Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2008,2010 Intel Corporation
   5 */
   6
   7#include <linux/dma-resv.h>
   8#include <linux/highmem.h>
   9#include <linux/sync_file.h>
  10#include <linux/uaccess.h>
  11
  12#include <drm/drm_auth.h>
  13#include <drm/drm_syncobj.h>
  14
  15#include "gem/i915_gem_ioctls.h"
  16#include "gt/intel_context.h"
  17#include "gt/intel_gpu_commands.h"
  18#include "gt/intel_gt.h"
  19#include "gt/intel_gt_buffer_pool.h"
  20#include "gt/intel_gt_pm.h"
  21#include "gt/intel_ring.h"
  22
  23#include "pxp/intel_pxp.h"
  24
  25#include "i915_cmd_parser.h"
  26#include "i915_drv.h"
  27#include "i915_file_private.h"
  28#include "i915_gem_clflush.h"
  29#include "i915_gem_context.h"
  30#include "i915_gem_evict.h"
  31#include "i915_gem_ioctls.h"
  32#include "i915_reg.h"
  33#include "i915_trace.h"
  34#include "i915_user_extensions.h"
  35
  36struct eb_vma {
  37	struct i915_vma *vma;
  38	unsigned int flags;
  39
  40	/** This vma's place in the execbuf reservation list */
  41	struct drm_i915_gem_exec_object2 *exec;
  42	struct list_head bind_link;
  43	struct list_head reloc_link;
  44
  45	struct hlist_node node;
  46	u32 handle;
  47};
  48
  49enum {
  50	FORCE_CPU_RELOC = 1,
  51	FORCE_GTT_RELOC,
  52	FORCE_GPU_RELOC,
  53#define DBG_FORCE_RELOC 0 /* choose one of the above! */
  54};
  55
  56/* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
  57#define __EXEC_OBJECT_HAS_PIN		BIT(29)
  58#define __EXEC_OBJECT_HAS_FENCE		BIT(28)
  59#define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
  60#define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
  61#define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
  62#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
  63#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
  64
  65#define __EXEC_HAS_RELOC	BIT(31)
  66#define __EXEC_ENGINE_PINNED	BIT(30)
  67#define __EXEC_USERPTR_USED	BIT(29)
  68#define __EXEC_INTERNAL_FLAGS	(~0u << 29)
  69#define UPDATE			PIN_OFFSET_FIXED
  70
  71#define BATCH_OFFSET_BIAS (256*1024)
  72
  73#define __I915_EXEC_ILLEGAL_FLAGS \
  74	(__I915_EXEC_UNKNOWN_FLAGS | \
  75	 I915_EXEC_CONSTANTS_MASK  | \
  76	 I915_EXEC_RESOURCE_STREAMER)
  77
  78/* Catch emission of unexpected errors for CI! */
  79#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
  80#undef EINVAL
  81#define EINVAL ({ \
  82	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
  83	22; \
  84})
  85#endif
  86
  87/**
  88 * DOC: User command execution
  89 *
  90 * Userspace submits commands to be executed on the GPU as an instruction
  91 * stream within a GEM object we call a batchbuffer. This instructions may
  92 * refer to other GEM objects containing auxiliary state such as kernels,
  93 * samplers, render targets and even secondary batchbuffers. Userspace does
  94 * not know where in the GPU memory these objects reside and so before the
  95 * batchbuffer is passed to the GPU for execution, those addresses in the
  96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
  97 * or patching. To try and avoid having to relocate each object on the next
  98 * execution, userspace is told the location of those objects in this pass,
  99 * but this remains just a hint as the kernel may choose a new location for
 100 * any object in the future.
 101 *
 102 * At the level of talking to the hardware, submitting a batchbuffer for the
 103 * GPU to execute is to add content to a buffer from which the HW
 104 * command streamer is reading.
 105 *
 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 107 *    Execlists, this command is not placed on the same buffer as the
 108 *    remaining items.
 109 *
 110 * 2. Add a command to invalidate caches to the buffer.
 111 *
 112 * 3. Add a batchbuffer start command to the buffer; the start command is
 113 *    essentially a token together with the GPU address of the batchbuffer
 114 *    to be executed.
 115 *
 116 * 4. Add a pipeline flush to the buffer.
 117 *
 118 * 5. Add a memory write command to the buffer to record when the GPU
 119 *    is done executing the batchbuffer. The memory write writes the
 120 *    global sequence number of the request, ``i915_request::global_seqno``;
 121 *    the i915 driver uses the current value in the register to determine
 122 *    if the GPU has completed the batchbuffer.
 123 *
 124 * 6. Add a user interrupt command to the buffer. This command instructs
 125 *    the GPU to issue an interrupt when the command, pipeline flush and
 126 *    memory write are completed.
 127 *
 128 * 7. Inform the hardware of the additional commands added to the buffer
 129 *    (by updating the tail pointer).
 130 *
 131 * Processing an execbuf ioctl is conceptually split up into a few phases.
 132 *
 133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 134 * 2. Reservation - Assign GPU address space for every object
 135 * 3. Relocation - Update any addresses to point to the final locations
 136 * 4. Serialisation - Order the request with respect to its dependencies
 137 * 5. Construction - Construct a request to execute the batchbuffer
 138 * 6. Submission (at some point in the future execution)
 139 *
 140 * Reserving resources for the execbuf is the most complicated phase. We
 141 * neither want to have to migrate the object in the address space, nor do
 142 * we want to have to update any relocations pointing to this object. Ideally,
 143 * we want to leave the object where it is and for all the existing relocations
 144 * to match. If the object is given a new address, or if userspace thinks the
 145 * object is elsewhere, we have to parse all the relocation entries and update
 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 147 * all the target addresses in all of its objects match the value in the
 148 * relocation entries and that they all match the presumed offsets given by the
 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 150 * moved any buffers, all the relocation entries are valid and we can skip
 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 153 *
 154 *      The addresses written in the objects must match the corresponding
 155 *      reloc.presumed_offset which in turn must match the corresponding
 156 *      execobject.offset.
 157 *
 158 *      Any render targets written to in the batch must be flagged with
 159 *      EXEC_OBJECT_WRITE.
 160 *
 161 *      To avoid stalling, execobject.offset should match the current
 162 *      address of that object within the active context.
 163 *
 164 * The reservation is done is multiple phases. First we try and keep any
 165 * object already bound in its current location - so as long as meets the
 166 * constraints imposed by the new execbuffer. Any object left unbound after the
 167 * first pass is then fitted into any available idle space. If an object does
 168 * not fit, all objects are removed from the reservation and the process rerun
 169 * after sorting the objects into a priority order (more difficult to fit
 170 * objects are tried first). Failing that, the entire VM is cleared and we try
 171 * to fit the execbuf once last time before concluding that it simply will not
 172 * fit.
 173 *
 174 * A small complication to all of this is that we allow userspace not only to
 175 * specify an alignment and a size for the object in the address space, but
 176 * we also allow userspace to specify the exact offset. This objects are
 177 * simpler to place (the location is known a priori) all we have to do is make
 178 * sure the space is available.
 179 *
 180 * Once all the objects are in place, patching up the buried pointers to point
 181 * to the final locations is a fairly simple job of walking over the relocation
 182 * entry arrays, looking up the right address and rewriting the value into
 183 * the object. Simple! ... The relocation entries are stored in user memory
 184 * and so to access them we have to copy them into a local buffer. That copy
 185 * has to avoid taking any pagefaults as they may lead back to a GEM object
 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 187 * the relocation into multiple passes. First we try to do everything within an
 188 * atomic context (avoid the pagefaults) which requires that we never wait. If
 189 * we detect that we may wait, or if we need to fault, then we have to fallback
 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 191 * bells yet?) Dropping the mutex means that we lose all the state we have
 192 * built up so far for the execbuf and we must reset any global data. However,
 193 * we do leave the objects pinned in their final locations - which is a
 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 195 * allocate and copy all the relocation entries into a large array at our
 196 * leisure, reacquire the mutex, reclaim all the objects and other state and
 197 * then proceed to update any incorrect addresses with the objects.
 198 *
 199 * As we process the relocation entries, we maintain a record of whether the
 200 * object is being written to. Using NORELOC, we expect userspace to provide
 201 * this information instead. We also check whether we can skip the relocation
 202 * by comparing the expected value inside the relocation entry with the target's
 203 * final address. If they differ, we have to map the current object and rewrite
 204 * the 4 or 8 byte pointer within.
 205 *
 206 * Serialising an execbuf is quite simple according to the rules of the GEM
 207 * ABI. Execution within each context is ordered by the order of submission.
 208 * Writes to any GEM object are in order of submission and are exclusive. Reads
 209 * from a GEM object are unordered with respect to other reads, but ordered by
 210 * writes. A write submitted after a read cannot occur before the read, and
 211 * similarly any read submitted after a write cannot occur before the write.
 212 * Writes are ordered between engines such that only one write occurs at any
 213 * time (completing any reads beforehand) - using semaphores where available
 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 216 * reads before starting, and any read (either using set-domain or pread) must
 217 * flush all GPU writes before starting. (Note we only employ a barrier before,
 218 * we currently rely on userspace not concurrently starting a new execution
 219 * whilst reading or writing to an object. This may be an advantage or not
 220 * depending on how much you trust userspace not to shoot themselves in the
 221 * foot.) Serialisation may just result in the request being inserted into
 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 223 * all dependencies are resolved.
 224 *
 225 * After all of that, is just a matter of closing the request and handing it to
 226 * the hardware (well, leaving it in a queue to be executed). However, we also
 227 * offer the ability for batchbuffers to be run with elevated privileges so
 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 229 * Before any batch is given extra privileges we first must check that it
 230 * contains no nefarious instructions, we check that each instruction is from
 231 * our whitelist and all registers are also from an allowed list. We first
 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 233 * access to it, either by the CPU or GPU as we scan it) and then parse each
 234 * instruction. If everything is ok, we set a flag telling the hardware to run
 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 236 */
 237
 238struct eb_fence {
 239	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
 240	struct dma_fence *dma_fence;
 241	u64 value;
 242	struct dma_fence_chain *chain_fence;
 243};
 244
 245struct i915_execbuffer {
 246	struct drm_i915_private *i915; /** i915 backpointer */
 247	struct drm_file *file; /** per-file lookup tables and limits */
 248	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
 249	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
 250	struct eb_vma *vma;
 251
 252	struct intel_gt *gt; /* gt for the execbuf */
 253	struct intel_context *context; /* logical state for the request */
 254	struct i915_gem_context *gem_context; /** caller's context */
 255	intel_wakeref_t wakeref;
 256	intel_wakeref_t wakeref_gt0;
 257
 258	/** our requests to build */
 259	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
 260	/** identity of the batch obj/vma */
 261	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
 262	struct i915_vma *trampoline; /** trampoline used for chaining */
 263
 264	/** used for excl fence in dma_resv objects when > 1 BB submitted */
 265	struct dma_fence *composite_fence;
 266
 267	/** actual size of execobj[] as we may extend it for the cmdparser */
 268	unsigned int buffer_count;
 269
 270	/* number of batches in execbuf IOCTL */
 271	unsigned int num_batches;
 272
 273	/** list of vma not yet bound during reservation phase */
 274	struct list_head unbound;
 275
 276	/** list of vma that have execobj.relocation_count */
 277	struct list_head relocs;
 278
 279	struct i915_gem_ww_ctx ww;
 280
 281	/**
 282	 * Track the most recently used object for relocations, as we
 283	 * frequently have to perform multiple relocations within the same
 284	 * obj/page
 285	 */
 286	struct reloc_cache {
 287		struct drm_mm_node node; /** temporary GTT binding */
 288		unsigned long vaddr; /** Current kmap address */
 289		unsigned long page; /** Currently mapped page index */
 290		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
 291		bool use_64bit_reloc : 1;
 292		bool has_llc : 1;
 293		bool has_fence : 1;
 294		bool needs_unfenced : 1;
 295	} reloc_cache;
 296
 297	u64 invalid_flags; /** Set of execobj.flags that are invalid */
 298
 299	/** Length of batch within object */
 300	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
 301	u32 batch_start_offset; /** Location within object of batch */
 302	u32 batch_flags; /** Flags composed for emit_bb_start() */
 303	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
 304
 305	/**
 306	 * Indicate either the size of the hastable used to resolve
 307	 * relocation handles, or if negative that we are using a direct
 308	 * index into the execobj[].
 309	 */
 310	int lut_size;
 311	struct hlist_head *buckets; /** ht for relocation handles */
 312
 313	struct eb_fence *fences;
 314	unsigned long num_fences;
 315#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
 316	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
 317#endif
 318};
 319
 320static int eb_parse(struct i915_execbuffer *eb);
 321static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
 322static void eb_unpin_engine(struct i915_execbuffer *eb);
 323static void eb_capture_release(struct i915_execbuffer *eb);
 324
 325static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
 326{
 327	return intel_engine_requires_cmd_parser(eb->context->engine) ||
 328		(intel_engine_using_cmd_parser(eb->context->engine) &&
 329		 eb->args->batch_len);
 330}
 331
 332static int eb_create(struct i915_execbuffer *eb)
 333{
 334	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
 335		unsigned int size = 1 + ilog2(eb->buffer_count);
 336
 337		/*
 338		 * Without a 1:1 association between relocation handles and
 339		 * the execobject[] index, we instead create a hashtable.
 340		 * We size it dynamically based on available memory, starting
 341		 * first with 1:1 associative hash and scaling back until
 342		 * the allocation succeeds.
 343		 *
 344		 * Later on we use a positive lut_size to indicate we are
 345		 * using this hashtable, and a negative value to indicate a
 346		 * direct lookup.
 347		 */
 348		do {
 349			gfp_t flags;
 350
 351			/* While we can still reduce the allocation size, don't
 352			 * raise a warning and allow the allocation to fail.
 353			 * On the last pass though, we want to try as hard
 354			 * as possible to perform the allocation and warn
 355			 * if it fails.
 356			 */
 357			flags = GFP_KERNEL;
 358			if (size > 1)
 359				flags |= __GFP_NORETRY | __GFP_NOWARN;
 360
 361			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
 362					      flags);
 363			if (eb->buckets)
 364				break;
 365		} while (--size);
 366
 367		if (unlikely(!size))
 368			return -ENOMEM;
 369
 370		eb->lut_size = size;
 371	} else {
 372		eb->lut_size = -eb->buffer_count;
 373	}
 374
 375	return 0;
 376}
 377
 378static bool
 379eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
 380		 const struct i915_vma *vma,
 381		 unsigned int flags)
 382{
 383	const u64 start = i915_vma_offset(vma);
 384	const u64 size = i915_vma_size(vma);
 385
 386	if (size < entry->pad_to_size)
 387		return true;
 388
 389	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
 390		return true;
 391
 392	if (flags & EXEC_OBJECT_PINNED &&
 393	    start != entry->offset)
 394		return true;
 395
 396	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
 397	    start < BATCH_OFFSET_BIAS)
 398		return true;
 399
 400	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
 401	    (start + size + 4095) >> 32)
 402		return true;
 403
 404	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
 405	    !i915_vma_is_map_and_fenceable(vma))
 406		return true;
 407
 408	return false;
 409}
 410
 411static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
 412			unsigned int exec_flags)
 413{
 414	u64 pin_flags = 0;
 415
 416	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
 417		pin_flags |= PIN_GLOBAL;
 418
 419	/*
 420	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
 421	 * limit address to the first 4GBs for unflagged objects.
 422	 */
 423	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 424		pin_flags |= PIN_ZONE_4G;
 425
 426	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
 427		pin_flags |= PIN_MAPPABLE;
 428
 429	if (exec_flags & EXEC_OBJECT_PINNED)
 430		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
 431	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
 432		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
 433
 434	return pin_flags;
 435}
 436
 437static int
 438eb_pin_vma(struct i915_execbuffer *eb,
 439	   const struct drm_i915_gem_exec_object2 *entry,
 440	   struct eb_vma *ev)
 441{
 442	struct i915_vma *vma = ev->vma;
 443	u64 pin_flags;
 444	int err;
 445
 446	if (vma->node.size)
 447		pin_flags =  __i915_vma_offset(vma);
 448	else
 449		pin_flags = entry->offset & PIN_OFFSET_MASK;
 450
 451	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
 452	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
 453		pin_flags |= PIN_GLOBAL;
 454
 455	/* Attempt to reuse the current location if available */
 456	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
 457	if (err == -EDEADLK)
 458		return err;
 459
 460	if (unlikely(err)) {
 461		if (entry->flags & EXEC_OBJECT_PINNED)
 462			return err;
 463
 464		/* Failing that pick any _free_ space if suitable */
 465		err = i915_vma_pin_ww(vma, &eb->ww,
 466					     entry->pad_to_size,
 467					     entry->alignment,
 468					     eb_pin_flags(entry, ev->flags) |
 469					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
 470		if (unlikely(err))
 471			return err;
 472	}
 473
 474	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 475		err = i915_vma_pin_fence(vma);
 476		if (unlikely(err))
 477			return err;
 478
 479		if (vma->fence)
 480			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 481	}
 482
 483	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 484	if (eb_vma_misplaced(entry, vma, ev->flags))
 485		return -EBADSLT;
 486
 487	return 0;
 488}
 489
 490static void
 491eb_unreserve_vma(struct eb_vma *ev)
 492{
 493	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
 494		__i915_vma_unpin_fence(ev->vma);
 495
 496	ev->flags &= ~__EXEC_OBJECT_RESERVED;
 497}
 498
 499static int
 500eb_validate_vma(struct i915_execbuffer *eb,
 501		struct drm_i915_gem_exec_object2 *entry,
 502		struct i915_vma *vma)
 503{
 504	/* Relocations are disallowed for all platforms after TGL-LP.  This
 505	 * also covers all platforms with local memory.
 506	 */
 507	if (entry->relocation_count &&
 508	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
 509		return -EINVAL;
 510
 511	if (unlikely(entry->flags & eb->invalid_flags))
 512		return -EINVAL;
 513
 514	if (unlikely(entry->alignment &&
 515		     !is_power_of_2_u64(entry->alignment)))
 516		return -EINVAL;
 517
 518	/*
 519	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
 520	 * any non-page-aligned or non-canonical addresses.
 521	 */
 522	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
 523		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
 524		return -EINVAL;
 525
 526	/* pad_to_size was once a reserved field, so sanitize it */
 527	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
 528		if (unlikely(offset_in_page(entry->pad_to_size)))
 529			return -EINVAL;
 530	} else {
 531		entry->pad_to_size = 0;
 532	}
 533	/*
 534	 * From drm_mm perspective address space is continuous,
 535	 * so from this point we're always using non-canonical
 536	 * form internally.
 537	 */
 538	entry->offset = gen8_noncanonical_addr(entry->offset);
 539
 540	if (!eb->reloc_cache.has_fence) {
 541		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
 542	} else {
 543		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
 544		     eb->reloc_cache.needs_unfenced) &&
 545		    i915_gem_object_is_tiled(vma->obj))
 546			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
 547	}
 548
 549	return 0;
 550}
 551
 552static bool
 553is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
 554{
 555	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
 556		buffer_idx < eb->num_batches :
 557		buffer_idx >= eb->args->buffer_count - eb->num_batches;
 558}
 559
 560static int
 561eb_add_vma(struct i915_execbuffer *eb,
 562	   unsigned int *current_batch,
 563	   unsigned int i,
 564	   struct i915_vma *vma)
 565{
 566	struct drm_i915_private *i915 = eb->i915;
 567	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
 568	struct eb_vma *ev = &eb->vma[i];
 569
 570	ev->vma = vma;
 571	ev->exec = entry;
 572	ev->flags = entry->flags;
 573
 574	if (eb->lut_size > 0) {
 575		ev->handle = entry->handle;
 576		hlist_add_head(&ev->node,
 577			       &eb->buckets[hash_32(entry->handle,
 578						    eb->lut_size)]);
 579	}
 580
 581	if (entry->relocation_count)
 582		list_add_tail(&ev->reloc_link, &eb->relocs);
 583
 584	/*
 585	 * SNA is doing fancy tricks with compressing batch buffers, which leads
 586	 * to negative relocation deltas. Usually that works out ok since the
 587	 * relocate address is still positive, except when the batch is placed
 588	 * very low in the GTT. Ensure this doesn't happen.
 589	 *
 590	 * Note that actual hangs have only been observed on gen7, but for
 591	 * paranoia do it everywhere.
 592	 */
 593	if (is_batch_buffer(eb, i)) {
 594		if (entry->relocation_count &&
 595		    !(ev->flags & EXEC_OBJECT_PINNED))
 596			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 597		if (eb->reloc_cache.has_fence)
 598			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
 599
 600		eb->batches[*current_batch] = ev;
 601
 602		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
 603			drm_dbg(&i915->drm,
 604				"Attempting to use self-modifying batch buffer\n");
 605			return -EINVAL;
 606		}
 607
 608		if (range_overflows_t(u64,
 609				      eb->batch_start_offset,
 610				      eb->args->batch_len,
 611				      ev->vma->size)) {
 612			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
 613			return -EINVAL;
 614		}
 615
 616		if (eb->args->batch_len == 0)
 617			eb->batch_len[*current_batch] = ev->vma->size -
 618				eb->batch_start_offset;
 619		else
 620			eb->batch_len[*current_batch] = eb->args->batch_len;
 621		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
 622			drm_dbg(&i915->drm, "Invalid batch length\n");
 623			return -EINVAL;
 624		}
 625
 626		++*current_batch;
 627	}
 628
 629	return 0;
 630}
 631
 632static int use_cpu_reloc(const struct reloc_cache *cache,
 633			 const struct drm_i915_gem_object *obj)
 634{
 635	if (!i915_gem_object_has_struct_page(obj))
 636		return false;
 637
 638	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
 639		return true;
 640
 641	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
 642		return false;
 643
 644	/*
 645	 * For objects created by userspace through GEM_CREATE with pat_index
 646	 * set by set_pat extension, i915_gem_object_has_cache_level() always
 647	 * return true, otherwise the call would fall back to checking whether
 648	 * the object is un-cached.
 649	 */
 650	return (cache->has_llc ||
 651		obj->cache_dirty ||
 652		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
 653}
 654
 655static int eb_reserve_vma(struct i915_execbuffer *eb,
 656			  struct eb_vma *ev,
 657			  u64 pin_flags)
 658{
 659	struct drm_i915_gem_exec_object2 *entry = ev->exec;
 660	struct i915_vma *vma = ev->vma;
 661	int err;
 662
 663	if (drm_mm_node_allocated(&vma->node) &&
 664	    eb_vma_misplaced(entry, vma, ev->flags)) {
 665		err = i915_vma_unbind(vma);
 666		if (err)
 667			return err;
 668	}
 669
 670	err = i915_vma_pin_ww(vma, &eb->ww,
 671			   entry->pad_to_size, entry->alignment,
 672			   eb_pin_flags(entry, ev->flags) | pin_flags);
 673	if (err)
 674		return err;
 675
 676	if (entry->offset != i915_vma_offset(vma)) {
 677		entry->offset = i915_vma_offset(vma) | UPDATE;
 678		eb->args->flags |= __EXEC_HAS_RELOC;
 679	}
 680
 681	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 682		err = i915_vma_pin_fence(vma);
 683		if (unlikely(err))
 684			return err;
 685
 686		if (vma->fence)
 687			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 688	}
 689
 690	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 691	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
 692
 693	return 0;
 694}
 695
 696static bool eb_unbind(struct i915_execbuffer *eb, bool force)
 697{
 698	const unsigned int count = eb->buffer_count;
 699	unsigned int i;
 700	struct list_head last;
 701	bool unpinned = false;
 702
 703	/* Resort *all* the objects into priority order */
 704	INIT_LIST_HEAD(&eb->unbound);
 705	INIT_LIST_HEAD(&last);
 706
 707	for (i = 0; i < count; i++) {
 708		struct eb_vma *ev = &eb->vma[i];
 709		unsigned int flags = ev->flags;
 710
 711		if (!force && flags & EXEC_OBJECT_PINNED &&
 712		    flags & __EXEC_OBJECT_HAS_PIN)
 713			continue;
 714
 715		unpinned = true;
 716		eb_unreserve_vma(ev);
 717
 718		if (flags & EXEC_OBJECT_PINNED)
 719			/* Pinned must have their slot */
 720			list_add(&ev->bind_link, &eb->unbound);
 721		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
 722			/* Map require the lowest 256MiB (aperture) */
 723			list_add_tail(&ev->bind_link, &eb->unbound);
 724		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 725			/* Prioritise 4GiB region for restricted bo */
 726			list_add(&ev->bind_link, &last);
 727		else
 728			list_add_tail(&ev->bind_link, &last);
 729	}
 730
 731	list_splice_tail(&last, &eb->unbound);
 732	return unpinned;
 733}
 734
 735static int eb_reserve(struct i915_execbuffer *eb)
 736{
 737	struct eb_vma *ev;
 738	unsigned int pass;
 739	int err = 0;
 740
 741	/*
 742	 * We have one more buffers that we couldn't bind, which could be due to
 743	 * various reasons. To resolve this we have 4 passes, with every next
 744	 * level turning the screws tighter:
 745	 *
 746	 * 0. Unbind all objects that do not match the GTT constraints for the
 747	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
 748	 * objects.  This avoids unnecessary unbinding of later objects in order
 749	 * to make room for the earlier objects *unless* we need to defragment.
 750	 *
 751	 * 1. Reorder the buffers, where objects with the most restrictive
 752	 * placement requirements go first (ignoring fixed location buffers for
 753	 * now).  For example, objects needing the mappable aperture (the first
 754	 * 256M of GTT), should go first vs objects that can be placed just
 755	 * about anywhere. Repeat the previous pass.
 756	 *
 757	 * 2. Consider buffers that are pinned at a fixed location. Also try to
 758	 * evict the entire VM this time, leaving only objects that we were
 759	 * unable to lock. Try again to bind the buffers. (still using the new
 760	 * buffer order).
 761	 *
 762	 * 3. We likely have object lock contention for one or more stubborn
 763	 * objects in the VM, for which we need to evict to make forward
 764	 * progress (perhaps we are fighting the shrinker?). When evicting the
 765	 * VM this time around, anything that we can't lock we now track using
 766	 * the busy_bo, using the full lock (after dropping the vm->mutex to
 767	 * prevent deadlocks), instead of trylock. We then continue to evict the
 768	 * VM, this time with the stubborn object locked, which we can now
 769	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
 770	 * evicted. Finally we should be able bind everything.
 771	 */
 772	for (pass = 0; pass <= 3; pass++) {
 773		int pin_flags = PIN_USER | PIN_VALIDATE;
 774
 775		if (pass == 0)
 776			pin_flags |= PIN_NONBLOCK;
 777
 778		if (pass >= 1)
 779			eb_unbind(eb, pass >= 2);
 780
 781		if (pass == 2) {
 782			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 783			if (!err) {
 784				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
 785				mutex_unlock(&eb->context->vm->mutex);
 786			}
 787			if (err)
 788				return err;
 789		}
 790
 791		if (pass == 3) {
 792retry:
 793			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 794			if (!err) {
 795				struct drm_i915_gem_object *busy_bo = NULL;
 796
 797				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
 798				mutex_unlock(&eb->context->vm->mutex);
 799				if (err && busy_bo) {
 800					err = i915_gem_object_lock(busy_bo, &eb->ww);
 801					i915_gem_object_put(busy_bo);
 802					if (!err)
 803						goto retry;
 804				}
 805			}
 806			if (err)
 807				return err;
 808		}
 809
 810		list_for_each_entry(ev, &eb->unbound, bind_link) {
 811			err = eb_reserve_vma(eb, ev, pin_flags);
 812			if (err)
 813				break;
 814		}
 815
 816		if (err != -ENOSPC)
 817			break;
 818	}
 819
 820	return err;
 821}
 822
 823static int eb_select_context(struct i915_execbuffer *eb)
 824{
 825	struct i915_gem_context *ctx;
 826
 827	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
 828	if (IS_ERR(ctx))
 829		return PTR_ERR(ctx);
 830
 831	eb->gem_context = ctx;
 832	if (i915_gem_context_has_full_ppgtt(ctx))
 833		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
 834
 835	return 0;
 836}
 837
 838static int __eb_add_lut(struct i915_execbuffer *eb,
 839			u32 handle, struct i915_vma *vma)
 840{
 841	struct i915_gem_context *ctx = eb->gem_context;
 842	struct i915_lut_handle *lut;
 843	int err;
 844
 845	lut = i915_lut_handle_alloc();
 846	if (unlikely(!lut))
 847		return -ENOMEM;
 848
 849	i915_vma_get(vma);
 850	if (!atomic_fetch_inc(&vma->open_count))
 851		i915_vma_reopen(vma);
 852	lut->handle = handle;
 853	lut->ctx = ctx;
 854
 855	/* Check that the context hasn't been closed in the meantime */
 856	err = -EINTR;
 857	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
 858		if (likely(!i915_gem_context_is_closed(ctx)))
 859			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
 860		else
 861			err = -ENOENT;
 862		if (err == 0) { /* And nor has this handle */
 863			struct drm_i915_gem_object *obj = vma->obj;
 864
 865			spin_lock(&obj->lut_lock);
 866			if (idr_find(&eb->file->object_idr, handle) == obj) {
 867				list_add(&lut->obj_link, &obj->lut_list);
 868			} else {
 869				radix_tree_delete(&ctx->handles_vma, handle);
 870				err = -ENOENT;
 871			}
 872			spin_unlock(&obj->lut_lock);
 873		}
 874		mutex_unlock(&ctx->lut_mutex);
 875	}
 876	if (unlikely(err))
 877		goto err;
 878
 879	return 0;
 880
 881err:
 882	i915_vma_close(vma);
 883	i915_vma_put(vma);
 884	i915_lut_handle_free(lut);
 885	return err;
 886}
 887
 888static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
 889{
 890	struct i915_address_space *vm = eb->context->vm;
 891
 892	do {
 893		struct drm_i915_gem_object *obj;
 894		struct i915_vma *vma;
 895		int err;
 896
 897		rcu_read_lock();
 898		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
 899		if (likely(vma && vma->vm == vm))
 900			vma = i915_vma_tryget(vma);
 901		rcu_read_unlock();
 902		if (likely(vma))
 903			return vma;
 904
 905		obj = i915_gem_object_lookup(eb->file, handle);
 906		if (unlikely(!obj))
 907			return ERR_PTR(-ENOENT);
 908
 909		/*
 910		 * If the user has opted-in for protected-object tracking, make
 911		 * sure the object encryption can be used.
 912		 * We only need to do this when the object is first used with
 913		 * this context, because the context itself will be banned when
 914		 * the protected objects become invalid.
 915		 */
 916		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
 917		    i915_gem_object_is_protected(obj)) {
 918			err = intel_pxp_key_check(eb->i915->pxp, intel_bo_to_drm_bo(obj), true);
 919			if (err) {
 920				i915_gem_object_put(obj);
 921				return ERR_PTR(err);
 922			}
 923		}
 924
 925		vma = i915_vma_instance(obj, vm, NULL);
 926		if (IS_ERR(vma)) {
 927			i915_gem_object_put(obj);
 928			return vma;
 929		}
 930
 931		err = __eb_add_lut(eb, handle, vma);
 932		if (likely(!err))
 933			return vma;
 934
 935		i915_gem_object_put(obj);
 936		if (err != -EEXIST)
 937			return ERR_PTR(err);
 938	} while (1);
 939}
 940
 941static int eb_lookup_vmas(struct i915_execbuffer *eb)
 942{
 943	unsigned int i, current_batch = 0;
 944	int err = 0;
 945
 946	INIT_LIST_HEAD(&eb->relocs);
 947
 948	for (i = 0; i < eb->buffer_count; i++) {
 949		struct i915_vma *vma;
 950
 951		vma = eb_lookup_vma(eb, eb->exec[i].handle);
 952		if (IS_ERR(vma)) {
 953			err = PTR_ERR(vma);
 954			goto err;
 955		}
 956
 957		err = eb_validate_vma(eb, &eb->exec[i], vma);
 958		if (unlikely(err)) {
 959			i915_vma_put(vma);
 960			goto err;
 961		}
 962
 963		err = eb_add_vma(eb, &current_batch, i, vma);
 964		if (err)
 965			return err;
 966
 967		if (i915_gem_object_is_userptr(vma->obj)) {
 968			err = i915_gem_object_userptr_submit_init(vma->obj);
 969			if (err) {
 970				if (i + 1 < eb->buffer_count) {
 971					/*
 972					 * Execbuffer code expects last vma entry to be NULL,
 973					 * since we already initialized this entry,
 974					 * set the next value to NULL or we mess up
 975					 * cleanup handling.
 976					 */
 977					eb->vma[i + 1].vma = NULL;
 978				}
 979
 980				return err;
 981			}
 982
 983			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
 984			eb->args->flags |= __EXEC_USERPTR_USED;
 985		}
 986	}
 987
 988	return 0;
 989
 990err:
 991	eb->vma[i].vma = NULL;
 992	return err;
 993}
 994
 995static int eb_lock_vmas(struct i915_execbuffer *eb)
 996{
 997	unsigned int i;
 998	int err;
 999
1000	for (i = 0; i < eb->buffer_count; i++) {
1001		struct eb_vma *ev = &eb->vma[i];
1002		struct i915_vma *vma = ev->vma;
1003
1004		err = i915_gem_object_lock(vma->obj, &eb->ww);
1005		if (err)
1006			return err;
1007	}
1008
1009	return 0;
1010}
1011
1012static int eb_validate_vmas(struct i915_execbuffer *eb)
1013{
1014	unsigned int i;
1015	int err;
1016
1017	INIT_LIST_HEAD(&eb->unbound);
1018
1019	err = eb_lock_vmas(eb);
1020	if (err)
1021		return err;
1022
1023	for (i = 0; i < eb->buffer_count; i++) {
1024		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1025		struct eb_vma *ev = &eb->vma[i];
1026		struct i915_vma *vma = ev->vma;
1027
1028		err = eb_pin_vma(eb, entry, ev);
1029		if (err == -EDEADLK)
1030			return err;
1031
1032		if (!err) {
1033			if (entry->offset != i915_vma_offset(vma)) {
1034				entry->offset = i915_vma_offset(vma) | UPDATE;
1035				eb->args->flags |= __EXEC_HAS_RELOC;
1036			}
1037		} else {
1038			eb_unreserve_vma(ev);
1039
1040			list_add_tail(&ev->bind_link, &eb->unbound);
1041			if (drm_mm_node_allocated(&vma->node)) {
1042				err = i915_vma_unbind(vma);
1043				if (err)
1044					return err;
1045			}
1046		}
1047
1048		/* Reserve enough slots to accommodate composite fences */
1049		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1050		if (err)
1051			return err;
1052
1053		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1054			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1055	}
1056
1057	if (!list_empty(&eb->unbound))
1058		return eb_reserve(eb);
1059
1060	return 0;
1061}
1062
1063static struct eb_vma *
1064eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1065{
1066	if (eb->lut_size < 0) {
1067		if (handle >= -eb->lut_size)
1068			return NULL;
1069		return &eb->vma[handle];
1070	} else {
1071		struct hlist_head *head;
1072		struct eb_vma *ev;
1073
1074		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1075		hlist_for_each_entry(ev, head, node) {
1076			if (ev->handle == handle)
1077				return ev;
1078		}
1079		return NULL;
1080	}
1081}
1082
1083static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1084{
1085	const unsigned int count = eb->buffer_count;
1086	unsigned int i;
1087
1088	for (i = 0; i < count; i++) {
1089		struct eb_vma *ev = &eb->vma[i];
1090		struct i915_vma *vma = ev->vma;
1091
1092		if (!vma)
1093			break;
1094
1095		eb_unreserve_vma(ev);
1096
1097		if (final)
1098			i915_vma_put(vma);
1099	}
1100
1101	eb_capture_release(eb);
1102	eb_unpin_engine(eb);
1103}
1104
1105static void eb_destroy(const struct i915_execbuffer *eb)
1106{
1107	if (eb->lut_size > 0)
1108		kfree(eb->buckets);
1109}
1110
1111static u64
1112relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1113		  const struct i915_vma *target)
1114{
1115	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1116}
1117
1118static void reloc_cache_init(struct reloc_cache *cache,
1119			     struct drm_i915_private *i915)
1120{
1121	cache->page = -1;
1122	cache->vaddr = 0;
1123	/* Must be a variable in the struct to allow GCC to unroll. */
1124	cache->graphics_ver = GRAPHICS_VER(i915);
1125	cache->has_llc = HAS_LLC(i915);
1126	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1127	cache->has_fence = cache->graphics_ver < 4;
1128	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1129	cache->node.flags = 0;
1130}
1131
1132static void *unmask_page(unsigned long p)
1133{
1134	return (void *)(uintptr_t)(p & PAGE_MASK);
1135}
1136
1137static unsigned int unmask_flags(unsigned long p)
1138{
1139	return p & ~PAGE_MASK;
1140}
1141
1142#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1143
1144static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1145{
1146	struct drm_i915_private *i915 =
1147		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1148	return to_gt(i915)->ggtt;
1149}
1150
1151static void reloc_cache_unmap(struct reloc_cache *cache)
1152{
1153	void *vaddr;
1154
1155	if (!cache->vaddr)
1156		return;
1157
1158	vaddr = unmask_page(cache->vaddr);
1159	if (cache->vaddr & KMAP)
1160		kunmap_local(vaddr);
1161	else
1162		io_mapping_unmap_atomic((void __iomem *)vaddr);
1163}
1164
1165static void reloc_cache_remap(struct reloc_cache *cache,
1166			      struct drm_i915_gem_object *obj)
1167{
1168	void *vaddr;
1169
1170	if (!cache->vaddr)
1171		return;
1172
1173	if (cache->vaddr & KMAP) {
1174		struct page *page = i915_gem_object_get_page(obj, cache->page);
1175
1176		vaddr = kmap_local_page(page);
1177		cache->vaddr = unmask_flags(cache->vaddr) |
1178			(unsigned long)vaddr;
1179	} else {
1180		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1181		unsigned long offset;
1182
1183		offset = cache->node.start;
1184		if (!drm_mm_node_allocated(&cache->node))
1185			offset += cache->page << PAGE_SHIFT;
1186
1187		cache->vaddr = (unsigned long)
1188			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1189	}
1190}
1191
1192static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1193{
1194	void *vaddr;
1195
1196	if (!cache->vaddr)
1197		return;
1198
1199	vaddr = unmask_page(cache->vaddr);
1200	if (cache->vaddr & KMAP) {
1201		struct drm_i915_gem_object *obj =
1202			(struct drm_i915_gem_object *)cache->node.mm;
1203		if (cache->vaddr & CLFLUSH_AFTER)
1204			mb();
1205
1206		kunmap_local(vaddr);
1207		i915_gem_object_finish_access(obj);
1208	} else {
1209		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1210
1211		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1212		io_mapping_unmap_atomic((void __iomem *)vaddr);
1213
1214		if (drm_mm_node_allocated(&cache->node)) {
1215			ggtt->vm.clear_range(&ggtt->vm,
1216					     cache->node.start,
1217					     cache->node.size);
1218			mutex_lock(&ggtt->vm.mutex);
1219			drm_mm_remove_node(&cache->node);
1220			mutex_unlock(&ggtt->vm.mutex);
1221		} else {
1222			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1223		}
1224	}
1225
1226	cache->vaddr = 0;
1227	cache->page = -1;
1228}
1229
1230static void *reloc_kmap(struct drm_i915_gem_object *obj,
1231			struct reloc_cache *cache,
1232			unsigned long pageno)
1233{
1234	void *vaddr;
1235	struct page *page;
1236
1237	if (cache->vaddr) {
1238		kunmap_local(unmask_page(cache->vaddr));
1239	} else {
1240		unsigned int flushes;
1241		int err;
1242
1243		err = i915_gem_object_prepare_write(obj, &flushes);
1244		if (err)
1245			return ERR_PTR(err);
1246
1247		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1248		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1249
1250		cache->vaddr = flushes | KMAP;
1251		cache->node.mm = (void *)obj;
1252		if (flushes)
1253			mb();
1254	}
1255
1256	page = i915_gem_object_get_page(obj, pageno);
1257	if (!obj->mm.dirty)
1258		set_page_dirty(page);
1259
1260	vaddr = kmap_local_page(page);
1261	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1262	cache->page = pageno;
1263
1264	return vaddr;
1265}
1266
1267static void *reloc_iomap(struct i915_vma *batch,
1268			 struct i915_execbuffer *eb,
1269			 unsigned long page)
1270{
1271	struct drm_i915_gem_object *obj = batch->obj;
1272	struct reloc_cache *cache = &eb->reloc_cache;
1273	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1274	unsigned long offset;
1275	void *vaddr;
1276
1277	if (cache->vaddr) {
1278		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1279		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1280	} else {
1281		struct i915_vma *vma = ERR_PTR(-ENODEV);
1282		int err;
1283
1284		if (i915_gem_object_is_tiled(obj))
1285			return ERR_PTR(-EINVAL);
1286
1287		if (use_cpu_reloc(cache, obj))
1288			return NULL;
1289
1290		err = i915_gem_object_set_to_gtt_domain(obj, true);
1291		if (err)
1292			return ERR_PTR(err);
1293
1294		/*
1295		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1296		 * VMA from the object list because we no longer pin.
1297		 *
1298		 * Only attempt to pin the batch buffer to ggtt if the current batch
1299		 * is not inside ggtt, or the batch buffer is not misplaced.
1300		 */
1301		if (!i915_is_ggtt(batch->vm) ||
1302		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1303			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1304							  PIN_MAPPABLE |
1305							  PIN_NONBLOCK /* NOWARN */ |
1306							  PIN_NOEVICT);
1307		}
1308
1309		if (vma == ERR_PTR(-EDEADLK))
1310			return vma;
1311
1312		if (IS_ERR(vma)) {
1313			memset(&cache->node, 0, sizeof(cache->node));
1314			mutex_lock(&ggtt->vm.mutex);
1315			err = drm_mm_insert_node_in_range
1316				(&ggtt->vm.mm, &cache->node,
1317				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1318				 0, ggtt->mappable_end,
1319				 DRM_MM_INSERT_LOW);
1320			mutex_unlock(&ggtt->vm.mutex);
1321			if (err) /* no inactive aperture space, use cpu reloc */
1322				return NULL;
1323		} else {
1324			cache->node.start = i915_ggtt_offset(vma);
1325			cache->node.mm = (void *)vma;
1326		}
1327	}
1328
1329	offset = cache->node.start;
1330	if (drm_mm_node_allocated(&cache->node)) {
1331		ggtt->vm.insert_page(&ggtt->vm,
1332				     i915_gem_object_get_dma_address(obj, page),
1333				     offset,
1334				     i915_gem_get_pat_index(ggtt->vm.i915,
1335							    I915_CACHE_NONE),
1336				     0);
1337	} else {
1338		offset += page << PAGE_SHIFT;
1339	}
1340
1341	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1342							 offset);
1343	cache->page = page;
1344	cache->vaddr = (unsigned long)vaddr;
1345
1346	return vaddr;
1347}
1348
1349static void *reloc_vaddr(struct i915_vma *vma,
1350			 struct i915_execbuffer *eb,
1351			 unsigned long page)
1352{
1353	struct reloc_cache *cache = &eb->reloc_cache;
1354	void *vaddr;
1355
1356	if (cache->page == page) {
1357		vaddr = unmask_page(cache->vaddr);
1358	} else {
1359		vaddr = NULL;
1360		if ((cache->vaddr & KMAP) == 0)
1361			vaddr = reloc_iomap(vma, eb, page);
1362		if (!vaddr)
1363			vaddr = reloc_kmap(vma->obj, cache, page);
1364	}
1365
1366	return vaddr;
1367}
1368
1369static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1370{
1371	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1372		if (flushes & CLFLUSH_BEFORE)
1373			drm_clflush_virt_range(addr, sizeof(*addr));
1374
1375		*addr = value;
1376
1377		/*
1378		 * Writes to the same cacheline are serialised by the CPU
1379		 * (including clflush). On the write path, we only require
1380		 * that it hits memory in an orderly fashion and place
1381		 * mb barriers at the start and end of the relocation phase
1382		 * to ensure ordering of clflush wrt to the system.
1383		 */
1384		if (flushes & CLFLUSH_AFTER)
1385			drm_clflush_virt_range(addr, sizeof(*addr));
1386	} else
1387		*addr = value;
1388}
1389
1390static u64
1391relocate_entry(struct i915_vma *vma,
1392	       const struct drm_i915_gem_relocation_entry *reloc,
1393	       struct i915_execbuffer *eb,
1394	       const struct i915_vma *target)
1395{
1396	u64 target_addr = relocation_target(reloc, target);
1397	u64 offset = reloc->offset;
1398	bool wide = eb->reloc_cache.use_64bit_reloc;
1399	void *vaddr;
1400
1401repeat:
1402	vaddr = reloc_vaddr(vma, eb,
1403			    offset >> PAGE_SHIFT);
1404	if (IS_ERR(vaddr))
1405		return PTR_ERR(vaddr);
1406
1407	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1408	clflush_write32(vaddr + offset_in_page(offset),
1409			lower_32_bits(target_addr),
1410			eb->reloc_cache.vaddr);
1411
1412	if (wide) {
1413		offset += sizeof(u32);
1414		target_addr >>= 32;
1415		wide = false;
1416		goto repeat;
1417	}
1418
1419	return target->node.start | UPDATE;
1420}
1421
1422static u64
1423eb_relocate_entry(struct i915_execbuffer *eb,
1424		  struct eb_vma *ev,
1425		  const struct drm_i915_gem_relocation_entry *reloc)
1426{
1427	struct drm_i915_private *i915 = eb->i915;
1428	struct eb_vma *target;
1429	int err;
1430
1431	/* we've already hold a reference to all valid objects */
1432	target = eb_get_vma(eb, reloc->target_handle);
1433	if (unlikely(!target))
1434		return -ENOENT;
1435
1436	/* Validate that the target is in a valid r/w GPU domain */
1437	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1438		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1439			  "target %d offset %d "
1440			  "read %08x write %08x\n",
1441			  reloc->target_handle,
1442			  (int) reloc->offset,
1443			  reloc->read_domains,
1444			  reloc->write_domain);
1445		return -EINVAL;
1446	}
1447	if (unlikely((reloc->write_domain | reloc->read_domains)
1448		     & ~I915_GEM_GPU_DOMAINS)) {
1449		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1450			  "target %d offset %d "
1451			  "read %08x write %08x\n",
1452			  reloc->target_handle,
1453			  (int) reloc->offset,
1454			  reloc->read_domains,
1455			  reloc->write_domain);
1456		return -EINVAL;
1457	}
1458
1459	if (reloc->write_domain) {
1460		target->flags |= EXEC_OBJECT_WRITE;
1461
1462		/*
1463		 * Sandybridge PPGTT errata: We need a global gtt mapping
1464		 * for MI and pipe_control writes because the gpu doesn't
1465		 * properly redirect them through the ppgtt for non_secure
1466		 * batchbuffers.
1467		 */
1468		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1469		    GRAPHICS_VER(eb->i915) == 6 &&
1470		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1471			struct i915_vma *vma = target->vma;
1472
1473			reloc_cache_unmap(&eb->reloc_cache);
1474			mutex_lock(&vma->vm->mutex);
1475			err = i915_vma_bind(target->vma,
1476					    target->vma->obj->pat_index,
1477					    PIN_GLOBAL, NULL, NULL);
1478			mutex_unlock(&vma->vm->mutex);
1479			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1480			if (err)
1481				return err;
1482		}
1483	}
1484
1485	/*
1486	 * If the relocation already has the right value in it, no
1487	 * more work needs to be done.
1488	 */
1489	if (!DBG_FORCE_RELOC &&
1490	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1491		return 0;
1492
1493	/* Check that the relocation address is valid... */
1494	if (unlikely(reloc->offset >
1495		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1496		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1497			  "target %d offset %d size %d.\n",
1498			  reloc->target_handle,
1499			  (int)reloc->offset,
1500			  (int)ev->vma->size);
1501		return -EINVAL;
1502	}
1503	if (unlikely(reloc->offset & 3)) {
1504		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1505			  "target %d offset %d.\n",
1506			  reloc->target_handle,
1507			  (int)reloc->offset);
1508		return -EINVAL;
1509	}
1510
1511	/*
1512	 * If we write into the object, we need to force the synchronisation
1513	 * barrier, either with an asynchronous clflush or if we executed the
1514	 * patching using the GPU (though that should be serialised by the
1515	 * timeline). To be completely sure, and since we are required to
1516	 * do relocations we are already stalling, disable the user's opt
1517	 * out of our synchronisation.
1518	 */
1519	ev->flags &= ~EXEC_OBJECT_ASYNC;
1520
1521	/* and update the user's relocation entry */
1522	return relocate_entry(ev->vma, reloc, eb, target->vma);
1523}
1524
1525static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1526{
1527#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1528	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1529	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1530	struct drm_i915_gem_relocation_entry __user *urelocs =
1531		u64_to_user_ptr(entry->relocs_ptr);
1532	unsigned long remain = entry->relocation_count;
1533
1534	if (unlikely(remain > N_RELOC(INT_MAX)))
1535		return -EINVAL;
1536
1537	/*
1538	 * We must check that the entire relocation array is safe
1539	 * to read. However, if the array is not writable the user loses
1540	 * the updated relocation values.
1541	 */
1542	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1543		return -EFAULT;
1544
1545	do {
1546		struct drm_i915_gem_relocation_entry *r = stack;
1547		unsigned int count =
1548			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1549		unsigned int copied;
1550
1551		/*
1552		 * This is the fast path and we cannot handle a pagefault
1553		 * whilst holding the struct mutex lest the user pass in the
1554		 * relocations contained within a mmaped bo. For in such a case
1555		 * we, the page fault handler would call i915_gem_fault() and
1556		 * we would try to acquire the struct mutex again. Obviously
1557		 * this is bad and so lockdep complains vehemently.
1558		 */
1559		pagefault_disable();
1560		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1561		pagefault_enable();
1562		if (unlikely(copied)) {
1563			remain = -EFAULT;
1564			goto out;
1565		}
1566
1567		remain -= count;
1568		do {
1569			u64 offset = eb_relocate_entry(eb, ev, r);
1570
1571			if (likely(offset == 0)) {
1572			} else if ((s64)offset < 0) {
1573				remain = (int)offset;
1574				goto out;
1575			} else {
1576				/*
1577				 * Note that reporting an error now
1578				 * leaves everything in an inconsistent
1579				 * state as we have *already* changed
1580				 * the relocation value inside the
1581				 * object. As we have not changed the
1582				 * reloc.presumed_offset or will not
1583				 * change the execobject.offset, on the
1584				 * call we may not rewrite the value
1585				 * inside the object, leaving it
1586				 * dangling and causing a GPU hang. Unless
1587				 * userspace dynamically rebuilds the
1588				 * relocations on each execbuf rather than
1589				 * presume a static tree.
1590				 *
1591				 * We did previously check if the relocations
1592				 * were writable (access_ok), an error now
1593				 * would be a strange race with mprotect,
1594				 * having already demonstrated that we
1595				 * can read from this userspace address.
1596				 */
1597				offset = gen8_canonical_addr(offset & ~UPDATE);
1598				__put_user(offset,
1599					   &urelocs[r - stack].presumed_offset);
1600			}
1601		} while (r++, --count);
1602		urelocs += ARRAY_SIZE(stack);
1603	} while (remain);
1604out:
1605	reloc_cache_reset(&eb->reloc_cache, eb);
1606	return remain;
1607}
1608
1609static int
1610eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1611{
1612	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1613	struct drm_i915_gem_relocation_entry *relocs =
1614		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1615	unsigned int i;
1616	int err;
1617
1618	for (i = 0; i < entry->relocation_count; i++) {
1619		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1620
1621		if ((s64)offset < 0) {
1622			err = (int)offset;
1623			goto err;
1624		}
1625	}
1626	err = 0;
1627err:
1628	reloc_cache_reset(&eb->reloc_cache, eb);
1629	return err;
1630}
1631
1632static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1633{
1634	const char __user *addr, *end;
1635	unsigned long size;
1636	char __maybe_unused c;
1637
1638	size = entry->relocation_count;
1639	if (size == 0)
1640		return 0;
1641
1642	if (size > N_RELOC(INT_MAX))
1643		return -EINVAL;
1644
1645	addr = u64_to_user_ptr(entry->relocs_ptr);
1646	size *= sizeof(struct drm_i915_gem_relocation_entry);
1647	if (!access_ok(addr, size))
1648		return -EFAULT;
1649
1650	end = addr + size;
1651	for (; addr < end; addr += PAGE_SIZE) {
1652		int err = __get_user(c, addr);
1653		if (err)
1654			return err;
1655	}
1656	return __get_user(c, end - 1);
1657}
1658
1659static int eb_copy_relocations(const struct i915_execbuffer *eb)
1660{
1661	struct drm_i915_gem_relocation_entry *relocs;
1662	const unsigned int count = eb->buffer_count;
1663	unsigned int i;
1664	int err;
1665
1666	for (i = 0; i < count; i++) {
1667		const unsigned int nreloc = eb->exec[i].relocation_count;
1668		struct drm_i915_gem_relocation_entry __user *urelocs;
1669		unsigned long size;
1670		unsigned long copied;
1671
1672		if (nreloc == 0)
1673			continue;
1674
1675		err = check_relocations(&eb->exec[i]);
1676		if (err)
1677			goto err;
1678
1679		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1680		size = nreloc * sizeof(*relocs);
1681
1682		relocs = kvmalloc_array(1, size, GFP_KERNEL);
1683		if (!relocs) {
1684			err = -ENOMEM;
1685			goto err;
1686		}
1687
1688		/* copy_from_user is limited to < 4GiB */
1689		copied = 0;
1690		do {
1691			unsigned int len =
1692				min_t(u64, BIT_ULL(31), size - copied);
1693
1694			if (__copy_from_user((char *)relocs + copied,
1695					     (char __user *)urelocs + copied,
1696					     len))
1697				goto end;
1698
1699			copied += len;
1700		} while (copied < size);
1701
1702		/*
1703		 * As we do not update the known relocation offsets after
1704		 * relocating (due to the complexities in lock handling),
1705		 * we need to mark them as invalid now so that we force the
1706		 * relocation processing next time. Just in case the target
1707		 * object is evicted and then rebound into its old
1708		 * presumed_offset before the next execbuffer - if that
1709		 * happened we would make the mistake of assuming that the
1710		 * relocations were valid.
1711		 */
1712		if (!user_access_begin(urelocs, size))
1713			goto end;
1714
1715		for (copied = 0; copied < nreloc; copied++)
1716			unsafe_put_user(-1,
1717					&urelocs[copied].presumed_offset,
1718					end_user);
1719		user_access_end();
1720
1721		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1722	}
1723
1724	return 0;
1725
1726end_user:
1727	user_access_end();
1728end:
1729	kvfree(relocs);
1730	err = -EFAULT;
1731err:
1732	while (i--) {
1733		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1734		if (eb->exec[i].relocation_count)
1735			kvfree(relocs);
1736	}
1737	return err;
1738}
1739
1740static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1741{
1742	const unsigned int count = eb->buffer_count;
1743	unsigned int i;
1744
1745	for (i = 0; i < count; i++) {
1746		int err;
1747
1748		err = check_relocations(&eb->exec[i]);
1749		if (err)
1750			return err;
1751	}
1752
1753	return 0;
1754}
1755
1756static int eb_reinit_userptr(struct i915_execbuffer *eb)
1757{
1758	const unsigned int count = eb->buffer_count;
1759	unsigned int i;
1760	int ret;
1761
1762	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1763		return 0;
1764
1765	for (i = 0; i < count; i++) {
1766		struct eb_vma *ev = &eb->vma[i];
1767
1768		if (!i915_gem_object_is_userptr(ev->vma->obj))
1769			continue;
1770
1771		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1772		if (ret)
1773			return ret;
1774
1775		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1776	}
1777
1778	return 0;
1779}
1780
1781static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1782{
1783	bool have_copy = false;
1784	struct eb_vma *ev;
1785	int err = 0;
1786
1787repeat:
1788	if (signal_pending(current)) {
1789		err = -ERESTARTSYS;
1790		goto out;
1791	}
1792
1793	/* We may process another execbuffer during the unlock... */
1794	eb_release_vmas(eb, false);
1795	i915_gem_ww_ctx_fini(&eb->ww);
1796
1797	/*
1798	 * We take 3 passes through the slowpatch.
1799	 *
1800	 * 1 - we try to just prefault all the user relocation entries and
1801	 * then attempt to reuse the atomic pagefault disabled fast path again.
1802	 *
1803	 * 2 - we copy the user entries to a local buffer here outside of the
1804	 * local and allow ourselves to wait upon any rendering before
1805	 * relocations
1806	 *
1807	 * 3 - we already have a local copy of the relocation entries, but
1808	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1809	 */
1810	if (!err) {
1811		err = eb_prefault_relocations(eb);
1812	} else if (!have_copy) {
1813		err = eb_copy_relocations(eb);
1814		have_copy = err == 0;
1815	} else {
1816		cond_resched();
1817		err = 0;
1818	}
1819
1820	if (!err)
1821		err = eb_reinit_userptr(eb);
1822
1823	i915_gem_ww_ctx_init(&eb->ww, true);
1824	if (err)
1825		goto out;
1826
1827	/* reacquire the objects */
1828repeat_validate:
1829	err = eb_pin_engine(eb, false);
1830	if (err)
1831		goto err;
1832
1833	err = eb_validate_vmas(eb);
1834	if (err)
1835		goto err;
1836
1837	GEM_BUG_ON(!eb->batches[0]);
1838
1839	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1840		if (!have_copy) {
1841			err = eb_relocate_vma(eb, ev);
1842			if (err)
1843				break;
1844		} else {
1845			err = eb_relocate_vma_slow(eb, ev);
1846			if (err)
1847				break;
1848		}
1849	}
1850
1851	if (err == -EDEADLK)
1852		goto err;
1853
1854	if (err && !have_copy)
1855		goto repeat;
1856
1857	if (err)
1858		goto err;
1859
1860	/* as last step, parse the command buffer */
1861	err = eb_parse(eb);
1862	if (err)
1863		goto err;
1864
1865	/*
1866	 * Leave the user relocations as are, this is the painfully slow path,
1867	 * and we want to avoid the complication of dropping the lock whilst
1868	 * having buffers reserved in the aperture and so causing spurious
1869	 * ENOSPC for random operations.
1870	 */
1871
1872err:
1873	if (err == -EDEADLK) {
1874		eb_release_vmas(eb, false);
1875		err = i915_gem_ww_ctx_backoff(&eb->ww);
1876		if (!err)
1877			goto repeat_validate;
1878	}
1879
1880	if (err == -EAGAIN)
1881		goto repeat;
1882
1883out:
1884	if (have_copy) {
1885		const unsigned int count = eb->buffer_count;
1886		unsigned int i;
1887
1888		for (i = 0; i < count; i++) {
1889			const struct drm_i915_gem_exec_object2 *entry =
1890				&eb->exec[i];
1891			struct drm_i915_gem_relocation_entry *relocs;
1892
1893			if (!entry->relocation_count)
1894				continue;
1895
1896			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1897			kvfree(relocs);
1898		}
1899	}
1900
1901	return err;
1902}
1903
1904static int eb_relocate_parse(struct i915_execbuffer *eb)
1905{
1906	int err;
1907	bool throttle = true;
1908
1909retry:
1910	err = eb_pin_engine(eb, throttle);
1911	if (err) {
1912		if (err != -EDEADLK)
1913			return err;
1914
1915		goto err;
1916	}
1917
1918	/* only throttle once, even if we didn't need to throttle */
1919	throttle = false;
1920
1921	err = eb_validate_vmas(eb);
1922	if (err == -EAGAIN)
1923		goto slow;
1924	else if (err)
1925		goto err;
1926
1927	/* The objects are in their final locations, apply the relocations. */
1928	if (eb->args->flags & __EXEC_HAS_RELOC) {
1929		struct eb_vma *ev;
1930
1931		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1932			err = eb_relocate_vma(eb, ev);
1933			if (err)
1934				break;
1935		}
1936
1937		if (err == -EDEADLK)
1938			goto err;
1939		else if (err)
1940			goto slow;
1941	}
1942
1943	if (!err)
1944		err = eb_parse(eb);
1945
1946err:
1947	if (err == -EDEADLK) {
1948		eb_release_vmas(eb, false);
1949		err = i915_gem_ww_ctx_backoff(&eb->ww);
1950		if (!err)
1951			goto retry;
1952	}
1953
1954	return err;
1955
1956slow:
1957	err = eb_relocate_parse_slow(eb);
1958	if (err)
1959		/*
1960		 * If the user expects the execobject.offset and
1961		 * reloc.presumed_offset to be an exact match,
1962		 * as for using NO_RELOC, then we cannot update
1963		 * the execobject.offset until we have completed
1964		 * relocation.
1965		 */
1966		eb->args->flags &= ~__EXEC_HAS_RELOC;
1967
1968	return err;
1969}
1970
1971/*
1972 * Using two helper loops for the order of which requests / batches are created
1973 * and added the to backend. Requests are created in order from the parent to
1974 * the last child. Requests are added in the reverse order, from the last child
1975 * to parent. This is done for locking reasons as the timeline lock is acquired
1976 * during request creation and released when the request is added to the
1977 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1978 * the ordering.
1979 */
1980#define for_each_batch_create_order(_eb, _i) \
1981	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1982#define for_each_batch_add_order(_eb, _i) \
1983	BUILD_BUG_ON(!typecheck(int, _i)); \
1984	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1985
1986static struct i915_request *
1987eb_find_first_request_added(struct i915_execbuffer *eb)
1988{
1989	int i;
1990
1991	for_each_batch_add_order(eb, i)
1992		if (eb->requests[i])
1993			return eb->requests[i];
1994
1995	GEM_BUG_ON("Request not found");
1996
1997	return NULL;
1998}
1999
2000#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2001
2002/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2003static int eb_capture_stage(struct i915_execbuffer *eb)
2004{
2005	const unsigned int count = eb->buffer_count;
2006	unsigned int i = count, j;
2007
2008	while (i--) {
2009		struct eb_vma *ev = &eb->vma[i];
2010		struct i915_vma *vma = ev->vma;
2011		unsigned int flags = ev->flags;
2012
2013		if (!(flags & EXEC_OBJECT_CAPTURE))
2014			continue;
2015
2016		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2017		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2018			return -EINVAL;
2019
2020		for_each_batch_create_order(eb, j) {
2021			struct i915_capture_list *capture;
2022
2023			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2024			if (!capture)
2025				continue;
2026
2027			capture->next = eb->capture_lists[j];
2028			capture->vma_res = i915_vma_resource_get(vma->resource);
2029			eb->capture_lists[j] = capture;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036/* Commit once we're in the critical path */
2037static void eb_capture_commit(struct i915_execbuffer *eb)
2038{
2039	unsigned int j;
2040
2041	for_each_batch_create_order(eb, j) {
2042		struct i915_request *rq = eb->requests[j];
2043
2044		if (!rq)
2045			break;
2046
2047		rq->capture_list = eb->capture_lists[j];
2048		eb->capture_lists[j] = NULL;
2049	}
2050}
2051
2052/*
2053 * Release anything that didn't get committed due to errors.
2054 * The capture_list will otherwise be freed at request retire.
2055 */
2056static void eb_capture_release(struct i915_execbuffer *eb)
2057{
2058	unsigned int j;
2059
2060	for_each_batch_create_order(eb, j) {
2061		if (eb->capture_lists[j]) {
2062			i915_request_free_capture_list(eb->capture_lists[j]);
2063			eb->capture_lists[j] = NULL;
2064		}
2065	}
2066}
2067
2068static void eb_capture_list_clear(struct i915_execbuffer *eb)
2069{
2070	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2071}
2072
2073#else
2074
2075static int eb_capture_stage(struct i915_execbuffer *eb)
2076{
2077	return 0;
2078}
2079
2080static void eb_capture_commit(struct i915_execbuffer *eb)
2081{
2082}
2083
2084static void eb_capture_release(struct i915_execbuffer *eb)
2085{
2086}
2087
2088static void eb_capture_list_clear(struct i915_execbuffer *eb)
2089{
2090}
2091
2092#endif
2093
2094static int eb_move_to_gpu(struct i915_execbuffer *eb)
2095{
2096	const unsigned int count = eb->buffer_count;
2097	unsigned int i = count;
2098	int err = 0, j;
2099
2100	while (i--) {
2101		struct eb_vma *ev = &eb->vma[i];
2102		struct i915_vma *vma = ev->vma;
2103		unsigned int flags = ev->flags;
2104		struct drm_i915_gem_object *obj = vma->obj;
2105
2106		assert_vma_held(vma);
2107
2108		/*
2109		 * If the GPU is not _reading_ through the CPU cache, we need
2110		 * to make sure that any writes (both previous GPU writes from
2111		 * before a change in snooping levels and normal CPU writes)
2112		 * caught in that cache are flushed to main memory.
2113		 *
2114		 * We want to say
2115		 *   obj->cache_dirty &&
2116		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2117		 * but gcc's optimiser doesn't handle that as well and emits
2118		 * two jumps instead of one. Maybe one day...
2119		 *
2120		 * FIXME: There is also sync flushing in set_pages(), which
2121		 * serves a different purpose(some of the time at least).
2122		 *
2123		 * We should consider:
2124		 *
2125		 *   1. Rip out the async flush code.
2126		 *
2127		 *   2. Or make the sync flushing use the async clflush path
2128		 *   using mandatory fences underneath. Currently the below
2129		 *   async flush happens after we bind the object.
2130		 */
2131		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2132			if (i915_gem_clflush_object(obj, 0))
2133				flags &= ~EXEC_OBJECT_ASYNC;
2134		}
2135
2136		/* We only need to await on the first request */
2137		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2138			err = i915_request_await_object
2139				(eb_find_first_request_added(eb), obj,
2140				 flags & EXEC_OBJECT_WRITE);
2141		}
2142
2143		for_each_batch_add_order(eb, j) {
2144			if (err)
2145				break;
2146			if (!eb->requests[j])
2147				continue;
2148
2149			err = _i915_vma_move_to_active(vma, eb->requests[j],
2150						       j ? NULL :
2151						       eb->composite_fence ?
2152						       eb->composite_fence :
2153						       &eb->requests[j]->fence,
2154						       flags | __EXEC_OBJECT_NO_RESERVE |
2155						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2156		}
2157	}
2158
2159#ifdef CONFIG_MMU_NOTIFIER
2160	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2161		for (i = 0; i < count; i++) {
2162			struct eb_vma *ev = &eb->vma[i];
2163			struct drm_i915_gem_object *obj = ev->vma->obj;
2164
2165			if (!i915_gem_object_is_userptr(obj))
2166				continue;
2167
2168			err = i915_gem_object_userptr_submit_done(obj);
2169			if (err)
2170				break;
2171		}
2172	}
2173#endif
2174
2175	if (unlikely(err))
2176		goto err_skip;
2177
2178	/* Unconditionally flush any chipset caches (for streaming writes). */
2179	intel_gt_chipset_flush(eb->gt);
2180	eb_capture_commit(eb);
2181
2182	return 0;
2183
2184err_skip:
2185	for_each_batch_create_order(eb, j) {
2186		if (!eb->requests[j])
2187			break;
2188
2189		i915_request_set_error_once(eb->requests[j], err);
2190	}
2191	return err;
2192}
2193
2194static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2195				     struct drm_i915_gem_execbuffer2 *exec)
2196{
2197	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2198		return -EINVAL;
2199
2200	/* Kernel clipping was a DRI1 misfeature */
2201	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2202			     I915_EXEC_USE_EXTENSIONS))) {
2203		if (exec->num_cliprects || exec->cliprects_ptr)
2204			return -EINVAL;
2205	}
2206
2207	if (exec->DR4 == 0xffffffff) {
2208		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2209		exec->DR4 = 0;
2210	}
2211	if (exec->DR1 || exec->DR4)
2212		return -EINVAL;
2213
2214	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2215		return -EINVAL;
2216
2217	return 0;
2218}
2219
2220static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2221{
2222	u32 *cs;
2223	int i;
2224
2225	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2226		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2227		return -EINVAL;
2228	}
2229
2230	cs = intel_ring_begin(rq, 4 * 2 + 2);
2231	if (IS_ERR(cs))
2232		return PTR_ERR(cs);
2233
2234	*cs++ = MI_LOAD_REGISTER_IMM(4);
2235	for (i = 0; i < 4; i++) {
2236		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2237		*cs++ = 0;
2238	}
2239	*cs++ = MI_NOOP;
2240	intel_ring_advance(rq, cs);
2241
2242	return 0;
2243}
2244
2245static struct i915_vma *
2246shadow_batch_pin(struct i915_execbuffer *eb,
2247		 struct drm_i915_gem_object *obj,
2248		 struct i915_address_space *vm,
2249		 unsigned int flags)
2250{
2251	struct i915_vma *vma;
2252	int err;
2253
2254	vma = i915_vma_instance(obj, vm, NULL);
2255	if (IS_ERR(vma))
2256		return vma;
2257
2258	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2259	if (err)
2260		return ERR_PTR(err);
2261
2262	return vma;
2263}
2264
2265static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2266{
2267	/*
2268	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2269	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2270	 * hsw should have this fixed, but bdw mucks it up again. */
2271	if (eb->batch_flags & I915_DISPATCH_SECURE)
2272		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2273
2274	return NULL;
2275}
2276
2277static int eb_parse(struct i915_execbuffer *eb)
2278{
2279	struct drm_i915_private *i915 = eb->i915;
2280	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2281	struct i915_vma *shadow, *trampoline, *batch;
2282	unsigned long len;
2283	int err;
2284
2285	if (!eb_use_cmdparser(eb)) {
2286		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2287		if (IS_ERR(batch))
2288			return PTR_ERR(batch);
2289
2290		goto secure_batch;
2291	}
2292
2293	if (intel_context_is_parallel(eb->context))
2294		return -EINVAL;
2295
2296	len = eb->batch_len[0];
2297	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2298		/*
2299		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2300		 * post-scan tampering
2301		 */
2302		if (!eb->context->vm->has_read_only) {
2303			drm_dbg(&i915->drm,
2304				"Cannot prevent post-scan tampering without RO capable vm\n");
2305			return -EINVAL;
2306		}
2307	} else {
2308		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2309	}
2310	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2311		return -EINVAL;
2312
2313	if (!pool) {
2314		pool = intel_gt_get_buffer_pool(eb->gt, len,
2315						I915_MAP_WB);
2316		if (IS_ERR(pool))
2317			return PTR_ERR(pool);
2318		eb->batch_pool = pool;
2319	}
2320
2321	err = i915_gem_object_lock(pool->obj, &eb->ww);
2322	if (err)
2323		return err;
2324
2325	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2326	if (IS_ERR(shadow))
2327		return PTR_ERR(shadow);
2328
2329	intel_gt_buffer_pool_mark_used(pool);
2330	i915_gem_object_set_readonly(shadow->obj);
2331	shadow->private = pool;
2332
2333	trampoline = NULL;
2334	if (CMDPARSER_USES_GGTT(eb->i915)) {
2335		trampoline = shadow;
2336
2337		shadow = shadow_batch_pin(eb, pool->obj,
2338					  &eb->gt->ggtt->vm,
2339					  PIN_GLOBAL);
2340		if (IS_ERR(shadow))
2341			return PTR_ERR(shadow);
2342
2343		shadow->private = pool;
2344
2345		eb->batch_flags |= I915_DISPATCH_SECURE;
2346	}
2347
2348	batch = eb_dispatch_secure(eb, shadow);
2349	if (IS_ERR(batch))
2350		return PTR_ERR(batch);
2351
2352	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2353	if (err)
2354		return err;
2355
2356	err = intel_engine_cmd_parser(eb->context->engine,
2357				      eb->batches[0]->vma,
2358				      eb->batch_start_offset,
2359				      eb->batch_len[0],
2360				      shadow, trampoline);
2361	if (err)
2362		return err;
2363
2364	eb->batches[0] = &eb->vma[eb->buffer_count++];
2365	eb->batches[0]->vma = i915_vma_get(shadow);
2366	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2367
2368	eb->trampoline = trampoline;
2369	eb->batch_start_offset = 0;
2370
2371secure_batch:
2372	if (batch) {
2373		if (intel_context_is_parallel(eb->context))
2374			return -EINVAL;
2375
2376		eb->batches[0] = &eb->vma[eb->buffer_count++];
2377		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2378		eb->batches[0]->vma = i915_vma_get(batch);
2379	}
2380	return 0;
2381}
2382
2383static int eb_request_submit(struct i915_execbuffer *eb,
2384			     struct i915_request *rq,
2385			     struct i915_vma *batch,
2386			     u64 batch_len)
2387{
2388	int err;
2389
2390	if (intel_context_nopreempt(rq->context))
2391		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2392
2393	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2394		err = i915_reset_gen7_sol_offsets(rq);
2395		if (err)
2396			return err;
2397	}
2398
2399	/*
2400	 * After we completed waiting for other engines (using HW semaphores)
2401	 * then we can signal that this request/batch is ready to run. This
2402	 * allows us to determine if the batch is still waiting on the GPU
2403	 * or actually running by checking the breadcrumb.
2404	 */
2405	if (rq->context->engine->emit_init_breadcrumb) {
2406		err = rq->context->engine->emit_init_breadcrumb(rq);
2407		if (err)
2408			return err;
2409	}
2410
2411	err = rq->context->engine->emit_bb_start(rq,
2412						 i915_vma_offset(batch) +
2413						 eb->batch_start_offset,
2414						 batch_len,
2415						 eb->batch_flags);
2416	if (err)
2417		return err;
2418
2419	if (eb->trampoline) {
2420		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2421		GEM_BUG_ON(eb->batch_start_offset);
2422		err = rq->context->engine->emit_bb_start(rq,
2423							 i915_vma_offset(eb->trampoline) +
2424							 batch_len, 0, 0);
2425		if (err)
2426			return err;
2427	}
2428
2429	return 0;
2430}
2431
2432static int eb_submit(struct i915_execbuffer *eb)
2433{
2434	unsigned int i;
2435	int err;
2436
2437	err = eb_move_to_gpu(eb);
2438
2439	for_each_batch_create_order(eb, i) {
2440		if (!eb->requests[i])
2441			break;
2442
2443		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2444		if (!err)
2445			err = eb_request_submit(eb, eb->requests[i],
2446						eb->batches[i]->vma,
2447						eb->batch_len[i]);
2448	}
2449
2450	return err;
2451}
2452
2453/*
2454 * Find one BSD ring to dispatch the corresponding BSD command.
2455 * The engine index is returned.
2456 */
2457static unsigned int
2458gen8_dispatch_bsd_engine(struct drm_i915_private *i915,
2459			 struct drm_file *file)
2460{
2461	struct drm_i915_file_private *file_priv = file->driver_priv;
2462
2463	/* Check whether the file_priv has already selected one ring. */
2464	if ((int)file_priv->bsd_engine < 0)
2465		file_priv->bsd_engine =
2466			get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2467
2468	return file_priv->bsd_engine;
2469}
2470
2471static const enum intel_engine_id user_ring_map[] = {
2472	[I915_EXEC_DEFAULT]	= RCS0,
2473	[I915_EXEC_RENDER]	= RCS0,
2474	[I915_EXEC_BLT]		= BCS0,
2475	[I915_EXEC_BSD]		= VCS0,
2476	[I915_EXEC_VEBOX]	= VECS0
2477};
2478
2479static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2480{
2481	struct intel_ring *ring = ce->ring;
2482	struct intel_timeline *tl = ce->timeline;
2483	struct i915_request *rq;
2484
2485	/*
2486	 * Completely unscientific finger-in-the-air estimates for suitable
2487	 * maximum user request size (to avoid blocking) and then backoff.
2488	 */
2489	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2490		return NULL;
2491
2492	/*
2493	 * Find a request that after waiting upon, there will be at least half
2494	 * the ring available. The hysteresis allows us to compete for the
2495	 * shared ring and should mean that we sleep less often prior to
2496	 * claiming our resources, but not so long that the ring completely
2497	 * drains before we can submit our next request.
2498	 */
2499	list_for_each_entry(rq, &tl->requests, link) {
2500		if (rq->ring != ring)
2501			continue;
2502
2503		if (__intel_ring_space(rq->postfix,
2504				       ring->emit, ring->size) > ring->size / 2)
2505			break;
2506	}
2507	if (&rq->link == &tl->requests)
2508		return NULL; /* weird, we will check again later for real */
2509
2510	return i915_request_get(rq);
2511}
2512
2513static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2514			   bool throttle)
2515{
2516	struct intel_timeline *tl;
2517	struct i915_request *rq = NULL;
2518
2519	/*
2520	 * Take a local wakeref for preparing to dispatch the execbuf as
2521	 * we expect to access the hardware fairly frequently in the
2522	 * process, and require the engine to be kept awake between accesses.
2523	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2524	 * until the timeline is idle, which in turn releases the wakeref
2525	 * taken on the engine, and the parent device.
2526	 */
2527	tl = intel_context_timeline_lock(ce);
2528	if (IS_ERR(tl))
2529		return PTR_ERR(tl);
2530
2531	intel_context_enter(ce);
2532	if (throttle)
2533		rq = eb_throttle(eb, ce);
2534	intel_context_timeline_unlock(tl);
2535
2536	if (rq) {
2537		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2538		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2539
2540		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2541				      timeout) < 0) {
2542			i915_request_put(rq);
2543
2544			/*
2545			 * Error path, cannot use intel_context_timeline_lock as
2546			 * that is user interruptable and this clean up step
2547			 * must be done.
2548			 */
2549			mutex_lock(&ce->timeline->mutex);
2550			intel_context_exit(ce);
2551			mutex_unlock(&ce->timeline->mutex);
2552
2553			if (nonblock)
2554				return -EWOULDBLOCK;
2555			else
2556				return -EINTR;
2557		}
2558		i915_request_put(rq);
2559	}
2560
2561	return 0;
2562}
2563
2564static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2565{
2566	struct intel_context *ce = eb->context, *child;
2567	int err;
2568	int i = 0, j = 0;
2569
2570	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2571
2572	if (unlikely(intel_context_is_banned(ce)))
2573		return -EIO;
2574
2575	/*
2576	 * Pinning the contexts may generate requests in order to acquire
2577	 * GGTT space, so do this first before we reserve a seqno for
2578	 * ourselves.
2579	 */
2580	err = intel_context_pin_ww(ce, &eb->ww);
2581	if (err)
2582		return err;
2583	for_each_child(ce, child) {
2584		err = intel_context_pin_ww(child, &eb->ww);
2585		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2586	}
2587
2588	for_each_child(ce, child) {
2589		err = eb_pin_timeline(eb, child, throttle);
2590		if (err)
2591			goto unwind;
2592		++i;
2593	}
2594	err = eb_pin_timeline(eb, ce, throttle);
2595	if (err)
2596		goto unwind;
2597
2598	eb->args->flags |= __EXEC_ENGINE_PINNED;
2599	return 0;
2600
2601unwind:
2602	for_each_child(ce, child) {
2603		if (j++ < i) {
2604			mutex_lock(&child->timeline->mutex);
2605			intel_context_exit(child);
2606			mutex_unlock(&child->timeline->mutex);
2607		}
2608	}
2609	for_each_child(ce, child)
2610		intel_context_unpin(child);
2611	intel_context_unpin(ce);
2612	return err;
2613}
2614
2615static void eb_unpin_engine(struct i915_execbuffer *eb)
2616{
2617	struct intel_context *ce = eb->context, *child;
2618
2619	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2620		return;
2621
2622	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2623
2624	for_each_child(ce, child) {
2625		mutex_lock(&child->timeline->mutex);
2626		intel_context_exit(child);
2627		mutex_unlock(&child->timeline->mutex);
2628
2629		intel_context_unpin(child);
2630	}
2631
2632	mutex_lock(&ce->timeline->mutex);
2633	intel_context_exit(ce);
2634	mutex_unlock(&ce->timeline->mutex);
2635
2636	intel_context_unpin(ce);
2637}
2638
2639static unsigned int
2640eb_select_legacy_ring(struct i915_execbuffer *eb)
2641{
2642	struct drm_i915_private *i915 = eb->i915;
2643	struct drm_i915_gem_execbuffer2 *args = eb->args;
2644	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2645
2646	if (user_ring_id != I915_EXEC_BSD &&
2647	    (args->flags & I915_EXEC_BSD_MASK)) {
2648		drm_dbg(&i915->drm,
2649			"execbuf with non bsd ring but with invalid "
2650			"bsd dispatch flags: %d\n", (int)(args->flags));
2651		return -1;
2652	}
2653
2654	if (user_ring_id == I915_EXEC_BSD &&
2655	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2656		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2657
2658		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2659			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2660		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2661			   bsd_idx <= I915_EXEC_BSD_RING2) {
2662			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2663			bsd_idx--;
2664		} else {
2665			drm_dbg(&i915->drm,
2666				"execbuf with unknown bsd ring: %u\n",
2667				bsd_idx);
2668			return -1;
2669		}
2670
2671		return _VCS(bsd_idx);
2672	}
2673
2674	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2675		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2676			user_ring_id);
2677		return -1;
2678	}
2679
2680	return user_ring_map[user_ring_id];
2681}
2682
2683static int
2684eb_select_engine(struct i915_execbuffer *eb)
2685{
2686	struct intel_context *ce, *child;
2687	struct intel_gt *gt;
2688	unsigned int idx;
2689	int err;
2690
2691	if (i915_gem_context_user_engines(eb->gem_context))
2692		idx = eb->args->flags & I915_EXEC_RING_MASK;
2693	else
2694		idx = eb_select_legacy_ring(eb);
2695
2696	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2697	if (IS_ERR(ce))
2698		return PTR_ERR(ce);
2699
2700	if (intel_context_is_parallel(ce)) {
2701		if (eb->buffer_count < ce->parallel.number_children + 1) {
2702			intel_context_put(ce);
2703			return -EINVAL;
2704		}
2705		if (eb->batch_start_offset || eb->args->batch_len) {
2706			intel_context_put(ce);
2707			return -EINVAL;
2708		}
2709	}
2710	eb->num_batches = ce->parallel.number_children + 1;
2711	gt = ce->engine->gt;
2712
2713	for_each_child(ce, child)
2714		intel_context_get(child);
2715	eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2716	/*
2717	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2718	 * free VMAs while execbuf ioctl is validating VMAs.
2719	 */
2720	if (gt->info.id)
2721		eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2722
2723	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2724		err = intel_context_alloc_state(ce);
2725		if (err)
2726			goto err;
2727	}
2728	for_each_child(ce, child) {
2729		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2730			err = intel_context_alloc_state(child);
2731			if (err)
2732				goto err;
2733		}
2734	}
2735
2736	/*
2737	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2738	 * EIO if the GPU is already wedged.
2739	 */
2740	err = intel_gt_terminally_wedged(ce->engine->gt);
2741	if (err)
2742		goto err;
2743
2744	if (!i915_vm_tryget(ce->vm)) {
2745		err = -ENOENT;
2746		goto err;
2747	}
2748
2749	eb->context = ce;
2750	eb->gt = ce->engine->gt;
2751
2752	/*
2753	 * Make sure engine pool stays alive even if we call intel_context_put
2754	 * during ww handling. The pool is destroyed when last pm reference
2755	 * is dropped, which breaks our -EDEADLK handling.
2756	 */
2757	return err;
2758
2759err:
2760	if (gt->info.id)
2761		intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2762
2763	intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2764	for_each_child(ce, child)
2765		intel_context_put(child);
2766	intel_context_put(ce);
2767	return err;
2768}
2769
2770static void
2771eb_put_engine(struct i915_execbuffer *eb)
2772{
2773	struct intel_context *child;
2774
2775	i915_vm_put(eb->context->vm);
2776	/*
2777	 * This works in conjunction with eb_select_engine() to prevent
2778	 * i915_vma_parked() from interfering while execbuf validates vmas.
2779	 */
2780	if (eb->gt->info.id)
2781		intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2782	intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2783	for_each_child(eb->context, child)
2784		intel_context_put(child);
2785	intel_context_put(eb->context);
2786}
2787
2788static void
2789__free_fence_array(struct eb_fence *fences, unsigned int n)
2790{
2791	while (n--) {
2792		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2793		dma_fence_put(fences[n].dma_fence);
2794		dma_fence_chain_free(fences[n].chain_fence);
2795	}
2796	kvfree(fences);
2797}
2798
2799static int
2800add_timeline_fence_array(struct i915_execbuffer *eb,
2801			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2802{
2803	struct drm_i915_gem_exec_fence __user *user_fences;
2804	u64 __user *user_values;
2805	struct eb_fence *f;
2806	u64 nfences;
2807	int err = 0;
2808
2809	nfences = timeline_fences->fence_count;
2810	if (!nfences)
2811		return 0;
2812
2813	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2814	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2815	if (nfences > min_t(unsigned long,
2816			    ULONG_MAX / sizeof(*user_fences),
2817			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2818		return -EINVAL;
2819
2820	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2821	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2822		return -EFAULT;
2823
2824	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2825	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2826		return -EFAULT;
2827
2828	f = krealloc(eb->fences,
2829		     (eb->num_fences + nfences) * sizeof(*f),
2830		     __GFP_NOWARN | GFP_KERNEL);
2831	if (!f)
2832		return -ENOMEM;
2833
2834	eb->fences = f;
2835	f += eb->num_fences;
2836
2837	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2838		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2839
2840	while (nfences--) {
2841		struct drm_i915_gem_exec_fence user_fence;
2842		struct drm_syncobj *syncobj;
2843		struct dma_fence *fence = NULL;
2844		u64 point;
2845
2846		if (__copy_from_user(&user_fence,
2847				     user_fences++,
2848				     sizeof(user_fence)))
2849			return -EFAULT;
2850
2851		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2852			return -EINVAL;
2853
2854		if (__get_user(point, user_values++))
2855			return -EFAULT;
2856
2857		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2858		if (!syncobj) {
2859			drm_dbg(&eb->i915->drm,
2860				"Invalid syncobj handle provided\n");
2861			return -ENOENT;
2862		}
2863
2864		fence = drm_syncobj_fence_get(syncobj);
2865
2866		if (!fence && user_fence.flags &&
2867		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2868			drm_dbg(&eb->i915->drm,
2869				"Syncobj handle has no fence\n");
2870			drm_syncobj_put(syncobj);
2871			return -EINVAL;
2872		}
2873
2874		if (fence)
2875			err = dma_fence_chain_find_seqno(&fence, point);
2876
2877		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878			drm_dbg(&eb->i915->drm,
2879				"Syncobj handle missing requested point %llu\n",
2880				point);
2881			dma_fence_put(fence);
2882			drm_syncobj_put(syncobj);
2883			return err;
2884		}
2885
2886		/*
2887		 * A point might have been signaled already and
2888		 * garbage collected from the timeline. In this case
2889		 * just ignore the point and carry on.
2890		 */
2891		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2892			drm_syncobj_put(syncobj);
2893			continue;
2894		}
2895
2896		/*
2897		 * For timeline syncobjs we need to preallocate chains for
2898		 * later signaling.
2899		 */
2900		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2901			/*
2902			 * Waiting and signaling the same point (when point !=
2903			 * 0) would break the timeline.
2904			 */
2905			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2906				drm_dbg(&eb->i915->drm,
2907					"Trying to wait & signal the same timeline point.\n");
2908				dma_fence_put(fence);
2909				drm_syncobj_put(syncobj);
2910				return -EINVAL;
2911			}
2912
2913			f->chain_fence = dma_fence_chain_alloc();
2914			if (!f->chain_fence) {
2915				drm_syncobj_put(syncobj);
2916				dma_fence_put(fence);
2917				return -ENOMEM;
2918			}
2919		} else {
2920			f->chain_fence = NULL;
2921		}
2922
2923		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2924		f->dma_fence = fence;
2925		f->value = point;
2926		f++;
2927		eb->num_fences++;
2928	}
2929
2930	return 0;
2931}
2932
2933static int add_fence_array(struct i915_execbuffer *eb)
2934{
2935	struct drm_i915_gem_execbuffer2 *args = eb->args;
2936	struct drm_i915_gem_exec_fence __user *user;
2937	unsigned long num_fences = args->num_cliprects;
2938	struct eb_fence *f;
2939
2940	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2941		return 0;
2942
2943	if (!num_fences)
2944		return 0;
2945
2946	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2947	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2948	if (num_fences > min_t(unsigned long,
2949			       ULONG_MAX / sizeof(*user),
2950			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2951		return -EINVAL;
2952
2953	user = u64_to_user_ptr(args->cliprects_ptr);
2954	if (!access_ok(user, num_fences * sizeof(*user)))
2955		return -EFAULT;
2956
2957	f = krealloc(eb->fences,
2958		     (eb->num_fences + num_fences) * sizeof(*f),
2959		     __GFP_NOWARN | GFP_KERNEL);
2960	if (!f)
2961		return -ENOMEM;
2962
2963	eb->fences = f;
2964	f += eb->num_fences;
2965	while (num_fences--) {
2966		struct drm_i915_gem_exec_fence user_fence;
2967		struct drm_syncobj *syncobj;
2968		struct dma_fence *fence = NULL;
2969
2970		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2971			return -EFAULT;
2972
2973		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2974			return -EINVAL;
2975
2976		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2977		if (!syncobj) {
2978			drm_dbg(&eb->i915->drm,
2979				"Invalid syncobj handle provided\n");
2980			return -ENOENT;
2981		}
2982
2983		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2984			fence = drm_syncobj_fence_get(syncobj);
2985			if (!fence) {
2986				drm_dbg(&eb->i915->drm,
2987					"Syncobj handle has no fence\n");
2988				drm_syncobj_put(syncobj);
2989				return -EINVAL;
2990			}
2991		}
2992
2993		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2994			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2995
2996		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2997		f->dma_fence = fence;
2998		f->value = 0;
2999		f->chain_fence = NULL;
3000		f++;
3001		eb->num_fences++;
3002	}
3003
3004	return 0;
3005}
3006
3007static void put_fence_array(struct eb_fence *fences, int num_fences)
3008{
3009	if (fences)
3010		__free_fence_array(fences, num_fences);
3011}
3012
3013static int
3014await_fence_array(struct i915_execbuffer *eb,
3015		  struct i915_request *rq)
3016{
3017	unsigned int n;
3018	int err;
3019
3020	for (n = 0; n < eb->num_fences; n++) {
3021		if (!eb->fences[n].dma_fence)
3022			continue;
3023
3024		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3025		if (err < 0)
3026			return err;
3027	}
3028
3029	return 0;
3030}
3031
3032static void signal_fence_array(const struct i915_execbuffer *eb,
3033			       struct dma_fence * const fence)
3034{
3035	unsigned int n;
3036
3037	for (n = 0; n < eb->num_fences; n++) {
3038		struct drm_syncobj *syncobj;
3039		unsigned int flags;
3040
3041		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3042		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3043			continue;
3044
3045		if (eb->fences[n].chain_fence) {
3046			drm_syncobj_add_point(syncobj,
3047					      eb->fences[n].chain_fence,
3048					      fence,
3049					      eb->fences[n].value);
3050			/*
3051			 * The chain's ownership is transferred to the
3052			 * timeline.
3053			 */
3054			eb->fences[n].chain_fence = NULL;
3055		} else {
3056			drm_syncobj_replace_fence(syncobj, fence);
3057		}
3058	}
3059}
3060
3061static int
3062parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3063{
3064	struct i915_execbuffer *eb = data;
3065	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3066
3067	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3068		return -EFAULT;
3069
3070	return add_timeline_fence_array(eb, &timeline_fences);
3071}
3072
3073static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3074{
3075	struct i915_request *rq, *rn;
3076
3077	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3078		if (rq == end || !i915_request_retire(rq))
3079			break;
3080}
3081
3082static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3083			  int err, bool last_parallel)
3084{
3085	struct intel_timeline * const tl = i915_request_timeline(rq);
3086	struct i915_sched_attr attr = {};
3087	struct i915_request *prev;
3088
3089	lockdep_assert_held(&tl->mutex);
3090	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3091
3092	trace_i915_request_add(rq);
3093
3094	prev = __i915_request_commit(rq);
3095
3096	/* Check that the context wasn't destroyed before submission */
3097	if (likely(!intel_context_is_closed(eb->context))) {
3098		attr = eb->gem_context->sched;
3099	} else {
3100		/* Serialise with context_close via the add_to_timeline */
3101		i915_request_set_error_once(rq, -ENOENT);
3102		__i915_request_skip(rq);
3103		err = -ENOENT; /* override any transient errors */
3104	}
3105
3106	if (intel_context_is_parallel(eb->context)) {
3107		if (err) {
3108			__i915_request_skip(rq);
3109			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3110				&rq->fence.flags);
3111		}
3112		if (last_parallel)
3113			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3114				&rq->fence.flags);
3115	}
3116
3117	__i915_request_queue(rq, &attr);
3118
3119	/* Try to clean up the client's timeline after submitting the request */
3120	if (prev)
3121		retire_requests(tl, prev);
3122
3123	mutex_unlock(&tl->mutex);
3124
3125	return err;
3126}
3127
3128static int eb_requests_add(struct i915_execbuffer *eb, int err)
3129{
3130	int i;
3131
3132	/*
3133	 * We iterate in reverse order of creation to release timeline mutexes in
3134	 * same order.
3135	 */
3136	for_each_batch_add_order(eb, i) {
3137		struct i915_request *rq = eb->requests[i];
3138
3139		if (!rq)
3140			continue;
3141		err |= eb_request_add(eb, rq, err, i == 0);
3142	}
3143
3144	return err;
3145}
3146
3147static const i915_user_extension_fn execbuf_extensions[] = {
3148	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3149};
3150
3151static int
3152parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3153			  struct i915_execbuffer *eb)
3154{
3155	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3156		return 0;
3157
3158	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3159	 * have another flag also using it at the same time.
3160	 */
3161	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3162		return -EINVAL;
3163
3164	if (args->num_cliprects != 0)
3165		return -EINVAL;
3166
3167	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3168				    execbuf_extensions,
3169				    ARRAY_SIZE(execbuf_extensions),
3170				    eb);
3171}
3172
3173static void eb_requests_get(struct i915_execbuffer *eb)
3174{
3175	unsigned int i;
3176
3177	for_each_batch_create_order(eb, i) {
3178		if (!eb->requests[i])
3179			break;
3180
3181		i915_request_get(eb->requests[i]);
3182	}
3183}
3184
3185static void eb_requests_put(struct i915_execbuffer *eb)
3186{
3187	unsigned int i;
3188
3189	for_each_batch_create_order(eb, i) {
3190		if (!eb->requests[i])
3191			break;
3192
3193		i915_request_put(eb->requests[i]);
3194	}
3195}
3196
3197static struct sync_file *
3198eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3199{
3200	struct sync_file *out_fence = NULL;
3201	struct dma_fence_array *fence_array;
3202	struct dma_fence **fences;
3203	unsigned int i;
3204
3205	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3206
3207	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3208	if (!fences)
3209		return ERR_PTR(-ENOMEM);
3210
3211	for_each_batch_create_order(eb, i) {
3212		fences[i] = &eb->requests[i]->fence;
3213		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3214			  &eb->requests[i]->fence.flags);
3215	}
3216
3217	fence_array = dma_fence_array_create(eb->num_batches,
3218					     fences,
3219					     eb->context->parallel.fence_context,
3220					     eb->context->parallel.seqno++,
3221					     false);
3222	if (!fence_array) {
3223		kfree(fences);
3224		return ERR_PTR(-ENOMEM);
3225	}
3226
3227	/* Move ownership to the dma_fence_array created above */
3228	for_each_batch_create_order(eb, i)
3229		dma_fence_get(fences[i]);
3230
3231	if (out_fence_fd != -1) {
3232		out_fence = sync_file_create(&fence_array->base);
3233		/* sync_file now owns fence_arry, drop creation ref */
3234		dma_fence_put(&fence_array->base);
3235		if (!out_fence)
3236			return ERR_PTR(-ENOMEM);
3237	}
3238
3239	eb->composite_fence = &fence_array->base;
3240
3241	return out_fence;
3242}
3243
3244static struct sync_file *
3245eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3246	      struct dma_fence *in_fence, int out_fence_fd)
3247{
3248	struct sync_file *out_fence = NULL;
3249	int err;
3250
3251	if (unlikely(eb->gem_context->syncobj)) {
3252		struct dma_fence *fence;
3253
3254		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3255		err = i915_request_await_dma_fence(rq, fence);
3256		dma_fence_put(fence);
3257		if (err)
3258			return ERR_PTR(err);
3259	}
3260
3261	if (in_fence) {
3262		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3263			err = i915_request_await_execution(rq, in_fence);
3264		else
3265			err = i915_request_await_dma_fence(rq, in_fence);
3266		if (err < 0)
3267			return ERR_PTR(err);
3268	}
3269
3270	if (eb->fences) {
3271		err = await_fence_array(eb, rq);
3272		if (err)
3273			return ERR_PTR(err);
3274	}
3275
3276	if (intel_context_is_parallel(eb->context)) {
3277		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3278		if (IS_ERR(out_fence))
3279			return ERR_PTR(-ENOMEM);
3280	} else if (out_fence_fd != -1) {
3281		out_fence = sync_file_create(&rq->fence);
3282		if (!out_fence)
3283			return ERR_PTR(-ENOMEM);
3284	}
3285
3286	return out_fence;
3287}
3288
3289static struct intel_context *
3290eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3291{
3292	struct intel_context *child;
3293
3294	if (likely(context_number == 0))
3295		return eb->context;
3296
3297	for_each_child(eb->context, child)
3298		if (!--context_number)
3299			return child;
3300
3301	GEM_BUG_ON("Context not found");
3302
3303	return NULL;
3304}
3305
3306static struct sync_file *
3307eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3308		   int out_fence_fd)
3309{
3310	struct sync_file *out_fence = NULL;
3311	unsigned int i;
3312
3313	for_each_batch_create_order(eb, i) {
3314		/* Allocate a request for this batch buffer nice and early. */
3315		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3316		if (IS_ERR(eb->requests[i])) {
3317			out_fence = ERR_CAST(eb->requests[i]);
3318			eb->requests[i] = NULL;
3319			return out_fence;
3320		}
3321
3322		/*
3323		 * Only the first request added (committed to backend) has to
3324		 * take the in fences into account as all subsequent requests
3325		 * will have fences inserted inbetween them.
3326		 */
3327		if (i + 1 == eb->num_batches) {
3328			out_fence = eb_fences_add(eb, eb->requests[i],
3329						  in_fence, out_fence_fd);
3330			if (IS_ERR(out_fence))
3331				return out_fence;
3332		}
3333
3334		/*
3335		 * Not really on stack, but we don't want to call
3336		 * kfree on the batch_snapshot when we put it, so use the
3337		 * _onstack interface.
3338		 */
3339		if (eb->batches[i]->vma)
3340			eb->requests[i]->batch_res =
3341				i915_vma_resource_get(eb->batches[i]->vma->resource);
3342		if (eb->batch_pool) {
3343			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3344			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3345							 eb->requests[i]);
3346		}
3347	}
3348
3349	return out_fence;
3350}
3351
3352static int
3353i915_gem_do_execbuffer(struct drm_device *dev,
3354		       struct drm_file *file,
3355		       struct drm_i915_gem_execbuffer2 *args,
3356		       struct drm_i915_gem_exec_object2 *exec)
3357{
3358	struct drm_i915_private *i915 = to_i915(dev);
3359	struct i915_execbuffer eb;
3360	struct dma_fence *in_fence = NULL;
3361	struct sync_file *out_fence = NULL;
3362	int out_fence_fd = -1;
3363	int err;
3364
3365	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3366	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3367		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3368
3369	eb.i915 = i915;
3370	eb.file = file;
3371	eb.args = args;
3372	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3373		args->flags |= __EXEC_HAS_RELOC;
3374
3375	eb.exec = exec;
3376	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3377	eb.vma[0].vma = NULL;
3378	eb.batch_pool = NULL;
3379
3380	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3381	reloc_cache_init(&eb.reloc_cache, eb.i915);
3382
3383	eb.buffer_count = args->buffer_count;
3384	eb.batch_start_offset = args->batch_start_offset;
3385	eb.trampoline = NULL;
3386
3387	eb.fences = NULL;
3388	eb.num_fences = 0;
3389
3390	eb_capture_list_clear(&eb);
3391
3392	memset(eb.requests, 0, sizeof(struct i915_request *) *
3393	       ARRAY_SIZE(eb.requests));
3394	eb.composite_fence = NULL;
3395
3396	eb.batch_flags = 0;
3397	if (args->flags & I915_EXEC_SECURE) {
3398		if (GRAPHICS_VER(i915) >= 11)
3399			return -ENODEV;
3400
3401		/* Return -EPERM to trigger fallback code on old binaries. */
3402		if (!HAS_SECURE_BATCHES(i915))
3403			return -EPERM;
3404
3405		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3406			return -EPERM;
3407
3408		eb.batch_flags |= I915_DISPATCH_SECURE;
3409	}
3410	if (args->flags & I915_EXEC_IS_PINNED)
3411		eb.batch_flags |= I915_DISPATCH_PINNED;
3412
3413	err = parse_execbuf2_extensions(args, &eb);
3414	if (err)
3415		goto err_ext;
3416
3417	err = add_fence_array(&eb);
3418	if (err)
3419		goto err_ext;
3420
3421#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3422	if (args->flags & IN_FENCES) {
3423		if ((args->flags & IN_FENCES) == IN_FENCES)
3424			return -EINVAL;
3425
3426		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3427		if (!in_fence) {
3428			err = -EINVAL;
3429			goto err_ext;
3430		}
3431	}
3432#undef IN_FENCES
3433
3434	if (args->flags & I915_EXEC_FENCE_OUT) {
3435		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3436		if (out_fence_fd < 0) {
3437			err = out_fence_fd;
3438			goto err_in_fence;
3439		}
3440	}
3441
3442	err = eb_create(&eb);
3443	if (err)
3444		goto err_out_fence;
3445
3446	GEM_BUG_ON(!eb.lut_size);
3447
3448	err = eb_select_context(&eb);
3449	if (unlikely(err))
3450		goto err_destroy;
3451
3452	err = eb_select_engine(&eb);
3453	if (unlikely(err))
3454		goto err_context;
3455
3456	err = eb_lookup_vmas(&eb);
3457	if (err) {
3458		eb_release_vmas(&eb, true);
3459		goto err_engine;
3460	}
3461
3462	i915_gem_ww_ctx_init(&eb.ww, true);
3463
3464	err = eb_relocate_parse(&eb);
3465	if (err) {
3466		/*
3467		 * If the user expects the execobject.offset and
3468		 * reloc.presumed_offset to be an exact match,
3469		 * as for using NO_RELOC, then we cannot update
3470		 * the execobject.offset until we have completed
3471		 * relocation.
3472		 */
3473		args->flags &= ~__EXEC_HAS_RELOC;
3474		goto err_vma;
3475	}
3476
3477	ww_acquire_done(&eb.ww.ctx);
3478	err = eb_capture_stage(&eb);
3479	if (err)
3480		goto err_vma;
3481
3482	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3483	if (IS_ERR(out_fence)) {
3484		err = PTR_ERR(out_fence);
3485		out_fence = NULL;
3486		if (eb.requests[0])
3487			goto err_request;
3488		else
3489			goto err_vma;
3490	}
3491
3492	err = eb_submit(&eb);
3493
3494err_request:
3495	eb_requests_get(&eb);
3496	err = eb_requests_add(&eb, err);
3497
3498	if (eb.fences)
3499		signal_fence_array(&eb, eb.composite_fence ?
3500				   eb.composite_fence :
3501				   &eb.requests[0]->fence);
3502
3503	if (unlikely(eb.gem_context->syncobj)) {
3504		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3505					  eb.composite_fence ?
3506					  eb.composite_fence :
3507					  &eb.requests[0]->fence);
3508	}
3509
3510	if (out_fence) {
3511		if (err == 0) {
3512			fd_install(out_fence_fd, out_fence->file);
3513			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3514			args->rsvd2 |= (u64)out_fence_fd << 32;
3515			out_fence_fd = -1;
3516		} else {
3517			fput(out_fence->file);
3518		}
3519	}
3520
3521	if (!out_fence && eb.composite_fence)
3522		dma_fence_put(eb.composite_fence);
3523
3524	eb_requests_put(&eb);
3525
3526err_vma:
3527	eb_release_vmas(&eb, true);
3528	WARN_ON(err == -EDEADLK);
3529	i915_gem_ww_ctx_fini(&eb.ww);
3530
3531	if (eb.batch_pool)
3532		intel_gt_buffer_pool_put(eb.batch_pool);
3533err_engine:
3534	eb_put_engine(&eb);
3535err_context:
3536	i915_gem_context_put(eb.gem_context);
3537err_destroy:
3538	eb_destroy(&eb);
3539err_out_fence:
3540	if (out_fence_fd != -1)
3541		put_unused_fd(out_fence_fd);
3542err_in_fence:
3543	dma_fence_put(in_fence);
3544err_ext:
3545	put_fence_array(eb.fences, eb.num_fences);
3546	return err;
3547}
3548
3549static size_t eb_element_size(void)
3550{
3551	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3552}
3553
3554static bool check_buffer_count(size_t count)
3555{
3556	const size_t sz = eb_element_size();
3557
3558	/*
3559	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3560	 * array size (see eb_create()). Otherwise, we can accept an array as
3561	 * large as can be addressed (though use large arrays at your peril)!
3562	 */
3563
3564	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3565}
3566
3567int
3568i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3569			   struct drm_file *file)
3570{
3571	struct drm_i915_private *i915 = to_i915(dev);
3572	struct drm_i915_gem_execbuffer2 *args = data;
3573	struct drm_i915_gem_exec_object2 *exec2_list;
3574	const size_t count = args->buffer_count;
3575	int err;
3576
3577	if (!check_buffer_count(count)) {
3578		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3579		return -EINVAL;
3580	}
3581
3582	err = i915_gem_check_execbuffer(i915, args);
3583	if (err)
3584		return err;
3585
3586	/* Allocate extra slots for use by the command parser */
3587	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3588				    __GFP_NOWARN | GFP_KERNEL);
3589	if (exec2_list == NULL) {
3590		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3591			count);
3592		return -ENOMEM;
3593	}
3594	if (copy_from_user(exec2_list,
3595			   u64_to_user_ptr(args->buffers_ptr),
3596			   sizeof(*exec2_list) * count)) {
3597		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3598		kvfree(exec2_list);
3599		return -EFAULT;
3600	}
3601
3602	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3603
3604	/*
3605	 * Now that we have begun execution of the batchbuffer, we ignore
3606	 * any new error after this point. Also given that we have already
3607	 * updated the associated relocations, we try to write out the current
3608	 * object locations irrespective of any error.
3609	 */
3610	if (args->flags & __EXEC_HAS_RELOC) {
3611		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3612			u64_to_user_ptr(args->buffers_ptr);
3613		unsigned int i;
3614
3615		/* Copy the new buffer offsets back to the user's exec list. */
3616		/*
3617		 * Note: count * sizeof(*user_exec_list) does not overflow,
3618		 * because we checked 'count' in check_buffer_count().
3619		 *
3620		 * And this range already got effectively checked earlier
3621		 * when we did the "copy_from_user()" above.
3622		 */
3623		if (!user_write_access_begin(user_exec_list,
3624					     count * sizeof(*user_exec_list)))
3625			goto end;
3626
3627		for (i = 0; i < args->buffer_count; i++) {
3628			if (!(exec2_list[i].offset & UPDATE))
3629				continue;
3630
3631			exec2_list[i].offset =
3632				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3633			unsafe_put_user(exec2_list[i].offset,
3634					&user_exec_list[i].offset,
3635					end_user);
3636		}
3637end_user:
3638		user_write_access_end();
3639end:;
3640	}
3641
3642	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3643	kvfree(exec2_list);
3644	return err;
3645}