Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2008,2010 Intel Corporation
   5 */
   6
   7#include <linux/dma-resv.h>
   8#include <linux/highmem.h>
   9#include <linux/sync_file.h>
  10#include <linux/uaccess.h>
  11
  12#include <drm/drm_auth.h>
  13#include <drm/drm_syncobj.h>
  14
  15#include "display/intel_frontbuffer.h"
  16
  17#include "gem/i915_gem_ioctls.h"
  18#include "gt/intel_context.h"
  19#include "gt/intel_gpu_commands.h"
  20#include "gt/intel_gt.h"
  21#include "gt/intel_gt_buffer_pool.h"
  22#include "gt/intel_gt_pm.h"
  23#include "gt/intel_ring.h"
  24
  25#include "pxp/intel_pxp.h"
  26
  27#include "i915_cmd_parser.h"
  28#include "i915_drv.h"
  29#include "i915_file_private.h"
  30#include "i915_gem_clflush.h"
  31#include "i915_gem_context.h"
  32#include "i915_gem_evict.h"
  33#include "i915_gem_ioctls.h"
  34#include "i915_reg.h"
  35#include "i915_trace.h"
  36#include "i915_user_extensions.h"
  37
  38struct eb_vma {
  39	struct i915_vma *vma;
  40	unsigned int flags;
  41
  42	/** This vma's place in the execbuf reservation list */
  43	struct drm_i915_gem_exec_object2 *exec;
  44	struct list_head bind_link;
  45	struct list_head reloc_link;
  46
  47	struct hlist_node node;
  48	u32 handle;
  49};
  50
  51enum {
  52	FORCE_CPU_RELOC = 1,
  53	FORCE_GTT_RELOC,
  54	FORCE_GPU_RELOC,
  55#define DBG_FORCE_RELOC 0 /* choose one of the above! */
  56};
  57
  58/* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
  59#define __EXEC_OBJECT_HAS_PIN		BIT(29)
  60#define __EXEC_OBJECT_HAS_FENCE		BIT(28)
  61#define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
  62#define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
  63#define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
  64#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
  65#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
  66
  67#define __EXEC_HAS_RELOC	BIT(31)
  68#define __EXEC_ENGINE_PINNED	BIT(30)
  69#define __EXEC_USERPTR_USED	BIT(29)
  70#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
  71#define UPDATE			PIN_OFFSET_FIXED
  72
  73#define BATCH_OFFSET_BIAS (256*1024)
  74
  75#define __I915_EXEC_ILLEGAL_FLAGS \
  76	(__I915_EXEC_UNKNOWN_FLAGS | \
  77	 I915_EXEC_CONSTANTS_MASK  | \
  78	 I915_EXEC_RESOURCE_STREAMER)
  79
  80/* Catch emission of unexpected errors for CI! */
  81#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
  82#undef EINVAL
  83#define EINVAL ({ \
  84	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
  85	22; \
  86})
  87#endif
  88
  89/**
  90 * DOC: User command execution
  91 *
  92 * Userspace submits commands to be executed on the GPU as an instruction
  93 * stream within a GEM object we call a batchbuffer. This instructions may
  94 * refer to other GEM objects containing auxiliary state such as kernels,
  95 * samplers, render targets and even secondary batchbuffers. Userspace does
  96 * not know where in the GPU memory these objects reside and so before the
  97 * batchbuffer is passed to the GPU for execution, those addresses in the
  98 * batchbuffer and auxiliary objects are updated. This is known as relocation,
  99 * or patching. To try and avoid having to relocate each object on the next
 100 * execution, userspace is told the location of those objects in this pass,
 101 * but this remains just a hint as the kernel may choose a new location for
 102 * any object in the future.
 103 *
 104 * At the level of talking to the hardware, submitting a batchbuffer for the
 105 * GPU to execute is to add content to a buffer from which the HW
 106 * command streamer is reading.
 107 *
 108 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 109 *    Execlists, this command is not placed on the same buffer as the
 110 *    remaining items.
 111 *
 112 * 2. Add a command to invalidate caches to the buffer.
 113 *
 114 * 3. Add a batchbuffer start command to the buffer; the start command is
 115 *    essentially a token together with the GPU address of the batchbuffer
 116 *    to be executed.
 117 *
 118 * 4. Add a pipeline flush to the buffer.
 119 *
 120 * 5. Add a memory write command to the buffer to record when the GPU
 121 *    is done executing the batchbuffer. The memory write writes the
 122 *    global sequence number of the request, ``i915_request::global_seqno``;
 123 *    the i915 driver uses the current value in the register to determine
 124 *    if the GPU has completed the batchbuffer.
 125 *
 126 * 6. Add a user interrupt command to the buffer. This command instructs
 127 *    the GPU to issue an interrupt when the command, pipeline flush and
 128 *    memory write are completed.
 129 *
 130 * 7. Inform the hardware of the additional commands added to the buffer
 131 *    (by updating the tail pointer).
 132 *
 133 * Processing an execbuf ioctl is conceptually split up into a few phases.
 134 *
 135 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 136 * 2. Reservation - Assign GPU address space for every object
 137 * 3. Relocation - Update any addresses to point to the final locations
 138 * 4. Serialisation - Order the request with respect to its dependencies
 139 * 5. Construction - Construct a request to execute the batchbuffer
 140 * 6. Submission (at some point in the future execution)
 141 *
 142 * Reserving resources for the execbuf is the most complicated phase. We
 143 * neither want to have to migrate the object in the address space, nor do
 144 * we want to have to update any relocations pointing to this object. Ideally,
 145 * we want to leave the object where it is and for all the existing relocations
 146 * to match. If the object is given a new address, or if userspace thinks the
 147 * object is elsewhere, we have to parse all the relocation entries and update
 148 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 149 * all the target addresses in all of its objects match the value in the
 150 * relocation entries and that they all match the presumed offsets given by the
 151 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 152 * moved any buffers, all the relocation entries are valid and we can skip
 153 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 154 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 155 *
 156 *      The addresses written in the objects must match the corresponding
 157 *      reloc.presumed_offset which in turn must match the corresponding
 158 *      execobject.offset.
 159 *
 160 *      Any render targets written to in the batch must be flagged with
 161 *      EXEC_OBJECT_WRITE.
 162 *
 163 *      To avoid stalling, execobject.offset should match the current
 164 *      address of that object within the active context.
 165 *
 166 * The reservation is done is multiple phases. First we try and keep any
 167 * object already bound in its current location - so as long as meets the
 168 * constraints imposed by the new execbuffer. Any object left unbound after the
 169 * first pass is then fitted into any available idle space. If an object does
 170 * not fit, all objects are removed from the reservation and the process rerun
 171 * after sorting the objects into a priority order (more difficult to fit
 172 * objects are tried first). Failing that, the entire VM is cleared and we try
 173 * to fit the execbuf once last time before concluding that it simply will not
 174 * fit.
 175 *
 176 * A small complication to all of this is that we allow userspace not only to
 177 * specify an alignment and a size for the object in the address space, but
 178 * we also allow userspace to specify the exact offset. This objects are
 179 * simpler to place (the location is known a priori) all we have to do is make
 180 * sure the space is available.
 181 *
 182 * Once all the objects are in place, patching up the buried pointers to point
 183 * to the final locations is a fairly simple job of walking over the relocation
 184 * entry arrays, looking up the right address and rewriting the value into
 185 * the object. Simple! ... The relocation entries are stored in user memory
 186 * and so to access them we have to copy them into a local buffer. That copy
 187 * has to avoid taking any pagefaults as they may lead back to a GEM object
 188 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 189 * the relocation into multiple passes. First we try to do everything within an
 190 * atomic context (avoid the pagefaults) which requires that we never wait. If
 191 * we detect that we may wait, or if we need to fault, then we have to fallback
 192 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 193 * bells yet?) Dropping the mutex means that we lose all the state we have
 194 * built up so far for the execbuf and we must reset any global data. However,
 195 * we do leave the objects pinned in their final locations - which is a
 196 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 197 * allocate and copy all the relocation entries into a large array at our
 198 * leisure, reacquire the mutex, reclaim all the objects and other state and
 199 * then proceed to update any incorrect addresses with the objects.
 200 *
 201 * As we process the relocation entries, we maintain a record of whether the
 202 * object is being written to. Using NORELOC, we expect userspace to provide
 203 * this information instead. We also check whether we can skip the relocation
 204 * by comparing the expected value inside the relocation entry with the target's
 205 * final address. If they differ, we have to map the current object and rewrite
 206 * the 4 or 8 byte pointer within.
 207 *
 208 * Serialising an execbuf is quite simple according to the rules of the GEM
 209 * ABI. Execution within each context is ordered by the order of submission.
 210 * Writes to any GEM object are in order of submission and are exclusive. Reads
 211 * from a GEM object are unordered with respect to other reads, but ordered by
 212 * writes. A write submitted after a read cannot occur before the read, and
 213 * similarly any read submitted after a write cannot occur before the write.
 214 * Writes are ordered between engines such that only one write occurs at any
 215 * time (completing any reads beforehand) - using semaphores where available
 216 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 217 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 218 * reads before starting, and any read (either using set-domain or pread) must
 219 * flush all GPU writes before starting. (Note we only employ a barrier before,
 220 * we currently rely on userspace not concurrently starting a new execution
 221 * whilst reading or writing to an object. This may be an advantage or not
 222 * depending on how much you trust userspace not to shoot themselves in the
 223 * foot.) Serialisation may just result in the request being inserted into
 224 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 225 * all dependencies are resolved.
 226 *
 227 * After all of that, is just a matter of closing the request and handing it to
 228 * the hardware (well, leaving it in a queue to be executed). However, we also
 229 * offer the ability for batchbuffers to be run with elevated privileges so
 230 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 231 * Before any batch is given extra privileges we first must check that it
 232 * contains no nefarious instructions, we check that each instruction is from
 233 * our whitelist and all registers are also from an allowed list. We first
 234 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 235 * access to it, either by the CPU or GPU as we scan it) and then parse each
 236 * instruction. If everything is ok, we set a flag telling the hardware to run
 237 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 238 */
 239
 240struct eb_fence {
 241	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
 242	struct dma_fence *dma_fence;
 243	u64 value;
 244	struct dma_fence_chain *chain_fence;
 245};
 246
 247struct i915_execbuffer {
 248	struct drm_i915_private *i915; /** i915 backpointer */
 249	struct drm_file *file; /** per-file lookup tables and limits */
 250	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
 251	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
 252	struct eb_vma *vma;
 253
 254	struct intel_gt *gt; /* gt for the execbuf */
 255	struct intel_context *context; /* logical state for the request */
 256	struct i915_gem_context *gem_context; /** caller's context */
 257	intel_wakeref_t wakeref;
 258	intel_wakeref_t wakeref_gt0;
 259
 260	/** our requests to build */
 261	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
 262	/** identity of the batch obj/vma */
 263	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
 264	struct i915_vma *trampoline; /** trampoline used for chaining */
 265
 266	/** used for excl fence in dma_resv objects when > 1 BB submitted */
 267	struct dma_fence *composite_fence;
 268
 269	/** actual size of execobj[] as we may extend it for the cmdparser */
 270	unsigned int buffer_count;
 271
 272	/* number of batches in execbuf IOCTL */
 273	unsigned int num_batches;
 274
 275	/** list of vma not yet bound during reservation phase */
 276	struct list_head unbound;
 277
 278	/** list of vma that have execobj.relocation_count */
 279	struct list_head relocs;
 280
 281	struct i915_gem_ww_ctx ww;
 282
 283	/**
 284	 * Track the most recently used object for relocations, as we
 285	 * frequently have to perform multiple relocations within the same
 286	 * obj/page
 287	 */
 288	struct reloc_cache {
 289		struct drm_mm_node node; /** temporary GTT binding */
 290		unsigned long vaddr; /** Current kmap address */
 291		unsigned long page; /** Currently mapped page index */
 292		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
 293		bool use_64bit_reloc : 1;
 294		bool has_llc : 1;
 295		bool has_fence : 1;
 296		bool needs_unfenced : 1;
 297	} reloc_cache;
 298
 299	u64 invalid_flags; /** Set of execobj.flags that are invalid */
 300
 301	/** Length of batch within object */
 302	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
 303	u32 batch_start_offset; /** Location within object of batch */
 304	u32 batch_flags; /** Flags composed for emit_bb_start() */
 305	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
 306
 307	/**
 308	 * Indicate either the size of the hastable used to resolve
 309	 * relocation handles, or if negative that we are using a direct
 310	 * index into the execobj[].
 311	 */
 312	int lut_size;
 313	struct hlist_head *buckets; /** ht for relocation handles */
 314
 315	struct eb_fence *fences;
 316	unsigned long num_fences;
 317#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
 318	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
 319#endif
 320};
 321
 322static int eb_parse(struct i915_execbuffer *eb);
 323static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
 324static void eb_unpin_engine(struct i915_execbuffer *eb);
 325static void eb_capture_release(struct i915_execbuffer *eb);
 326
 327static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
 328{
 329	return intel_engine_requires_cmd_parser(eb->context->engine) ||
 330		(intel_engine_using_cmd_parser(eb->context->engine) &&
 331		 eb->args->batch_len);
 332}
 333
 334static int eb_create(struct i915_execbuffer *eb)
 335{
 336	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
 337		unsigned int size = 1 + ilog2(eb->buffer_count);
 338
 339		/*
 340		 * Without a 1:1 association between relocation handles and
 341		 * the execobject[] index, we instead create a hashtable.
 342		 * We size it dynamically based on available memory, starting
 343		 * first with 1:1 assocative hash and scaling back until
 344		 * the allocation succeeds.
 345		 *
 346		 * Later on we use a positive lut_size to indicate we are
 347		 * using this hashtable, and a negative value to indicate a
 348		 * direct lookup.
 349		 */
 350		do {
 351			gfp_t flags;
 352
 353			/* While we can still reduce the allocation size, don't
 354			 * raise a warning and allow the allocation to fail.
 355			 * On the last pass though, we want to try as hard
 356			 * as possible to perform the allocation and warn
 357			 * if it fails.
 358			 */
 359			flags = GFP_KERNEL;
 360			if (size > 1)
 361				flags |= __GFP_NORETRY | __GFP_NOWARN;
 362
 363			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
 364					      flags);
 365			if (eb->buckets)
 366				break;
 367		} while (--size);
 368
 369		if (unlikely(!size))
 370			return -ENOMEM;
 371
 372		eb->lut_size = size;
 373	} else {
 374		eb->lut_size = -eb->buffer_count;
 375	}
 376
 377	return 0;
 378}
 379
 380static bool
 381eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
 382		 const struct i915_vma *vma,
 383		 unsigned int flags)
 384{
 385	const u64 start = i915_vma_offset(vma);
 386	const u64 size = i915_vma_size(vma);
 387
 388	if (size < entry->pad_to_size)
 389		return true;
 390
 391	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
 392		return true;
 393
 394	if (flags & EXEC_OBJECT_PINNED &&
 395	    start != entry->offset)
 396		return true;
 397
 398	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
 399	    start < BATCH_OFFSET_BIAS)
 400		return true;
 401
 402	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
 403	    (start + size + 4095) >> 32)
 404		return true;
 405
 406	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
 407	    !i915_vma_is_map_and_fenceable(vma))
 408		return true;
 409
 410	return false;
 411}
 412
 413static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
 414			unsigned int exec_flags)
 415{
 416	u64 pin_flags = 0;
 417
 418	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
 419		pin_flags |= PIN_GLOBAL;
 420
 421	/*
 422	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
 423	 * limit address to the first 4GBs for unflagged objects.
 424	 */
 425	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 426		pin_flags |= PIN_ZONE_4G;
 427
 428	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
 429		pin_flags |= PIN_MAPPABLE;
 430
 431	if (exec_flags & EXEC_OBJECT_PINNED)
 432		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
 433	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
 434		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
 435
 436	return pin_flags;
 437}
 438
 439static int
 440eb_pin_vma(struct i915_execbuffer *eb,
 441	   const struct drm_i915_gem_exec_object2 *entry,
 442	   struct eb_vma *ev)
 443{
 444	struct i915_vma *vma = ev->vma;
 445	u64 pin_flags;
 446	int err;
 447
 448	if (vma->node.size)
 449		pin_flags =  __i915_vma_offset(vma);
 450	else
 451		pin_flags = entry->offset & PIN_OFFSET_MASK;
 452
 453	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
 454	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
 455		pin_flags |= PIN_GLOBAL;
 456
 457	/* Attempt to reuse the current location if available */
 458	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
 459	if (err == -EDEADLK)
 460		return err;
 461
 462	if (unlikely(err)) {
 463		if (entry->flags & EXEC_OBJECT_PINNED)
 464			return err;
 465
 466		/* Failing that pick any _free_ space if suitable */
 467		err = i915_vma_pin_ww(vma, &eb->ww,
 468					     entry->pad_to_size,
 469					     entry->alignment,
 470					     eb_pin_flags(entry, ev->flags) |
 471					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
 472		if (unlikely(err))
 473			return err;
 474	}
 475
 476	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 477		err = i915_vma_pin_fence(vma);
 478		if (unlikely(err))
 479			return err;
 480
 481		if (vma->fence)
 482			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 483	}
 484
 485	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 486	if (eb_vma_misplaced(entry, vma, ev->flags))
 487		return -EBADSLT;
 488
 489	return 0;
 490}
 491
 492static void
 493eb_unreserve_vma(struct eb_vma *ev)
 494{
 495	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
 496		__i915_vma_unpin_fence(ev->vma);
 497
 498	ev->flags &= ~__EXEC_OBJECT_RESERVED;
 499}
 500
 501static int
 502eb_validate_vma(struct i915_execbuffer *eb,
 503		struct drm_i915_gem_exec_object2 *entry,
 504		struct i915_vma *vma)
 505{
 506	/* Relocations are disallowed for all platforms after TGL-LP.  This
 507	 * also covers all platforms with local memory.
 508	 */
 509	if (entry->relocation_count &&
 510	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
 511		return -EINVAL;
 512
 513	if (unlikely(entry->flags & eb->invalid_flags))
 514		return -EINVAL;
 515
 516	if (unlikely(entry->alignment &&
 517		     !is_power_of_2_u64(entry->alignment)))
 518		return -EINVAL;
 519
 520	/*
 521	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
 522	 * any non-page-aligned or non-canonical addresses.
 523	 */
 524	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
 525		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
 526		return -EINVAL;
 527
 528	/* pad_to_size was once a reserved field, so sanitize it */
 529	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
 530		if (unlikely(offset_in_page(entry->pad_to_size)))
 531			return -EINVAL;
 532	} else {
 533		entry->pad_to_size = 0;
 534	}
 535	/*
 536	 * From drm_mm perspective address space is continuous,
 537	 * so from this point we're always using non-canonical
 538	 * form internally.
 539	 */
 540	entry->offset = gen8_noncanonical_addr(entry->offset);
 541
 542	if (!eb->reloc_cache.has_fence) {
 543		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
 544	} else {
 545		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
 546		     eb->reloc_cache.needs_unfenced) &&
 547		    i915_gem_object_is_tiled(vma->obj))
 548			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
 549	}
 550
 551	return 0;
 552}
 553
 554static bool
 555is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
 556{
 557	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
 558		buffer_idx < eb->num_batches :
 559		buffer_idx >= eb->args->buffer_count - eb->num_batches;
 560}
 561
 562static int
 563eb_add_vma(struct i915_execbuffer *eb,
 564	   unsigned int *current_batch,
 565	   unsigned int i,
 566	   struct i915_vma *vma)
 567{
 568	struct drm_i915_private *i915 = eb->i915;
 569	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
 570	struct eb_vma *ev = &eb->vma[i];
 571
 572	ev->vma = vma;
 573	ev->exec = entry;
 574	ev->flags = entry->flags;
 575
 576	if (eb->lut_size > 0) {
 577		ev->handle = entry->handle;
 578		hlist_add_head(&ev->node,
 579			       &eb->buckets[hash_32(entry->handle,
 580						    eb->lut_size)]);
 581	}
 582
 583	if (entry->relocation_count)
 584		list_add_tail(&ev->reloc_link, &eb->relocs);
 585
 586	/*
 587	 * SNA is doing fancy tricks with compressing batch buffers, which leads
 588	 * to negative relocation deltas. Usually that works out ok since the
 589	 * relocate address is still positive, except when the batch is placed
 590	 * very low in the GTT. Ensure this doesn't happen.
 591	 *
 592	 * Note that actual hangs have only been observed on gen7, but for
 593	 * paranoia do it everywhere.
 594	 */
 595	if (is_batch_buffer(eb, i)) {
 596		if (entry->relocation_count &&
 597		    !(ev->flags & EXEC_OBJECT_PINNED))
 598			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 599		if (eb->reloc_cache.has_fence)
 600			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
 601
 602		eb->batches[*current_batch] = ev;
 603
 604		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
 605			drm_dbg(&i915->drm,
 606				"Attempting to use self-modifying batch buffer\n");
 607			return -EINVAL;
 608		}
 609
 610		if (range_overflows_t(u64,
 611				      eb->batch_start_offset,
 612				      eb->args->batch_len,
 613				      ev->vma->size)) {
 614			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
 615			return -EINVAL;
 616		}
 617
 618		if (eb->args->batch_len == 0)
 619			eb->batch_len[*current_batch] = ev->vma->size -
 620				eb->batch_start_offset;
 621		else
 622			eb->batch_len[*current_batch] = eb->args->batch_len;
 623		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
 624			drm_dbg(&i915->drm, "Invalid batch length\n");
 625			return -EINVAL;
 626		}
 627
 628		++*current_batch;
 629	}
 630
 631	return 0;
 632}
 633
 634static int use_cpu_reloc(const struct reloc_cache *cache,
 635			 const struct drm_i915_gem_object *obj)
 636{
 637	if (!i915_gem_object_has_struct_page(obj))
 638		return false;
 639
 640	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
 641		return true;
 642
 643	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
 644		return false;
 645
 646	/*
 647	 * For objects created by userspace through GEM_CREATE with pat_index
 648	 * set by set_pat extension, i915_gem_object_has_cache_level() always
 649	 * return true, otherwise the call would fall back to checking whether
 650	 * the object is un-cached.
 651	 */
 652	return (cache->has_llc ||
 653		obj->cache_dirty ||
 654		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
 655}
 656
 657static int eb_reserve_vma(struct i915_execbuffer *eb,
 658			  struct eb_vma *ev,
 659			  u64 pin_flags)
 660{
 661	struct drm_i915_gem_exec_object2 *entry = ev->exec;
 662	struct i915_vma *vma = ev->vma;
 663	int err;
 664
 665	if (drm_mm_node_allocated(&vma->node) &&
 666	    eb_vma_misplaced(entry, vma, ev->flags)) {
 667		err = i915_vma_unbind(vma);
 668		if (err)
 669			return err;
 670	}
 671
 672	err = i915_vma_pin_ww(vma, &eb->ww,
 673			   entry->pad_to_size, entry->alignment,
 674			   eb_pin_flags(entry, ev->flags) | pin_flags);
 675	if (err)
 676		return err;
 677
 678	if (entry->offset != i915_vma_offset(vma)) {
 679		entry->offset = i915_vma_offset(vma) | UPDATE;
 680		eb->args->flags |= __EXEC_HAS_RELOC;
 681	}
 682
 683	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 684		err = i915_vma_pin_fence(vma);
 685		if (unlikely(err))
 686			return err;
 687
 688		if (vma->fence)
 689			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 690	}
 691
 692	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 693	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
 694
 695	return 0;
 696}
 697
 698static bool eb_unbind(struct i915_execbuffer *eb, bool force)
 699{
 700	const unsigned int count = eb->buffer_count;
 701	unsigned int i;
 702	struct list_head last;
 703	bool unpinned = false;
 704
 705	/* Resort *all* the objects into priority order */
 706	INIT_LIST_HEAD(&eb->unbound);
 707	INIT_LIST_HEAD(&last);
 708
 709	for (i = 0; i < count; i++) {
 710		struct eb_vma *ev = &eb->vma[i];
 711		unsigned int flags = ev->flags;
 712
 713		if (!force && flags & EXEC_OBJECT_PINNED &&
 714		    flags & __EXEC_OBJECT_HAS_PIN)
 715			continue;
 716
 717		unpinned = true;
 718		eb_unreserve_vma(ev);
 719
 720		if (flags & EXEC_OBJECT_PINNED)
 721			/* Pinned must have their slot */
 722			list_add(&ev->bind_link, &eb->unbound);
 723		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
 724			/* Map require the lowest 256MiB (aperture) */
 725			list_add_tail(&ev->bind_link, &eb->unbound);
 726		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 727			/* Prioritise 4GiB region for restricted bo */
 728			list_add(&ev->bind_link, &last);
 729		else
 730			list_add_tail(&ev->bind_link, &last);
 731	}
 732
 733	list_splice_tail(&last, &eb->unbound);
 734	return unpinned;
 735}
 736
 737static int eb_reserve(struct i915_execbuffer *eb)
 738{
 739	struct eb_vma *ev;
 740	unsigned int pass;
 741	int err = 0;
 742
 743	/*
 744	 * We have one more buffers that we couldn't bind, which could be due to
 745	 * various reasons. To resolve this we have 4 passes, with every next
 746	 * level turning the screws tighter:
 747	 *
 748	 * 0. Unbind all objects that do not match the GTT constraints for the
 749	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
 750	 * objects.  This avoids unnecessary unbinding of later objects in order
 751	 * to make room for the earlier objects *unless* we need to defragment.
 752	 *
 753	 * 1. Reorder the buffers, where objects with the most restrictive
 754	 * placement requirements go first (ignoring fixed location buffers for
 755	 * now).  For example, objects needing the mappable aperture (the first
 756	 * 256M of GTT), should go first vs objects that can be placed just
 757	 * about anywhere. Repeat the previous pass.
 758	 *
 759	 * 2. Consider buffers that are pinned at a fixed location. Also try to
 760	 * evict the entire VM this time, leaving only objects that we were
 761	 * unable to lock. Try again to bind the buffers. (still using the new
 762	 * buffer order).
 763	 *
 764	 * 3. We likely have object lock contention for one or more stubborn
 765	 * objects in the VM, for which we need to evict to make forward
 766	 * progress (perhaps we are fighting the shrinker?). When evicting the
 767	 * VM this time around, anything that we can't lock we now track using
 768	 * the busy_bo, using the full lock (after dropping the vm->mutex to
 769	 * prevent deadlocks), instead of trylock. We then continue to evict the
 770	 * VM, this time with the stubborn object locked, which we can now
 771	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
 772	 * evicted. Finally we should be able bind everything.
 773	 */
 774	for (pass = 0; pass <= 3; pass++) {
 775		int pin_flags = PIN_USER | PIN_VALIDATE;
 776
 777		if (pass == 0)
 778			pin_flags |= PIN_NONBLOCK;
 779
 780		if (pass >= 1)
 781			eb_unbind(eb, pass >= 2);
 782
 783		if (pass == 2) {
 784			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 785			if (!err) {
 786				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
 787				mutex_unlock(&eb->context->vm->mutex);
 788			}
 789			if (err)
 790				return err;
 791		}
 792
 793		if (pass == 3) {
 794retry:
 795			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 796			if (!err) {
 797				struct drm_i915_gem_object *busy_bo = NULL;
 798
 799				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
 800				mutex_unlock(&eb->context->vm->mutex);
 801				if (err && busy_bo) {
 802					err = i915_gem_object_lock(busy_bo, &eb->ww);
 803					i915_gem_object_put(busy_bo);
 804					if (!err)
 805						goto retry;
 806				}
 807			}
 808			if (err)
 809				return err;
 810		}
 811
 812		list_for_each_entry(ev, &eb->unbound, bind_link) {
 813			err = eb_reserve_vma(eb, ev, pin_flags);
 814			if (err)
 815				break;
 816		}
 817
 818		if (err != -ENOSPC)
 819			break;
 820	}
 821
 822	return err;
 823}
 824
 825static int eb_select_context(struct i915_execbuffer *eb)
 826{
 827	struct i915_gem_context *ctx;
 828
 829	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
 830	if (unlikely(IS_ERR(ctx)))
 831		return PTR_ERR(ctx);
 832
 833	eb->gem_context = ctx;
 834	if (i915_gem_context_has_full_ppgtt(ctx))
 835		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
 836
 837	return 0;
 838}
 839
 840static int __eb_add_lut(struct i915_execbuffer *eb,
 841			u32 handle, struct i915_vma *vma)
 842{
 843	struct i915_gem_context *ctx = eb->gem_context;
 844	struct i915_lut_handle *lut;
 845	int err;
 846
 847	lut = i915_lut_handle_alloc();
 848	if (unlikely(!lut))
 849		return -ENOMEM;
 850
 851	i915_vma_get(vma);
 852	if (!atomic_fetch_inc(&vma->open_count))
 853		i915_vma_reopen(vma);
 854	lut->handle = handle;
 855	lut->ctx = ctx;
 856
 857	/* Check that the context hasn't been closed in the meantime */
 858	err = -EINTR;
 859	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
 860		if (likely(!i915_gem_context_is_closed(ctx)))
 861			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
 862		else
 863			err = -ENOENT;
 864		if (err == 0) { /* And nor has this handle */
 865			struct drm_i915_gem_object *obj = vma->obj;
 866
 867			spin_lock(&obj->lut_lock);
 868			if (idr_find(&eb->file->object_idr, handle) == obj) {
 869				list_add(&lut->obj_link, &obj->lut_list);
 870			} else {
 871				radix_tree_delete(&ctx->handles_vma, handle);
 872				err = -ENOENT;
 873			}
 874			spin_unlock(&obj->lut_lock);
 875		}
 876		mutex_unlock(&ctx->lut_mutex);
 877	}
 878	if (unlikely(err))
 879		goto err;
 880
 881	return 0;
 882
 883err:
 884	i915_vma_close(vma);
 885	i915_vma_put(vma);
 886	i915_lut_handle_free(lut);
 887	return err;
 888}
 889
 890static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
 891{
 892	struct i915_address_space *vm = eb->context->vm;
 893
 894	do {
 895		struct drm_i915_gem_object *obj;
 896		struct i915_vma *vma;
 897		int err;
 898
 899		rcu_read_lock();
 900		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
 901		if (likely(vma && vma->vm == vm))
 902			vma = i915_vma_tryget(vma);
 903		rcu_read_unlock();
 904		if (likely(vma))
 905			return vma;
 906
 907		obj = i915_gem_object_lookup(eb->file, handle);
 908		if (unlikely(!obj))
 909			return ERR_PTR(-ENOENT);
 910
 911		/*
 912		 * If the user has opted-in for protected-object tracking, make
 913		 * sure the object encryption can be used.
 914		 * We only need to do this when the object is first used with
 915		 * this context, because the context itself will be banned when
 916		 * the protected objects become invalid.
 917		 */
 918		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
 919		    i915_gem_object_is_protected(obj)) {
 920			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
 921			if (err) {
 922				i915_gem_object_put(obj);
 923				return ERR_PTR(err);
 924			}
 925		}
 926
 927		vma = i915_vma_instance(obj, vm, NULL);
 928		if (IS_ERR(vma)) {
 929			i915_gem_object_put(obj);
 930			return vma;
 931		}
 932
 933		err = __eb_add_lut(eb, handle, vma);
 934		if (likely(!err))
 935			return vma;
 936
 937		i915_gem_object_put(obj);
 938		if (err != -EEXIST)
 939			return ERR_PTR(err);
 940	} while (1);
 941}
 942
 943static int eb_lookup_vmas(struct i915_execbuffer *eb)
 944{
 945	unsigned int i, current_batch = 0;
 946	int err = 0;
 947
 948	INIT_LIST_HEAD(&eb->relocs);
 949
 950	for (i = 0; i < eb->buffer_count; i++) {
 951		struct i915_vma *vma;
 952
 953		vma = eb_lookup_vma(eb, eb->exec[i].handle);
 954		if (IS_ERR(vma)) {
 955			err = PTR_ERR(vma);
 956			goto err;
 957		}
 958
 959		err = eb_validate_vma(eb, &eb->exec[i], vma);
 960		if (unlikely(err)) {
 961			i915_vma_put(vma);
 962			goto err;
 963		}
 964
 965		err = eb_add_vma(eb, &current_batch, i, vma);
 966		if (err)
 967			return err;
 968
 969		if (i915_gem_object_is_userptr(vma->obj)) {
 970			err = i915_gem_object_userptr_submit_init(vma->obj);
 971			if (err) {
 972				if (i + 1 < eb->buffer_count) {
 973					/*
 974					 * Execbuffer code expects last vma entry to be NULL,
 975					 * since we already initialized this entry,
 976					 * set the next value to NULL or we mess up
 977					 * cleanup handling.
 978					 */
 979					eb->vma[i + 1].vma = NULL;
 980				}
 981
 982				return err;
 983			}
 984
 985			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
 986			eb->args->flags |= __EXEC_USERPTR_USED;
 987		}
 988	}
 989
 990	return 0;
 991
 992err:
 993	eb->vma[i].vma = NULL;
 994	return err;
 995}
 996
 997static int eb_lock_vmas(struct i915_execbuffer *eb)
 998{
 999	unsigned int i;
1000	int err;
1001
1002	for (i = 0; i < eb->buffer_count; i++) {
1003		struct eb_vma *ev = &eb->vma[i];
1004		struct i915_vma *vma = ev->vma;
1005
1006		err = i915_gem_object_lock(vma->obj, &eb->ww);
1007		if (err)
1008			return err;
1009	}
1010
1011	return 0;
1012}
1013
1014static int eb_validate_vmas(struct i915_execbuffer *eb)
1015{
1016	unsigned int i;
1017	int err;
1018
1019	INIT_LIST_HEAD(&eb->unbound);
1020
1021	err = eb_lock_vmas(eb);
1022	if (err)
1023		return err;
1024
1025	for (i = 0; i < eb->buffer_count; i++) {
1026		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1027		struct eb_vma *ev = &eb->vma[i];
1028		struct i915_vma *vma = ev->vma;
1029
1030		err = eb_pin_vma(eb, entry, ev);
1031		if (err == -EDEADLK)
1032			return err;
1033
1034		if (!err) {
1035			if (entry->offset != i915_vma_offset(vma)) {
1036				entry->offset = i915_vma_offset(vma) | UPDATE;
1037				eb->args->flags |= __EXEC_HAS_RELOC;
1038			}
1039		} else {
1040			eb_unreserve_vma(ev);
1041
1042			list_add_tail(&ev->bind_link, &eb->unbound);
1043			if (drm_mm_node_allocated(&vma->node)) {
1044				err = i915_vma_unbind(vma);
1045				if (err)
1046					return err;
1047			}
1048		}
1049
1050		/* Reserve enough slots to accommodate composite fences */
1051		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1052		if (err)
1053			return err;
1054
1055		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1056			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1057	}
1058
1059	if (!list_empty(&eb->unbound))
1060		return eb_reserve(eb);
1061
1062	return 0;
1063}
1064
1065static struct eb_vma *
1066eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1067{
1068	if (eb->lut_size < 0) {
1069		if (handle >= -eb->lut_size)
1070			return NULL;
1071		return &eb->vma[handle];
1072	} else {
1073		struct hlist_head *head;
1074		struct eb_vma *ev;
1075
1076		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1077		hlist_for_each_entry(ev, head, node) {
1078			if (ev->handle == handle)
1079				return ev;
1080		}
1081		return NULL;
1082	}
1083}
1084
1085static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1086{
1087	const unsigned int count = eb->buffer_count;
1088	unsigned int i;
1089
1090	for (i = 0; i < count; i++) {
1091		struct eb_vma *ev = &eb->vma[i];
1092		struct i915_vma *vma = ev->vma;
1093
1094		if (!vma)
1095			break;
1096
1097		eb_unreserve_vma(ev);
1098
1099		if (final)
1100			i915_vma_put(vma);
1101	}
1102
1103	eb_capture_release(eb);
1104	eb_unpin_engine(eb);
1105}
1106
1107static void eb_destroy(const struct i915_execbuffer *eb)
1108{
1109	if (eb->lut_size > 0)
1110		kfree(eb->buckets);
1111}
1112
1113static u64
1114relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1115		  const struct i915_vma *target)
1116{
1117	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1118}
1119
1120static void reloc_cache_init(struct reloc_cache *cache,
1121			     struct drm_i915_private *i915)
1122{
1123	cache->page = -1;
1124	cache->vaddr = 0;
1125	/* Must be a variable in the struct to allow GCC to unroll. */
1126	cache->graphics_ver = GRAPHICS_VER(i915);
1127	cache->has_llc = HAS_LLC(i915);
1128	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1129	cache->has_fence = cache->graphics_ver < 4;
1130	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1131	cache->node.flags = 0;
1132}
1133
1134static void *unmask_page(unsigned long p)
1135{
1136	return (void *)(uintptr_t)(p & PAGE_MASK);
1137}
1138
1139static unsigned int unmask_flags(unsigned long p)
1140{
1141	return p & ~PAGE_MASK;
1142}
1143
1144#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1145
1146static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1147{
1148	struct drm_i915_private *i915 =
1149		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1150	return to_gt(i915)->ggtt;
1151}
1152
1153static void reloc_cache_unmap(struct reloc_cache *cache)
1154{
1155	void *vaddr;
1156
1157	if (!cache->vaddr)
1158		return;
1159
1160	vaddr = unmask_page(cache->vaddr);
1161	if (cache->vaddr & KMAP)
1162		kunmap_local(vaddr);
1163	else
1164		io_mapping_unmap_atomic((void __iomem *)vaddr);
1165}
1166
1167static void reloc_cache_remap(struct reloc_cache *cache,
1168			      struct drm_i915_gem_object *obj)
1169{
1170	void *vaddr;
1171
1172	if (!cache->vaddr)
1173		return;
1174
1175	if (cache->vaddr & KMAP) {
1176		struct page *page = i915_gem_object_get_page(obj, cache->page);
1177
1178		vaddr = kmap_local_page(page);
1179		cache->vaddr = unmask_flags(cache->vaddr) |
1180			(unsigned long)vaddr;
1181	} else {
1182		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1183		unsigned long offset;
1184
1185		offset = cache->node.start;
1186		if (!drm_mm_node_allocated(&cache->node))
1187			offset += cache->page << PAGE_SHIFT;
1188
1189		cache->vaddr = (unsigned long)
1190			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1191	}
1192}
1193
1194static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1195{
1196	void *vaddr;
1197
1198	if (!cache->vaddr)
1199		return;
1200
1201	vaddr = unmask_page(cache->vaddr);
1202	if (cache->vaddr & KMAP) {
1203		struct drm_i915_gem_object *obj =
1204			(struct drm_i915_gem_object *)cache->node.mm;
1205		if (cache->vaddr & CLFLUSH_AFTER)
1206			mb();
1207
1208		kunmap_local(vaddr);
1209		i915_gem_object_finish_access(obj);
1210	} else {
1211		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1212
1213		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1214		io_mapping_unmap_atomic((void __iomem *)vaddr);
1215
1216		if (drm_mm_node_allocated(&cache->node)) {
1217			ggtt->vm.clear_range(&ggtt->vm,
1218					     cache->node.start,
1219					     cache->node.size);
1220			mutex_lock(&ggtt->vm.mutex);
1221			drm_mm_remove_node(&cache->node);
1222			mutex_unlock(&ggtt->vm.mutex);
1223		} else {
1224			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1225		}
1226	}
1227
1228	cache->vaddr = 0;
1229	cache->page = -1;
1230}
1231
1232static void *reloc_kmap(struct drm_i915_gem_object *obj,
1233			struct reloc_cache *cache,
1234			unsigned long pageno)
1235{
1236	void *vaddr;
1237	struct page *page;
1238
1239	if (cache->vaddr) {
1240		kunmap_local(unmask_page(cache->vaddr));
1241	} else {
1242		unsigned int flushes;
1243		int err;
1244
1245		err = i915_gem_object_prepare_write(obj, &flushes);
1246		if (err)
1247			return ERR_PTR(err);
1248
1249		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1250		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1251
1252		cache->vaddr = flushes | KMAP;
1253		cache->node.mm = (void *)obj;
1254		if (flushes)
1255			mb();
1256	}
1257
1258	page = i915_gem_object_get_page(obj, pageno);
1259	if (!obj->mm.dirty)
1260		set_page_dirty(page);
1261
1262	vaddr = kmap_local_page(page);
1263	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1264	cache->page = pageno;
1265
1266	return vaddr;
1267}
1268
1269static void *reloc_iomap(struct i915_vma *batch,
1270			 struct i915_execbuffer *eb,
1271			 unsigned long page)
1272{
1273	struct drm_i915_gem_object *obj = batch->obj;
1274	struct reloc_cache *cache = &eb->reloc_cache;
1275	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1276	unsigned long offset;
1277	void *vaddr;
1278
1279	if (cache->vaddr) {
1280		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1281		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1282	} else {
1283		struct i915_vma *vma = ERR_PTR(-ENODEV);
1284		int err;
1285
1286		if (i915_gem_object_is_tiled(obj))
1287			return ERR_PTR(-EINVAL);
1288
1289		if (use_cpu_reloc(cache, obj))
1290			return NULL;
1291
1292		err = i915_gem_object_set_to_gtt_domain(obj, true);
1293		if (err)
1294			return ERR_PTR(err);
1295
1296		/*
1297		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1298		 * VMA from the object list because we no longer pin.
1299		 *
1300		 * Only attempt to pin the batch buffer to ggtt if the current batch
1301		 * is not inside ggtt, or the batch buffer is not misplaced.
1302		 */
1303		if (!i915_is_ggtt(batch->vm) ||
1304		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1305			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1306							  PIN_MAPPABLE |
1307							  PIN_NONBLOCK /* NOWARN */ |
1308							  PIN_NOEVICT);
1309		}
1310
1311		if (vma == ERR_PTR(-EDEADLK))
1312			return vma;
1313
1314		if (IS_ERR(vma)) {
1315			memset(&cache->node, 0, sizeof(cache->node));
1316			mutex_lock(&ggtt->vm.mutex);
1317			err = drm_mm_insert_node_in_range
1318				(&ggtt->vm.mm, &cache->node,
1319				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1320				 0, ggtt->mappable_end,
1321				 DRM_MM_INSERT_LOW);
1322			mutex_unlock(&ggtt->vm.mutex);
1323			if (err) /* no inactive aperture space, use cpu reloc */
1324				return NULL;
1325		} else {
1326			cache->node.start = i915_ggtt_offset(vma);
1327			cache->node.mm = (void *)vma;
1328		}
1329	}
1330
1331	offset = cache->node.start;
1332	if (drm_mm_node_allocated(&cache->node)) {
1333		ggtt->vm.insert_page(&ggtt->vm,
1334				     i915_gem_object_get_dma_address(obj, page),
1335				     offset,
1336				     i915_gem_get_pat_index(ggtt->vm.i915,
1337							    I915_CACHE_NONE),
1338				     0);
1339	} else {
1340		offset += page << PAGE_SHIFT;
1341	}
1342
1343	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1344							 offset);
1345	cache->page = page;
1346	cache->vaddr = (unsigned long)vaddr;
1347
1348	return vaddr;
1349}
1350
1351static void *reloc_vaddr(struct i915_vma *vma,
1352			 struct i915_execbuffer *eb,
1353			 unsigned long page)
1354{
1355	struct reloc_cache *cache = &eb->reloc_cache;
1356	void *vaddr;
1357
1358	if (cache->page == page) {
1359		vaddr = unmask_page(cache->vaddr);
1360	} else {
1361		vaddr = NULL;
1362		if ((cache->vaddr & KMAP) == 0)
1363			vaddr = reloc_iomap(vma, eb, page);
1364		if (!vaddr)
1365			vaddr = reloc_kmap(vma->obj, cache, page);
1366	}
1367
1368	return vaddr;
1369}
1370
1371static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1372{
1373	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1374		if (flushes & CLFLUSH_BEFORE)
1375			drm_clflush_virt_range(addr, sizeof(*addr));
1376
1377		*addr = value;
1378
1379		/*
1380		 * Writes to the same cacheline are serialised by the CPU
1381		 * (including clflush). On the write path, we only require
1382		 * that it hits memory in an orderly fashion and place
1383		 * mb barriers at the start and end of the relocation phase
1384		 * to ensure ordering of clflush wrt to the system.
1385		 */
1386		if (flushes & CLFLUSH_AFTER)
1387			drm_clflush_virt_range(addr, sizeof(*addr));
1388	} else
1389		*addr = value;
1390}
1391
1392static u64
1393relocate_entry(struct i915_vma *vma,
1394	       const struct drm_i915_gem_relocation_entry *reloc,
1395	       struct i915_execbuffer *eb,
1396	       const struct i915_vma *target)
1397{
1398	u64 target_addr = relocation_target(reloc, target);
1399	u64 offset = reloc->offset;
1400	bool wide = eb->reloc_cache.use_64bit_reloc;
1401	void *vaddr;
1402
1403repeat:
1404	vaddr = reloc_vaddr(vma, eb,
1405			    offset >> PAGE_SHIFT);
1406	if (IS_ERR(vaddr))
1407		return PTR_ERR(vaddr);
1408
1409	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1410	clflush_write32(vaddr + offset_in_page(offset),
1411			lower_32_bits(target_addr),
1412			eb->reloc_cache.vaddr);
1413
1414	if (wide) {
1415		offset += sizeof(u32);
1416		target_addr >>= 32;
1417		wide = false;
1418		goto repeat;
1419	}
1420
1421	return target->node.start | UPDATE;
1422}
1423
1424static u64
1425eb_relocate_entry(struct i915_execbuffer *eb,
1426		  struct eb_vma *ev,
1427		  const struct drm_i915_gem_relocation_entry *reloc)
1428{
1429	struct drm_i915_private *i915 = eb->i915;
1430	struct eb_vma *target;
1431	int err;
1432
1433	/* we've already hold a reference to all valid objects */
1434	target = eb_get_vma(eb, reloc->target_handle);
1435	if (unlikely(!target))
1436		return -ENOENT;
1437
1438	/* Validate that the target is in a valid r/w GPU domain */
1439	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1440		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1441			  "target %d offset %d "
1442			  "read %08x write %08x\n",
1443			  reloc->target_handle,
1444			  (int) reloc->offset,
1445			  reloc->read_domains,
1446			  reloc->write_domain);
1447		return -EINVAL;
1448	}
1449	if (unlikely((reloc->write_domain | reloc->read_domains)
1450		     & ~I915_GEM_GPU_DOMAINS)) {
1451		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1452			  "target %d offset %d "
1453			  "read %08x write %08x\n",
1454			  reloc->target_handle,
1455			  (int) reloc->offset,
1456			  reloc->read_domains,
1457			  reloc->write_domain);
1458		return -EINVAL;
1459	}
1460
1461	if (reloc->write_domain) {
1462		target->flags |= EXEC_OBJECT_WRITE;
1463
1464		/*
1465		 * Sandybridge PPGTT errata: We need a global gtt mapping
1466		 * for MI and pipe_control writes because the gpu doesn't
1467		 * properly redirect them through the ppgtt for non_secure
1468		 * batchbuffers.
1469		 */
1470		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1471		    GRAPHICS_VER(eb->i915) == 6 &&
1472		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1473			struct i915_vma *vma = target->vma;
1474
1475			reloc_cache_unmap(&eb->reloc_cache);
1476			mutex_lock(&vma->vm->mutex);
1477			err = i915_vma_bind(target->vma,
1478					    target->vma->obj->pat_index,
1479					    PIN_GLOBAL, NULL, NULL);
1480			mutex_unlock(&vma->vm->mutex);
1481			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1482			if (err)
1483				return err;
1484		}
1485	}
1486
1487	/*
1488	 * If the relocation already has the right value in it, no
1489	 * more work needs to be done.
1490	 */
1491	if (!DBG_FORCE_RELOC &&
1492	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1493		return 0;
1494
1495	/* Check that the relocation address is valid... */
1496	if (unlikely(reloc->offset >
1497		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1498		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1499			  "target %d offset %d size %d.\n",
1500			  reloc->target_handle,
1501			  (int)reloc->offset,
1502			  (int)ev->vma->size);
1503		return -EINVAL;
1504	}
1505	if (unlikely(reloc->offset & 3)) {
1506		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1507			  "target %d offset %d.\n",
1508			  reloc->target_handle,
1509			  (int)reloc->offset);
1510		return -EINVAL;
1511	}
1512
1513	/*
1514	 * If we write into the object, we need to force the synchronisation
1515	 * barrier, either with an asynchronous clflush or if we executed the
1516	 * patching using the GPU (though that should be serialised by the
1517	 * timeline). To be completely sure, and since we are required to
1518	 * do relocations we are already stalling, disable the user's opt
1519	 * out of our synchronisation.
1520	 */
1521	ev->flags &= ~EXEC_OBJECT_ASYNC;
1522
1523	/* and update the user's relocation entry */
1524	return relocate_entry(ev->vma, reloc, eb, target->vma);
1525}
1526
1527static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1528{
1529#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1530	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1531	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1532	struct drm_i915_gem_relocation_entry __user *urelocs =
1533		u64_to_user_ptr(entry->relocs_ptr);
1534	unsigned long remain = entry->relocation_count;
1535
1536	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1537		return -EINVAL;
1538
1539	/*
1540	 * We must check that the entire relocation array is safe
1541	 * to read. However, if the array is not writable the user loses
1542	 * the updated relocation values.
1543	 */
1544	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1545		return -EFAULT;
1546
1547	do {
1548		struct drm_i915_gem_relocation_entry *r = stack;
1549		unsigned int count =
1550			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1551		unsigned int copied;
1552
1553		/*
1554		 * This is the fast path and we cannot handle a pagefault
1555		 * whilst holding the struct mutex lest the user pass in the
1556		 * relocations contained within a mmaped bo. For in such a case
1557		 * we, the page fault handler would call i915_gem_fault() and
1558		 * we would try to acquire the struct mutex again. Obviously
1559		 * this is bad and so lockdep complains vehemently.
1560		 */
1561		pagefault_disable();
1562		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1563		pagefault_enable();
1564		if (unlikely(copied)) {
1565			remain = -EFAULT;
1566			goto out;
1567		}
1568
1569		remain -= count;
1570		do {
1571			u64 offset = eb_relocate_entry(eb, ev, r);
1572
1573			if (likely(offset == 0)) {
1574			} else if ((s64)offset < 0) {
1575				remain = (int)offset;
1576				goto out;
1577			} else {
1578				/*
1579				 * Note that reporting an error now
1580				 * leaves everything in an inconsistent
1581				 * state as we have *already* changed
1582				 * the relocation value inside the
1583				 * object. As we have not changed the
1584				 * reloc.presumed_offset or will not
1585				 * change the execobject.offset, on the
1586				 * call we may not rewrite the value
1587				 * inside the object, leaving it
1588				 * dangling and causing a GPU hang. Unless
1589				 * userspace dynamically rebuilds the
1590				 * relocations on each execbuf rather than
1591				 * presume a static tree.
1592				 *
1593				 * We did previously check if the relocations
1594				 * were writable (access_ok), an error now
1595				 * would be a strange race with mprotect,
1596				 * having already demonstrated that we
1597				 * can read from this userspace address.
1598				 */
1599				offset = gen8_canonical_addr(offset & ~UPDATE);
1600				__put_user(offset,
1601					   &urelocs[r - stack].presumed_offset);
1602			}
1603		} while (r++, --count);
1604		urelocs += ARRAY_SIZE(stack);
1605	} while (remain);
1606out:
1607	reloc_cache_reset(&eb->reloc_cache, eb);
1608	return remain;
1609}
1610
1611static int
1612eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1613{
1614	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1615	struct drm_i915_gem_relocation_entry *relocs =
1616		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1617	unsigned int i;
1618	int err;
1619
1620	for (i = 0; i < entry->relocation_count; i++) {
1621		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1622
1623		if ((s64)offset < 0) {
1624			err = (int)offset;
1625			goto err;
1626		}
1627	}
1628	err = 0;
1629err:
1630	reloc_cache_reset(&eb->reloc_cache, eb);
1631	return err;
1632}
1633
1634static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1635{
1636	const char __user *addr, *end;
1637	unsigned long size;
1638	char __maybe_unused c;
1639
1640	size = entry->relocation_count;
1641	if (size == 0)
1642		return 0;
1643
1644	if (size > N_RELOC(ULONG_MAX))
1645		return -EINVAL;
1646
1647	addr = u64_to_user_ptr(entry->relocs_ptr);
1648	size *= sizeof(struct drm_i915_gem_relocation_entry);
1649	if (!access_ok(addr, size))
1650		return -EFAULT;
1651
1652	end = addr + size;
1653	for (; addr < end; addr += PAGE_SIZE) {
1654		int err = __get_user(c, addr);
1655		if (err)
1656			return err;
1657	}
1658	return __get_user(c, end - 1);
1659}
1660
1661static int eb_copy_relocations(const struct i915_execbuffer *eb)
1662{
1663	struct drm_i915_gem_relocation_entry *relocs;
1664	const unsigned int count = eb->buffer_count;
1665	unsigned int i;
1666	int err;
1667
1668	for (i = 0; i < count; i++) {
1669		const unsigned int nreloc = eb->exec[i].relocation_count;
1670		struct drm_i915_gem_relocation_entry __user *urelocs;
1671		unsigned long size;
1672		unsigned long copied;
1673
1674		if (nreloc == 0)
1675			continue;
1676
1677		err = check_relocations(&eb->exec[i]);
1678		if (err)
1679			goto err;
1680
1681		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1682		size = nreloc * sizeof(*relocs);
1683
1684		relocs = kvmalloc_array(1, size, GFP_KERNEL);
1685		if (!relocs) {
1686			err = -ENOMEM;
1687			goto err;
1688		}
1689
1690		/* copy_from_user is limited to < 4GiB */
1691		copied = 0;
1692		do {
1693			unsigned int len =
1694				min_t(u64, BIT_ULL(31), size - copied);
1695
1696			if (__copy_from_user((char *)relocs + copied,
1697					     (char __user *)urelocs + copied,
1698					     len))
1699				goto end;
1700
1701			copied += len;
1702		} while (copied < size);
1703
1704		/*
1705		 * As we do not update the known relocation offsets after
1706		 * relocating (due to the complexities in lock handling),
1707		 * we need to mark them as invalid now so that we force the
1708		 * relocation processing next time. Just in case the target
1709		 * object is evicted and then rebound into its old
1710		 * presumed_offset before the next execbuffer - if that
1711		 * happened we would make the mistake of assuming that the
1712		 * relocations were valid.
1713		 */
1714		if (!user_access_begin(urelocs, size))
1715			goto end;
1716
1717		for (copied = 0; copied < nreloc; copied++)
1718			unsafe_put_user(-1,
1719					&urelocs[copied].presumed_offset,
1720					end_user);
1721		user_access_end();
1722
1723		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1724	}
1725
1726	return 0;
1727
1728end_user:
1729	user_access_end();
1730end:
1731	kvfree(relocs);
1732	err = -EFAULT;
1733err:
1734	while (i--) {
1735		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1736		if (eb->exec[i].relocation_count)
1737			kvfree(relocs);
1738	}
1739	return err;
1740}
1741
1742static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1743{
1744	const unsigned int count = eb->buffer_count;
1745	unsigned int i;
1746
1747	for (i = 0; i < count; i++) {
1748		int err;
1749
1750		err = check_relocations(&eb->exec[i]);
1751		if (err)
1752			return err;
1753	}
1754
1755	return 0;
1756}
1757
1758static int eb_reinit_userptr(struct i915_execbuffer *eb)
1759{
1760	const unsigned int count = eb->buffer_count;
1761	unsigned int i;
1762	int ret;
1763
1764	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1765		return 0;
1766
1767	for (i = 0; i < count; i++) {
1768		struct eb_vma *ev = &eb->vma[i];
1769
1770		if (!i915_gem_object_is_userptr(ev->vma->obj))
1771			continue;
1772
1773		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1774		if (ret)
1775			return ret;
1776
1777		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1778	}
1779
1780	return 0;
1781}
1782
1783static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1784{
1785	bool have_copy = false;
1786	struct eb_vma *ev;
1787	int err = 0;
1788
1789repeat:
1790	if (signal_pending(current)) {
1791		err = -ERESTARTSYS;
1792		goto out;
1793	}
1794
1795	/* We may process another execbuffer during the unlock... */
1796	eb_release_vmas(eb, false);
1797	i915_gem_ww_ctx_fini(&eb->ww);
1798
1799	/*
1800	 * We take 3 passes through the slowpatch.
1801	 *
1802	 * 1 - we try to just prefault all the user relocation entries and
1803	 * then attempt to reuse the atomic pagefault disabled fast path again.
1804	 *
1805	 * 2 - we copy the user entries to a local buffer here outside of the
1806	 * local and allow ourselves to wait upon any rendering before
1807	 * relocations
1808	 *
1809	 * 3 - we already have a local copy of the relocation entries, but
1810	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1811	 */
1812	if (!err) {
1813		err = eb_prefault_relocations(eb);
1814	} else if (!have_copy) {
1815		err = eb_copy_relocations(eb);
1816		have_copy = err == 0;
1817	} else {
1818		cond_resched();
1819		err = 0;
1820	}
1821
1822	if (!err)
1823		err = eb_reinit_userptr(eb);
1824
1825	i915_gem_ww_ctx_init(&eb->ww, true);
1826	if (err)
1827		goto out;
1828
1829	/* reacquire the objects */
1830repeat_validate:
1831	err = eb_pin_engine(eb, false);
1832	if (err)
1833		goto err;
1834
1835	err = eb_validate_vmas(eb);
1836	if (err)
1837		goto err;
1838
1839	GEM_BUG_ON(!eb->batches[0]);
1840
1841	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1842		if (!have_copy) {
1843			err = eb_relocate_vma(eb, ev);
1844			if (err)
1845				break;
1846		} else {
1847			err = eb_relocate_vma_slow(eb, ev);
1848			if (err)
1849				break;
1850		}
1851	}
1852
1853	if (err == -EDEADLK)
1854		goto err;
1855
1856	if (err && !have_copy)
1857		goto repeat;
1858
1859	if (err)
1860		goto err;
1861
1862	/* as last step, parse the command buffer */
1863	err = eb_parse(eb);
1864	if (err)
1865		goto err;
1866
1867	/*
1868	 * Leave the user relocations as are, this is the painfully slow path,
1869	 * and we want to avoid the complication of dropping the lock whilst
1870	 * having buffers reserved in the aperture and so causing spurious
1871	 * ENOSPC for random operations.
1872	 */
1873
1874err:
1875	if (err == -EDEADLK) {
1876		eb_release_vmas(eb, false);
1877		err = i915_gem_ww_ctx_backoff(&eb->ww);
1878		if (!err)
1879			goto repeat_validate;
1880	}
1881
1882	if (err == -EAGAIN)
1883		goto repeat;
1884
1885out:
1886	if (have_copy) {
1887		const unsigned int count = eb->buffer_count;
1888		unsigned int i;
1889
1890		for (i = 0; i < count; i++) {
1891			const struct drm_i915_gem_exec_object2 *entry =
1892				&eb->exec[i];
1893			struct drm_i915_gem_relocation_entry *relocs;
1894
1895			if (!entry->relocation_count)
1896				continue;
1897
1898			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1899			kvfree(relocs);
1900		}
1901	}
1902
1903	return err;
1904}
1905
1906static int eb_relocate_parse(struct i915_execbuffer *eb)
1907{
1908	int err;
1909	bool throttle = true;
1910
1911retry:
1912	err = eb_pin_engine(eb, throttle);
1913	if (err) {
1914		if (err != -EDEADLK)
1915			return err;
1916
1917		goto err;
1918	}
1919
1920	/* only throttle once, even if we didn't need to throttle */
1921	throttle = false;
1922
1923	err = eb_validate_vmas(eb);
1924	if (err == -EAGAIN)
1925		goto slow;
1926	else if (err)
1927		goto err;
1928
1929	/* The objects are in their final locations, apply the relocations. */
1930	if (eb->args->flags & __EXEC_HAS_RELOC) {
1931		struct eb_vma *ev;
1932
1933		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1934			err = eb_relocate_vma(eb, ev);
1935			if (err)
1936				break;
1937		}
1938
1939		if (err == -EDEADLK)
1940			goto err;
1941		else if (err)
1942			goto slow;
1943	}
1944
1945	if (!err)
1946		err = eb_parse(eb);
1947
1948err:
1949	if (err == -EDEADLK) {
1950		eb_release_vmas(eb, false);
1951		err = i915_gem_ww_ctx_backoff(&eb->ww);
1952		if (!err)
1953			goto retry;
1954	}
1955
1956	return err;
1957
1958slow:
1959	err = eb_relocate_parse_slow(eb);
1960	if (err)
1961		/*
1962		 * If the user expects the execobject.offset and
1963		 * reloc.presumed_offset to be an exact match,
1964		 * as for using NO_RELOC, then we cannot update
1965		 * the execobject.offset until we have completed
1966		 * relocation.
1967		 */
1968		eb->args->flags &= ~__EXEC_HAS_RELOC;
1969
1970	return err;
1971}
1972
1973/*
1974 * Using two helper loops for the order of which requests / batches are created
1975 * and added the to backend. Requests are created in order from the parent to
1976 * the last child. Requests are added in the reverse order, from the last child
1977 * to parent. This is done for locking reasons as the timeline lock is acquired
1978 * during request creation and released when the request is added to the
1979 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1980 * the ordering.
1981 */
1982#define for_each_batch_create_order(_eb, _i) \
1983	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1984#define for_each_batch_add_order(_eb, _i) \
1985	BUILD_BUG_ON(!typecheck(int, _i)); \
1986	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1987
1988static struct i915_request *
1989eb_find_first_request_added(struct i915_execbuffer *eb)
1990{
1991	int i;
1992
1993	for_each_batch_add_order(eb, i)
1994		if (eb->requests[i])
1995			return eb->requests[i];
1996
1997	GEM_BUG_ON("Request not found");
1998
1999	return NULL;
2000}
2001
2002#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2003
2004/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2005static int eb_capture_stage(struct i915_execbuffer *eb)
2006{
2007	const unsigned int count = eb->buffer_count;
2008	unsigned int i = count, j;
2009
2010	while (i--) {
2011		struct eb_vma *ev = &eb->vma[i];
2012		struct i915_vma *vma = ev->vma;
2013		unsigned int flags = ev->flags;
2014
2015		if (!(flags & EXEC_OBJECT_CAPTURE))
2016			continue;
2017
2018		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2019		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2020			return -EINVAL;
2021
2022		for_each_batch_create_order(eb, j) {
2023			struct i915_capture_list *capture;
2024
2025			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2026			if (!capture)
2027				continue;
2028
2029			capture->next = eb->capture_lists[j];
2030			capture->vma_res = i915_vma_resource_get(vma->resource);
2031			eb->capture_lists[j] = capture;
2032		}
2033	}
2034
2035	return 0;
2036}
2037
2038/* Commit once we're in the critical path */
2039static void eb_capture_commit(struct i915_execbuffer *eb)
2040{
2041	unsigned int j;
2042
2043	for_each_batch_create_order(eb, j) {
2044		struct i915_request *rq = eb->requests[j];
2045
2046		if (!rq)
2047			break;
2048
2049		rq->capture_list = eb->capture_lists[j];
2050		eb->capture_lists[j] = NULL;
2051	}
2052}
2053
2054/*
2055 * Release anything that didn't get committed due to errors.
2056 * The capture_list will otherwise be freed at request retire.
2057 */
2058static void eb_capture_release(struct i915_execbuffer *eb)
2059{
2060	unsigned int j;
2061
2062	for_each_batch_create_order(eb, j) {
2063		if (eb->capture_lists[j]) {
2064			i915_request_free_capture_list(eb->capture_lists[j]);
2065			eb->capture_lists[j] = NULL;
2066		}
2067	}
2068}
2069
2070static void eb_capture_list_clear(struct i915_execbuffer *eb)
2071{
2072	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2073}
2074
2075#else
2076
2077static int eb_capture_stage(struct i915_execbuffer *eb)
2078{
2079	return 0;
2080}
2081
2082static void eb_capture_commit(struct i915_execbuffer *eb)
2083{
2084}
2085
2086static void eb_capture_release(struct i915_execbuffer *eb)
2087{
2088}
2089
2090static void eb_capture_list_clear(struct i915_execbuffer *eb)
2091{
2092}
2093
2094#endif
2095
2096static int eb_move_to_gpu(struct i915_execbuffer *eb)
2097{
2098	const unsigned int count = eb->buffer_count;
2099	unsigned int i = count;
2100	int err = 0, j;
2101
2102	while (i--) {
2103		struct eb_vma *ev = &eb->vma[i];
2104		struct i915_vma *vma = ev->vma;
2105		unsigned int flags = ev->flags;
2106		struct drm_i915_gem_object *obj = vma->obj;
2107
2108		assert_vma_held(vma);
2109
2110		/*
2111		 * If the GPU is not _reading_ through the CPU cache, we need
2112		 * to make sure that any writes (both previous GPU writes from
2113		 * before a change in snooping levels and normal CPU writes)
2114		 * caught in that cache are flushed to main memory.
2115		 *
2116		 * We want to say
2117		 *   obj->cache_dirty &&
2118		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2119		 * but gcc's optimiser doesn't handle that as well and emits
2120		 * two jumps instead of one. Maybe one day...
2121		 *
2122		 * FIXME: There is also sync flushing in set_pages(), which
2123		 * serves a different purpose(some of the time at least).
2124		 *
2125		 * We should consider:
2126		 *
2127		 *   1. Rip out the async flush code.
2128		 *
2129		 *   2. Or make the sync flushing use the async clflush path
2130		 *   using mandatory fences underneath. Currently the below
2131		 *   async flush happens after we bind the object.
2132		 */
2133		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2134			if (i915_gem_clflush_object(obj, 0))
2135				flags &= ~EXEC_OBJECT_ASYNC;
2136		}
2137
2138		/* We only need to await on the first request */
2139		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2140			err = i915_request_await_object
2141				(eb_find_first_request_added(eb), obj,
2142				 flags & EXEC_OBJECT_WRITE);
2143		}
2144
2145		for_each_batch_add_order(eb, j) {
2146			if (err)
2147				break;
2148			if (!eb->requests[j])
2149				continue;
2150
2151			err = _i915_vma_move_to_active(vma, eb->requests[j],
2152						       j ? NULL :
2153						       eb->composite_fence ?
2154						       eb->composite_fence :
2155						       &eb->requests[j]->fence,
2156						       flags | __EXEC_OBJECT_NO_RESERVE |
2157						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2158		}
2159	}
2160
2161#ifdef CONFIG_MMU_NOTIFIER
2162	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2163		read_lock(&eb->i915->mm.notifier_lock);
2164
2165		/*
2166		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2167		 * could not have been set
2168		 */
2169		for (i = 0; i < count; i++) {
2170			struct eb_vma *ev = &eb->vma[i];
2171			struct drm_i915_gem_object *obj = ev->vma->obj;
2172
2173			if (!i915_gem_object_is_userptr(obj))
2174				continue;
2175
2176			err = i915_gem_object_userptr_submit_done(obj);
2177			if (err)
2178				break;
2179		}
2180
2181		read_unlock(&eb->i915->mm.notifier_lock);
2182	}
2183#endif
2184
2185	if (unlikely(err))
2186		goto err_skip;
2187
2188	/* Unconditionally flush any chipset caches (for streaming writes). */
2189	intel_gt_chipset_flush(eb->gt);
2190	eb_capture_commit(eb);
2191
2192	return 0;
2193
2194err_skip:
2195	for_each_batch_create_order(eb, j) {
2196		if (!eb->requests[j])
2197			break;
2198
2199		i915_request_set_error_once(eb->requests[j], err);
2200	}
2201	return err;
2202}
2203
2204static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2205				     struct drm_i915_gem_execbuffer2 *exec)
2206{
2207	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2208		return -EINVAL;
2209
2210	/* Kernel clipping was a DRI1 misfeature */
2211	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2212			     I915_EXEC_USE_EXTENSIONS))) {
2213		if (exec->num_cliprects || exec->cliprects_ptr)
2214			return -EINVAL;
2215	}
2216
2217	if (exec->DR4 == 0xffffffff) {
2218		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2219		exec->DR4 = 0;
2220	}
2221	if (exec->DR1 || exec->DR4)
2222		return -EINVAL;
2223
2224	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2225		return -EINVAL;
2226
2227	return 0;
2228}
2229
2230static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2231{
2232	u32 *cs;
2233	int i;
2234
2235	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2236		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2237		return -EINVAL;
2238	}
2239
2240	cs = intel_ring_begin(rq, 4 * 2 + 2);
2241	if (IS_ERR(cs))
2242		return PTR_ERR(cs);
2243
2244	*cs++ = MI_LOAD_REGISTER_IMM(4);
2245	for (i = 0; i < 4; i++) {
2246		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2247		*cs++ = 0;
2248	}
2249	*cs++ = MI_NOOP;
2250	intel_ring_advance(rq, cs);
2251
2252	return 0;
2253}
2254
2255static struct i915_vma *
2256shadow_batch_pin(struct i915_execbuffer *eb,
2257		 struct drm_i915_gem_object *obj,
2258		 struct i915_address_space *vm,
2259		 unsigned int flags)
2260{
2261	struct i915_vma *vma;
2262	int err;
2263
2264	vma = i915_vma_instance(obj, vm, NULL);
2265	if (IS_ERR(vma))
2266		return vma;
2267
2268	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2269	if (err)
2270		return ERR_PTR(err);
2271
2272	return vma;
2273}
2274
2275static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2276{
2277	/*
2278	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2279	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2280	 * hsw should have this fixed, but bdw mucks it up again. */
2281	if (eb->batch_flags & I915_DISPATCH_SECURE)
2282		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2283
2284	return NULL;
2285}
2286
2287static int eb_parse(struct i915_execbuffer *eb)
2288{
2289	struct drm_i915_private *i915 = eb->i915;
2290	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2291	struct i915_vma *shadow, *trampoline, *batch;
2292	unsigned long len;
2293	int err;
2294
2295	if (!eb_use_cmdparser(eb)) {
2296		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2297		if (IS_ERR(batch))
2298			return PTR_ERR(batch);
2299
2300		goto secure_batch;
2301	}
2302
2303	if (intel_context_is_parallel(eb->context))
2304		return -EINVAL;
2305
2306	len = eb->batch_len[0];
2307	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2308		/*
2309		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2310		 * post-scan tampering
2311		 */
2312		if (!eb->context->vm->has_read_only) {
2313			drm_dbg(&i915->drm,
2314				"Cannot prevent post-scan tampering without RO capable vm\n");
2315			return -EINVAL;
2316		}
2317	} else {
2318		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2319	}
2320	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2321		return -EINVAL;
2322
2323	if (!pool) {
2324		pool = intel_gt_get_buffer_pool(eb->gt, len,
2325						I915_MAP_WB);
2326		if (IS_ERR(pool))
2327			return PTR_ERR(pool);
2328		eb->batch_pool = pool;
2329	}
2330
2331	err = i915_gem_object_lock(pool->obj, &eb->ww);
2332	if (err)
2333		return err;
2334
2335	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2336	if (IS_ERR(shadow))
2337		return PTR_ERR(shadow);
2338
2339	intel_gt_buffer_pool_mark_used(pool);
2340	i915_gem_object_set_readonly(shadow->obj);
2341	shadow->private = pool;
2342
2343	trampoline = NULL;
2344	if (CMDPARSER_USES_GGTT(eb->i915)) {
2345		trampoline = shadow;
2346
2347		shadow = shadow_batch_pin(eb, pool->obj,
2348					  &eb->gt->ggtt->vm,
2349					  PIN_GLOBAL);
2350		if (IS_ERR(shadow))
2351			return PTR_ERR(shadow);
2352
2353		shadow->private = pool;
2354
2355		eb->batch_flags |= I915_DISPATCH_SECURE;
2356	}
2357
2358	batch = eb_dispatch_secure(eb, shadow);
2359	if (IS_ERR(batch))
2360		return PTR_ERR(batch);
2361
2362	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2363	if (err)
2364		return err;
2365
2366	err = intel_engine_cmd_parser(eb->context->engine,
2367				      eb->batches[0]->vma,
2368				      eb->batch_start_offset,
2369				      eb->batch_len[0],
2370				      shadow, trampoline);
2371	if (err)
2372		return err;
2373
2374	eb->batches[0] = &eb->vma[eb->buffer_count++];
2375	eb->batches[0]->vma = i915_vma_get(shadow);
2376	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2377
2378	eb->trampoline = trampoline;
2379	eb->batch_start_offset = 0;
2380
2381secure_batch:
2382	if (batch) {
2383		if (intel_context_is_parallel(eb->context))
2384			return -EINVAL;
2385
2386		eb->batches[0] = &eb->vma[eb->buffer_count++];
2387		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2388		eb->batches[0]->vma = i915_vma_get(batch);
2389	}
2390	return 0;
2391}
2392
2393static int eb_request_submit(struct i915_execbuffer *eb,
2394			     struct i915_request *rq,
2395			     struct i915_vma *batch,
2396			     u64 batch_len)
2397{
2398	int err;
2399
2400	if (intel_context_nopreempt(rq->context))
2401		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2402
2403	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2404		err = i915_reset_gen7_sol_offsets(rq);
2405		if (err)
2406			return err;
2407	}
2408
2409	/*
2410	 * After we completed waiting for other engines (using HW semaphores)
2411	 * then we can signal that this request/batch is ready to run. This
2412	 * allows us to determine if the batch is still waiting on the GPU
2413	 * or actually running by checking the breadcrumb.
2414	 */
2415	if (rq->context->engine->emit_init_breadcrumb) {
2416		err = rq->context->engine->emit_init_breadcrumb(rq);
2417		if (err)
2418			return err;
2419	}
2420
2421	err = rq->context->engine->emit_bb_start(rq,
2422						 i915_vma_offset(batch) +
2423						 eb->batch_start_offset,
2424						 batch_len,
2425						 eb->batch_flags);
2426	if (err)
2427		return err;
2428
2429	if (eb->trampoline) {
2430		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2431		GEM_BUG_ON(eb->batch_start_offset);
2432		err = rq->context->engine->emit_bb_start(rq,
2433							 i915_vma_offset(eb->trampoline) +
2434							 batch_len, 0, 0);
2435		if (err)
2436			return err;
2437	}
2438
2439	return 0;
2440}
2441
2442static int eb_submit(struct i915_execbuffer *eb)
2443{
2444	unsigned int i;
2445	int err;
2446
2447	err = eb_move_to_gpu(eb);
2448
2449	for_each_batch_create_order(eb, i) {
2450		if (!eb->requests[i])
2451			break;
2452
2453		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2454		if (!err)
2455			err = eb_request_submit(eb, eb->requests[i],
2456						eb->batches[i]->vma,
2457						eb->batch_len[i]);
2458	}
2459
2460	return err;
2461}
2462
2463/*
2464 * Find one BSD ring to dispatch the corresponding BSD command.
2465 * The engine index is returned.
2466 */
2467static unsigned int
2468gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2469			 struct drm_file *file)
2470{
2471	struct drm_i915_file_private *file_priv = file->driver_priv;
2472
2473	/* Check whether the file_priv has already selected one ring. */
2474	if ((int)file_priv->bsd_engine < 0)
2475		file_priv->bsd_engine =
2476			get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2477
2478	return file_priv->bsd_engine;
2479}
2480
2481static const enum intel_engine_id user_ring_map[] = {
2482	[I915_EXEC_DEFAULT]	= RCS0,
2483	[I915_EXEC_RENDER]	= RCS0,
2484	[I915_EXEC_BLT]		= BCS0,
2485	[I915_EXEC_BSD]		= VCS0,
2486	[I915_EXEC_VEBOX]	= VECS0
2487};
2488
2489static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2490{
2491	struct intel_ring *ring = ce->ring;
2492	struct intel_timeline *tl = ce->timeline;
2493	struct i915_request *rq;
2494
2495	/*
2496	 * Completely unscientific finger-in-the-air estimates for suitable
2497	 * maximum user request size (to avoid blocking) and then backoff.
2498	 */
2499	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2500		return NULL;
2501
2502	/*
2503	 * Find a request that after waiting upon, there will be at least half
2504	 * the ring available. The hysteresis allows us to compete for the
2505	 * shared ring and should mean that we sleep less often prior to
2506	 * claiming our resources, but not so long that the ring completely
2507	 * drains before we can submit our next request.
2508	 */
2509	list_for_each_entry(rq, &tl->requests, link) {
2510		if (rq->ring != ring)
2511			continue;
2512
2513		if (__intel_ring_space(rq->postfix,
2514				       ring->emit, ring->size) > ring->size / 2)
2515			break;
2516	}
2517	if (&rq->link == &tl->requests)
2518		return NULL; /* weird, we will check again later for real */
2519
2520	return i915_request_get(rq);
2521}
2522
2523static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2524			   bool throttle)
2525{
2526	struct intel_timeline *tl;
2527	struct i915_request *rq = NULL;
2528
2529	/*
2530	 * Take a local wakeref for preparing to dispatch the execbuf as
2531	 * we expect to access the hardware fairly frequently in the
2532	 * process, and require the engine to be kept awake between accesses.
2533	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2534	 * until the timeline is idle, which in turn releases the wakeref
2535	 * taken on the engine, and the parent device.
2536	 */
2537	tl = intel_context_timeline_lock(ce);
2538	if (IS_ERR(tl))
2539		return PTR_ERR(tl);
2540
2541	intel_context_enter(ce);
2542	if (throttle)
2543		rq = eb_throttle(eb, ce);
2544	intel_context_timeline_unlock(tl);
2545
2546	if (rq) {
2547		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2548		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2549
2550		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2551				      timeout) < 0) {
2552			i915_request_put(rq);
2553
2554			/*
2555			 * Error path, cannot use intel_context_timeline_lock as
2556			 * that is user interruptable and this clean up step
2557			 * must be done.
2558			 */
2559			mutex_lock(&ce->timeline->mutex);
2560			intel_context_exit(ce);
2561			mutex_unlock(&ce->timeline->mutex);
2562
2563			if (nonblock)
2564				return -EWOULDBLOCK;
2565			else
2566				return -EINTR;
2567		}
2568		i915_request_put(rq);
2569	}
2570
2571	return 0;
2572}
2573
2574static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2575{
2576	struct intel_context *ce = eb->context, *child;
2577	int err;
2578	int i = 0, j = 0;
2579
2580	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2581
2582	if (unlikely(intel_context_is_banned(ce)))
2583		return -EIO;
2584
2585	/*
2586	 * Pinning the contexts may generate requests in order to acquire
2587	 * GGTT space, so do this first before we reserve a seqno for
2588	 * ourselves.
2589	 */
2590	err = intel_context_pin_ww(ce, &eb->ww);
2591	if (err)
2592		return err;
2593	for_each_child(ce, child) {
2594		err = intel_context_pin_ww(child, &eb->ww);
2595		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2596	}
2597
2598	for_each_child(ce, child) {
2599		err = eb_pin_timeline(eb, child, throttle);
2600		if (err)
2601			goto unwind;
2602		++i;
2603	}
2604	err = eb_pin_timeline(eb, ce, throttle);
2605	if (err)
2606		goto unwind;
2607
2608	eb->args->flags |= __EXEC_ENGINE_PINNED;
2609	return 0;
2610
2611unwind:
2612	for_each_child(ce, child) {
2613		if (j++ < i) {
2614			mutex_lock(&child->timeline->mutex);
2615			intel_context_exit(child);
2616			mutex_unlock(&child->timeline->mutex);
2617		}
2618	}
2619	for_each_child(ce, child)
2620		intel_context_unpin(child);
2621	intel_context_unpin(ce);
2622	return err;
2623}
2624
2625static void eb_unpin_engine(struct i915_execbuffer *eb)
2626{
2627	struct intel_context *ce = eb->context, *child;
2628
2629	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2630		return;
2631
2632	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2633
2634	for_each_child(ce, child) {
2635		mutex_lock(&child->timeline->mutex);
2636		intel_context_exit(child);
2637		mutex_unlock(&child->timeline->mutex);
2638
2639		intel_context_unpin(child);
2640	}
2641
2642	mutex_lock(&ce->timeline->mutex);
2643	intel_context_exit(ce);
2644	mutex_unlock(&ce->timeline->mutex);
2645
2646	intel_context_unpin(ce);
2647}
2648
2649static unsigned int
2650eb_select_legacy_ring(struct i915_execbuffer *eb)
2651{
2652	struct drm_i915_private *i915 = eb->i915;
2653	struct drm_i915_gem_execbuffer2 *args = eb->args;
2654	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2655
2656	if (user_ring_id != I915_EXEC_BSD &&
2657	    (args->flags & I915_EXEC_BSD_MASK)) {
2658		drm_dbg(&i915->drm,
2659			"execbuf with non bsd ring but with invalid "
2660			"bsd dispatch flags: %d\n", (int)(args->flags));
2661		return -1;
2662	}
2663
2664	if (user_ring_id == I915_EXEC_BSD &&
2665	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2666		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2667
2668		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2669			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2670		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2671			   bsd_idx <= I915_EXEC_BSD_RING2) {
2672			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2673			bsd_idx--;
2674		} else {
2675			drm_dbg(&i915->drm,
2676				"execbuf with unknown bsd ring: %u\n",
2677				bsd_idx);
2678			return -1;
2679		}
2680
2681		return _VCS(bsd_idx);
2682	}
2683
2684	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2685		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2686			user_ring_id);
2687		return -1;
2688	}
2689
2690	return user_ring_map[user_ring_id];
2691}
2692
2693static int
2694eb_select_engine(struct i915_execbuffer *eb)
2695{
2696	struct intel_context *ce, *child;
2697	struct intel_gt *gt;
2698	unsigned int idx;
2699	int err;
2700
2701	if (i915_gem_context_user_engines(eb->gem_context))
2702		idx = eb->args->flags & I915_EXEC_RING_MASK;
2703	else
2704		idx = eb_select_legacy_ring(eb);
2705
2706	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2707	if (IS_ERR(ce))
2708		return PTR_ERR(ce);
2709
2710	if (intel_context_is_parallel(ce)) {
2711		if (eb->buffer_count < ce->parallel.number_children + 1) {
2712			intel_context_put(ce);
2713			return -EINVAL;
2714		}
2715		if (eb->batch_start_offset || eb->args->batch_len) {
2716			intel_context_put(ce);
2717			return -EINVAL;
2718		}
2719	}
2720	eb->num_batches = ce->parallel.number_children + 1;
2721	gt = ce->engine->gt;
2722
2723	for_each_child(ce, child)
2724		intel_context_get(child);
2725	eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2726	/*
2727	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2728	 * free VMAs while execbuf ioctl is validating VMAs.
2729	 */
2730	if (gt->info.id)
2731		eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2732
2733	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2734		err = intel_context_alloc_state(ce);
2735		if (err)
2736			goto err;
2737	}
2738	for_each_child(ce, child) {
2739		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2740			err = intel_context_alloc_state(child);
2741			if (err)
2742				goto err;
2743		}
2744	}
2745
2746	/*
2747	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2748	 * EIO if the GPU is already wedged.
2749	 */
2750	err = intel_gt_terminally_wedged(ce->engine->gt);
2751	if (err)
2752		goto err;
2753
2754	if (!i915_vm_tryget(ce->vm)) {
2755		err = -ENOENT;
2756		goto err;
2757	}
2758
2759	eb->context = ce;
2760	eb->gt = ce->engine->gt;
2761
2762	/*
2763	 * Make sure engine pool stays alive even if we call intel_context_put
2764	 * during ww handling. The pool is destroyed when last pm reference
2765	 * is dropped, which breaks our -EDEADLK handling.
2766	 */
2767	return err;
2768
2769err:
2770	if (gt->info.id)
2771		intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2772
2773	intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2774	for_each_child(ce, child)
2775		intel_context_put(child);
2776	intel_context_put(ce);
2777	return err;
2778}
2779
2780static void
2781eb_put_engine(struct i915_execbuffer *eb)
2782{
2783	struct intel_context *child;
2784
2785	i915_vm_put(eb->context->vm);
2786	/*
2787	 * This works in conjunction with eb_select_engine() to prevent
2788	 * i915_vma_parked() from interfering while execbuf validates vmas.
2789	 */
2790	if (eb->gt->info.id)
2791		intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2792	intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2793	for_each_child(eb->context, child)
2794		intel_context_put(child);
2795	intel_context_put(eb->context);
2796}
2797
2798static void
2799__free_fence_array(struct eb_fence *fences, unsigned int n)
2800{
2801	while (n--) {
2802		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2803		dma_fence_put(fences[n].dma_fence);
2804		dma_fence_chain_free(fences[n].chain_fence);
2805	}
2806	kvfree(fences);
2807}
2808
2809static int
2810add_timeline_fence_array(struct i915_execbuffer *eb,
2811			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2812{
2813	struct drm_i915_gem_exec_fence __user *user_fences;
2814	u64 __user *user_values;
2815	struct eb_fence *f;
2816	u64 nfences;
2817	int err = 0;
2818
2819	nfences = timeline_fences->fence_count;
2820	if (!nfences)
2821		return 0;
2822
2823	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2824	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2825	if (nfences > min_t(unsigned long,
2826			    ULONG_MAX / sizeof(*user_fences),
2827			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2828		return -EINVAL;
2829
2830	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2831	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2832		return -EFAULT;
2833
2834	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2835	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2836		return -EFAULT;
2837
2838	f = krealloc(eb->fences,
2839		     (eb->num_fences + nfences) * sizeof(*f),
2840		     __GFP_NOWARN | GFP_KERNEL);
2841	if (!f)
2842		return -ENOMEM;
2843
2844	eb->fences = f;
2845	f += eb->num_fences;
2846
2847	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2848		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2849
2850	while (nfences--) {
2851		struct drm_i915_gem_exec_fence user_fence;
2852		struct drm_syncobj *syncobj;
2853		struct dma_fence *fence = NULL;
2854		u64 point;
2855
2856		if (__copy_from_user(&user_fence,
2857				     user_fences++,
2858				     sizeof(user_fence)))
2859			return -EFAULT;
2860
2861		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2862			return -EINVAL;
2863
2864		if (__get_user(point, user_values++))
2865			return -EFAULT;
2866
2867		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2868		if (!syncobj) {
2869			drm_dbg(&eb->i915->drm,
2870				"Invalid syncobj handle provided\n");
2871			return -ENOENT;
2872		}
2873
2874		fence = drm_syncobj_fence_get(syncobj);
2875
2876		if (!fence && user_fence.flags &&
2877		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878			drm_dbg(&eb->i915->drm,
2879				"Syncobj handle has no fence\n");
2880			drm_syncobj_put(syncobj);
2881			return -EINVAL;
2882		}
2883
2884		if (fence)
2885			err = dma_fence_chain_find_seqno(&fence, point);
2886
2887		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2888			drm_dbg(&eb->i915->drm,
2889				"Syncobj handle missing requested point %llu\n",
2890				point);
2891			dma_fence_put(fence);
2892			drm_syncobj_put(syncobj);
2893			return err;
2894		}
2895
2896		/*
2897		 * A point might have been signaled already and
2898		 * garbage collected from the timeline. In this case
2899		 * just ignore the point and carry on.
2900		 */
2901		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2902			drm_syncobj_put(syncobj);
2903			continue;
2904		}
2905
2906		/*
2907		 * For timeline syncobjs we need to preallocate chains for
2908		 * later signaling.
2909		 */
2910		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2911			/*
2912			 * Waiting and signaling the same point (when point !=
2913			 * 0) would break the timeline.
2914			 */
2915			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2916				drm_dbg(&eb->i915->drm,
2917					"Trying to wait & signal the same timeline point.\n");
2918				dma_fence_put(fence);
2919				drm_syncobj_put(syncobj);
2920				return -EINVAL;
2921			}
2922
2923			f->chain_fence = dma_fence_chain_alloc();
2924			if (!f->chain_fence) {
2925				drm_syncobj_put(syncobj);
2926				dma_fence_put(fence);
2927				return -ENOMEM;
2928			}
2929		} else {
2930			f->chain_fence = NULL;
2931		}
2932
2933		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2934		f->dma_fence = fence;
2935		f->value = point;
2936		f++;
2937		eb->num_fences++;
2938	}
2939
2940	return 0;
2941}
2942
2943static int add_fence_array(struct i915_execbuffer *eb)
2944{
2945	struct drm_i915_gem_execbuffer2 *args = eb->args;
2946	struct drm_i915_gem_exec_fence __user *user;
2947	unsigned long num_fences = args->num_cliprects;
2948	struct eb_fence *f;
2949
2950	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2951		return 0;
2952
2953	if (!num_fences)
2954		return 0;
2955
2956	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2957	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2958	if (num_fences > min_t(unsigned long,
2959			       ULONG_MAX / sizeof(*user),
2960			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2961		return -EINVAL;
2962
2963	user = u64_to_user_ptr(args->cliprects_ptr);
2964	if (!access_ok(user, num_fences * sizeof(*user)))
2965		return -EFAULT;
2966
2967	f = krealloc(eb->fences,
2968		     (eb->num_fences + num_fences) * sizeof(*f),
2969		     __GFP_NOWARN | GFP_KERNEL);
2970	if (!f)
2971		return -ENOMEM;
2972
2973	eb->fences = f;
2974	f += eb->num_fences;
2975	while (num_fences--) {
2976		struct drm_i915_gem_exec_fence user_fence;
2977		struct drm_syncobj *syncobj;
2978		struct dma_fence *fence = NULL;
2979
2980		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2981			return -EFAULT;
2982
2983		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2984			return -EINVAL;
2985
2986		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2987		if (!syncobj) {
2988			drm_dbg(&eb->i915->drm,
2989				"Invalid syncobj handle provided\n");
2990			return -ENOENT;
2991		}
2992
2993		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2994			fence = drm_syncobj_fence_get(syncobj);
2995			if (!fence) {
2996				drm_dbg(&eb->i915->drm,
2997					"Syncobj handle has no fence\n");
2998				drm_syncobj_put(syncobj);
2999				return -EINVAL;
3000			}
3001		}
3002
3003		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3004			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3005
3006		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3007		f->dma_fence = fence;
3008		f->value = 0;
3009		f->chain_fence = NULL;
3010		f++;
3011		eb->num_fences++;
3012	}
3013
3014	return 0;
3015}
3016
3017static void put_fence_array(struct eb_fence *fences, int num_fences)
3018{
3019	if (fences)
3020		__free_fence_array(fences, num_fences);
3021}
3022
3023static int
3024await_fence_array(struct i915_execbuffer *eb,
3025		  struct i915_request *rq)
3026{
3027	unsigned int n;
3028	int err;
3029
3030	for (n = 0; n < eb->num_fences; n++) {
3031		if (!eb->fences[n].dma_fence)
3032			continue;
3033
3034		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3035		if (err < 0)
3036			return err;
3037	}
3038
3039	return 0;
3040}
3041
3042static void signal_fence_array(const struct i915_execbuffer *eb,
3043			       struct dma_fence * const fence)
3044{
3045	unsigned int n;
3046
3047	for (n = 0; n < eb->num_fences; n++) {
3048		struct drm_syncobj *syncobj;
3049		unsigned int flags;
3050
3051		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3052		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3053			continue;
3054
3055		if (eb->fences[n].chain_fence) {
3056			drm_syncobj_add_point(syncobj,
3057					      eb->fences[n].chain_fence,
3058					      fence,
3059					      eb->fences[n].value);
3060			/*
3061			 * The chain's ownership is transferred to the
3062			 * timeline.
3063			 */
3064			eb->fences[n].chain_fence = NULL;
3065		} else {
3066			drm_syncobj_replace_fence(syncobj, fence);
3067		}
3068	}
3069}
3070
3071static int
3072parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3073{
3074	struct i915_execbuffer *eb = data;
3075	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3076
3077	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3078		return -EFAULT;
3079
3080	return add_timeline_fence_array(eb, &timeline_fences);
3081}
3082
3083static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3084{
3085	struct i915_request *rq, *rn;
3086
3087	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3088		if (rq == end || !i915_request_retire(rq))
3089			break;
3090}
3091
3092static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3093			  int err, bool last_parallel)
3094{
3095	struct intel_timeline * const tl = i915_request_timeline(rq);
3096	struct i915_sched_attr attr = {};
3097	struct i915_request *prev;
3098
3099	lockdep_assert_held(&tl->mutex);
3100	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3101
3102	trace_i915_request_add(rq);
3103
3104	prev = __i915_request_commit(rq);
3105
3106	/* Check that the context wasn't destroyed before submission */
3107	if (likely(!intel_context_is_closed(eb->context))) {
3108		attr = eb->gem_context->sched;
3109	} else {
3110		/* Serialise with context_close via the add_to_timeline */
3111		i915_request_set_error_once(rq, -ENOENT);
3112		__i915_request_skip(rq);
3113		err = -ENOENT; /* override any transient errors */
3114	}
3115
3116	if (intel_context_is_parallel(eb->context)) {
3117		if (err) {
3118			__i915_request_skip(rq);
3119			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3120				&rq->fence.flags);
3121		}
3122		if (last_parallel)
3123			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3124				&rq->fence.flags);
3125	}
3126
3127	__i915_request_queue(rq, &attr);
3128
3129	/* Try to clean up the client's timeline after submitting the request */
3130	if (prev)
3131		retire_requests(tl, prev);
3132
3133	mutex_unlock(&tl->mutex);
3134
3135	return err;
3136}
3137
3138static int eb_requests_add(struct i915_execbuffer *eb, int err)
3139{
3140	int i;
3141
3142	/*
3143	 * We iterate in reverse order of creation to release timeline mutexes in
3144	 * same order.
3145	 */
3146	for_each_batch_add_order(eb, i) {
3147		struct i915_request *rq = eb->requests[i];
3148
3149		if (!rq)
3150			continue;
3151		err |= eb_request_add(eb, rq, err, i == 0);
3152	}
3153
3154	return err;
3155}
3156
3157static const i915_user_extension_fn execbuf_extensions[] = {
3158	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3159};
3160
3161static int
3162parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3163			  struct i915_execbuffer *eb)
3164{
3165	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3166		return 0;
3167
3168	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3169	 * have another flag also using it at the same time.
3170	 */
3171	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3172		return -EINVAL;
3173
3174	if (args->num_cliprects != 0)
3175		return -EINVAL;
3176
3177	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3178				    execbuf_extensions,
3179				    ARRAY_SIZE(execbuf_extensions),
3180				    eb);
3181}
3182
3183static void eb_requests_get(struct i915_execbuffer *eb)
3184{
3185	unsigned int i;
3186
3187	for_each_batch_create_order(eb, i) {
3188		if (!eb->requests[i])
3189			break;
3190
3191		i915_request_get(eb->requests[i]);
3192	}
3193}
3194
3195static void eb_requests_put(struct i915_execbuffer *eb)
3196{
3197	unsigned int i;
3198
3199	for_each_batch_create_order(eb, i) {
3200		if (!eb->requests[i])
3201			break;
3202
3203		i915_request_put(eb->requests[i]);
3204	}
3205}
3206
3207static struct sync_file *
3208eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3209{
3210	struct sync_file *out_fence = NULL;
3211	struct dma_fence_array *fence_array;
3212	struct dma_fence **fences;
3213	unsigned int i;
3214
3215	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3216
3217	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3218	if (!fences)
3219		return ERR_PTR(-ENOMEM);
3220
3221	for_each_batch_create_order(eb, i) {
3222		fences[i] = &eb->requests[i]->fence;
3223		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3224			  &eb->requests[i]->fence.flags);
3225	}
3226
3227	fence_array = dma_fence_array_create(eb->num_batches,
3228					     fences,
3229					     eb->context->parallel.fence_context,
3230					     eb->context->parallel.seqno++,
3231					     false);
3232	if (!fence_array) {
3233		kfree(fences);
3234		return ERR_PTR(-ENOMEM);
3235	}
3236
3237	/* Move ownership to the dma_fence_array created above */
3238	for_each_batch_create_order(eb, i)
3239		dma_fence_get(fences[i]);
3240
3241	if (out_fence_fd != -1) {
3242		out_fence = sync_file_create(&fence_array->base);
3243		/* sync_file now owns fence_arry, drop creation ref */
3244		dma_fence_put(&fence_array->base);
3245		if (!out_fence)
3246			return ERR_PTR(-ENOMEM);
3247	}
3248
3249	eb->composite_fence = &fence_array->base;
3250
3251	return out_fence;
3252}
3253
3254static struct sync_file *
3255eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3256	      struct dma_fence *in_fence, int out_fence_fd)
3257{
3258	struct sync_file *out_fence = NULL;
3259	int err;
3260
3261	if (unlikely(eb->gem_context->syncobj)) {
3262		struct dma_fence *fence;
3263
3264		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3265		err = i915_request_await_dma_fence(rq, fence);
3266		dma_fence_put(fence);
3267		if (err)
3268			return ERR_PTR(err);
3269	}
3270
3271	if (in_fence) {
3272		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3273			err = i915_request_await_execution(rq, in_fence);
3274		else
3275			err = i915_request_await_dma_fence(rq, in_fence);
3276		if (err < 0)
3277			return ERR_PTR(err);
3278	}
3279
3280	if (eb->fences) {
3281		err = await_fence_array(eb, rq);
3282		if (err)
3283			return ERR_PTR(err);
3284	}
3285
3286	if (intel_context_is_parallel(eb->context)) {
3287		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3288		if (IS_ERR(out_fence))
3289			return ERR_PTR(-ENOMEM);
3290	} else if (out_fence_fd != -1) {
3291		out_fence = sync_file_create(&rq->fence);
3292		if (!out_fence)
3293			return ERR_PTR(-ENOMEM);
3294	}
3295
3296	return out_fence;
3297}
3298
3299static struct intel_context *
3300eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3301{
3302	struct intel_context *child;
3303
3304	if (likely(context_number == 0))
3305		return eb->context;
3306
3307	for_each_child(eb->context, child)
3308		if (!--context_number)
3309			return child;
3310
3311	GEM_BUG_ON("Context not found");
3312
3313	return NULL;
3314}
3315
3316static struct sync_file *
3317eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3318		   int out_fence_fd)
3319{
3320	struct sync_file *out_fence = NULL;
3321	unsigned int i;
3322
3323	for_each_batch_create_order(eb, i) {
3324		/* Allocate a request for this batch buffer nice and early. */
3325		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3326		if (IS_ERR(eb->requests[i])) {
3327			out_fence = ERR_CAST(eb->requests[i]);
3328			eb->requests[i] = NULL;
3329			return out_fence;
3330		}
3331
3332		/*
3333		 * Only the first request added (committed to backend) has to
3334		 * take the in fences into account as all subsequent requests
3335		 * will have fences inserted inbetween them.
3336		 */
3337		if (i + 1 == eb->num_batches) {
3338			out_fence = eb_fences_add(eb, eb->requests[i],
3339						  in_fence, out_fence_fd);
3340			if (IS_ERR(out_fence))
3341				return out_fence;
3342		}
3343
3344		/*
3345		 * Not really on stack, but we don't want to call
3346		 * kfree on the batch_snapshot when we put it, so use the
3347		 * _onstack interface.
3348		 */
3349		if (eb->batches[i]->vma)
3350			eb->requests[i]->batch_res =
3351				i915_vma_resource_get(eb->batches[i]->vma->resource);
3352		if (eb->batch_pool) {
3353			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3354			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3355							 eb->requests[i]);
3356		}
3357	}
3358
3359	return out_fence;
3360}
3361
3362static int
3363i915_gem_do_execbuffer(struct drm_device *dev,
3364		       struct drm_file *file,
3365		       struct drm_i915_gem_execbuffer2 *args,
3366		       struct drm_i915_gem_exec_object2 *exec)
3367{
3368	struct drm_i915_private *i915 = to_i915(dev);
3369	struct i915_execbuffer eb;
3370	struct dma_fence *in_fence = NULL;
3371	struct sync_file *out_fence = NULL;
3372	int out_fence_fd = -1;
3373	int err;
3374
3375	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3376	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3377		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3378
3379	eb.i915 = i915;
3380	eb.file = file;
3381	eb.args = args;
3382	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3383		args->flags |= __EXEC_HAS_RELOC;
3384
3385	eb.exec = exec;
3386	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3387	eb.vma[0].vma = NULL;
3388	eb.batch_pool = NULL;
3389
3390	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3391	reloc_cache_init(&eb.reloc_cache, eb.i915);
3392
3393	eb.buffer_count = args->buffer_count;
3394	eb.batch_start_offset = args->batch_start_offset;
3395	eb.trampoline = NULL;
3396
3397	eb.fences = NULL;
3398	eb.num_fences = 0;
3399
3400	eb_capture_list_clear(&eb);
3401
3402	memset(eb.requests, 0, sizeof(struct i915_request *) *
3403	       ARRAY_SIZE(eb.requests));
3404	eb.composite_fence = NULL;
3405
3406	eb.batch_flags = 0;
3407	if (args->flags & I915_EXEC_SECURE) {
3408		if (GRAPHICS_VER(i915) >= 11)
3409			return -ENODEV;
3410
3411		/* Return -EPERM to trigger fallback code on old binaries. */
3412		if (!HAS_SECURE_BATCHES(i915))
3413			return -EPERM;
3414
3415		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3416			return -EPERM;
3417
3418		eb.batch_flags |= I915_DISPATCH_SECURE;
3419	}
3420	if (args->flags & I915_EXEC_IS_PINNED)
3421		eb.batch_flags |= I915_DISPATCH_PINNED;
3422
3423	err = parse_execbuf2_extensions(args, &eb);
3424	if (err)
3425		goto err_ext;
3426
3427	err = add_fence_array(&eb);
3428	if (err)
3429		goto err_ext;
3430
3431#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3432	if (args->flags & IN_FENCES) {
3433		if ((args->flags & IN_FENCES) == IN_FENCES)
3434			return -EINVAL;
3435
3436		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3437		if (!in_fence) {
3438			err = -EINVAL;
3439			goto err_ext;
3440		}
3441	}
3442#undef IN_FENCES
3443
3444	if (args->flags & I915_EXEC_FENCE_OUT) {
3445		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3446		if (out_fence_fd < 0) {
3447			err = out_fence_fd;
3448			goto err_in_fence;
3449		}
3450	}
3451
3452	err = eb_create(&eb);
3453	if (err)
3454		goto err_out_fence;
3455
3456	GEM_BUG_ON(!eb.lut_size);
3457
3458	err = eb_select_context(&eb);
3459	if (unlikely(err))
3460		goto err_destroy;
3461
3462	err = eb_select_engine(&eb);
3463	if (unlikely(err))
3464		goto err_context;
3465
3466	err = eb_lookup_vmas(&eb);
3467	if (err) {
3468		eb_release_vmas(&eb, true);
3469		goto err_engine;
3470	}
3471
3472	i915_gem_ww_ctx_init(&eb.ww, true);
3473
3474	err = eb_relocate_parse(&eb);
3475	if (err) {
3476		/*
3477		 * If the user expects the execobject.offset and
3478		 * reloc.presumed_offset to be an exact match,
3479		 * as for using NO_RELOC, then we cannot update
3480		 * the execobject.offset until we have completed
3481		 * relocation.
3482		 */
3483		args->flags &= ~__EXEC_HAS_RELOC;
3484		goto err_vma;
3485	}
3486
3487	ww_acquire_done(&eb.ww.ctx);
3488	err = eb_capture_stage(&eb);
3489	if (err)
3490		goto err_vma;
3491
3492	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3493	if (IS_ERR(out_fence)) {
3494		err = PTR_ERR(out_fence);
3495		out_fence = NULL;
3496		if (eb.requests[0])
3497			goto err_request;
3498		else
3499			goto err_vma;
3500	}
3501
3502	err = eb_submit(&eb);
3503
3504err_request:
3505	eb_requests_get(&eb);
3506	err = eb_requests_add(&eb, err);
3507
3508	if (eb.fences)
3509		signal_fence_array(&eb, eb.composite_fence ?
3510				   eb.composite_fence :
3511				   &eb.requests[0]->fence);
3512
3513	if (unlikely(eb.gem_context->syncobj)) {
3514		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3515					  eb.composite_fence ?
3516					  eb.composite_fence :
3517					  &eb.requests[0]->fence);
3518	}
3519
3520	if (out_fence) {
3521		if (err == 0) {
3522			fd_install(out_fence_fd, out_fence->file);
3523			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3524			args->rsvd2 |= (u64)out_fence_fd << 32;
3525			out_fence_fd = -1;
3526		} else {
3527			fput(out_fence->file);
3528		}
3529	}
3530
3531	if (!out_fence && eb.composite_fence)
3532		dma_fence_put(eb.composite_fence);
3533
3534	eb_requests_put(&eb);
3535
3536err_vma:
3537	eb_release_vmas(&eb, true);
3538	WARN_ON(err == -EDEADLK);
3539	i915_gem_ww_ctx_fini(&eb.ww);
3540
3541	if (eb.batch_pool)
3542		intel_gt_buffer_pool_put(eb.batch_pool);
3543err_engine:
3544	eb_put_engine(&eb);
3545err_context:
3546	i915_gem_context_put(eb.gem_context);
3547err_destroy:
3548	eb_destroy(&eb);
3549err_out_fence:
3550	if (out_fence_fd != -1)
3551		put_unused_fd(out_fence_fd);
3552err_in_fence:
3553	dma_fence_put(in_fence);
3554err_ext:
3555	put_fence_array(eb.fences, eb.num_fences);
3556	return err;
3557}
3558
3559static size_t eb_element_size(void)
3560{
3561	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3562}
3563
3564static bool check_buffer_count(size_t count)
3565{
3566	const size_t sz = eb_element_size();
3567
3568	/*
3569	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3570	 * array size (see eb_create()). Otherwise, we can accept an array as
3571	 * large as can be addressed (though use large arrays at your peril)!
3572	 */
3573
3574	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3575}
3576
3577int
3578i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3579			   struct drm_file *file)
3580{
3581	struct drm_i915_private *i915 = to_i915(dev);
3582	struct drm_i915_gem_execbuffer2 *args = data;
3583	struct drm_i915_gem_exec_object2 *exec2_list;
3584	const size_t count = args->buffer_count;
3585	int err;
3586
3587	if (!check_buffer_count(count)) {
3588		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3589		return -EINVAL;
3590	}
3591
3592	err = i915_gem_check_execbuffer(i915, args);
3593	if (err)
3594		return err;
3595
3596	/* Allocate extra slots for use by the command parser */
3597	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3598				    __GFP_NOWARN | GFP_KERNEL);
3599	if (exec2_list == NULL) {
3600		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3601			count);
3602		return -ENOMEM;
3603	}
3604	if (copy_from_user(exec2_list,
3605			   u64_to_user_ptr(args->buffers_ptr),
3606			   sizeof(*exec2_list) * count)) {
3607		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3608		kvfree(exec2_list);
3609		return -EFAULT;
3610	}
3611
3612	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3613
3614	/*
3615	 * Now that we have begun execution of the batchbuffer, we ignore
3616	 * any new error after this point. Also given that we have already
3617	 * updated the associated relocations, we try to write out the current
3618	 * object locations irrespective of any error.
3619	 */
3620	if (args->flags & __EXEC_HAS_RELOC) {
3621		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3622			u64_to_user_ptr(args->buffers_ptr);
3623		unsigned int i;
3624
3625		/* Copy the new buffer offsets back to the user's exec list. */
3626		/*
3627		 * Note: count * sizeof(*user_exec_list) does not overflow,
3628		 * because we checked 'count' in check_buffer_count().
3629		 *
3630		 * And this range already got effectively checked earlier
3631		 * when we did the "copy_from_user()" above.
3632		 */
3633		if (!user_write_access_begin(user_exec_list,
3634					     count * sizeof(*user_exec_list)))
3635			goto end;
3636
3637		for (i = 0; i < args->buffer_count; i++) {
3638			if (!(exec2_list[i].offset & UPDATE))
3639				continue;
3640
3641			exec2_list[i].offset =
3642				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3643			unsafe_put_user(exec2_list[i].offset,
3644					&user_exec_list[i].offset,
3645					end_user);
3646		}
3647end_user:
3648		user_write_access_end();
3649end:;
3650	}
3651
3652	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3653	kvfree(exec2_list);
3654	return err;
3655}