Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:	1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <linux/uaccess.h>	/* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93	(NETIF_MSG_DRV		| \
  94	 NETIF_MSG_LINK		| \
  95	 NETIF_MSG_RX_ERR	| \
  96	 NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102	SIS_900 = 0,
 103	SIS_7016
 104};
 105static const char * card_names[] = {
 106	"SiS 900 PCI Fast Ethernet",
 107	"SiS 7016 PCI Fast Ethernet"
 108};
 109
 110static const struct pci_device_id sis900_pci_tbl[] = {
 111	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 112	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 113	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 114	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 115	{0,}
 116};
 117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 118
 119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 120
 121static const struct mii_chip_info {
 122	const char * name;
 123	u16 phy_id0;
 124	u16 phy_id1;
 125	u8  phy_types;
 126#define	HOME 	0x0001
 127#define LAN	0x0002
 128#define MIX	0x0003
 129#define UNKNOWN	0x0
 130} mii_chip_table[] = {
 131	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
 132	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
 133	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 134	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 135	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
 136	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
 137	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
 138	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
 139	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
 140	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
 141	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 142	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
 143	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
 144	{NULL,},
 145};
 146
 147struct mii_phy {
 148	struct mii_phy * next;
 149	int phy_addr;
 150	u16 phy_id0;
 151	u16 phy_id1;
 152	u16 status;
 153	u8  phy_types;
 154};
 155
 156typedef struct _BufferDesc {
 157	u32 link;
 158	u32 cmdsts;
 159	u32 bufptr;
 160} BufferDesc;
 161
 162struct sis900_private {
 163	struct pci_dev * pci_dev;
 164
 165	spinlock_t lock;
 166
 167	struct mii_phy * mii;
 168	struct mii_phy * first_mii; /* record the first mii structure */
 169	unsigned int cur_phy;
 170	struct mii_if_info mii_info;
 171
 172	void __iomem	*ioaddr;
 173
 174	struct timer_list timer; /* Link status detection timer. */
 175	u8 autong_complete; /* 1: auto-negotiate complete  */
 176
 177	u32 msg_enable;
 178
 179	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
 180	unsigned int cur_tx, dirty_tx;
 181
 182	/* The saved address of a sent/receive-in-place packet buffer */
 183	struct sk_buff *tx_skbuff[NUM_TX_DESC];
 184	struct sk_buff *rx_skbuff[NUM_RX_DESC];
 185	BufferDesc *tx_ring;
 186	BufferDesc *rx_ring;
 187
 188	dma_addr_t tx_ring_dma;
 189	dma_addr_t rx_ring_dma;
 190
 191	unsigned int tx_full; /* The Tx queue is full. */
 192	u8 host_bridge_rev;
 193	u8 chipset_rev;
 194	/* EEPROM data */
 195	int eeprom_size;
 196};
 197
 198MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 199MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 200MODULE_LICENSE("GPL");
 201
 202module_param(multicast_filter_limit, int, 0444);
 203module_param(max_interrupt_work, int, 0444);
 204module_param(sis900_debug, int, 0444);
 205MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 206MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 207MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 208
 209#define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
 210#define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
 211#define sr32(reg)	ioread32(ioaddr + (reg))
 212#define sr16(reg)	ioread16(ioaddr + (reg))
 213
 214#ifdef CONFIG_NET_POLL_CONTROLLER
 215static void sis900_poll(struct net_device *dev);
 216#endif
 217static int sis900_open(struct net_device *net_dev);
 218static int sis900_mii_probe (struct net_device * net_dev);
 219static void sis900_init_rxfilter (struct net_device * net_dev);
 220static u16 read_eeprom(void __iomem *ioaddr, int location);
 221static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 222static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 223static void sis900_timer(struct timer_list *t);
 224static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 225static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue);
 226static void sis900_init_tx_ring(struct net_device *net_dev);
 227static void sis900_init_rx_ring(struct net_device *net_dev);
 228static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 229				     struct net_device *net_dev);
 230static int sis900_rx(struct net_device *net_dev);
 231static void sis900_finish_xmit (struct net_device *net_dev);
 232static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 233static int sis900_close(struct net_device *net_dev);
 234static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 235static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 236static void set_rx_mode(struct net_device *net_dev);
 237static void sis900_reset(struct net_device *net_dev);
 238static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 239static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 240static u16 sis900_default_phy(struct net_device * net_dev);
 241static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 242static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 243static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 244static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 245static const struct ethtool_ops sis900_ethtool_ops;
 246
 247/**
 248 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 249 *	@pci_dev: the sis900 pci device
 250 *	@net_dev: the net device to get address for
 251 *
 252 *	Older SiS900 and friends, use EEPROM to store MAC address.
 253 *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
 254 */
 255
 256static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 257			       struct net_device *net_dev)
 258{
 259	struct sis900_private *sis_priv = netdev_priv(net_dev);
 260	void __iomem *ioaddr = sis_priv->ioaddr;
 261	u16 addr[ETH_ALEN / 2];
 262	u16 signature;
 263	int i;
 264
 265	/* check to see if we have sane EEPROM */
 266	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 267	if (signature == 0xffff || signature == 0x0000) {
 268		printk (KERN_WARNING "%s: Error EEPROM read %x\n",
 269			pci_name(pci_dev), signature);
 270		return 0;
 271	}
 272
 273	/* get MAC address from EEPROM */
 274	for (i = 0; i < 3; i++)
 275	        addr[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 276	eth_hw_addr_set(net_dev, (u8 *)addr);
 277
 278	return 1;
 279}
 280
 281/**
 282 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
 283 *	@pci_dev: the sis900 pci device
 284 *	@net_dev: the net device to get address for
 285 *
 286 *	SiS630E model, use APC CMOS RAM to store MAC address.
 287 *	APC CMOS RAM is accessed through ISA bridge.
 288 *	MAC address is read into @net_dev->dev_addr.
 289 */
 290
 291static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 292				struct net_device *net_dev)
 293{
 294	struct pci_dev *isa_bridge = NULL;
 295	u8 addr[ETH_ALEN];
 296	u8 reg;
 297	int i;
 298
 299	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 300	if (!isa_bridge)
 301		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 302	if (!isa_bridge) {
 303		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 304		       pci_name(pci_dev));
 305		return 0;
 306	}
 307	pci_read_config_byte(isa_bridge, 0x48, &reg);
 308	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 309
 310	for (i = 0; i < 6; i++) {
 311		outb(0x09 + i, 0x70);
 312		addr[i] = inb(0x71);
 313	}
 314	eth_hw_addr_set(net_dev, addr);
 315
 316	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 317	pci_dev_put(isa_bridge);
 318
 319	return 1;
 320}
 321
 322
 323/**
 324 *	sis635_get_mac_addr - Get MAC address for SIS635 model
 325 *	@pci_dev: the sis900 pci device
 326 *	@net_dev: the net device to get address for
 327 *
 328 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
 329 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
 330 *	@net_dev->dev_addr.
 331 */
 332
 333static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 334			       struct net_device *net_dev)
 335{
 336	struct sis900_private *sis_priv = netdev_priv(net_dev);
 337	void __iomem *ioaddr = sis_priv->ioaddr;
 338	u16 addr[ETH_ALEN / 2];
 339	u32 rfcrSave;
 340	u32 i;
 341
 342	rfcrSave = sr32(rfcr);
 343
 344	sw32(cr, rfcrSave | RELOAD);
 345	sw32(cr, 0);
 346
 347	/* disable packet filtering before setting filter */
 348	sw32(rfcr, rfcrSave & ~RFEN);
 349
 350	/* load MAC addr to filter data register */
 351	for (i = 0 ; i < 3 ; i++) {
 352		sw32(rfcr, (i << RFADDR_shift));
 353		addr[i] = sr16(rfdr);
 354	}
 355	eth_hw_addr_set(net_dev, (u8 *)addr);
 356
 357	/* enable packet filtering */
 358	sw32(rfcr, rfcrSave | RFEN);
 359
 360	return 1;
 361}
 362
 363/**
 364 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 365 *	@pci_dev: the sis900 pci device
 366 *	@net_dev: the net device to get address for
 367 *
 368 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 369 *	is shared by
 370 *	LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
 371 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
 372 *	by LAN, otherwise it is not. After MAC address is read from EEPROM, send
 373 *	EEDONE signal to refuse EEPROM access by LAN.
 374 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
 375 *	The signature field in SiS962 or SiS963 spec is meaningless.
 376 *	MAC address is read into @net_dev->dev_addr.
 377 */
 378
 379static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 380			       struct net_device *net_dev)
 381{
 382	struct sis900_private *sis_priv = netdev_priv(net_dev);
 383	void __iomem *ioaddr = sis_priv->ioaddr;
 384	u16 addr[ETH_ALEN / 2];
 385	int wait, rc = 0;
 386
 387	sw32(mear, EEREQ);
 388	for (wait = 0; wait < 2000; wait++) {
 389		if (sr32(mear) & EEGNT) {
 390			int i;
 391
 392			/* get MAC address from EEPROM */
 393			for (i = 0; i < 3; i++)
 394			        addr[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 395			eth_hw_addr_set(net_dev, (u8 *)addr);
 396
 397			rc = 1;
 398			break;
 399		}
 400		udelay(1);
 401	}
 402	sw32(mear, EEDONE);
 403	return rc;
 404}
 405
 406static const struct net_device_ops sis900_netdev_ops = {
 407	.ndo_open		 = sis900_open,
 408	.ndo_stop		= sis900_close,
 409	.ndo_start_xmit		= sis900_start_xmit,
 410	.ndo_set_config		= sis900_set_config,
 411	.ndo_set_rx_mode	= set_rx_mode,
 412	.ndo_validate_addr	= eth_validate_addr,
 413	.ndo_set_mac_address 	= eth_mac_addr,
 414	.ndo_eth_ioctl		= mii_ioctl,
 415	.ndo_tx_timeout		= sis900_tx_timeout,
 416#ifdef CONFIG_NET_POLL_CONTROLLER
 417        .ndo_poll_controller	= sis900_poll,
 418#endif
 419};
 420
 421/**
 422 *	sis900_probe - Probe for sis900 device
 423 *	@pci_dev: the sis900 pci device
 424 *	@pci_id: the pci device ID
 425 *
 426 *	Check and probe sis900 net device for @pci_dev.
 427 *	Get mac address according to the chip revision,
 428 *	and assign SiS900-specific entries in the device structure.
 429 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 430 */
 431
 432static int sis900_probe(struct pci_dev *pci_dev,
 433			const struct pci_device_id *pci_id)
 434{
 435	struct sis900_private *sis_priv;
 436	struct net_device *net_dev;
 437	struct pci_dev *dev;
 438	dma_addr_t ring_dma;
 439	void *ring_space;
 440	void __iomem *ioaddr;
 441	int i, ret;
 442	const char *card_name = card_names[pci_id->driver_data];
 443	const char *dev_name = pci_name(pci_dev);
 444
 445/* when built into the kernel, we only print version if device is found */
 446#ifndef MODULE
 447	static int printed_version;
 448	if (!printed_version++)
 449		printk(version);
 450#endif
 451
 452	/* setup various bits in PCI command register */
 453	ret = pcim_enable_device(pci_dev);
 454	if(ret) return ret;
 455
 456	i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
 457	if(i){
 458		printk(KERN_ERR "sis900.c: architecture does not support "
 459			"32bit PCI busmaster DMA\n");
 460		return i;
 461	}
 462
 463	pci_set_master(pci_dev);
 464
 465	net_dev = alloc_etherdev(sizeof(struct sis900_private));
 466	if (!net_dev)
 467		return -ENOMEM;
 468	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 469
 470	/* We do a request_region() to register /proc/ioports info. */
 471	ret = pci_request_regions(pci_dev, "sis900");
 472	if (ret)
 473		goto err_out;
 474
 475	/* IO region. */
 476	ioaddr = pci_iomap(pci_dev, 0, 0);
 477	if (!ioaddr) {
 478		ret = -ENOMEM;
 479		goto err_out;
 480	}
 481
 482	sis_priv = netdev_priv(net_dev);
 483	sis_priv->ioaddr = ioaddr;
 484	sis_priv->pci_dev = pci_dev;
 485	spin_lock_init(&sis_priv->lock);
 486
 487	sis_priv->eeprom_size = 24;
 488
 489	pci_set_drvdata(pci_dev, net_dev);
 490
 491	ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE,
 492					&ring_dma, GFP_KERNEL);
 493	if (!ring_space) {
 494		ret = -ENOMEM;
 495		goto err_out_unmap;
 496	}
 497	sis_priv->tx_ring = ring_space;
 498	sis_priv->tx_ring_dma = ring_dma;
 499
 500	ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE,
 501					&ring_dma, GFP_KERNEL);
 502	if (!ring_space) {
 503		ret = -ENOMEM;
 504		goto err_unmap_tx;
 505	}
 506	sis_priv->rx_ring = ring_space;
 507	sis_priv->rx_ring_dma = ring_dma;
 508
 509	/* The SiS900-specific entries in the device structure. */
 510	net_dev->netdev_ops = &sis900_netdev_ops;
 511	net_dev->watchdog_timeo = TX_TIMEOUT;
 512	net_dev->ethtool_ops = &sis900_ethtool_ops;
 513
 514	if (sis900_debug > 0)
 515		sis_priv->msg_enable = sis900_debug;
 516	else
 517		sis_priv->msg_enable = SIS900_DEF_MSG;
 518
 519	sis_priv->mii_info.dev = net_dev;
 520	sis_priv->mii_info.mdio_read = mdio_read;
 521	sis_priv->mii_info.mdio_write = mdio_write;
 522	sis_priv->mii_info.phy_id_mask = 0x1f;
 523	sis_priv->mii_info.reg_num_mask = 0x1f;
 524
 525	/* Get Mac address according to the chip revision */
 526	sis_priv->chipset_rev = pci_dev->revision;
 527	if(netif_msg_probe(sis_priv))
 528		printk(KERN_DEBUG "%s: detected revision %2.2x, "
 529				"trying to get MAC address...\n",
 530				dev_name, sis_priv->chipset_rev);
 531
 532	ret = 0;
 533	if (sis_priv->chipset_rev == SIS630E_900_REV)
 534		ret = sis630e_get_mac_addr(pci_dev, net_dev);
 535	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 536		ret = sis635_get_mac_addr(pci_dev, net_dev);
 537	else if (sis_priv->chipset_rev == SIS96x_900_REV)
 538		ret = sis96x_get_mac_addr(pci_dev, net_dev);
 539	else
 540		ret = sis900_get_mac_addr(pci_dev, net_dev);
 541
 542	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 543		eth_hw_addr_random(net_dev);
 544		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 545				"using random generated one\n", dev_name);
 546	}
 547
 548	/* 630ET : set the mii access mode as software-mode */
 549	if (sis_priv->chipset_rev == SIS630ET_900_REV)
 550		sw32(cr, ACCESSMODE | sr32(cr));
 551
 552	/* probe for mii transceiver */
 553	if (sis900_mii_probe(net_dev) == 0) {
 554		printk(KERN_WARNING "%s: Error probing MII device.\n",
 555		       dev_name);
 556		ret = -ENODEV;
 557		goto err_unmap_rx;
 558	}
 559
 560	/* save our host bridge revision */
 561	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 562	if (dev) {
 563		sis_priv->host_bridge_rev = dev->revision;
 564		pci_dev_put(dev);
 565	}
 566
 567	ret = register_netdev(net_dev);
 568	if (ret)
 569		goto err_unmap_rx;
 570
 571	/* print some information about our NIC */
 572	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 573	       net_dev->name, card_name, ioaddr, pci_dev->irq,
 574	       net_dev->dev_addr);
 575
 576	/* Detect Wake on Lan support */
 577	ret = (sr32(CFGPMC) & PMESP) >> 27;
 578	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 579		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 580
 581	return 0;
 582
 583err_unmap_rx:
 584	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 585			  sis_priv->rx_ring_dma);
 586err_unmap_tx:
 587	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 588			  sis_priv->tx_ring_dma);
 589err_out_unmap:
 590	pci_iounmap(pci_dev, ioaddr);
 591 err_out:
 592	free_netdev(net_dev);
 593	return ret;
 594}
 595
 596/**
 597 *	sis900_mii_probe - Probe MII PHY for sis900
 598 *	@net_dev: the net device to probe for
 599 *
 600 *	Search for total of 32 possible mii phy addresses.
 601 *	Identify and set current phy if found one,
 602 *	return error if it failed to found.
 603 */
 604
 605static int sis900_mii_probe(struct net_device *net_dev)
 606{
 607	struct sis900_private *sis_priv = netdev_priv(net_dev);
 608	const char *dev_name = pci_name(sis_priv->pci_dev);
 609	u16 poll_bit = MII_STAT_LINK, status = 0;
 610	unsigned long timeout = jiffies + 5 * HZ;
 611	int phy_addr;
 612
 613	sis_priv->mii = NULL;
 614
 615	/* search for total of 32 possible mii phy addresses */
 616	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 617		struct mii_phy * mii_phy = NULL;
 618		u16 mii_status;
 619		int i;
 620
 621		mii_phy = NULL;
 622		for(i = 0; i < 2; i++)
 623			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 624
 625		if (mii_status == 0xffff || mii_status == 0x0000) {
 626			if (netif_msg_probe(sis_priv))
 627				printk(KERN_DEBUG "%s: MII at address %d"
 628						" not accessible\n",
 629						dev_name, phy_addr);
 630			continue;
 631		}
 632
 633		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 634			mii_phy = sis_priv->first_mii;
 635			while (mii_phy) {
 636				struct mii_phy *phy;
 637				phy = mii_phy;
 638				mii_phy = mii_phy->next;
 639				kfree(phy);
 640			}
 641			return 0;
 642		}
 643
 644		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 645		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 646		mii_phy->phy_addr = phy_addr;
 647		mii_phy->status = mii_status;
 648		mii_phy->next = sis_priv->mii;
 649		sis_priv->mii = mii_phy;
 650		sis_priv->first_mii = mii_phy;
 651
 652		for (i = 0; mii_chip_table[i].phy_id1; i++)
 653			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 654			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 655				mii_phy->phy_types = mii_chip_table[i].phy_types;
 656				if (mii_chip_table[i].phy_types == MIX)
 657					mii_phy->phy_types =
 658					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 659				printk(KERN_INFO "%s: %s transceiver found "
 660							"at address %d.\n",
 661							dev_name,
 662							mii_chip_table[i].name,
 663							phy_addr);
 664				break;
 665			}
 666
 667		if( !mii_chip_table[i].phy_id1 ) {
 668			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 669			       dev_name, phy_addr);
 670			mii_phy->phy_types = UNKNOWN;
 671		}
 672	}
 673
 674	if (sis_priv->mii == NULL) {
 675		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 676		return 0;
 677	}
 678
 679	/* select default PHY for mac */
 680	sis_priv->mii = NULL;
 681	sis900_default_phy( net_dev );
 682
 683	/* Reset phy if default phy is internal sis900 */
 684        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 685	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 686		status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 687
 688        /* workaround for ICS1893 PHY */
 689        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 690            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 691		mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 692
 693	if(status & MII_STAT_LINK){
 694		while (poll_bit) {
 695			yield();
 696
 697			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 698			if (time_after_eq(jiffies, timeout)) {
 699				printk(KERN_WARNING "%s: reset phy and link down now\n",
 700				       dev_name);
 701				return -ETIME;
 702			}
 703		}
 704	}
 705
 706	if (sis_priv->chipset_rev == SIS630E_900_REV) {
 707		/* SiS 630E has some bugs on default value of PHY registers */
 708		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 709		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 710		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 711		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 712		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 713	}
 714
 715	if (sis_priv->mii->status & MII_STAT_LINK)
 716		netif_carrier_on(net_dev);
 717	else
 718		netif_carrier_off(net_dev);
 719
 720	return 1;
 721}
 722
 723/**
 724 *	sis900_default_phy - Select default PHY for sis900 mac.
 725 *	@net_dev: the net device to probe for
 726 *
 727 *	Select first detected PHY with link as default.
 728 *	If no one is link on, select PHY whose types is HOME as default.
 729 *	If HOME doesn't exist, select LAN.
 730 */
 731
 732static u16 sis900_default_phy(struct net_device * net_dev)
 733{
 734	struct sis900_private *sis_priv = netdev_priv(net_dev);
 735	struct mii_phy *phy = NULL, *phy_home = NULL,
 736		*default_phy = NULL, *phy_lan = NULL;
 737	u16 status;
 738
 739        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 740		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 741		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 742
 743		/* Link ON & Not select default PHY & not ghost PHY */
 744		if ((status & MII_STAT_LINK) && !default_phy &&
 745		    (phy->phy_types != UNKNOWN)) {
 746			default_phy = phy;
 747		} else {
 748			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 749			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 750				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 751			if (phy->phy_types == HOME)
 752				phy_home = phy;
 753			else if(phy->phy_types == LAN)
 754				phy_lan = phy;
 755		}
 756	}
 757
 758	if (!default_phy && phy_home)
 759		default_phy = phy_home;
 760	else if (!default_phy && phy_lan)
 761		default_phy = phy_lan;
 762	else if (!default_phy)
 763		default_phy = sis_priv->first_mii;
 764
 765	if (sis_priv->mii != default_phy) {
 766		sis_priv->mii = default_phy;
 767		sis_priv->cur_phy = default_phy->phy_addr;
 768		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 769		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 770	}
 771
 772	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 773
 774	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 775	status &= (~MII_CNTL_ISOLATE);
 776
 777	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 778	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 779	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 780
 781	return status;
 782}
 783
 784
 785/**
 786 * 	sis900_set_capability - set the media capability of network adapter.
 787 *	@net_dev : the net device to probe for
 788 *	@phy : default PHY
 789 *
 790 *	Set the media capability of network adapter according to
 791 *	mii status register. It's necessary before auto-negotiate.
 792 */
 793
 794static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 795{
 796	u16 cap;
 797
 798	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 799	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 800
 801	cap = MII_NWAY_CSMA_CD |
 802		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 803		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 804		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 805		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 806
 807	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 808}
 809
 810
 811/* Delay between EEPROM clock transitions. */
 812#define eeprom_delay()	sr32(mear)
 813
 814/**
 815 *	read_eeprom - Read Serial EEPROM
 816 *	@ioaddr: base i/o address
 817 *	@location: the EEPROM location to read
 818 *
 819 *	Read Serial EEPROM through EEPROM Access Register.
 820 *	Note that location is in word (16 bits) unit
 821 */
 822
 823static u16 read_eeprom(void __iomem *ioaddr, int location)
 824{
 825	u32 read_cmd = location | EEread;
 826	int i;
 827	u16 retval = 0;
 828
 829	sw32(mear, 0);
 830	eeprom_delay();
 831	sw32(mear, EECS);
 832	eeprom_delay();
 833
 834	/* Shift the read command (9) bits out. */
 835	for (i = 8; i >= 0; i--) {
 836		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 837
 838		sw32(mear, dataval);
 839		eeprom_delay();
 840		sw32(mear, dataval | EECLK);
 841		eeprom_delay();
 842	}
 843	sw32(mear, EECS);
 844	eeprom_delay();
 845
 846	/* read the 16-bits data in */
 847	for (i = 16; i > 0; i--) {
 848		sw32(mear, EECS);
 849		eeprom_delay();
 850		sw32(mear, EECS | EECLK);
 851		eeprom_delay();
 852		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 853		eeprom_delay();
 854	}
 855
 856	/* Terminate the EEPROM access. */
 857	sw32(mear, 0);
 858	eeprom_delay();
 859
 860	return retval;
 861}
 862
 863/* Read and write the MII management registers using software-generated
 864   serial MDIO protocol. Note that the command bits and data bits are
 865   send out separately */
 866#define mdio_delay()	sr32(mear)
 867
 868static void mdio_idle(struct sis900_private *sp)
 869{
 870	void __iomem *ioaddr = sp->ioaddr;
 871
 872	sw32(mear, MDIO | MDDIR);
 873	mdio_delay();
 874	sw32(mear, MDIO | MDDIR | MDC);
 875}
 876
 877/* Synchronize the MII management interface by shifting 32 one bits out. */
 878static void mdio_reset(struct sis900_private *sp)
 879{
 880	void __iomem *ioaddr = sp->ioaddr;
 881	int i;
 882
 883	for (i = 31; i >= 0; i--) {
 884		sw32(mear, MDDIR | MDIO);
 885		mdio_delay();
 886		sw32(mear, MDDIR | MDIO | MDC);
 887		mdio_delay();
 888	}
 889}
 890
 891/**
 892 *	mdio_read - read MII PHY register
 893 *	@net_dev: the net device to read
 894 *	@phy_id: the phy address to read
 895 *	@location: the phy register id to read
 896 *
 897 *	Read MII registers through MDIO and MDC
 898 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
 899 *	Please see SiS7014 or ICS spec
 900 */
 901
 902static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 903{
 904	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 905	struct sis900_private *sp = netdev_priv(net_dev);
 906	void __iomem *ioaddr = sp->ioaddr;
 907	u16 retval = 0;
 908	int i;
 909
 910	mdio_reset(sp);
 911	mdio_idle(sp);
 912
 913	for (i = 15; i >= 0; i--) {
 914		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 915
 916		sw32(mear, dataval);
 917		mdio_delay();
 918		sw32(mear, dataval | MDC);
 919		mdio_delay();
 920	}
 921
 922	/* Read the 16 data bits. */
 923	for (i = 16; i > 0; i--) {
 924		sw32(mear, 0);
 925		mdio_delay();
 926		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 927		sw32(mear, MDC);
 928		mdio_delay();
 929	}
 930	sw32(mear, 0x00);
 931
 932	return retval;
 933}
 934
 935/**
 936 *	mdio_write - write MII PHY register
 937 *	@net_dev: the net device to write
 938 *	@phy_id: the phy address to write
 939 *	@location: the phy register id to write
 940 *	@value: the register value to write with
 941 *
 942 *	Write MII registers with @value through MDIO and MDC
 943 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
 944 *	please see SiS7014 or ICS spec
 945 */
 946
 947static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 948			int value)
 949{
 950	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 951	struct sis900_private *sp = netdev_priv(net_dev);
 952	void __iomem *ioaddr = sp->ioaddr;
 953	int i;
 954
 955	mdio_reset(sp);
 956	mdio_idle(sp);
 957
 958	/* Shift the command bits out. */
 959	for (i = 15; i >= 0; i--) {
 960		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 961
 962		sw8(mear, dataval);
 963		mdio_delay();
 964		sw8(mear, dataval | MDC);
 965		mdio_delay();
 966	}
 967	mdio_delay();
 968
 969	/* Shift the value bits out. */
 970	for (i = 15; i >= 0; i--) {
 971		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 972
 973		sw32(mear, dataval);
 974		mdio_delay();
 975		sw32(mear, dataval | MDC);
 976		mdio_delay();
 977	}
 978	mdio_delay();
 979
 980	/* Clear out extra bits. */
 981	for (i = 2; i > 0; i--) {
 982		sw8(mear, 0);
 983		mdio_delay();
 984		sw8(mear, MDC);
 985		mdio_delay();
 986	}
 987	sw32(mear, 0x00);
 988}
 989
 990
 991/**
 992 *	sis900_reset_phy - reset sis900 mii phy.
 993 *	@net_dev: the net device to write
 994 *	@phy_addr: default phy address
 995 *
 996 *	Some specific phy can't work properly without reset.
 997 *	This function will be called during initialization and
 998 *	link status change from ON to DOWN.
 999 */
1000
1001static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1002{
1003	int i;
1004	u16 status;
1005
1006	for (i = 0; i < 2; i++)
1007		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1008
1009	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1010
1011	return status;
1012}
1013
1014#ifdef CONFIG_NET_POLL_CONTROLLER
1015/*
1016 * Polling 'interrupt' - used by things like netconsole to send skbs
1017 * without having to re-enable interrupts. It's not called while
1018 * the interrupt routine is executing.
1019*/
1020static void sis900_poll(struct net_device *dev)
1021{
1022	struct sis900_private *sp = netdev_priv(dev);
1023	const int irq = sp->pci_dev->irq;
1024
1025	disable_irq(irq);
1026	sis900_interrupt(irq, dev);
1027	enable_irq(irq);
1028}
1029#endif
1030
1031/**
1032 *	sis900_open - open sis900 device
1033 *	@net_dev: the net device to open
1034 *
1035 *	Do some initialization and start net interface.
1036 *	enable interrupts and set sis900 timer.
1037 */
1038
1039static int
1040sis900_open(struct net_device *net_dev)
1041{
1042	struct sis900_private *sis_priv = netdev_priv(net_dev);
1043	void __iomem *ioaddr = sis_priv->ioaddr;
1044	int ret;
1045
1046	/* Soft reset the chip. */
1047	sis900_reset(net_dev);
1048
1049	/* Equalizer workaround Rule */
1050	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1051
1052	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1053			  net_dev->name, net_dev);
1054	if (ret)
1055		return ret;
1056
1057	sis900_init_rxfilter(net_dev);
1058
1059	sis900_init_tx_ring(net_dev);
1060	sis900_init_rx_ring(net_dev);
1061
1062	set_rx_mode(net_dev);
1063
1064	netif_start_queue(net_dev);
1065
1066	/* Workaround for EDB */
1067	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1068
1069	/* Enable all known interrupts by setting the interrupt mask. */
1070	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1071	sw32(cr, RxENA | sr32(cr));
1072	sw32(ier, IE);
1073
1074	sis900_check_mode(net_dev, sis_priv->mii);
1075
1076	/* Set the timer to switch to check for link beat and perhaps switch
1077	   to an alternate media type. */
1078	timer_setup(&sis_priv->timer, sis900_timer, 0);
1079	sis_priv->timer.expires = jiffies + HZ;
1080	add_timer(&sis_priv->timer);
1081
1082	return 0;
1083}
1084
1085/**
1086 *	sis900_init_rxfilter - Initialize the Rx filter
1087 *	@net_dev: the net device to initialize for
1088 *
1089 *	Set receive filter address to our MAC address
1090 *	and enable packet filtering.
1091 */
1092
1093static void
1094sis900_init_rxfilter (struct net_device * net_dev)
1095{
1096	struct sis900_private *sis_priv = netdev_priv(net_dev);
1097	void __iomem *ioaddr = sis_priv->ioaddr;
1098	u32 rfcrSave;
1099	u32 i;
1100
1101	rfcrSave = sr32(rfcr);
1102
1103	/* disable packet filtering before setting filter */
1104	sw32(rfcr, rfcrSave & ~RFEN);
1105
1106	/* load MAC addr to filter data register */
1107	for (i = 0 ; i < 3 ; i++) {
1108		u32 w = (u32) *((const u16 *)(net_dev->dev_addr)+i);
1109
1110		sw32(rfcr, i << RFADDR_shift);
1111		sw32(rfdr, w);
1112
1113		if (netif_msg_hw(sis_priv)) {
1114			printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1115			       net_dev->name, i, sr32(rfdr));
1116		}
1117	}
1118
1119	/* enable packet filtering */
1120	sw32(rfcr, rfcrSave | RFEN);
1121}
1122
1123/**
1124 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1125 *	@net_dev: the net device to initialize for
1126 *
1127 *	Initialize the Tx descriptor ring,
1128 */
1129
1130static void
1131sis900_init_tx_ring(struct net_device *net_dev)
1132{
1133	struct sis900_private *sis_priv = netdev_priv(net_dev);
1134	void __iomem *ioaddr = sis_priv->ioaddr;
1135	int i;
1136
1137	sis_priv->tx_full = 0;
1138	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1139
1140	for (i = 0; i < NUM_TX_DESC; i++) {
1141		sis_priv->tx_skbuff[i] = NULL;
1142
1143		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1144			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1145		sis_priv->tx_ring[i].cmdsts = 0;
1146		sis_priv->tx_ring[i].bufptr = 0;
1147	}
1148
1149	/* load Transmit Descriptor Register */
1150	sw32(txdp, sis_priv->tx_ring_dma);
1151	if (netif_msg_hw(sis_priv))
1152		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1153		       net_dev->name, sr32(txdp));
1154}
1155
1156/**
1157 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1158 *	@net_dev: the net device to initialize for
1159 *
1160 *	Initialize the Rx descriptor ring,
1161 *	and pre-allocate receive buffers (socket buffer)
1162 */
1163
1164static void
1165sis900_init_rx_ring(struct net_device *net_dev)
1166{
1167	struct sis900_private *sis_priv = netdev_priv(net_dev);
1168	void __iomem *ioaddr = sis_priv->ioaddr;
1169	int i;
1170
1171	sis_priv->cur_rx = 0;
1172	sis_priv->dirty_rx = 0;
1173
1174	/* init RX descriptor */
1175	for (i = 0; i < NUM_RX_DESC; i++) {
1176		sis_priv->rx_skbuff[i] = NULL;
1177
1178		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1179			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1180		sis_priv->rx_ring[i].cmdsts = 0;
1181		sis_priv->rx_ring[i].bufptr = 0;
1182	}
1183
1184	/* allocate sock buffers */
1185	for (i = 0; i < NUM_RX_DESC; i++) {
1186		struct sk_buff *skb;
1187
1188		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1189			/* not enough memory for skbuff, this makes a "hole"
1190			   on the buffer ring, it is not clear how the
1191			   hardware will react to this kind of degenerated
1192			   buffer */
1193			break;
1194		}
1195		sis_priv->rx_skbuff[i] = skb;
1196		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1197		sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1198							     skb->data,
1199							     RX_BUF_SIZE,
1200							     DMA_FROM_DEVICE);
1201		if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1202					       sis_priv->rx_ring[i].bufptr))) {
1203			dev_kfree_skb(skb);
1204			sis_priv->rx_skbuff[i] = NULL;
1205			break;
1206		}
1207	}
1208	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1209
1210	/* load Receive Descriptor Register */
1211	sw32(rxdp, sis_priv->rx_ring_dma);
1212	if (netif_msg_hw(sis_priv))
1213		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1214		       net_dev->name, sr32(rxdp));
1215}
1216
1217/**
1218 *	sis630_set_eq - set phy equalizer value for 630 LAN
1219 *	@net_dev: the net device to set equalizer value
1220 *	@revision: 630 LAN revision number
1221 *
1222 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1223 *	PHY register 14h(Test)
1224 *	Bit 14: 0 -- Automatically detect (default)
1225 *		1 -- Manually set Equalizer filter
1226 *	Bit 13: 0 -- (Default)
1227 *		1 -- Speed up convergence of equalizer setting
1228 *	Bit 9 : 0 -- (Default)
1229 *		1 -- Disable Baseline Wander
1230 *	Bit 3~7   -- Equalizer filter setting
1231 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1232 *	Then calculate equalizer value
1233 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1234 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1235 *	Calculate Equalizer value:
1236 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1237 *	When the equalizer is stable, this value is not a fixed value. It will be within
1238 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1239 *	0 <= max <= 4  --> set equalizer to max
1240 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1241 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1242 */
1243
1244static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1245{
1246	struct sis900_private *sis_priv = netdev_priv(net_dev);
1247	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1248	int i, maxcount=10;
1249
1250	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1251	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1252		return;
1253
1254	if (netif_carrier_ok(net_dev)) {
1255		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1256		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1257					(0x2200 | reg14h) & 0xBFFF);
1258		for (i=0; i < maxcount; i++) {
1259			eq_value = (0x00F8 & mdio_read(net_dev,
1260					sis_priv->cur_phy, MII_RESV)) >> 3;
1261			if (i == 0)
1262				max_value=min_value=eq_value;
1263			max_value = (eq_value > max_value) ?
1264						eq_value : max_value;
1265			min_value = (eq_value < min_value) ?
1266						eq_value : min_value;
1267		}
1268		/* 630E rule to determine the equalizer value */
1269		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1270		    revision == SIS630ET_900_REV) {
1271			if (max_value < 5)
1272				eq_value = max_value;
1273			else if (max_value >= 5 && max_value < 15)
1274				eq_value = (max_value == min_value) ?
1275						max_value+2 : max_value+1;
1276			else if (max_value >= 15)
1277				eq_value=(max_value == min_value) ?
1278						max_value+6 : max_value+5;
1279		}
1280		/* 630B0&B1 rule to determine the equalizer value */
1281		if (revision == SIS630A_900_REV &&
1282		    (sis_priv->host_bridge_rev == SIS630B0 ||
1283		     sis_priv->host_bridge_rev == SIS630B1)) {
1284			if (max_value == 0)
1285				eq_value = 3;
1286			else
1287				eq_value = (max_value + min_value + 1)/2;
1288		}
1289		/* write equalizer value and setting */
1290		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1291		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1292		reg14h = (reg14h | 0x6000) & 0xFDFF;
1293		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1294	} else {
1295		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1296		if (revision == SIS630A_900_REV &&
1297		    (sis_priv->host_bridge_rev == SIS630B0 ||
1298		     sis_priv->host_bridge_rev == SIS630B1))
1299			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1300						(reg14h | 0x2200) & 0xBFFF);
1301		else
1302			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1303						(reg14h | 0x2000) & 0xBFFF);
1304	}
1305}
1306
1307/**
1308 *	sis900_timer - sis900 timer routine
1309 *	@t: timer list containing a pointer to sis900 net device
1310 *
1311 *	On each timer ticks we check two things,
1312 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1313 */
1314
1315static void sis900_timer(struct timer_list *t)
1316{
1317	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1318	struct net_device *net_dev = sis_priv->mii_info.dev;
1319	struct mii_phy *mii_phy = sis_priv->mii;
1320	static const int next_tick = 5*HZ;
1321	int speed = 0, duplex = 0;
1322	u16 status;
1323
1324	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1325	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1326
1327	/* Link OFF -> ON */
1328	if (!netif_carrier_ok(net_dev)) {
1329	LookForLink:
1330		/* Search for new PHY */
1331		status = sis900_default_phy(net_dev);
1332		mii_phy = sis_priv->mii;
1333
1334		if (status & MII_STAT_LINK) {
1335			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1336
1337			sis900_read_mode(net_dev, &speed, &duplex);
1338			if (duplex) {
1339				sis900_set_mode(sis_priv, speed, duplex);
1340				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1341				netif_carrier_on(net_dev);
1342			}
1343		}
1344	} else {
1345	/* Link ON -> OFF */
1346                if (!(status & MII_STAT_LINK)){
1347			netif_carrier_off(net_dev);
1348			if(netif_msg_link(sis_priv))
1349				printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1350
1351			/* Change mode issue */
1352			if ((mii_phy->phy_id0 == 0x001D) &&
1353				((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1354					sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1355
1356			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1357
1358			goto LookForLink;
1359                }
1360	}
1361
1362	sis_priv->timer.expires = jiffies + next_tick;
1363	add_timer(&sis_priv->timer);
1364}
1365
1366/**
1367 *	sis900_check_mode - check the media mode for sis900
1368 *	@net_dev: the net device to be checked
1369 *	@mii_phy: the mii phy
1370 *
1371 *	Older driver gets the media mode from mii status output
1372 *	register. Now we set our media capability and auto-negotiate
1373 *	to get the upper bound of speed and duplex between two ends.
1374 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1375 *	and autong_complete should be set to 1.
1376 */
1377
1378static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1379{
1380	struct sis900_private *sis_priv = netdev_priv(net_dev);
1381	void __iomem *ioaddr = sis_priv->ioaddr;
1382	int speed, duplex;
1383
1384	if (mii_phy->phy_types == LAN) {
1385		sw32(cfg, ~EXD & sr32(cfg));
1386		sis900_set_capability(net_dev , mii_phy);
1387		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1388	} else {
1389		sw32(cfg, EXD | sr32(cfg));
1390		speed = HW_SPEED_HOME;
1391		duplex = FDX_CAPABLE_HALF_SELECTED;
1392		sis900_set_mode(sis_priv, speed, duplex);
1393		sis_priv->autong_complete = 1;
1394	}
1395}
1396
1397/**
1398 *	sis900_set_mode - Set the media mode of mac register.
1399 *	@sp:     the device private data
1400 *	@speed : the transmit speed to be determined
1401 *	@duplex: the duplex mode to be determined
1402 *
1403 *	Set the media mode of mac register txcfg/rxcfg according to
1404 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1405 *	bus is used instead of PCI bus. When this bit is set 1, the
1406 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1407 *	double words.
1408 */
1409
1410static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1411{
1412	void __iomem *ioaddr = sp->ioaddr;
1413	u32 tx_flags = 0, rx_flags = 0;
1414
1415	if (sr32( cfg) & EDB_MASTER_EN) {
1416		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1417					(TX_FILL_THRESH << TxFILLT_shift);
1418		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1419	} else {
1420		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1421					(TX_FILL_THRESH << TxFILLT_shift);
1422		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1423	}
1424
1425	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1426		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1427		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1428	} else {
1429		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1430		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1431	}
1432
1433	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1434		tx_flags |= (TxCSI | TxHBI);
1435		rx_flags |= RxATX;
1436	}
1437
1438#if IS_ENABLED(CONFIG_VLAN_8021Q)
1439	/* Can accept Jumbo packet */
1440	rx_flags |= RxAJAB;
1441#endif
1442
1443	sw32(txcfg, tx_flags);
1444	sw32(rxcfg, rx_flags);
1445}
1446
1447/**
1448 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1449 *	@net_dev: the net device to read mode for
1450 *	@phy_addr: mii phy address
1451 *
1452 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1453 *	autong_complete should be set to 0 when starting auto-negotiation.
1454 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1455 *	sis900_timer will wait for link on again if autong_complete = 0.
1456 */
1457
1458static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1459{
1460	struct sis900_private *sis_priv = netdev_priv(net_dev);
1461	int i = 0;
1462	u32 status;
1463
1464	for (i = 0; i < 2; i++)
1465		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1466
1467	if (!(status & MII_STAT_LINK)){
1468		if(netif_msg_link(sis_priv))
1469			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1470		sis_priv->autong_complete = 1;
1471		netif_carrier_off(net_dev);
1472		return;
1473	}
1474
1475	/* (Re)start AutoNegotiate */
1476	mdio_write(net_dev, phy_addr, MII_CONTROL,
1477		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1478	sis_priv->autong_complete = 0;
1479}
1480
1481
1482/**
1483 *	sis900_read_mode - read media mode for sis900 internal phy
1484 *	@net_dev: the net device to read mode for
1485 *	@speed  : the transmit speed to be determined
1486 *	@duplex : the duplex mode to be determined
1487 *
1488 *	The capability of remote end will be put in mii register autorec
1489 *	after auto-negotiation. Use AND operation to get the upper bound
1490 *	of speed and duplex between two ends.
1491 */
1492
1493static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1494{
1495	struct sis900_private *sis_priv = netdev_priv(net_dev);
1496	struct mii_phy *phy = sis_priv->mii;
1497	int phy_addr = sis_priv->cur_phy;
1498	u32 status;
1499	u16 autoadv, autorec;
1500	int i;
1501
1502	for (i = 0; i < 2; i++)
1503		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1504
1505	if (!(status & MII_STAT_LINK))
1506		return;
1507
1508	/* AutoNegotiate completed */
1509	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1510	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1511	status = autoadv & autorec;
1512
1513	*speed = HW_SPEED_10_MBPS;
1514	*duplex = FDX_CAPABLE_HALF_SELECTED;
1515
1516	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1517		*speed = HW_SPEED_100_MBPS;
1518	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1519		*duplex = FDX_CAPABLE_FULL_SELECTED;
1520
1521	sis_priv->autong_complete = 1;
1522
1523	/* Workaround for Realtek RTL8201 PHY issue */
1524	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1525		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1526			*duplex = FDX_CAPABLE_FULL_SELECTED;
1527		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1528			*speed = HW_SPEED_100_MBPS;
1529	}
1530
1531	if(netif_msg_link(sis_priv))
1532		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1533	       				net_dev->name,
1534	       				*speed == HW_SPEED_100_MBPS ?
1535	       					"100mbps" : "10mbps",
1536	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1537	       					"full" : "half");
1538}
1539
1540/**
1541 *	sis900_tx_timeout - sis900 transmit timeout routine
1542 *	@net_dev: the net device to transmit
1543 *	@txqueue: index of hanging queue
1544 *
1545 *	print transmit timeout status
1546 *	disable interrupts and do some tasks
1547 */
1548
1549static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
1550{
1551	struct sis900_private *sis_priv = netdev_priv(net_dev);
1552	void __iomem *ioaddr = sis_priv->ioaddr;
1553	unsigned long flags;
1554	int i;
1555
1556	if (netif_msg_tx_err(sis_priv)) {
1557		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1558			net_dev->name, sr32(cr), sr32(isr));
1559	}
1560
1561	/* Disable interrupts by clearing the interrupt mask. */
1562	sw32(imr, 0x0000);
1563
1564	/* use spinlock to prevent interrupt handler accessing buffer ring */
1565	spin_lock_irqsave(&sis_priv->lock, flags);
1566
1567	/* discard unsent packets */
1568	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1569	for (i = 0; i < NUM_TX_DESC; i++) {
1570		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1571
1572		if (skb) {
1573			dma_unmap_single(&sis_priv->pci_dev->dev,
1574					 sis_priv->tx_ring[i].bufptr,
1575					 skb->len, DMA_TO_DEVICE);
1576			dev_kfree_skb_irq(skb);
1577			sis_priv->tx_skbuff[i] = NULL;
1578			sis_priv->tx_ring[i].cmdsts = 0;
1579			sis_priv->tx_ring[i].bufptr = 0;
1580			net_dev->stats.tx_dropped++;
1581		}
1582	}
1583	sis_priv->tx_full = 0;
1584	netif_wake_queue(net_dev);
1585
1586	spin_unlock_irqrestore(&sis_priv->lock, flags);
1587
1588	netif_trans_update(net_dev); /* prevent tx timeout */
1589
1590	/* load Transmit Descriptor Register */
1591	sw32(txdp, sis_priv->tx_ring_dma);
1592
1593	/* Enable all known interrupts by setting the interrupt mask. */
1594	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1595}
1596
1597/**
1598 *	sis900_start_xmit - sis900 start transmit routine
1599 *	@skb: socket buffer pointer to put the data being transmitted
1600 *	@net_dev: the net device to transmit with
1601 *
1602 *	Set the transmit buffer descriptor,
1603 *	and write TxENA to enable transmit state machine.
1604 *	tell upper layer if the buffer is full
1605 */
1606
1607static netdev_tx_t
1608sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1609{
1610	struct sis900_private *sis_priv = netdev_priv(net_dev);
1611	void __iomem *ioaddr = sis_priv->ioaddr;
1612	unsigned int  entry;
1613	unsigned long flags;
1614	unsigned int  index_cur_tx, index_dirty_tx;
1615	unsigned int  count_dirty_tx;
1616
1617	spin_lock_irqsave(&sis_priv->lock, flags);
1618
1619	/* Calculate the next Tx descriptor entry. */
1620	entry = sis_priv->cur_tx % NUM_TX_DESC;
1621	sis_priv->tx_skbuff[entry] = skb;
1622
1623	/* set the transmit buffer descriptor and enable Transmit State Machine */
1624	sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1625							 skb->data, skb->len,
1626							 DMA_TO_DEVICE);
1627	if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1628				       sis_priv->tx_ring[entry].bufptr))) {
1629			dev_kfree_skb_any(skb);
1630			sis_priv->tx_skbuff[entry] = NULL;
1631			net_dev->stats.tx_dropped++;
1632			spin_unlock_irqrestore(&sis_priv->lock, flags);
1633			return NETDEV_TX_OK;
1634	}
1635	sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1636	sw32(cr, TxENA | sr32(cr));
1637
1638	sis_priv->cur_tx ++;
1639	index_cur_tx = sis_priv->cur_tx;
1640	index_dirty_tx = sis_priv->dirty_tx;
1641
1642	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1643		count_dirty_tx ++;
1644
1645	if (index_cur_tx == index_dirty_tx) {
1646		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1647		sis_priv->tx_full = 1;
1648		netif_stop_queue(net_dev);
1649	} else if (count_dirty_tx < NUM_TX_DESC) {
1650		/* Typical path, tell upper layer that more transmission is possible */
1651		netif_start_queue(net_dev);
1652	} else {
1653		/* buffer full, tell upper layer no more transmission */
1654		sis_priv->tx_full = 1;
1655		netif_stop_queue(net_dev);
1656	}
1657
1658	spin_unlock_irqrestore(&sis_priv->lock, flags);
1659
1660	if (netif_msg_tx_queued(sis_priv))
1661		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1662		       "to slot %d.\n",
1663		       net_dev->name, skb->data, (int)skb->len, entry);
1664
1665	return NETDEV_TX_OK;
1666}
1667
1668/**
1669 *	sis900_interrupt - sis900 interrupt handler
1670 *	@irq: the irq number
1671 *	@dev_instance: the client data object
1672 *
1673 *	The interrupt handler does all of the Rx thread work,
1674 *	and cleans up after the Tx thread
1675 */
1676
1677static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1678{
1679	struct net_device *net_dev = dev_instance;
1680	struct sis900_private *sis_priv = netdev_priv(net_dev);
1681	int boguscnt = max_interrupt_work;
1682	void __iomem *ioaddr = sis_priv->ioaddr;
1683	u32 status;
1684	unsigned int handled = 0;
1685
1686	spin_lock (&sis_priv->lock);
1687
1688	do {
1689		status = sr32(isr);
1690
1691		if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1692			/* nothing interesting happened */
1693			break;
1694		handled = 1;
1695
1696		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1697		if (status & (RxORN | RxERR | RxOK))
1698			/* Rx interrupt */
1699			sis900_rx(net_dev);
1700
1701		if (status & (TxURN | TxERR | TxDESC))
1702			/* Tx interrupt */
1703			sis900_finish_xmit(net_dev);
1704
1705		/* something strange happened !!! */
1706		if (status & HIBERR) {
1707			if(netif_msg_intr(sis_priv))
1708				printk(KERN_INFO "%s: Abnormal interrupt, "
1709					"status %#8.8x.\n", net_dev->name, status);
1710			break;
1711		}
1712		if (--boguscnt < 0) {
1713			if(netif_msg_intr(sis_priv))
1714				printk(KERN_INFO "%s: Too much work at interrupt, "
1715					"interrupt status = %#8.8x.\n",
1716					net_dev->name, status);
1717			break;
1718		}
1719	} while (1);
1720
1721	if(netif_msg_intr(sis_priv))
1722		printk(KERN_DEBUG "%s: exiting interrupt, "
1723		       "interrupt status = %#8.8x\n",
1724		       net_dev->name, sr32(isr));
1725
1726	spin_unlock (&sis_priv->lock);
1727	return IRQ_RETVAL(handled);
1728}
1729
1730/**
1731 *	sis900_rx - sis900 receive routine
1732 *	@net_dev: the net device which receives data
1733 *
1734 *	Process receive interrupt events,
1735 *	put buffer to higher layer and refill buffer pool
1736 *	Note: This function is called by interrupt handler,
1737 *	don't do "too much" work here
1738 */
1739
1740static int sis900_rx(struct net_device *net_dev)
1741{
1742	struct sis900_private *sis_priv = netdev_priv(net_dev);
1743	void __iomem *ioaddr = sis_priv->ioaddr;
1744	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1745	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1746	int rx_work_limit;
1747
1748	if (netif_msg_rx_status(sis_priv))
1749		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1750		       "status:0x%8.8x\n",
1751		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1752	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1753
1754	while (rx_status & OWN) {
1755		unsigned int rx_size;
1756		unsigned int data_size;
1757
1758		if (--rx_work_limit < 0)
1759			break;
1760
1761		data_size = rx_status & DSIZE;
1762		rx_size = data_size - CRC_SIZE;
1763
1764#if IS_ENABLED(CONFIG_VLAN_8021Q)
1765		/* ``TOOLONG'' flag means jumbo packet received. */
1766		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1767			rx_status &= (~ ((unsigned int)TOOLONG));
1768#endif
1769
1770		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1771			/* corrupted packet received */
1772			if (netif_msg_rx_err(sis_priv))
1773				printk(KERN_DEBUG "%s: Corrupted packet "
1774				       "received, buffer status = 0x%8.8x/%d.\n",
1775				       net_dev->name, rx_status, data_size);
1776			net_dev->stats.rx_errors++;
1777			if (rx_status & OVERRUN)
1778				net_dev->stats.rx_over_errors++;
1779			if (rx_status & (TOOLONG|RUNT))
1780				net_dev->stats.rx_length_errors++;
1781			if (rx_status & (RXISERR | FAERR))
1782				net_dev->stats.rx_frame_errors++;
1783			if (rx_status & CRCERR)
1784				net_dev->stats.rx_crc_errors++;
1785			/* reset buffer descriptor state */
1786			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1787		} else {
1788			struct sk_buff * skb;
1789			struct sk_buff * rx_skb;
1790
1791			dma_unmap_single(&sis_priv->pci_dev->dev,
1792					 sis_priv->rx_ring[entry].bufptr,
1793					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1794
1795			/* refill the Rx buffer, what if there is not enough
1796			 * memory for new socket buffer ?? */
1797			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1798				/*
1799				 * Not enough memory to refill the buffer
1800				 * so we need to recycle the old one so
1801				 * as to avoid creating a memory hole
1802				 * in the rx ring
1803				 */
1804				skb = sis_priv->rx_skbuff[entry];
1805				net_dev->stats.rx_dropped++;
1806				goto refill_rx_ring;
1807			}
1808
1809			/* This situation should never happen, but due to
1810			   some unknown bugs, it is possible that
1811			   we are working on NULL sk_buff :-( */
1812			if (sis_priv->rx_skbuff[entry] == NULL) {
1813				if (netif_msg_rx_err(sis_priv))
1814					printk(KERN_WARNING "%s: NULL pointer "
1815					      "encountered in Rx ring\n"
1816					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1817					      net_dev->name, sis_priv->cur_rx,
1818					      sis_priv->dirty_rx);
1819				dev_kfree_skb(skb);
1820				break;
1821			}
1822
1823			/* give the socket buffer to upper layers */
1824			rx_skb = sis_priv->rx_skbuff[entry];
1825			skb_put(rx_skb, rx_size);
1826			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1827			netif_rx(rx_skb);
1828
1829			/* some network statistics */
1830			if ((rx_status & BCAST) == MCAST)
1831				net_dev->stats.multicast++;
1832			net_dev->stats.rx_bytes += rx_size;
1833			net_dev->stats.rx_packets++;
1834			sis_priv->dirty_rx++;
1835refill_rx_ring:
1836			sis_priv->rx_skbuff[entry] = skb;
1837			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1838			sis_priv->rx_ring[entry].bufptr =
1839				dma_map_single(&sis_priv->pci_dev->dev,
1840					       skb->data, RX_BUF_SIZE,
1841					       DMA_FROM_DEVICE);
1842			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1843						       sis_priv->rx_ring[entry].bufptr))) {
1844				dev_kfree_skb_irq(skb);
1845				sis_priv->rx_skbuff[entry] = NULL;
1846				break;
1847			}
1848		}
1849		sis_priv->cur_rx++;
1850		entry = sis_priv->cur_rx % NUM_RX_DESC;
1851		rx_status = sis_priv->rx_ring[entry].cmdsts;
1852	} // while
1853
1854	/* refill the Rx buffer, what if the rate of refilling is slower
1855	 * than consuming ?? */
1856	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1857		struct sk_buff *skb;
1858
1859		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1860
1861		if (sis_priv->rx_skbuff[entry] == NULL) {
1862			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1863			if (skb == NULL) {
1864				/* not enough memory for skbuff, this makes a
1865				 * "hole" on the buffer ring, it is not clear
1866				 * how the hardware will react to this kind
1867				 * of degenerated buffer */
1868				net_dev->stats.rx_dropped++;
1869				break;
1870			}
1871			sis_priv->rx_skbuff[entry] = skb;
1872			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1873			sis_priv->rx_ring[entry].bufptr =
1874				dma_map_single(&sis_priv->pci_dev->dev,
1875					       skb->data, RX_BUF_SIZE,
1876					       DMA_FROM_DEVICE);
1877			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1878						       sis_priv->rx_ring[entry].bufptr))) {
1879				dev_kfree_skb_irq(skb);
1880				sis_priv->rx_skbuff[entry] = NULL;
1881				break;
1882			}
1883		}
1884	}
1885	/* re-enable the potentially idle receive state matchine */
1886	sw32(cr , RxENA | sr32(cr));
1887
1888	return 0;
1889}
1890
1891/**
1892 *	sis900_finish_xmit - finish up transmission of packets
1893 *	@net_dev: the net device to be transmitted on
1894 *
1895 *	Check for error condition and free socket buffer etc
1896 *	schedule for more transmission as needed
1897 *	Note: This function is called by interrupt handler,
1898 *	don't do "too much" work here
1899 */
1900
1901static void sis900_finish_xmit (struct net_device *net_dev)
1902{
1903	struct sis900_private *sis_priv = netdev_priv(net_dev);
1904
1905	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1906		struct sk_buff *skb;
1907		unsigned int entry;
1908		u32 tx_status;
1909
1910		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1911		tx_status = sis_priv->tx_ring[entry].cmdsts;
1912
1913		if (tx_status & OWN) {
1914			/* The packet is not transmitted yet (owned by hardware) !
1915			 * Note: this is an almost impossible condition
1916			 * on TxDESC interrupt ('descriptor interrupt') */
1917			break;
1918		}
1919
1920		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1921			/* packet unsuccessfully transmitted */
1922			if (netif_msg_tx_err(sis_priv))
1923				printk(KERN_DEBUG "%s: Transmit "
1924				       "error, Tx status %8.8x.\n",
1925				       net_dev->name, tx_status);
1926			net_dev->stats.tx_errors++;
1927			if (tx_status & UNDERRUN)
1928				net_dev->stats.tx_fifo_errors++;
1929			if (tx_status & ABORT)
1930				net_dev->stats.tx_aborted_errors++;
1931			if (tx_status & NOCARRIER)
1932				net_dev->stats.tx_carrier_errors++;
1933			if (tx_status & OWCOLL)
1934				net_dev->stats.tx_window_errors++;
1935		} else {
1936			/* packet successfully transmitted */
1937			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1938			net_dev->stats.tx_bytes += tx_status & DSIZE;
1939			net_dev->stats.tx_packets++;
1940		}
1941		/* Free the original skb. */
1942		skb = sis_priv->tx_skbuff[entry];
1943		dma_unmap_single(&sis_priv->pci_dev->dev,
1944				 sis_priv->tx_ring[entry].bufptr, skb->len,
1945				 DMA_TO_DEVICE);
1946		dev_consume_skb_irq(skb);
1947		sis_priv->tx_skbuff[entry] = NULL;
1948		sis_priv->tx_ring[entry].bufptr = 0;
1949		sis_priv->tx_ring[entry].cmdsts = 0;
1950	}
1951
1952	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1953	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1954		/* The ring is no longer full, clear tx_full and schedule
1955		 * more transmission by netif_wake_queue(net_dev) */
1956		sis_priv->tx_full = 0;
1957		netif_wake_queue (net_dev);
1958	}
1959}
1960
1961/**
1962 *	sis900_close - close sis900 device
1963 *	@net_dev: the net device to be closed
1964 *
1965 *	Disable interrupts, stop the Tx and Rx Status Machine
1966 *	free Tx and RX socket buffer
1967 */
1968
1969static int sis900_close(struct net_device *net_dev)
1970{
1971	struct sis900_private *sis_priv = netdev_priv(net_dev);
1972	struct pci_dev *pdev = sis_priv->pci_dev;
1973	void __iomem *ioaddr = sis_priv->ioaddr;
1974	struct sk_buff *skb;
1975	int i;
1976
1977	netif_stop_queue(net_dev);
1978
1979	/* Disable interrupts by clearing the interrupt mask. */
1980	sw32(imr, 0x0000);
1981	sw32(ier, 0x0000);
1982
1983	/* Stop the chip's Tx and Rx Status Machine */
1984	sw32(cr, RxDIS | TxDIS | sr32(cr));
1985
1986	del_timer(&sis_priv->timer);
1987
1988	free_irq(pdev->irq, net_dev);
1989
1990	/* Free Tx and RX skbuff */
1991	for (i = 0; i < NUM_RX_DESC; i++) {
1992		skb = sis_priv->rx_skbuff[i];
1993		if (skb) {
1994			dma_unmap_single(&pdev->dev,
1995					 sis_priv->rx_ring[i].bufptr,
1996					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1997			dev_kfree_skb(skb);
1998			sis_priv->rx_skbuff[i] = NULL;
1999		}
2000	}
2001	for (i = 0; i < NUM_TX_DESC; i++) {
2002		skb = sis_priv->tx_skbuff[i];
2003		if (skb) {
2004			dma_unmap_single(&pdev->dev,
2005					 sis_priv->tx_ring[i].bufptr,
2006					 skb->len, DMA_TO_DEVICE);
2007			dev_kfree_skb(skb);
2008			sis_priv->tx_skbuff[i] = NULL;
2009		}
2010	}
2011
2012	/* Green! Put the chip in low-power mode. */
2013
2014	return 0;
2015}
2016
2017/**
2018 *	sis900_get_drvinfo - Return information about driver
2019 *	@net_dev: the net device to probe
2020 *	@info: container for info returned
2021 *
2022 *	Process ethtool command such as "ehtool -i" to show information
2023 */
2024
2025static void sis900_get_drvinfo(struct net_device *net_dev,
2026			       struct ethtool_drvinfo *info)
2027{
2028	struct sis900_private *sis_priv = netdev_priv(net_dev);
2029
2030	strscpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2031	strscpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2032	strscpy(info->bus_info, pci_name(sis_priv->pci_dev),
2033		sizeof(info->bus_info));
2034}
2035
2036static u32 sis900_get_msglevel(struct net_device *net_dev)
2037{
2038	struct sis900_private *sis_priv = netdev_priv(net_dev);
2039	return sis_priv->msg_enable;
2040}
2041
2042static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2043{
2044	struct sis900_private *sis_priv = netdev_priv(net_dev);
2045	sis_priv->msg_enable = value;
2046}
2047
2048static u32 sis900_get_link(struct net_device *net_dev)
2049{
2050	struct sis900_private *sis_priv = netdev_priv(net_dev);
2051	return mii_link_ok(&sis_priv->mii_info);
2052}
2053
2054static int sis900_get_link_ksettings(struct net_device *net_dev,
2055				     struct ethtool_link_ksettings *cmd)
2056{
2057	struct sis900_private *sis_priv = netdev_priv(net_dev);
2058	spin_lock_irq(&sis_priv->lock);
2059	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2060	spin_unlock_irq(&sis_priv->lock);
2061	return 0;
2062}
2063
2064static int sis900_set_link_ksettings(struct net_device *net_dev,
2065				     const struct ethtool_link_ksettings *cmd)
2066{
2067	struct sis900_private *sis_priv = netdev_priv(net_dev);
2068	int rt;
2069	spin_lock_irq(&sis_priv->lock);
2070	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2071	spin_unlock_irq(&sis_priv->lock);
2072	return rt;
2073}
2074
2075static int sis900_nway_reset(struct net_device *net_dev)
2076{
2077	struct sis900_private *sis_priv = netdev_priv(net_dev);
2078	return mii_nway_restart(&sis_priv->mii_info);
2079}
2080
2081/**
2082 *	sis900_set_wol - Set up Wake on Lan registers
2083 *	@net_dev: the net device to probe
2084 *	@wol: container for info passed to the driver
2085 *
2086 *	Process ethtool command "wol" to setup wake on lan features.
2087 *	SiS900 supports sending WoL events if a correct packet is received,
2088 *	but there is no simple way to filter them to only a subset (broadcast,
2089 *	multicast, unicast or arp).
2090 */
2091
2092static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2093{
2094	struct sis900_private *sis_priv = netdev_priv(net_dev);
2095	void __iomem *ioaddr = sis_priv->ioaddr;
2096	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2097
2098	if (wol->wolopts == 0) {
2099		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2100		cfgpmcsr &= ~PME_EN;
2101		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2102		sw32(pmctrl, pmctrl_bits);
2103		if (netif_msg_wol(sis_priv))
2104			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2105		return 0;
2106	}
2107
2108	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2109				| WAKE_BCAST | WAKE_ARP))
2110		return -EINVAL;
2111
2112	if (wol->wolopts & WAKE_MAGIC)
2113		pmctrl_bits |= MAGICPKT;
2114	if (wol->wolopts & WAKE_PHY)
2115		pmctrl_bits |= LINKON;
2116
2117	sw32(pmctrl, pmctrl_bits);
2118
2119	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2120	cfgpmcsr |= PME_EN;
2121	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2122	if (netif_msg_wol(sis_priv))
2123		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2124
2125	return 0;
2126}
2127
2128static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2129{
2130	struct sis900_private *sp = netdev_priv(net_dev);
2131	void __iomem *ioaddr = sp->ioaddr;
2132	u32 pmctrl_bits;
2133
2134	pmctrl_bits = sr32(pmctrl);
2135	if (pmctrl_bits & MAGICPKT)
2136		wol->wolopts |= WAKE_MAGIC;
2137	if (pmctrl_bits & LINKON)
2138		wol->wolopts |= WAKE_PHY;
2139
2140	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2141}
2142
2143static int sis900_get_eeprom_len(struct net_device *dev)
2144{
2145	struct sis900_private *sis_priv = netdev_priv(dev);
2146
2147	return sis_priv->eeprom_size;
2148}
2149
2150static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2151{
2152	struct sis900_private *sis_priv = netdev_priv(net_dev);
2153	void __iomem *ioaddr = sis_priv->ioaddr;
2154	int wait, ret = -EAGAIN;
2155	u16 signature;
2156	u16 *ebuf = (u16 *)buf;
2157	int i;
2158
2159	if (sis_priv->chipset_rev == SIS96x_900_REV) {
2160		sw32(mear, EEREQ);
2161		for (wait = 0; wait < 2000; wait++) {
2162			if (sr32(mear) & EEGNT) {
2163				/* read 16 bits, and index by 16 bits */
2164				for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2165					ebuf[i] = (u16)read_eeprom(ioaddr, i);
2166				ret = 0;
2167				break;
2168			}
2169			udelay(1);
2170		}
2171		sw32(mear, EEDONE);
2172	} else {
2173		signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2174		if (signature != 0xffff && signature != 0x0000) {
2175			/* read 16 bits, and index by 16 bits */
2176			for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2177				ebuf[i] = (u16)read_eeprom(ioaddr, i);
2178			ret = 0;
2179		}
2180	}
2181	return ret;
2182}
2183
2184#define SIS900_EEPROM_MAGIC	0xBABE
2185static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2186{
2187	struct sis900_private *sis_priv = netdev_priv(dev);
2188	u8 *eebuf;
2189	int res;
2190
2191	eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2192	if (!eebuf)
2193		return -ENOMEM;
2194
2195	eeprom->magic = SIS900_EEPROM_MAGIC;
2196	spin_lock_irq(&sis_priv->lock);
2197	res = sis900_read_eeprom(dev, eebuf);
2198	spin_unlock_irq(&sis_priv->lock);
2199	if (!res)
2200		memcpy(data, eebuf + eeprom->offset, eeprom->len);
2201	kfree(eebuf);
2202	return res;
2203}
2204
2205static const struct ethtool_ops sis900_ethtool_ops = {
2206	.get_drvinfo 	= sis900_get_drvinfo,
2207	.get_msglevel	= sis900_get_msglevel,
2208	.set_msglevel	= sis900_set_msglevel,
2209	.get_link	= sis900_get_link,
2210	.nway_reset	= sis900_nway_reset,
2211	.get_wol	= sis900_get_wol,
2212	.set_wol	= sis900_set_wol,
2213	.get_link_ksettings = sis900_get_link_ksettings,
2214	.set_link_ksettings = sis900_set_link_ksettings,
2215	.get_eeprom_len = sis900_get_eeprom_len,
2216	.get_eeprom = sis900_get_eeprom,
2217};
2218
2219/**
2220 *	mii_ioctl - process MII i/o control command
2221 *	@net_dev: the net device to command for
2222 *	@rq: parameter for command
2223 *	@cmd: the i/o command
2224 *
2225 *	Process MII command like read/write MII register
2226 */
2227
2228static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2229{
2230	struct sis900_private *sis_priv = netdev_priv(net_dev);
2231	struct mii_ioctl_data *data = if_mii(rq);
2232
2233	switch(cmd) {
2234	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2235		data->phy_id = sis_priv->mii->phy_addr;
2236		fallthrough;
2237
2238	case SIOCGMIIREG:		/* Read MII PHY register. */
2239		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2240		return 0;
2241
2242	case SIOCSMIIREG:		/* Write MII PHY register. */
2243		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2244		return 0;
2245	default:
2246		return -EOPNOTSUPP;
2247	}
2248}
2249
2250/**
2251 *	sis900_set_config - Set media type by net_device.set_config
2252 *	@dev: the net device for media type change
2253 *	@map: ifmap passed by ifconfig
2254 *
2255 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2256 *	we support only port changes. All other runtime configuration
2257 *	changes will be ignored
2258 */
2259
2260static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2261{
2262	struct sis900_private *sis_priv = netdev_priv(dev);
2263	struct mii_phy *mii_phy = sis_priv->mii;
2264
2265	u16 status;
2266
2267	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2268		/* we switch on the ifmap->port field. I couldn't find anything
2269		 * like a definition or standard for the values of that field.
2270		 * I think the meaning of those values is device specific. But
2271		 * since I would like to change the media type via the ifconfig
2272		 * command I use the definition from linux/netdevice.h
2273		 * (which seems to be different from the ifport(pcmcia) definition) */
2274		switch(map->port){
2275		case IF_PORT_UNKNOWN: /* use auto here */
2276			dev->if_port = map->port;
2277			/* we are going to change the media type, so the Link
2278			 * will be temporary down and we need to reflect that
2279			 * here. When the Link comes up again, it will be
2280			 * sensed by the sis_timer procedure, which also does
2281			 * all the rest for us */
2282			netif_carrier_off(dev);
2283
2284			/* read current state */
2285			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2286
2287			/* enable auto negotiation and reset the negotioation
2288			 * (I don't really know what the auto negatiotiation
2289			 * reset really means, but it sounds for me right to
2290			 * do one here) */
2291			mdio_write(dev, mii_phy->phy_addr,
2292				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2293
2294			break;
2295
2296		case IF_PORT_10BASET: /* 10BaseT */
2297			dev->if_port = map->port;
2298
2299			/* we are going to change the media type, so the Link
2300			 * will be temporary down and we need to reflect that
2301			 * here. When the Link comes up again, it will be
2302			 * sensed by the sis_timer procedure, which also does
2303			 * all the rest for us */
2304			netif_carrier_off(dev);
2305
2306			/* set Speed to 10Mbps */
2307			/* read current state */
2308			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2309
2310			/* disable auto negotiation and force 10MBit mode*/
2311			mdio_write(dev, mii_phy->phy_addr,
2312				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2313					MII_CNTL_AUTO));
2314			break;
2315
2316		case IF_PORT_100BASET: /* 100BaseT */
2317		case IF_PORT_100BASETX: /* 100BaseTx */
2318			dev->if_port = map->port;
2319
2320			/* we are going to change the media type, so the Link
2321			 * will be temporary down and we need to reflect that
2322			 * here. When the Link comes up again, it will be
2323			 * sensed by the sis_timer procedure, which also does
2324			 * all the rest for us */
2325			netif_carrier_off(dev);
2326
2327			/* set Speed to 100Mbps */
2328			/* disable auto negotiation and enable 100MBit Mode */
2329			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2330			mdio_write(dev, mii_phy->phy_addr,
2331				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2332				   MII_CNTL_SPEED);
2333
2334			break;
2335
2336		case IF_PORT_10BASE2: /* 10Base2 */
2337		case IF_PORT_AUI: /* AUI */
2338		case IF_PORT_100BASEFX: /* 100BaseFx */
2339			/* These Modes are not supported (are they?)*/
2340			return -EOPNOTSUPP;
2341
2342		default:
2343			return -EINVAL;
2344		}
2345	}
2346	return 0;
2347}
2348
2349/**
2350 *	sis900_mcast_bitnr - compute hashtable index
2351 *	@addr: multicast address
2352 *	@revision: revision id of chip
2353 *
2354 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2355 *	hash table, which makes this function a little bit different from other drivers
2356 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2357 *   	multicast hash table.
2358 */
2359
2360static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2361{
2362
2363	u32 crc = ether_crc(6, addr);
2364
2365	/* leave 8 or 7 most siginifant bits */
2366	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2367		return (int)(crc >> 24);
2368	else
2369		return (int)(crc >> 25);
2370}
2371
2372/**
2373 *	set_rx_mode - Set SiS900 receive mode
2374 *	@net_dev: the net device to be set
2375 *
2376 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2377 *	And set the appropriate multicast filter.
2378 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2379 */
2380
2381static void set_rx_mode(struct net_device *net_dev)
2382{
2383	struct sis900_private *sis_priv = netdev_priv(net_dev);
2384	void __iomem *ioaddr = sis_priv->ioaddr;
2385	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2386	int i, table_entries;
2387	u32 rx_mode;
2388
2389	/* 635 Hash Table entries = 256(2^16) */
2390	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2391			(sis_priv->chipset_rev == SIS900B_900_REV))
2392		table_entries = 16;
2393	else
2394		table_entries = 8;
2395
2396	if (net_dev->flags & IFF_PROMISC) {
2397		/* Accept any kinds of packets */
2398		rx_mode = RFPromiscuous;
2399		for (i = 0; i < table_entries; i++)
2400			mc_filter[i] = 0xffff;
2401	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2402		   (net_dev->flags & IFF_ALLMULTI)) {
2403		/* too many multicast addresses or accept all multicast packet */
2404		rx_mode = RFAAB | RFAAM;
2405		for (i = 0; i < table_entries; i++)
2406			mc_filter[i] = 0xffff;
2407	} else {
2408		/* Accept Broadcast packet, destination address matchs our
2409		 * MAC address, use Receive Filter to reject unwanted MCAST
2410		 * packets */
2411		struct netdev_hw_addr *ha;
2412		rx_mode = RFAAB;
2413
2414		netdev_for_each_mc_addr(ha, net_dev) {
2415			unsigned int bit_nr;
2416
2417			bit_nr = sis900_mcast_bitnr(ha->addr,
2418						    sis_priv->chipset_rev);
2419			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2420		}
2421	}
2422
2423	/* update Multicast Hash Table in Receive Filter */
2424	for (i = 0; i < table_entries; i++) {
2425                /* why plus 0x04 ??, That makes the correct value for hash table. */
2426		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2427		sw32(rfdr, mc_filter[i]);
2428	}
2429
2430	sw32(rfcr, RFEN | rx_mode);
2431
2432	/* sis900 is capable of looping back packets at MAC level for
2433	 * debugging purpose */
2434	if (net_dev->flags & IFF_LOOPBACK) {
2435		u32 cr_saved;
2436		/* We must disable Tx/Rx before setting loopback mode */
2437		cr_saved = sr32(cr);
2438		sw32(cr, cr_saved | TxDIS | RxDIS);
2439		/* enable loopback */
2440		sw32(txcfg, sr32(txcfg) | TxMLB);
2441		sw32(rxcfg, sr32(rxcfg) | RxATX);
2442		/* restore cr */
2443		sw32(cr, cr_saved);
2444	}
2445}
2446
2447/**
2448 *	sis900_reset - Reset sis900 MAC
2449 *	@net_dev: the net device to reset
2450 *
2451 *	reset sis900 MAC and wait until finished
2452 *	reset through command register
2453 *	change backoff algorithm for 900B0 & 635 M/B
2454 */
2455
2456static void sis900_reset(struct net_device *net_dev)
2457{
2458	struct sis900_private *sis_priv = netdev_priv(net_dev);
2459	void __iomem *ioaddr = sis_priv->ioaddr;
2460	u32 status = TxRCMP | RxRCMP;
2461	int i;
2462
2463	sw32(ier, 0);
2464	sw32(imr, 0);
2465	sw32(rfcr, 0);
2466
2467	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2468
2469	/* Check that the chip has finished the reset. */
2470	for (i = 0; status && (i < 1000); i++)
2471		status ^= sr32(isr) & status;
2472
2473	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2474	    sis_priv->chipset_rev == SIS900B_900_REV)
2475		sw32(cfg, PESEL | RND_CNT);
2476	else
2477		sw32(cfg, PESEL);
2478}
2479
2480/**
2481 *	sis900_remove - Remove sis900 device
2482 *	@pci_dev: the pci device to be removed
2483 *
2484 *	remove and release SiS900 net device
2485 */
2486
2487static void sis900_remove(struct pci_dev *pci_dev)
2488{
2489	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2490	struct sis900_private *sis_priv = netdev_priv(net_dev);
2491
2492	unregister_netdev(net_dev);
2493
2494	while (sis_priv->first_mii) {
2495		struct mii_phy *phy = sis_priv->first_mii;
2496
2497		sis_priv->first_mii = phy->next;
2498		kfree(phy);
2499	}
2500
2501	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2502			  sis_priv->rx_ring_dma);
2503	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2504			  sis_priv->tx_ring_dma);
2505	pci_iounmap(pci_dev, sis_priv->ioaddr);
2506	free_netdev(net_dev);
2507}
2508
2509static int __maybe_unused sis900_suspend(struct device *dev)
2510{
2511	struct net_device *net_dev = dev_get_drvdata(dev);
2512	struct sis900_private *sis_priv = netdev_priv(net_dev);
2513	void __iomem *ioaddr = sis_priv->ioaddr;
2514
2515	if(!netif_running(net_dev))
2516		return 0;
2517
2518	netif_stop_queue(net_dev);
2519	netif_device_detach(net_dev);
2520
2521	/* Stop the chip's Tx and Rx Status Machine */
2522	sw32(cr, RxDIS | TxDIS | sr32(cr));
2523
2524	return 0;
2525}
2526
2527static int __maybe_unused sis900_resume(struct device *dev)
2528{
2529	struct net_device *net_dev = dev_get_drvdata(dev);
2530	struct sis900_private *sis_priv = netdev_priv(net_dev);
2531	void __iomem *ioaddr = sis_priv->ioaddr;
2532
2533	if(!netif_running(net_dev))
2534		return 0;
2535
2536	sis900_init_rxfilter(net_dev);
2537
2538	sis900_init_tx_ring(net_dev);
2539	sis900_init_rx_ring(net_dev);
2540
2541	set_rx_mode(net_dev);
2542
2543	netif_device_attach(net_dev);
2544	netif_start_queue(net_dev);
2545
2546	/* Workaround for EDB */
2547	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2548
2549	/* Enable all known interrupts by setting the interrupt mask. */
2550	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2551	sw32(cr, RxENA | sr32(cr));
2552	sw32(ier, IE);
2553
2554	sis900_check_mode(net_dev, sis_priv->mii);
2555
2556	return 0;
2557}
2558
2559static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume);
2560
2561static struct pci_driver sis900_pci_driver = {
2562	.name		= SIS900_MODULE_NAME,
2563	.id_table	= sis900_pci_tbl,
2564	.probe		= sis900_probe,
2565	.remove		= sis900_remove,
2566	.driver.pm	= &sis900_pm_ops,
2567};
2568
2569static int __init sis900_init_module(void)
2570{
2571/* when a module, this is printed whether or not devices are found in probe */
2572#ifdef MODULE
2573	printk(version);
2574#endif
2575
2576	return pci_register_driver(&sis900_pci_driver);
2577}
2578
2579static void __exit sis900_cleanup_module(void)
2580{
2581	pci_unregister_driver(&sis900_pci_driver);
2582}
2583
2584module_init(sis900_init_module);
2585module_exit(sis900_cleanup_module);
2586