Linux Audio

Check our new training course

Loading...
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:	1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <asm/uaccess.h>	/* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] __devinitconst =
  85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93	(NETIF_MSG_DRV		| \
  94	 NETIF_MSG_LINK		| \
  95	 NETIF_MSG_RX_ERR	| \
  96	 NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102	SIS_900 = 0,
 103	SIS_7016
 104};
 105static const char * card_names[] = {
 106	"SiS 900 PCI Fast Ethernet",
 107	"SiS 7016 PCI Fast Ethernet"
 108};
 109static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
 110	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 111	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 112	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 113	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 114	{0,}
 115};
 116MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 117
 118static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 119
 120static const struct mii_chip_info {
 121	const char * name;
 122	u16 phy_id0;
 123	u16 phy_id1;
 124	u8  phy_types;
 125#define	HOME 	0x0001
 126#define LAN	0x0002
 127#define MIX	0x0003
 128#define UNKNOWN	0x0
 129} mii_chip_table[] = {
 130	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
 131	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
 132	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 133	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 134	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
 135	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
 136	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
 137	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
 138	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
 139	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
 140	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 141	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
 142	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
 143	{NULL,},
 144};
 145
 146struct mii_phy {
 147	struct mii_phy * next;
 148	int phy_addr;
 149	u16 phy_id0;
 150	u16 phy_id1;
 151	u16 status;
 152	u8  phy_types;
 153};
 154
 155typedef struct _BufferDesc {
 156	u32 link;
 157	u32 cmdsts;
 158	u32 bufptr;
 159} BufferDesc;
 160
 161struct sis900_private {
 162	struct pci_dev * pci_dev;
 163
 164	spinlock_t lock;
 165
 166	struct mii_phy * mii;
 167	struct mii_phy * first_mii; /* record the first mii structure */
 168	unsigned int cur_phy;
 169	struct mii_if_info mii_info;
 170
 171	void __iomem	*ioaddr;
 172
 173	struct timer_list timer; /* Link status detection timer. */
 174	u8 autong_complete; /* 1: auto-negotiate complete  */
 175
 176	u32 msg_enable;
 177
 178	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
 179	unsigned int cur_tx, dirty_tx;
 180
 181	/* The saved address of a sent/receive-in-place packet buffer */
 182	struct sk_buff *tx_skbuff[NUM_TX_DESC];
 183	struct sk_buff *rx_skbuff[NUM_RX_DESC];
 184	BufferDesc *tx_ring;
 185	BufferDesc *rx_ring;
 186
 187	dma_addr_t tx_ring_dma;
 188	dma_addr_t rx_ring_dma;
 189
 190	unsigned int tx_full; /* The Tx queue is full. */
 191	u8 host_bridge_rev;
 192	u8 chipset_rev;
 193};
 194
 195MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 196MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 197MODULE_LICENSE("GPL");
 198
 199module_param(multicast_filter_limit, int, 0444);
 200module_param(max_interrupt_work, int, 0444);
 201module_param(sis900_debug, int, 0444);
 202MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 203MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 204MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 205
 206#define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
 207#define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
 208#define sr32(reg)	ioread32(ioaddr + (reg))
 209#define sr16(reg)	ioread16(ioaddr + (reg))
 210
 211#ifdef CONFIG_NET_POLL_CONTROLLER
 212static void sis900_poll(struct net_device *dev);
 213#endif
 214static int sis900_open(struct net_device *net_dev);
 215static int sis900_mii_probe (struct net_device * net_dev);
 216static void sis900_init_rxfilter (struct net_device * net_dev);
 217static u16 read_eeprom(void __iomem *ioaddr, int location);
 218static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 219static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 220static void sis900_timer(unsigned long data);
 221static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 222static void sis900_tx_timeout(struct net_device *net_dev);
 223static void sis900_init_tx_ring(struct net_device *net_dev);
 224static void sis900_init_rx_ring(struct net_device *net_dev);
 225static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 226				     struct net_device *net_dev);
 227static int sis900_rx(struct net_device *net_dev);
 228static void sis900_finish_xmit (struct net_device *net_dev);
 229static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 230static int sis900_close(struct net_device *net_dev);
 231static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 232static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 233static void set_rx_mode(struct net_device *net_dev);
 234static void sis900_reset(struct net_device *net_dev);
 235static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 236static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 237static u16 sis900_default_phy(struct net_device * net_dev);
 238static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 239static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 240static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 241static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 242static const struct ethtool_ops sis900_ethtool_ops;
 243
 244/**
 245 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 246 *	@pci_dev: the sis900 pci device
 247 *	@net_dev: the net device to get address for
 248 *
 249 *	Older SiS900 and friends, use EEPROM to store MAC address.
 250 *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
 251 *	@net_dev->perm_addr.
 252 */
 253
 254static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
 255{
 256	struct sis900_private *sis_priv = netdev_priv(net_dev);
 257	void __iomem *ioaddr = sis_priv->ioaddr;
 258	u16 signature;
 259	int i;
 260
 261	/* check to see if we have sane EEPROM */
 262	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 263	if (signature == 0xffff || signature == 0x0000) {
 264		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
 265			pci_name(pci_dev), signature);
 266		return 0;
 267	}
 268
 269	/* get MAC address from EEPROM */
 270	for (i = 0; i < 3; i++)
 271	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 272
 273	/* Store MAC Address in perm_addr */
 274	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
 275
 276	return 1;
 277}
 278
 279/**
 280 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
 281 *	@pci_dev: the sis900 pci device
 282 *	@net_dev: the net device to get address for
 283 *
 284 *	SiS630E model, use APC CMOS RAM to store MAC address.
 285 *	APC CMOS RAM is accessed through ISA bridge.
 286 *	MAC address is read into @net_dev->dev_addr and
 287 *	@net_dev->perm_addr.
 288 */
 289
 290static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
 291					struct net_device *net_dev)
 292{
 293	struct pci_dev *isa_bridge = NULL;
 294	u8 reg;
 295	int i;
 296
 297	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 298	if (!isa_bridge)
 299		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 300	if (!isa_bridge) {
 301		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 302		       pci_name(pci_dev));
 303		return 0;
 304	}
 305	pci_read_config_byte(isa_bridge, 0x48, &reg);
 306	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 307
 308	for (i = 0; i < 6; i++) {
 309		outb(0x09 + i, 0x70);
 310		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 311	}
 312
 313	/* Store MAC Address in perm_addr */
 314	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
 315
 316	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 317	pci_dev_put(isa_bridge);
 318
 319	return 1;
 320}
 321
 322
 323/**
 324 *	sis635_get_mac_addr - Get MAC address for SIS635 model
 325 *	@pci_dev: the sis900 pci device
 326 *	@net_dev: the net device to get address for
 327 *
 328 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
 329 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
 330 *	@net_dev->dev_addr and @net_dev->perm_addr.
 331 */
 332
 333static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
 334					struct net_device *net_dev)
 335{
 336	struct sis900_private *sis_priv = netdev_priv(net_dev);
 337	void __iomem *ioaddr = sis_priv->ioaddr;
 338	u32 rfcrSave;
 339	u32 i;
 340
 341	rfcrSave = sr32(rfcr);
 342
 343	sw32(cr, rfcrSave | RELOAD);
 344	sw32(cr, 0);
 345
 346	/* disable packet filtering before setting filter */
 347	sw32(rfcr, rfcrSave & ~RFEN);
 348
 349	/* load MAC addr to filter data register */
 350	for (i = 0 ; i < 3 ; i++) {
 351		sw32(rfcr, (i << RFADDR_shift));
 352		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
 353	}
 354
 355	/* Store MAC Address in perm_addr */
 356	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
 357
 358	/* enable packet filtering */
 359	sw32(rfcr, rfcrSave | RFEN);
 360
 361	return 1;
 362}
 363
 364/**
 365 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 366 *	@pci_dev: the sis900 pci device
 367 *	@net_dev: the net device to get address for
 368 *
 369 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 370 *	is shared by
 371 *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
 372 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
 373 *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
 374 *	EEDONE signal to refuse EEPROM access by LAN.
 375 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
 376 *	The signature field in SiS962 or SiS963 spec is meaningless.
 377 *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
 378 */
 379
 380static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
 381					struct net_device *net_dev)
 382{
 383	struct sis900_private *sis_priv = netdev_priv(net_dev);
 384	void __iomem *ioaddr = sis_priv->ioaddr;
 385	int wait, rc = 0;
 386
 387	sw32(mear, EEREQ);
 388	for (wait = 0; wait < 2000; wait++) {
 389		if (sr32(mear) & EEGNT) {
 390			u16 *mac = (u16 *)net_dev->dev_addr;
 391			int i;
 392
 393			/* get MAC address from EEPROM */
 394			for (i = 0; i < 3; i++)
 395			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 396
 397			/* Store MAC Address in perm_addr */
 398			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
 399
 400			rc = 1;
 401			break;
 402		}
 403		udelay(1);
 404	}
 405	sw32(mear, EEDONE);
 406	return rc;
 407}
 408
 409static const struct net_device_ops sis900_netdev_ops = {
 410	.ndo_open		 = sis900_open,
 411	.ndo_stop		= sis900_close,
 412	.ndo_start_xmit		= sis900_start_xmit,
 413	.ndo_set_config		= sis900_set_config,
 414	.ndo_set_rx_mode	= set_rx_mode,
 415	.ndo_change_mtu		= eth_change_mtu,
 416	.ndo_validate_addr	= eth_validate_addr,
 417	.ndo_set_mac_address 	= eth_mac_addr,
 418	.ndo_do_ioctl		= mii_ioctl,
 419	.ndo_tx_timeout		= sis900_tx_timeout,
 420#ifdef CONFIG_NET_POLL_CONTROLLER
 421        .ndo_poll_controller	= sis900_poll,
 422#endif
 423};
 424
 425/**
 426 *	sis900_probe - Probe for sis900 device
 427 *	@pci_dev: the sis900 pci device
 428 *	@pci_id: the pci device ID
 429 *
 430 *	Check and probe sis900 net device for @pci_dev.
 431 *	Get mac address according to the chip revision,
 432 *	and assign SiS900-specific entries in the device structure.
 433 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 434 */
 435
 436static int __devinit sis900_probe(struct pci_dev *pci_dev,
 437				const struct pci_device_id *pci_id)
 438{
 439	struct sis900_private *sis_priv;
 440	struct net_device *net_dev;
 441	struct pci_dev *dev;
 442	dma_addr_t ring_dma;
 443	void *ring_space;
 444	void __iomem *ioaddr;
 445	int i, ret;
 446	const char *card_name = card_names[pci_id->driver_data];
 447	const char *dev_name = pci_name(pci_dev);
 448
 449/* when built into the kernel, we only print version if device is found */
 450#ifndef MODULE
 451	static int printed_version;
 452	if (!printed_version++)
 453		printk(version);
 454#endif
 455
 456	/* setup various bits in PCI command register */
 457	ret = pci_enable_device(pci_dev);
 458	if(ret) return ret;
 459
 460	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
 461	if(i){
 462		printk(KERN_ERR "sis900.c: architecture does not support "
 463			"32bit PCI busmaster DMA\n");
 464		return i;
 465	}
 466
 467	pci_set_master(pci_dev);
 468
 469	net_dev = alloc_etherdev(sizeof(struct sis900_private));
 470	if (!net_dev)
 471		return -ENOMEM;
 472	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 473
 474	/* We do a request_region() to register /proc/ioports info. */
 475	ret = pci_request_regions(pci_dev, "sis900");
 476	if (ret)
 477		goto err_out;
 478
 479	/* IO region. */
 480	ioaddr = pci_iomap(pci_dev, 0, 0);
 481	if (!ioaddr)
 482		goto err_out_cleardev;
 483
 484	sis_priv = netdev_priv(net_dev);
 485	sis_priv->ioaddr = ioaddr;
 486	sis_priv->pci_dev = pci_dev;
 487	spin_lock_init(&sis_priv->lock);
 488
 489	pci_set_drvdata(pci_dev, net_dev);
 490
 491	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 492	if (!ring_space) {
 493		ret = -ENOMEM;
 494		goto err_out_unmap;
 495	}
 496	sis_priv->tx_ring = ring_space;
 497	sis_priv->tx_ring_dma = ring_dma;
 498
 499	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 500	if (!ring_space) {
 501		ret = -ENOMEM;
 502		goto err_unmap_tx;
 503	}
 504	sis_priv->rx_ring = ring_space;
 505	sis_priv->rx_ring_dma = ring_dma;
 506
 507	/* The SiS900-specific entries in the device structure. */
 508	net_dev->netdev_ops = &sis900_netdev_ops;
 509	net_dev->watchdog_timeo = TX_TIMEOUT;
 510	net_dev->ethtool_ops = &sis900_ethtool_ops;
 511
 512	if (sis900_debug > 0)
 513		sis_priv->msg_enable = sis900_debug;
 514	else
 515		sis_priv->msg_enable = SIS900_DEF_MSG;
 516
 517	sis_priv->mii_info.dev = net_dev;
 518	sis_priv->mii_info.mdio_read = mdio_read;
 519	sis_priv->mii_info.mdio_write = mdio_write;
 520	sis_priv->mii_info.phy_id_mask = 0x1f;
 521	sis_priv->mii_info.reg_num_mask = 0x1f;
 522
 523	/* Get Mac address according to the chip revision */
 524	sis_priv->chipset_rev = pci_dev->revision;
 525	if(netif_msg_probe(sis_priv))
 526		printk(KERN_DEBUG "%s: detected revision %2.2x, "
 527				"trying to get MAC address...\n",
 528				dev_name, sis_priv->chipset_rev);
 529
 530	ret = 0;
 531	if (sis_priv->chipset_rev == SIS630E_900_REV)
 532		ret = sis630e_get_mac_addr(pci_dev, net_dev);
 533	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 534		ret = sis635_get_mac_addr(pci_dev, net_dev);
 535	else if (sis_priv->chipset_rev == SIS96x_900_REV)
 536		ret = sis96x_get_mac_addr(pci_dev, net_dev);
 537	else
 538		ret = sis900_get_mac_addr(pci_dev, net_dev);
 539
 540	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 541		eth_hw_addr_random(net_dev);
 542		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 543				"using random generated one\n", dev_name);
 544	}
 545
 546	/* 630ET : set the mii access mode as software-mode */
 547	if (sis_priv->chipset_rev == SIS630ET_900_REV)
 548		sw32(cr, ACCESSMODE | sr32(cr));
 549
 550	/* probe for mii transceiver */
 551	if (sis900_mii_probe(net_dev) == 0) {
 552		printk(KERN_WARNING "%s: Error probing MII device.\n",
 553		       dev_name);
 554		ret = -ENODEV;
 555		goto err_unmap_rx;
 556	}
 557
 558	/* save our host bridge revision */
 559	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 560	if (dev) {
 561		sis_priv->host_bridge_rev = dev->revision;
 562		pci_dev_put(dev);
 563	}
 564
 565	ret = register_netdev(net_dev);
 566	if (ret)
 567		goto err_unmap_rx;
 568
 569	/* print some information about our NIC */
 570	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 571	       net_dev->name, card_name, ioaddr, pci_dev->irq,
 572	       net_dev->dev_addr);
 573
 574	/* Detect Wake on Lan support */
 575	ret = (sr32(CFGPMC) & PMESP) >> 27;
 576	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 577		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 578
 579	return 0;
 580
 581err_unmap_rx:
 582	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 583		sis_priv->rx_ring_dma);
 584err_unmap_tx:
 585	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 586		sis_priv->tx_ring_dma);
 587err_out_unmap:
 588	pci_iounmap(pci_dev, ioaddr);
 589err_out_cleardev:
 590	pci_set_drvdata(pci_dev, NULL);
 591	pci_release_regions(pci_dev);
 592 err_out:
 593	free_netdev(net_dev);
 594	return ret;
 595}
 596
 597/**
 598 *	sis900_mii_probe - Probe MII PHY for sis900
 599 *	@net_dev: the net device to probe for
 600 *
 601 *	Search for total of 32 possible mii phy addresses.
 602 *	Identify and set current phy if found one,
 603 *	return error if it failed to found.
 604 */
 605
 606static int __devinit sis900_mii_probe(struct net_device * net_dev)
 607{
 608	struct sis900_private *sis_priv = netdev_priv(net_dev);
 609	const char *dev_name = pci_name(sis_priv->pci_dev);
 610	u16 poll_bit = MII_STAT_LINK, status = 0;
 611	unsigned long timeout = jiffies + 5 * HZ;
 612	int phy_addr;
 613
 614	sis_priv->mii = NULL;
 615
 616	/* search for total of 32 possible mii phy addresses */
 617	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 618		struct mii_phy * mii_phy = NULL;
 619		u16 mii_status;
 620		int i;
 621
 622		mii_phy = NULL;
 623		for(i = 0; i < 2; i++)
 624			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 625
 626		if (mii_status == 0xffff || mii_status == 0x0000) {
 627			if (netif_msg_probe(sis_priv))
 628				printk(KERN_DEBUG "%s: MII at address %d"
 629						" not accessible\n",
 630						dev_name, phy_addr);
 631			continue;
 632		}
 633
 634		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 635			mii_phy = sis_priv->first_mii;
 636			while (mii_phy) {
 637				struct mii_phy *phy;
 638				phy = mii_phy;
 639				mii_phy = mii_phy->next;
 640				kfree(phy);
 641			}
 642			return 0;
 643		}
 644
 645		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 646		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 647		mii_phy->phy_addr = phy_addr;
 648		mii_phy->status = mii_status;
 649		mii_phy->next = sis_priv->mii;
 650		sis_priv->mii = mii_phy;
 651		sis_priv->first_mii = mii_phy;
 652
 653		for (i = 0; mii_chip_table[i].phy_id1; i++)
 654			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 655			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 656				mii_phy->phy_types = mii_chip_table[i].phy_types;
 657				if (mii_chip_table[i].phy_types == MIX)
 658					mii_phy->phy_types =
 659					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 660				printk(KERN_INFO "%s: %s transceiver found "
 661							"at address %d.\n",
 662							dev_name,
 663							mii_chip_table[i].name,
 664							phy_addr);
 665				break;
 666			}
 667
 668		if( !mii_chip_table[i].phy_id1 ) {
 669			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 670			       dev_name, phy_addr);
 671			mii_phy->phy_types = UNKNOWN;
 672		}
 673	}
 674
 675	if (sis_priv->mii == NULL) {
 676		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 677		return 0;
 678	}
 679
 680	/* select default PHY for mac */
 681	sis_priv->mii = NULL;
 682	sis900_default_phy( net_dev );
 683
 684	/* Reset phy if default phy is internal sis900 */
 685        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 686	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 687        	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 688
 689        /* workaround for ICS1893 PHY */
 690        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 691            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 692            	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 693
 694	if(status & MII_STAT_LINK){
 695		while (poll_bit) {
 696			yield();
 697
 698			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 699			if (time_after_eq(jiffies, timeout)) {
 700				printk(KERN_WARNING "%s: reset phy and link down now\n",
 701				       dev_name);
 702				return -ETIME;
 703			}
 704		}
 705	}
 706
 707	if (sis_priv->chipset_rev == SIS630E_900_REV) {
 708		/* SiS 630E has some bugs on default value of PHY registers */
 709		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 710		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 711		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 712		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 713		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 714	}
 715
 716	if (sis_priv->mii->status & MII_STAT_LINK)
 717		netif_carrier_on(net_dev);
 718	else
 719		netif_carrier_off(net_dev);
 720
 721	return 1;
 722}
 723
 724/**
 725 *	sis900_default_phy - Select default PHY for sis900 mac.
 726 *	@net_dev: the net device to probe for
 727 *
 728 *	Select first detected PHY with link as default.
 729 *	If no one is link on, select PHY whose types is HOME as default.
 730 *	If HOME doesn't exist, select LAN.
 731 */
 732
 733static u16 sis900_default_phy(struct net_device * net_dev)
 734{
 735	struct sis900_private *sis_priv = netdev_priv(net_dev);
 736 	struct mii_phy *phy = NULL, *phy_home = NULL,
 737		*default_phy = NULL, *phy_lan = NULL;
 738	u16 status;
 739
 740        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 741		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 742		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 743
 744		/* Link ON & Not select default PHY & not ghost PHY */
 745		 if ((status & MII_STAT_LINK) && !default_phy &&
 746					(phy->phy_types != UNKNOWN))
 747		 	default_phy = phy;
 748		 else {
 749			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 750			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 751				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 752			if (phy->phy_types == HOME)
 753				phy_home = phy;
 754			else if(phy->phy_types == LAN)
 755				phy_lan = phy;
 756		 }
 757	}
 758
 759	if (!default_phy && phy_home)
 760		default_phy = phy_home;
 761	else if (!default_phy && phy_lan)
 762		default_phy = phy_lan;
 763	else if (!default_phy)
 764		default_phy = sis_priv->first_mii;
 765
 766	if (sis_priv->mii != default_phy) {
 767		sis_priv->mii = default_phy;
 768		sis_priv->cur_phy = default_phy->phy_addr;
 769		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 770		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 771	}
 772
 773	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 774
 775	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 776	status &= (~MII_CNTL_ISOLATE);
 777
 778	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 779	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 780	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 781
 782	return status;
 783}
 784
 785
 786/**
 787 * 	sis900_set_capability - set the media capability of network adapter.
 788 *	@net_dev : the net device to probe for
 789 *	@phy : default PHY
 790 *
 791 *	Set the media capability of network adapter according to
 792 *	mii status register. It's necessary before auto-negotiate.
 793 */
 794
 795static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 796{
 797	u16 cap;
 798	u16 status;
 799
 800	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 801	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 802
 803	cap = MII_NWAY_CSMA_CD |
 804		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 805		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 806		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 807		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 808
 809	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 810}
 811
 812
 813/* Delay between EEPROM clock transitions. */
 814#define eeprom_delay()	sr32(mear)
 815
 816/**
 817 *	read_eeprom - Read Serial EEPROM
 818 *	@ioaddr: base i/o address
 819 *	@location: the EEPROM location to read
 820 *
 821 *	Read Serial EEPROM through EEPROM Access Register.
 822 *	Note that location is in word (16 bits) unit
 823 */
 824
 825static u16 __devinit read_eeprom(void __iomem *ioaddr, int location)
 826{
 827	u32 read_cmd = location | EEread;
 828	int i;
 829	u16 retval = 0;
 830
 831	sw32(mear, 0);
 832	eeprom_delay();
 833	sw32(mear, EECS);
 834	eeprom_delay();
 835
 836	/* Shift the read command (9) bits out. */
 837	for (i = 8; i >= 0; i--) {
 838		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 839
 840		sw32(mear, dataval);
 841		eeprom_delay();
 842		sw32(mear, dataval | EECLK);
 843		eeprom_delay();
 844	}
 845	sw32(mear, EECS);
 846	eeprom_delay();
 847
 848	/* read the 16-bits data in */
 849	for (i = 16; i > 0; i--) {
 850		sw32(mear, EECS);
 851		eeprom_delay();
 852		sw32(mear, EECS | EECLK);
 853		eeprom_delay();
 854		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 855		eeprom_delay();
 856	}
 857
 858	/* Terminate the EEPROM access. */
 859	sw32(mear, 0);
 860	eeprom_delay();
 861
 862	return retval;
 863}
 864
 865/* Read and write the MII management registers using software-generated
 866   serial MDIO protocol. Note that the command bits and data bits are
 867   send out separately */
 868#define mdio_delay()	sr32(mear)
 869
 870static void mdio_idle(struct sis900_private *sp)
 871{
 872	void __iomem *ioaddr = sp->ioaddr;
 873
 874	sw32(mear, MDIO | MDDIR);
 875	mdio_delay();
 876	sw32(mear, MDIO | MDDIR | MDC);
 877}
 878
 879/* Synchronize the MII management interface by shifting 32 one bits out. */
 880static void mdio_reset(struct sis900_private *sp)
 881{
 882	void __iomem *ioaddr = sp->ioaddr;
 883	int i;
 884
 885	for (i = 31; i >= 0; i--) {
 886		sw32(mear, MDDIR | MDIO);
 887		mdio_delay();
 888		sw32(mear, MDDIR | MDIO | MDC);
 889		mdio_delay();
 890	}
 891}
 892
 893/**
 894 *	mdio_read - read MII PHY register
 895 *	@net_dev: the net device to read
 896 *	@phy_id: the phy address to read
 897 *	@location: the phy regiester id to read
 898 *
 899 *	Read MII registers through MDIO and MDC
 900 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
 901 *	Please see SiS7014 or ICS spec
 902 */
 903
 904static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 905{
 906	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 907	struct sis900_private *sp = netdev_priv(net_dev);
 908	void __iomem *ioaddr = sp->ioaddr;
 909	u16 retval = 0;
 910	int i;
 911
 912	mdio_reset(sp);
 913	mdio_idle(sp);
 914
 915	for (i = 15; i >= 0; i--) {
 916		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 917
 918		sw32(mear, dataval);
 919		mdio_delay();
 920		sw32(mear, dataval | MDC);
 921		mdio_delay();
 922	}
 923
 924	/* Read the 16 data bits. */
 925	for (i = 16; i > 0; i--) {
 926		sw32(mear, 0);
 927		mdio_delay();
 928		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 929		sw32(mear, MDC);
 930		mdio_delay();
 931	}
 932	sw32(mear, 0x00);
 933
 934	return retval;
 935}
 936
 937/**
 938 *	mdio_write - write MII PHY register
 939 *	@net_dev: the net device to write
 940 *	@phy_id: the phy address to write
 941 *	@location: the phy regiester id to write
 942 *	@value: the register value to write with
 943 *
 944 *	Write MII registers with @value through MDIO and MDC
 945 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
 946 *	please see SiS7014 or ICS spec
 947 */
 948
 949static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 950			int value)
 951{
 952	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 953	struct sis900_private *sp = netdev_priv(net_dev);
 954	void __iomem *ioaddr = sp->ioaddr;
 955	int i;
 956
 957	mdio_reset(sp);
 958	mdio_idle(sp);
 959
 960	/* Shift the command bits out. */
 961	for (i = 15; i >= 0; i--) {
 962		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 963
 964		sw8(mear, dataval);
 965		mdio_delay();
 966		sw8(mear, dataval | MDC);
 967		mdio_delay();
 968	}
 969	mdio_delay();
 970
 971	/* Shift the value bits out. */
 972	for (i = 15; i >= 0; i--) {
 973		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 974
 975		sw32(mear, dataval);
 976		mdio_delay();
 977		sw32(mear, dataval | MDC);
 978		mdio_delay();
 979	}
 980	mdio_delay();
 981
 982	/* Clear out extra bits. */
 983	for (i = 2; i > 0; i--) {
 984		sw8(mear, 0);
 985		mdio_delay();
 986		sw8(mear, MDC);
 987		mdio_delay();
 988	}
 989	sw32(mear, 0x00);
 990}
 991
 992
 993/**
 994 *	sis900_reset_phy - reset sis900 mii phy.
 995 *	@net_dev: the net device to write
 996 *	@phy_addr: default phy address
 997 *
 998 *	Some specific phy can't work properly without reset.
 999 *	This function will be called during initialization and
1000 *	link status change from ON to DOWN.
1001 */
1002
1003static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1004{
1005	int i;
1006	u16 status;
1007
1008	for (i = 0; i < 2; i++)
1009		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1010
1011	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1012
1013	return status;
1014}
1015
1016#ifdef CONFIG_NET_POLL_CONTROLLER
1017/*
1018 * Polling 'interrupt' - used by things like netconsole to send skbs
1019 * without having to re-enable interrupts. It's not called while
1020 * the interrupt routine is executing.
1021*/
1022static void sis900_poll(struct net_device *dev)
1023{
1024	struct sis900_private *sp = netdev_priv(dev);
1025	const int irq = sp->pci_dev->irq;
1026
1027	disable_irq(irq);
1028	sis900_interrupt(irq, dev);
1029	enable_irq(irq);
1030}
1031#endif
1032
1033/**
1034 *	sis900_open - open sis900 device
1035 *	@net_dev: the net device to open
1036 *
1037 *	Do some initialization and start net interface.
1038 *	enable interrupts and set sis900 timer.
1039 */
1040
1041static int
1042sis900_open(struct net_device *net_dev)
1043{
1044	struct sis900_private *sis_priv = netdev_priv(net_dev);
1045	void __iomem *ioaddr = sis_priv->ioaddr;
1046	int ret;
1047
1048	/* Soft reset the chip. */
1049	sis900_reset(net_dev);
1050
1051	/* Equalizer workaround Rule */
1052	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1053
1054	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1055			  net_dev->name, net_dev);
1056	if (ret)
1057		return ret;
1058
1059	sis900_init_rxfilter(net_dev);
1060
1061	sis900_init_tx_ring(net_dev);
1062	sis900_init_rx_ring(net_dev);
1063
1064	set_rx_mode(net_dev);
1065
1066	netif_start_queue(net_dev);
1067
1068	/* Workaround for EDB */
1069	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1070
1071	/* Enable all known interrupts by setting the interrupt mask. */
1072	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1073	sw32(cr, RxENA | sr32(cr));
1074	sw32(ier, IE);
1075
1076	sis900_check_mode(net_dev, sis_priv->mii);
1077
1078	/* Set the timer to switch to check for link beat and perhaps switch
1079	   to an alternate media type. */
1080	init_timer(&sis_priv->timer);
1081	sis_priv->timer.expires = jiffies + HZ;
1082	sis_priv->timer.data = (unsigned long)net_dev;
1083	sis_priv->timer.function = sis900_timer;
1084	add_timer(&sis_priv->timer);
1085
1086	return 0;
1087}
1088
1089/**
1090 *	sis900_init_rxfilter - Initialize the Rx filter
1091 *	@net_dev: the net device to initialize for
1092 *
1093 *	Set receive filter address to our MAC address
1094 *	and enable packet filtering.
1095 */
1096
1097static void
1098sis900_init_rxfilter (struct net_device * net_dev)
1099{
1100	struct sis900_private *sis_priv = netdev_priv(net_dev);
1101	void __iomem *ioaddr = sis_priv->ioaddr;
1102	u32 rfcrSave;
1103	u32 i;
1104
1105	rfcrSave = sr32(rfcr);
1106
1107	/* disable packet filtering before setting filter */
1108	sw32(rfcr, rfcrSave & ~RFEN);
1109
1110	/* load MAC addr to filter data register */
1111	for (i = 0 ; i < 3 ; i++) {
1112		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1113
1114		sw32(rfcr, i << RFADDR_shift);
1115		sw32(rfdr, w);
1116
1117		if (netif_msg_hw(sis_priv)) {
1118			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1119			       net_dev->name, i, sr32(rfdr));
1120		}
1121	}
1122
1123	/* enable packet filtering */
1124	sw32(rfcr, rfcrSave | RFEN);
1125}
1126
1127/**
1128 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1129 *	@net_dev: the net device to initialize for
1130 *
1131 *	Initialize the Tx descriptor ring,
1132 */
1133
1134static void
1135sis900_init_tx_ring(struct net_device *net_dev)
1136{
1137	struct sis900_private *sis_priv = netdev_priv(net_dev);
1138	void __iomem *ioaddr = sis_priv->ioaddr;
1139	int i;
1140
1141	sis_priv->tx_full = 0;
1142	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1143
1144	for (i = 0; i < NUM_TX_DESC; i++) {
1145		sis_priv->tx_skbuff[i] = NULL;
1146
1147		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1148			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1149		sis_priv->tx_ring[i].cmdsts = 0;
1150		sis_priv->tx_ring[i].bufptr = 0;
1151	}
1152
1153	/* load Transmit Descriptor Register */
1154	sw32(txdp, sis_priv->tx_ring_dma);
1155	if (netif_msg_hw(sis_priv))
1156		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1157		       net_dev->name, sr32(txdp));
1158}
1159
1160/**
1161 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1162 *	@net_dev: the net device to initialize for
1163 *
1164 *	Initialize the Rx descriptor ring,
1165 *	and pre-allocate recevie buffers (socket buffer)
1166 */
1167
1168static void
1169sis900_init_rx_ring(struct net_device *net_dev)
1170{
1171	struct sis900_private *sis_priv = netdev_priv(net_dev);
1172	void __iomem *ioaddr = sis_priv->ioaddr;
1173	int i;
1174
1175	sis_priv->cur_rx = 0;
1176	sis_priv->dirty_rx = 0;
1177
1178	/* init RX descriptor */
1179	for (i = 0; i < NUM_RX_DESC; i++) {
1180		sis_priv->rx_skbuff[i] = NULL;
1181
1182		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1183			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1184		sis_priv->rx_ring[i].cmdsts = 0;
1185		sis_priv->rx_ring[i].bufptr = 0;
1186	}
1187
1188	/* allocate sock buffers */
1189	for (i = 0; i < NUM_RX_DESC; i++) {
1190		struct sk_buff *skb;
1191
1192		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1193			/* not enough memory for skbuff, this makes a "hole"
1194			   on the buffer ring, it is not clear how the
1195			   hardware will react to this kind of degenerated
1196			   buffer */
1197			break;
1198		}
1199		sis_priv->rx_skbuff[i] = skb;
1200		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1201                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1202                        skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1203	}
1204	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1205
1206	/* load Receive Descriptor Register */
1207	sw32(rxdp, sis_priv->rx_ring_dma);
1208	if (netif_msg_hw(sis_priv))
1209		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1210		       net_dev->name, sr32(rxdp));
1211}
1212
1213/**
1214 *	sis630_set_eq - set phy equalizer value for 630 LAN
1215 *	@net_dev: the net device to set equalizer value
1216 *	@revision: 630 LAN revision number
1217 *
1218 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1219 *	PHY register 14h(Test)
1220 *	Bit 14: 0 -- Automatically detect (default)
1221 *		1 -- Manually set Equalizer filter
1222 *	Bit 13: 0 -- (Default)
1223 *		1 -- Speed up convergence of equalizer setting
1224 *	Bit 9 : 0 -- (Default)
1225 *		1 -- Disable Baseline Wander
1226 *	Bit 3~7   -- Equalizer filter setting
1227 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1228 *	Then calculate equalizer value
1229 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1230 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1231 *	Calculate Equalizer value:
1232 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1233 *	When the equalizer is stable, this value is not a fixed value. It will be within
1234 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1235 *	0 <= max <= 4  --> set equalizer to max
1236 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1237 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1238 */
1239
1240static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1241{
1242	struct sis900_private *sis_priv = netdev_priv(net_dev);
1243	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1244	int i, maxcount=10;
1245
1246	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1247	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1248		return;
1249
1250	if (netif_carrier_ok(net_dev)) {
1251		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1252		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1253					(0x2200 | reg14h) & 0xBFFF);
1254		for (i=0; i < maxcount; i++) {
1255			eq_value = (0x00F8 & mdio_read(net_dev,
1256					sis_priv->cur_phy, MII_RESV)) >> 3;
1257			if (i == 0)
1258				max_value=min_value=eq_value;
1259			max_value = (eq_value > max_value) ?
1260						eq_value : max_value;
1261			min_value = (eq_value < min_value) ?
1262						eq_value : min_value;
1263		}
1264		/* 630E rule to determine the equalizer value */
1265		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1266		    revision == SIS630ET_900_REV) {
1267			if (max_value < 5)
1268				eq_value = max_value;
1269			else if (max_value >= 5 && max_value < 15)
1270				eq_value = (max_value == min_value) ?
1271						max_value+2 : max_value+1;
1272			else if (max_value >= 15)
1273				eq_value=(max_value == min_value) ?
1274						max_value+6 : max_value+5;
1275		}
1276		/* 630B0&B1 rule to determine the equalizer value */
1277		if (revision == SIS630A_900_REV &&
1278		    (sis_priv->host_bridge_rev == SIS630B0 ||
1279		     sis_priv->host_bridge_rev == SIS630B1)) {
1280			if (max_value == 0)
1281				eq_value = 3;
1282			else
1283				eq_value = (max_value + min_value + 1)/2;
1284		}
1285		/* write equalizer value and setting */
1286		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1288		reg14h = (reg14h | 0x6000) & 0xFDFF;
1289		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1290	} else {
1291		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1292		if (revision == SIS630A_900_REV &&
1293		    (sis_priv->host_bridge_rev == SIS630B0 ||
1294		     sis_priv->host_bridge_rev == SIS630B1))
1295			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1296						(reg14h | 0x2200) & 0xBFFF);
1297		else
1298			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1299						(reg14h | 0x2000) & 0xBFFF);
1300	}
1301}
1302
1303/**
1304 *	sis900_timer - sis900 timer routine
1305 *	@data: pointer to sis900 net device
1306 *
1307 *	On each timer ticks we check two things,
1308 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1309 */
1310
1311static void sis900_timer(unsigned long data)
1312{
1313	struct net_device *net_dev = (struct net_device *)data;
1314	struct sis900_private *sis_priv = netdev_priv(net_dev);
1315	struct mii_phy *mii_phy = sis_priv->mii;
1316	static const int next_tick = 5*HZ;
1317	u16 status;
1318
1319	if (!sis_priv->autong_complete){
1320		int uninitialized_var(speed), duplex = 0;
1321
1322		sis900_read_mode(net_dev, &speed, &duplex);
1323		if (duplex){
1324			sis900_set_mode(sis_priv, speed, duplex);
1325			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1326			netif_start_queue(net_dev);
1327		}
1328
1329		sis_priv->timer.expires = jiffies + HZ;
1330		add_timer(&sis_priv->timer);
1331		return;
1332	}
1333
1334	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1335	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1336
1337	/* Link OFF -> ON */
1338	if (!netif_carrier_ok(net_dev)) {
1339	LookForLink:
1340		/* Search for new PHY */
1341		status = sis900_default_phy(net_dev);
1342		mii_phy = sis_priv->mii;
1343
1344		if (status & MII_STAT_LINK){
1345			sis900_check_mode(net_dev, mii_phy);
1346			netif_carrier_on(net_dev);
1347		}
1348	} else {
1349	/* Link ON -> OFF */
1350                if (!(status & MII_STAT_LINK)){
1351                	netif_carrier_off(net_dev);
1352			if(netif_msg_link(sis_priv))
1353                		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1354
1355                	/* Change mode issue */
1356                	if ((mii_phy->phy_id0 == 0x001D) &&
1357			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1358               			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1359
1360			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1361
1362                	goto LookForLink;
1363                }
1364	}
1365
1366	sis_priv->timer.expires = jiffies + next_tick;
1367	add_timer(&sis_priv->timer);
1368}
1369
1370/**
1371 *	sis900_check_mode - check the media mode for sis900
1372 *	@net_dev: the net device to be checked
1373 *	@mii_phy: the mii phy
1374 *
1375 *	Older driver gets the media mode from mii status output
1376 *	register. Now we set our media capability and auto-negotiate
1377 *	to get the upper bound of speed and duplex between two ends.
1378 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1379 *	and autong_complete should be set to 1.
1380 */
1381
1382static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1383{
1384	struct sis900_private *sis_priv = netdev_priv(net_dev);
1385	void __iomem *ioaddr = sis_priv->ioaddr;
1386	int speed, duplex;
1387
1388	if (mii_phy->phy_types == LAN) {
1389		sw32(cfg, ~EXD & sr32(cfg));
1390		sis900_set_capability(net_dev , mii_phy);
1391		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1392	} else {
1393		sw32(cfg, EXD | sr32(cfg));
1394		speed = HW_SPEED_HOME;
1395		duplex = FDX_CAPABLE_HALF_SELECTED;
1396		sis900_set_mode(sis_priv, speed, duplex);
1397		sis_priv->autong_complete = 1;
1398	}
1399}
1400
1401/**
1402 *	sis900_set_mode - Set the media mode of mac register.
1403 *	@sp:     the device private data
1404 *	@speed : the transmit speed to be determined
1405 *	@duplex: the duplex mode to be determined
1406 *
1407 *	Set the media mode of mac register txcfg/rxcfg according to
1408 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1409 *	bus is used instead of PCI bus. When this bit is set 1, the
1410 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1411 *	double words.
1412 */
1413
1414static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1415{
1416	void __iomem *ioaddr = sp->ioaddr;
1417	u32 tx_flags = 0, rx_flags = 0;
1418
1419	if (sr32( cfg) & EDB_MASTER_EN) {
1420		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1421					(TX_FILL_THRESH << TxFILLT_shift);
1422		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1423	} else {
1424		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1425					(TX_FILL_THRESH << TxFILLT_shift);
1426		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1427	}
1428
1429	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1430		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1431		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1432	} else {
1433		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1434		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1435	}
1436
1437	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1438		tx_flags |= (TxCSI | TxHBI);
1439		rx_flags |= RxATX;
1440	}
1441
1442#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1443	/* Can accept Jumbo packet */
1444	rx_flags |= RxAJAB;
1445#endif
1446
1447	sw32(txcfg, tx_flags);
1448	sw32(rxcfg, rx_flags);
1449}
1450
1451/**
1452 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1453 *	@net_dev: the net device to read mode for
1454 *	@phy_addr: mii phy address
1455 *
1456 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1457 *	autong_complete should be set to 0 when starting auto-negotiation.
1458 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1459 *	sis900_timer will wait for link on again if autong_complete = 0.
1460 */
1461
1462static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1463{
1464	struct sis900_private *sis_priv = netdev_priv(net_dev);
1465	int i = 0;
1466	u32 status;
1467
1468	for (i = 0; i < 2; i++)
1469		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1470
1471	if (!(status & MII_STAT_LINK)){
1472		if(netif_msg_link(sis_priv))
1473			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1474		sis_priv->autong_complete = 1;
1475		netif_carrier_off(net_dev);
1476		return;
1477	}
1478
1479	/* (Re)start AutoNegotiate */
1480	mdio_write(net_dev, phy_addr, MII_CONTROL,
1481		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1482	sis_priv->autong_complete = 0;
1483}
1484
1485
1486/**
1487 *	sis900_read_mode - read media mode for sis900 internal phy
1488 *	@net_dev: the net device to read mode for
1489 *	@speed  : the transmit speed to be determined
1490 *	@duplex : the duplex mode to be determined
1491 *
1492 *	The capability of remote end will be put in mii register autorec
1493 *	after auto-negotiation. Use AND operation to get the upper bound
1494 *	of speed and duplex between two ends.
1495 */
1496
1497static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1498{
1499	struct sis900_private *sis_priv = netdev_priv(net_dev);
1500	struct mii_phy *phy = sis_priv->mii;
1501	int phy_addr = sis_priv->cur_phy;
1502	u32 status;
1503	u16 autoadv, autorec;
1504	int i;
1505
1506	for (i = 0; i < 2; i++)
1507		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1508
1509	if (!(status & MII_STAT_LINK))
1510		return;
1511
1512	/* AutoNegotiate completed */
1513	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1514	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1515	status = autoadv & autorec;
1516
1517	*speed = HW_SPEED_10_MBPS;
1518	*duplex = FDX_CAPABLE_HALF_SELECTED;
1519
1520	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1521		*speed = HW_SPEED_100_MBPS;
1522	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1523		*duplex = FDX_CAPABLE_FULL_SELECTED;
1524
1525	sis_priv->autong_complete = 1;
1526
1527	/* Workaround for Realtek RTL8201 PHY issue */
1528	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1529		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1530			*duplex = FDX_CAPABLE_FULL_SELECTED;
1531		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1532			*speed = HW_SPEED_100_MBPS;
1533	}
1534
1535	if(netif_msg_link(sis_priv))
1536		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1537	       				net_dev->name,
1538	       				*speed == HW_SPEED_100_MBPS ?
1539	       					"100mbps" : "10mbps",
1540	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1541	       					"full" : "half");
1542}
1543
1544/**
1545 *	sis900_tx_timeout - sis900 transmit timeout routine
1546 *	@net_dev: the net device to transmit
1547 *
1548 *	print transmit timeout status
1549 *	disable interrupts and do some tasks
1550 */
1551
1552static void sis900_tx_timeout(struct net_device *net_dev)
1553{
1554	struct sis900_private *sis_priv = netdev_priv(net_dev);
1555	void __iomem *ioaddr = sis_priv->ioaddr;
1556	unsigned long flags;
1557	int i;
1558
1559	if (netif_msg_tx_err(sis_priv)) {
1560		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1561			net_dev->name, sr32(cr), sr32(isr));
1562	}
1563
1564	/* Disable interrupts by clearing the interrupt mask. */
1565	sw32(imr, 0x0000);
1566
1567	/* use spinlock to prevent interrupt handler accessing buffer ring */
1568	spin_lock_irqsave(&sis_priv->lock, flags);
1569
1570	/* discard unsent packets */
1571	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1572	for (i = 0; i < NUM_TX_DESC; i++) {
1573		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1574
1575		if (skb) {
1576			pci_unmap_single(sis_priv->pci_dev,
1577				sis_priv->tx_ring[i].bufptr, skb->len,
1578				PCI_DMA_TODEVICE);
1579			dev_kfree_skb_irq(skb);
1580			sis_priv->tx_skbuff[i] = NULL;
1581			sis_priv->tx_ring[i].cmdsts = 0;
1582			sis_priv->tx_ring[i].bufptr = 0;
1583			net_dev->stats.tx_dropped++;
1584		}
1585	}
1586	sis_priv->tx_full = 0;
1587	netif_wake_queue(net_dev);
1588
1589	spin_unlock_irqrestore(&sis_priv->lock, flags);
1590
1591	net_dev->trans_start = jiffies; /* prevent tx timeout */
1592
1593	/* load Transmit Descriptor Register */
1594	sw32(txdp, sis_priv->tx_ring_dma);
1595
1596	/* Enable all known interrupts by setting the interrupt mask. */
1597	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1598}
1599
1600/**
1601 *	sis900_start_xmit - sis900 start transmit routine
1602 *	@skb: socket buffer pointer to put the data being transmitted
1603 *	@net_dev: the net device to transmit with
1604 *
1605 *	Set the transmit buffer descriptor,
1606 *	and write TxENA to enable transmit state machine.
1607 *	tell upper layer if the buffer is full
1608 */
1609
1610static netdev_tx_t
1611sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1612{
1613	struct sis900_private *sis_priv = netdev_priv(net_dev);
1614	void __iomem *ioaddr = sis_priv->ioaddr;
1615	unsigned int  entry;
1616	unsigned long flags;
1617	unsigned int  index_cur_tx, index_dirty_tx;
1618	unsigned int  count_dirty_tx;
1619
1620	/* Don't transmit data before the complete of auto-negotiation */
1621	if(!sis_priv->autong_complete){
1622		netif_stop_queue(net_dev);
1623		return NETDEV_TX_BUSY;
1624	}
1625
1626	spin_lock_irqsave(&sis_priv->lock, flags);
1627
1628	/* Calculate the next Tx descriptor entry. */
1629	entry = sis_priv->cur_tx % NUM_TX_DESC;
1630	sis_priv->tx_skbuff[entry] = skb;
1631
1632	/* set the transmit buffer descriptor and enable Transmit State Machine */
1633	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1634		skb->data, skb->len, PCI_DMA_TODEVICE);
1635	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1636	sw32(cr, TxENA | sr32(cr));
1637
1638	sis_priv->cur_tx ++;
1639	index_cur_tx = sis_priv->cur_tx;
1640	index_dirty_tx = sis_priv->dirty_tx;
1641
1642	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1643		count_dirty_tx ++;
1644
1645	if (index_cur_tx == index_dirty_tx) {
1646		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1647		sis_priv->tx_full = 1;
1648		netif_stop_queue(net_dev);
1649	} else if (count_dirty_tx < NUM_TX_DESC) {
1650		/* Typical path, tell upper layer that more transmission is possible */
1651		netif_start_queue(net_dev);
1652	} else {
1653		/* buffer full, tell upper layer no more transmission */
1654		sis_priv->tx_full = 1;
1655		netif_stop_queue(net_dev);
1656	}
1657
1658	spin_unlock_irqrestore(&sis_priv->lock, flags);
1659
1660	if (netif_msg_tx_queued(sis_priv))
1661		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1662		       "to slot %d.\n",
1663		       net_dev->name, skb->data, (int)skb->len, entry);
1664
1665	return NETDEV_TX_OK;
1666}
1667
1668/**
1669 *	sis900_interrupt - sis900 interrupt handler
1670 *	@irq: the irq number
1671 *	@dev_instance: the client data object
1672 *
1673 *	The interrupt handler does all of the Rx thread work,
1674 *	and cleans up after the Tx thread
1675 */
1676
1677static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1678{
1679	struct net_device *net_dev = dev_instance;
1680	struct sis900_private *sis_priv = netdev_priv(net_dev);
1681	int boguscnt = max_interrupt_work;
1682	void __iomem *ioaddr = sis_priv->ioaddr;
1683	u32 status;
1684	unsigned int handled = 0;
1685
1686	spin_lock (&sis_priv->lock);
1687
1688	do {
1689		status = sr32(isr);
1690
1691		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1692			/* nothing intresting happened */
1693			break;
1694		handled = 1;
1695
1696		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1697		if (status & (RxORN | RxERR | RxOK))
1698			/* Rx interrupt */
1699			sis900_rx(net_dev);
1700
1701		if (status & (TxURN | TxERR | TxIDLE))
1702			/* Tx interrupt */
1703			sis900_finish_xmit(net_dev);
1704
1705		/* something strange happened !!! */
1706		if (status & HIBERR) {
1707			if(netif_msg_intr(sis_priv))
1708				printk(KERN_INFO "%s: Abnormal interrupt, "
1709					"status %#8.8x.\n", net_dev->name, status);
1710			break;
1711		}
1712		if (--boguscnt < 0) {
1713			if(netif_msg_intr(sis_priv))
1714				printk(KERN_INFO "%s: Too much work at interrupt, "
1715					"interrupt status = %#8.8x.\n",
1716					net_dev->name, status);
1717			break;
1718		}
1719	} while (1);
1720
1721	if(netif_msg_intr(sis_priv))
1722		printk(KERN_DEBUG "%s: exiting interrupt, "
1723		       "interrupt status = 0x%#8.8x.\n",
1724		       net_dev->name, sr32(isr));
1725
1726	spin_unlock (&sis_priv->lock);
1727	return IRQ_RETVAL(handled);
1728}
1729
1730/**
1731 *	sis900_rx - sis900 receive routine
1732 *	@net_dev: the net device which receives data
1733 *
1734 *	Process receive interrupt events,
1735 *	put buffer to higher layer and refill buffer pool
1736 *	Note: This function is called by interrupt handler,
1737 *	don't do "too much" work here
1738 */
1739
1740static int sis900_rx(struct net_device *net_dev)
1741{
1742	struct sis900_private *sis_priv = netdev_priv(net_dev);
1743	void __iomem *ioaddr = sis_priv->ioaddr;
1744	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1745	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1746	int rx_work_limit;
1747
1748	if (netif_msg_rx_status(sis_priv))
1749		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1750		       "status:0x%8.8x\n",
1751		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1752	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1753
1754	while (rx_status & OWN) {
1755		unsigned int rx_size;
1756		unsigned int data_size;
1757
1758		if (--rx_work_limit < 0)
1759			break;
1760
1761		data_size = rx_status & DSIZE;
1762		rx_size = data_size - CRC_SIZE;
1763
1764#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1765		/* ``TOOLONG'' flag means jumbo packet received. */
1766		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1767			rx_status &= (~ ((unsigned int)TOOLONG));
1768#endif
1769
1770		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1771			/* corrupted packet received */
1772			if (netif_msg_rx_err(sis_priv))
1773				printk(KERN_DEBUG "%s: Corrupted packet "
1774				       "received, buffer status = 0x%8.8x/%d.\n",
1775				       net_dev->name, rx_status, data_size);
1776			net_dev->stats.rx_errors++;
1777			if (rx_status & OVERRUN)
1778				net_dev->stats.rx_over_errors++;
1779			if (rx_status & (TOOLONG|RUNT))
1780				net_dev->stats.rx_length_errors++;
1781			if (rx_status & (RXISERR | FAERR))
1782				net_dev->stats.rx_frame_errors++;
1783			if (rx_status & CRCERR)
1784				net_dev->stats.rx_crc_errors++;
1785			/* reset buffer descriptor state */
1786			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1787		} else {
1788			struct sk_buff * skb;
1789			struct sk_buff * rx_skb;
1790
1791			pci_unmap_single(sis_priv->pci_dev,
1792				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1793				PCI_DMA_FROMDEVICE);
1794
1795			/* refill the Rx buffer, what if there is not enough
1796			 * memory for new socket buffer ?? */
1797			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1798				/*
1799				 * Not enough memory to refill the buffer
1800				 * so we need to recycle the old one so
1801				 * as to avoid creating a memory hole
1802				 * in the rx ring
1803				 */
1804				skb = sis_priv->rx_skbuff[entry];
1805				net_dev->stats.rx_dropped++;
1806				goto refill_rx_ring;
1807			}
1808
1809			/* This situation should never happen, but due to
1810			   some unknown bugs, it is possible that
1811			   we are working on NULL sk_buff :-( */
1812			if (sis_priv->rx_skbuff[entry] == NULL) {
1813				if (netif_msg_rx_err(sis_priv))
1814					printk(KERN_WARNING "%s: NULL pointer "
1815					      "encountered in Rx ring\n"
1816					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1817					      net_dev->name, sis_priv->cur_rx,
1818					      sis_priv->dirty_rx);
1819				dev_kfree_skb(skb);
1820				break;
1821			}
1822
1823			/* give the socket buffer to upper layers */
1824			rx_skb = sis_priv->rx_skbuff[entry];
1825			skb_put(rx_skb, rx_size);
1826			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1827			netif_rx(rx_skb);
1828
1829			/* some network statistics */
1830			if ((rx_status & BCAST) == MCAST)
1831				net_dev->stats.multicast++;
1832			net_dev->stats.rx_bytes += rx_size;
1833			net_dev->stats.rx_packets++;
1834			sis_priv->dirty_rx++;
1835refill_rx_ring:
1836			sis_priv->rx_skbuff[entry] = skb;
1837			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1838                	sis_priv->rx_ring[entry].bufptr =
1839				pci_map_single(sis_priv->pci_dev, skb->data,
1840					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1841		}
1842		sis_priv->cur_rx++;
1843		entry = sis_priv->cur_rx % NUM_RX_DESC;
1844		rx_status = sis_priv->rx_ring[entry].cmdsts;
1845	} // while
1846
1847	/* refill the Rx buffer, what if the rate of refilling is slower
1848	 * than consuming ?? */
1849	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1850		struct sk_buff *skb;
1851
1852		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1853
1854		if (sis_priv->rx_skbuff[entry] == NULL) {
1855			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1856				/* not enough memory for skbuff, this makes a
1857				 * "hole" on the buffer ring, it is not clear
1858				 * how the hardware will react to this kind
1859				 * of degenerated buffer */
1860				if (netif_msg_rx_err(sis_priv))
1861					printk(KERN_INFO "%s: Memory squeeze, "
1862						"deferring packet.\n",
1863						net_dev->name);
1864				net_dev->stats.rx_dropped++;
1865				break;
1866			}
1867			sis_priv->rx_skbuff[entry] = skb;
1868			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1869                	sis_priv->rx_ring[entry].bufptr =
1870				pci_map_single(sis_priv->pci_dev, skb->data,
1871					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1872		}
1873	}
1874	/* re-enable the potentially idle receive state matchine */
1875	sw32(cr , RxENA | sr32(cr));
1876
1877	return 0;
1878}
1879
1880/**
1881 *	sis900_finish_xmit - finish up transmission of packets
1882 *	@net_dev: the net device to be transmitted on
1883 *
1884 *	Check for error condition and free socket buffer etc
1885 *	schedule for more transmission as needed
1886 *	Note: This function is called by interrupt handler,
1887 *	don't do "too much" work here
1888 */
1889
1890static void sis900_finish_xmit (struct net_device *net_dev)
1891{
1892	struct sis900_private *sis_priv = netdev_priv(net_dev);
1893
1894	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1895		struct sk_buff *skb;
1896		unsigned int entry;
1897		u32 tx_status;
1898
1899		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1900		tx_status = sis_priv->tx_ring[entry].cmdsts;
1901
1902		if (tx_status & OWN) {
1903			/* The packet is not transmitted yet (owned by hardware) !
1904			 * Note: the interrupt is generated only when Tx Machine
1905			 * is idle, so this is an almost impossible case */
1906			break;
1907		}
1908
1909		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1910			/* packet unsuccessfully transmitted */
1911			if (netif_msg_tx_err(sis_priv))
1912				printk(KERN_DEBUG "%s: Transmit "
1913				       "error, Tx status %8.8x.\n",
1914				       net_dev->name, tx_status);
1915			net_dev->stats.tx_errors++;
1916			if (tx_status & UNDERRUN)
1917				net_dev->stats.tx_fifo_errors++;
1918			if (tx_status & ABORT)
1919				net_dev->stats.tx_aborted_errors++;
1920			if (tx_status & NOCARRIER)
1921				net_dev->stats.tx_carrier_errors++;
1922			if (tx_status & OWCOLL)
1923				net_dev->stats.tx_window_errors++;
1924		} else {
1925			/* packet successfully transmitted */
1926			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1927			net_dev->stats.tx_bytes += tx_status & DSIZE;
1928			net_dev->stats.tx_packets++;
1929		}
1930		/* Free the original skb. */
1931		skb = sis_priv->tx_skbuff[entry];
1932		pci_unmap_single(sis_priv->pci_dev,
1933			sis_priv->tx_ring[entry].bufptr, skb->len,
1934			PCI_DMA_TODEVICE);
1935		dev_kfree_skb_irq(skb);
1936		sis_priv->tx_skbuff[entry] = NULL;
1937		sis_priv->tx_ring[entry].bufptr = 0;
1938		sis_priv->tx_ring[entry].cmdsts = 0;
1939	}
1940
1941	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1942	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1943		/* The ring is no longer full, clear tx_full and schedule
1944		 * more transmission by netif_wake_queue(net_dev) */
1945		sis_priv->tx_full = 0;
1946		netif_wake_queue (net_dev);
1947	}
1948}
1949
1950/**
1951 *	sis900_close - close sis900 device
1952 *	@net_dev: the net device to be closed
1953 *
1954 *	Disable interrupts, stop the Tx and Rx Status Machine
1955 *	free Tx and RX socket buffer
1956 */
1957
1958static int sis900_close(struct net_device *net_dev)
1959{
1960	struct sis900_private *sis_priv = netdev_priv(net_dev);
1961	struct pci_dev *pdev = sis_priv->pci_dev;
1962	void __iomem *ioaddr = sis_priv->ioaddr;
1963	struct sk_buff *skb;
1964	int i;
1965
1966	netif_stop_queue(net_dev);
1967
1968	/* Disable interrupts by clearing the interrupt mask. */
1969	sw32(imr, 0x0000);
1970	sw32(ier, 0x0000);
1971
1972	/* Stop the chip's Tx and Rx Status Machine */
1973	sw32(cr, RxDIS | TxDIS | sr32(cr));
1974
1975	del_timer(&sis_priv->timer);
1976
1977	free_irq(pdev->irq, net_dev);
1978
1979	/* Free Tx and RX skbuff */
1980	for (i = 0; i < NUM_RX_DESC; i++) {
1981		skb = sis_priv->rx_skbuff[i];
1982		if (skb) {
1983			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1984					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1985			dev_kfree_skb(skb);
1986			sis_priv->rx_skbuff[i] = NULL;
1987		}
1988	}
1989	for (i = 0; i < NUM_TX_DESC; i++) {
1990		skb = sis_priv->tx_skbuff[i];
1991		if (skb) {
1992			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1993					 skb->len, PCI_DMA_TODEVICE);
1994			dev_kfree_skb(skb);
1995			sis_priv->tx_skbuff[i] = NULL;
1996		}
1997	}
1998
1999	/* Green! Put the chip in low-power mode. */
2000
2001	return 0;
2002}
2003
2004/**
2005 *	sis900_get_drvinfo - Return information about driver
2006 *	@net_dev: the net device to probe
2007 *	@info: container for info returned
2008 *
2009 *	Process ethtool command such as "ehtool -i" to show information
2010 */
2011
2012static void sis900_get_drvinfo(struct net_device *net_dev,
2013			       struct ethtool_drvinfo *info)
2014{
2015	struct sis900_private *sis_priv = netdev_priv(net_dev);
2016
2017	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2018	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2019	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2020		sizeof(info->bus_info));
2021}
2022
2023static u32 sis900_get_msglevel(struct net_device *net_dev)
2024{
2025	struct sis900_private *sis_priv = netdev_priv(net_dev);
2026	return sis_priv->msg_enable;
2027}
2028
2029static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2030{
2031	struct sis900_private *sis_priv = netdev_priv(net_dev);
2032	sis_priv->msg_enable = value;
2033}
2034
2035static u32 sis900_get_link(struct net_device *net_dev)
2036{
2037	struct sis900_private *sis_priv = netdev_priv(net_dev);
2038	return mii_link_ok(&sis_priv->mii_info);
2039}
2040
2041static int sis900_get_settings(struct net_device *net_dev,
2042				struct ethtool_cmd *cmd)
2043{
2044	struct sis900_private *sis_priv = netdev_priv(net_dev);
2045	spin_lock_irq(&sis_priv->lock);
2046	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2047	spin_unlock_irq(&sis_priv->lock);
2048	return 0;
2049}
2050
2051static int sis900_set_settings(struct net_device *net_dev,
2052				struct ethtool_cmd *cmd)
2053{
2054	struct sis900_private *sis_priv = netdev_priv(net_dev);
2055	int rt;
2056	spin_lock_irq(&sis_priv->lock);
2057	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2058	spin_unlock_irq(&sis_priv->lock);
2059	return rt;
2060}
2061
2062static int sis900_nway_reset(struct net_device *net_dev)
2063{
2064	struct sis900_private *sis_priv = netdev_priv(net_dev);
2065	return mii_nway_restart(&sis_priv->mii_info);
2066}
2067
2068/**
2069 *	sis900_set_wol - Set up Wake on Lan registers
2070 *	@net_dev: the net device to probe
2071 *	@wol: container for info passed to the driver
2072 *
2073 *	Process ethtool command "wol" to setup wake on lan features.
2074 *	SiS900 supports sending WoL events if a correct packet is received,
2075 *	but there is no simple way to filter them to only a subset (broadcast,
2076 *	multicast, unicast or arp).
2077 */
2078
2079static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2080{
2081	struct sis900_private *sis_priv = netdev_priv(net_dev);
2082	void __iomem *ioaddr = sis_priv->ioaddr;
2083	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2084
2085	if (wol->wolopts == 0) {
2086		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2087		cfgpmcsr &= ~PME_EN;
2088		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2089		sw32(pmctrl, pmctrl_bits);
2090		if (netif_msg_wol(sis_priv))
2091			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2092		return 0;
2093	}
2094
2095	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2096				| WAKE_BCAST | WAKE_ARP))
2097		return -EINVAL;
2098
2099	if (wol->wolopts & WAKE_MAGIC)
2100		pmctrl_bits |= MAGICPKT;
2101	if (wol->wolopts & WAKE_PHY)
2102		pmctrl_bits |= LINKON;
2103
2104	sw32(pmctrl, pmctrl_bits);
2105
2106	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2107	cfgpmcsr |= PME_EN;
2108	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2109	if (netif_msg_wol(sis_priv))
2110		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2111
2112	return 0;
2113}
2114
2115static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2116{
2117	struct sis900_private *sp = netdev_priv(net_dev);
2118	void __iomem *ioaddr = sp->ioaddr;
2119	u32 pmctrl_bits;
2120
2121	pmctrl_bits = sr32(pmctrl);
2122	if (pmctrl_bits & MAGICPKT)
2123		wol->wolopts |= WAKE_MAGIC;
2124	if (pmctrl_bits & LINKON)
2125		wol->wolopts |= WAKE_PHY;
2126
2127	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2128}
2129
2130static const struct ethtool_ops sis900_ethtool_ops = {
2131	.get_drvinfo 	= sis900_get_drvinfo,
2132	.get_msglevel	= sis900_get_msglevel,
2133	.set_msglevel	= sis900_set_msglevel,
2134	.get_link	= sis900_get_link,
2135	.get_settings	= sis900_get_settings,
2136	.set_settings	= sis900_set_settings,
2137	.nway_reset	= sis900_nway_reset,
2138	.get_wol	= sis900_get_wol,
2139	.set_wol	= sis900_set_wol
2140};
2141
2142/**
2143 *	mii_ioctl - process MII i/o control command
2144 *	@net_dev: the net device to command for
2145 *	@rq: parameter for command
2146 *	@cmd: the i/o command
2147 *
2148 *	Process MII command like read/write MII register
2149 */
2150
2151static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2152{
2153	struct sis900_private *sis_priv = netdev_priv(net_dev);
2154	struct mii_ioctl_data *data = if_mii(rq);
2155
2156	switch(cmd) {
2157	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2158		data->phy_id = sis_priv->mii->phy_addr;
2159		/* Fall Through */
2160
2161	case SIOCGMIIREG:		/* Read MII PHY register. */
2162		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2163		return 0;
2164
2165	case SIOCSMIIREG:		/* Write MII PHY register. */
2166		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2167		return 0;
2168	default:
2169		return -EOPNOTSUPP;
2170	}
2171}
2172
2173/**
2174 *	sis900_set_config - Set media type by net_device.set_config
2175 *	@dev: the net device for media type change
2176 *	@map: ifmap passed by ifconfig
2177 *
2178 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2179 *	we support only port changes. All other runtime configuration
2180 *	changes will be ignored
2181 */
2182
2183static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2184{
2185	struct sis900_private *sis_priv = netdev_priv(dev);
2186	struct mii_phy *mii_phy = sis_priv->mii;
2187
2188	u16 status;
2189
2190	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2191		/* we switch on the ifmap->port field. I couldn't find anything
2192		 * like a definition or standard for the values of that field.
2193		 * I think the meaning of those values is device specific. But
2194		 * since I would like to change the media type via the ifconfig
2195		 * command I use the definition from linux/netdevice.h
2196		 * (which seems to be different from the ifport(pcmcia) definition) */
2197		switch(map->port){
2198		case IF_PORT_UNKNOWN: /* use auto here */
2199			dev->if_port = map->port;
2200			/* we are going to change the media type, so the Link
2201			 * will be temporary down and we need to reflect that
2202			 * here. When the Link comes up again, it will be
2203			 * sensed by the sis_timer procedure, which also does
2204			 * all the rest for us */
2205			netif_carrier_off(dev);
2206
2207			/* read current state */
2208			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2209
2210			/* enable auto negotiation and reset the negotioation
2211			 * (I don't really know what the auto negatiotiation
2212			 * reset really means, but it sounds for me right to
2213			 * do one here) */
2214			mdio_write(dev, mii_phy->phy_addr,
2215				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2216
2217			break;
2218
2219		case IF_PORT_10BASET: /* 10BaseT */
2220			dev->if_port = map->port;
2221
2222			/* we are going to change the media type, so the Link
2223			 * will be temporary down and we need to reflect that
2224			 * here. When the Link comes up again, it will be
2225			 * sensed by the sis_timer procedure, which also does
2226			 * all the rest for us */
2227			netif_carrier_off(dev);
2228
2229			/* set Speed to 10Mbps */
2230			/* read current state */
2231			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2232
2233			/* disable auto negotiation and force 10MBit mode*/
2234			mdio_write(dev, mii_phy->phy_addr,
2235				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2236					MII_CNTL_AUTO));
2237			break;
2238
2239		case IF_PORT_100BASET: /* 100BaseT */
2240		case IF_PORT_100BASETX: /* 100BaseTx */
2241			dev->if_port = map->port;
2242
2243			/* we are going to change the media type, so the Link
2244			 * will be temporary down and we need to reflect that
2245			 * here. When the Link comes up again, it will be
2246			 * sensed by the sis_timer procedure, which also does
2247			 * all the rest for us */
2248			netif_carrier_off(dev);
2249
2250			/* set Speed to 100Mbps */
2251			/* disable auto negotiation and enable 100MBit Mode */
2252			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2253			mdio_write(dev, mii_phy->phy_addr,
2254				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2255				   MII_CNTL_SPEED);
2256
2257			break;
2258
2259		case IF_PORT_10BASE2: /* 10Base2 */
2260		case IF_PORT_AUI: /* AUI */
2261		case IF_PORT_100BASEFX: /* 100BaseFx */
2262                	/* These Modes are not supported (are they?)*/
2263			return -EOPNOTSUPP;
2264			break;
2265
2266		default:
2267			return -EINVAL;
2268		}
2269	}
2270	return 0;
2271}
2272
2273/**
2274 *	sis900_mcast_bitnr - compute hashtable index
2275 *	@addr: multicast address
2276 *	@revision: revision id of chip
2277 *
2278 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2279 *	hash table, which makes this function a little bit different from other drivers
2280 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2281 *   	multicast hash table.
2282 */
2283
2284static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2285{
2286
2287	u32 crc = ether_crc(6, addr);
2288
2289	/* leave 8 or 7 most siginifant bits */
2290	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2291		return (int)(crc >> 24);
2292	else
2293		return (int)(crc >> 25);
2294}
2295
2296/**
2297 *	set_rx_mode - Set SiS900 receive mode
2298 *	@net_dev: the net device to be set
2299 *
2300 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2301 *	And set the appropriate multicast filter.
2302 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2303 */
2304
2305static void set_rx_mode(struct net_device *net_dev)
2306{
2307	struct sis900_private *sis_priv = netdev_priv(net_dev);
2308	void __iomem *ioaddr = sis_priv->ioaddr;
2309	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2310	int i, table_entries;
2311	u32 rx_mode;
2312
2313	/* 635 Hash Table entries = 256(2^16) */
2314	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2315			(sis_priv->chipset_rev == SIS900B_900_REV))
2316		table_entries = 16;
2317	else
2318		table_entries = 8;
2319
2320	if (net_dev->flags & IFF_PROMISC) {
2321		/* Accept any kinds of packets */
2322		rx_mode = RFPromiscuous;
2323		for (i = 0; i < table_entries; i++)
2324			mc_filter[i] = 0xffff;
2325	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2326		   (net_dev->flags & IFF_ALLMULTI)) {
2327		/* too many multicast addresses or accept all multicast packet */
2328		rx_mode = RFAAB | RFAAM;
2329		for (i = 0; i < table_entries; i++)
2330			mc_filter[i] = 0xffff;
2331	} else {
2332		/* Accept Broadcast packet, destination address matchs our
2333		 * MAC address, use Receive Filter to reject unwanted MCAST
2334		 * packets */
2335		struct netdev_hw_addr *ha;
2336		rx_mode = RFAAB;
2337
2338		netdev_for_each_mc_addr(ha, net_dev) {
2339			unsigned int bit_nr;
2340
2341			bit_nr = sis900_mcast_bitnr(ha->addr,
2342						    sis_priv->chipset_rev);
2343			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2344		}
2345	}
2346
2347	/* update Multicast Hash Table in Receive Filter */
2348	for (i = 0; i < table_entries; i++) {
2349                /* why plus 0x04 ??, That makes the correct value for hash table. */
2350		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2351		sw32(rfdr, mc_filter[i]);
2352	}
2353
2354	sw32(rfcr, RFEN | rx_mode);
2355
2356	/* sis900 is capable of looping back packets at MAC level for
2357	 * debugging purpose */
2358	if (net_dev->flags & IFF_LOOPBACK) {
2359		u32 cr_saved;
2360		/* We must disable Tx/Rx before setting loopback mode */
2361		cr_saved = sr32(cr);
2362		sw32(cr, cr_saved | TxDIS | RxDIS);
2363		/* enable loopback */
2364		sw32(txcfg, sr32(txcfg) | TxMLB);
2365		sw32(rxcfg, sr32(rxcfg) | RxATX);
2366		/* restore cr */
2367		sw32(cr, cr_saved);
2368	}
2369}
2370
2371/**
2372 *	sis900_reset - Reset sis900 MAC
2373 *	@net_dev: the net device to reset
2374 *
2375 *	reset sis900 MAC and wait until finished
2376 *	reset through command register
2377 *	change backoff algorithm for 900B0 & 635 M/B
2378 */
2379
2380static void sis900_reset(struct net_device *net_dev)
2381{
2382	struct sis900_private *sis_priv = netdev_priv(net_dev);
2383	void __iomem *ioaddr = sis_priv->ioaddr;
2384	u32 status = TxRCMP | RxRCMP;
2385	int i;
2386
2387	sw32(ier, 0);
2388	sw32(imr, 0);
2389	sw32(rfcr, 0);
2390
2391	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2392
2393	/* Check that the chip has finished the reset. */
2394	for (i = 0; status && (i < 1000); i++)
2395		status ^= sr32(isr) & status;
2396
2397	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2398	    sis_priv->chipset_rev == SIS900B_900_REV)
2399		sw32(cfg, PESEL | RND_CNT);
2400	else
2401		sw32(cfg, PESEL);
2402}
2403
2404/**
2405 *	sis900_remove - Remove sis900 device
2406 *	@pci_dev: the pci device to be removed
2407 *
2408 *	remove and release SiS900 net device
2409 */
2410
2411static void __devexit sis900_remove(struct pci_dev *pci_dev)
2412{
2413	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2414	struct sis900_private *sis_priv = netdev_priv(net_dev);
2415
2416	unregister_netdev(net_dev);
2417
2418	while (sis_priv->first_mii) {
2419		struct mii_phy *phy = sis_priv->first_mii;
2420
2421		sis_priv->first_mii = phy->next;
2422		kfree(phy);
2423	}
2424
2425	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2426		sis_priv->rx_ring_dma);
2427	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2428		sis_priv->tx_ring_dma);
2429	pci_iounmap(pci_dev, sis_priv->ioaddr);
2430	free_netdev(net_dev);
2431	pci_release_regions(pci_dev);
2432	pci_set_drvdata(pci_dev, NULL);
2433}
2434
2435#ifdef CONFIG_PM
2436
2437static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2438{
2439	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2440	struct sis900_private *sis_priv = netdev_priv(net_dev);
2441	void __iomem *ioaddr = sis_priv->ioaddr;
2442
2443	if(!netif_running(net_dev))
2444		return 0;
2445
2446	netif_stop_queue(net_dev);
2447	netif_device_detach(net_dev);
2448
2449	/* Stop the chip's Tx and Rx Status Machine */
2450	sw32(cr, RxDIS | TxDIS | sr32(cr));
2451
2452	pci_set_power_state(pci_dev, PCI_D3hot);
2453	pci_save_state(pci_dev);
2454
2455	return 0;
2456}
2457
2458static int sis900_resume(struct pci_dev *pci_dev)
2459{
2460	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2461	struct sis900_private *sis_priv = netdev_priv(net_dev);
2462	void __iomem *ioaddr = sis_priv->ioaddr;
2463
2464	if(!netif_running(net_dev))
2465		return 0;
2466	pci_restore_state(pci_dev);
2467	pci_set_power_state(pci_dev, PCI_D0);
2468
2469	sis900_init_rxfilter(net_dev);
2470
2471	sis900_init_tx_ring(net_dev);
2472	sis900_init_rx_ring(net_dev);
2473
2474	set_rx_mode(net_dev);
2475
2476	netif_device_attach(net_dev);
2477	netif_start_queue(net_dev);
2478
2479	/* Workaround for EDB */
2480	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2481
2482	/* Enable all known interrupts by setting the interrupt mask. */
2483	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2484	sw32(cr, RxENA | sr32(cr));
2485	sw32(ier, IE);
2486
2487	sis900_check_mode(net_dev, sis_priv->mii);
2488
2489	return 0;
2490}
2491#endif /* CONFIG_PM */
2492
2493static struct pci_driver sis900_pci_driver = {
2494	.name		= SIS900_MODULE_NAME,
2495	.id_table	= sis900_pci_tbl,
2496	.probe		= sis900_probe,
2497	.remove		= __devexit_p(sis900_remove),
2498#ifdef CONFIG_PM
2499	.suspend	= sis900_suspend,
2500	.resume		= sis900_resume,
2501#endif /* CONFIG_PM */
2502};
2503
2504static int __init sis900_init_module(void)
2505{
2506/* when a module, this is printed whether or not devices are found in probe */
2507#ifdef MODULE
2508	printk(version);
2509#endif
2510
2511	return pci_register_driver(&sis900_pci_driver);
2512}
2513
2514static void __exit sis900_cleanup_module(void)
2515{
2516	pci_unregister_driver(&sis900_pci_driver);
2517}
2518
2519module_init(sis900_init_module);
2520module_exit(sis900_cleanup_module);
2521