Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:	1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <asm/uaccess.h>	/* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93	(NETIF_MSG_DRV		| \
  94	 NETIF_MSG_LINK		| \
  95	 NETIF_MSG_RX_ERR	| \
  96	 NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102	SIS_900 = 0,
 103	SIS_7016
 104};
 105static const char * card_names[] = {
 106	"SiS 900 PCI Fast Ethernet",
 107	"SiS 7016 PCI Fast Ethernet"
 108};
 109static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
 110	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 111	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 112	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 113	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 114	{0,}
 115};
 116MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 117
 118static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 119
 120static const struct mii_chip_info {
 121	const char * name;
 122	u16 phy_id0;
 123	u16 phy_id1;
 124	u8  phy_types;
 125#define	HOME 	0x0001
 126#define LAN	0x0002
 127#define MIX	0x0003
 128#define UNKNOWN	0x0
 129} mii_chip_table[] = {
 130	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
 131	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
 132	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 133	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 134	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
 135	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
 136	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
 137	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
 138	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
 139	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
 140	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 141	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
 142	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
 143	{NULL,},
 144};
 145
 146struct mii_phy {
 147	struct mii_phy * next;
 148	int phy_addr;
 149	u16 phy_id0;
 150	u16 phy_id1;
 151	u16 status;
 152	u8  phy_types;
 153};
 154
 155typedef struct _BufferDesc {
 156	u32 link;
 157	u32 cmdsts;
 158	u32 bufptr;
 159} BufferDesc;
 160
 161struct sis900_private {
 162	struct pci_dev * pci_dev;
 163
 164	spinlock_t lock;
 165
 166	struct mii_phy * mii;
 167	struct mii_phy * first_mii; /* record the first mii structure */
 168	unsigned int cur_phy;
 169	struct mii_if_info mii_info;
 170
 171	void __iomem	*ioaddr;
 172
 173	struct timer_list timer; /* Link status detection timer. */
 174	u8 autong_complete; /* 1: auto-negotiate complete  */
 175
 176	u32 msg_enable;
 177
 178	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
 179	unsigned int cur_tx, dirty_tx;
 180
 181	/* The saved address of a sent/receive-in-place packet buffer */
 182	struct sk_buff *tx_skbuff[NUM_TX_DESC];
 183	struct sk_buff *rx_skbuff[NUM_RX_DESC];
 184	BufferDesc *tx_ring;
 185	BufferDesc *rx_ring;
 186
 187	dma_addr_t tx_ring_dma;
 188	dma_addr_t rx_ring_dma;
 189
 190	unsigned int tx_full; /* The Tx queue is full. */
 191	u8 host_bridge_rev;
 192	u8 chipset_rev;
 193};
 194
 195MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 196MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 197MODULE_LICENSE("GPL");
 198
 199module_param(multicast_filter_limit, int, 0444);
 200module_param(max_interrupt_work, int, 0444);
 201module_param(sis900_debug, int, 0444);
 202MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 203MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 204MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 205
 206#define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
 207#define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
 208#define sr32(reg)	ioread32(ioaddr + (reg))
 209#define sr16(reg)	ioread16(ioaddr + (reg))
 210
 211#ifdef CONFIG_NET_POLL_CONTROLLER
 212static void sis900_poll(struct net_device *dev);
 213#endif
 214static int sis900_open(struct net_device *net_dev);
 215static int sis900_mii_probe (struct net_device * net_dev);
 216static void sis900_init_rxfilter (struct net_device * net_dev);
 217static u16 read_eeprom(void __iomem *ioaddr, int location);
 218static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 219static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 220static void sis900_timer(unsigned long data);
 221static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 222static void sis900_tx_timeout(struct net_device *net_dev);
 223static void sis900_init_tx_ring(struct net_device *net_dev);
 224static void sis900_init_rx_ring(struct net_device *net_dev);
 225static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 226				     struct net_device *net_dev);
 227static int sis900_rx(struct net_device *net_dev);
 228static void sis900_finish_xmit (struct net_device *net_dev);
 229static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 230static int sis900_close(struct net_device *net_dev);
 231static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 232static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 233static void set_rx_mode(struct net_device *net_dev);
 234static void sis900_reset(struct net_device *net_dev);
 235static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 236static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 237static u16 sis900_default_phy(struct net_device * net_dev);
 238static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 239static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 240static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 241static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 242static const struct ethtool_ops sis900_ethtool_ops;
 243
 244/**
 245 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 246 *	@pci_dev: the sis900 pci device
 247 *	@net_dev: the net device to get address for
 248 *
 249 *	Older SiS900 and friends, use EEPROM to store MAC address.
 250 *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
 251 */
 252
 253static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 254			       struct net_device *net_dev)
 255{
 256	struct sis900_private *sis_priv = netdev_priv(net_dev);
 257	void __iomem *ioaddr = sis_priv->ioaddr;
 258	u16 signature;
 259	int i;
 260
 261	/* check to see if we have sane EEPROM */
 262	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 263	if (signature == 0xffff || signature == 0x0000) {
 264		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
 265			pci_name(pci_dev), signature);
 266		return 0;
 267	}
 268
 269	/* get MAC address from EEPROM */
 270	for (i = 0; i < 3; i++)
 271	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 272
 273	return 1;
 274}
 275
 276/**
 277 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
 278 *	@pci_dev: the sis900 pci device
 279 *	@net_dev: the net device to get address for
 280 *
 281 *	SiS630E model, use APC CMOS RAM to store MAC address.
 282 *	APC CMOS RAM is accessed through ISA bridge.
 283 *	MAC address is read into @net_dev->dev_addr.
 284 */
 285
 286static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 287				struct net_device *net_dev)
 288{
 289	struct pci_dev *isa_bridge = NULL;
 290	u8 reg;
 291	int i;
 292
 293	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 294	if (!isa_bridge)
 295		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 296	if (!isa_bridge) {
 297		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 298		       pci_name(pci_dev));
 299		return 0;
 300	}
 301	pci_read_config_byte(isa_bridge, 0x48, &reg);
 302	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 303
 304	for (i = 0; i < 6; i++) {
 305		outb(0x09 + i, 0x70);
 306		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 307	}
 308
 309	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 310	pci_dev_put(isa_bridge);
 311
 312	return 1;
 313}
 314
 315
 316/**
 317 *	sis635_get_mac_addr - Get MAC address for SIS635 model
 318 *	@pci_dev: the sis900 pci device
 319 *	@net_dev: the net device to get address for
 320 *
 321 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
 322 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
 323 *	@net_dev->dev_addr.
 324 */
 325
 326static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 327			       struct net_device *net_dev)
 328{
 329	struct sis900_private *sis_priv = netdev_priv(net_dev);
 330	void __iomem *ioaddr = sis_priv->ioaddr;
 331	u32 rfcrSave;
 332	u32 i;
 333
 334	rfcrSave = sr32(rfcr);
 335
 336	sw32(cr, rfcrSave | RELOAD);
 337	sw32(cr, 0);
 338
 339	/* disable packet filtering before setting filter */
 340	sw32(rfcr, rfcrSave & ~RFEN);
 341
 342	/* load MAC addr to filter data register */
 343	for (i = 0 ; i < 3 ; i++) {
 344		sw32(rfcr, (i << RFADDR_shift));
 345		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
 346	}
 347
 348	/* enable packet filtering */
 349	sw32(rfcr, rfcrSave | RFEN);
 350
 351	return 1;
 352}
 353
 354/**
 355 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 356 *	@pci_dev: the sis900 pci device
 357 *	@net_dev: the net device to get address for
 358 *
 359 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 360 *	is shared by
 361 *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
 362 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
 363 *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
 364 *	EEDONE signal to refuse EEPROM access by LAN.
 365 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
 366 *	The signature field in SiS962 or SiS963 spec is meaningless.
 367 *	MAC address is read into @net_dev->dev_addr.
 368 */
 369
 370static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 371			       struct net_device *net_dev)
 372{
 373	struct sis900_private *sis_priv = netdev_priv(net_dev);
 374	void __iomem *ioaddr = sis_priv->ioaddr;
 375	int wait, rc = 0;
 376
 377	sw32(mear, EEREQ);
 378	for (wait = 0; wait < 2000; wait++) {
 379		if (sr32(mear) & EEGNT) {
 380			u16 *mac = (u16 *)net_dev->dev_addr;
 381			int i;
 382
 383			/* get MAC address from EEPROM */
 384			for (i = 0; i < 3; i++)
 385			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 386
 387			rc = 1;
 388			break;
 389		}
 390		udelay(1);
 391	}
 392	sw32(mear, EEDONE);
 393	return rc;
 394}
 395
 396static const struct net_device_ops sis900_netdev_ops = {
 397	.ndo_open		 = sis900_open,
 398	.ndo_stop		= sis900_close,
 399	.ndo_start_xmit		= sis900_start_xmit,
 400	.ndo_set_config		= sis900_set_config,
 401	.ndo_set_rx_mode	= set_rx_mode,
 402	.ndo_change_mtu		= eth_change_mtu,
 403	.ndo_validate_addr	= eth_validate_addr,
 404	.ndo_set_mac_address 	= eth_mac_addr,
 405	.ndo_do_ioctl		= mii_ioctl,
 406	.ndo_tx_timeout		= sis900_tx_timeout,
 407#ifdef CONFIG_NET_POLL_CONTROLLER
 408        .ndo_poll_controller	= sis900_poll,
 409#endif
 410};
 411
 412/**
 413 *	sis900_probe - Probe for sis900 device
 414 *	@pci_dev: the sis900 pci device
 415 *	@pci_id: the pci device ID
 416 *
 417 *	Check and probe sis900 net device for @pci_dev.
 418 *	Get mac address according to the chip revision,
 419 *	and assign SiS900-specific entries in the device structure.
 420 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 421 */
 422
 423static int sis900_probe(struct pci_dev *pci_dev,
 424			const struct pci_device_id *pci_id)
 425{
 426	struct sis900_private *sis_priv;
 427	struct net_device *net_dev;
 428	struct pci_dev *dev;
 429	dma_addr_t ring_dma;
 430	void *ring_space;
 431	void __iomem *ioaddr;
 432	int i, ret;
 433	const char *card_name = card_names[pci_id->driver_data];
 434	const char *dev_name = pci_name(pci_dev);
 435
 436/* when built into the kernel, we only print version if device is found */
 437#ifndef MODULE
 438	static int printed_version;
 439	if (!printed_version++)
 440		printk(version);
 441#endif
 442
 443	/* setup various bits in PCI command register */
 444	ret = pci_enable_device(pci_dev);
 445	if(ret) return ret;
 446
 447	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
 448	if(i){
 449		printk(KERN_ERR "sis900.c: architecture does not support "
 450			"32bit PCI busmaster DMA\n");
 451		return i;
 452	}
 453
 454	pci_set_master(pci_dev);
 455
 456	net_dev = alloc_etherdev(sizeof(struct sis900_private));
 457	if (!net_dev)
 458		return -ENOMEM;
 459	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 460
 461	/* We do a request_region() to register /proc/ioports info. */
 462	ret = pci_request_regions(pci_dev, "sis900");
 463	if (ret)
 464		goto err_out;
 465
 466	/* IO region. */
 467	ioaddr = pci_iomap(pci_dev, 0, 0);
 468	if (!ioaddr) {
 469		ret = -ENOMEM;
 470		goto err_out_cleardev;
 471	}
 472
 473	sis_priv = netdev_priv(net_dev);
 474	sis_priv->ioaddr = ioaddr;
 475	sis_priv->pci_dev = pci_dev;
 476	spin_lock_init(&sis_priv->lock);
 477
 478	pci_set_drvdata(pci_dev, net_dev);
 479
 480	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 481	if (!ring_space) {
 482		ret = -ENOMEM;
 483		goto err_out_unmap;
 484	}
 485	sis_priv->tx_ring = ring_space;
 486	sis_priv->tx_ring_dma = ring_dma;
 487
 488	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 489	if (!ring_space) {
 490		ret = -ENOMEM;
 491		goto err_unmap_tx;
 492	}
 493	sis_priv->rx_ring = ring_space;
 494	sis_priv->rx_ring_dma = ring_dma;
 495
 496	/* The SiS900-specific entries in the device structure. */
 497	net_dev->netdev_ops = &sis900_netdev_ops;
 498	net_dev->watchdog_timeo = TX_TIMEOUT;
 499	net_dev->ethtool_ops = &sis900_ethtool_ops;
 500
 501	if (sis900_debug > 0)
 502		sis_priv->msg_enable = sis900_debug;
 503	else
 504		sis_priv->msg_enable = SIS900_DEF_MSG;
 505
 506	sis_priv->mii_info.dev = net_dev;
 507	sis_priv->mii_info.mdio_read = mdio_read;
 508	sis_priv->mii_info.mdio_write = mdio_write;
 509	sis_priv->mii_info.phy_id_mask = 0x1f;
 510	sis_priv->mii_info.reg_num_mask = 0x1f;
 511
 512	/* Get Mac address according to the chip revision */
 513	sis_priv->chipset_rev = pci_dev->revision;
 514	if(netif_msg_probe(sis_priv))
 515		printk(KERN_DEBUG "%s: detected revision %2.2x, "
 516				"trying to get MAC address...\n",
 517				dev_name, sis_priv->chipset_rev);
 518
 519	ret = 0;
 520	if (sis_priv->chipset_rev == SIS630E_900_REV)
 521		ret = sis630e_get_mac_addr(pci_dev, net_dev);
 522	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 523		ret = sis635_get_mac_addr(pci_dev, net_dev);
 524	else if (sis_priv->chipset_rev == SIS96x_900_REV)
 525		ret = sis96x_get_mac_addr(pci_dev, net_dev);
 526	else
 527		ret = sis900_get_mac_addr(pci_dev, net_dev);
 528
 529	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 530		eth_hw_addr_random(net_dev);
 531		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 532				"using random generated one\n", dev_name);
 533	}
 534
 535	/* 630ET : set the mii access mode as software-mode */
 536	if (sis_priv->chipset_rev == SIS630ET_900_REV)
 537		sw32(cr, ACCESSMODE | sr32(cr));
 538
 539	/* probe for mii transceiver */
 540	if (sis900_mii_probe(net_dev) == 0) {
 541		printk(KERN_WARNING "%s: Error probing MII device.\n",
 542		       dev_name);
 543		ret = -ENODEV;
 544		goto err_unmap_rx;
 545	}
 546
 547	/* save our host bridge revision */
 548	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 549	if (dev) {
 550		sis_priv->host_bridge_rev = dev->revision;
 551		pci_dev_put(dev);
 552	}
 553
 554	ret = register_netdev(net_dev);
 555	if (ret)
 556		goto err_unmap_rx;
 557
 558	/* print some information about our NIC */
 559	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 560	       net_dev->name, card_name, ioaddr, pci_dev->irq,
 561	       net_dev->dev_addr);
 562
 563	/* Detect Wake on Lan support */
 564	ret = (sr32(CFGPMC) & PMESP) >> 27;
 565	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 566		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 567
 568	return 0;
 569
 570err_unmap_rx:
 571	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 572		sis_priv->rx_ring_dma);
 573err_unmap_tx:
 574	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 575		sis_priv->tx_ring_dma);
 576err_out_unmap:
 577	pci_iounmap(pci_dev, ioaddr);
 578err_out_cleardev:
 579	pci_release_regions(pci_dev);
 580 err_out:
 581	free_netdev(net_dev);
 582	return ret;
 583}
 584
 585/**
 586 *	sis900_mii_probe - Probe MII PHY for sis900
 587 *	@net_dev: the net device to probe for
 588 *
 589 *	Search for total of 32 possible mii phy addresses.
 590 *	Identify and set current phy if found one,
 591 *	return error if it failed to found.
 592 */
 593
 594static int sis900_mii_probe(struct net_device *net_dev)
 595{
 596	struct sis900_private *sis_priv = netdev_priv(net_dev);
 597	const char *dev_name = pci_name(sis_priv->pci_dev);
 598	u16 poll_bit = MII_STAT_LINK, status = 0;
 599	unsigned long timeout = jiffies + 5 * HZ;
 600	int phy_addr;
 601
 602	sis_priv->mii = NULL;
 603
 604	/* search for total of 32 possible mii phy addresses */
 605	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 606		struct mii_phy * mii_phy = NULL;
 607		u16 mii_status;
 608		int i;
 609
 610		mii_phy = NULL;
 611		for(i = 0; i < 2; i++)
 612			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 613
 614		if (mii_status == 0xffff || mii_status == 0x0000) {
 615			if (netif_msg_probe(sis_priv))
 616				printk(KERN_DEBUG "%s: MII at address %d"
 617						" not accessible\n",
 618						dev_name, phy_addr);
 619			continue;
 620		}
 621
 622		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 623			mii_phy = sis_priv->first_mii;
 624			while (mii_phy) {
 625				struct mii_phy *phy;
 626				phy = mii_phy;
 627				mii_phy = mii_phy->next;
 628				kfree(phy);
 629			}
 630			return 0;
 631		}
 632
 633		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 634		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 635		mii_phy->phy_addr = phy_addr;
 636		mii_phy->status = mii_status;
 637		mii_phy->next = sis_priv->mii;
 638		sis_priv->mii = mii_phy;
 639		sis_priv->first_mii = mii_phy;
 640
 641		for (i = 0; mii_chip_table[i].phy_id1; i++)
 642			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 643			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 644				mii_phy->phy_types = mii_chip_table[i].phy_types;
 645				if (mii_chip_table[i].phy_types == MIX)
 646					mii_phy->phy_types =
 647					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 648				printk(KERN_INFO "%s: %s transceiver found "
 649							"at address %d.\n",
 650							dev_name,
 651							mii_chip_table[i].name,
 652							phy_addr);
 653				break;
 654			}
 655
 656		if( !mii_chip_table[i].phy_id1 ) {
 657			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 658			       dev_name, phy_addr);
 659			mii_phy->phy_types = UNKNOWN;
 660		}
 661	}
 662
 663	if (sis_priv->mii == NULL) {
 664		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 665		return 0;
 666	}
 667
 668	/* select default PHY for mac */
 669	sis_priv->mii = NULL;
 670	sis900_default_phy( net_dev );
 671
 672	/* Reset phy if default phy is internal sis900 */
 673        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 674	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 675        	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 676
 677        /* workaround for ICS1893 PHY */
 678        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 679            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 680            	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 681
 682	if(status & MII_STAT_LINK){
 683		while (poll_bit) {
 684			yield();
 685
 686			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 687			if (time_after_eq(jiffies, timeout)) {
 688				printk(KERN_WARNING "%s: reset phy and link down now\n",
 689				       dev_name);
 690				return -ETIME;
 691			}
 692		}
 693	}
 694
 695	if (sis_priv->chipset_rev == SIS630E_900_REV) {
 696		/* SiS 630E has some bugs on default value of PHY registers */
 697		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 698		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 699		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 700		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 701		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 702	}
 703
 704	if (sis_priv->mii->status & MII_STAT_LINK)
 705		netif_carrier_on(net_dev);
 706	else
 707		netif_carrier_off(net_dev);
 708
 709	return 1;
 710}
 711
 712/**
 713 *	sis900_default_phy - Select default PHY for sis900 mac.
 714 *	@net_dev: the net device to probe for
 715 *
 716 *	Select first detected PHY with link as default.
 717 *	If no one is link on, select PHY whose types is HOME as default.
 718 *	If HOME doesn't exist, select LAN.
 719 */
 720
 721static u16 sis900_default_phy(struct net_device * net_dev)
 722{
 723	struct sis900_private *sis_priv = netdev_priv(net_dev);
 724 	struct mii_phy *phy = NULL, *phy_home = NULL,
 725		*default_phy = NULL, *phy_lan = NULL;
 726	u16 status;
 727
 728        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 729		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 730		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 731
 732		/* Link ON & Not select default PHY & not ghost PHY */
 733		 if ((status & MII_STAT_LINK) && !default_phy &&
 734					(phy->phy_types != UNKNOWN))
 735		 	default_phy = phy;
 736		 else {
 737			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 738			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 739				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 740			if (phy->phy_types == HOME)
 741				phy_home = phy;
 742			else if(phy->phy_types == LAN)
 743				phy_lan = phy;
 744		 }
 745	}
 746
 747	if (!default_phy && phy_home)
 748		default_phy = phy_home;
 749	else if (!default_phy && phy_lan)
 750		default_phy = phy_lan;
 751	else if (!default_phy)
 752		default_phy = sis_priv->first_mii;
 753
 754	if (sis_priv->mii != default_phy) {
 755		sis_priv->mii = default_phy;
 756		sis_priv->cur_phy = default_phy->phy_addr;
 757		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 758		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 759	}
 760
 761	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 762
 763	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 764	status &= (~MII_CNTL_ISOLATE);
 765
 766	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 767	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 768	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 769
 770	return status;
 771}
 772
 773
 774/**
 775 * 	sis900_set_capability - set the media capability of network adapter.
 776 *	@net_dev : the net device to probe for
 777 *	@phy : default PHY
 778 *
 779 *	Set the media capability of network adapter according to
 780 *	mii status register. It's necessary before auto-negotiate.
 781 */
 782
 783static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 784{
 785	u16 cap;
 786	u16 status;
 787
 788	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 789	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 790
 791	cap = MII_NWAY_CSMA_CD |
 792		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 793		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 794		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 795		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 796
 797	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 798}
 799
 800
 801/* Delay between EEPROM clock transitions. */
 802#define eeprom_delay()	sr32(mear)
 803
 804/**
 805 *	read_eeprom - Read Serial EEPROM
 806 *	@ioaddr: base i/o address
 807 *	@location: the EEPROM location to read
 808 *
 809 *	Read Serial EEPROM through EEPROM Access Register.
 810 *	Note that location is in word (16 bits) unit
 811 */
 812
 813static u16 read_eeprom(void __iomem *ioaddr, int location)
 814{
 815	u32 read_cmd = location | EEread;
 816	int i;
 817	u16 retval = 0;
 818
 819	sw32(mear, 0);
 820	eeprom_delay();
 821	sw32(mear, EECS);
 822	eeprom_delay();
 823
 824	/* Shift the read command (9) bits out. */
 825	for (i = 8; i >= 0; i--) {
 826		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 827
 828		sw32(mear, dataval);
 829		eeprom_delay();
 830		sw32(mear, dataval | EECLK);
 831		eeprom_delay();
 832	}
 833	sw32(mear, EECS);
 834	eeprom_delay();
 835
 836	/* read the 16-bits data in */
 837	for (i = 16; i > 0; i--) {
 838		sw32(mear, EECS);
 839		eeprom_delay();
 840		sw32(mear, EECS | EECLK);
 841		eeprom_delay();
 842		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 843		eeprom_delay();
 844	}
 845
 846	/* Terminate the EEPROM access. */
 847	sw32(mear, 0);
 848	eeprom_delay();
 849
 850	return retval;
 851}
 852
 853/* Read and write the MII management registers using software-generated
 854   serial MDIO protocol. Note that the command bits and data bits are
 855   send out separately */
 856#define mdio_delay()	sr32(mear)
 857
 858static void mdio_idle(struct sis900_private *sp)
 859{
 860	void __iomem *ioaddr = sp->ioaddr;
 861
 862	sw32(mear, MDIO | MDDIR);
 863	mdio_delay();
 864	sw32(mear, MDIO | MDDIR | MDC);
 865}
 866
 867/* Synchronize the MII management interface by shifting 32 one bits out. */
 868static void mdio_reset(struct sis900_private *sp)
 869{
 870	void __iomem *ioaddr = sp->ioaddr;
 871	int i;
 872
 873	for (i = 31; i >= 0; i--) {
 874		sw32(mear, MDDIR | MDIO);
 875		mdio_delay();
 876		sw32(mear, MDDIR | MDIO | MDC);
 877		mdio_delay();
 878	}
 879}
 880
 881/**
 882 *	mdio_read - read MII PHY register
 883 *	@net_dev: the net device to read
 884 *	@phy_id: the phy address to read
 885 *	@location: the phy regiester id to read
 886 *
 887 *	Read MII registers through MDIO and MDC
 888 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
 889 *	Please see SiS7014 or ICS spec
 890 */
 891
 892static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 893{
 894	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 895	struct sis900_private *sp = netdev_priv(net_dev);
 896	void __iomem *ioaddr = sp->ioaddr;
 897	u16 retval = 0;
 898	int i;
 899
 900	mdio_reset(sp);
 901	mdio_idle(sp);
 902
 903	for (i = 15; i >= 0; i--) {
 904		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 905
 906		sw32(mear, dataval);
 907		mdio_delay();
 908		sw32(mear, dataval | MDC);
 909		mdio_delay();
 910	}
 911
 912	/* Read the 16 data bits. */
 913	for (i = 16; i > 0; i--) {
 914		sw32(mear, 0);
 915		mdio_delay();
 916		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 917		sw32(mear, MDC);
 918		mdio_delay();
 919	}
 920	sw32(mear, 0x00);
 921
 922	return retval;
 923}
 924
 925/**
 926 *	mdio_write - write MII PHY register
 927 *	@net_dev: the net device to write
 928 *	@phy_id: the phy address to write
 929 *	@location: the phy regiester id to write
 930 *	@value: the register value to write with
 931 *
 932 *	Write MII registers with @value through MDIO and MDC
 933 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
 934 *	please see SiS7014 or ICS spec
 935 */
 936
 937static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 938			int value)
 939{
 940	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 941	struct sis900_private *sp = netdev_priv(net_dev);
 942	void __iomem *ioaddr = sp->ioaddr;
 943	int i;
 944
 945	mdio_reset(sp);
 946	mdio_idle(sp);
 947
 948	/* Shift the command bits out. */
 949	for (i = 15; i >= 0; i--) {
 950		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 951
 952		sw8(mear, dataval);
 953		mdio_delay();
 954		sw8(mear, dataval | MDC);
 955		mdio_delay();
 956	}
 957	mdio_delay();
 958
 959	/* Shift the value bits out. */
 960	for (i = 15; i >= 0; i--) {
 961		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 962
 963		sw32(mear, dataval);
 964		mdio_delay();
 965		sw32(mear, dataval | MDC);
 966		mdio_delay();
 967	}
 968	mdio_delay();
 969
 970	/* Clear out extra bits. */
 971	for (i = 2; i > 0; i--) {
 972		sw8(mear, 0);
 973		mdio_delay();
 974		sw8(mear, MDC);
 975		mdio_delay();
 976	}
 977	sw32(mear, 0x00);
 978}
 979
 980
 981/**
 982 *	sis900_reset_phy - reset sis900 mii phy.
 983 *	@net_dev: the net device to write
 984 *	@phy_addr: default phy address
 985 *
 986 *	Some specific phy can't work properly without reset.
 987 *	This function will be called during initialization and
 988 *	link status change from ON to DOWN.
 989 */
 990
 991static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
 992{
 993	int i;
 994	u16 status;
 995
 996	for (i = 0; i < 2; i++)
 997		status = mdio_read(net_dev, phy_addr, MII_STATUS);
 998
 999	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1000
1001	return status;
1002}
1003
1004#ifdef CONFIG_NET_POLL_CONTROLLER
1005/*
1006 * Polling 'interrupt' - used by things like netconsole to send skbs
1007 * without having to re-enable interrupts. It's not called while
1008 * the interrupt routine is executing.
1009*/
1010static void sis900_poll(struct net_device *dev)
1011{
1012	struct sis900_private *sp = netdev_priv(dev);
1013	const int irq = sp->pci_dev->irq;
1014
1015	disable_irq(irq);
1016	sis900_interrupt(irq, dev);
1017	enable_irq(irq);
1018}
1019#endif
1020
1021/**
1022 *	sis900_open - open sis900 device
1023 *	@net_dev: the net device to open
1024 *
1025 *	Do some initialization and start net interface.
1026 *	enable interrupts and set sis900 timer.
1027 */
1028
1029static int
1030sis900_open(struct net_device *net_dev)
1031{
1032	struct sis900_private *sis_priv = netdev_priv(net_dev);
1033	void __iomem *ioaddr = sis_priv->ioaddr;
1034	int ret;
1035
1036	/* Soft reset the chip. */
1037	sis900_reset(net_dev);
1038
1039	/* Equalizer workaround Rule */
1040	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1041
1042	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043			  net_dev->name, net_dev);
1044	if (ret)
1045		return ret;
1046
1047	sis900_init_rxfilter(net_dev);
1048
1049	sis900_init_tx_ring(net_dev);
1050	sis900_init_rx_ring(net_dev);
1051
1052	set_rx_mode(net_dev);
1053
1054	netif_start_queue(net_dev);
1055
1056	/* Workaround for EDB */
1057	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1058
1059	/* Enable all known interrupts by setting the interrupt mask. */
1060	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1061	sw32(cr, RxENA | sr32(cr));
1062	sw32(ier, IE);
1063
1064	sis900_check_mode(net_dev, sis_priv->mii);
1065
1066	/* Set the timer to switch to check for link beat and perhaps switch
1067	   to an alternate media type. */
1068	init_timer(&sis_priv->timer);
1069	sis_priv->timer.expires = jiffies + HZ;
1070	sis_priv->timer.data = (unsigned long)net_dev;
1071	sis_priv->timer.function = sis900_timer;
1072	add_timer(&sis_priv->timer);
1073
1074	return 0;
1075}
1076
1077/**
1078 *	sis900_init_rxfilter - Initialize the Rx filter
1079 *	@net_dev: the net device to initialize for
1080 *
1081 *	Set receive filter address to our MAC address
1082 *	and enable packet filtering.
1083 */
1084
1085static void
1086sis900_init_rxfilter (struct net_device * net_dev)
1087{
1088	struct sis900_private *sis_priv = netdev_priv(net_dev);
1089	void __iomem *ioaddr = sis_priv->ioaddr;
1090	u32 rfcrSave;
1091	u32 i;
1092
1093	rfcrSave = sr32(rfcr);
1094
1095	/* disable packet filtering before setting filter */
1096	sw32(rfcr, rfcrSave & ~RFEN);
1097
1098	/* load MAC addr to filter data register */
1099	for (i = 0 ; i < 3 ; i++) {
1100		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1101
1102		sw32(rfcr, i << RFADDR_shift);
1103		sw32(rfdr, w);
1104
1105		if (netif_msg_hw(sis_priv)) {
1106			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1107			       net_dev->name, i, sr32(rfdr));
1108		}
1109	}
1110
1111	/* enable packet filtering */
1112	sw32(rfcr, rfcrSave | RFEN);
1113}
1114
1115/**
1116 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1117 *	@net_dev: the net device to initialize for
1118 *
1119 *	Initialize the Tx descriptor ring,
1120 */
1121
1122static void
1123sis900_init_tx_ring(struct net_device *net_dev)
1124{
1125	struct sis900_private *sis_priv = netdev_priv(net_dev);
1126	void __iomem *ioaddr = sis_priv->ioaddr;
1127	int i;
1128
1129	sis_priv->tx_full = 0;
1130	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1131
1132	for (i = 0; i < NUM_TX_DESC; i++) {
1133		sis_priv->tx_skbuff[i] = NULL;
1134
1135		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1136			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1137		sis_priv->tx_ring[i].cmdsts = 0;
1138		sis_priv->tx_ring[i].bufptr = 0;
1139	}
1140
1141	/* load Transmit Descriptor Register */
1142	sw32(txdp, sis_priv->tx_ring_dma);
1143	if (netif_msg_hw(sis_priv))
1144		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1145		       net_dev->name, sr32(txdp));
1146}
1147
1148/**
1149 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1150 *	@net_dev: the net device to initialize for
1151 *
1152 *	Initialize the Rx descriptor ring,
1153 *	and pre-allocate recevie buffers (socket buffer)
1154 */
1155
1156static void
1157sis900_init_rx_ring(struct net_device *net_dev)
1158{
1159	struct sis900_private *sis_priv = netdev_priv(net_dev);
1160	void __iomem *ioaddr = sis_priv->ioaddr;
1161	int i;
1162
1163	sis_priv->cur_rx = 0;
1164	sis_priv->dirty_rx = 0;
1165
1166	/* init RX descriptor */
1167	for (i = 0; i < NUM_RX_DESC; i++) {
1168		sis_priv->rx_skbuff[i] = NULL;
1169
1170		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1171			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1172		sis_priv->rx_ring[i].cmdsts = 0;
1173		sis_priv->rx_ring[i].bufptr = 0;
1174	}
1175
1176	/* allocate sock buffers */
1177	for (i = 0; i < NUM_RX_DESC; i++) {
1178		struct sk_buff *skb;
1179
1180		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1181			/* not enough memory for skbuff, this makes a "hole"
1182			   on the buffer ring, it is not clear how the
1183			   hardware will react to this kind of degenerated
1184			   buffer */
1185			break;
1186		}
1187		sis_priv->rx_skbuff[i] = skb;
1188		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1189		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1190				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1191		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1192				sis_priv->rx_ring[i].bufptr))) {
1193			dev_kfree_skb(skb);
1194			sis_priv->rx_skbuff[i] = NULL;
1195			break;
1196		}
1197	}
1198	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1199
1200	/* load Receive Descriptor Register */
1201	sw32(rxdp, sis_priv->rx_ring_dma);
1202	if (netif_msg_hw(sis_priv))
1203		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1204		       net_dev->name, sr32(rxdp));
1205}
1206
1207/**
1208 *	sis630_set_eq - set phy equalizer value for 630 LAN
1209 *	@net_dev: the net device to set equalizer value
1210 *	@revision: 630 LAN revision number
1211 *
1212 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1213 *	PHY register 14h(Test)
1214 *	Bit 14: 0 -- Automatically detect (default)
1215 *		1 -- Manually set Equalizer filter
1216 *	Bit 13: 0 -- (Default)
1217 *		1 -- Speed up convergence of equalizer setting
1218 *	Bit 9 : 0 -- (Default)
1219 *		1 -- Disable Baseline Wander
1220 *	Bit 3~7   -- Equalizer filter setting
1221 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1222 *	Then calculate equalizer value
1223 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1224 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1225 *	Calculate Equalizer value:
1226 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1227 *	When the equalizer is stable, this value is not a fixed value. It will be within
1228 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1229 *	0 <= max <= 4  --> set equalizer to max
1230 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1231 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1232 */
1233
1234static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1235{
1236	struct sis900_private *sis_priv = netdev_priv(net_dev);
1237	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1238	int i, maxcount=10;
1239
1240	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1241	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1242		return;
1243
1244	if (netif_carrier_ok(net_dev)) {
1245		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1246		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1247					(0x2200 | reg14h) & 0xBFFF);
1248		for (i=0; i < maxcount; i++) {
1249			eq_value = (0x00F8 & mdio_read(net_dev,
1250					sis_priv->cur_phy, MII_RESV)) >> 3;
1251			if (i == 0)
1252				max_value=min_value=eq_value;
1253			max_value = (eq_value > max_value) ?
1254						eq_value : max_value;
1255			min_value = (eq_value < min_value) ?
1256						eq_value : min_value;
1257		}
1258		/* 630E rule to determine the equalizer value */
1259		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1260		    revision == SIS630ET_900_REV) {
1261			if (max_value < 5)
1262				eq_value = max_value;
1263			else if (max_value >= 5 && max_value < 15)
1264				eq_value = (max_value == min_value) ?
1265						max_value+2 : max_value+1;
1266			else if (max_value >= 15)
1267				eq_value=(max_value == min_value) ?
1268						max_value+6 : max_value+5;
1269		}
1270		/* 630B0&B1 rule to determine the equalizer value */
1271		if (revision == SIS630A_900_REV &&
1272		    (sis_priv->host_bridge_rev == SIS630B0 ||
1273		     sis_priv->host_bridge_rev == SIS630B1)) {
1274			if (max_value == 0)
1275				eq_value = 3;
1276			else
1277				eq_value = (max_value + min_value + 1)/2;
1278		}
1279		/* write equalizer value and setting */
1280		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1281		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1282		reg14h = (reg14h | 0x6000) & 0xFDFF;
1283		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1284	} else {
1285		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1286		if (revision == SIS630A_900_REV &&
1287		    (sis_priv->host_bridge_rev == SIS630B0 ||
1288		     sis_priv->host_bridge_rev == SIS630B1))
1289			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1290						(reg14h | 0x2200) & 0xBFFF);
1291		else
1292			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1293						(reg14h | 0x2000) & 0xBFFF);
1294	}
1295}
1296
1297/**
1298 *	sis900_timer - sis900 timer routine
1299 *	@data: pointer to sis900 net device
1300 *
1301 *	On each timer ticks we check two things,
1302 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1303 */
1304
1305static void sis900_timer(unsigned long data)
1306{
1307	struct net_device *net_dev = (struct net_device *)data;
1308	struct sis900_private *sis_priv = netdev_priv(net_dev);
1309	struct mii_phy *mii_phy = sis_priv->mii;
1310	static const int next_tick = 5*HZ;
1311	int speed = 0, duplex = 0;
1312	u16 status;
1313
1314	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1315	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1316
1317	/* Link OFF -> ON */
1318	if (!netif_carrier_ok(net_dev)) {
1319	LookForLink:
1320		/* Search for new PHY */
1321		status = sis900_default_phy(net_dev);
1322		mii_phy = sis_priv->mii;
1323
1324		if (status & MII_STAT_LINK) {
1325			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1326
1327			sis900_read_mode(net_dev, &speed, &duplex);
1328			if (duplex) {
1329				sis900_set_mode(sis_priv, speed, duplex);
1330				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1331				netif_carrier_on(net_dev);
1332			}
1333		}
1334	} else {
1335	/* Link ON -> OFF */
1336                if (!(status & MII_STAT_LINK)){
1337                	netif_carrier_off(net_dev);
1338			if(netif_msg_link(sis_priv))
1339                		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1340
1341                	/* Change mode issue */
1342                	if ((mii_phy->phy_id0 == 0x001D) &&
1343			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1344               			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1345
1346			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1347
1348                	goto LookForLink;
1349                }
1350	}
1351
1352	sis_priv->timer.expires = jiffies + next_tick;
1353	add_timer(&sis_priv->timer);
1354}
1355
1356/**
1357 *	sis900_check_mode - check the media mode for sis900
1358 *	@net_dev: the net device to be checked
1359 *	@mii_phy: the mii phy
1360 *
1361 *	Older driver gets the media mode from mii status output
1362 *	register. Now we set our media capability and auto-negotiate
1363 *	to get the upper bound of speed and duplex between two ends.
1364 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1365 *	and autong_complete should be set to 1.
1366 */
1367
1368static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1369{
1370	struct sis900_private *sis_priv = netdev_priv(net_dev);
1371	void __iomem *ioaddr = sis_priv->ioaddr;
1372	int speed, duplex;
1373
1374	if (mii_phy->phy_types == LAN) {
1375		sw32(cfg, ~EXD & sr32(cfg));
1376		sis900_set_capability(net_dev , mii_phy);
1377		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1378	} else {
1379		sw32(cfg, EXD | sr32(cfg));
1380		speed = HW_SPEED_HOME;
1381		duplex = FDX_CAPABLE_HALF_SELECTED;
1382		sis900_set_mode(sis_priv, speed, duplex);
1383		sis_priv->autong_complete = 1;
1384	}
1385}
1386
1387/**
1388 *	sis900_set_mode - Set the media mode of mac register.
1389 *	@sp:     the device private data
1390 *	@speed : the transmit speed to be determined
1391 *	@duplex: the duplex mode to be determined
1392 *
1393 *	Set the media mode of mac register txcfg/rxcfg according to
1394 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1395 *	bus is used instead of PCI bus. When this bit is set 1, the
1396 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1397 *	double words.
1398 */
1399
1400static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1401{
1402	void __iomem *ioaddr = sp->ioaddr;
1403	u32 tx_flags = 0, rx_flags = 0;
1404
1405	if (sr32( cfg) & EDB_MASTER_EN) {
1406		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1407					(TX_FILL_THRESH << TxFILLT_shift);
1408		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1409	} else {
1410		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1411					(TX_FILL_THRESH << TxFILLT_shift);
1412		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1413	}
1414
1415	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1416		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1417		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1418	} else {
1419		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1420		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1421	}
1422
1423	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1424		tx_flags |= (TxCSI | TxHBI);
1425		rx_flags |= RxATX;
1426	}
1427
1428#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1429	/* Can accept Jumbo packet */
1430	rx_flags |= RxAJAB;
1431#endif
1432
1433	sw32(txcfg, tx_flags);
1434	sw32(rxcfg, rx_flags);
1435}
1436
1437/**
1438 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1439 *	@net_dev: the net device to read mode for
1440 *	@phy_addr: mii phy address
1441 *
1442 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1443 *	autong_complete should be set to 0 when starting auto-negotiation.
1444 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1445 *	sis900_timer will wait for link on again if autong_complete = 0.
1446 */
1447
1448static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1449{
1450	struct sis900_private *sis_priv = netdev_priv(net_dev);
1451	int i = 0;
1452	u32 status;
1453
1454	for (i = 0; i < 2; i++)
1455		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1456
1457	if (!(status & MII_STAT_LINK)){
1458		if(netif_msg_link(sis_priv))
1459			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1460		sis_priv->autong_complete = 1;
1461		netif_carrier_off(net_dev);
1462		return;
1463	}
1464
1465	/* (Re)start AutoNegotiate */
1466	mdio_write(net_dev, phy_addr, MII_CONTROL,
1467		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1468	sis_priv->autong_complete = 0;
1469}
1470
1471
1472/**
1473 *	sis900_read_mode - read media mode for sis900 internal phy
1474 *	@net_dev: the net device to read mode for
1475 *	@speed  : the transmit speed to be determined
1476 *	@duplex : the duplex mode to be determined
1477 *
1478 *	The capability of remote end will be put in mii register autorec
1479 *	after auto-negotiation. Use AND operation to get the upper bound
1480 *	of speed and duplex between two ends.
1481 */
1482
1483static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1484{
1485	struct sis900_private *sis_priv = netdev_priv(net_dev);
1486	struct mii_phy *phy = sis_priv->mii;
1487	int phy_addr = sis_priv->cur_phy;
1488	u32 status;
1489	u16 autoadv, autorec;
1490	int i;
1491
1492	for (i = 0; i < 2; i++)
1493		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1494
1495	if (!(status & MII_STAT_LINK))
1496		return;
1497
1498	/* AutoNegotiate completed */
1499	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1500	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1501	status = autoadv & autorec;
1502
1503	*speed = HW_SPEED_10_MBPS;
1504	*duplex = FDX_CAPABLE_HALF_SELECTED;
1505
1506	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1507		*speed = HW_SPEED_100_MBPS;
1508	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1509		*duplex = FDX_CAPABLE_FULL_SELECTED;
1510
1511	sis_priv->autong_complete = 1;
1512
1513	/* Workaround for Realtek RTL8201 PHY issue */
1514	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1515		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1516			*duplex = FDX_CAPABLE_FULL_SELECTED;
1517		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1518			*speed = HW_SPEED_100_MBPS;
1519	}
1520
1521	if(netif_msg_link(sis_priv))
1522		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1523	       				net_dev->name,
1524	       				*speed == HW_SPEED_100_MBPS ?
1525	       					"100mbps" : "10mbps",
1526	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1527	       					"full" : "half");
1528}
1529
1530/**
1531 *	sis900_tx_timeout - sis900 transmit timeout routine
1532 *	@net_dev: the net device to transmit
1533 *
1534 *	print transmit timeout status
1535 *	disable interrupts and do some tasks
1536 */
1537
1538static void sis900_tx_timeout(struct net_device *net_dev)
1539{
1540	struct sis900_private *sis_priv = netdev_priv(net_dev);
1541	void __iomem *ioaddr = sis_priv->ioaddr;
1542	unsigned long flags;
1543	int i;
1544
1545	if (netif_msg_tx_err(sis_priv)) {
1546		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1547			net_dev->name, sr32(cr), sr32(isr));
1548	}
1549
1550	/* Disable interrupts by clearing the interrupt mask. */
1551	sw32(imr, 0x0000);
1552
1553	/* use spinlock to prevent interrupt handler accessing buffer ring */
1554	spin_lock_irqsave(&sis_priv->lock, flags);
1555
1556	/* discard unsent packets */
1557	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1558	for (i = 0; i < NUM_TX_DESC; i++) {
1559		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1560
1561		if (skb) {
1562			pci_unmap_single(sis_priv->pci_dev,
1563				sis_priv->tx_ring[i].bufptr, skb->len,
1564				PCI_DMA_TODEVICE);
1565			dev_kfree_skb_irq(skb);
1566			sis_priv->tx_skbuff[i] = NULL;
1567			sis_priv->tx_ring[i].cmdsts = 0;
1568			sis_priv->tx_ring[i].bufptr = 0;
1569			net_dev->stats.tx_dropped++;
1570		}
1571	}
1572	sis_priv->tx_full = 0;
1573	netif_wake_queue(net_dev);
1574
1575	spin_unlock_irqrestore(&sis_priv->lock, flags);
1576
1577	net_dev->trans_start = jiffies; /* prevent tx timeout */
1578
1579	/* load Transmit Descriptor Register */
1580	sw32(txdp, sis_priv->tx_ring_dma);
1581
1582	/* Enable all known interrupts by setting the interrupt mask. */
1583	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1584}
1585
1586/**
1587 *	sis900_start_xmit - sis900 start transmit routine
1588 *	@skb: socket buffer pointer to put the data being transmitted
1589 *	@net_dev: the net device to transmit with
1590 *
1591 *	Set the transmit buffer descriptor,
1592 *	and write TxENA to enable transmit state machine.
1593 *	tell upper layer if the buffer is full
1594 */
1595
1596static netdev_tx_t
1597sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1598{
1599	struct sis900_private *sis_priv = netdev_priv(net_dev);
1600	void __iomem *ioaddr = sis_priv->ioaddr;
1601	unsigned int  entry;
1602	unsigned long flags;
1603	unsigned int  index_cur_tx, index_dirty_tx;
1604	unsigned int  count_dirty_tx;
1605
1606	spin_lock_irqsave(&sis_priv->lock, flags);
1607
1608	/* Calculate the next Tx descriptor entry. */
1609	entry = sis_priv->cur_tx % NUM_TX_DESC;
1610	sis_priv->tx_skbuff[entry] = skb;
1611
1612	/* set the transmit buffer descriptor and enable Transmit State Machine */
1613	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1614		skb->data, skb->len, PCI_DMA_TODEVICE);
1615	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1616		sis_priv->tx_ring[entry].bufptr))) {
1617			dev_kfree_skb_any(skb);
1618			sis_priv->tx_skbuff[entry] = NULL;
1619			net_dev->stats.tx_dropped++;
1620			spin_unlock_irqrestore(&sis_priv->lock, flags);
1621			return NETDEV_TX_OK;
1622	}
1623	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1624	sw32(cr, TxENA | sr32(cr));
1625
1626	sis_priv->cur_tx ++;
1627	index_cur_tx = sis_priv->cur_tx;
1628	index_dirty_tx = sis_priv->dirty_tx;
1629
1630	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1631		count_dirty_tx ++;
1632
1633	if (index_cur_tx == index_dirty_tx) {
1634		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1635		sis_priv->tx_full = 1;
1636		netif_stop_queue(net_dev);
1637	} else if (count_dirty_tx < NUM_TX_DESC) {
1638		/* Typical path, tell upper layer that more transmission is possible */
1639		netif_start_queue(net_dev);
1640	} else {
1641		/* buffer full, tell upper layer no more transmission */
1642		sis_priv->tx_full = 1;
1643		netif_stop_queue(net_dev);
1644	}
1645
1646	spin_unlock_irqrestore(&sis_priv->lock, flags);
1647
1648	if (netif_msg_tx_queued(sis_priv))
1649		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1650		       "to slot %d.\n",
1651		       net_dev->name, skb->data, (int)skb->len, entry);
1652
1653	return NETDEV_TX_OK;
1654}
1655
1656/**
1657 *	sis900_interrupt - sis900 interrupt handler
1658 *	@irq: the irq number
1659 *	@dev_instance: the client data object
1660 *
1661 *	The interrupt handler does all of the Rx thread work,
1662 *	and cleans up after the Tx thread
1663 */
1664
1665static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1666{
1667	struct net_device *net_dev = dev_instance;
1668	struct sis900_private *sis_priv = netdev_priv(net_dev);
1669	int boguscnt = max_interrupt_work;
1670	void __iomem *ioaddr = sis_priv->ioaddr;
1671	u32 status;
1672	unsigned int handled = 0;
1673
1674	spin_lock (&sis_priv->lock);
1675
1676	do {
1677		status = sr32(isr);
1678
1679		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1680			/* nothing intresting happened */
1681			break;
1682		handled = 1;
1683
1684		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1685		if (status & (RxORN | RxERR | RxOK))
1686			/* Rx interrupt */
1687			sis900_rx(net_dev);
1688
1689		if (status & (TxURN | TxERR | TxIDLE))
1690			/* Tx interrupt */
1691			sis900_finish_xmit(net_dev);
1692
1693		/* something strange happened !!! */
1694		if (status & HIBERR) {
1695			if(netif_msg_intr(sis_priv))
1696				printk(KERN_INFO "%s: Abnormal interrupt, "
1697					"status %#8.8x.\n", net_dev->name, status);
1698			break;
1699		}
1700		if (--boguscnt < 0) {
1701			if(netif_msg_intr(sis_priv))
1702				printk(KERN_INFO "%s: Too much work at interrupt, "
1703					"interrupt status = %#8.8x.\n",
1704					net_dev->name, status);
1705			break;
1706		}
1707	} while (1);
1708
1709	if(netif_msg_intr(sis_priv))
1710		printk(KERN_DEBUG "%s: exiting interrupt, "
1711		       "interrupt status = %#8.8x\n",
1712		       net_dev->name, sr32(isr));
1713
1714	spin_unlock (&sis_priv->lock);
1715	return IRQ_RETVAL(handled);
1716}
1717
1718/**
1719 *	sis900_rx - sis900 receive routine
1720 *	@net_dev: the net device which receives data
1721 *
1722 *	Process receive interrupt events,
1723 *	put buffer to higher layer and refill buffer pool
1724 *	Note: This function is called by interrupt handler,
1725 *	don't do "too much" work here
1726 */
1727
1728static int sis900_rx(struct net_device *net_dev)
1729{
1730	struct sis900_private *sis_priv = netdev_priv(net_dev);
1731	void __iomem *ioaddr = sis_priv->ioaddr;
1732	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1733	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1734	int rx_work_limit;
1735
1736	if (netif_msg_rx_status(sis_priv))
1737		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1738		       "status:0x%8.8x\n",
1739		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1740	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1741
1742	while (rx_status & OWN) {
1743		unsigned int rx_size;
1744		unsigned int data_size;
1745
1746		if (--rx_work_limit < 0)
1747			break;
1748
1749		data_size = rx_status & DSIZE;
1750		rx_size = data_size - CRC_SIZE;
1751
1752#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1753		/* ``TOOLONG'' flag means jumbo packet received. */
1754		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1755			rx_status &= (~ ((unsigned int)TOOLONG));
1756#endif
1757
1758		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1759			/* corrupted packet received */
1760			if (netif_msg_rx_err(sis_priv))
1761				printk(KERN_DEBUG "%s: Corrupted packet "
1762				       "received, buffer status = 0x%8.8x/%d.\n",
1763				       net_dev->name, rx_status, data_size);
1764			net_dev->stats.rx_errors++;
1765			if (rx_status & OVERRUN)
1766				net_dev->stats.rx_over_errors++;
1767			if (rx_status & (TOOLONG|RUNT))
1768				net_dev->stats.rx_length_errors++;
1769			if (rx_status & (RXISERR | FAERR))
1770				net_dev->stats.rx_frame_errors++;
1771			if (rx_status & CRCERR)
1772				net_dev->stats.rx_crc_errors++;
1773			/* reset buffer descriptor state */
1774			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1775		} else {
1776			struct sk_buff * skb;
1777			struct sk_buff * rx_skb;
1778
1779			pci_unmap_single(sis_priv->pci_dev,
1780				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1781				PCI_DMA_FROMDEVICE);
1782
1783			/* refill the Rx buffer, what if there is not enough
1784			 * memory for new socket buffer ?? */
1785			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1786				/*
1787				 * Not enough memory to refill the buffer
1788				 * so we need to recycle the old one so
1789				 * as to avoid creating a memory hole
1790				 * in the rx ring
1791				 */
1792				skb = sis_priv->rx_skbuff[entry];
1793				net_dev->stats.rx_dropped++;
1794				goto refill_rx_ring;
1795			}
1796
1797			/* This situation should never happen, but due to
1798			   some unknown bugs, it is possible that
1799			   we are working on NULL sk_buff :-( */
1800			if (sis_priv->rx_skbuff[entry] == NULL) {
1801				if (netif_msg_rx_err(sis_priv))
1802					printk(KERN_WARNING "%s: NULL pointer "
1803					      "encountered in Rx ring\n"
1804					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1805					      net_dev->name, sis_priv->cur_rx,
1806					      sis_priv->dirty_rx);
1807				dev_kfree_skb(skb);
1808				break;
1809			}
1810
1811			/* give the socket buffer to upper layers */
1812			rx_skb = sis_priv->rx_skbuff[entry];
1813			skb_put(rx_skb, rx_size);
1814			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1815			netif_rx(rx_skb);
1816
1817			/* some network statistics */
1818			if ((rx_status & BCAST) == MCAST)
1819				net_dev->stats.multicast++;
1820			net_dev->stats.rx_bytes += rx_size;
1821			net_dev->stats.rx_packets++;
1822			sis_priv->dirty_rx++;
1823refill_rx_ring:
1824			sis_priv->rx_skbuff[entry] = skb;
1825			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1826			sis_priv->rx_ring[entry].bufptr =
1827				pci_map_single(sis_priv->pci_dev, skb->data,
1828					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1829			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1830				sis_priv->rx_ring[entry].bufptr))) {
1831				dev_kfree_skb_irq(skb);
1832				sis_priv->rx_skbuff[entry] = NULL;
1833				break;
1834			}
1835		}
1836		sis_priv->cur_rx++;
1837		entry = sis_priv->cur_rx % NUM_RX_DESC;
1838		rx_status = sis_priv->rx_ring[entry].cmdsts;
1839	} // while
1840
1841	/* refill the Rx buffer, what if the rate of refilling is slower
1842	 * than consuming ?? */
1843	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1844		struct sk_buff *skb;
1845
1846		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1847
1848		if (sis_priv->rx_skbuff[entry] == NULL) {
1849			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1850			if (skb == NULL) {
1851				/* not enough memory for skbuff, this makes a
1852				 * "hole" on the buffer ring, it is not clear
1853				 * how the hardware will react to this kind
1854				 * of degenerated buffer */
1855				net_dev->stats.rx_dropped++;
1856				break;
1857			}
1858			sis_priv->rx_skbuff[entry] = skb;
1859			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1860			sis_priv->rx_ring[entry].bufptr =
1861				pci_map_single(sis_priv->pci_dev, skb->data,
1862					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1863			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1864					sis_priv->rx_ring[entry].bufptr))) {
1865				dev_kfree_skb_irq(skb);
1866				sis_priv->rx_skbuff[entry] = NULL;
1867				break;
1868			}
1869		}
1870	}
1871	/* re-enable the potentially idle receive state matchine */
1872	sw32(cr , RxENA | sr32(cr));
1873
1874	return 0;
1875}
1876
1877/**
1878 *	sis900_finish_xmit - finish up transmission of packets
1879 *	@net_dev: the net device to be transmitted on
1880 *
1881 *	Check for error condition and free socket buffer etc
1882 *	schedule for more transmission as needed
1883 *	Note: This function is called by interrupt handler,
1884 *	don't do "too much" work here
1885 */
1886
1887static void sis900_finish_xmit (struct net_device *net_dev)
1888{
1889	struct sis900_private *sis_priv = netdev_priv(net_dev);
1890
1891	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1892		struct sk_buff *skb;
1893		unsigned int entry;
1894		u32 tx_status;
1895
1896		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1897		tx_status = sis_priv->tx_ring[entry].cmdsts;
1898
1899		if (tx_status & OWN) {
1900			/* The packet is not transmitted yet (owned by hardware) !
1901			 * Note: the interrupt is generated only when Tx Machine
1902			 * is idle, so this is an almost impossible case */
1903			break;
1904		}
1905
1906		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1907			/* packet unsuccessfully transmitted */
1908			if (netif_msg_tx_err(sis_priv))
1909				printk(KERN_DEBUG "%s: Transmit "
1910				       "error, Tx status %8.8x.\n",
1911				       net_dev->name, tx_status);
1912			net_dev->stats.tx_errors++;
1913			if (tx_status & UNDERRUN)
1914				net_dev->stats.tx_fifo_errors++;
1915			if (tx_status & ABORT)
1916				net_dev->stats.tx_aborted_errors++;
1917			if (tx_status & NOCARRIER)
1918				net_dev->stats.tx_carrier_errors++;
1919			if (tx_status & OWCOLL)
1920				net_dev->stats.tx_window_errors++;
1921		} else {
1922			/* packet successfully transmitted */
1923			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1924			net_dev->stats.tx_bytes += tx_status & DSIZE;
1925			net_dev->stats.tx_packets++;
1926		}
1927		/* Free the original skb. */
1928		skb = sis_priv->tx_skbuff[entry];
1929		pci_unmap_single(sis_priv->pci_dev,
1930			sis_priv->tx_ring[entry].bufptr, skb->len,
1931			PCI_DMA_TODEVICE);
1932		dev_kfree_skb_irq(skb);
1933		sis_priv->tx_skbuff[entry] = NULL;
1934		sis_priv->tx_ring[entry].bufptr = 0;
1935		sis_priv->tx_ring[entry].cmdsts = 0;
1936	}
1937
1938	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1939	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1940		/* The ring is no longer full, clear tx_full and schedule
1941		 * more transmission by netif_wake_queue(net_dev) */
1942		sis_priv->tx_full = 0;
1943		netif_wake_queue (net_dev);
1944	}
1945}
1946
1947/**
1948 *	sis900_close - close sis900 device
1949 *	@net_dev: the net device to be closed
1950 *
1951 *	Disable interrupts, stop the Tx and Rx Status Machine
1952 *	free Tx and RX socket buffer
1953 */
1954
1955static int sis900_close(struct net_device *net_dev)
1956{
1957	struct sis900_private *sis_priv = netdev_priv(net_dev);
1958	struct pci_dev *pdev = sis_priv->pci_dev;
1959	void __iomem *ioaddr = sis_priv->ioaddr;
1960	struct sk_buff *skb;
1961	int i;
1962
1963	netif_stop_queue(net_dev);
1964
1965	/* Disable interrupts by clearing the interrupt mask. */
1966	sw32(imr, 0x0000);
1967	sw32(ier, 0x0000);
1968
1969	/* Stop the chip's Tx and Rx Status Machine */
1970	sw32(cr, RxDIS | TxDIS | sr32(cr));
1971
1972	del_timer(&sis_priv->timer);
1973
1974	free_irq(pdev->irq, net_dev);
1975
1976	/* Free Tx and RX skbuff */
1977	for (i = 0; i < NUM_RX_DESC; i++) {
1978		skb = sis_priv->rx_skbuff[i];
1979		if (skb) {
1980			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1981					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1982			dev_kfree_skb(skb);
1983			sis_priv->rx_skbuff[i] = NULL;
1984		}
1985	}
1986	for (i = 0; i < NUM_TX_DESC; i++) {
1987		skb = sis_priv->tx_skbuff[i];
1988		if (skb) {
1989			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1990					 skb->len, PCI_DMA_TODEVICE);
1991			dev_kfree_skb(skb);
1992			sis_priv->tx_skbuff[i] = NULL;
1993		}
1994	}
1995
1996	/* Green! Put the chip in low-power mode. */
1997
1998	return 0;
1999}
2000
2001/**
2002 *	sis900_get_drvinfo - Return information about driver
2003 *	@net_dev: the net device to probe
2004 *	@info: container for info returned
2005 *
2006 *	Process ethtool command such as "ehtool -i" to show information
2007 */
2008
2009static void sis900_get_drvinfo(struct net_device *net_dev,
2010			       struct ethtool_drvinfo *info)
2011{
2012	struct sis900_private *sis_priv = netdev_priv(net_dev);
2013
2014	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2015	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2016	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2017		sizeof(info->bus_info));
2018}
2019
2020static u32 sis900_get_msglevel(struct net_device *net_dev)
2021{
2022	struct sis900_private *sis_priv = netdev_priv(net_dev);
2023	return sis_priv->msg_enable;
2024}
2025
2026static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2027{
2028	struct sis900_private *sis_priv = netdev_priv(net_dev);
2029	sis_priv->msg_enable = value;
2030}
2031
2032static u32 sis900_get_link(struct net_device *net_dev)
2033{
2034	struct sis900_private *sis_priv = netdev_priv(net_dev);
2035	return mii_link_ok(&sis_priv->mii_info);
2036}
2037
2038static int sis900_get_settings(struct net_device *net_dev,
2039				struct ethtool_cmd *cmd)
2040{
2041	struct sis900_private *sis_priv = netdev_priv(net_dev);
2042	spin_lock_irq(&sis_priv->lock);
2043	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2044	spin_unlock_irq(&sis_priv->lock);
2045	return 0;
2046}
2047
2048static int sis900_set_settings(struct net_device *net_dev,
2049				struct ethtool_cmd *cmd)
2050{
2051	struct sis900_private *sis_priv = netdev_priv(net_dev);
2052	int rt;
2053	spin_lock_irq(&sis_priv->lock);
2054	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2055	spin_unlock_irq(&sis_priv->lock);
2056	return rt;
2057}
2058
2059static int sis900_nway_reset(struct net_device *net_dev)
2060{
2061	struct sis900_private *sis_priv = netdev_priv(net_dev);
2062	return mii_nway_restart(&sis_priv->mii_info);
2063}
2064
2065/**
2066 *	sis900_set_wol - Set up Wake on Lan registers
2067 *	@net_dev: the net device to probe
2068 *	@wol: container for info passed to the driver
2069 *
2070 *	Process ethtool command "wol" to setup wake on lan features.
2071 *	SiS900 supports sending WoL events if a correct packet is received,
2072 *	but there is no simple way to filter them to only a subset (broadcast,
2073 *	multicast, unicast or arp).
2074 */
2075
2076static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2077{
2078	struct sis900_private *sis_priv = netdev_priv(net_dev);
2079	void __iomem *ioaddr = sis_priv->ioaddr;
2080	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2081
2082	if (wol->wolopts == 0) {
2083		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2084		cfgpmcsr &= ~PME_EN;
2085		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2086		sw32(pmctrl, pmctrl_bits);
2087		if (netif_msg_wol(sis_priv))
2088			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2089		return 0;
2090	}
2091
2092	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2093				| WAKE_BCAST | WAKE_ARP))
2094		return -EINVAL;
2095
2096	if (wol->wolopts & WAKE_MAGIC)
2097		pmctrl_bits |= MAGICPKT;
2098	if (wol->wolopts & WAKE_PHY)
2099		pmctrl_bits |= LINKON;
2100
2101	sw32(pmctrl, pmctrl_bits);
2102
2103	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2104	cfgpmcsr |= PME_EN;
2105	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2106	if (netif_msg_wol(sis_priv))
2107		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2108
2109	return 0;
2110}
2111
2112static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2113{
2114	struct sis900_private *sp = netdev_priv(net_dev);
2115	void __iomem *ioaddr = sp->ioaddr;
2116	u32 pmctrl_bits;
2117
2118	pmctrl_bits = sr32(pmctrl);
2119	if (pmctrl_bits & MAGICPKT)
2120		wol->wolopts |= WAKE_MAGIC;
2121	if (pmctrl_bits & LINKON)
2122		wol->wolopts |= WAKE_PHY;
2123
2124	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2125}
2126
2127static const struct ethtool_ops sis900_ethtool_ops = {
2128	.get_drvinfo 	= sis900_get_drvinfo,
2129	.get_msglevel	= sis900_get_msglevel,
2130	.set_msglevel	= sis900_set_msglevel,
2131	.get_link	= sis900_get_link,
2132	.get_settings	= sis900_get_settings,
2133	.set_settings	= sis900_set_settings,
2134	.nway_reset	= sis900_nway_reset,
2135	.get_wol	= sis900_get_wol,
2136	.set_wol	= sis900_set_wol
2137};
2138
2139/**
2140 *	mii_ioctl - process MII i/o control command
2141 *	@net_dev: the net device to command for
2142 *	@rq: parameter for command
2143 *	@cmd: the i/o command
2144 *
2145 *	Process MII command like read/write MII register
2146 */
2147
2148static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2149{
2150	struct sis900_private *sis_priv = netdev_priv(net_dev);
2151	struct mii_ioctl_data *data = if_mii(rq);
2152
2153	switch(cmd) {
2154	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2155		data->phy_id = sis_priv->mii->phy_addr;
2156		/* Fall Through */
2157
2158	case SIOCGMIIREG:		/* Read MII PHY register. */
2159		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2160		return 0;
2161
2162	case SIOCSMIIREG:		/* Write MII PHY register. */
2163		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2164		return 0;
2165	default:
2166		return -EOPNOTSUPP;
2167	}
2168}
2169
2170/**
2171 *	sis900_set_config - Set media type by net_device.set_config
2172 *	@dev: the net device for media type change
2173 *	@map: ifmap passed by ifconfig
2174 *
2175 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2176 *	we support only port changes. All other runtime configuration
2177 *	changes will be ignored
2178 */
2179
2180static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2181{
2182	struct sis900_private *sis_priv = netdev_priv(dev);
2183	struct mii_phy *mii_phy = sis_priv->mii;
2184
2185	u16 status;
2186
2187	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2188		/* we switch on the ifmap->port field. I couldn't find anything
2189		 * like a definition or standard for the values of that field.
2190		 * I think the meaning of those values is device specific. But
2191		 * since I would like to change the media type via the ifconfig
2192		 * command I use the definition from linux/netdevice.h
2193		 * (which seems to be different from the ifport(pcmcia) definition) */
2194		switch(map->port){
2195		case IF_PORT_UNKNOWN: /* use auto here */
2196			dev->if_port = map->port;
2197			/* we are going to change the media type, so the Link
2198			 * will be temporary down and we need to reflect that
2199			 * here. When the Link comes up again, it will be
2200			 * sensed by the sis_timer procedure, which also does
2201			 * all the rest for us */
2202			netif_carrier_off(dev);
2203
2204			/* read current state */
2205			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2206
2207			/* enable auto negotiation and reset the negotioation
2208			 * (I don't really know what the auto negatiotiation
2209			 * reset really means, but it sounds for me right to
2210			 * do one here) */
2211			mdio_write(dev, mii_phy->phy_addr,
2212				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2213
2214			break;
2215
2216		case IF_PORT_10BASET: /* 10BaseT */
2217			dev->if_port = map->port;
2218
2219			/* we are going to change the media type, so the Link
2220			 * will be temporary down and we need to reflect that
2221			 * here. When the Link comes up again, it will be
2222			 * sensed by the sis_timer procedure, which also does
2223			 * all the rest for us */
2224			netif_carrier_off(dev);
2225
2226			/* set Speed to 10Mbps */
2227			/* read current state */
2228			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2229
2230			/* disable auto negotiation and force 10MBit mode*/
2231			mdio_write(dev, mii_phy->phy_addr,
2232				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2233					MII_CNTL_AUTO));
2234			break;
2235
2236		case IF_PORT_100BASET: /* 100BaseT */
2237		case IF_PORT_100BASETX: /* 100BaseTx */
2238			dev->if_port = map->port;
2239
2240			/* we are going to change the media type, so the Link
2241			 * will be temporary down and we need to reflect that
2242			 * here. When the Link comes up again, it will be
2243			 * sensed by the sis_timer procedure, which also does
2244			 * all the rest for us */
2245			netif_carrier_off(dev);
2246
2247			/* set Speed to 100Mbps */
2248			/* disable auto negotiation and enable 100MBit Mode */
2249			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2250			mdio_write(dev, mii_phy->phy_addr,
2251				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2252				   MII_CNTL_SPEED);
2253
2254			break;
2255
2256		case IF_PORT_10BASE2: /* 10Base2 */
2257		case IF_PORT_AUI: /* AUI */
2258		case IF_PORT_100BASEFX: /* 100BaseFx */
2259                	/* These Modes are not supported (are they?)*/
2260			return -EOPNOTSUPP;
2261			break;
2262
2263		default:
2264			return -EINVAL;
2265		}
2266	}
2267	return 0;
2268}
2269
2270/**
2271 *	sis900_mcast_bitnr - compute hashtable index
2272 *	@addr: multicast address
2273 *	@revision: revision id of chip
2274 *
2275 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2276 *	hash table, which makes this function a little bit different from other drivers
2277 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2278 *   	multicast hash table.
2279 */
2280
2281static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2282{
2283
2284	u32 crc = ether_crc(6, addr);
2285
2286	/* leave 8 or 7 most siginifant bits */
2287	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2288		return (int)(crc >> 24);
2289	else
2290		return (int)(crc >> 25);
2291}
2292
2293/**
2294 *	set_rx_mode - Set SiS900 receive mode
2295 *	@net_dev: the net device to be set
2296 *
2297 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2298 *	And set the appropriate multicast filter.
2299 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2300 */
2301
2302static void set_rx_mode(struct net_device *net_dev)
2303{
2304	struct sis900_private *sis_priv = netdev_priv(net_dev);
2305	void __iomem *ioaddr = sis_priv->ioaddr;
2306	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2307	int i, table_entries;
2308	u32 rx_mode;
2309
2310	/* 635 Hash Table entries = 256(2^16) */
2311	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2312			(sis_priv->chipset_rev == SIS900B_900_REV))
2313		table_entries = 16;
2314	else
2315		table_entries = 8;
2316
2317	if (net_dev->flags & IFF_PROMISC) {
2318		/* Accept any kinds of packets */
2319		rx_mode = RFPromiscuous;
2320		for (i = 0; i < table_entries; i++)
2321			mc_filter[i] = 0xffff;
2322	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2323		   (net_dev->flags & IFF_ALLMULTI)) {
2324		/* too many multicast addresses or accept all multicast packet */
2325		rx_mode = RFAAB | RFAAM;
2326		for (i = 0; i < table_entries; i++)
2327			mc_filter[i] = 0xffff;
2328	} else {
2329		/* Accept Broadcast packet, destination address matchs our
2330		 * MAC address, use Receive Filter to reject unwanted MCAST
2331		 * packets */
2332		struct netdev_hw_addr *ha;
2333		rx_mode = RFAAB;
2334
2335		netdev_for_each_mc_addr(ha, net_dev) {
2336			unsigned int bit_nr;
2337
2338			bit_nr = sis900_mcast_bitnr(ha->addr,
2339						    sis_priv->chipset_rev);
2340			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2341		}
2342	}
2343
2344	/* update Multicast Hash Table in Receive Filter */
2345	for (i = 0; i < table_entries; i++) {
2346                /* why plus 0x04 ??, That makes the correct value for hash table. */
2347		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2348		sw32(rfdr, mc_filter[i]);
2349	}
2350
2351	sw32(rfcr, RFEN | rx_mode);
2352
2353	/* sis900 is capable of looping back packets at MAC level for
2354	 * debugging purpose */
2355	if (net_dev->flags & IFF_LOOPBACK) {
2356		u32 cr_saved;
2357		/* We must disable Tx/Rx before setting loopback mode */
2358		cr_saved = sr32(cr);
2359		sw32(cr, cr_saved | TxDIS | RxDIS);
2360		/* enable loopback */
2361		sw32(txcfg, sr32(txcfg) | TxMLB);
2362		sw32(rxcfg, sr32(rxcfg) | RxATX);
2363		/* restore cr */
2364		sw32(cr, cr_saved);
2365	}
2366}
2367
2368/**
2369 *	sis900_reset - Reset sis900 MAC
2370 *	@net_dev: the net device to reset
2371 *
2372 *	reset sis900 MAC and wait until finished
2373 *	reset through command register
2374 *	change backoff algorithm for 900B0 & 635 M/B
2375 */
2376
2377static void sis900_reset(struct net_device *net_dev)
2378{
2379	struct sis900_private *sis_priv = netdev_priv(net_dev);
2380	void __iomem *ioaddr = sis_priv->ioaddr;
2381	u32 status = TxRCMP | RxRCMP;
2382	int i;
2383
2384	sw32(ier, 0);
2385	sw32(imr, 0);
2386	sw32(rfcr, 0);
2387
2388	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2389
2390	/* Check that the chip has finished the reset. */
2391	for (i = 0; status && (i < 1000); i++)
2392		status ^= sr32(isr) & status;
2393
2394	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2395	    sis_priv->chipset_rev == SIS900B_900_REV)
2396		sw32(cfg, PESEL | RND_CNT);
2397	else
2398		sw32(cfg, PESEL);
2399}
2400
2401/**
2402 *	sis900_remove - Remove sis900 device
2403 *	@pci_dev: the pci device to be removed
2404 *
2405 *	remove and release SiS900 net device
2406 */
2407
2408static void sis900_remove(struct pci_dev *pci_dev)
2409{
2410	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2411	struct sis900_private *sis_priv = netdev_priv(net_dev);
2412
2413	unregister_netdev(net_dev);
2414
2415	while (sis_priv->first_mii) {
2416		struct mii_phy *phy = sis_priv->first_mii;
2417
2418		sis_priv->first_mii = phy->next;
2419		kfree(phy);
2420	}
2421
2422	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2423		sis_priv->rx_ring_dma);
2424	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2425		sis_priv->tx_ring_dma);
2426	pci_iounmap(pci_dev, sis_priv->ioaddr);
2427	free_netdev(net_dev);
2428	pci_release_regions(pci_dev);
2429}
2430
2431#ifdef CONFIG_PM
2432
2433static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2434{
2435	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2436	struct sis900_private *sis_priv = netdev_priv(net_dev);
2437	void __iomem *ioaddr = sis_priv->ioaddr;
2438
2439	if(!netif_running(net_dev))
2440		return 0;
2441
2442	netif_stop_queue(net_dev);
2443	netif_device_detach(net_dev);
2444
2445	/* Stop the chip's Tx and Rx Status Machine */
2446	sw32(cr, RxDIS | TxDIS | sr32(cr));
2447
2448	pci_set_power_state(pci_dev, PCI_D3hot);
2449	pci_save_state(pci_dev);
2450
2451	return 0;
2452}
2453
2454static int sis900_resume(struct pci_dev *pci_dev)
2455{
2456	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2457	struct sis900_private *sis_priv = netdev_priv(net_dev);
2458	void __iomem *ioaddr = sis_priv->ioaddr;
2459
2460	if(!netif_running(net_dev))
2461		return 0;
2462	pci_restore_state(pci_dev);
2463	pci_set_power_state(pci_dev, PCI_D0);
2464
2465	sis900_init_rxfilter(net_dev);
2466
2467	sis900_init_tx_ring(net_dev);
2468	sis900_init_rx_ring(net_dev);
2469
2470	set_rx_mode(net_dev);
2471
2472	netif_device_attach(net_dev);
2473	netif_start_queue(net_dev);
2474
2475	/* Workaround for EDB */
2476	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2477
2478	/* Enable all known interrupts by setting the interrupt mask. */
2479	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2480	sw32(cr, RxENA | sr32(cr));
2481	sw32(ier, IE);
2482
2483	sis900_check_mode(net_dev, sis_priv->mii);
2484
2485	return 0;
2486}
2487#endif /* CONFIG_PM */
2488
2489static struct pci_driver sis900_pci_driver = {
2490	.name		= SIS900_MODULE_NAME,
2491	.id_table	= sis900_pci_tbl,
2492	.probe		= sis900_probe,
2493	.remove		= sis900_remove,
2494#ifdef CONFIG_PM
2495	.suspend	= sis900_suspend,
2496	.resume		= sis900_resume,
2497#endif /* CONFIG_PM */
2498};
2499
2500static int __init sis900_init_module(void)
2501{
2502/* when a module, this is printed whether or not devices are found in probe */
2503#ifdef MODULE
2504	printk(version);
2505#endif
2506
2507	return pci_register_driver(&sis900_pci_driver);
2508}
2509
2510static void __exit sis900_cleanup_module(void)
2511{
2512	pci_unregister_driver(&sis900_pci_driver);
2513}
2514
2515module_init(sis900_init_module);
2516module_exit(sis900_cleanup_module);
2517