, 312, 0,
850 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
851 DRM_MODE_FLAG_DBLCLK),
852 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
853 /* 25 - 2880x576i@50Hz 4:3 */
854 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
855 3180, 3456, 0, 576, 580, 586, 625, 0,
856 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
857 DRM_MODE_FLAG_INTERLACE),
858 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
859 /* 26 - 2880x576i@50Hz 16:9 */
860 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
861 3180, 3456, 0, 576, 580, 586, 625, 0,
862 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
863 DRM_MODE_FLAG_INTERLACE),
864 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
865 /* 27 - 2880x288@50Hz 4:3 */
866 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
867 3180, 3456, 0, 288, 290, 293, 312, 0,
868 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
869 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
870 /* 28 - 2880x288@50Hz 16:9 */
871 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
872 3180, 3456, 0, 288, 290, 293, 312, 0,
873 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
874 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
875 /* 29 - 1440x576@50Hz 4:3 */
876 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
877 1592, 1728, 0, 576, 581, 586, 625, 0,
878 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
879 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
880 /* 30 - 1440x576@50Hz 16:9 */
881 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
882 1592, 1728, 0, 576, 581, 586, 625, 0,
883 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 31 - 1920x1080@50Hz 16:9 */
886 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
887 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
888 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
889 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
890 /* 32 - 1920x1080@24Hz 16:9 */
891 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
892 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
893 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
894 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 33 - 1920x1080@25Hz 16:9 */
896 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
897 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
898 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
899 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
900 /* 34 - 1920x1080@30Hz 16:9 */
901 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
902 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
903 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
904 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 /* 35 - 2880x480@60Hz 4:3 */
906 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
907 3192, 3432, 0, 480, 489, 495, 525, 0,
908 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
909 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
910 /* 36 - 2880x480@60Hz 16:9 */
911 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
912 3192, 3432, 0, 480, 489, 495, 525, 0,
913 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
914 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 /* 37 - 2880x576@50Hz 4:3 */
916 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
917 3184, 3456, 0, 576, 581, 586, 625, 0,
918 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
919 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
920 /* 38 - 2880x576@50Hz 16:9 */
921 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
922 3184, 3456, 0, 576, 581, 586, 625, 0,
923 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
924 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 /* 39 - 1920x1080i@50Hz 16:9 */
926 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
927 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
928 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
929 DRM_MODE_FLAG_INTERLACE),
930 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 /* 40 - 1920x1080i@100Hz 16:9 */
932 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
933 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
934 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
935 DRM_MODE_FLAG_INTERLACE),
936 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
937 /* 41 - 1280x720@100Hz 16:9 */
938 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
939 1760, 1980, 0, 720, 725, 730, 750, 0,
940 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
941 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
942 /* 42 - 720x576@100Hz 4:3 */
943 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
944 796, 864, 0, 576, 581, 586, 625, 0,
945 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
946 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
947 /* 43 - 720x576@100Hz 16:9 */
948 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
949 796, 864, 0, 576, 581, 586, 625, 0,
950 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
951 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
952 /* 44 - 720(1440)x576i@100Hz 4:3 */
953 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
954 795, 864, 0, 576, 580, 586, 625, 0,
955 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
956 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
957 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
958 /* 45 - 720(1440)x576i@100Hz 16:9 */
959 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
960 795, 864, 0, 576, 580, 586, 625, 0,
961 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
962 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
963 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
964 /* 46 - 1920x1080i@120Hz 16:9 */
965 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
966 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
967 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
968 DRM_MODE_FLAG_INTERLACE),
969 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
970 /* 47 - 1280x720@120Hz 16:9 */
971 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
972 1430, 1650, 0, 720, 725, 730, 750, 0,
973 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
974 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
975 /* 48 - 720x480@120Hz 4:3 */
976 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
977 798, 858, 0, 480, 489, 495, 525, 0,
978 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
979 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
980 /* 49 - 720x480@120Hz 16:9 */
981 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
982 798, 858, 0, 480, 489, 495, 525, 0,
983 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
984 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 /* 50 - 720(1440)x480i@120Hz 4:3 */
986 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
987 801, 858, 0, 480, 488, 494, 525, 0,
988 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
989 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
990 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
991 /* 51 - 720(1440)x480i@120Hz 16:9 */
992 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
993 801, 858, 0, 480, 488, 494, 525, 0,
994 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
995 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
996 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
997 /* 52 - 720x576@200Hz 4:3 */
998 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
999 796, 864, 0, 576, 581, 586, 625, 0,
1000 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1001 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1002 /* 53 - 720x576@200Hz 16:9 */
1003 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1004 796, 864, 0, 576, 581, 586, 625, 0,
1005 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1006 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1007 /* 54 - 720(1440)x576i@200Hz 4:3 */
1008 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1009 795, 864, 0, 576, 580, 586, 625, 0,
1010 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1011 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1012 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1013 /* 55 - 720(1440)x576i@200Hz 16:9 */
1014 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1015 795, 864, 0, 576, 580, 586, 625, 0,
1016 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1017 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1018 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1019 /* 56 - 720x480@240Hz 4:3 */
1020 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1021 798, 858, 0, 480, 489, 495, 525, 0,
1022 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1023 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1024 /* 57 - 720x480@240Hz 16:9 */
1025 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1026 798, 858, 0, 480, 489, 495, 525, 0,
1027 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1028 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1029 /* 58 - 720(1440)x480i@240Hz 4:3 */
1030 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1031 801, 858, 0, 480, 488, 494, 525, 0,
1032 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1033 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1034 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1035 /* 59 - 720(1440)x480i@240Hz 16:9 */
1036 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1037 801, 858, 0, 480, 488, 494, 525, 0,
1038 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1039 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1040 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1041 /* 60 - 1280x720@24Hz 16:9 */
1042 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1043 3080, 3300, 0, 720, 725, 730, 750, 0,
1044 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1045 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1046 /* 61 - 1280x720@25Hz 16:9 */
1047 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1048 3740, 3960, 0, 720, 725, 730, 750, 0,
1049 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1050 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1051 /* 62 - 1280x720@30Hz 16:9 */
1052 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1053 3080, 3300, 0, 720, 725, 730, 750, 0,
1054 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1055 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1056 /* 63 - 1920x1080@120Hz 16:9 */
1057 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1058 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1059 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1060 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 /* 64 - 1920x1080@100Hz 16:9 */
1062 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1063 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 /* 65 - 1280x720@24Hz 64:27 */
1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1068 3080, 3300, 0, 720, 725, 730, 750, 0,
1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1071 /* 66 - 1280x720@25Hz 64:27 */
1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1073 3740, 3960, 0, 720, 725, 730, 750, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1076 /* 67 - 1280x720@30Hz 64:27 */
1077 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1078 3080, 3300, 0, 720, 725, 730, 750, 0,
1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1081 /* 68 - 1280x720@50Hz 64:27 */
1082 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1083 1760, 1980, 0, 720, 725, 730, 750, 0,
1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1086 /* 69 - 1280x720@60Hz 64:27 */
1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1088 1430, 1650, 0, 720, 725, 730, 750, 0,
1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 /* 70 - 1280x720@100Hz 64:27 */
1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1093 1760, 1980, 0, 720, 725, 730, 750, 0,
1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 /* 71 - 1280x720@120Hz 64:27 */
1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1098 1430, 1650, 0, 720, 725, 730, 750, 0,
1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 /* 72 - 1920x1080@24Hz 64:27 */
1102 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1103 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 /* 73 - 1920x1080@25Hz 64:27 */
1107 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1108 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 /* 74 - 1920x1080@30Hz 64:27 */
1112 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1113 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 /* 75 - 1920x1080@50Hz 64:27 */
1117 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1118 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 /* 76 - 1920x1080@60Hz 64:27 */
1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1123 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 /* 77 - 1920x1080@100Hz 64:27 */
1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 /* 78 - 1920x1080@120Hz 64:27 */
1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 /* 79 - 1680x720@24Hz 64:27 */
1137 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1138 3080, 3300, 0, 720, 725, 730, 750, 0,
1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 /* 80 - 1680x720@25Hz 64:27 */
1142 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1143 2948, 3168, 0, 720, 725, 730, 750, 0,
1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 /* 81 - 1680x720@30Hz 64:27 */
1147 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1148 2420, 2640, 0, 720, 725, 730, 750, 0,
1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 /* 82 - 1680x720@50Hz 64:27 */
1152 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1153 1980, 2200, 0, 720, 725, 730, 750, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 /* 83 - 1680x720@60Hz 64:27 */
1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1158 1980, 2200, 0, 720, 725, 730, 750, 0,
1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 /* 84 - 1680x720@100Hz 64:27 */
1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1163 1780, 2000, 0, 720, 725, 730, 825, 0,
1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 /* 85 - 1680x720@120Hz 64:27 */
1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1168 1780, 2000, 0, 720, 725, 730, 825, 0,
1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 /* 86 - 2560x1080@24Hz 64:27 */
1172 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1173 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 /* 87 - 2560x1080@25Hz 64:27 */
1177 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1178 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 /* 88 - 2560x1080@30Hz 64:27 */
1182 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1183 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 /* 89 - 2560x1080@50Hz 64:27 */
1187 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1188 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 /* 90 - 2560x1080@60Hz 64:27 */
1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1193 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 /* 91 - 2560x1080@100Hz 64:27 */
1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1198 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 /* 92 - 2560x1080@120Hz 64:27 */
1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1203 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 /* 93 - 3840x2160@24Hz 16:9 */
1207 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1208 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1211 /* 94 - 3840x2160@25Hz 16:9 */
1212 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1213 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1216 /* 95 - 3840x2160@30Hz 16:9 */
1217 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1218 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1221 /* 96 - 3840x2160@50Hz 16:9 */
1222 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1223 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1226 /* 97 - 3840x2160@60Hz 16:9 */
1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1228 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 /* 98 - 4096x2160@24Hz 256:135 */
1232 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1233 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1236 /* 99 - 4096x2160@25Hz 256:135 */
1237 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1238 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1241 /* 100 - 4096x2160@30Hz 256:135 */
1242 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1243 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1246 /* 101 - 4096x2160@50Hz 256:135 */
1247 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1248 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1251 /* 102 - 4096x2160@60Hz 256:135 */
1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1253 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 /* 103 - 3840x2160@24Hz 64:27 */
1257 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1258 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1261 /* 104 - 3840x2160@25Hz 64:27 */
1262 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1263 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1266 /* 105 - 3840x2160@30Hz 64:27 */
1267 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1268 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1271 /* 106 - 3840x2160@50Hz 64:27 */
1272 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1273 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1276 /* 107 - 3840x2160@60Hz 64:27 */
1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1278 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281};
1282
1283/*
1284 * HDMI 1.4 4k modes. Index using the VIC.
1285 */
1286static const struct drm_display_mode edid_4k_modes[] = {
1287 /* 0 - dummy, VICs start at 1 */
1288 { },
1289 /* 1 - 3840x2160@30Hz */
1290 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1291 3840, 4016, 4104, 4400, 0,
1292 2160, 2168, 2178, 2250, 0,
1293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 .vrefresh = 30, },
1295 /* 2 - 3840x2160@25Hz */
1296 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1297 3840, 4896, 4984, 5280, 0,
1298 2160, 2168, 2178, 2250, 0,
1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 .vrefresh = 25, },
1301 /* 3 - 3840x2160@24Hz */
1302 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1303 3840, 5116, 5204, 5500, 0,
1304 2160, 2168, 2178, 2250, 0,
1305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1306 .vrefresh = 24, },
1307 /* 4 - 4096x2160@24Hz (SMPTE) */
1308 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1309 4096, 5116, 5204, 5500, 0,
1310 2160, 2168, 2178, 2250, 0,
1311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1312 .vrefresh = 24, },
1313};
1314
1315/*** DDC fetch and block validation ***/
1316
1317static const u8 edid_header[] = {
1318 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1319};
1320
1321/**
1322 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1323 * @raw_edid: pointer to raw base EDID block
1324 *
1325 * Sanity check the header of the base EDID block.
1326 *
1327 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1328 */
1329int drm_edid_header_is_valid(const u8 *raw_edid)
1330{
1331 int i, score = 0;
1332
1333 for (i = 0; i < sizeof(edid_header); i++)
1334 if (raw_edid[i] == edid_header[i])
1335 score++;
1336
1337 return score;
1338}
1339EXPORT_SYMBOL(drm_edid_header_is_valid);
1340
1341static int edid_fixup __read_mostly = 6;
1342module_param_named(edid_fixup, edid_fixup, int, 0400);
1343MODULE_PARM_DESC(edid_fixup,
1344 "Minimum number of valid EDID header bytes (0-8, default 6)");
1345
1346static void drm_get_displayid(struct drm_connector *connector,
1347 struct edid *edid);
1348static int validate_displayid(u8 *displayid, int length, int idx);
1349
1350static int drm_edid_block_checksum(const u8 *raw_edid)
1351{
1352 int i;
1353 u8 csum = 0;
1354 for (i = 0; i < EDID_LENGTH; i++)
1355 csum += raw_edid[i];
1356
1357 return csum;
1358}
1359
1360static bool drm_edid_is_zero(const u8 *in_edid, int length)
1361{
1362 if (memchr_inv(in_edid, 0, length))
1363 return false;
1364
1365 return true;
1366}
1367
1368/**
1369 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1370 * @raw_edid: pointer to raw EDID block
1371 * @block: type of block to validate (0 for base, extension otherwise)
1372 * @print_bad_edid: if true, dump bad EDID blocks to the console
1373 * @edid_corrupt: if true, the header or checksum is invalid
1374 *
1375 * Validate a base or extension EDID block and optionally dump bad blocks to
1376 * the console.
1377 *
1378 * Return: True if the block is valid, false otherwise.
1379 */
1380bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1381 bool *edid_corrupt)
1382{
1383 u8 csum;
1384 struct edid *edid = (struct edid *)raw_edid;
1385
1386 if (WARN_ON(!raw_edid))
1387 return false;
1388
1389 if (edid_fixup > 8 || edid_fixup < 0)
1390 edid_fixup = 6;
1391
1392 if (block == 0) {
1393 int score = drm_edid_header_is_valid(raw_edid);
1394 if (score == 8) {
1395 if (edid_corrupt)
1396 *edid_corrupt = false;
1397 } else if (score >= edid_fixup) {
1398 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1399 * The corrupt flag needs to be set here otherwise, the
1400 * fix-up code here will correct the problem, the
1401 * checksum is correct and the test fails
1402 */
1403 if (edid_corrupt)
1404 *edid_corrupt = true;
1405 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1406 memcpy(raw_edid, edid_header, sizeof(edid_header));
1407 } else {
1408 if (edid_corrupt)
1409 *edid_corrupt = true;
1410 goto bad;
1411 }
1412 }
1413
1414 csum = drm_edid_block_checksum(raw_edid);
1415 if (csum) {
1416 if (edid_corrupt)
1417 *edid_corrupt = true;
1418
1419 /* allow CEA to slide through, switches mangle this */
1420 if (raw_edid[0] == CEA_EXT) {
1421 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1422 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1423 } else {
1424 if (print_bad_edid)
1425 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1426
1427 goto bad;
1428 }
1429 }
1430
1431 /* per-block-type checks */
1432 switch (raw_edid[0]) {
1433 case 0: /* base */
1434 if (edid->version != 1) {
1435 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1436 goto bad;
1437 }
1438
1439 if (edid->revision > 4)
1440 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1441 break;
1442
1443 default:
1444 break;
1445 }
1446
1447 return true;
1448
1449bad:
1450 if (print_bad_edid) {
1451 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1452 pr_notice("EDID block is all zeroes\n");
1453 } else {
1454 pr_notice("Raw EDID:\n");
1455 print_hex_dump(KERN_NOTICE,
1456 " \t", DUMP_PREFIX_NONE, 16, 1,
1457 raw_edid, EDID_LENGTH, false);
1458 }
1459 }
1460 return false;
1461}
1462EXPORT_SYMBOL(drm_edid_block_valid);
1463
1464/**
1465 * drm_edid_is_valid - sanity check EDID data
1466 * @edid: EDID data
1467 *
1468 * Sanity-check an entire EDID record (including extensions)
1469 *
1470 * Return: True if the EDID data is valid, false otherwise.
1471 */
1472bool drm_edid_is_valid(struct edid *edid)
1473{
1474 int i;
1475 u8 *raw = (u8 *)edid;
1476
1477 if (!edid)
1478 return false;
1479
1480 for (i = 0; i <= edid->extensions; i++)
1481 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1482 return false;
1483
1484 return true;
1485}
1486EXPORT_SYMBOL(drm_edid_is_valid);
1487
1488#define DDC_SEGMENT_ADDR 0x30
1489/**
1490 * drm_do_probe_ddc_edid() - get EDID information via I2C
1491 * @data: I2C device adapter
1492 * @buf: EDID data buffer to be filled
1493 * @block: 128 byte EDID block to start fetching from
1494 * @len: EDID data buffer length to fetch
1495 *
1496 * Try to fetch EDID information by calling I2C driver functions.
1497 *
1498 * Return: 0 on success or -1 on failure.
1499 */
1500static int
1501drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1502{
1503 struct i2c_adapter *adapter = data;
1504 unsigned char start = block * EDID_LENGTH;
1505 unsigned char segment = block >> 1;
1506 unsigned char xfers = segment ? 3 : 2;
1507 int ret, retries = 5;
1508
1509 /*
1510 * The core I2C driver will automatically retry the transfer if the
1511 * adapter reports EAGAIN. However, we find that bit-banging transfers
1512 * are susceptible to errors under a heavily loaded machine and
1513 * generate spurious NAKs and timeouts. Retrying the transfer
1514 * of the individual block a few times seems to overcome this.
1515 */
1516 do {
1517 struct i2c_msg msgs[] = {
1518 {
1519 .addr = DDC_SEGMENT_ADDR,
1520 .flags = 0,
1521 .len = 1,
1522 .buf = &segment,
1523 }, {
1524 .addr = DDC_ADDR,
1525 .flags = 0,
1526 .len = 1,
1527 .buf = &start,
1528 }, {
1529 .addr = DDC_ADDR,
1530 .flags = I2C_M_RD,
1531 .len = len,
1532 .buf = buf,
1533 }
1534 };
1535
1536 /*
1537 * Avoid sending the segment addr to not upset non-compliant
1538 * DDC monitors.
1539 */
1540 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1541
1542 if (ret == -ENXIO) {
1543 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1544 adapter->name);
1545 break;
1546 }
1547 } while (ret != xfers && --retries);
1548
1549 return ret == xfers ? 0 : -1;
1550}
1551
1552static void connector_bad_edid(struct drm_connector *connector,
1553 u8 *edid, int num_blocks)
1554{
1555 int i;
1556
1557 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1558 return;
1559
1560 dev_warn(connector->dev->dev,
1561 "%s: EDID is invalid:\n",
1562 connector->name);
1563 for (i = 0; i < num_blocks; i++) {
1564 u8 *block = edid + i * EDID_LENGTH;
1565 char prefix[20];
1566
1567 if (drm_edid_is_zero(block, EDID_LENGTH))
1568 sprintf(prefix, "\t[%02x] ZERO ", i);
1569 else if (!drm_edid_block_valid(block, i, false, NULL))
1570 sprintf(prefix, "\t[%02x] BAD ", i);
1571 else
1572 sprintf(prefix, "\t[%02x] GOOD ", i);
1573
1574 print_hex_dump(KERN_WARNING,
1575 prefix, DUMP_PREFIX_NONE, 16, 1,
1576 block, EDID_LENGTH, false);
1577 }
1578}
1579
1580/* Get override or firmware EDID */
1581static struct edid *drm_get_override_edid(struct drm_connector *connector)
1582{
1583 struct edid *override = NULL;
1584
1585 if (connector->override_edid)
1586 override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1587
1588 if (!override)
1589 override = drm_load_edid_firmware(connector);
1590
1591 return IS_ERR(override) ? NULL : override;
1592}
1593
1594/**
1595 * drm_add_override_edid_modes - add modes from override/firmware EDID
1596 * @connector: connector we're probing
1597 *
1598 * Add modes from the override/firmware EDID, if available. Only to be used from
1599 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
1600 * failed during drm_get_edid() and caused the override/firmware EDID to be
1601 * skipped.
1602 *
1603 * Return: The number of modes added or 0 if we couldn't find any.
1604 */
1605int drm_add_override_edid_modes(struct drm_connector *connector)
1606{
1607 struct edid *override;
1608 int num_modes = 0;
1609
1610 override = drm_get_override_edid(connector);
1611 if (override) {
1612 drm_connector_update_edid_property(connector, override);
1613 num_modes = drm_add_edid_modes(connector, override);
1614 kfree(override);
1615
1616 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
1617 connector->base.id, connector->name, num_modes);
1618 }
1619
1620 return num_modes;
1621}
1622EXPORT_SYMBOL(drm_add_override_edid_modes);
1623
1624/**
1625 * drm_do_get_edid - get EDID data using a custom EDID block read function
1626 * @connector: connector we're probing
1627 * @get_edid_block: EDID block read function
1628 * @data: private data passed to the block read function
1629 *
1630 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1631 * exposes a different interface to read EDID blocks this function can be used
1632 * to get EDID data using a custom block read function.
1633 *
1634 * As in the general case the DDC bus is accessible by the kernel at the I2C
1635 * level, drivers must make all reasonable efforts to expose it as an I2C
1636 * adapter and use drm_get_edid() instead of abusing this function.
1637 *
1638 * The EDID may be overridden using debugfs override_edid or firmare EDID
1639 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1640 * order. Having either of them bypasses actual EDID reads.
1641 *
1642 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1643 */
1644struct edid *drm_do_get_edid(struct drm_connector *connector,
1645 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1646 size_t len),
1647 void *data)
1648{
1649 int i, j = 0, valid_extensions = 0;
1650 u8 *edid, *new;
1651 struct edid *override;
1652
1653 override = drm_get_override_edid(connector);
1654 if (override)
1655 return override;
1656
1657 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1658 return NULL;
1659
1660 /* base block fetch */
1661 for (i = 0; i < 4; i++) {
1662 if (get_edid_block(data, edid, 0, EDID_LENGTH))
1663 goto out;
1664 if (drm_edid_block_valid(edid, 0, false,
1665 &connector->edid_corrupt))
1666 break;
1667 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1668 connector->null_edid_counter++;
1669 goto carp;
1670 }
1671 }
1672 if (i == 4)
1673 goto carp;
1674
1675 /* if there's no extensions, we're done */
1676 valid_extensions = edid[0x7e];
1677 if (valid_extensions == 0)
1678 return (struct edid *)edid;
1679
1680 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1681 if (!new)
1682 goto out;
1683 edid = new;
1684
1685 for (j = 1; j <= edid[0x7e]; j++) {
1686 u8 *block = edid + j * EDID_LENGTH;
1687
1688 for (i = 0; i < 4; i++) {
1689 if (get_edid_block(data, block, j, EDID_LENGTH))
1690 goto out;
1691 if (drm_edid_block_valid(block, j, false, NULL))
1692 break;
1693 }
1694
1695 if (i == 4)
1696 valid_extensions--;
1697 }
1698
1699 if (valid_extensions != edid[0x7e]) {
1700 u8 *base;
1701
1702 connector_bad_edid(connector, edid, edid[0x7e] + 1);
1703
1704 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1705 edid[0x7e] = valid_extensions;
1706
1707 new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1708 GFP_KERNEL);
1709 if (!new)
1710 goto out;
1711
1712 base = new;
1713 for (i = 0; i <= edid[0x7e]; i++) {
1714 u8 *block = edid + i * EDID_LENGTH;
1715
1716 if (!drm_edid_block_valid(block, i, false, NULL))
1717 continue;
1718
1719 memcpy(base, block, EDID_LENGTH);
1720 base += EDID_LENGTH;
1721 }
1722
1723 kfree(edid);
1724 edid = new;
1725 }
1726
1727 return (struct edid *)edid;
1728
1729carp:
1730 connector_bad_edid(connector, edid, 1);
1731out:
1732 kfree(edid);
1733 return NULL;
1734}
1735EXPORT_SYMBOL_GPL(drm_do_get_edid);
1736
1737/**
1738 * drm_probe_ddc() - probe DDC presence
1739 * @adapter: I2C adapter to probe
1740 *
1741 * Return: True on success, false on failure.
1742 */
1743bool
1744drm_probe_ddc(struct i2c_adapter *adapter)
1745{
1746 unsigned char out;
1747
1748 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1749}
1750EXPORT_SYMBOL(drm_probe_ddc);
1751
1752/**
1753 * drm_get_edid - get EDID data, if available
1754 * @connector: connector we're probing
1755 * @adapter: I2C adapter to use for DDC
1756 *
1757 * Poke the given I2C channel to grab EDID data if possible. If found,
1758 * attach it to the connector.
1759 *
1760 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1761 */
1762struct edid *drm_get_edid(struct drm_connector *connector,
1763 struct i2c_adapter *adapter)
1764{
1765 struct edid *edid;
1766
1767 if (connector->force == DRM_FORCE_OFF)
1768 return NULL;
1769
1770 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1771 return NULL;
1772
1773 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1774 if (edid)
1775 drm_get_displayid(connector, edid);
1776 return edid;
1777}
1778EXPORT_SYMBOL(drm_get_edid);
1779
1780/**
1781 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1782 * @connector: connector we're probing
1783 * @adapter: I2C adapter to use for DDC
1784 *
1785 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1786 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1787 * switch DDC to the GPU which is retrieving EDID.
1788 *
1789 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1790 */
1791struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1792 struct i2c_adapter *adapter)
1793{
1794 struct pci_dev *pdev = connector->dev->pdev;
1795 struct edid *edid;
1796
1797 vga_switcheroo_lock_ddc(pdev);
1798 edid = drm_get_edid(connector, adapter);
1799 vga_switcheroo_unlock_ddc(pdev);
1800
1801 return edid;
1802}
1803EXPORT_SYMBOL(drm_get_edid_switcheroo);
1804
1805/**
1806 * drm_edid_duplicate - duplicate an EDID and the extensions
1807 * @edid: EDID to duplicate
1808 *
1809 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1810 */
1811struct edid *drm_edid_duplicate(const struct edid *edid)
1812{
1813 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1814}
1815EXPORT_SYMBOL(drm_edid_duplicate);
1816
1817/*** EDID parsing ***/
1818
1819/**
1820 * edid_vendor - match a string against EDID's obfuscated vendor field
1821 * @edid: EDID to match
1822 * @vendor: vendor string
1823 *
1824 * Returns true if @vendor is in @edid, false otherwise
1825 */
1826static bool edid_vendor(const struct edid *edid, const char *vendor)
1827{
1828 char edid_vendor[3];
1829
1830 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1831 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1832 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1833 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1834
1835 return !strncmp(edid_vendor, vendor, 3);
1836}
1837
1838/**
1839 * edid_get_quirks - return quirk flags for a given EDID
1840 * @edid: EDID to process
1841 *
1842 * This tells subsequent routines what fixes they need to apply.
1843 */
1844static u32 edid_get_quirks(const struct edid *edid)
1845{
1846 const struct edid_quirk *quirk;
1847 int i;
1848
1849 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1850 quirk = &edid_quirk_list[i];
1851
1852 if (edid_vendor(edid, quirk->vendor) &&
1853 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1854 return quirk->quirks;
1855 }
1856
1857 return 0;
1858}
1859
1860#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1861#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1862
1863/**
1864 * edid_fixup_preferred - set preferred modes based on quirk list
1865 * @connector: has mode list to fix up
1866 * @quirks: quirks list
1867 *
1868 * Walk the mode list for @connector, clearing the preferred status
1869 * on existing modes and setting it anew for the right mode ala @quirks.
1870 */
1871static void edid_fixup_preferred(struct drm_connector *connector,
1872 u32 quirks)
1873{
1874 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1875 int target_refresh = 0;
1876 int cur_vrefresh, preferred_vrefresh;
1877
1878 if (list_empty(&connector->probed_modes))
1879 return;
1880
1881 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1882 target_refresh = 60;
1883 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1884 target_refresh = 75;
1885
1886 preferred_mode = list_first_entry(&connector->probed_modes,
1887 struct drm_display_mode, head);
1888
1889 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1890 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1891
1892 if (cur_mode == preferred_mode)
1893 continue;
1894
1895 /* Largest mode is preferred */
1896 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1897 preferred_mode = cur_mode;
1898
1899 cur_vrefresh = cur_mode->vrefresh ?
1900 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1901 preferred_vrefresh = preferred_mode->vrefresh ?
1902 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1903 /* At a given size, try to get closest to target refresh */
1904 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1905 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1906 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1907 preferred_mode = cur_mode;
1908 }
1909 }
1910
1911 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1912}
1913
1914static bool
1915mode_is_rb(const struct drm_display_mode *mode)
1916{
1917 return (mode->htotal - mode->hdisplay == 160) &&
1918 (mode->hsync_end - mode->hdisplay == 80) &&
1919 (mode->hsync_end - mode->hsync_start == 32) &&
1920 (mode->vsync_start - mode->vdisplay == 3);
1921}
1922
1923/*
1924 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1925 * @dev: Device to duplicate against
1926 * @hsize: Mode width
1927 * @vsize: Mode height
1928 * @fresh: Mode refresh rate
1929 * @rb: Mode reduced-blanking-ness
1930 *
1931 * Walk the DMT mode list looking for a match for the given parameters.
1932 *
1933 * Return: A newly allocated copy of the mode, or NULL if not found.
1934 */
1935struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1936 int hsize, int vsize, int fresh,
1937 bool rb)
1938{
1939 int i;
1940
1941 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1942 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1943 if (hsize != ptr->hdisplay)
1944 continue;
1945 if (vsize != ptr->vdisplay)
1946 continue;
1947 if (fresh != drm_mode_vrefresh(ptr))
1948 continue;
1949 if (rb != mode_is_rb(ptr))
1950 continue;
1951
1952 return drm_mode_duplicate(dev, ptr);
1953 }
1954
1955 return NULL;
1956}
1957EXPORT_SYMBOL(drm_mode_find_dmt);
1958
1959typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1960
1961static void
1962cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1963{
1964 int i, n = 0;
1965 u8 d = ext[0x02];
1966 u8 *det_base = ext + d;
1967
1968 n = (127 - d) / 18;
1969 for (i = 0; i < n; i++)
1970 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1971}
1972
1973static void
1974vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1975{
1976 unsigned int i, n = min((int)ext[0x02], 6);
1977 u8 *det_base = ext + 5;
1978
1979 if (ext[0x01] != 1)
1980 return; /* unknown version */
1981
1982 for (i = 0; i < n; i++)
1983 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1984}
1985
1986static void
1987drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1988{
1989 int i;
1990 struct edid *edid = (struct edid *)raw_edid;
1991
1992 if (edid == NULL)
1993 return;
1994
1995 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1996 cb(&(edid->detailed_timings[i]), closure);
1997
1998 for (i = 1; i <= raw_edid[0x7e]; i++) {
1999 u8 *ext = raw_edid + (i * EDID_LENGTH);
2000 switch (*ext) {
2001 case CEA_EXT:
2002 cea_for_each_detailed_block(ext, cb, closure);
2003 break;
2004 case VTB_EXT:
2005 vtb_for_each_detailed_block(ext, cb, closure);
2006 break;
2007 default:
2008 break;
2009 }
2010 }
2011}
2012
2013static void
2014is_rb(struct detailed_timing *t, void *data)
2015{
2016 u8 *r = (u8 *)t;
2017 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
2018 if (r[15] & 0x10)
2019 *(bool *)data = true;
2020}
2021
2022/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
2023static bool
2024drm_monitor_supports_rb(struct edid *edid)
2025{
2026 if (edid->revision >= 4) {
2027 bool ret = false;
2028 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
2029 return ret;
2030 }
2031
2032 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2033}
2034
2035static void
2036find_gtf2(struct detailed_timing *t, void *data)
2037{
2038 u8 *r = (u8 *)t;
2039 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
2040 *(u8 **)data = r;
2041}
2042
2043/* Secondary GTF curve kicks in above some break frequency */
2044static int
2045drm_gtf2_hbreak(struct edid *edid)
2046{
2047 u8 *r = NULL;
2048 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2049 return r ? (r[12] * 2) : 0;
2050}
2051
2052static int
2053drm_gtf2_2c(struct edid *edid)
2054{
2055 u8 *r = NULL;
2056 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2057 return r ? r[13] : 0;
2058}
2059
2060static int
2061drm_gtf2_m(struct edid *edid)
2062{
2063 u8 *r = NULL;
2064 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2065 return r ? (r[15] << 8) + r[14] : 0;
2066}
2067
2068static int
2069drm_gtf2_k(struct edid *edid)
2070{
2071 u8 *r = NULL;
2072 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2073 return r ? r[16] : 0;
2074}
2075
2076static int
2077drm_gtf2_2j(struct edid *edid)
2078{
2079 u8 *r = NULL;
2080 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2081 return r ? r[17] : 0;
2082}
2083
2084/**
2085 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2086 * @edid: EDID block to scan
2087 */
2088static int standard_timing_level(struct edid *edid)
2089{
2090 if (edid->revision >= 2) {
2091 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2092 return LEVEL_CVT;
2093 if (drm_gtf2_hbreak(edid))
2094 return LEVEL_GTF2;
2095 return LEVEL_GTF;
2096 }
2097 return LEVEL_DMT;
2098}
2099
2100/*
2101 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
2102 * monitors fill with ascii space (0x20) instead.
2103 */
2104static int
2105bad_std_timing(u8 a, u8 b)
2106{
2107 return (a == 0x00 && b == 0x00) ||
2108 (a == 0x01 && b == 0x01) ||
2109 (a == 0x20 && b == 0x20);
2110}
2111
2112/**
2113 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2114 * @connector: connector of for the EDID block
2115 * @edid: EDID block to scan
2116 * @t: standard timing params
2117 *
2118 * Take the standard timing params (in this case width, aspect, and refresh)
2119 * and convert them into a real mode using CVT/GTF/DMT.
2120 */
2121static struct drm_display_mode *
2122drm_mode_std(struct drm_connector *connector, struct edid *edid,
2123 struct std_timing *t)
2124{
2125 struct drm_device *dev = connector->dev;
2126 struct drm_display_mode *m, *mode = NULL;
2127 int hsize, vsize;
2128 int vrefresh_rate;
2129 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2130 >> EDID_TIMING_ASPECT_SHIFT;
2131 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2132 >> EDID_TIMING_VFREQ_SHIFT;
2133 int timing_level = standard_timing_level(edid);
2134
2135 if (bad_std_timing(t->hsize, t->vfreq_aspect))
2136 return NULL;
2137
2138 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2139 hsize = t->hsize * 8 + 248;
2140 /* vrefresh_rate = vfreq + 60 */
2141 vrefresh_rate = vfreq + 60;
2142 /* the vdisplay is calculated based on the aspect ratio */
2143 if (aspect_ratio == 0) {
2144 if (edid->revision < 3)
2145 vsize = hsize;
2146 else
2147 vsize = (hsize * 10) / 16;
2148 } else if (aspect_ratio == 1)
2149 vsize = (hsize * 3) / 4;
2150 else if (aspect_ratio == 2)
2151 vsize = (hsize * 4) / 5;
2152 else
2153 vsize = (hsize * 9) / 16;
2154
2155 /* HDTV hack, part 1 */
2156 if (vrefresh_rate == 60 &&
2157 ((hsize == 1360 && vsize == 765) ||
2158 (hsize == 1368 && vsize == 769))) {
2159 hsize = 1366;
2160 vsize = 768;
2161 }
2162
2163 /*
2164 * If this connector already has a mode for this size and refresh
2165 * rate (because it came from detailed or CVT info), use that
2166 * instead. This way we don't have to guess at interlace or
2167 * reduced blanking.
2168 */
2169 list_for_each_entry(m, &connector->probed_modes, head)
2170 if (m->hdisplay == hsize && m->vdisplay == vsize &&
2171 drm_mode_vrefresh(m) == vrefresh_rate)
2172 return NULL;
2173
2174 /* HDTV hack, part 2 */
2175 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2176 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2177 false);
2178 if (!mode)
2179 return NULL;
2180 mode->hdisplay = 1366;
2181 mode->hsync_start = mode->hsync_start - 1;
2182 mode->hsync_end = mode->hsync_end - 1;
2183 return mode;
2184 }
2185
2186 /* check whether it can be found in default mode table */
2187 if (drm_monitor_supports_rb(edid)) {
2188 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2189 true);
2190 if (mode)
2191 return mode;
2192 }
2193 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2194 if (mode)
2195 return mode;
2196
2197 /* okay, generate it */
2198 switch (timing_level) {
2199 case LEVEL_DMT:
2200 break;
2201 case LEVEL_GTF:
2202 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2203 break;
2204 case LEVEL_GTF2:
2205 /*
2206 * This is potentially wrong if there's ever a monitor with
2207 * more than one ranges section, each claiming a different
2208 * secondary GTF curve. Please don't do that.
2209 */
2210 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2211 if (!mode)
2212 return NULL;
2213 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2214 drm_mode_destroy(dev, mode);
2215 mode = drm_gtf_mode_complex(dev, hsize, vsize,
2216 vrefresh_rate, 0, 0,
2217 drm_gtf2_m(edid),
2218 drm_gtf2_2c(edid),
2219 drm_gtf2_k(edid),
2220 drm_gtf2_2j(edid));
2221 }
2222 break;
2223 case LEVEL_CVT:
2224 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2225 false);
2226 break;
2227 }
2228 return mode;
2229}
2230
2231/*
2232 * EDID is delightfully ambiguous about how interlaced modes are to be
2233 * encoded. Our internal representation is of frame height, but some
2234 * HDTV detailed timings are encoded as field height.
2235 *
2236 * The format list here is from CEA, in frame size. Technically we
2237 * should be checking refresh rate too. Whatever.
2238 */
2239static void
2240drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2241 struct detailed_pixel_timing *pt)
2242{
2243 int i;
2244 static const struct {
2245 int w, h;
2246 } cea_interlaced[] = {
2247 { 1920, 1080 },
2248 { 720, 480 },
2249 { 1440, 480 },
2250 { 2880, 480 },
2251 { 720, 576 },
2252 { 1440, 576 },
2253 { 2880, 576 },
2254 };
2255
2256 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2257 return;
2258
2259 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2260 if ((mode->hdisplay == cea_interlaced[i].w) &&
2261 (mode->vdisplay == cea_interlaced[i].h / 2)) {
2262 mode->vdisplay *= 2;
2263 mode->vsync_start *= 2;
2264 mode->vsync_end *= 2;
2265 mode->vtotal *= 2;
2266 mode->vtotal |= 1;
2267 }
2268 }
2269
2270 mode->flags |= DRM_MODE_FLAG_INTERLACE;
2271}
2272
2273/**
2274 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2275 * @dev: DRM device (needed to create new mode)
2276 * @edid: EDID block
2277 * @timing: EDID detailed timing info
2278 * @quirks: quirks to apply
2279 *
2280 * An EDID detailed timing block contains enough info for us to create and
2281 * return a new struct drm_display_mode.
2282 */
2283static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2284 struct edid *edid,
2285 struct detailed_timing *timing,
2286 u32 quirks)
2287{
2288 struct drm_display_mode *mode;
2289 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2290 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2291 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2292 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2293 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2294 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2295 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2296 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2297 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2298
2299 /* ignore tiny modes */
2300 if (hactive < 64 || vactive < 64)
2301 return NULL;
2302
2303 if (pt->misc & DRM_EDID_PT_STEREO) {
2304 DRM_DEBUG_KMS("stereo mode not supported\n");
2305 return NULL;
2306 }
2307 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2308 DRM_DEBUG_KMS("composite sync not supported\n");
2309 }
2310
2311 /* it is incorrect if hsync/vsync width is zero */
2312 if (!hsync_pulse_width || !vsync_pulse_width) {
2313 DRM_DEBUG_KMS("Incorrect Detailed timing. "
2314 "Wrong Hsync/Vsync pulse width\n");
2315 return NULL;
2316 }
2317
2318 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2319 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2320 if (!mode)
2321 return NULL;
2322
2323 goto set_size;
2324 }
2325
2326 mode = drm_mode_create(dev);
2327 if (!mode)
2328 return NULL;
2329
2330 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2331 timing->pixel_clock = cpu_to_le16(1088);
2332
2333 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2334
2335 mode->hdisplay = hactive;
2336 mode->hsync_start = mode->hdisplay + hsync_offset;
2337 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2338 mode->htotal = mode->hdisplay + hblank;
2339
2340 mode->vdisplay = vactive;
2341 mode->vsync_start = mode->vdisplay + vsync_offset;
2342 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2343 mode->vtotal = mode->vdisplay + vblank;
2344
2345 /* Some EDIDs have bogus h/vtotal values */
2346 if (mode->hsync_end > mode->htotal)
2347 mode->htotal = mode->hsync_end + 1;
2348 if (mode->vsync_end > mode->vtotal)
2349 mode->vtotal = mode->vsync_end + 1;
2350
2351 drm_mode_do_interlace_quirk(mode, pt);
2352
2353 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2354 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2355 }
2356
2357 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2358 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2359 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2360 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2361
2362set_size:
2363 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2364 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2365
2366 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2367 mode->width_mm *= 10;
2368 mode->height_mm *= 10;
2369 }
2370
2371 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2372 mode->width_mm = edid->width_cm * 10;
2373 mode->height_mm = edid->height_cm * 10;
2374 }
2375
2376 mode->type = DRM_MODE_TYPE_DRIVER;
2377 mode->vrefresh = drm_mode_vrefresh(mode);
2378 drm_mode_set_name(mode);
2379
2380 return mode;
2381}
2382
2383static bool
2384mode_in_hsync_range(const struct drm_display_mode *mode,
2385 struct edid *edid, u8 *t)
2386{
2387 int hsync, hmin, hmax;
2388
2389 hmin = t[7];
2390 if (edid->revision >= 4)
2391 hmin += ((t[4] & 0x04) ? 255 : 0);
2392 hmax = t[8];
2393 if (edid->revision >= 4)
2394 hmax += ((t[4] & 0x08) ? 255 : 0);
2395 hsync = drm_mode_hsync(mode);
2396
2397 return (hsync <= hmax && hsync >= hmin);
2398}
2399
2400static bool
2401mode_in_vsync_range(const struct drm_display_mode *mode,
2402 struct edid *edid, u8 *t)
2403{
2404 int vsync, vmin, vmax;
2405
2406 vmin = t[5];
2407 if (edid->revision >= 4)
2408 vmin += ((t[4] & 0x01) ? 255 : 0);
2409 vmax = t[6];
2410 if (edid->revision >= 4)
2411 vmax += ((t[4] & 0x02) ? 255 : 0);
2412 vsync = drm_mode_vrefresh(mode);
2413
2414 return (vsync <= vmax && vsync >= vmin);
2415}
2416
2417static u32
2418range_pixel_clock(struct edid *edid, u8 *t)
2419{
2420 /* unspecified */
2421 if (t[9] == 0 || t[9] == 255)
2422 return 0;
2423
2424 /* 1.4 with CVT support gives us real precision, yay */
2425 if (edid->revision >= 4 && t[10] == 0x04)
2426 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2427
2428 /* 1.3 is pathetic, so fuzz up a bit */
2429 return t[9] * 10000 + 5001;
2430}
2431
2432static bool
2433mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2434 struct detailed_timing *timing)
2435{
2436 u32 max_clock;
2437 u8 *t = (u8 *)timing;
2438
2439 if (!mode_in_hsync_range(mode, edid, t))
2440 return false;
2441
2442 if (!mode_in_vsync_range(mode, edid, t))
2443 return false;
2444
2445 if ((max_clock = range_pixel_clock(edid, t)))
2446 if (mode->clock > max_clock)
2447 return false;
2448
2449 /* 1.4 max horizontal check */
2450 if (edid->revision >= 4 && t[10] == 0x04)
2451 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2452 return false;
2453
2454 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2455 return false;
2456
2457 return true;
2458}
2459
2460static bool valid_inferred_mode(const struct drm_connector *connector,
2461 const struct drm_display_mode *mode)
2462{
2463 const struct drm_display_mode *m;
2464 bool ok = false;
2465
2466 list_for_each_entry(m, &connector->probed_modes, head) {
2467 if (mode->hdisplay == m->hdisplay &&
2468 mode->vdisplay == m->vdisplay &&
2469 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2470 return false; /* duplicated */
2471 if (mode->hdisplay <= m->hdisplay &&
2472 mode->vdisplay <= m->vdisplay)
2473 ok = true;
2474 }
2475 return ok;
2476}
2477
2478static int
2479drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2480 struct detailed_timing *timing)
2481{
2482 int i, modes = 0;
2483 struct drm_display_mode *newmode;
2484 struct drm_device *dev = connector->dev;
2485
2486 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2487 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2488 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2489 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2490 if (newmode) {
2491 drm_mode_probed_add(connector, newmode);
2492 modes++;
2493 }
2494 }
2495 }
2496
2497 return modes;
2498}
2499
2500/* fix up 1366x768 mode from 1368x768;
2501 * GFT/CVT can't express 1366 width which isn't dividable by 8
2502 */
2503void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2504{
2505 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2506 mode->hdisplay = 1366;
2507 mode->hsync_start--;
2508 mode->hsync_end--;
2509 drm_mode_set_name(mode);
2510 }
2511}
2512
2513static int
2514drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2515 struct detailed_timing *timing)
2516{
2517 int i, modes = 0;
2518 struct drm_display_mode *newmode;
2519 struct drm_device *dev = connector->dev;
2520
2521 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2522 const struct minimode *m = &extra_modes[i];
2523 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2524 if (!newmode)
2525 return modes;
2526
2527 drm_mode_fixup_1366x768(newmode);
2528 if (!mode_in_range(newmode, edid, timing) ||
2529 !valid_inferred_mode(connector, newmode)) {
2530 drm_mode_destroy(dev, newmode);
2531 continue;
2532 }
2533
2534 drm_mode_probed_add(connector, newmode);
2535 modes++;
2536 }
2537
2538 return modes;
2539}
2540
2541static int
2542drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2543 struct detailed_timing *timing)
2544{
2545 int i, modes = 0;
2546 struct drm_display_mode *newmode;
2547 struct drm_device *dev = connector->dev;
2548 bool rb = drm_monitor_supports_rb(edid);
2549
2550 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2551 const struct minimode *m = &extra_modes[i];
2552 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2553 if (!newmode)
2554 return modes;
2555
2556 drm_mode_fixup_1366x768(newmode);
2557 if (!mode_in_range(newmode, edid, timing) ||
2558 !valid_inferred_mode(connector, newmode)) {
2559 drm_mode_destroy(dev, newmode);
2560 continue;
2561 }
2562
2563 drm_mode_probed_add(connector, newmode);
2564 modes++;
2565 }
2566
2567 return modes;
2568}
2569
2570static void
2571do_inferred_modes(struct detailed_timing *timing, void *c)
2572{
2573 struct detailed_mode_closure *closure = c;
2574 struct detailed_non_pixel *data = &timing->data.other_data;
2575 struct detailed_data_monitor_range *range = &data->data.range;
2576
2577 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2578 return;
2579
2580 closure->modes += drm_dmt_modes_for_range(closure->connector,
2581 closure->edid,
2582 timing);
2583
2584 if (!version_greater(closure->edid, 1, 1))
2585 return; /* GTF not defined yet */
2586
2587 switch (range->flags) {
2588 case 0x02: /* secondary gtf, XXX could do more */
2589 case 0x00: /* default gtf */
2590 closure->modes += drm_gtf_modes_for_range(closure->connector,
2591 closure->edid,
2592 timing);
2593 break;
2594 case 0x04: /* cvt, only in 1.4+ */
2595 if (!version_greater(closure->edid, 1, 3))
2596 break;
2597
2598 closure->modes += drm_cvt_modes_for_range(closure->connector,
2599 closure->edid,
2600 timing);
2601 break;
2602 case 0x01: /* just the ranges, no formula */
2603 default:
2604 break;
2605 }
2606}
2607
2608static int
2609add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2610{
2611 struct detailed_mode_closure closure = {
2612 .connector = connector,
2613 .edid = edid,
2614 };
2615
2616 if (version_greater(edid, 1, 0))
2617 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2618 &closure);
2619
2620 return closure.modes;
2621}
2622
2623static int
2624drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2625{
2626 int i, j, m, modes = 0;
2627 struct drm_display_mode *mode;
2628 u8 *est = ((u8 *)timing) + 6;
2629
2630 for (i = 0; i < 6; i++) {
2631 for (j = 7; j >= 0; j--) {
2632 m = (i * 8) + (7 - j);
2633 if (m >= ARRAY_SIZE(est3_modes))
2634 break;
2635 if (est[i] & (1 << j)) {
2636 mode = drm_mode_find_dmt(connector->dev,
2637 est3_modes[m].w,
2638 est3_modes[m].h,
2639 est3_modes[m].r,
2640 est3_modes[m].rb);
2641 if (mode) {
2642 drm_mode_probed_add(connector, mode);
2643 modes++;
2644 }
2645 }
2646 }
2647 }
2648
2649 return modes;
2650}
2651
2652static void
2653do_established_modes(struct detailed_timing *timing, void *c)
2654{
2655 struct detailed_mode_closure *closure = c;
2656 struct detailed_non_pixel *data = &timing->data.other_data;
2657
2658 if (data->type == EDID_DETAIL_EST_TIMINGS)
2659 closure->modes += drm_est3_modes(closure->connector, timing);
2660}
2661
2662/**
2663 * add_established_modes - get est. modes from EDID and add them
2664 * @connector: connector to add mode(s) to
2665 * @edid: EDID block to scan
2666 *
2667 * Each EDID block contains a bitmap of the supported "established modes" list
2668 * (defined above). Tease them out and add them to the global modes list.
2669 */
2670static int
2671add_established_modes(struct drm_connector *connector, struct edid *edid)
2672{
2673 struct drm_device *dev = connector->dev;
2674 unsigned long est_bits = edid->established_timings.t1 |
2675 (edid->established_timings.t2 << 8) |
2676 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2677 int i, modes = 0;
2678 struct detailed_mode_closure closure = {
2679 .connector = connector,
2680 .edid = edid,
2681 };
2682
2683 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2684 if (est_bits & (1<<i)) {
2685 struct drm_display_mode *newmode;
2686 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2687 if (newmode) {
2688 drm_mode_probed_add(connector, newmode);
2689 modes++;
2690 }
2691 }
2692 }
2693
2694 if (version_greater(edid, 1, 0))
2695 drm_for_each_detailed_block((u8 *)edid,
2696 do_established_modes, &closure);
2697
2698 return modes + closure.modes;
2699}
2700
2701static void
2702do_standard_modes(struct detailed_timing *timing, void *c)
2703{
2704 struct detailed_mode_closure *closure = c;
2705 struct detailed_non_pixel *data = &timing->data.other_data;
2706 struct drm_connector *connector = closure->connector;
2707 struct edid *edid = closure->edid;
2708
2709 if (data->type == EDID_DETAIL_STD_MODES) {
2710 int i;
2711 for (i = 0; i < 6; i++) {
2712 struct std_timing *std;
2713 struct drm_display_mode *newmode;
2714
2715 std = &data->data.timings[i];
2716 newmode = drm_mode_std(connector, edid, std);
2717 if (newmode) {
2718 drm_mode_probed_add(connector, newmode);
2719 closure->modes++;
2720 }
2721 }
2722 }
2723}
2724
2725/**
2726 * add_standard_modes - get std. modes from EDID and add them
2727 * @connector: connector to add mode(s) to
2728 * @edid: EDID block to scan
2729 *
2730 * Standard modes can be calculated using the appropriate standard (DMT,
2731 * GTF or CVT. Grab them from @edid and add them to the list.
2732 */
2733static int
2734add_standard_modes(struct drm_connector *connector, struct edid *edid)
2735{
2736 int i, modes = 0;
2737 struct detailed_mode_closure closure = {
2738 .connector = connector,
2739 .edid = edid,
2740 };
2741
2742 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2743 struct drm_display_mode *newmode;
2744
2745 newmode = drm_mode_std(connector, edid,
2746 &edid->standard_timings[i]);
2747 if (newmode) {
2748 drm_mode_probed_add(connector, newmode);
2749 modes++;
2750 }
2751 }
2752
2753 if (version_greater(edid, 1, 0))
2754 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2755 &closure);
2756
2757 /* XXX should also look for standard codes in VTB blocks */
2758
2759 return modes + closure.modes;
2760}
2761
2762static int drm_cvt_modes(struct drm_connector *connector,
2763 struct detailed_timing *timing)
2764{
2765 int i, j, modes = 0;
2766 struct drm_display_mode *newmode;
2767 struct drm_device *dev = connector->dev;
2768 struct cvt_timing *cvt;
2769 const int rates[] = { 60, 85, 75, 60, 50 };
2770 const u8 empty[3] = { 0, 0, 0 };
2771
2772 for (i = 0; i < 4; i++) {
2773 int uninitialized_var(width), height;
2774 cvt = &(timing->data.other_data.data.cvt[i]);
2775
2776 if (!memcmp(cvt->code, empty, 3))
2777 continue;
2778
2779 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2780 switch (cvt->code[1] & 0x0c) {
2781 case 0x00:
2782 width = height * 4 / 3;
2783 break;
2784 case 0x04:
2785 width = height * 16 / 9;
2786 break;
2787 case 0x08:
2788 width = height * 16 / 10;
2789 break;
2790 case 0x0c:
2791 width = height * 15 / 9;
2792 break;
2793 }
2794
2795 for (j = 1; j < 5; j++) {
2796 if (cvt->code[2] & (1 << j)) {
2797 newmode = drm_cvt_mode(dev, width, height,
2798 rates[j], j == 0,
2799 false, false);
2800 if (newmode) {
2801 drm_mode_probed_add(connector, newmode);
2802 modes++;
2803 }
2804 }
2805 }
2806 }
2807
2808 return modes;
2809}
2810
2811static void
2812do_cvt_mode(struct detailed_timing *timing, void *c)
2813{
2814 struct detailed_mode_closure *closure = c;
2815 struct detailed_non_pixel *data = &timing->data.other_data;
2816
2817 if (data->type == EDID_DETAIL_CVT_3BYTE)
2818 closure->modes += drm_cvt_modes(closure->connector, timing);
2819}
2820
2821static int
2822add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2823{
2824 struct detailed_mode_closure closure = {
2825 .connector = connector,
2826 .edid = edid,
2827 };
2828
2829 if (version_greater(edid, 1, 2))
2830 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2831
2832 /* XXX should also look for CVT codes in VTB blocks */
2833
2834 return closure.modes;
2835}
2836
2837static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2838
2839static void
2840do_detailed_mode(struct detailed_timing *timing, void *c)
2841{
2842 struct detailed_mode_closure *closure = c;
2843 struct drm_display_mode *newmode;
2844
2845 if (timing->pixel_clock) {
2846 newmode = drm_mode_detailed(closure->connector->dev,
2847 closure->edid, timing,
2848 closure->quirks);
2849 if (!newmode)
2850 return;
2851
2852 if (closure->preferred)
2853 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2854
2855 /*
2856 * Detailed modes are limited to 10kHz pixel clock resolution,
2857 * so fix up anything that looks like CEA/HDMI mode, but the clock
2858 * is just slightly off.
2859 */
2860 fixup_detailed_cea_mode_clock(newmode);
2861
2862 drm_mode_probed_add(closure->connector, newmode);
2863 closure->modes++;
2864 closure->preferred = false;
2865 }
2866}
2867
2868/*
2869 * add_detailed_modes - Add modes from detailed timings
2870 * @connector: attached connector
2871 * @edid: EDID block to scan
2872 * @quirks: quirks to apply
2873 */
2874static int
2875add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2876 u32 quirks)
2877{
2878 struct detailed_mode_closure closure = {
2879 .connector = connector,
2880 .edid = edid,
2881 .preferred = true,
2882 .quirks = quirks,
2883 };
2884
2885 if (closure.preferred && !version_greater(edid, 1, 3))
2886 closure.preferred =
2887 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2888
2889 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2890
2891 return closure.modes;
2892}
2893
2894#define AUDIO_BLOCK 0x01
2895#define VIDEO_BLOCK 0x02
2896#define VENDOR_BLOCK 0x03
2897#define SPEAKER_BLOCK 0x04
2898#define HDR_STATIC_METADATA_BLOCK 0x6
2899#define USE_EXTENDED_TAG 0x07
2900#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2901#define EXT_VIDEO_DATA_BLOCK_420 0x0E
2902#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2903#define EDID_BASIC_AUDIO (1 << 6)
2904#define EDID_CEA_YCRCB444 (1 << 5)
2905#define EDID_CEA_YCRCB422 (1 << 4)
2906#define EDID_CEA_VCDB_QS (1 << 6)
2907
2908/*
2909 * Search EDID for CEA extension block.
2910 */
2911static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2912{
2913 u8 *edid_ext = NULL;
2914 int i;
2915
2916 /* No EDID or EDID extensions */
2917 if (edid == NULL || edid->extensions == 0)
2918 return NULL;
2919
2920 /* Find CEA extension */
2921 for (i = 0; i < edid->extensions; i++) {
2922 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2923 if (edid_ext[0] == ext_id)
2924 break;
2925 }
2926
2927 if (i == edid->extensions)
2928 return NULL;
2929
2930 return edid_ext;
2931}
2932
2933
2934static u8 *drm_find_displayid_extension(const struct edid *edid)
2935{
2936 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2937}
2938
2939static u8 *drm_find_cea_extension(const struct edid *edid)
2940{
2941 int ret;
2942 int idx = 1;
2943 int length = EDID_LENGTH;
2944 struct displayid_block *block;
2945 u8 *cea;
2946 u8 *displayid;
2947
2948 /* Look for a top level CEA extension block */
2949 cea = drm_find_edid_extension(edid, CEA_EXT);
2950 if (cea)
2951 return cea;
2952
2953 /* CEA blocks can also be found embedded in a DisplayID block */
2954 displayid = drm_find_displayid_extension(edid);
2955 if (!displayid)
2956 return NULL;
2957
2958 ret = validate_displayid(displayid, length, idx);
2959 if (ret)
2960 return NULL;
2961
2962 idx += sizeof(struct displayid_hdr);
2963 for_each_displayid_db(displayid, block, idx, length) {
2964 if (block->tag == DATA_BLOCK_CTA) {
2965 cea = (u8 *)block;
2966 break;
2967 }
2968 }
2969
2970 return cea;
2971}
2972
2973/*
2974 * Calculate the alternate clock for the CEA mode
2975 * (60Hz vs. 59.94Hz etc.)
2976 */
2977static unsigned int
2978cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2979{
2980 unsigned int clock = cea_mode->clock;
2981
2982 if (cea_mode->vrefresh % 6 != 0)
2983 return clock;
2984
2985 /*
2986 * edid_cea_modes contains the 59.94Hz
2987 * variant for 240 and 480 line modes,
2988 * and the 60Hz variant otherwise.
2989 */
2990 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2991 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2992 else
2993 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2994
2995 return clock;
2996}
2997
2998static bool
2999cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3000{
3001 /*
3002 * For certain VICs the spec allows the vertical
3003 * front porch to vary by one or two lines.
3004 *
3005 * cea_modes[] stores the variant with the shortest
3006 * vertical front porch. We can adjust the mode to
3007 * get the other variants by simply increasing the
3008 * vertical front porch length.
3009 */
3010 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
3011 edid_cea_modes[9].vtotal != 262 ||
3012 edid_cea_modes[12].vtotal != 262 ||
3013 edid_cea_modes[13].vtotal != 262 ||
3014 edid_cea_modes[23].vtotal != 312 ||
3015 edid_cea_modes[24].vtotal != 312 ||
3016 edid_cea_modes[27].vtotal != 312 ||
3017 edid_cea_modes[28].vtotal != 312);
3018
3019 if (((vic == 8 || vic == 9 ||
3020 vic == 12 || vic == 13) && mode->vtotal < 263) ||
3021 ((vic == 23 || vic == 24 ||
3022 vic == 27 || vic == 28) && mode->vtotal < 314)) {
3023 mode->vsync_start++;
3024 mode->vsync_end++;
3025 mode->vtotal++;
3026
3027 return true;
3028 }
3029
3030 return false;
3031}
3032
3033static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3034 unsigned int clock_tolerance)
3035{
3036 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3037 u8 vic;
3038
3039 if (!to_match->clock)
3040 return 0;
3041
3042 if (to_match->picture_aspect_ratio)
3043 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3044
3045 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3046 struct drm_display_mode cea_mode = edid_cea_modes[vic];
3047 unsigned int clock1, clock2;
3048
3049 /* Check both 60Hz and 59.94Hz */
3050 clock1 = cea_mode.clock;
3051 clock2 = cea_mode_alternate_clock(&cea_mode);
3052
3053 if (abs(to_match->clock - clock1) > clock_tolerance &&
3054 abs(to_match->clock - clock2) > clock_tolerance)
3055 continue;
3056
3057 do {
3058 if (drm_mode_match(to_match, &cea_mode, match_flags))
3059 return vic;
3060 } while (cea_mode_alternate_timings(vic, &cea_mode));
3061 }
3062
3063 return 0;
3064}
3065
3066/**
3067 * drm_match_cea_mode - look for a CEA mode matching given mode
3068 * @to_match: display mode
3069 *
3070 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3071 * mode.
3072 */
3073u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3074{
3075 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3076 u8 vic;
3077
3078 if (!to_match->clock)
3079 return 0;
3080
3081 if (to_match->picture_aspect_ratio)
3082 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3083
3084 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3085 struct drm_display_mode cea_mode = edid_cea_modes[vic];
3086 unsigned int clock1, clock2;
3087
3088 /* Check both 60Hz and 59.94Hz */
3089 clock1 = cea_mode.clock;
3090 clock2 = cea_mode_alternate_clock(&cea_mode);
3091
3092 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3093 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3094 continue;
3095
3096 do {
3097 if (drm_mode_match(to_match, &cea_mode, match_flags))
3098 return vic;
3099 } while (cea_mode_alternate_timings(vic, &cea_mode));
3100 }
3101
3102 return 0;
3103}
3104EXPORT_SYMBOL(drm_match_cea_mode);
3105
3106static bool drm_valid_cea_vic(u8 vic)
3107{
3108 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
3109}
3110
3111/**
3112 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3113 * the input VIC from the CEA mode list
3114 * @video_code: ID given to each of the CEA modes
3115 *
3116 * Returns picture aspect ratio
3117 */
3118enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3119{
3120 return edid_cea_modes[video_code].picture_aspect_ratio;
3121}
3122EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3123
3124/*
3125 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3126 * specific block).
3127 *
3128 * It's almost like cea_mode_alternate_clock(), we just need to add an
3129 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3130 * one.
3131 */
3132static unsigned int
3133hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3134{
3135 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3136 return hdmi_mode->clock;
3137
3138 return cea_mode_alternate_clock(hdmi_mode);
3139}
3140
3141static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3142 unsigned int clock_tolerance)
3143{
3144 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3145 u8 vic;
3146
3147 if (!to_match->clock)
3148 return 0;
3149
3150 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3151 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3152 unsigned int clock1, clock2;
3153
3154 /* Make sure to also match alternate clocks */
3155 clock1 = hdmi_mode->clock;
3156 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3157
3158 if (abs(to_match->clock - clock1) > clock_tolerance &&
3159 abs(to_match->clock - clock2) > clock_tolerance)
3160 continue;
3161
3162 if (drm_mode_match(to_match, hdmi_mode, match_flags))
3163 return vic;
3164 }
3165
3166 return 0;
3167}
3168
3169/*
3170 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3171 * @to_match: display mode
3172 *
3173 * An HDMI mode is one defined in the HDMI vendor specific block.
3174 *
3175 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3176 */
3177static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3178{
3179 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3180 u8 vic;
3181
3182 if (!to_match->clock)
3183 return 0;
3184
3185 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3186 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3187 unsigned int clock1, clock2;
3188
3189 /* Make sure to also match alternate clocks */
3190 clock1 = hdmi_mode->clock;
3191 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3192
3193 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3194 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3195 drm_mode_match(to_match, hdmi_mode, match_flags))
3196 return vic;
3197 }
3198 return 0;
3199}
3200
3201static bool drm_valid_hdmi_vic(u8 vic)
3202{
3203 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3204}
3205
3206static int
3207add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3208{
3209 struct drm_device *dev = connector->dev;
3210 struct drm_display_mode *mode, *tmp;
3211 LIST_HEAD(list);
3212 int modes = 0;
3213
3214 /* Don't add CEA modes if the CEA extension block is missing */
3215 if (!drm_find_cea_extension(edid))
3216 return 0;
3217
3218 /*
3219 * Go through all probed modes and create a new mode
3220 * with the alternate clock for certain CEA modes.
3221 */
3222 list_for_each_entry(mode, &connector->probed_modes, head) {
3223 const struct drm_display_mode *cea_mode = NULL;
3224 struct drm_display_mode *newmode;
3225 u8 vic = drm_match_cea_mode(mode);
3226 unsigned int clock1, clock2;
3227
3228 if (drm_valid_cea_vic(vic)) {
3229 cea_mode = &edid_cea_modes[vic];
3230 clock2 = cea_mode_alternate_clock(cea_mode);
3231 } else {
3232 vic = drm_match_hdmi_mode(mode);
3233 if (drm_valid_hdmi_vic(vic)) {
3234 cea_mode = &edid_4k_modes[vic];
3235 clock2 = hdmi_mode_alternate_clock(cea_mode);
3236 }
3237 }
3238
3239 if (!cea_mode)
3240 continue;
3241
3242 clock1 = cea_mode->clock;
3243
3244 if (clock1 == clock2)
3245 continue;
3246
3247 if (mode->clock != clock1 && mode->clock != clock2)
3248 continue;
3249
3250 newmode = drm_mode_duplicate(dev, cea_mode);
3251 if (!newmode)
3252 continue;
3253
3254 /* Carry over the stereo flags */
3255 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3256
3257 /*
3258 * The current mode could be either variant. Make
3259 * sure to pick the "other" clock for the new mode.
3260 */
3261 if (mode->clock != clock1)
3262 newmode->clock = clock1;
3263 else
3264 newmode->clock = clock2;
3265
3266 list_add_tail(&newmode->head, &list);
3267 }
3268
3269 list_for_each_entry_safe(mode, tmp, &list, head) {
3270 list_del(&mode->head);
3271 drm_mode_probed_add(connector, mode);
3272 modes++;
3273 }
3274
3275 return modes;
3276}
3277
3278static u8 svd_to_vic(u8 svd)
3279{
3280 /* 0-6 bit vic, 7th bit native mode indicator */
3281 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
3282 return svd & 127;
3283
3284 return svd;
3285}
3286
3287static struct drm_display_mode *
3288drm_display_mode_from_vic_index(struct drm_connector *connector,
3289 const u8 *video_db, u8 video_len,
3290 u8 video_index)
3291{
3292 struct drm_device *dev = connector->dev;
3293 struct drm_display_mode *newmode;
3294 u8 vic;
3295
3296 if (video_db == NULL || video_index >= video_len)
3297 return NULL;
3298
3299 /* CEA modes are numbered 1..127 */
3300 vic = svd_to_vic(video_db[video_index]);
3301 if (!drm_valid_cea_vic(vic))
3302 return NULL;
3303
3304 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3305 if (!newmode)
3306 return NULL;
3307
3308 newmode->vrefresh = 0;
3309
3310 return newmode;
3311}
3312
3313/*
3314 * do_y420vdb_modes - Parse YCBCR 420 only modes
3315 * @connector: connector corresponding to the HDMI sink
3316 * @svds: start of the data block of CEA YCBCR 420 VDB
3317 * @len: length of the CEA YCBCR 420 VDB
3318 *
3319 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3320 * which contains modes which can be supported in YCBCR 420
3321 * output format only.
3322 */
3323static int do_y420vdb_modes(struct drm_connector *connector,
3324 const u8 *svds, u8 svds_len)
3325{
3326 int modes = 0, i;
3327 struct drm_device *dev = connector->dev;
3328 struct drm_display_info *info = &connector->display_info;
3329 struct drm_hdmi_info *hdmi = &info->hdmi;
3330
3331 for (i = 0; i < svds_len; i++) {
3332 u8 vic = svd_to_vic(svds[i]);
3333 struct drm_display_mode *newmode;
3334
3335 if (!drm_valid_cea_vic(vic))
3336 continue;
3337
3338 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3339 if (!newmode)
3340 break;
3341 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3342 drm_mode_probed_add(connector, newmode);
3343 modes++;
3344 }
3345
3346 if (modes > 0)
3347 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3348 return modes;
3349}
3350
3351/*
3352 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3353 * @connector: connector corresponding to the HDMI sink
3354 * @vic: CEA vic for the video mode to be added in the map
3355 *
3356 * Makes an entry for a videomode in the YCBCR 420 bitmap
3357 */
3358static void
3359drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3360{
3361 u8 vic = svd_to_vic(svd);
3362 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3363
3364 if (!drm_valid_cea_vic(vic))
3365 return;
3366
3367 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3368}
3369
3370static int
3371do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3372{
3373 int i, modes = 0;
3374 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3375
3376 for (i = 0; i < len; i++) {
3377 struct drm_display_mode *mode;
3378 mode = drm_display_mode_from_vic_index(connector, db, len, i);
3379 if (mode) {
3380 /*
3381 * YCBCR420 capability block contains a bitmap which
3382 * gives the index of CEA modes from CEA VDB, which
3383 * can support YCBCR 420 sampling output also (apart
3384 * from RGB/YCBCR444 etc).
3385 * For example, if the bit 0 in bitmap is set,
3386 * first mode in VDB can support YCBCR420 output too.
3387 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3388 */
3389 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3390 drm_add_cmdb_modes(connector, db[i]);
3391
3392 drm_mode_probed_add(connector, mode);
3393 modes++;
3394 }
3395 }
3396
3397 return modes;
3398}
3399
3400struct stereo_mandatory_mode {
3401 int width, height, vrefresh;
3402 unsigned int flags;
3403};
3404
3405static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3406 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3407 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3408 { 1920, 1080, 50,
3409 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3410 { 1920, 1080, 60,
3411 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3412 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3413 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3414 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3415 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3416};
3417
3418static bool
3419stereo_match_mandatory(const struct drm_display_mode *mode,
3420 const struct stereo_mandatory_mode *stereo_mode)
3421{
3422 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3423
3424 return mode->hdisplay == stereo_mode->width &&
3425 mode->vdisplay == stereo_mode->height &&
3426 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3427 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3428}
3429
3430static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3431{
3432 struct drm_device *dev = connector->dev;
3433 const struct drm_display_mode *mode;
3434 struct list_head stereo_modes;
3435 int modes = 0, i;
3436
3437 INIT_LIST_HEAD(&stereo_modes);
3438
3439 list_for_each_entry(mode, &connector->probed_modes, head) {
3440 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3441 const struct stereo_mandatory_mode *mandatory;
3442 struct drm_display_mode *new_mode;
3443
3444 if (!stereo_match_mandatory(mode,
3445 &stereo_mandatory_modes[i]))
3446 continue;
3447
3448 mandatory = &stereo_mandatory_modes[i];
3449 new_mode = drm_mode_duplicate(dev, mode);
3450 if (!new_mode)
3451 continue;
3452
3453 new_mode->flags |= mandatory->flags;
3454 list_add_tail(&new_mode->head, &stereo_modes);
3455 modes++;
3456 }
3457 }
3458
3459 list_splice_tail(&stereo_modes, &connector->probed_modes);
3460
3461 return modes;
3462}
3463
3464static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3465{
3466 struct drm_device *dev = connector->dev;
3467 struct drm_display_mode *newmode;
3468
3469 if (!drm_valid_hdmi_vic(vic)) {
3470 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3471 return 0;
3472 }
3473
3474 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3475 if (!newmode)
3476 return 0;
3477
3478 drm_mode_probed_add(connector, newmode);
3479
3480 return 1;
3481}
3482
3483static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3484 const u8 *video_db, u8 video_len, u8 video_index)
3485{
3486 struct drm_display_mode *newmode;
3487 int modes = 0;
3488
3489 if (structure & (1 << 0)) {
3490 newmode = drm_display_mode_from_vic_index(connector, video_db,
3491 video_len,
3492 video_index);
3493 if (newmode) {
3494 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3495 drm_mode_probed_add(connector, newmode);
3496 modes++;
3497 }
3498 }
3499 if (structure & (1 << 6)) {
3500 newmode = drm_display_mode_from_vic_index(connector, video_db,
3501 video_len,
3502 video_index);
3503 if (newmode) {
3504 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3505 drm_mode_probed_add(connector, newmode);
3506 modes++;
3507 }
3508 }
3509 if (structure & (1 << 8)) {
3510 newmode = drm_display_mode_from_vic_index(connector, video_db,
3511 video_len,
3512 video_index);
3513 if (newmode) {
3514 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3515 drm_mode_probed_add(connector, newmode);
3516 modes++;
3517 }
3518 }
3519
3520 return modes;
3521}
3522
3523/*
3524 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3525 * @connector: connector corresponding to the HDMI sink
3526 * @db: start of the CEA vendor specific block
3527 * @len: length of the CEA block payload, ie. one can access up to db[len]
3528 *
3529 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3530 * also adds the stereo 3d modes when applicable.
3531 */
3532static int
3533do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3534 const u8 *video_db, u8 video_len)
3535{
3536 struct drm_display_info *info = &connector->display_info;
3537 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3538 u8 vic_len, hdmi_3d_len = 0;
3539 u16 mask;
3540 u16 structure_all;
3541
3542 if (len < 8)
3543 goto out;
3544
3545 /* no HDMI_Video_Present */
3546 if (!(db[8] & (1 << 5)))
3547 goto out;
3548
3549 /* Latency_Fields_Present */
3550 if (db[8] & (1 << 7))
3551 offset += 2;
3552
3553 /* I_Latency_Fields_Present */
3554 if (db[8] & (1 << 6))
3555 offset += 2;
3556
3557 /* the declared length is not long enough for the 2 first bytes
3558 * of additional video format capabilities */
3559 if (len < (8 + offset + 2))
3560 goto out;
3561
3562 /* 3D_Present */
3563 offset++;
3564 if (db[8 + offset] & (1 << 7)) {
3565 modes += add_hdmi_mandatory_stereo_modes(connector);
3566
3567 /* 3D_Multi_present */
3568 multi_present = (db[8 + offset] & 0x60) >> 5;
3569 }
3570
3571 offset++;
3572 vic_len = db[8 + offset] >> 5;
3573 hdmi_3d_len = db[8 + offset] & 0x1f;
3574
3575 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3576 u8 vic;
3577
3578 vic = db[9 + offset + i];
3579 modes += add_hdmi_mode(connector, vic);
3580 }
3581 offset += 1 + vic_len;
3582
3583 if (multi_present == 1)
3584 multi_len = 2;
3585 else if (multi_present == 2)
3586 multi_len = 4;
3587 else
3588 multi_len = 0;
3589
3590 if (len < (8 + offset + hdmi_3d_len - 1))
3591 goto out;
3592
3593 if (hdmi_3d_len < multi_len)
3594 goto out;
3595
3596 if (multi_present == 1 || multi_present == 2) {
3597 /* 3D_Structure_ALL */
3598 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3599
3600 /* check if 3D_MASK is present */
3601 if (multi_present == 2)
3602 mask = (db[10 + offset] << 8) | db[11 + offset];
3603 else
3604 mask = 0xffff;
3605
3606 for (i = 0; i < 16; i++) {
3607 if (mask & (1 << i))
3608 modes += add_3d_struct_modes(connector,
3609 structure_all,
3610 video_db,
3611 video_len, i);
3612 }
3613 }
3614
3615 offset += multi_len;
3616
3617 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3618 int vic_index;
3619 struct drm_display_mode *newmode = NULL;
3620 unsigned int newflag = 0;
3621 bool detail_present;
3622
3623 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3624
3625 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3626 break;
3627
3628 /* 2D_VIC_order_X */
3629 vic_index = db[8 + offset + i] >> 4;
3630
3631 /* 3D_Structure_X */
3632 switch (db[8 + offset + i] & 0x0f) {
3633 case 0:
3634 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3635 break;
3636 case 6:
3637 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3638 break;
3639 case 8:
3640 /* 3D_Detail_X */
3641 if ((db[9 + offset + i] >> 4) == 1)
3642 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3643 break;
3644 }
3645
3646 if (newflag != 0) {
3647 newmode = drm_display_mode_from_vic_index(connector,
3648 video_db,
3649 video_len,
3650 vic_index);
3651
3652 if (newmode) {
3653 newmode->flags |= newflag;
3654 drm_mode_probed_add(connector, newmode);
3655 modes++;
3656 }
3657 }
3658
3659 if (detail_present)
3660 i++;
3661 }
3662
3663out:
3664 if (modes > 0)
3665 info->has_hdmi_infoframe = true;
3666 return modes;
3667}
3668
3669static int
3670cea_db_payload_len(const u8 *db)
3671{
3672 return db[0] & 0x1f;
3673}
3674
3675static int
3676cea_db_extended_tag(const u8 *db)
3677{
3678 return db[1];
3679}
3680
3681static int
3682cea_db_tag(const u8 *db)
3683{
3684 return db[0] >> 5;
3685}
3686
3687static int
3688cea_revision(const u8 *cea)
3689{
3690 return cea[1];
3691}
3692
3693static int
3694cea_db_offsets(const u8 *cea, int *start, int *end)
3695{
3696 /* DisplayID CTA extension blocks and top-level CEA EDID
3697 * block header definitions differ in the following bytes:
3698 * 1) Byte 2 of the header specifies length differently,
3699 * 2) Byte 3 is only present in the CEA top level block.
3700 *
3701 * The different definitions for byte 2 follow.
3702 *
3703 * DisplayID CTA extension block defines byte 2 as:
3704 * Number of payload bytes
3705 *
3706 * CEA EDID block defines byte 2 as:
3707 * Byte number (decimal) within this block where the 18-byte
3708 * DTDs begin. If no non-DTD data is present in this extension
3709 * block, the value should be set to 04h (the byte after next).
3710 * If set to 00h, there are no DTDs present in this block and
3711 * no non-DTD data.
3712 */
3713 if (cea[0] == DATA_BLOCK_CTA) {
3714 *start = 3;
3715 *end = *start + cea[2];
3716 } else if (cea[0] == CEA_EXT) {
3717 /* Data block offset in CEA extension block */
3718 *start = 4;
3719 *end = cea[2];
3720 if (*end == 0)
3721 *end = 127;
3722 if (*end < 4 || *end > 127)
3723 return -ERANGE;
3724 } else {
3725 return -ENOTSUPP;
3726 }
3727
3728 return 0;
3729}
3730
3731static bool cea_db_is_hdmi_vsdb(const u8 *db)
3732{
3733 int hdmi_id;
3734
3735 if (cea_db_tag(db) != VENDOR_BLOCK)
3736 return false;
3737
3738 if (cea_db_payload_len(db) < 5)
3739 return false;
3740
3741 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3742
3743 return hdmi_id == HDMI_IEEE_OUI;
3744}
3745
3746static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3747{
3748 unsigned int oui;
3749
3750 if (cea_db_tag(db) != VENDOR_BLOCK)
3751 return false;
3752
3753 if (cea_db_payload_len(db) < 7)
3754 return false;
3755
3756 oui = db[3] << 16 | db[2] << 8 | db[1];
3757
3758 return oui == HDMI_FORUM_IEEE_OUI;
3759}
3760
3761static bool cea_db_is_vcdb(const u8 *db)
3762{
3763 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3764 return false;
3765
3766 if (cea_db_payload_len(db) != 2)
3767 return false;
3768
3769 if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
3770 return false;
3771
3772 return true;
3773}
3774
3775static bool cea_db_is_y420cmdb(const u8 *db)
3776{
3777 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3778 return false;
3779
3780 if (!cea_db_payload_len(db))
3781 return false;
3782
3783 if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3784 return false;
3785
3786 return true;
3787}
3788
3789static bool cea_db_is_y420vdb(const u8 *db)
3790{
3791 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3792 return false;
3793
3794 if (!cea_db_payload_len(db))
3795 return false;
3796
3797 if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3798 return false;
3799
3800 return true;
3801}
3802
3803#define for_each_cea_db(cea, i, start, end) \
3804 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3805
3806static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3807 const u8 *db)
3808{
3809 struct drm_display_info *info = &connector->display_info;
3810 struct drm_hdmi_info *hdmi = &info->hdmi;
3811 u8 map_len = cea_db_payload_len(db) - 1;
3812 u8 count;
3813 u64 map = 0;
3814
3815 if (map_len == 0) {
3816 /* All CEA modes support ycbcr420 sampling also.*/
3817 hdmi->y420_cmdb_map = U64_MAX;
3818 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3819 return;
3820 }
3821
3822 /*
3823 * This map indicates which of the existing CEA block modes
3824 * from VDB can support YCBCR420 output too. So if bit=0 is
3825 * set, first mode from VDB can support YCBCR420 output too.
3826 * We will parse and keep this map, before parsing VDB itself
3827 * to avoid going through the same block again and again.
3828 *
3829 * Spec is not clear about max possible size of this block.
3830 * Clamping max bitmap block size at 8 bytes. Every byte can
3831 * address 8 CEA modes, in this way this map can address
3832 * 8*8 = first 64 SVDs.
3833 */
3834 if (WARN_ON_ONCE(map_len > 8))
3835 map_len = 8;
3836
3837 for (count = 0; count < map_len; count++)
3838 map |= (u64)db[2 + count] << (8 * count);
3839
3840 if (map)
3841 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3842
3843 hdmi->y420_cmdb_map = map;
3844}
3845
3846static int
3847add_cea_modes(struct drm_connector *connector, struct edid *edid)
3848{
3849 const u8 *cea = drm_find_cea_extension(edid);
3850 const u8 *db, *hdmi = NULL, *video = NULL;
3851 u8 dbl, hdmi_len, video_len = 0;
3852 int modes = 0;
3853
3854 if (cea && cea_revision(cea) >= 3) {
3855 int i, start, end;
3856
3857 if (cea_db_offsets(cea, &start, &end))
3858 return 0;
3859
3860 for_each_cea_db(cea, i, start, end) {
3861 db = &cea[i];
3862 dbl = cea_db_payload_len(db);
3863
3864 if (cea_db_tag(db) == VIDEO_BLOCK) {
3865 video = db + 1;
3866 video_len = dbl;
3867 modes += do_cea_modes(connector, video, dbl);
3868 } else if (cea_db_is_hdmi_vsdb(db)) {
3869 hdmi = db;
3870 hdmi_len = dbl;
3871 } else if (cea_db_is_y420vdb(db)) {
3872 const u8 *vdb420 = &db[2];
3873
3874 /* Add 4:2:0(only) modes present in EDID */
3875 modes += do_y420vdb_modes(connector,
3876 vdb420,
3877 dbl - 1);
3878 }
3879 }
3880 }
3881
3882 /*
3883 * We parse the HDMI VSDB after having added the cea modes as we will
3884 * be patching their flags when the sink supports stereo 3D.
3885 */
3886 if (hdmi)
3887 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3888 video_len);
3889
3890 return modes;
3891}
3892
3893static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3894{
3895 const struct drm_display_mode *cea_mode;
3896 int clock1, clock2, clock;
3897 u8 vic;
3898 const char *type;
3899
3900 /*
3901 * allow 5kHz clock difference either way to account for
3902 * the 10kHz clock resolution limit of detailed timings.
3903 */
3904 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3905 if (drm_valid_cea_vic(vic)) {
3906 type = "CEA";
3907 cea_mode = &edid_cea_modes[vic];
3908 clock1 = cea_mode->clock;
3909 clock2 = cea_mode_alternate_clock(cea_mode);
3910 } else {
3911 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3912 if (drm_valid_hdmi_vic(vic)) {
3913 type = "HDMI";
3914 cea_mode = &edid_4k_modes[vic];
3915 clock1 = cea_mode->clock;
3916 clock2 = hdmi_mode_alternate_clock(cea_mode);
3917 } else {
3918 return;
3919 }
3920 }
3921
3922 /* pick whichever is closest */
3923 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3924 clock = clock1;
3925 else
3926 clock = clock2;
3927
3928 if (mode->clock == clock)
3929 return;
3930
3931 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3932 type, vic, mode->clock, clock);
3933 mode->clock = clock;
3934}
3935
3936static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
3937{
3938 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3939 return false;
3940
3941 if (db[1] != HDR_STATIC_METADATA_BLOCK)
3942 return false;
3943
3944 if (cea_db_payload_len(db) < 3)
3945 return false;
3946
3947 return true;
3948}
3949
3950static uint8_t eotf_supported(const u8 *edid_ext)
3951{
3952 return edid_ext[2] &
3953 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
3954 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
3955 BIT(HDMI_EOTF_SMPTE_ST2084) |
3956 BIT(HDMI_EOTF_BT_2100_HLG));
3957}
3958
3959static uint8_t hdr_metadata_type(const u8 *edid_ext)
3960{
3961 return edid_ext[3] &
3962 BIT(HDMI_STATIC_METADATA_TYPE1);
3963}
3964
3965static void
3966drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
3967{
3968 u16 len;
3969
3970 len = cea_db_payload_len(db);
3971
3972 connector->hdr_sink_metadata.hdmi_type1.eotf =
3973 eotf_supported(db);
3974 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
3975 hdr_metadata_type(db);
3976
3977 if (len >= 4)
3978 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
3979 if (len >= 5)
3980 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
3981 if (len >= 6)
3982 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
3983}
3984
3985static void
3986drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3987{
3988 u8 len = cea_db_payload_len(db);
3989
3990 if (len >= 6 && (db[6] & (1 << 7)))
3991 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3992 if (len >= 8) {
3993 connector->latency_present[0] = db[8] >> 7;
3994 connector->latency_present[1] = (db[8] >> 6) & 1;
3995 }
3996 if (len >= 9)
3997 connector->video_latency[0] = db[9];
3998 if (len >= 10)
3999 connector->audio_latency[0] = db[10];
4000 if (len >= 11)
4001 connector->video_latency[1] = db[11];
4002 if (len >= 12)
4003 connector->audio_latency[1] = db[12];
4004
4005 DRM_DEBUG_KMS("HDMI: latency present %d %d, "
4006 "video latency %d %d, "
4007 "audio latency %d %d\n",
4008 connector->latency_present[0],
4009 connector->latency_present[1],
4010 connector->video_latency[0],
4011 connector->video_latency[1],
4012 connector->audio_latency[0],
4013 connector->audio_latency[1]);
4014}
4015
4016static void
4017monitor_name(struct detailed_timing *t, void *data)
4018{
4019 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
4020 *(u8 **)data = t->data.other_data.data.str.str;
4021}
4022
4023static int get_monitor_name(struct edid *edid, char name[13])
4024{
4025 char *edid_name = NULL;
4026 int mnl;
4027
4028 if (!edid || !name)
4029 return 0;
4030
4031 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
4032 for (mnl = 0; edid_name && mnl < 13; mnl++) {
4033 if (edid_name[mnl] == 0x0a)
4034 break;
4035
4036 name[mnl] = edid_name[mnl];
4037 }
4038
4039 return mnl;
4040}
4041
4042/**
4043 * drm_edid_get_monitor_name - fetch the monitor name from the edid
4044 * @edid: monitor EDID information
4045 * @name: pointer to a character array to hold the name of the monitor
4046 * @bufsize: The size of the name buffer (should be at least 14 chars.)
4047 *
4048 */
4049void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
4050{
4051 int name_length;
4052 char buf[13];
4053
4054 if (bufsize <= 0)
4055 return;
4056
4057 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
4058 memcpy(name, buf, name_length);
4059 name[name_length] = '\0';
4060}
4061EXPORT_SYMBOL(drm_edid_get_monitor_name);
4062
4063static void clear_eld(struct drm_connector *connector)
4064{
4065 memset(connector->eld, 0, sizeof(connector->eld));
4066
4067 connector->latency_present[0] = false;
4068 connector->latency_present[1] = false;
4069 connector->video_latency[0] = 0;
4070 connector->audio_latency[0] = 0;
4071 connector->video_latency[1] = 0;
4072 connector->audio_latency[1] = 0;
4073}
4074
4075/*
4076 * drm_edid_to_eld - build ELD from EDID
4077 * @connector: connector corresponding to the HDMI/DP sink
4078 * @edid: EDID to parse
4079 *
4080 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
4081 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
4082 */
4083static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
4084{
4085 uint8_t *eld = connector->eld;
4086 u8 *cea;
4087 u8 *db;
4088 int total_sad_count = 0;
4089 int mnl;
4090 int dbl;
4091
4092 clear_eld(connector);
4093
4094 if (!edid)
4095 return;
4096
4097 cea = drm_find_cea_extension(edid);
4098 if (!cea) {
4099 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
4100 return;
4101 }
4102
4103 mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
4104 DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
4105
4106 eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
4107 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
4108
4109 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
4110
4111 eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
4112 eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
4113 eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
4114 eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
4115
4116 if (cea_revision(cea) >= 3) {
4117 int i, start, end;
4118
4119 if (cea_db_offsets(cea, &start, &end)) {
4120 start = 0;
4121 end = 0;
4122 }
4123
4124 for_each_cea_db(cea, i, start, end) {
4125 db = &cea[i];
4126 dbl = cea_db_payload_len(db);
4127
4128 switch (cea_db_tag(db)) {
4129 int sad_count;
4130
4131 case AUDIO_BLOCK:
4132 /* Audio Data Block, contains SADs */
4133 sad_count = min(dbl / 3, 15 - total_sad_count);
4134 if (sad_count >= 1)
4135 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
4136 &db[1], sad_count * 3);
4137 total_sad_count += sad_count;
4138 break;
4139 case SPEAKER_BLOCK:
4140 /* Speaker Allocation Data Block */
4141 if (dbl >= 1)
4142 eld[DRM_ELD_SPEAKER] = db[1];
4143 break;
4144 case VENDOR_BLOCK:
4145 /* HDMI Vendor-Specific Data Block */
4146 if (cea_db_is_hdmi_vsdb(db))
4147 drm_parse_hdmi_vsdb_audio(connector, db);
4148 break;
4149 default:
4150 break;
4151 }
4152 }
4153 }
4154 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
4155
4156 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4157 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4158 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
4159 else
4160 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
4161
4162 eld[DRM_ELD_BASELINE_ELD_LEN] =
4163 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
4164
4165 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4166 drm_eld_size(eld), total_sad_count);
4167}
4168
4169/**
4170 * drm_edid_to_sad - extracts SADs from EDID
4171 * @edid: EDID to parse
4172 * @sads: pointer that will be set to the extracted SADs
4173 *
4174 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4175 *
4176 * Note: The returned pointer needs to be freed using kfree().
4177 *
4178 * Return: The number of found SADs or negative number on error.
4179 */
4180int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4181{
4182 int count = 0;
4183 int i, start, end, dbl;
4184 u8 *cea;
4185
4186 cea = drm_find_cea_extension(edid);
4187 if (!cea) {
4188 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4189 return -ENOENT;
4190 }
4191
4192 if (cea_revision(cea) < 3) {
4193 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4194 return -ENOTSUPP;
4195 }
4196
4197 if (cea_db_offsets(cea, &start, &end)) {
4198 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4199 return -EPROTO;
4200 }
4201
4202 for_each_cea_db(cea, i, start, end) {
4203 u8 *db = &cea[i];
4204
4205 if (cea_db_tag(db) == AUDIO_BLOCK) {
4206 int j;
4207 dbl = cea_db_payload_len(db);
4208
4209 count = dbl / 3; /* SAD is 3B */
4210 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4211 if (!*sads)
4212 return -ENOMEM;
4213 for (j = 0; j < count; j++) {
4214 u8 *sad = &db[1 + j * 3];
4215
4216 (*sads)[j].format = (sad[0] & 0x78) >> 3;
4217 (*sads)[j].channels = sad[0] & 0x7;
4218 (*sads)[j].freq = sad[1] & 0x7F;
4219 (*sads)[j].byte2 = sad[2];
4220 }
4221 break;
4222 }
4223 }
4224
4225 return count;
4226}
4227EXPORT_SYMBOL(drm_edid_to_sad);
4228
4229/**
4230 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4231 * @edid: EDID to parse
4232 * @sadb: pointer to the speaker block
4233 *
4234 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4235 *
4236 * Note: The returned pointer needs to be freed using kfree().
4237 *
4238 * Return: The number of found Speaker Allocation Blocks or negative number on
4239 * error.
4240 */
4241int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4242{
4243 int count = 0;
4244 int i, start, end, dbl;
4245 const u8 *cea;
4246
4247 cea = drm_find_cea_extension(edid);
4248 if (!cea) {
4249 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4250 return -ENOENT;
4251 }
4252
4253 if (cea_revision(cea) < 3) {
4254 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4255 return -ENOTSUPP;
4256 }
4257
4258 if (cea_db_offsets(cea, &start, &end)) {
4259 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4260 return -EPROTO;
4261 }
4262
4263 for_each_cea_db(cea, i, start, end) {
4264 const u8 *db = &cea[i];
4265
4266 if (cea_db_tag(db) == SPEAKER_BLOCK) {
4267 dbl = cea_db_payload_len(db);
4268
4269 /* Speaker Allocation Data Block */
4270 if (dbl == 3) {
4271 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4272 if (!*sadb)
4273 return -ENOMEM;
4274 count = dbl;
4275 break;
4276 }
4277 }
4278 }
4279
4280 return count;
4281}
4282EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4283
4284/**
4285 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4286 * @connector: connector associated with the HDMI/DP sink
4287 * @mode: the display mode
4288 *
4289 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4290 * the sink doesn't support audio or video.
4291 */
4292int drm_av_sync_delay(struct drm_connector *connector,
4293 const struct drm_display_mode *mode)
4294{
4295 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4296 int a, v;
4297
4298 if (!connector->latency_present[0])
4299 return 0;
4300 if (!connector->latency_present[1])
4301 i = 0;
4302
4303 a = connector->audio_latency[i];
4304 v = connector->video_latency[i];
4305
4306 /*
4307 * HDMI/DP sink doesn't support audio or video?
4308 */
4309 if (a == 255 || v == 255)
4310 return 0;
4311
4312 /*
4313 * Convert raw EDID values to millisecond.
4314 * Treat unknown latency as 0ms.
4315 */
4316 if (a)
4317 a = min(2 * (a - 1), 500);
4318 if (v)
4319 v = min(2 * (v - 1), 500);
4320
4321 return max(v - a, 0);
4322}
4323EXPORT_SYMBOL(drm_av_sync_delay);
4324
4325/**
4326 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4327 * @edid: monitor EDID information
4328 *
4329 * Parse the CEA extension according to CEA-861-B.
4330 *
4331 * Return: True if the monitor is HDMI, false if not or unknown.
4332 */
4333bool drm_detect_hdmi_monitor(struct edid *edid)
4334{
4335 u8 *edid_ext;
4336 int i;
4337 int start_offset, end_offset;
4338
4339 edid_ext = drm_find_cea_extension(edid);
4340 if (!edid_ext)
4341 return false;
4342
4343 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4344 return false;
4345
4346 /*
4347 * Because HDMI identifier is in Vendor Specific Block,
4348 * search it from all data blocks of CEA extension.
4349 */
4350 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4351 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4352 return true;
4353 }
4354
4355 return false;
4356}
4357EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4358
4359/**
4360 * drm_detect_monitor_audio - check monitor audio capability
4361 * @edid: EDID block to scan
4362 *
4363 * Monitor should have CEA extension block.
4364 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4365 * audio' only. If there is any audio extension block and supported
4366 * audio format, assume at least 'basic audio' support, even if 'basic
4367 * audio' is not defined in EDID.
4368 *
4369 * Return: True if the monitor supports audio, false otherwise.
4370 */
4371bool drm_detect_monitor_audio(struct edid *edid)
4372{
4373 u8 *edid_ext;
4374 int i, j;
4375 bool has_audio = false;
4376 int start_offset, end_offset;
4377
4378 edid_ext = drm_find_cea_extension(edid);
4379 if (!edid_ext)
4380 goto end;
4381
4382 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4383
4384 if (has_audio) {
4385 DRM_DEBUG_KMS("Monitor has basic audio support\n");
4386 goto end;
4387 }
4388
4389 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4390 goto end;
4391
4392 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4393 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4394 has_audio = true;
4395 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4396 DRM_DEBUG_KMS("CEA audio format %d\n",
4397 (edid_ext[i + j] >> 3) & 0xf);
4398 goto end;
4399 }
4400 }
4401end:
4402 return has_audio;
4403}
4404EXPORT_SYMBOL(drm_detect_monitor_audio);
4405
4406
4407/**
4408 * drm_default_rgb_quant_range - default RGB quantization range
4409 * @mode: display mode
4410 *
4411 * Determine the default RGB quantization range for the mode,
4412 * as specified in CEA-861.
4413 *
4414 * Return: The default RGB quantization range for the mode
4415 */
4416enum hdmi_quantization_range
4417drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4418{
4419 /* All CEA modes other than VIC 1 use limited quantization range. */
4420 return drm_match_cea_mode(mode) > 1 ?
4421 HDMI_QUANTIZATION_RANGE_LIMITED :
4422 HDMI_QUANTIZATION_RANGE_FULL;
4423}
4424EXPORT_SYMBOL(drm_default_rgb_quant_range);
4425
4426static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4427{
4428 struct drm_display_info *info = &connector->display_info;
4429
4430 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
4431
4432 if (db[2] & EDID_CEA_VCDB_QS)
4433 info->rgb_quant_range_selectable = true;
4434}
4435
4436static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4437 const u8 *db)
4438{
4439 u8 dc_mask;
4440 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4441
4442 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4443 hdmi->y420_dc_modes = dc_mask;
4444}
4445
4446static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4447 const u8 *hf_vsdb)
4448{
4449 struct drm_display_info *display = &connector->display_info;
4450 struct drm_hdmi_info *hdmi = &display->hdmi;
4451
4452 display->has_hdmi_infoframe = true;
4453
4454 if (hf_vsdb[6] & 0x80) {
4455 hdmi->scdc.supported = true;
4456 if (hf_vsdb[6] & 0x40)
4457 hdmi->scdc.read_request = true;
4458 }
4459
4460 /*
4461 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4462 * And as per the spec, three factors confirm this:
4463 * * Availability of a HF-VSDB block in EDID (check)
4464 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4465 * * SCDC support available (let's check)
4466 * Lets check it out.
4467 */
4468
4469 if (hf_vsdb[5]) {
4470 /* max clock is 5000 KHz times block value */
4471 u32 max_tmds_clock = hf_vsdb[5] * 5000;
4472 struct drm_scdc *scdc = &hdmi->scdc;
4473
4474 if (max_tmds_clock > 340000) {
4475 display->max_tmds_clock = max_tmds_clock;
4476 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4477 display->max_tmds_clock);
4478 }
4479
4480 if (scdc->supported) {
4481 scdc->scrambling.supported = true;
4482
4483 /* Few sinks support scrambling for cloks < 340M */
4484 if ((hf_vsdb[6] & 0x8))
4485 scdc->scrambling.low_rates = true;
4486 }
4487 }
4488
4489 drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4490}
4491
4492static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4493 const u8 *hdmi)
4494{
4495 struct drm_display_info *info = &connector->display_info;
4496 unsigned int dc_bpc = 0;
4497
4498 /* HDMI supports at least 8 bpc */
4499 info->bpc = 8;
4500
4501 if (cea_db_payload_len(hdmi) < 6)
4502 return;
4503
4504 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4505 dc_bpc = 10;
4506 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4507 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4508 connector->name);
4509 }
4510
4511 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4512 dc_bpc = 12;
4513 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4514 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4515 connector->name);
4516 }
4517
4518 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4519 dc_bpc = 16;
4520 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4521 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4522 connector->name);
4523 }
4524
4525 if (dc_bpc == 0) {
4526 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4527 connector->name);
4528 return;
4529 }
4530
4531 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4532 connector->name, dc_bpc);
4533 info->bpc = dc_bpc;
4534
4535 /*
4536 * Deep color support mandates RGB444 support for all video
4537 * modes and forbids YCRCB422 support for all video modes per
4538 * HDMI 1.3 spec.
4539 */
4540 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4541
4542 /* YCRCB444 is optional according to spec. */
4543 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4544 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4545 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4546 connector->name);
4547 }
4548
4549 /*
4550 * Spec says that if any deep color mode is supported at all,
4551 * then deep color 36 bit must be supported.
4552 */
4553 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4554 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4555 connector->name);
4556 }
4557}
4558
4559static void
4560drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4561{
4562 struct drm_display_info *info = &connector->display_info;
4563 u8 len = cea_db_payload_len(db);
4564
4565 if (len >= 6)
4566 info->dvi_dual = db[6] & 1;
4567 if (len >= 7)
4568 info->max_tmds_clock = db[7] * 5000;
4569
4570 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4571 "max TMDS clock %d kHz\n",
4572 info->dvi_dual,
4573 info->max_tmds_clock);
4574
4575 drm_parse_hdmi_deep_color_info(connector, db);
4576}
4577
4578static void drm_parse_cea_ext(struct drm_connector *connector,
4579 const struct edid *edid)
4580{
4581 struct drm_display_info *info = &connector->display_info;
4582 const u8 *edid_ext;
4583 int i, start, end;
4584
4585 edid_ext = drm_find_cea_extension(edid);
4586 if (!edid_ext)
4587 return;
4588
4589 info->cea_rev = edid_ext[1];
4590
4591 /* The existence of a CEA block should imply RGB support */
4592 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4593 if (edid_ext[3] & EDID_CEA_YCRCB444)
4594 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4595 if (edid_ext[3] & EDID_CEA_YCRCB422)
4596 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4597
4598 if (cea_db_offsets(edid_ext, &start, &end))
4599 return;
4600
4601 for_each_cea_db(edid_ext, i, start, end) {
4602 const u8 *db = &edid_ext[i];
4603
4604 if (cea_db_is_hdmi_vsdb(db))
4605 drm_parse_hdmi_vsdb_video(connector, db);
4606 if (cea_db_is_hdmi_forum_vsdb(db))
4607 drm_parse_hdmi_forum_vsdb(connector, db);
4608 if (cea_db_is_y420cmdb(db))
4609 drm_parse_y420cmdb_bitmap(connector, db);
4610 if (cea_db_is_vcdb(db))
4611 drm_parse_vcdb(connector, db);
4612 if (cea_db_is_hdmi_hdr_metadata_block(db))
4613 drm_parse_hdr_metadata_block(connector, db);
4614 }
4615}
4616
4617/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4618 * all of the values which would have been set from EDID
4619 */
4620void
4621drm_reset_display_info(struct drm_connector *connector)
4622{
4623 struct drm_display_info *info = &connector->display_info;
4624
4625 info->width_mm = 0;
4626 info->height_mm = 0;
4627
4628 info->bpc = 0;
4629 info->color_formats = 0;
4630 info->cea_rev = 0;
4631 info->max_tmds_clock = 0;
4632 info->dvi_dual = false;
4633 info->has_hdmi_infoframe = false;
4634 info->rgb_quant_range_selectable = false;
4635 memset(&info->hdmi, 0, sizeof(info->hdmi));
4636
4637 info->non_desktop = 0;
4638}
4639
4640u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4641{
4642 struct drm_display_info *info = &connector->display_info;
4643
4644 u32 quirks = edid_get_quirks(edid);
4645
4646 drm_reset_display_info(connector);
4647
4648 info->width_mm = edid->width_cm * 10;
4649 info->height_mm = edid->height_cm * 10;
4650
4651 info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4652
4653 DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4654
4655 if (edid->revision < 3)
4656 return quirks;
4657
4658 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4659 return quirks;
4660
4661 drm_parse_cea_ext(connector, edid);
4662
4663 /*
4664 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4665 *
4666 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4667 * tells us to assume 8 bpc color depth if the EDID doesn't have
4668 * extensions which tell otherwise.
4669 */
4670 if (info->bpc == 0 && edid->revision == 3 &&
4671 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
4672 info->bpc = 8;
4673 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4674 connector->name, info->bpc);
4675 }
4676
4677 /* Only defined for 1.4 with digital displays */
4678 if (edid->revision < 4)
4679 return quirks;
4680
4681 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4682 case DRM_EDID_DIGITAL_DEPTH_6:
4683 info->bpc = 6;
4684 break;
4685 case DRM_EDID_DIGITAL_DEPTH_8:
4686 info->bpc = 8;
4687 break;
4688 case DRM_EDID_DIGITAL_DEPTH_10:
4689 info->bpc = 10;
4690 break;
4691 case DRM_EDID_DIGITAL_DEPTH_12:
4692 info->bpc = 12;
4693 break;
4694 case DRM_EDID_DIGITAL_DEPTH_14:
4695 info->bpc = 14;
4696 break;
4697 case DRM_EDID_DIGITAL_DEPTH_16:
4698 info->bpc = 16;
4699 break;
4700 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4701 default:
4702 info->bpc = 0;
4703 break;
4704 }
4705
4706 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4707 connector->name, info->bpc);
4708
4709 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4710 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4711 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4712 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4713 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4714 return quirks;
4715}
4716
4717static int validate_displayid(u8 *displayid, int length, int idx)
4718{
4719 int i;
4720 u8 csum = 0;
4721 struct displayid_hdr *base;
4722
4723 base = (struct displayid_hdr *)&displayid[idx];
4724
4725 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4726 base->rev, base->bytes, base->prod_id, base->ext_count);
4727
4728 if (base->bytes + 5 > length - idx)
4729 return -EINVAL;
4730 for (i = idx; i <= base->bytes + 5; i++) {
4731 csum += displayid[i];
4732 }
4733 if (csum) {
4734 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4735 return -EINVAL;
4736 }
4737 return 0;
4738}
4739
4740static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4741 struct displayid_detailed_timings_1 *timings)
4742{
4743 struct drm_display_mode *mode;
4744 unsigned pixel_clock = (timings->pixel_clock[0] |
4745 (timings->pixel_clock[1] << 8) |
4746 (timings->pixel_clock[2] << 16));
4747 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4748 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4749 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4750 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4751 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4752 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4753 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4754 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4755 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4756 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4757 mode = drm_mode_create(dev);
4758 if (!mode)
4759 return NULL;
4760
4761 mode->clock = pixel_clock * 10;
4762 mode->hdisplay = hactive;
4763 mode->hsync_start = mode->hdisplay + hsync;
4764 mode->hsync_end = mode->hsync_start + hsync_width;
4765 mode->htotal = mode->hdisplay + hblank;
4766
4767 mode->vdisplay = vactive;
4768 mode->vsync_start = mode->vdisplay + vsync;
4769 mode->vsync_end = mode->vsync_start + vsync_width;
4770 mode->vtotal = mode->vdisplay + vblank;
4771
4772 mode->flags = 0;
4773 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4774 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4775 mode->type = DRM_MODE_TYPE_DRIVER;
4776
4777 if (timings->flags & 0x80)
4778 mode->type |= DRM_MODE_TYPE_PREFERRED;
4779 mode->vrefresh = drm_mode_vrefresh(mode);
4780 drm_mode_set_name(mode);
4781
4782 return mode;
4783}
4784
4785static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4786 struct displayid_block *block)
4787{
4788 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4789 int i;
4790 int num_timings;
4791 struct drm_display_mode *newmode;
4792 int num_modes = 0;
4793 /* blocks must be multiple of 20 bytes length */
4794 if (block->num_bytes % 20)
4795 return 0;
4796
4797 num_timings = block->num_bytes / 20;
4798 for (i = 0; i < num_timings; i++) {
4799 struct displayid_detailed_timings_1 *timings = &det->timings[i];
4800
4801 newmode = drm_mode_displayid_detailed(connector->dev, timings);
4802 if (!newmode)
4803 continue;
4804
4805 drm_mode_probed_add(connector, newmode);
4806 num_modes++;
4807 }
4808 return num_modes;
4809}
4810
4811static int add_displayid_detailed_modes(struct drm_connector *connector,
4812 struct edid *edid)
4813{
4814 u8 *displayid;
4815 int ret;
4816 int idx = 1;
4817 int length = EDID_LENGTH;
4818 struct displayid_block *block;
4819 int num_modes = 0;
4820
4821 displayid = drm_find_displayid_extension(edid);
4822 if (!displayid)
4823 return 0;
4824
4825 ret = validate_displayid(displayid, length, idx);
4826 if (ret)
4827 return 0;
4828
4829 idx += sizeof(struct displayid_hdr);
4830 for_each_displayid_db(displayid, block, idx, length) {
4831 switch (block->tag) {
4832 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4833 num_modes += add_displayid_detailed_1_modes(connector, block);
4834 break;
4835 }
4836 }
4837 return num_modes;
4838}
4839
4840/**
4841 * drm_add_edid_modes - add modes from EDID data, if available
4842 * @connector: connector we're probing
4843 * @edid: EDID data
4844 *
4845 * Add the specified modes to the connector's mode list. Also fills out the
4846 * &drm_display_info structure and ELD in @connector with any information which
4847 * can be derived from the edid.
4848 *
4849 * Return: The number of modes added or 0 if we couldn't find any.
4850 */
4851int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4852{
4853 int num_modes = 0;
4854 u32 quirks;
4855
4856 if (edid == NULL) {
4857 clear_eld(connector);
4858 return 0;
4859 }
4860 if (!drm_edid_is_valid(edid)) {
4861 clear_eld(connector);
4862 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4863 connector->name);
4864 return 0;
4865 }
4866
4867 drm_edid_to_eld(connector, edid);
4868
4869 /*
4870 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4871 * To avoid multiple parsing of same block, lets parse that map
4872 * from sink info, before parsing CEA modes.
4873 */
4874 quirks = drm_add_display_info(connector, edid);
4875
4876 /*
4877 * EDID spec says modes should be preferred in this order:
4878 * - preferred detailed mode
4879 * - other detailed modes from base block
4880 * - detailed modes from extension blocks
4881 * - CVT 3-byte code modes
4882 * - standard timing codes
4883 * - established timing codes
4884 * - modes inferred from GTF or CVT range information
4885 *
4886 * We get this pretty much right.
4887 *
4888 * XXX order for additional mode types in extension blocks?
4889 */
4890 num_modes += add_detailed_modes(connector, edid, quirks);
4891 num_modes += add_cvt_modes(connector, edid);
4892 num_modes += add_standard_modes(connector, edid);
4893 num_modes += add_established_modes(connector, edid);
4894 num_modes += add_cea_modes(connector, edid);
4895 num_modes += add_alternate_cea_modes(connector, edid);
4896 num_modes += add_displayid_detailed_modes(connector, edid);
4897 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4898 num_modes += add_inferred_modes(connector, edid);
4899
4900 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4901 edid_fixup_preferred(connector, quirks);
4902
4903 if (quirks & EDID_QUIRK_FORCE_6BPC)
4904 connector->display_info.bpc = 6;
4905
4906 if (quirks & EDID_QUIRK_FORCE_8BPC)
4907 connector->display_info.bpc = 8;
4908
4909 if (quirks & EDID_QUIRK_FORCE_10BPC)
4910 connector->display_info.bpc = 10;
4911
4912 if (quirks & EDID_QUIRK_FORCE_12BPC)
4913 connector->display_info.bpc = 12;
4914
4915 return num_modes;
4916}
4917EXPORT_SYMBOL(drm_add_edid_modes);
4918
4919/**
4920 * drm_add_modes_noedid - add modes for the connectors without EDID
4921 * @connector: connector we're probing
4922 * @hdisplay: the horizontal display limit
4923 * @vdisplay: the vertical display limit
4924 *
4925 * Add the specified modes to the connector's mode list. Only when the
4926 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4927 *
4928 * Return: The number of modes added or 0 if we couldn't find any.
4929 */
4930int drm_add_modes_noedid(struct drm_connector *connector,
4931 int hdisplay, int vdisplay)
4932{
4933 int i, count, num_modes = 0;
4934 struct drm_display_mode *mode;
4935 struct drm_device *dev = connector->dev;
4936
4937 count = ARRAY_SIZE(drm_dmt_modes);
4938 if (hdisplay < 0)
4939 hdisplay = 0;
4940 if (vdisplay < 0)
4941 vdisplay = 0;
4942
4943 for (i = 0; i < count; i++) {
4944 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4945 if (hdisplay && vdisplay) {
4946 /*
4947 * Only when two are valid, they will be used to check
4948 * whether the mode should be added to the mode list of
4949 * the connector.
4950 */
4951 if (ptr->hdisplay > hdisplay ||
4952 ptr->vdisplay > vdisplay)
4953 continue;
4954 }
4955 if (drm_mode_vrefresh(ptr) > 61)
4956 continue;
4957 mode = drm_mode_duplicate(dev, ptr);
4958 if (mode) {
4959 drm_mode_probed_add(connector, mode);
4960 num_modes++;
4961 }
4962 }
4963 return num_modes;
4964}
4965EXPORT_SYMBOL(drm_add_modes_noedid);
4966
4967/**
4968 * drm_set_preferred_mode - Sets the preferred mode of a connector
4969 * @connector: connector whose mode list should be processed
4970 * @hpref: horizontal resolution of preferred mode
4971 * @vpref: vertical resolution of preferred mode
4972 *
4973 * Marks a mode as preferred if it matches the resolution specified by @hpref
4974 * and @vpref.
4975 */
4976void drm_set_preferred_mode(struct drm_connector *connector,
4977 int hpref, int vpref)
4978{
4979 struct drm_display_mode *mode;
4980
4981 list_for_each_entry(mode, &connector->probed_modes, head) {
4982 if (mode->hdisplay == hpref &&
4983 mode->vdisplay == vpref)
4984 mode->type |= DRM_MODE_TYPE_PREFERRED;
4985 }
4986}
4987EXPORT_SYMBOL(drm_set_preferred_mode);
4988
4989static bool is_hdmi2_sink(struct drm_connector *connector)
4990{
4991 /*
4992 * FIXME: sil-sii8620 doesn't have a connector around when
4993 * we need one, so we have to be prepared for a NULL connector.
4994 */
4995 if (!connector)
4996 return true;
4997
4998 return connector->display_info.hdmi.scdc.supported ||
4999 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
5000}
5001
5002static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
5003{
5004 return sink_eotf & BIT(output_eotf);
5005}
5006
5007/**
5008 * drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
5009 * HDR metadata from userspace
5010 * @frame: HDMI DRM infoframe
5011 * @conn_state: Connector state containing HDR metadata
5012 *
5013 * Return: 0 on success or a negative error code on failure.
5014 */
5015int
5016drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
5017 const struct drm_connector_state *conn_state)
5018{
5019 struct drm_connector *connector;
5020 struct hdr_output_metadata *hdr_metadata;
5021 int err;
5022
5023 if (!frame || !conn_state)
5024 return -EINVAL;
5025
5026 connector = conn_state->connector;
5027
5028 if (!conn_state->hdr_output_metadata)
5029 return -EINVAL;
5030
5031 hdr_metadata = conn_state->hdr_output_metadata->data;
5032
5033 if (!hdr_metadata || !connector)
5034 return -EINVAL;
5035
5036 /* Sink EOTF is Bit map while infoframe is absolute values */
5037 if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
5038 connector->hdr_sink_metadata.hdmi_type1.eotf)) {
5039 DRM_DEBUG_KMS("EOTF Not Supported\n");
5040 return -EINVAL;
5041 }
5042
5043 err = hdmi_drm_infoframe_init(frame);
5044 if (err < 0)
5045 return err;
5046
5047 frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
5048 frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
5049
5050 BUILD_BUG_ON(sizeof(frame->display_primaries) !=
5051 sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
5052 BUILD_BUG_ON(sizeof(frame->white_point) !=
5053 sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
5054
5055 memcpy(&frame->display_primaries,
5056 &hdr_metadata->hdmi_metadata_type1.display_primaries,
5057 sizeof(frame->display_primaries));
5058
5059 memcpy(&frame->white_point,
5060 &hdr_metadata->hdmi_metadata_type1.white_point,
5061 sizeof(frame->white_point));
5062
5063 frame->max_display_mastering_luminance =
5064 hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
5065 frame->min_display_mastering_luminance =
5066 hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
5067 frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
5068 frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
5069
5070 return 0;
5071}
5072EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
5073
5074/**
5075 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
5076 * data from a DRM display mode
5077 * @frame: HDMI AVI infoframe
5078 * @connector: the connector
5079 * @mode: DRM display mode
5080 *
5081 * Return: 0 on success or a negative error code on failure.
5082 */
5083int
5084drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5085 struct drm_connector *connector,
5086 const struct drm_display_mode *mode)
5087{
5088 enum hdmi_picture_aspect picture_aspect;
5089 int err;
5090
5091 if (!frame || !mode)
5092 return -EINVAL;
5093
5094 err = hdmi_avi_infoframe_init(frame);
5095 if (err < 0)
5096 return err;
5097
5098 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5099 frame->pixel_repeat = 1;
5100
5101 frame->video_code = drm_match_cea_mode(mode);
5102
5103 /*
5104 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5105 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5106 * have to make sure we dont break HDMI 1.4 sinks.
5107 */
5108 if (!is_hdmi2_sink(connector) && frame->video_code > 64)
5109 frame->video_code = 0;
5110
5111 /*
5112 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5113 * we should send its VIC in vendor infoframes, else send the
5114 * VIC in AVI infoframes. Lets check if this mode is present in
5115 * HDMI 1.4b 4K modes
5116 */
5117 if (frame->video_code) {
5118 u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5119 bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5120
5121 if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5122 frame->video_code = 0;
5123 }
5124
5125 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5126
5127 /*
5128 * As some drivers don't support atomic, we can't use connector state.
5129 * So just initialize the frame with default values, just the same way
5130 * as it's done with other properties here.
5131 */
5132 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
5133 frame->itc = 0;
5134
5135 /*
5136 * Populate picture aspect ratio from either
5137 * user input (if specified) or from the CEA mode list.
5138 */
5139 picture_aspect = mode->picture_aspect_ratio;
5140 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE)
5141 picture_aspect = drm_get_cea_aspect_ratio(frame->video_code);
5142
5143 /*
5144 * The infoframe can't convey anything but none, 4:3
5145 * and 16:9, so if the user has asked for anything else
5146 * we can only satisfy it by specifying the right VIC.
5147 */
5148 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
5149 if (picture_aspect !=
5150 drm_get_cea_aspect_ratio(frame->video_code))
5151 return -EINVAL;
5152 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5153 }
5154
5155 frame->picture_aspect = picture_aspect;
5156 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5157 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5158
5159 return 0;
5160}
5161EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
5162
5163/* HDMI Colorspace Spec Definitions */
5164#define FULL_COLORIMETRY_MASK 0x1FF
5165#define NORMAL_COLORIMETRY_MASK 0x3
5166#define EXTENDED_COLORIMETRY_MASK 0x7
5167#define EXTENDED_ACE_COLORIMETRY_MASK 0xF
5168
5169#define C(x) ((x) << 0)
5170#define EC(x) ((x) << 2)
5171#define ACE(x) ((x) << 5)
5172
5173#define HDMI_COLORIMETRY_NO_DATA 0x0
5174#define HDMI_COLORIMETRY_SMPTE_170M_YCC (C(1) | EC(0) | ACE(0))
5175#define HDMI_COLORIMETRY_BT709_YCC (C(2) | EC(0) | ACE(0))
5176#define HDMI_COLORIMETRY_XVYCC_601 (C(3) | EC(0) | ACE(0))
5177#define HDMI_COLORIMETRY_XVYCC_709 (C(3) | EC(1) | ACE(0))
5178#define HDMI_COLORIMETRY_SYCC_601 (C(3) | EC(2) | ACE(0))
5179#define HDMI_COLORIMETRY_OPYCC_601 (C(3) | EC(3) | ACE(0))
5180#define HDMI_COLORIMETRY_OPRGB (C(3) | EC(4) | ACE(0))
5181#define HDMI_COLORIMETRY_BT2020_CYCC (C(3) | EC(5) | ACE(0))
5182#define HDMI_COLORIMETRY_BT2020_RGB (C(3) | EC(6) | ACE(0))
5183#define HDMI_COLORIMETRY_BT2020_YCC (C(3) | EC(6) | ACE(0))
5184#define HDMI_COLORIMETRY_DCI_P3_RGB_D65 (C(3) | EC(7) | ACE(0))
5185#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER (C(3) | EC(7) | ACE(1))
5186
5187static const u32 hdmi_colorimetry_val[] = {
5188 [DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
5189 [DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
5190 [DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
5191 [DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
5192 [DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
5193 [DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
5194 [DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
5195 [DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
5196 [DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
5197 [DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
5198 [DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
5199};
5200
5201#undef C
5202#undef EC
5203#undef ACE
5204
5205/**
5206 * drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
5207 * colorspace information
5208 * @frame: HDMI AVI infoframe
5209 * @conn_state: connector state
5210 */
5211void
5212drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
5213 const struct drm_connector_state *conn_state)
5214{
5215 u32 colorimetry_val;
5216 u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
5217
5218 if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
5219 colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
5220 else
5221 colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
5222
5223 frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
5224 /*
5225 * ToDo: Extend it for ACE formats as well. Modify the infoframe
5226 * structure and extend it in drivers/video/hdmi
5227 */
5228 frame->extended_colorimetry = (colorimetry_val >> 2) &
5229 EXTENDED_COLORIMETRY_MASK;
5230}
5231EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
5232
5233/**
5234 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5235 * quantization range information
5236 * @frame: HDMI AVI infoframe
5237 * @connector: the connector
5238 * @mode: DRM display mode
5239 * @rgb_quant_range: RGB quantization range (Q)
5240 */
5241void
5242drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5243 struct drm_connector *connector,
5244 const struct drm_display_mode *mode,
5245 enum hdmi_quantization_range rgb_quant_range)
5246{
5247 const struct drm_display_info *info = &connector->display_info;
5248
5249 /*
5250 * CEA-861:
5251 * "A Source shall not send a non-zero Q value that does not correspond
5252 * to the default RGB Quantization Range for the transmitted Picture
5253 * unless the Sink indicates support for the Q bit in a Video
5254 * Capabilities Data Block."
5255 *
5256 * HDMI 2.0 recommends sending non-zero Q when it does match the
5257 * default RGB quantization range for the mode, even when QS=0.
5258 */
5259 if (info->rgb_quant_range_selectable ||
5260 rgb_quant_range == drm_default_rgb_quant_range(mode))
5261 frame->quantization_range = rgb_quant_range;
5262 else
5263 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5264
5265 /*
5266 * CEA-861-F:
5267 * "When transmitting any RGB colorimetry, the Source should set the
5268 * YQ-field to match the RGB Quantization Range being transmitted
5269 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5270 * set YQ=1) and the Sink shall ignore the YQ-field."
5271 *
5272 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
5273 * by non-zero YQ when receiving RGB. There doesn't seem to be any
5274 * good way to tell which version of CEA-861 the sink supports, so
5275 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
5276 * on on CEA-861-F.
5277 */
5278 if (!is_hdmi2_sink(connector) ||
5279 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5280 frame->ycc_quantization_range =
5281 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5282 else
5283 frame->ycc_quantization_range =
5284 HDMI_YCC_QUANTIZATION_RANGE_FULL;
5285}
5286EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
5287
5288static enum hdmi_3d_structure
5289s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5290{
5291 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5292
5293 switch (layout) {
5294 case DRM_MODE_FLAG_3D_FRAME_PACKING:
5295 return HDMI_3D_STRUCTURE_FRAME_PACKING;
5296 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5297 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5298 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5299 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5300 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5301 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5302 case DRM_MODE_FLAG_3D_L_DEPTH:
5303 return HDMI_3D_STRUCTURE_L_DEPTH;
5304 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5305 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5306 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5307 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5308 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5309 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5310 default:
5311 return HDMI_3D_STRUCTURE_INVALID;
5312 }
5313}
5314
5315/**
5316 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5317 * data from a DRM display mode
5318 * @frame: HDMI vendor infoframe
5319 * @connector: the connector
5320 * @mode: DRM display mode
5321 *
5322 * Note that there's is a need to send HDMI vendor infoframes only when using a
5323 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5324 * function will return -EINVAL, error that can be safely ignored.
5325 *
5326 * Return: 0 on success or a negative error code on failure.
5327 */
5328int
5329drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5330 struct drm_connector *connector,
5331 const struct drm_display_mode *mode)
5332{
5333 /*
5334 * FIXME: sil-sii8620 doesn't have a connector around when
5335 * we need one, so we have to be prepared for a NULL connector.
5336 */
5337 bool has_hdmi_infoframe = connector ?
5338 connector->display_info.has_hdmi_infoframe : false;
5339 int err;
5340 u32 s3d_flags;
5341 u8 vic;
5342
5343 if (!frame || !mode)
5344 return -EINVAL;
5345
5346 if (!has_hdmi_infoframe)
5347 return -EINVAL;
5348
5349 vic = drm_match_hdmi_mode(mode);
5350 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5351
5352 /*
5353 * Even if it's not absolutely necessary to send the infoframe
5354 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5355 * know that the sink can handle it. This is based on a
5356 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5357 * have trouble realizing that they shuld switch from 3D to 2D
5358 * mode if the source simply stops sending the infoframe when
5359 * it wants to switch from 3D to 2D.
5360 */
5361
5362 if (vic && s3d_flags)
5363 return -EINVAL;
5364
5365 err = hdmi_vendor_infoframe_init(frame);
5366 if (err < 0)
5367 return err;
5368
5369 frame->vic = vic;
5370 frame->s3d_struct = s3d_structure_from_display_mode(mode);
5371
5372 return 0;
5373}
5374EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5375
5376static int drm_parse_tiled_block(struct drm_connector *connector,
5377 struct displayid_block *block)
5378{
5379 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5380 u16 w, h;
5381 u8 tile_v_loc, tile_h_loc;
5382 u8 num_v_tile, num_h_tile;
5383 struct drm_tile_group *tg;
5384
5385 w = tile->tile_size[0] | tile->tile_size[1] << 8;
5386 h = tile->tile_size[2] | tile->tile_size[3] << 8;
5387
5388 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5389 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5390 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5391 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5392
5393 connector->has_tile = true;
5394 if (tile->tile_cap & 0x80)
5395 connector->tile_is_single_monitor = true;
5396
5397 connector->num_h_tile = num_h_tile + 1;
5398 connector->num_v_tile = num_v_tile + 1;
5399 connector->tile_h_loc = tile_h_loc;
5400 connector->tile_v_loc = tile_v_loc;
5401 connector->tile_h_size = w + 1;
5402 connector->tile_v_size = h + 1;
5403
5404 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5405 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5406 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5407 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5408 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5409
5410 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5411 if (!tg) {
5412 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5413 }
5414 if (!tg)
5415 return -ENOMEM;
5416
5417 if (connector->tile_group != tg) {
5418 /* if we haven't got a pointer,
5419 take the reference, drop ref to old tile group */
5420 if (connector->tile_group) {
5421 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5422 }
5423 connector->tile_group = tg;
5424 } else
5425 /* if same tile group, then release the ref we just took. */
5426 drm_mode_put_tile_group(connector->dev, tg);
5427 return 0;
5428}
5429
5430static int drm_parse_display_id(struct drm_connector *connector,
5431 u8 *displayid, int length,
5432 bool is_edid_extension)
5433{
5434 /* if this is an EDID extension the first byte will be 0x70 */
5435 int idx = 0;
5436 struct displayid_block *block;
5437 int ret;
5438
5439 if (is_edid_extension)
5440 idx = 1;
5441
5442 ret = validate_displayid(displayid, length, idx);
5443 if (ret)
5444 return ret;
5445
5446 idx += sizeof(struct displayid_hdr);
5447 for_each_displayid_db(displayid, block, idx, length) {
5448 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5449 block->tag, block->rev, block->num_bytes);
5450
5451 switch (block->tag) {
5452 case DATA_BLOCK_TILED_DISPLAY:
5453 ret = drm_parse_tiled_block(connector, block);
5454 if (ret)
5455 return ret;
5456 break;
5457 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5458 /* handled in mode gathering code. */
5459 break;
5460 case DATA_BLOCK_CTA:
5461 /* handled in the cea parser code. */
5462 break;
5463 default:
5464 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5465 break;
5466 }
5467 }
5468 return 0;
5469}
5470
5471static void drm_get_displayid(struct drm_connector *connector,
5472 struct edid *edid)
5473{
5474 void *displayid = NULL;
5475 int ret;
5476 connector->has_tile = false;
5477 displayid = drm_find_displayid_extension(edid);
5478 if (!displayid) {
5479 /* drop reference to any tile group we had */
5480 goto out_drop_ref;
5481 }
5482
5483 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5484 if (ret < 0)
5485 goto out_drop_ref;
5486 if (!connector->has_tile)
5487 goto out_drop_ref;
5488 return;
5489out_drop_ref:
5490 if (connector->tile_group) {
5491 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5492 connector->tile_group = NULL;
5493 }
5494 return;
5495}