Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v3.1.
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:	1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <linux/uaccess.h>	/* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93	(NETIF_MSG_DRV		| \
  94	 NETIF_MSG_LINK		| \
  95	 NETIF_MSG_RX_ERR	| \
  96	 NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102	SIS_900 = 0,
 103	SIS_7016
 104};
 105static const char * card_names[] = {
 106	"SiS 900 PCI Fast Ethernet",
 107	"SiS 7016 PCI Fast Ethernet"
 108};
 109
 110static const struct pci_device_id sis900_pci_tbl[] = {
 111	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 112	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 113	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 114	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 115	{0,}
 116};
 117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 118
 119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 120
 121static const struct mii_chip_info {
 122	const char * name;
 123	u16 phy_id0;
 124	u16 phy_id1;
 125	u8  phy_types;
 126#define	HOME 	0x0001
 127#define LAN	0x0002
 128#define MIX	0x0003
 129#define UNKNOWN	0x0
 130} mii_chip_table[] = {
 131	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
 132	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
 133	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 134	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 135	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
 136	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
 137	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
 138	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
 139	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
 140	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
 141	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 142	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
 143	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
 144	{NULL,},
 145};
 146
 147struct mii_phy {
 148	struct mii_phy * next;
 149	int phy_addr;
 150	u16 phy_id0;
 151	u16 phy_id1;
 152	u16 status;
 153	u8  phy_types;
 154};
 155
 156typedef struct _BufferDesc {
 157	u32 link;
 158	u32 cmdsts;
 159	u32 bufptr;
 160} BufferDesc;
 161
 162struct sis900_private {
 163	struct pci_dev * pci_dev;
 164
 165	spinlock_t lock;
 166
 167	struct mii_phy * mii;
 168	struct mii_phy * first_mii; /* record the first mii structure */
 169	unsigned int cur_phy;
 170	struct mii_if_info mii_info;
 171
 172	void __iomem	*ioaddr;
 173
 174	struct timer_list timer; /* Link status detection timer. */
 175	u8 autong_complete; /* 1: auto-negotiate complete  */
 176
 177	u32 msg_enable;
 178
 179	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
 180	unsigned int cur_tx, dirty_tx;
 181
 182	/* The saved address of a sent/receive-in-place packet buffer */
 183	struct sk_buff *tx_skbuff[NUM_TX_DESC];
 184	struct sk_buff *rx_skbuff[NUM_RX_DESC];
 185	BufferDesc *tx_ring;
 186	BufferDesc *rx_ring;
 187
 188	dma_addr_t tx_ring_dma;
 189	dma_addr_t rx_ring_dma;
 190
 191	unsigned int tx_full; /* The Tx queue is full. */
 192	u8 host_bridge_rev;
 193	u8 chipset_rev;
 194};
 195
 196MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 197MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 198MODULE_LICENSE("GPL");
 199
 200module_param(multicast_filter_limit, int, 0444);
 201module_param(max_interrupt_work, int, 0444);
 202module_param(sis900_debug, int, 0444);
 203MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 204MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 205MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 206
 207#define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
 208#define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
 209#define sr32(reg)	ioread32(ioaddr + (reg))
 210#define sr16(reg)	ioread16(ioaddr + (reg))
 211
 212#ifdef CONFIG_NET_POLL_CONTROLLER
 213static void sis900_poll(struct net_device *dev);
 214#endif
 215static int sis900_open(struct net_device *net_dev);
 216static int sis900_mii_probe (struct net_device * net_dev);
 217static void sis900_init_rxfilter (struct net_device * net_dev);
 218static u16 read_eeprom(void __iomem *ioaddr, int location);
 219static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 220static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 221static void sis900_timer(struct timer_list *t);
 222static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 223static void sis900_tx_timeout(struct net_device *net_dev);
 224static void sis900_init_tx_ring(struct net_device *net_dev);
 225static void sis900_init_rx_ring(struct net_device *net_dev);
 226static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 227				     struct net_device *net_dev);
 228static int sis900_rx(struct net_device *net_dev);
 229static void sis900_finish_xmit (struct net_device *net_dev);
 230static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 231static int sis900_close(struct net_device *net_dev);
 232static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 233static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 234static void set_rx_mode(struct net_device *net_dev);
 235static void sis900_reset(struct net_device *net_dev);
 236static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 237static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 238static u16 sis900_default_phy(struct net_device * net_dev);
 239static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 240static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 241static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 242static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 243static const struct ethtool_ops sis900_ethtool_ops;
 244
 245/**
 246 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 247 *	@pci_dev: the sis900 pci device
 248 *	@net_dev: the net device to get address for
 249 *
 250 *	Older SiS900 and friends, use EEPROM to store MAC address.
 251 *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
 252 */
 253
 254static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 255			       struct net_device *net_dev)
 256{
 257	struct sis900_private *sis_priv = netdev_priv(net_dev);
 258	void __iomem *ioaddr = sis_priv->ioaddr;
 259	u16 signature;
 260	int i;
 261
 262	/* check to see if we have sane EEPROM */
 263	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 264	if (signature == 0xffff || signature == 0x0000) {
 265		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
 266			pci_name(pci_dev), signature);
 267		return 0;
 268	}
 269
 270	/* get MAC address from EEPROM */
 271	for (i = 0; i < 3; i++)
 272	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 273
 274	return 1;
 275}
 276
 277/**
 278 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
 279 *	@pci_dev: the sis900 pci device
 280 *	@net_dev: the net device to get address for
 281 *
 282 *	SiS630E model, use APC CMOS RAM to store MAC address.
 283 *	APC CMOS RAM is accessed through ISA bridge.
 284 *	MAC address is read into @net_dev->dev_addr.
 285 */
 286
 287static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 288				struct net_device *net_dev)
 289{
 290	struct pci_dev *isa_bridge = NULL;
 291	u8 reg;
 292	int i;
 293
 294	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 295	if (!isa_bridge)
 296		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 297	if (!isa_bridge) {
 298		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 299		       pci_name(pci_dev));
 300		return 0;
 301	}
 302	pci_read_config_byte(isa_bridge, 0x48, &reg);
 303	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 304
 305	for (i = 0; i < 6; i++) {
 306		outb(0x09 + i, 0x70);
 307		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 308	}
 309
 310	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 311	pci_dev_put(isa_bridge);
 312
 313	return 1;
 314}
 315
 316
 317/**
 318 *	sis635_get_mac_addr - Get MAC address for SIS635 model
 319 *	@pci_dev: the sis900 pci device
 320 *	@net_dev: the net device to get address for
 321 *
 322 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
 323 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
 324 *	@net_dev->dev_addr.
 325 */
 326
 327static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 328			       struct net_device *net_dev)
 329{
 330	struct sis900_private *sis_priv = netdev_priv(net_dev);
 331	void __iomem *ioaddr = sis_priv->ioaddr;
 332	u32 rfcrSave;
 333	u32 i;
 334
 335	rfcrSave = sr32(rfcr);
 336
 337	sw32(cr, rfcrSave | RELOAD);
 338	sw32(cr, 0);
 339
 340	/* disable packet filtering before setting filter */
 341	sw32(rfcr, rfcrSave & ~RFEN);
 342
 343	/* load MAC addr to filter data register */
 344	for (i = 0 ; i < 3 ; i++) {
 345		sw32(rfcr, (i << RFADDR_shift));
 346		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
 347	}
 348
 349	/* enable packet filtering */
 350	sw32(rfcr, rfcrSave | RFEN);
 351
 352	return 1;
 353}
 354
 355/**
 356 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 357 *	@pci_dev: the sis900 pci device
 358 *	@net_dev: the net device to get address for
 359 *
 360 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 361 *	is shared by
 362 *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
 363 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
 364 *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
 365 *	EEDONE signal to refuse EEPROM access by LAN.
 366 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
 367 *	The signature field in SiS962 or SiS963 spec is meaningless.
 368 *	MAC address is read into @net_dev->dev_addr.
 369 */
 370
 371static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 372			       struct net_device *net_dev)
 373{
 374	struct sis900_private *sis_priv = netdev_priv(net_dev);
 375	void __iomem *ioaddr = sis_priv->ioaddr;
 376	int wait, rc = 0;
 377
 378	sw32(mear, EEREQ);
 379	for (wait = 0; wait < 2000; wait++) {
 380		if (sr32(mear) & EEGNT) {
 381			u16 *mac = (u16 *)net_dev->dev_addr;
 382			int i;
 383
 384			/* get MAC address from EEPROM */
 385			for (i = 0; i < 3; i++)
 386			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 387
 388			rc = 1;
 389			break;
 390		}
 391		udelay(1);
 392	}
 393	sw32(mear, EEDONE);
 394	return rc;
 395}
 396
 397static const struct net_device_ops sis900_netdev_ops = {
 398	.ndo_open		 = sis900_open,
 399	.ndo_stop		= sis900_close,
 400	.ndo_start_xmit		= sis900_start_xmit,
 401	.ndo_set_config		= sis900_set_config,
 402	.ndo_set_rx_mode	= set_rx_mode,
 403	.ndo_validate_addr	= eth_validate_addr,
 404	.ndo_set_mac_address 	= eth_mac_addr,
 405	.ndo_do_ioctl		= mii_ioctl,
 406	.ndo_tx_timeout		= sis900_tx_timeout,
 407#ifdef CONFIG_NET_POLL_CONTROLLER
 408        .ndo_poll_controller	= sis900_poll,
 409#endif
 410};
 411
 412/**
 413 *	sis900_probe - Probe for sis900 device
 414 *	@pci_dev: the sis900 pci device
 415 *	@pci_id: the pci device ID
 416 *
 417 *	Check and probe sis900 net device for @pci_dev.
 418 *	Get mac address according to the chip revision,
 419 *	and assign SiS900-specific entries in the device structure.
 420 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 421 */
 422
 423static int sis900_probe(struct pci_dev *pci_dev,
 424			const struct pci_device_id *pci_id)
 425{
 426	struct sis900_private *sis_priv;
 427	struct net_device *net_dev;
 428	struct pci_dev *dev;
 429	dma_addr_t ring_dma;
 430	void *ring_space;
 431	void __iomem *ioaddr;
 432	int i, ret;
 433	const char *card_name = card_names[pci_id->driver_data];
 434	const char *dev_name = pci_name(pci_dev);
 435
 436/* when built into the kernel, we only print version if device is found */
 437#ifndef MODULE
 438	static int printed_version;
 439	if (!printed_version++)
 440		printk(version);
 441#endif
 442
 443	/* setup various bits in PCI command register */
 444	ret = pci_enable_device(pci_dev);
 445	if(ret) return ret;
 446
 447	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
 448	if(i){
 449		printk(KERN_ERR "sis900.c: architecture does not support "
 450			"32bit PCI busmaster DMA\n");
 451		return i;
 452	}
 453
 454	pci_set_master(pci_dev);
 455
 456	net_dev = alloc_etherdev(sizeof(struct sis900_private));
 457	if (!net_dev)
 458		return -ENOMEM;
 459	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 460
 461	/* We do a request_region() to register /proc/ioports info. */
 462	ret = pci_request_regions(pci_dev, "sis900");
 463	if (ret)
 464		goto err_out;
 465
 466	/* IO region. */
 467	ioaddr = pci_iomap(pci_dev, 0, 0);
 468	if (!ioaddr) {
 469		ret = -ENOMEM;
 470		goto err_out_cleardev;
 471	}
 472
 473	sis_priv = netdev_priv(net_dev);
 474	sis_priv->ioaddr = ioaddr;
 475	sis_priv->pci_dev = pci_dev;
 476	spin_lock_init(&sis_priv->lock);
 477
 478	pci_set_drvdata(pci_dev, net_dev);
 479
 480	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 481	if (!ring_space) {
 482		ret = -ENOMEM;
 483		goto err_out_unmap;
 484	}
 485	sis_priv->tx_ring = ring_space;
 486	sis_priv->tx_ring_dma = ring_dma;
 487
 488	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 489	if (!ring_space) {
 490		ret = -ENOMEM;
 491		goto err_unmap_tx;
 492	}
 493	sis_priv->rx_ring = ring_space;
 494	sis_priv->rx_ring_dma = ring_dma;
 495
 496	/* The SiS900-specific entries in the device structure. */
 497	net_dev->netdev_ops = &sis900_netdev_ops;
 498	net_dev->watchdog_timeo = TX_TIMEOUT;
 499	net_dev->ethtool_ops = &sis900_ethtool_ops;
 500
 501	if (sis900_debug > 0)
 502		sis_priv->msg_enable = sis900_debug;
 503	else
 504		sis_priv->msg_enable = SIS900_DEF_MSG;
 505
 506	sis_priv->mii_info.dev = net_dev;
 507	sis_priv->mii_info.mdio_read = mdio_read;
 508	sis_priv->mii_info.mdio_write = mdio_write;
 509	sis_priv->mii_info.phy_id_mask = 0x1f;
 510	sis_priv->mii_info.reg_num_mask = 0x1f;
 511
 512	/* Get Mac address according to the chip revision */
 513	sis_priv->chipset_rev = pci_dev->revision;
 514	if(netif_msg_probe(sis_priv))
 515		printk(KERN_DEBUG "%s: detected revision %2.2x, "
 516				"trying to get MAC address...\n",
 517				dev_name, sis_priv->chipset_rev);
 518
 519	ret = 0;
 520	if (sis_priv->chipset_rev == SIS630E_900_REV)
 521		ret = sis630e_get_mac_addr(pci_dev, net_dev);
 522	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 523		ret = sis635_get_mac_addr(pci_dev, net_dev);
 524	else if (sis_priv->chipset_rev == SIS96x_900_REV)
 525		ret = sis96x_get_mac_addr(pci_dev, net_dev);
 526	else
 527		ret = sis900_get_mac_addr(pci_dev, net_dev);
 528
 529	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 530		eth_hw_addr_random(net_dev);
 531		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 532				"using random generated one\n", dev_name);
 533	}
 534
 535	/* 630ET : set the mii access mode as software-mode */
 536	if (sis_priv->chipset_rev == SIS630ET_900_REV)
 537		sw32(cr, ACCESSMODE | sr32(cr));
 538
 539	/* probe for mii transceiver */
 540	if (sis900_mii_probe(net_dev) == 0) {
 541		printk(KERN_WARNING "%s: Error probing MII device.\n",
 542		       dev_name);
 543		ret = -ENODEV;
 544		goto err_unmap_rx;
 545	}
 546
 547	/* save our host bridge revision */
 548	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 549	if (dev) {
 550		sis_priv->host_bridge_rev = dev->revision;
 551		pci_dev_put(dev);
 552	}
 553
 554	ret = register_netdev(net_dev);
 555	if (ret)
 556		goto err_unmap_rx;
 557
 558	/* print some information about our NIC */
 559	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 560	       net_dev->name, card_name, ioaddr, pci_dev->irq,
 561	       net_dev->dev_addr);
 562
 563	/* Detect Wake on Lan support */
 564	ret = (sr32(CFGPMC) & PMESP) >> 27;
 565	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 566		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 567
 568	return 0;
 569
 570err_unmap_rx:
 571	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 572		sis_priv->rx_ring_dma);
 573err_unmap_tx:
 574	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 575		sis_priv->tx_ring_dma);
 576err_out_unmap:
 577	pci_iounmap(pci_dev, ioaddr);
 578err_out_cleardev:
 579	pci_release_regions(pci_dev);
 580 err_out:
 581	free_netdev(net_dev);
 582	return ret;
 583}
 584
 585/**
 586 *	sis900_mii_probe - Probe MII PHY for sis900
 587 *	@net_dev: the net device to probe for
 588 *
 589 *	Search for total of 32 possible mii phy addresses.
 590 *	Identify and set current phy if found one,
 591 *	return error if it failed to found.
 592 */
 593
 594static int sis900_mii_probe(struct net_device *net_dev)
 595{
 596	struct sis900_private *sis_priv = netdev_priv(net_dev);
 597	const char *dev_name = pci_name(sis_priv->pci_dev);
 598	u16 poll_bit = MII_STAT_LINK, status = 0;
 599	unsigned long timeout = jiffies + 5 * HZ;
 600	int phy_addr;
 601
 602	sis_priv->mii = NULL;
 603
 604	/* search for total of 32 possible mii phy addresses */
 605	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 606		struct mii_phy * mii_phy = NULL;
 607		u16 mii_status;
 608		int i;
 609
 610		mii_phy = NULL;
 611		for(i = 0; i < 2; i++)
 612			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 613
 614		if (mii_status == 0xffff || mii_status == 0x0000) {
 615			if (netif_msg_probe(sis_priv))
 616				printk(KERN_DEBUG "%s: MII at address %d"
 617						" not accessible\n",
 618						dev_name, phy_addr);
 619			continue;
 620		}
 621
 622		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 623			mii_phy = sis_priv->first_mii;
 624			while (mii_phy) {
 625				struct mii_phy *phy;
 626				phy = mii_phy;
 627				mii_phy = mii_phy->next;
 628				kfree(phy);
 629			}
 630			return 0;
 631		}
 632
 633		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 634		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 635		mii_phy->phy_addr = phy_addr;
 636		mii_phy->status = mii_status;
 637		mii_phy->next = sis_priv->mii;
 638		sis_priv->mii = mii_phy;
 639		sis_priv->first_mii = mii_phy;
 640
 641		for (i = 0; mii_chip_table[i].phy_id1; i++)
 642			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 643			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 644				mii_phy->phy_types = mii_chip_table[i].phy_types;
 645				if (mii_chip_table[i].phy_types == MIX)
 646					mii_phy->phy_types =
 647					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 648				printk(KERN_INFO "%s: %s transceiver found "
 649							"at address %d.\n",
 650							dev_name,
 651							mii_chip_table[i].name,
 652							phy_addr);
 653				break;
 654			}
 655
 656		if( !mii_chip_table[i].phy_id1 ) {
 657			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 658			       dev_name, phy_addr);
 659			mii_phy->phy_types = UNKNOWN;
 660		}
 661	}
 662
 663	if (sis_priv->mii == NULL) {
 664		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 665		return 0;
 666	}
 667
 668	/* select default PHY for mac */
 669	sis_priv->mii = NULL;
 670	sis900_default_phy( net_dev );
 671
 672	/* Reset phy if default phy is internal sis900 */
 673        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 674	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 675        	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 676
 677        /* workaround for ICS1893 PHY */
 678        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 679            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 680            	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 681
 682	if(status & MII_STAT_LINK){
 683		while (poll_bit) {
 684			yield();
 685
 686			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 687			if (time_after_eq(jiffies, timeout)) {
 688				printk(KERN_WARNING "%s: reset phy and link down now\n",
 689				       dev_name);
 690				return -ETIME;
 691			}
 692		}
 693	}
 694
 695	if (sis_priv->chipset_rev == SIS630E_900_REV) {
 696		/* SiS 630E has some bugs on default value of PHY registers */
 697		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 698		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 699		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 700		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 701		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 702	}
 703
 704	if (sis_priv->mii->status & MII_STAT_LINK)
 705		netif_carrier_on(net_dev);
 706	else
 707		netif_carrier_off(net_dev);
 708
 709	return 1;
 710}
 711
 712/**
 713 *	sis900_default_phy - Select default PHY for sis900 mac.
 714 *	@net_dev: the net device to probe for
 715 *
 716 *	Select first detected PHY with link as default.
 717 *	If no one is link on, select PHY whose types is HOME as default.
 718 *	If HOME doesn't exist, select LAN.
 719 */
 720
 721static u16 sis900_default_phy(struct net_device * net_dev)
 722{
 723	struct sis900_private *sis_priv = netdev_priv(net_dev);
 724 	struct mii_phy *phy = NULL, *phy_home = NULL,
 725		*default_phy = NULL, *phy_lan = NULL;
 726	u16 status;
 727
 728        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 729		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 730		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 731
 732		/* Link ON & Not select default PHY & not ghost PHY */
 733		 if ((status & MII_STAT_LINK) && !default_phy &&
 734					(phy->phy_types != UNKNOWN))
 735		 	default_phy = phy;
 736		 else {
 737			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 738			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 739				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 740			if (phy->phy_types == HOME)
 741				phy_home = phy;
 742			else if(phy->phy_types == LAN)
 743				phy_lan = phy;
 744		 }
 745	}
 746
 747	if (!default_phy && phy_home)
 748		default_phy = phy_home;
 749	else if (!default_phy && phy_lan)
 750		default_phy = phy_lan;
 751	else if (!default_phy)
 752		default_phy = sis_priv->first_mii;
 753
 754	if (sis_priv->mii != default_phy) {
 755		sis_priv->mii = default_phy;
 756		sis_priv->cur_phy = default_phy->phy_addr;
 757		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 758		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 759	}
 760
 761	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 762
 763	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 764	status &= (~MII_CNTL_ISOLATE);
 765
 766	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 767	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 768	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 769
 770	return status;
 771}
 772
 773
 774/**
 775 * 	sis900_set_capability - set the media capability of network adapter.
 776 *	@net_dev : the net device to probe for
 777 *	@phy : default PHY
 778 *
 779 *	Set the media capability of network adapter according to
 780 *	mii status register. It's necessary before auto-negotiate.
 781 */
 782
 783static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 784{
 785	u16 cap;
 786	u16 status;
 787
 788	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 789	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 790
 791	cap = MII_NWAY_CSMA_CD |
 792		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 793		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 794		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 795		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 796
 797	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 798}
 799
 800
 801/* Delay between EEPROM clock transitions. */
 802#define eeprom_delay()	sr32(mear)
 803
 804/**
 805 *	read_eeprom - Read Serial EEPROM
 806 *	@ioaddr: base i/o address
 807 *	@location: the EEPROM location to read
 808 *
 809 *	Read Serial EEPROM through EEPROM Access Register.
 810 *	Note that location is in word (16 bits) unit
 811 */
 812
 813static u16 read_eeprom(void __iomem *ioaddr, int location)
 814{
 815	u32 read_cmd = location | EEread;
 816	int i;
 817	u16 retval = 0;
 818
 819	sw32(mear, 0);
 820	eeprom_delay();
 821	sw32(mear, EECS);
 822	eeprom_delay();
 823
 824	/* Shift the read command (9) bits out. */
 825	for (i = 8; i >= 0; i--) {
 826		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 827
 828		sw32(mear, dataval);
 829		eeprom_delay();
 830		sw32(mear, dataval | EECLK);
 831		eeprom_delay();
 832	}
 833	sw32(mear, EECS);
 834	eeprom_delay();
 835
 836	/* read the 16-bits data in */
 837	for (i = 16; i > 0; i--) {
 838		sw32(mear, EECS);
 839		eeprom_delay();
 840		sw32(mear, EECS | EECLK);
 841		eeprom_delay();
 842		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 843		eeprom_delay();
 844	}
 845
 846	/* Terminate the EEPROM access. */
 847	sw32(mear, 0);
 848	eeprom_delay();
 849
 850	return retval;
 851}
 852
 853/* Read and write the MII management registers using software-generated
 854   serial MDIO protocol. Note that the command bits and data bits are
 855   send out separately */
 856#define mdio_delay()	sr32(mear)
 857
 858static void mdio_idle(struct sis900_private *sp)
 859{
 860	void __iomem *ioaddr = sp->ioaddr;
 861
 862	sw32(mear, MDIO | MDDIR);
 863	mdio_delay();
 864	sw32(mear, MDIO | MDDIR | MDC);
 865}
 866
 867/* Synchronize the MII management interface by shifting 32 one bits out. */
 868static void mdio_reset(struct sis900_private *sp)
 869{
 870	void __iomem *ioaddr = sp->ioaddr;
 871	int i;
 872
 873	for (i = 31; i >= 0; i--) {
 874		sw32(mear, MDDIR | MDIO);
 875		mdio_delay();
 876		sw32(mear, MDDIR | MDIO | MDC);
 877		mdio_delay();
 878	}
 879}
 880
 881/**
 882 *	mdio_read - read MII PHY register
 883 *	@net_dev: the net device to read
 884 *	@phy_id: the phy address to read
 885 *	@location: the phy regiester id to read
 886 *
 887 *	Read MII registers through MDIO and MDC
 888 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
 889 *	Please see SiS7014 or ICS spec
 890 */
 891
 892static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 893{
 894	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 895	struct sis900_private *sp = netdev_priv(net_dev);
 896	void __iomem *ioaddr = sp->ioaddr;
 897	u16 retval = 0;
 898	int i;
 899
 900	mdio_reset(sp);
 901	mdio_idle(sp);
 902
 903	for (i = 15; i >= 0; i--) {
 904		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 905
 906		sw32(mear, dataval);
 907		mdio_delay();
 908		sw32(mear, dataval | MDC);
 909		mdio_delay();
 910	}
 911
 912	/* Read the 16 data bits. */
 913	for (i = 16; i > 0; i--) {
 914		sw32(mear, 0);
 915		mdio_delay();
 916		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 917		sw32(mear, MDC);
 918		mdio_delay();
 919	}
 920	sw32(mear, 0x00);
 921
 922	return retval;
 923}
 924
 925/**
 926 *	mdio_write - write MII PHY register
 927 *	@net_dev: the net device to write
 928 *	@phy_id: the phy address to write
 929 *	@location: the phy regiester id to write
 930 *	@value: the register value to write with
 931 *
 932 *	Write MII registers with @value through MDIO and MDC
 933 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
 934 *	please see SiS7014 or ICS spec
 935 */
 936
 937static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 938			int value)
 939{
 940	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 941	struct sis900_private *sp = netdev_priv(net_dev);
 942	void __iomem *ioaddr = sp->ioaddr;
 943	int i;
 944
 945	mdio_reset(sp);
 946	mdio_idle(sp);
 947
 948	/* Shift the command bits out. */
 949	for (i = 15; i >= 0; i--) {
 950		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 951
 952		sw8(mear, dataval);
 953		mdio_delay();
 954		sw8(mear, dataval | MDC);
 955		mdio_delay();
 956	}
 957	mdio_delay();
 958
 959	/* Shift the value bits out. */
 960	for (i = 15; i >= 0; i--) {
 961		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 962
 963		sw32(mear, dataval);
 964		mdio_delay();
 965		sw32(mear, dataval | MDC);
 966		mdio_delay();
 967	}
 968	mdio_delay();
 969
 970	/* Clear out extra bits. */
 971	for (i = 2; i > 0; i--) {
 972		sw8(mear, 0);
 973		mdio_delay();
 974		sw8(mear, MDC);
 975		mdio_delay();
 976	}
 977	sw32(mear, 0x00);
 978}
 979
 980
 981/**
 982 *	sis900_reset_phy - reset sis900 mii phy.
 983 *	@net_dev: the net device to write
 984 *	@phy_addr: default phy address
 985 *
 986 *	Some specific phy can't work properly without reset.
 987 *	This function will be called during initialization and
 988 *	link status change from ON to DOWN.
 989 */
 990
 991static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
 992{
 993	int i;
 994	u16 status;
 995
 996	for (i = 0; i < 2; i++)
 997		status = mdio_read(net_dev, phy_addr, MII_STATUS);
 998
 999	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1000
1001	return status;
1002}
1003
1004#ifdef CONFIG_NET_POLL_CONTROLLER
1005/*
1006 * Polling 'interrupt' - used by things like netconsole to send skbs
1007 * without having to re-enable interrupts. It's not called while
1008 * the interrupt routine is executing.
1009*/
1010static void sis900_poll(struct net_device *dev)
1011{
1012	struct sis900_private *sp = netdev_priv(dev);
1013	const int irq = sp->pci_dev->irq;
1014
1015	disable_irq(irq);
1016	sis900_interrupt(irq, dev);
1017	enable_irq(irq);
1018}
1019#endif
1020
1021/**
1022 *	sis900_open - open sis900 device
1023 *	@net_dev: the net device to open
1024 *
1025 *	Do some initialization and start net interface.
1026 *	enable interrupts and set sis900 timer.
1027 */
1028
1029static int
1030sis900_open(struct net_device *net_dev)
1031{
1032	struct sis900_private *sis_priv = netdev_priv(net_dev);
1033	void __iomem *ioaddr = sis_priv->ioaddr;
1034	int ret;
1035
1036	/* Soft reset the chip. */
1037	sis900_reset(net_dev);
1038
1039	/* Equalizer workaround Rule */
1040	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1041
1042	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043			  net_dev->name, net_dev);
1044	if (ret)
1045		return ret;
1046
1047	sis900_init_rxfilter(net_dev);
1048
1049	sis900_init_tx_ring(net_dev);
1050	sis900_init_rx_ring(net_dev);
1051
1052	set_rx_mode(net_dev);
1053
1054	netif_start_queue(net_dev);
1055
1056	/* Workaround for EDB */
1057	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1058
1059	/* Enable all known interrupts by setting the interrupt mask. */
1060	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1061	sw32(cr, RxENA | sr32(cr));
1062	sw32(ier, IE);
1063
1064	sis900_check_mode(net_dev, sis_priv->mii);
1065
1066	/* Set the timer to switch to check for link beat and perhaps switch
1067	   to an alternate media type. */
1068	timer_setup(&sis_priv->timer, sis900_timer, 0);
1069	sis_priv->timer.expires = jiffies + HZ;
1070	add_timer(&sis_priv->timer);
1071
1072	return 0;
1073}
1074
1075/**
1076 *	sis900_init_rxfilter - Initialize the Rx filter
1077 *	@net_dev: the net device to initialize for
1078 *
1079 *	Set receive filter address to our MAC address
1080 *	and enable packet filtering.
1081 */
1082
1083static void
1084sis900_init_rxfilter (struct net_device * net_dev)
1085{
1086	struct sis900_private *sis_priv = netdev_priv(net_dev);
1087	void __iomem *ioaddr = sis_priv->ioaddr;
1088	u32 rfcrSave;
1089	u32 i;
1090
1091	rfcrSave = sr32(rfcr);
1092
1093	/* disable packet filtering before setting filter */
1094	sw32(rfcr, rfcrSave & ~RFEN);
1095
1096	/* load MAC addr to filter data register */
1097	for (i = 0 ; i < 3 ; i++) {
1098		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1099
1100		sw32(rfcr, i << RFADDR_shift);
1101		sw32(rfdr, w);
1102
1103		if (netif_msg_hw(sis_priv)) {
1104			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1105			       net_dev->name, i, sr32(rfdr));
1106		}
1107	}
1108
1109	/* enable packet filtering */
1110	sw32(rfcr, rfcrSave | RFEN);
1111}
1112
1113/**
1114 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1115 *	@net_dev: the net device to initialize for
1116 *
1117 *	Initialize the Tx descriptor ring,
1118 */
1119
1120static void
1121sis900_init_tx_ring(struct net_device *net_dev)
1122{
1123	struct sis900_private *sis_priv = netdev_priv(net_dev);
1124	void __iomem *ioaddr = sis_priv->ioaddr;
1125	int i;
1126
1127	sis_priv->tx_full = 0;
1128	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1129
1130	for (i = 0; i < NUM_TX_DESC; i++) {
1131		sis_priv->tx_skbuff[i] = NULL;
1132
1133		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1134			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1135		sis_priv->tx_ring[i].cmdsts = 0;
1136		sis_priv->tx_ring[i].bufptr = 0;
1137	}
1138
1139	/* load Transmit Descriptor Register */
1140	sw32(txdp, sis_priv->tx_ring_dma);
1141	if (netif_msg_hw(sis_priv))
1142		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1143		       net_dev->name, sr32(txdp));
1144}
1145
1146/**
1147 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1148 *	@net_dev: the net device to initialize for
1149 *
1150 *	Initialize the Rx descriptor ring,
1151 *	and pre-allocate recevie buffers (socket buffer)
1152 */
1153
1154static void
1155sis900_init_rx_ring(struct net_device *net_dev)
1156{
1157	struct sis900_private *sis_priv = netdev_priv(net_dev);
1158	void __iomem *ioaddr = sis_priv->ioaddr;
1159	int i;
1160
1161	sis_priv->cur_rx = 0;
1162	sis_priv->dirty_rx = 0;
1163
1164	/* init RX descriptor */
1165	for (i = 0; i < NUM_RX_DESC; i++) {
1166		sis_priv->rx_skbuff[i] = NULL;
1167
1168		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1169			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1170		sis_priv->rx_ring[i].cmdsts = 0;
1171		sis_priv->rx_ring[i].bufptr = 0;
1172	}
1173
1174	/* allocate sock buffers */
1175	for (i = 0; i < NUM_RX_DESC; i++) {
1176		struct sk_buff *skb;
1177
1178		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1179			/* not enough memory for skbuff, this makes a "hole"
1180			   on the buffer ring, it is not clear how the
1181			   hardware will react to this kind of degenerated
1182			   buffer */
1183			break;
1184		}
1185		sis_priv->rx_skbuff[i] = skb;
1186		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1187		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1188				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1189		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1190				sis_priv->rx_ring[i].bufptr))) {
1191			dev_kfree_skb(skb);
1192			sis_priv->rx_skbuff[i] = NULL;
1193			break;
1194		}
1195	}
1196	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1197
1198	/* load Receive Descriptor Register */
1199	sw32(rxdp, sis_priv->rx_ring_dma);
1200	if (netif_msg_hw(sis_priv))
1201		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1202		       net_dev->name, sr32(rxdp));
1203}
1204
1205/**
1206 *	sis630_set_eq - set phy equalizer value for 630 LAN
1207 *	@net_dev: the net device to set equalizer value
1208 *	@revision: 630 LAN revision number
1209 *
1210 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1211 *	PHY register 14h(Test)
1212 *	Bit 14: 0 -- Automatically detect (default)
1213 *		1 -- Manually set Equalizer filter
1214 *	Bit 13: 0 -- (Default)
1215 *		1 -- Speed up convergence of equalizer setting
1216 *	Bit 9 : 0 -- (Default)
1217 *		1 -- Disable Baseline Wander
1218 *	Bit 3~7   -- Equalizer filter setting
1219 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1220 *	Then calculate equalizer value
1221 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1222 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1223 *	Calculate Equalizer value:
1224 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1225 *	When the equalizer is stable, this value is not a fixed value. It will be within
1226 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1227 *	0 <= max <= 4  --> set equalizer to max
1228 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1229 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1230 */
1231
1232static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1233{
1234	struct sis900_private *sis_priv = netdev_priv(net_dev);
1235	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1236	int i, maxcount=10;
1237
1238	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1239	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1240		return;
1241
1242	if (netif_carrier_ok(net_dev)) {
1243		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1244		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1245					(0x2200 | reg14h) & 0xBFFF);
1246		for (i=0; i < maxcount; i++) {
1247			eq_value = (0x00F8 & mdio_read(net_dev,
1248					sis_priv->cur_phy, MII_RESV)) >> 3;
1249			if (i == 0)
1250				max_value=min_value=eq_value;
1251			max_value = (eq_value > max_value) ?
1252						eq_value : max_value;
1253			min_value = (eq_value < min_value) ?
1254						eq_value : min_value;
1255		}
1256		/* 630E rule to determine the equalizer value */
1257		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1258		    revision == SIS630ET_900_REV) {
1259			if (max_value < 5)
1260				eq_value = max_value;
1261			else if (max_value >= 5 && max_value < 15)
1262				eq_value = (max_value == min_value) ?
1263						max_value+2 : max_value+1;
1264			else if (max_value >= 15)
1265				eq_value=(max_value == min_value) ?
1266						max_value+6 : max_value+5;
1267		}
1268		/* 630B0&B1 rule to determine the equalizer value */
1269		if (revision == SIS630A_900_REV &&
1270		    (sis_priv->host_bridge_rev == SIS630B0 ||
1271		     sis_priv->host_bridge_rev == SIS630B1)) {
1272			if (max_value == 0)
1273				eq_value = 3;
1274			else
1275				eq_value = (max_value + min_value + 1)/2;
1276		}
1277		/* write equalizer value and setting */
1278		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1279		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1280		reg14h = (reg14h | 0x6000) & 0xFDFF;
1281		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1282	} else {
1283		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1284		if (revision == SIS630A_900_REV &&
1285		    (sis_priv->host_bridge_rev == SIS630B0 ||
1286		     sis_priv->host_bridge_rev == SIS630B1))
1287			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1288						(reg14h | 0x2200) & 0xBFFF);
1289		else
1290			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291						(reg14h | 0x2000) & 0xBFFF);
1292	}
1293}
1294
1295/**
1296 *	sis900_timer - sis900 timer routine
1297 *	@data: pointer to sis900 net device
1298 *
1299 *	On each timer ticks we check two things,
1300 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1301 */
1302
1303static void sis900_timer(struct timer_list *t)
1304{
1305	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1306	struct net_device *net_dev = sis_priv->mii_info.dev;
1307	struct mii_phy *mii_phy = sis_priv->mii;
1308	static const int next_tick = 5*HZ;
1309	int speed = 0, duplex = 0;
1310	u16 status;
1311
1312	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1314
1315	/* Link OFF -> ON */
1316	if (!netif_carrier_ok(net_dev)) {
1317	LookForLink:
1318		/* Search for new PHY */
1319		status = sis900_default_phy(net_dev);
1320		mii_phy = sis_priv->mii;
1321
1322		if (status & MII_STAT_LINK) {
1323			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1324
1325			sis900_read_mode(net_dev, &speed, &duplex);
1326			if (duplex) {
1327				sis900_set_mode(sis_priv, speed, duplex);
1328				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1329				netif_carrier_on(net_dev);
1330			}
1331		}
1332	} else {
1333	/* Link ON -> OFF */
1334                if (!(status & MII_STAT_LINK)){
1335                	netif_carrier_off(net_dev);
1336			if(netif_msg_link(sis_priv))
1337                		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1338
1339                	/* Change mode issue */
1340                	if ((mii_phy->phy_id0 == 0x001D) &&
1341			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1342               			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1343
1344			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1345
1346                	goto LookForLink;
1347                }
1348	}
1349
1350	sis_priv->timer.expires = jiffies + next_tick;
1351	add_timer(&sis_priv->timer);
1352}
1353
1354/**
1355 *	sis900_check_mode - check the media mode for sis900
1356 *	@net_dev: the net device to be checked
1357 *	@mii_phy: the mii phy
1358 *
1359 *	Older driver gets the media mode from mii status output
1360 *	register. Now we set our media capability and auto-negotiate
1361 *	to get the upper bound of speed and duplex between two ends.
1362 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1363 *	and autong_complete should be set to 1.
1364 */
1365
1366static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1367{
1368	struct sis900_private *sis_priv = netdev_priv(net_dev);
1369	void __iomem *ioaddr = sis_priv->ioaddr;
1370	int speed, duplex;
1371
1372	if (mii_phy->phy_types == LAN) {
1373		sw32(cfg, ~EXD & sr32(cfg));
1374		sis900_set_capability(net_dev , mii_phy);
1375		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1376	} else {
1377		sw32(cfg, EXD | sr32(cfg));
1378		speed = HW_SPEED_HOME;
1379		duplex = FDX_CAPABLE_HALF_SELECTED;
1380		sis900_set_mode(sis_priv, speed, duplex);
1381		sis_priv->autong_complete = 1;
1382	}
1383}
1384
1385/**
1386 *	sis900_set_mode - Set the media mode of mac register.
1387 *	@sp:     the device private data
1388 *	@speed : the transmit speed to be determined
1389 *	@duplex: the duplex mode to be determined
1390 *
1391 *	Set the media mode of mac register txcfg/rxcfg according to
1392 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1393 *	bus is used instead of PCI bus. When this bit is set 1, the
1394 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1395 *	double words.
1396 */
1397
1398static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1399{
1400	void __iomem *ioaddr = sp->ioaddr;
1401	u32 tx_flags = 0, rx_flags = 0;
1402
1403	if (sr32( cfg) & EDB_MASTER_EN) {
1404		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1405					(TX_FILL_THRESH << TxFILLT_shift);
1406		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1407	} else {
1408		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1409					(TX_FILL_THRESH << TxFILLT_shift);
1410		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1411	}
1412
1413	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1414		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1415		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1416	} else {
1417		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1418		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1419	}
1420
1421	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1422		tx_flags |= (TxCSI | TxHBI);
1423		rx_flags |= RxATX;
1424	}
1425
1426#if IS_ENABLED(CONFIG_VLAN_8021Q)
1427	/* Can accept Jumbo packet */
1428	rx_flags |= RxAJAB;
1429#endif
1430
1431	sw32(txcfg, tx_flags);
1432	sw32(rxcfg, rx_flags);
1433}
1434
1435/**
1436 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1437 *	@net_dev: the net device to read mode for
1438 *	@phy_addr: mii phy address
1439 *
1440 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1441 *	autong_complete should be set to 0 when starting auto-negotiation.
1442 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1443 *	sis900_timer will wait for link on again if autong_complete = 0.
1444 */
1445
1446static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1447{
1448	struct sis900_private *sis_priv = netdev_priv(net_dev);
1449	int i = 0;
1450	u32 status;
1451
1452	for (i = 0; i < 2; i++)
1453		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1454
1455	if (!(status & MII_STAT_LINK)){
1456		if(netif_msg_link(sis_priv))
1457			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1458		sis_priv->autong_complete = 1;
1459		netif_carrier_off(net_dev);
1460		return;
1461	}
1462
1463	/* (Re)start AutoNegotiate */
1464	mdio_write(net_dev, phy_addr, MII_CONTROL,
1465		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1466	sis_priv->autong_complete = 0;
1467}
1468
1469
1470/**
1471 *	sis900_read_mode - read media mode for sis900 internal phy
1472 *	@net_dev: the net device to read mode for
1473 *	@speed  : the transmit speed to be determined
1474 *	@duplex : the duplex mode to be determined
1475 *
1476 *	The capability of remote end will be put in mii register autorec
1477 *	after auto-negotiation. Use AND operation to get the upper bound
1478 *	of speed and duplex between two ends.
1479 */
1480
1481static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1482{
1483	struct sis900_private *sis_priv = netdev_priv(net_dev);
1484	struct mii_phy *phy = sis_priv->mii;
1485	int phy_addr = sis_priv->cur_phy;
1486	u32 status;
1487	u16 autoadv, autorec;
1488	int i;
1489
1490	for (i = 0; i < 2; i++)
1491		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1492
1493	if (!(status & MII_STAT_LINK))
1494		return;
1495
1496	/* AutoNegotiate completed */
1497	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1498	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1499	status = autoadv & autorec;
1500
1501	*speed = HW_SPEED_10_MBPS;
1502	*duplex = FDX_CAPABLE_HALF_SELECTED;
1503
1504	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1505		*speed = HW_SPEED_100_MBPS;
1506	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1507		*duplex = FDX_CAPABLE_FULL_SELECTED;
1508
1509	sis_priv->autong_complete = 1;
1510
1511	/* Workaround for Realtek RTL8201 PHY issue */
1512	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1513		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1514			*duplex = FDX_CAPABLE_FULL_SELECTED;
1515		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1516			*speed = HW_SPEED_100_MBPS;
1517	}
1518
1519	if(netif_msg_link(sis_priv))
1520		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1521	       				net_dev->name,
1522	       				*speed == HW_SPEED_100_MBPS ?
1523	       					"100mbps" : "10mbps",
1524	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1525	       					"full" : "half");
1526}
1527
1528/**
1529 *	sis900_tx_timeout - sis900 transmit timeout routine
1530 *	@net_dev: the net device to transmit
1531 *
1532 *	print transmit timeout status
1533 *	disable interrupts and do some tasks
1534 */
1535
1536static void sis900_tx_timeout(struct net_device *net_dev)
1537{
1538	struct sis900_private *sis_priv = netdev_priv(net_dev);
1539	void __iomem *ioaddr = sis_priv->ioaddr;
1540	unsigned long flags;
1541	int i;
1542
1543	if (netif_msg_tx_err(sis_priv)) {
1544		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1545			net_dev->name, sr32(cr), sr32(isr));
1546	}
1547
1548	/* Disable interrupts by clearing the interrupt mask. */
1549	sw32(imr, 0x0000);
1550
1551	/* use spinlock to prevent interrupt handler accessing buffer ring */
1552	spin_lock_irqsave(&sis_priv->lock, flags);
1553
1554	/* discard unsent packets */
1555	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1556	for (i = 0; i < NUM_TX_DESC; i++) {
1557		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1558
1559		if (skb) {
1560			pci_unmap_single(sis_priv->pci_dev,
1561				sis_priv->tx_ring[i].bufptr, skb->len,
1562				PCI_DMA_TODEVICE);
1563			dev_kfree_skb_irq(skb);
1564			sis_priv->tx_skbuff[i] = NULL;
1565			sis_priv->tx_ring[i].cmdsts = 0;
1566			sis_priv->tx_ring[i].bufptr = 0;
1567			net_dev->stats.tx_dropped++;
1568		}
1569	}
1570	sis_priv->tx_full = 0;
1571	netif_wake_queue(net_dev);
1572
1573	spin_unlock_irqrestore(&sis_priv->lock, flags);
1574
1575	netif_trans_update(net_dev); /* prevent tx timeout */
1576
1577	/* load Transmit Descriptor Register */
1578	sw32(txdp, sis_priv->tx_ring_dma);
1579
1580	/* Enable all known interrupts by setting the interrupt mask. */
1581	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1582}
1583
1584/**
1585 *	sis900_start_xmit - sis900 start transmit routine
1586 *	@skb: socket buffer pointer to put the data being transmitted
1587 *	@net_dev: the net device to transmit with
1588 *
1589 *	Set the transmit buffer descriptor,
1590 *	and write TxENA to enable transmit state machine.
1591 *	tell upper layer if the buffer is full
1592 */
1593
1594static netdev_tx_t
1595sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1596{
1597	struct sis900_private *sis_priv = netdev_priv(net_dev);
1598	void __iomem *ioaddr = sis_priv->ioaddr;
1599	unsigned int  entry;
1600	unsigned long flags;
1601	unsigned int  index_cur_tx, index_dirty_tx;
1602	unsigned int  count_dirty_tx;
1603
1604	spin_lock_irqsave(&sis_priv->lock, flags);
1605
1606	/* Calculate the next Tx descriptor entry. */
1607	entry = sis_priv->cur_tx % NUM_TX_DESC;
1608	sis_priv->tx_skbuff[entry] = skb;
1609
1610	/* set the transmit buffer descriptor and enable Transmit State Machine */
1611	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1612		skb->data, skb->len, PCI_DMA_TODEVICE);
1613	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1614		sis_priv->tx_ring[entry].bufptr))) {
1615			dev_kfree_skb_any(skb);
1616			sis_priv->tx_skbuff[entry] = NULL;
1617			net_dev->stats.tx_dropped++;
1618			spin_unlock_irqrestore(&sis_priv->lock, flags);
1619			return NETDEV_TX_OK;
1620	}
1621	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1622	sw32(cr, TxENA | sr32(cr));
1623
1624	sis_priv->cur_tx ++;
1625	index_cur_tx = sis_priv->cur_tx;
1626	index_dirty_tx = sis_priv->dirty_tx;
1627
1628	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1629		count_dirty_tx ++;
1630
1631	if (index_cur_tx == index_dirty_tx) {
1632		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1633		sis_priv->tx_full = 1;
1634		netif_stop_queue(net_dev);
1635	} else if (count_dirty_tx < NUM_TX_DESC) {
1636		/* Typical path, tell upper layer that more transmission is possible */
1637		netif_start_queue(net_dev);
1638	} else {
1639		/* buffer full, tell upper layer no more transmission */
1640		sis_priv->tx_full = 1;
1641		netif_stop_queue(net_dev);
1642	}
1643
1644	spin_unlock_irqrestore(&sis_priv->lock, flags);
1645
1646	if (netif_msg_tx_queued(sis_priv))
1647		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1648		       "to slot %d.\n",
1649		       net_dev->name, skb->data, (int)skb->len, entry);
1650
1651	return NETDEV_TX_OK;
1652}
1653
1654/**
1655 *	sis900_interrupt - sis900 interrupt handler
1656 *	@irq: the irq number
1657 *	@dev_instance: the client data object
1658 *
1659 *	The interrupt handler does all of the Rx thread work,
1660 *	and cleans up after the Tx thread
1661 */
1662
1663static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1664{
1665	struct net_device *net_dev = dev_instance;
1666	struct sis900_private *sis_priv = netdev_priv(net_dev);
1667	int boguscnt = max_interrupt_work;
1668	void __iomem *ioaddr = sis_priv->ioaddr;
1669	u32 status;
1670	unsigned int handled = 0;
1671
1672	spin_lock (&sis_priv->lock);
1673
1674	do {
1675		status = sr32(isr);
1676
1677		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1678			/* nothing intresting happened */
1679			break;
1680		handled = 1;
1681
1682		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1683		if (status & (RxORN | RxERR | RxOK))
1684			/* Rx interrupt */
1685			sis900_rx(net_dev);
1686
1687		if (status & (TxURN | TxERR | TxIDLE))
1688			/* Tx interrupt */
1689			sis900_finish_xmit(net_dev);
1690
1691		/* something strange happened !!! */
1692		if (status & HIBERR) {
1693			if(netif_msg_intr(sis_priv))
1694				printk(KERN_INFO "%s: Abnormal interrupt, "
1695					"status %#8.8x.\n", net_dev->name, status);
1696			break;
1697		}
1698		if (--boguscnt < 0) {
1699			if(netif_msg_intr(sis_priv))
1700				printk(KERN_INFO "%s: Too much work at interrupt, "
1701					"interrupt status = %#8.8x.\n",
1702					net_dev->name, status);
1703			break;
1704		}
1705	} while (1);
1706
1707	if(netif_msg_intr(sis_priv))
1708		printk(KERN_DEBUG "%s: exiting interrupt, "
1709		       "interrupt status = %#8.8x\n",
1710		       net_dev->name, sr32(isr));
1711
1712	spin_unlock (&sis_priv->lock);
1713	return IRQ_RETVAL(handled);
1714}
1715
1716/**
1717 *	sis900_rx - sis900 receive routine
1718 *	@net_dev: the net device which receives data
1719 *
1720 *	Process receive interrupt events,
1721 *	put buffer to higher layer and refill buffer pool
1722 *	Note: This function is called by interrupt handler,
1723 *	don't do "too much" work here
1724 */
1725
1726static int sis900_rx(struct net_device *net_dev)
1727{
1728	struct sis900_private *sis_priv = netdev_priv(net_dev);
1729	void __iomem *ioaddr = sis_priv->ioaddr;
1730	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1731	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1732	int rx_work_limit;
1733
1734	if (netif_msg_rx_status(sis_priv))
1735		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1736		       "status:0x%8.8x\n",
1737		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1738	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1739
1740	while (rx_status & OWN) {
1741		unsigned int rx_size;
1742		unsigned int data_size;
1743
1744		if (--rx_work_limit < 0)
1745			break;
1746
1747		data_size = rx_status & DSIZE;
1748		rx_size = data_size - CRC_SIZE;
1749
1750#if IS_ENABLED(CONFIG_VLAN_8021Q)
1751		/* ``TOOLONG'' flag means jumbo packet received. */
1752		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1753			rx_status &= (~ ((unsigned int)TOOLONG));
1754#endif
1755
1756		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1757			/* corrupted packet received */
1758			if (netif_msg_rx_err(sis_priv))
1759				printk(KERN_DEBUG "%s: Corrupted packet "
1760				       "received, buffer status = 0x%8.8x/%d.\n",
1761				       net_dev->name, rx_status, data_size);
1762			net_dev->stats.rx_errors++;
1763			if (rx_status & OVERRUN)
1764				net_dev->stats.rx_over_errors++;
1765			if (rx_status & (TOOLONG|RUNT))
1766				net_dev->stats.rx_length_errors++;
1767			if (rx_status & (RXISERR | FAERR))
1768				net_dev->stats.rx_frame_errors++;
1769			if (rx_status & CRCERR)
1770				net_dev->stats.rx_crc_errors++;
1771			/* reset buffer descriptor state */
1772			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1773		} else {
1774			struct sk_buff * skb;
1775			struct sk_buff * rx_skb;
1776
1777			pci_unmap_single(sis_priv->pci_dev,
1778				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1779				PCI_DMA_FROMDEVICE);
1780
1781			/* refill the Rx buffer, what if there is not enough
1782			 * memory for new socket buffer ?? */
1783			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1784				/*
1785				 * Not enough memory to refill the buffer
1786				 * so we need to recycle the old one so
1787				 * as to avoid creating a memory hole
1788				 * in the rx ring
1789				 */
1790				skb = sis_priv->rx_skbuff[entry];
1791				net_dev->stats.rx_dropped++;
1792				goto refill_rx_ring;
1793			}
1794
1795			/* This situation should never happen, but due to
1796			   some unknown bugs, it is possible that
1797			   we are working on NULL sk_buff :-( */
1798			if (sis_priv->rx_skbuff[entry] == NULL) {
1799				if (netif_msg_rx_err(sis_priv))
1800					printk(KERN_WARNING "%s: NULL pointer "
1801					      "encountered in Rx ring\n"
1802					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1803					      net_dev->name, sis_priv->cur_rx,
1804					      sis_priv->dirty_rx);
1805				dev_kfree_skb(skb);
1806				break;
1807			}
1808
1809			/* give the socket buffer to upper layers */
1810			rx_skb = sis_priv->rx_skbuff[entry];
1811			skb_put(rx_skb, rx_size);
1812			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1813			netif_rx(rx_skb);
1814
1815			/* some network statistics */
1816			if ((rx_status & BCAST) == MCAST)
1817				net_dev->stats.multicast++;
1818			net_dev->stats.rx_bytes += rx_size;
1819			net_dev->stats.rx_packets++;
1820			sis_priv->dirty_rx++;
1821refill_rx_ring:
1822			sis_priv->rx_skbuff[entry] = skb;
1823			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1824			sis_priv->rx_ring[entry].bufptr =
1825				pci_map_single(sis_priv->pci_dev, skb->data,
1826					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1827			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1828				sis_priv->rx_ring[entry].bufptr))) {
1829				dev_kfree_skb_irq(skb);
1830				sis_priv->rx_skbuff[entry] = NULL;
1831				break;
1832			}
1833		}
1834		sis_priv->cur_rx++;
1835		entry = sis_priv->cur_rx % NUM_RX_DESC;
1836		rx_status = sis_priv->rx_ring[entry].cmdsts;
1837	} // while
1838
1839	/* refill the Rx buffer, what if the rate of refilling is slower
1840	 * than consuming ?? */
1841	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1842		struct sk_buff *skb;
1843
1844		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1845
1846		if (sis_priv->rx_skbuff[entry] == NULL) {
1847			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1848			if (skb == NULL) {
1849				/* not enough memory for skbuff, this makes a
1850				 * "hole" on the buffer ring, it is not clear
1851				 * how the hardware will react to this kind
1852				 * of degenerated buffer */
1853				net_dev->stats.rx_dropped++;
1854				break;
1855			}
1856			sis_priv->rx_skbuff[entry] = skb;
1857			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1858			sis_priv->rx_ring[entry].bufptr =
1859				pci_map_single(sis_priv->pci_dev, skb->data,
1860					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1861			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1862					sis_priv->rx_ring[entry].bufptr))) {
1863				dev_kfree_skb_irq(skb);
1864				sis_priv->rx_skbuff[entry] = NULL;
1865				break;
1866			}
1867		}
1868	}
1869	/* re-enable the potentially idle receive state matchine */
1870	sw32(cr , RxENA | sr32(cr));
1871
1872	return 0;
1873}
1874
1875/**
1876 *	sis900_finish_xmit - finish up transmission of packets
1877 *	@net_dev: the net device to be transmitted on
1878 *
1879 *	Check for error condition and free socket buffer etc
1880 *	schedule for more transmission as needed
1881 *	Note: This function is called by interrupt handler,
1882 *	don't do "too much" work here
1883 */
1884
1885static void sis900_finish_xmit (struct net_device *net_dev)
1886{
1887	struct sis900_private *sis_priv = netdev_priv(net_dev);
1888
1889	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1890		struct sk_buff *skb;
1891		unsigned int entry;
1892		u32 tx_status;
1893
1894		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1895		tx_status = sis_priv->tx_ring[entry].cmdsts;
1896
1897		if (tx_status & OWN) {
1898			/* The packet is not transmitted yet (owned by hardware) !
1899			 * Note: the interrupt is generated only when Tx Machine
1900			 * is idle, so this is an almost impossible case */
1901			break;
1902		}
1903
1904		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1905			/* packet unsuccessfully transmitted */
1906			if (netif_msg_tx_err(sis_priv))
1907				printk(KERN_DEBUG "%s: Transmit "
1908				       "error, Tx status %8.8x.\n",
1909				       net_dev->name, tx_status);
1910			net_dev->stats.tx_errors++;
1911			if (tx_status & UNDERRUN)
1912				net_dev->stats.tx_fifo_errors++;
1913			if (tx_status & ABORT)
1914				net_dev->stats.tx_aborted_errors++;
1915			if (tx_status & NOCARRIER)
1916				net_dev->stats.tx_carrier_errors++;
1917			if (tx_status & OWCOLL)
1918				net_dev->stats.tx_window_errors++;
1919		} else {
1920			/* packet successfully transmitted */
1921			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1922			net_dev->stats.tx_bytes += tx_status & DSIZE;
1923			net_dev->stats.tx_packets++;
1924		}
1925		/* Free the original skb. */
1926		skb = sis_priv->tx_skbuff[entry];
1927		pci_unmap_single(sis_priv->pci_dev,
1928			sis_priv->tx_ring[entry].bufptr, skb->len,
1929			PCI_DMA_TODEVICE);
1930		dev_kfree_skb_irq(skb);
1931		sis_priv->tx_skbuff[entry] = NULL;
1932		sis_priv->tx_ring[entry].bufptr = 0;
1933		sis_priv->tx_ring[entry].cmdsts = 0;
1934	}
1935
1936	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1937	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1938		/* The ring is no longer full, clear tx_full and schedule
1939		 * more transmission by netif_wake_queue(net_dev) */
1940		sis_priv->tx_full = 0;
1941		netif_wake_queue (net_dev);
1942	}
1943}
1944
1945/**
1946 *	sis900_close - close sis900 device
1947 *	@net_dev: the net device to be closed
1948 *
1949 *	Disable interrupts, stop the Tx and Rx Status Machine
1950 *	free Tx and RX socket buffer
1951 */
1952
1953static int sis900_close(struct net_device *net_dev)
1954{
1955	struct sis900_private *sis_priv = netdev_priv(net_dev);
1956	struct pci_dev *pdev = sis_priv->pci_dev;
1957	void __iomem *ioaddr = sis_priv->ioaddr;
1958	struct sk_buff *skb;
1959	int i;
1960
1961	netif_stop_queue(net_dev);
1962
1963	/* Disable interrupts by clearing the interrupt mask. */
1964	sw32(imr, 0x0000);
1965	sw32(ier, 0x0000);
1966
1967	/* Stop the chip's Tx and Rx Status Machine */
1968	sw32(cr, RxDIS | TxDIS | sr32(cr));
1969
1970	del_timer(&sis_priv->timer);
1971
1972	free_irq(pdev->irq, net_dev);
1973
1974	/* Free Tx and RX skbuff */
1975	for (i = 0; i < NUM_RX_DESC; i++) {
1976		skb = sis_priv->rx_skbuff[i];
1977		if (skb) {
1978			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1979					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1980			dev_kfree_skb(skb);
1981			sis_priv->rx_skbuff[i] = NULL;
1982		}
1983	}
1984	for (i = 0; i < NUM_TX_DESC; i++) {
1985		skb = sis_priv->tx_skbuff[i];
1986		if (skb) {
1987			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1988					 skb->len, PCI_DMA_TODEVICE);
1989			dev_kfree_skb(skb);
1990			sis_priv->tx_skbuff[i] = NULL;
1991		}
1992	}
1993
1994	/* Green! Put the chip in low-power mode. */
1995
1996	return 0;
1997}
1998
1999/**
2000 *	sis900_get_drvinfo - Return information about driver
2001 *	@net_dev: the net device to probe
2002 *	@info: container for info returned
2003 *
2004 *	Process ethtool command such as "ehtool -i" to show information
2005 */
2006
2007static void sis900_get_drvinfo(struct net_device *net_dev,
2008			       struct ethtool_drvinfo *info)
2009{
2010	struct sis900_private *sis_priv = netdev_priv(net_dev);
2011
2012	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2013	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2014	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2015		sizeof(info->bus_info));
2016}
2017
2018static u32 sis900_get_msglevel(struct net_device *net_dev)
2019{
2020	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021	return sis_priv->msg_enable;
2022}
2023
2024static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2025{
2026	struct sis900_private *sis_priv = netdev_priv(net_dev);
2027	sis_priv->msg_enable = value;
2028}
2029
2030static u32 sis900_get_link(struct net_device *net_dev)
2031{
2032	struct sis900_private *sis_priv = netdev_priv(net_dev);
2033	return mii_link_ok(&sis_priv->mii_info);
2034}
2035
2036static int sis900_get_link_ksettings(struct net_device *net_dev,
2037				     struct ethtool_link_ksettings *cmd)
2038{
2039	struct sis900_private *sis_priv = netdev_priv(net_dev);
2040	spin_lock_irq(&sis_priv->lock);
2041	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2042	spin_unlock_irq(&sis_priv->lock);
2043	return 0;
2044}
2045
2046static int sis900_set_link_ksettings(struct net_device *net_dev,
2047				     const struct ethtool_link_ksettings *cmd)
2048{
2049	struct sis900_private *sis_priv = netdev_priv(net_dev);
2050	int rt;
2051	spin_lock_irq(&sis_priv->lock);
2052	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2053	spin_unlock_irq(&sis_priv->lock);
2054	return rt;
2055}
2056
2057static int sis900_nway_reset(struct net_device *net_dev)
2058{
2059	struct sis900_private *sis_priv = netdev_priv(net_dev);
2060	return mii_nway_restart(&sis_priv->mii_info);
2061}
2062
2063/**
2064 *	sis900_set_wol - Set up Wake on Lan registers
2065 *	@net_dev: the net device to probe
2066 *	@wol: container for info passed to the driver
2067 *
2068 *	Process ethtool command "wol" to setup wake on lan features.
2069 *	SiS900 supports sending WoL events if a correct packet is received,
2070 *	but there is no simple way to filter them to only a subset (broadcast,
2071 *	multicast, unicast or arp).
2072 */
2073
2074static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2075{
2076	struct sis900_private *sis_priv = netdev_priv(net_dev);
2077	void __iomem *ioaddr = sis_priv->ioaddr;
2078	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2079
2080	if (wol->wolopts == 0) {
2081		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2082		cfgpmcsr &= ~PME_EN;
2083		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2084		sw32(pmctrl, pmctrl_bits);
2085		if (netif_msg_wol(sis_priv))
2086			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2087		return 0;
2088	}
2089
2090	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2091				| WAKE_BCAST | WAKE_ARP))
2092		return -EINVAL;
2093
2094	if (wol->wolopts & WAKE_MAGIC)
2095		pmctrl_bits |= MAGICPKT;
2096	if (wol->wolopts & WAKE_PHY)
2097		pmctrl_bits |= LINKON;
2098
2099	sw32(pmctrl, pmctrl_bits);
2100
2101	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2102	cfgpmcsr |= PME_EN;
2103	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2104	if (netif_msg_wol(sis_priv))
2105		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2106
2107	return 0;
2108}
2109
2110static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2111{
2112	struct sis900_private *sp = netdev_priv(net_dev);
2113	void __iomem *ioaddr = sp->ioaddr;
2114	u32 pmctrl_bits;
2115
2116	pmctrl_bits = sr32(pmctrl);
2117	if (pmctrl_bits & MAGICPKT)
2118		wol->wolopts |= WAKE_MAGIC;
2119	if (pmctrl_bits & LINKON)
2120		wol->wolopts |= WAKE_PHY;
2121
2122	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2123}
2124
2125static const struct ethtool_ops sis900_ethtool_ops = {
2126	.get_drvinfo 	= sis900_get_drvinfo,
2127	.get_msglevel	= sis900_get_msglevel,
2128	.set_msglevel	= sis900_set_msglevel,
2129	.get_link	= sis900_get_link,
2130	.nway_reset	= sis900_nway_reset,
2131	.get_wol	= sis900_get_wol,
2132	.set_wol	= sis900_set_wol,
2133	.get_link_ksettings = sis900_get_link_ksettings,
2134	.set_link_ksettings = sis900_set_link_ksettings,
2135};
2136
2137/**
2138 *	mii_ioctl - process MII i/o control command
2139 *	@net_dev: the net device to command for
2140 *	@rq: parameter for command
2141 *	@cmd: the i/o command
2142 *
2143 *	Process MII command like read/write MII register
2144 */
2145
2146static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2147{
2148	struct sis900_private *sis_priv = netdev_priv(net_dev);
2149	struct mii_ioctl_data *data = if_mii(rq);
2150
2151	switch(cmd) {
2152	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2153		data->phy_id = sis_priv->mii->phy_addr;
2154		/* Fall Through */
2155
2156	case SIOCGMIIREG:		/* Read MII PHY register. */
2157		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2158		return 0;
2159
2160	case SIOCSMIIREG:		/* Write MII PHY register. */
2161		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2162		return 0;
2163	default:
2164		return -EOPNOTSUPP;
2165	}
2166}
2167
2168/**
2169 *	sis900_set_config - Set media type by net_device.set_config
2170 *	@dev: the net device for media type change
2171 *	@map: ifmap passed by ifconfig
2172 *
2173 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2174 *	we support only port changes. All other runtime configuration
2175 *	changes will be ignored
2176 */
2177
2178static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2179{
2180	struct sis900_private *sis_priv = netdev_priv(dev);
2181	struct mii_phy *mii_phy = sis_priv->mii;
2182
2183	u16 status;
2184
2185	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2186		/* we switch on the ifmap->port field. I couldn't find anything
2187		 * like a definition or standard for the values of that field.
2188		 * I think the meaning of those values is device specific. But
2189		 * since I would like to change the media type via the ifconfig
2190		 * command I use the definition from linux/netdevice.h
2191		 * (which seems to be different from the ifport(pcmcia) definition) */
2192		switch(map->port){
2193		case IF_PORT_UNKNOWN: /* use auto here */
2194			dev->if_port = map->port;
2195			/* we are going to change the media type, so the Link
2196			 * will be temporary down and we need to reflect that
2197			 * here. When the Link comes up again, it will be
2198			 * sensed by the sis_timer procedure, which also does
2199			 * all the rest for us */
2200			netif_carrier_off(dev);
2201
2202			/* read current state */
2203			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2204
2205			/* enable auto negotiation and reset the negotioation
2206			 * (I don't really know what the auto negatiotiation
2207			 * reset really means, but it sounds for me right to
2208			 * do one here) */
2209			mdio_write(dev, mii_phy->phy_addr,
2210				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2211
2212			break;
2213
2214		case IF_PORT_10BASET: /* 10BaseT */
2215			dev->if_port = map->port;
2216
2217			/* we are going to change the media type, so the Link
2218			 * will be temporary down and we need to reflect that
2219			 * here. When the Link comes up again, it will be
2220			 * sensed by the sis_timer procedure, which also does
2221			 * all the rest for us */
2222			netif_carrier_off(dev);
2223
2224			/* set Speed to 10Mbps */
2225			/* read current state */
2226			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2227
2228			/* disable auto negotiation and force 10MBit mode*/
2229			mdio_write(dev, mii_phy->phy_addr,
2230				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2231					MII_CNTL_AUTO));
2232			break;
2233
2234		case IF_PORT_100BASET: /* 100BaseT */
2235		case IF_PORT_100BASETX: /* 100BaseTx */
2236			dev->if_port = map->port;
2237
2238			/* we are going to change the media type, so the Link
2239			 * will be temporary down and we need to reflect that
2240			 * here. When the Link comes up again, it will be
2241			 * sensed by the sis_timer procedure, which also does
2242			 * all the rest for us */
2243			netif_carrier_off(dev);
2244
2245			/* set Speed to 100Mbps */
2246			/* disable auto negotiation and enable 100MBit Mode */
2247			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2248			mdio_write(dev, mii_phy->phy_addr,
2249				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2250				   MII_CNTL_SPEED);
2251
2252			break;
2253
2254		case IF_PORT_10BASE2: /* 10Base2 */
2255		case IF_PORT_AUI: /* AUI */
2256		case IF_PORT_100BASEFX: /* 100BaseFx */
2257                	/* These Modes are not supported (are they?)*/
2258			return -EOPNOTSUPP;
2259
2260		default:
2261			return -EINVAL;
2262		}
2263	}
2264	return 0;
2265}
2266
2267/**
2268 *	sis900_mcast_bitnr - compute hashtable index
2269 *	@addr: multicast address
2270 *	@revision: revision id of chip
2271 *
2272 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2273 *	hash table, which makes this function a little bit different from other drivers
2274 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2275 *   	multicast hash table.
2276 */
2277
2278static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2279{
2280
2281	u32 crc = ether_crc(6, addr);
2282
2283	/* leave 8 or 7 most siginifant bits */
2284	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2285		return (int)(crc >> 24);
2286	else
2287		return (int)(crc >> 25);
2288}
2289
2290/**
2291 *	set_rx_mode - Set SiS900 receive mode
2292 *	@net_dev: the net device to be set
2293 *
2294 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2295 *	And set the appropriate multicast filter.
2296 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2297 */
2298
2299static void set_rx_mode(struct net_device *net_dev)
2300{
2301	struct sis900_private *sis_priv = netdev_priv(net_dev);
2302	void __iomem *ioaddr = sis_priv->ioaddr;
2303	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2304	int i, table_entries;
2305	u32 rx_mode;
2306
2307	/* 635 Hash Table entries = 256(2^16) */
2308	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2309			(sis_priv->chipset_rev == SIS900B_900_REV))
2310		table_entries = 16;
2311	else
2312		table_entries = 8;
2313
2314	if (net_dev->flags & IFF_PROMISC) {
2315		/* Accept any kinds of packets */
2316		rx_mode = RFPromiscuous;
2317		for (i = 0; i < table_entries; i++)
2318			mc_filter[i] = 0xffff;
2319	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2320		   (net_dev->flags & IFF_ALLMULTI)) {
2321		/* too many multicast addresses or accept all multicast packet */
2322		rx_mode = RFAAB | RFAAM;
2323		for (i = 0; i < table_entries; i++)
2324			mc_filter[i] = 0xffff;
2325	} else {
2326		/* Accept Broadcast packet, destination address matchs our
2327		 * MAC address, use Receive Filter to reject unwanted MCAST
2328		 * packets */
2329		struct netdev_hw_addr *ha;
2330		rx_mode = RFAAB;
2331
2332		netdev_for_each_mc_addr(ha, net_dev) {
2333			unsigned int bit_nr;
2334
2335			bit_nr = sis900_mcast_bitnr(ha->addr,
2336						    sis_priv->chipset_rev);
2337			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2338		}
2339	}
2340
2341	/* update Multicast Hash Table in Receive Filter */
2342	for (i = 0; i < table_entries; i++) {
2343                /* why plus 0x04 ??, That makes the correct value for hash table. */
2344		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2345		sw32(rfdr, mc_filter[i]);
2346	}
2347
2348	sw32(rfcr, RFEN | rx_mode);
2349
2350	/* sis900 is capable of looping back packets at MAC level for
2351	 * debugging purpose */
2352	if (net_dev->flags & IFF_LOOPBACK) {
2353		u32 cr_saved;
2354		/* We must disable Tx/Rx before setting loopback mode */
2355		cr_saved = sr32(cr);
2356		sw32(cr, cr_saved | TxDIS | RxDIS);
2357		/* enable loopback */
2358		sw32(txcfg, sr32(txcfg) | TxMLB);
2359		sw32(rxcfg, sr32(rxcfg) | RxATX);
2360		/* restore cr */
2361		sw32(cr, cr_saved);
2362	}
2363}
2364
2365/**
2366 *	sis900_reset - Reset sis900 MAC
2367 *	@net_dev: the net device to reset
2368 *
2369 *	reset sis900 MAC and wait until finished
2370 *	reset through command register
2371 *	change backoff algorithm for 900B0 & 635 M/B
2372 */
2373
2374static void sis900_reset(struct net_device *net_dev)
2375{
2376	struct sis900_private *sis_priv = netdev_priv(net_dev);
2377	void __iomem *ioaddr = sis_priv->ioaddr;
2378	u32 status = TxRCMP | RxRCMP;
2379	int i;
2380
2381	sw32(ier, 0);
2382	sw32(imr, 0);
2383	sw32(rfcr, 0);
2384
2385	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2386
2387	/* Check that the chip has finished the reset. */
2388	for (i = 0; status && (i < 1000); i++)
2389		status ^= sr32(isr) & status;
2390
2391	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2392	    sis_priv->chipset_rev == SIS900B_900_REV)
2393		sw32(cfg, PESEL | RND_CNT);
2394	else
2395		sw32(cfg, PESEL);
2396}
2397
2398/**
2399 *	sis900_remove - Remove sis900 device
2400 *	@pci_dev: the pci device to be removed
2401 *
2402 *	remove and release SiS900 net device
2403 */
2404
2405static void sis900_remove(struct pci_dev *pci_dev)
2406{
2407	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2408	struct sis900_private *sis_priv = netdev_priv(net_dev);
2409
2410	unregister_netdev(net_dev);
2411
2412	while (sis_priv->first_mii) {
2413		struct mii_phy *phy = sis_priv->first_mii;
2414
2415		sis_priv->first_mii = phy->next;
2416		kfree(phy);
2417	}
2418
2419	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2420		sis_priv->rx_ring_dma);
2421	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2422		sis_priv->tx_ring_dma);
2423	pci_iounmap(pci_dev, sis_priv->ioaddr);
2424	free_netdev(net_dev);
2425	pci_release_regions(pci_dev);
2426}
2427
2428#ifdef CONFIG_PM
2429
2430static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2431{
2432	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2433	struct sis900_private *sis_priv = netdev_priv(net_dev);
2434	void __iomem *ioaddr = sis_priv->ioaddr;
2435
2436	if(!netif_running(net_dev))
2437		return 0;
2438
2439	netif_stop_queue(net_dev);
2440	netif_device_detach(net_dev);
2441
2442	/* Stop the chip's Tx and Rx Status Machine */
2443	sw32(cr, RxDIS | TxDIS | sr32(cr));
2444
2445	pci_set_power_state(pci_dev, PCI_D3hot);
2446	pci_save_state(pci_dev);
2447
2448	return 0;
2449}
2450
2451static int sis900_resume(struct pci_dev *pci_dev)
2452{
2453	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2454	struct sis900_private *sis_priv = netdev_priv(net_dev);
2455	void __iomem *ioaddr = sis_priv->ioaddr;
2456
2457	if(!netif_running(net_dev))
2458		return 0;
2459	pci_restore_state(pci_dev);
2460	pci_set_power_state(pci_dev, PCI_D0);
2461
2462	sis900_init_rxfilter(net_dev);
2463
2464	sis900_init_tx_ring(net_dev);
2465	sis900_init_rx_ring(net_dev);
2466
2467	set_rx_mode(net_dev);
2468
2469	netif_device_attach(net_dev);
2470	netif_start_queue(net_dev);
2471
2472	/* Workaround for EDB */
2473	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2474
2475	/* Enable all known interrupts by setting the interrupt mask. */
2476	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2477	sw32(cr, RxENA | sr32(cr));
2478	sw32(ier, IE);
2479
2480	sis900_check_mode(net_dev, sis_priv->mii);
2481
2482	return 0;
2483}
2484#endif /* CONFIG_PM */
2485
2486static struct pci_driver sis900_pci_driver = {
2487	.name		= SIS900_MODULE_NAME,
2488	.id_table	= sis900_pci_tbl,
2489	.probe		= sis900_probe,
2490	.remove		= sis900_remove,
2491#ifdef CONFIG_PM
2492	.suspend	= sis900_suspend,
2493	.resume		= sis900_resume,
2494#endif /* CONFIG_PM */
2495};
2496
2497static int __init sis900_init_module(void)
2498{
2499/* when a module, this is printed whether or not devices are found in probe */
2500#ifdef MODULE
2501	printk(version);
2502#endif
2503
2504	return pci_register_driver(&sis900_pci_driver);
2505}
2506
2507static void __exit sis900_cleanup_module(void)
2508{
2509	pci_unregister_driver(&sis900_pci_driver);
2510}
2511
2512module_init(sis900_init_module);
2513module_exit(sis900_cleanup_module);
2514