Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2008,2010 Intel Corporation
   5 */
   6
   7#include <linux/intel-iommu.h>
   8#include <linux/dma-resv.h>
   9#include <linux/sync_file.h>
  10#include <linux/uaccess.h>
  11
  12#include <drm/drm_syncobj.h>
  13
  14#include "display/intel_frontbuffer.h"
  15
  16#include "gem/i915_gem_ioctls.h"
  17#include "gt/intel_context.h"
  18#include "gt/intel_gt.h"
  19#include "gt/intel_gt_buffer_pool.h"
  20#include "gt/intel_gt_pm.h"
  21#include "gt/intel_ring.h"
  22
  23#include "i915_drv.h"
  24#include "i915_gem_clflush.h"
  25#include "i915_gem_context.h"
  26#include "i915_gem_ioctls.h"
  27#include "i915_sw_fence_work.h"
  28#include "i915_trace.h"
  29
  30struct eb_vma {
  31	struct i915_vma *vma;
  32	unsigned int flags;
  33
  34	/** This vma's place in the execbuf reservation list */
  35	struct drm_i915_gem_exec_object2 *exec;
  36	struct list_head bind_link;
  37	struct list_head reloc_link;
  38
  39	struct hlist_node node;
  40	u32 handle;
  41};
  42
  43struct eb_vma_array {
  44	struct kref kref;
  45	struct eb_vma vma[];
  46};
  47
  48enum {
  49	FORCE_CPU_RELOC = 1,
  50	FORCE_GTT_RELOC,
  51	FORCE_GPU_RELOC,
  52#define DBG_FORCE_RELOC 0 /* choose one of the above! */
  53};
  54
  55#define __EXEC_OBJECT_HAS_PIN		BIT(31)
  56#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
  57#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
  58#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
  59#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
  60
  61#define __EXEC_HAS_RELOC	BIT(31)
  62#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
  63#define UPDATE			PIN_OFFSET_FIXED
  64
  65#define BATCH_OFFSET_BIAS (256*1024)
  66
  67#define __I915_EXEC_ILLEGAL_FLAGS \
  68	(__I915_EXEC_UNKNOWN_FLAGS | \
  69	 I915_EXEC_CONSTANTS_MASK  | \
  70	 I915_EXEC_RESOURCE_STREAMER)
  71
  72/* Catch emission of unexpected errors for CI! */
  73#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
  74#undef EINVAL
  75#define EINVAL ({ \
  76	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
  77	22; \
  78})
  79#endif
  80
  81/**
  82 * DOC: User command execution
  83 *
  84 * Userspace submits commands to be executed on the GPU as an instruction
  85 * stream within a GEM object we call a batchbuffer. This instructions may
  86 * refer to other GEM objects containing auxiliary state such as kernels,
  87 * samplers, render targets and even secondary batchbuffers. Userspace does
  88 * not know where in the GPU memory these objects reside and so before the
  89 * batchbuffer is passed to the GPU for execution, those addresses in the
  90 * batchbuffer and auxiliary objects are updated. This is known as relocation,
  91 * or patching. To try and avoid having to relocate each object on the next
  92 * execution, userspace is told the location of those objects in this pass,
  93 * but this remains just a hint as the kernel may choose a new location for
  94 * any object in the future.
  95 *
  96 * At the level of talking to the hardware, submitting a batchbuffer for the
  97 * GPU to execute is to add content to a buffer from which the HW
  98 * command streamer is reading.
  99 *
 100 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 101 *    Execlists, this command is not placed on the same buffer as the
 102 *    remaining items.
 103 *
 104 * 2. Add a command to invalidate caches to the buffer.
 105 *
 106 * 3. Add a batchbuffer start command to the buffer; the start command is
 107 *    essentially a token together with the GPU address of the batchbuffer
 108 *    to be executed.
 109 *
 110 * 4. Add a pipeline flush to the buffer.
 111 *
 112 * 5. Add a memory write command to the buffer to record when the GPU
 113 *    is done executing the batchbuffer. The memory write writes the
 114 *    global sequence number of the request, ``i915_request::global_seqno``;
 115 *    the i915 driver uses the current value in the register to determine
 116 *    if the GPU has completed the batchbuffer.
 117 *
 118 * 6. Add a user interrupt command to the buffer. This command instructs
 119 *    the GPU to issue an interrupt when the command, pipeline flush and
 120 *    memory write are completed.
 121 *
 122 * 7. Inform the hardware of the additional commands added to the buffer
 123 *    (by updating the tail pointer).
 124 *
 125 * Processing an execbuf ioctl is conceptually split up into a few phases.
 126 *
 127 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 128 * 2. Reservation - Assign GPU address space for every object
 129 * 3. Relocation - Update any addresses to point to the final locations
 130 * 4. Serialisation - Order the request with respect to its dependencies
 131 * 5. Construction - Construct a request to execute the batchbuffer
 132 * 6. Submission (at some point in the future execution)
 133 *
 134 * Reserving resources for the execbuf is the most complicated phase. We
 135 * neither want to have to migrate the object in the address space, nor do
 136 * we want to have to update any relocations pointing to this object. Ideally,
 137 * we want to leave the object where it is and for all the existing relocations
 138 * to match. If the object is given a new address, or if userspace thinks the
 139 * object is elsewhere, we have to parse all the relocation entries and update
 140 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 141 * all the target addresses in all of its objects match the value in the
 142 * relocation entries and that they all match the presumed offsets given by the
 143 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 144 * moved any buffers, all the relocation entries are valid and we can skip
 145 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 146 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 147 *
 148 *      The addresses written in the objects must match the corresponding
 149 *      reloc.presumed_offset which in turn must match the corresponding
 150 *      execobject.offset.
 151 *
 152 *      Any render targets written to in the batch must be flagged with
 153 *      EXEC_OBJECT_WRITE.
 154 *
 155 *      To avoid stalling, execobject.offset should match the current
 156 *      address of that object within the active context.
 157 *
 158 * The reservation is done is multiple phases. First we try and keep any
 159 * object already bound in its current location - so as long as meets the
 160 * constraints imposed by the new execbuffer. Any object left unbound after the
 161 * first pass is then fitted into any available idle space. If an object does
 162 * not fit, all objects are removed from the reservation and the process rerun
 163 * after sorting the objects into a priority order (more difficult to fit
 164 * objects are tried first). Failing that, the entire VM is cleared and we try
 165 * to fit the execbuf once last time before concluding that it simply will not
 166 * fit.
 167 *
 168 * A small complication to all of this is that we allow userspace not only to
 169 * specify an alignment and a size for the object in the address space, but
 170 * we also allow userspace to specify the exact offset. This objects are
 171 * simpler to place (the location is known a priori) all we have to do is make
 172 * sure the space is available.
 173 *
 174 * Once all the objects are in place, patching up the buried pointers to point
 175 * to the final locations is a fairly simple job of walking over the relocation
 176 * entry arrays, looking up the right address and rewriting the value into
 177 * the object. Simple! ... The relocation entries are stored in user memory
 178 * and so to access them we have to copy them into a local buffer. That copy
 179 * has to avoid taking any pagefaults as they may lead back to a GEM object
 180 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 181 * the relocation into multiple passes. First we try to do everything within an
 182 * atomic context (avoid the pagefaults) which requires that we never wait. If
 183 * we detect that we may wait, or if we need to fault, then we have to fallback
 184 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 185 * bells yet?) Dropping the mutex means that we lose all the state we have
 186 * built up so far for the execbuf and we must reset any global data. However,
 187 * we do leave the objects pinned in their final locations - which is a
 188 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 189 * allocate and copy all the relocation entries into a large array at our
 190 * leisure, reacquire the mutex, reclaim all the objects and other state and
 191 * then proceed to update any incorrect addresses with the objects.
 192 *
 193 * As we process the relocation entries, we maintain a record of whether the
 194 * object is being written to. Using NORELOC, we expect userspace to provide
 195 * this information instead. We also check whether we can skip the relocation
 196 * by comparing the expected value inside the relocation entry with the target's
 197 * final address. If they differ, we have to map the current object and rewrite
 198 * the 4 or 8 byte pointer within.
 199 *
 200 * Serialising an execbuf is quite simple according to the rules of the GEM
 201 * ABI. Execution within each context is ordered by the order of submission.
 202 * Writes to any GEM object are in order of submission and are exclusive. Reads
 203 * from a GEM object are unordered with respect to other reads, but ordered by
 204 * writes. A write submitted after a read cannot occur before the read, and
 205 * similarly any read submitted after a write cannot occur before the write.
 206 * Writes are ordered between engines such that only one write occurs at any
 207 * time (completing any reads beforehand) - using semaphores where available
 208 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 209 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 210 * reads before starting, and any read (either using set-domain or pread) must
 211 * flush all GPU writes before starting. (Note we only employ a barrier before,
 212 * we currently rely on userspace not concurrently starting a new execution
 213 * whilst reading or writing to an object. This may be an advantage or not
 214 * depending on how much you trust userspace not to shoot themselves in the
 215 * foot.) Serialisation may just result in the request being inserted into
 216 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 217 * all dependencies are resolved.
 218 *
 219 * After all of that, is just a matter of closing the request and handing it to
 220 * the hardware (well, leaving it in a queue to be executed). However, we also
 221 * offer the ability for batchbuffers to be run with elevated privileges so
 222 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 223 * Before any batch is given extra privileges we first must check that it
 224 * contains no nefarious instructions, we check that each instruction is from
 225 * our whitelist and all registers are also from an allowed list. We first
 226 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 227 * access to it, either by the CPU or GPU as we scan it) and then parse each
 228 * instruction. If everything is ok, we set a flag telling the hardware to run
 229 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 230 */
 231
 232struct i915_execbuffer {
 233	struct drm_i915_private *i915; /** i915 backpointer */
 234	struct drm_file *file; /** per-file lookup tables and limits */
 235	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
 236	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
 237	struct eb_vma *vma;
 238
 239	struct intel_engine_cs *engine; /** engine to queue the request to */
 240	struct intel_context *context; /* logical state for the request */
 241	struct i915_gem_context *gem_context; /** caller's context */
 242
 243	struct i915_request *request; /** our request to build */
 244	struct eb_vma *batch; /** identity of the batch obj/vma */
 245	struct i915_vma *trampoline; /** trampoline used for chaining */
 246
 247	/** actual size of execobj[] as we may extend it for the cmdparser */
 248	unsigned int buffer_count;
 249
 250	/** list of vma not yet bound during reservation phase */
 251	struct list_head unbound;
 252
 253	/** list of vma that have execobj.relocation_count */
 254	struct list_head relocs;
 255
 256	/**
 257	 * Track the most recently used object for relocations, as we
 258	 * frequently have to perform multiple relocations within the same
 259	 * obj/page
 260	 */
 261	struct reloc_cache {
 262		struct drm_mm_node node; /** temporary GTT binding */
 263		unsigned long vaddr; /** Current kmap address */
 264		unsigned long page; /** Currently mapped page index */
 265		unsigned int gen; /** Cached value of INTEL_GEN */
 266		bool use_64bit_reloc : 1;
 267		bool has_llc : 1;
 268		bool has_fence : 1;
 269		bool needs_unfenced : 1;
 270
 271		struct i915_vma *target;
 272		struct i915_request *rq;
 273		struct i915_vma *rq_vma;
 274		u32 *rq_cmd;
 275		unsigned int rq_size;
 276	} reloc_cache;
 277
 278	u64 invalid_flags; /** Set of execobj.flags that are invalid */
 279	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
 280
 281	u32 batch_start_offset; /** Location within object of batch */
 282	u32 batch_len; /** Length of batch within object */
 283	u32 batch_flags; /** Flags composed for emit_bb_start() */
 284
 285	/**
 286	 * Indicate either the size of the hastable used to resolve
 287	 * relocation handles, or if negative that we are using a direct
 288	 * index into the execobj[].
 289	 */
 290	int lut_size;
 291	struct hlist_head *buckets; /** ht for relocation handles */
 292	struct eb_vma_array *array;
 293};
 294
 295static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
 296{
 297	return intel_engine_requires_cmd_parser(eb->engine) ||
 298		(intel_engine_using_cmd_parser(eb->engine) &&
 299		 eb->args->batch_len);
 300}
 301
 302static struct eb_vma_array *eb_vma_array_create(unsigned int count)
 303{
 304	struct eb_vma_array *arr;
 305
 306	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
 307	if (!arr)
 308		return NULL;
 309
 310	kref_init(&arr->kref);
 311	arr->vma[0].vma = NULL;
 312
 313	return arr;
 314}
 315
 316static inline void eb_unreserve_vma(struct eb_vma *ev)
 317{
 318	struct i915_vma *vma = ev->vma;
 319
 320	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
 321		__i915_vma_unpin_fence(vma);
 322
 323	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
 324		__i915_vma_unpin(vma);
 325
 326	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
 327		       __EXEC_OBJECT_HAS_FENCE);
 328}
 329
 330static void eb_vma_array_destroy(struct kref *kref)
 331{
 332	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
 333	struct eb_vma *ev = arr->vma;
 334
 335	while (ev->vma) {
 336		eb_unreserve_vma(ev);
 337		i915_vma_put(ev->vma);
 338		ev++;
 339	}
 340
 341	kvfree(arr);
 342}
 343
 344static void eb_vma_array_put(struct eb_vma_array *arr)
 345{
 346	kref_put(&arr->kref, eb_vma_array_destroy);
 347}
 348
 349static int eb_create(struct i915_execbuffer *eb)
 350{
 351	/* Allocate an extra slot for use by the command parser + sentinel */
 352	eb->array = eb_vma_array_create(eb->buffer_count + 2);
 353	if (!eb->array)
 354		return -ENOMEM;
 355
 356	eb->vma = eb->array->vma;
 357
 358	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
 359		unsigned int size = 1 + ilog2(eb->buffer_count);
 360
 361		/*
 362		 * Without a 1:1 association between relocation handles and
 363		 * the execobject[] index, we instead create a hashtable.
 364		 * We size it dynamically based on available memory, starting
 365		 * first with 1:1 assocative hash and scaling back until
 366		 * the allocation succeeds.
 367		 *
 368		 * Later on we use a positive lut_size to indicate we are
 369		 * using this hashtable, and a negative value to indicate a
 370		 * direct lookup.
 371		 */
 372		do {
 373			gfp_t flags;
 374
 375			/* While we can still reduce the allocation size, don't
 376			 * raise a warning and allow the allocation to fail.
 377			 * On the last pass though, we want to try as hard
 378			 * as possible to perform the allocation and warn
 379			 * if it fails.
 380			 */
 381			flags = GFP_KERNEL;
 382			if (size > 1)
 383				flags |= __GFP_NORETRY | __GFP_NOWARN;
 384
 385			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
 386					      flags);
 387			if (eb->buckets)
 388				break;
 389		} while (--size);
 390
 391		if (unlikely(!size)) {
 392			eb_vma_array_put(eb->array);
 393			return -ENOMEM;
 394		}
 395
 396		eb->lut_size = size;
 397	} else {
 398		eb->lut_size = -eb->buffer_count;
 399	}
 400
 401	return 0;
 402}
 403
 404static bool
 405eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
 406		 const struct i915_vma *vma,
 407		 unsigned int flags)
 408{
 409	if (vma->node.size < entry->pad_to_size)
 410		return true;
 411
 412	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
 413		return true;
 414
 415	if (flags & EXEC_OBJECT_PINNED &&
 416	    vma->node.start != entry->offset)
 417		return true;
 418
 419	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
 420	    vma->node.start < BATCH_OFFSET_BIAS)
 421		return true;
 422
 423	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
 424	    (vma->node.start + vma->node.size - 1) >> 32)
 425		return true;
 426
 427	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
 428	    !i915_vma_is_map_and_fenceable(vma))
 429		return true;
 430
 431	return false;
 432}
 433
 434static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
 435			unsigned int exec_flags)
 436{
 437	u64 pin_flags = 0;
 438
 439	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
 440		pin_flags |= PIN_GLOBAL;
 441
 442	/*
 443	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
 444	 * limit address to the first 4GBs for unflagged objects.
 445	 */
 446	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 447		pin_flags |= PIN_ZONE_4G;
 448
 449	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
 450		pin_flags |= PIN_MAPPABLE;
 451
 452	if (exec_flags & EXEC_OBJECT_PINNED)
 453		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
 454	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
 455		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
 456
 457	return pin_flags;
 458}
 459
 460static inline bool
 461eb_pin_vma(struct i915_execbuffer *eb,
 462	   const struct drm_i915_gem_exec_object2 *entry,
 463	   struct eb_vma *ev)
 464{
 465	struct i915_vma *vma = ev->vma;
 466	u64 pin_flags;
 467
 468	if (vma->node.size)
 469		pin_flags = vma->node.start;
 470	else
 471		pin_flags = entry->offset & PIN_OFFSET_MASK;
 472
 473	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
 474	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
 475		pin_flags |= PIN_GLOBAL;
 476
 477	/* Attempt to reuse the current location if available */
 478	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
 479		if (entry->flags & EXEC_OBJECT_PINNED)
 480			return false;
 481
 482		/* Failing that pick any _free_ space if suitable */
 483		if (unlikely(i915_vma_pin(vma,
 484					  entry->pad_to_size,
 485					  entry->alignment,
 486					  eb_pin_flags(entry, ev->flags) |
 487					  PIN_USER | PIN_NOEVICT)))
 488			return false;
 489	}
 490
 491	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 492		if (unlikely(i915_vma_pin_fence(vma))) {
 493			i915_vma_unpin(vma);
 494			return false;
 495		}
 496
 497		if (vma->fence)
 498			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 499	}
 500
 501	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 502	return !eb_vma_misplaced(entry, vma, ev->flags);
 503}
 504
 505static int
 506eb_validate_vma(struct i915_execbuffer *eb,
 507		struct drm_i915_gem_exec_object2 *entry,
 508		struct i915_vma *vma)
 509{
 510	if (unlikely(entry->flags & eb->invalid_flags))
 511		return -EINVAL;
 512
 513	if (unlikely(entry->alignment &&
 514		     !is_power_of_2_u64(entry->alignment)))
 515		return -EINVAL;
 516
 517	/*
 518	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
 519	 * any non-page-aligned or non-canonical addresses.
 520	 */
 521	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
 522		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
 523		return -EINVAL;
 524
 525	/* pad_to_size was once a reserved field, so sanitize it */
 526	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
 527		if (unlikely(offset_in_page(entry->pad_to_size)))
 528			return -EINVAL;
 529	} else {
 530		entry->pad_to_size = 0;
 531	}
 532	/*
 533	 * From drm_mm perspective address space is continuous,
 534	 * so from this point we're always using non-canonical
 535	 * form internally.
 536	 */
 537	entry->offset = gen8_noncanonical_addr(entry->offset);
 538
 539	if (!eb->reloc_cache.has_fence) {
 540		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
 541	} else {
 542		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
 543		     eb->reloc_cache.needs_unfenced) &&
 544		    i915_gem_object_is_tiled(vma->obj))
 545			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
 546	}
 547
 548	if (!(entry->flags & EXEC_OBJECT_PINNED))
 549		entry->flags |= eb->context_flags;
 550
 551	return 0;
 552}
 553
 554static void
 555eb_add_vma(struct i915_execbuffer *eb,
 556	   unsigned int i, unsigned batch_idx,
 557	   struct i915_vma *vma)
 558{
 559	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
 560	struct eb_vma *ev = &eb->vma[i];
 561
 562	GEM_BUG_ON(i915_vma_is_closed(vma));
 563
 564	ev->vma = vma;
 565	ev->exec = entry;
 566	ev->flags = entry->flags;
 567
 568	if (eb->lut_size > 0) {
 569		ev->handle = entry->handle;
 570		hlist_add_head(&ev->node,
 571			       &eb->buckets[hash_32(entry->handle,
 572						    eb->lut_size)]);
 573	}
 574
 575	if (entry->relocation_count)
 576		list_add_tail(&ev->reloc_link, &eb->relocs);
 577
 578	/*
 579	 * SNA is doing fancy tricks with compressing batch buffers, which leads
 580	 * to negative relocation deltas. Usually that works out ok since the
 581	 * relocate address is still positive, except when the batch is placed
 582	 * very low in the GTT. Ensure this doesn't happen.
 583	 *
 584	 * Note that actual hangs have only been observed on gen7, but for
 585	 * paranoia do it everywhere.
 586	 */
 587	if (i == batch_idx) {
 588		if (entry->relocation_count &&
 589		    !(ev->flags & EXEC_OBJECT_PINNED))
 590			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 591		if (eb->reloc_cache.has_fence)
 592			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
 593
 594		eb->batch = ev;
 595	}
 596
 597	if (eb_pin_vma(eb, entry, ev)) {
 598		if (entry->offset != vma->node.start) {
 599			entry->offset = vma->node.start | UPDATE;
 600			eb->args->flags |= __EXEC_HAS_RELOC;
 601		}
 602	} else {
 603		eb_unreserve_vma(ev);
 604		list_add_tail(&ev->bind_link, &eb->unbound);
 605	}
 606}
 607
 608static inline int use_cpu_reloc(const struct reloc_cache *cache,
 609				const struct drm_i915_gem_object *obj)
 610{
 611	if (!i915_gem_object_has_struct_page(obj))
 612		return false;
 613
 614	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
 615		return true;
 616
 617	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
 618		return false;
 619
 620	return (cache->has_llc ||
 621		obj->cache_dirty ||
 622		obj->cache_level != I915_CACHE_NONE);
 623}
 624
 625static int eb_reserve_vma(const struct i915_execbuffer *eb,
 626			  struct eb_vma *ev,
 627			  u64 pin_flags)
 628{
 629	struct drm_i915_gem_exec_object2 *entry = ev->exec;
 630	struct i915_vma *vma = ev->vma;
 631	int err;
 632
 633	if (drm_mm_node_allocated(&vma->node) &&
 634	    eb_vma_misplaced(entry, vma, ev->flags)) {
 635		err = i915_vma_unbind(vma);
 636		if (err)
 637			return err;
 638	}
 639
 640	err = i915_vma_pin(vma,
 641			   entry->pad_to_size, entry->alignment,
 642			   eb_pin_flags(entry, ev->flags) | pin_flags);
 643	if (err)
 644		return err;
 645
 646	if (entry->offset != vma->node.start) {
 647		entry->offset = vma->node.start | UPDATE;
 648		eb->args->flags |= __EXEC_HAS_RELOC;
 649	}
 650
 651	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 652		err = i915_vma_pin_fence(vma);
 653		if (unlikely(err)) {
 654			i915_vma_unpin(vma);
 655			return err;
 656		}
 657
 658		if (vma->fence)
 659			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 660	}
 661
 662	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 663	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
 664
 665	return 0;
 666}
 667
 668static int eb_reserve(struct i915_execbuffer *eb)
 669{
 670	const unsigned int count = eb->buffer_count;
 671	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
 672	struct list_head last;
 673	struct eb_vma *ev;
 674	unsigned int i, pass;
 675	int err = 0;
 676
 677	/*
 678	 * Attempt to pin all of the buffers into the GTT.
 679	 * This is done in 3 phases:
 680	 *
 681	 * 1a. Unbind all objects that do not match the GTT constraints for
 682	 *     the execbuffer (fenceable, mappable, alignment etc).
 683	 * 1b. Increment pin count for already bound objects.
 684	 * 2.  Bind new objects.
 685	 * 3.  Decrement pin count.
 686	 *
 687	 * This avoid unnecessary unbinding of later objects in order to make
 688	 * room for the earlier objects *unless* we need to defragment.
 689	 */
 690
 691	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
 692		return -EINTR;
 693
 694	pass = 0;
 695	do {
 696		list_for_each_entry(ev, &eb->unbound, bind_link) {
 697			err = eb_reserve_vma(eb, ev, pin_flags);
 698			if (err)
 699				break;
 700		}
 701		if (!(err == -ENOSPC || err == -EAGAIN))
 702			break;
 703
 704		/* Resort *all* the objects into priority order */
 705		INIT_LIST_HEAD(&eb->unbound);
 706		INIT_LIST_HEAD(&last);
 707		for (i = 0; i < count; i++) {
 708			unsigned int flags;
 709
 710			ev = &eb->vma[i];
 711			flags = ev->flags;
 712			if (flags & EXEC_OBJECT_PINNED &&
 713			    flags & __EXEC_OBJECT_HAS_PIN)
 714				continue;
 715
 716			eb_unreserve_vma(ev);
 717
 718			if (flags & EXEC_OBJECT_PINNED)
 719				/* Pinned must have their slot */
 720				list_add(&ev->bind_link, &eb->unbound);
 721			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
 722				/* Map require the lowest 256MiB (aperture) */
 723				list_add_tail(&ev->bind_link, &eb->unbound);
 724			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 725				/* Prioritise 4GiB region for restricted bo */
 726				list_add(&ev->bind_link, &last);
 727			else
 728				list_add_tail(&ev->bind_link, &last);
 729		}
 730		list_splice_tail(&last, &eb->unbound);
 731
 732		if (err == -EAGAIN) {
 733			mutex_unlock(&eb->i915->drm.struct_mutex);
 734			flush_workqueue(eb->i915->mm.userptr_wq);
 735			mutex_lock(&eb->i915->drm.struct_mutex);
 736			continue;
 737		}
 738
 739		switch (pass++) {
 740		case 0:
 741			break;
 742
 743		case 1:
 744			/* Too fragmented, unbind everything and retry */
 745			mutex_lock(&eb->context->vm->mutex);
 746			err = i915_gem_evict_vm(eb->context->vm);
 747			mutex_unlock(&eb->context->vm->mutex);
 748			if (err)
 749				goto unlock;
 750			break;
 751
 752		default:
 753			err = -ENOSPC;
 754			goto unlock;
 755		}
 756
 757		pin_flags = PIN_USER;
 758	} while (1);
 759
 760unlock:
 761	mutex_unlock(&eb->i915->drm.struct_mutex);
 762	return err;
 763}
 764
 765static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
 766{
 767	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
 768		return 0;
 769	else
 770		return eb->buffer_count - 1;
 771}
 772
 773static int eb_select_context(struct i915_execbuffer *eb)
 774{
 775	struct i915_gem_context *ctx;
 776
 777	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
 778	if (unlikely(!ctx))
 779		return -ENOENT;
 780
 781	eb->gem_context = ctx;
 782	if (rcu_access_pointer(ctx->vm))
 783		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
 784
 785	eb->context_flags = 0;
 786	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
 787		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
 788
 789	return 0;
 790}
 791
 792static int __eb_add_lut(struct i915_execbuffer *eb,
 793			u32 handle, struct i915_vma *vma)
 794{
 795	struct i915_gem_context *ctx = eb->gem_context;
 796	struct i915_lut_handle *lut;
 797	int err;
 798
 799	lut = i915_lut_handle_alloc();
 800	if (unlikely(!lut))
 801		return -ENOMEM;
 802
 803	i915_vma_get(vma);
 804	if (!atomic_fetch_inc(&vma->open_count))
 805		i915_vma_reopen(vma);
 806	lut->handle = handle;
 807	lut->ctx = ctx;
 808
 809	/* Check that the context hasn't been closed in the meantime */
 810	err = -EINTR;
 811	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
 812		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
 813
 814		if (unlikely(vm && vma->vm != vm))
 815			err = -EAGAIN; /* user racing with ctx set-vm */
 816		else if (likely(!i915_gem_context_is_closed(ctx)))
 817			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
 818		else
 819			err = -ENOENT;
 820		if (err == 0) { /* And nor has this handle */
 821			struct drm_i915_gem_object *obj = vma->obj;
 822
 823			spin_lock(&obj->lut_lock);
 824			if (idr_find(&eb->file->object_idr, handle) == obj) {
 825				list_add(&lut->obj_link, &obj->lut_list);
 826			} else {
 827				radix_tree_delete(&ctx->handles_vma, handle);
 828				err = -ENOENT;
 829			}
 830			spin_unlock(&obj->lut_lock);
 831		}
 832		mutex_unlock(&ctx->lut_mutex);
 833	}
 834	if (unlikely(err))
 835		goto err;
 836
 837	return 0;
 838
 839err:
 840	i915_vma_close(vma);
 841	i915_vma_put(vma);
 842	i915_lut_handle_free(lut);
 843	return err;
 844}
 845
 846static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
 847{
 848	struct i915_address_space *vm = eb->context->vm;
 849
 850	do {
 851		struct drm_i915_gem_object *obj;
 852		struct i915_vma *vma;
 853		int err;
 854
 855		rcu_read_lock();
 856		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
 857		if (likely(vma && vma->vm == vm))
 858			vma = i915_vma_tryget(vma);
 859		rcu_read_unlock();
 860		if (likely(vma))
 861			return vma;
 862
 863		obj = i915_gem_object_lookup(eb->file, handle);
 864		if (unlikely(!obj))
 865			return ERR_PTR(-ENOENT);
 866
 867		vma = i915_vma_instance(obj, vm, NULL);
 868		if (IS_ERR(vma)) {
 869			i915_gem_object_put(obj);
 870			return vma;
 871		}
 872
 873		err = __eb_add_lut(eb, handle, vma);
 874		if (likely(!err))
 875			return vma;
 876
 877		i915_gem_object_put(obj);
 878		if (err != -EEXIST)
 879			return ERR_PTR(err);
 880	} while (1);
 881}
 882
 883static int eb_lookup_vmas(struct i915_execbuffer *eb)
 884{
 885	unsigned int batch = eb_batch_index(eb);
 886	unsigned int i;
 887	int err = 0;
 888
 889	INIT_LIST_HEAD(&eb->relocs);
 890	INIT_LIST_HEAD(&eb->unbound);
 891
 892	for (i = 0; i < eb->buffer_count; i++) {
 893		struct i915_vma *vma;
 894
 895		vma = eb_lookup_vma(eb, eb->exec[i].handle);
 896		if (IS_ERR(vma)) {
 897			err = PTR_ERR(vma);
 898			break;
 899		}
 900
 901		err = eb_validate_vma(eb, &eb->exec[i], vma);
 902		if (unlikely(err)) {
 903			i915_vma_put(vma);
 904			break;
 905		}
 906
 907		eb_add_vma(eb, i, batch, vma);
 908	}
 909
 910	eb->vma[i].vma = NULL;
 911	return err;
 912}
 913
 914static struct eb_vma *
 915eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
 916{
 917	if (eb->lut_size < 0) {
 918		if (handle >= -eb->lut_size)
 919			return NULL;
 920		return &eb->vma[handle];
 921	} else {
 922		struct hlist_head *head;
 923		struct eb_vma *ev;
 924
 925		head = &eb->buckets[hash_32(handle, eb->lut_size)];
 926		hlist_for_each_entry(ev, head, node) {
 927			if (ev->handle == handle)
 928				return ev;
 929		}
 930		return NULL;
 931	}
 932}
 933
 934static void eb_destroy(const struct i915_execbuffer *eb)
 935{
 936	GEM_BUG_ON(eb->reloc_cache.rq);
 937
 938	if (eb->array)
 939		eb_vma_array_put(eb->array);
 940
 941	if (eb->lut_size > 0)
 942		kfree(eb->buckets);
 943}
 944
 945static inline u64
 946relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
 947		  const struct i915_vma *target)
 948{
 949	return gen8_canonical_addr((int)reloc->delta + target->node.start);
 950}
 951
 952static void reloc_cache_init(struct reloc_cache *cache,
 953			     struct drm_i915_private *i915)
 954{
 955	cache->page = -1;
 956	cache->vaddr = 0;
 957	/* Must be a variable in the struct to allow GCC to unroll. */
 958	cache->gen = INTEL_GEN(i915);
 959	cache->has_llc = HAS_LLC(i915);
 960	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
 961	cache->has_fence = cache->gen < 4;
 962	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
 963	cache->node.flags = 0;
 964	cache->rq = NULL;
 965	cache->target = NULL;
 966}
 967
 968static inline void *unmask_page(unsigned long p)
 969{
 970	return (void *)(uintptr_t)(p & PAGE_MASK);
 971}
 972
 973static inline unsigned int unmask_flags(unsigned long p)
 974{
 975	return p & ~PAGE_MASK;
 976}
 977
 978#define KMAP 0x4 /* after CLFLUSH_FLAGS */
 979
 980static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
 981{
 982	struct drm_i915_private *i915 =
 983		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
 984	return &i915->ggtt;
 985}
 986
 987#define RELOC_TAIL 4
 988
 989static int reloc_gpu_chain(struct reloc_cache *cache)
 990{
 991	struct intel_gt_buffer_pool_node *pool;
 992	struct i915_request *rq = cache->rq;
 993	struct i915_vma *batch;
 994	u32 *cmd;
 995	int err;
 996
 997	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
 998	if (IS_ERR(pool))
 999		return PTR_ERR(pool);
1000
1001	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
1002	if (IS_ERR(batch)) {
1003		err = PTR_ERR(batch);
1004		goto out_pool;
1005	}
1006
1007	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1008	if (err)
1009		goto out_pool;
1010
1011	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
1012	cmd = cache->rq_cmd + cache->rq_size;
1013	*cmd++ = MI_ARB_CHECK;
1014	if (cache->gen >= 8)
1015		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
1016	else if (cache->gen >= 6)
1017		*cmd++ = MI_BATCH_BUFFER_START;
1018	else
1019		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1020	*cmd++ = lower_32_bits(batch->node.start);
1021	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
1022	i915_gem_object_flush_map(cache->rq_vma->obj);
1023	i915_gem_object_unpin_map(cache->rq_vma->obj);
1024	cache->rq_vma = NULL;
1025
1026	err = intel_gt_buffer_pool_mark_active(pool, rq);
1027	if (err == 0) {
1028		i915_vma_lock(batch);
1029		err = i915_request_await_object(rq, batch->obj, false);
1030		if (err == 0)
1031			err = i915_vma_move_to_active(batch, rq, 0);
1032		i915_vma_unlock(batch);
1033	}
1034	i915_vma_unpin(batch);
1035	if (err)
1036		goto out_pool;
1037
1038	cmd = i915_gem_object_pin_map(batch->obj,
1039				      cache->has_llc ?
1040				      I915_MAP_FORCE_WB :
1041				      I915_MAP_FORCE_WC);
1042	if (IS_ERR(cmd)) {
1043		err = PTR_ERR(cmd);
1044		goto out_pool;
1045	}
1046
1047	/* Return with batch mapping (cmd) still pinned */
1048	cache->rq_cmd = cmd;
1049	cache->rq_size = 0;
1050	cache->rq_vma = batch;
1051
1052out_pool:
1053	intel_gt_buffer_pool_put(pool);
1054	return err;
1055}
1056
1057static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
1058{
1059	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
1060}
1061
1062static int reloc_gpu_flush(struct reloc_cache *cache)
1063{
1064	struct i915_request *rq;
1065	int err;
1066
1067	rq = fetch_and_zero(&cache->rq);
1068	if (!rq)
1069		return 0;
1070
1071	if (cache->rq_vma) {
1072		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1073
1074		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1075		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1076
1077		__i915_gem_object_flush_map(obj,
1078					    0, sizeof(u32) * cache->rq_size);
1079		i915_gem_object_unpin_map(obj);
1080	}
1081
1082	err = 0;
1083	if (rq->engine->emit_init_breadcrumb)
1084		err = rq->engine->emit_init_breadcrumb(rq);
1085	if (!err)
1086		err = rq->engine->emit_bb_start(rq,
1087						rq->batch->node.start,
1088						PAGE_SIZE,
1089						reloc_bb_flags(cache));
1090	if (err)
1091		i915_request_set_error_once(rq, err);
1092
1093	intel_gt_chipset_flush(rq->engine->gt);
1094	i915_request_add(rq);
1095
1096	return err;
1097}
1098
1099static void reloc_cache_reset(struct reloc_cache *cache)
1100{
1101	void *vaddr;
1102
1103	if (!cache->vaddr)
1104		return;
1105
1106	vaddr = unmask_page(cache->vaddr);
1107	if (cache->vaddr & KMAP) {
1108		if (cache->vaddr & CLFLUSH_AFTER)
1109			mb();
1110
1111		kunmap_atomic(vaddr);
1112		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1113	} else {
1114		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1115
1116		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1117		io_mapping_unmap_atomic((void __iomem *)vaddr);
1118
1119		if (drm_mm_node_allocated(&cache->node)) {
1120			ggtt->vm.clear_range(&ggtt->vm,
1121					     cache->node.start,
1122					     cache->node.size);
1123			mutex_lock(&ggtt->vm.mutex);
1124			drm_mm_remove_node(&cache->node);
1125			mutex_unlock(&ggtt->vm.mutex);
1126		} else {
1127			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1128		}
1129	}
1130
1131	cache->vaddr = 0;
1132	cache->page = -1;
1133}
1134
1135static void *reloc_kmap(struct drm_i915_gem_object *obj,
1136			struct reloc_cache *cache,
1137			unsigned long page)
1138{
1139	void *vaddr;
1140
1141	if (cache->vaddr) {
1142		kunmap_atomic(unmask_page(cache->vaddr));
1143	} else {
1144		unsigned int flushes;
1145		int err;
1146
1147		err = i915_gem_object_prepare_write(obj, &flushes);
1148		if (err)
1149			return ERR_PTR(err);
1150
1151		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1152		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1153
1154		cache->vaddr = flushes | KMAP;
1155		cache->node.mm = (void *)obj;
1156		if (flushes)
1157			mb();
1158	}
1159
1160	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1161	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1162	cache->page = page;
1163
1164	return vaddr;
1165}
1166
1167static void *reloc_iomap(struct drm_i915_gem_object *obj,
1168			 struct reloc_cache *cache,
1169			 unsigned long page)
1170{
1171	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1172	unsigned long offset;
1173	void *vaddr;
1174
1175	if (cache->vaddr) {
1176		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1177		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1178	} else {
1179		struct i915_vma *vma;
1180		int err;
1181
1182		if (i915_gem_object_is_tiled(obj))
1183			return ERR_PTR(-EINVAL);
1184
1185		if (use_cpu_reloc(cache, obj))
1186			return NULL;
1187
1188		i915_gem_object_lock(obj);
1189		err = i915_gem_object_set_to_gtt_domain(obj, true);
1190		i915_gem_object_unlock(obj);
1191		if (err)
1192			return ERR_PTR(err);
1193
1194		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1195					       PIN_MAPPABLE |
1196					       PIN_NONBLOCK /* NOWARN */ |
1197					       PIN_NOEVICT);
1198		if (IS_ERR(vma)) {
1199			memset(&cache->node, 0, sizeof(cache->node));
1200			mutex_lock(&ggtt->vm.mutex);
1201			err = drm_mm_insert_node_in_range
1202				(&ggtt->vm.mm, &cache->node,
1203				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1204				 0, ggtt->mappable_end,
1205				 DRM_MM_INSERT_LOW);
1206			mutex_unlock(&ggtt->vm.mutex);
1207			if (err) /* no inactive aperture space, use cpu reloc */
1208				return NULL;
1209		} else {
1210			cache->node.start = vma->node.start;
1211			cache->node.mm = (void *)vma;
1212		}
1213	}
1214
1215	offset = cache->node.start;
1216	if (drm_mm_node_allocated(&cache->node)) {
1217		ggtt->vm.insert_page(&ggtt->vm,
1218				     i915_gem_object_get_dma_address(obj, page),
1219				     offset, I915_CACHE_NONE, 0);
1220	} else {
1221		offset += page << PAGE_SHIFT;
1222	}
1223
1224	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1225							 offset);
1226	cache->page = page;
1227	cache->vaddr = (unsigned long)vaddr;
1228
1229	return vaddr;
1230}
1231
1232static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1233			 struct reloc_cache *cache,
1234			 unsigned long page)
1235{
1236	void *vaddr;
1237
1238	if (cache->page == page) {
1239		vaddr = unmask_page(cache->vaddr);
1240	} else {
1241		vaddr = NULL;
1242		if ((cache->vaddr & KMAP) == 0)
1243			vaddr = reloc_iomap(obj, cache, page);
1244		if (!vaddr)
1245			vaddr = reloc_kmap(obj, cache, page);
1246	}
1247
1248	return vaddr;
1249}
1250
1251static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1252{
1253	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1254		if (flushes & CLFLUSH_BEFORE) {
1255			clflushopt(addr);
1256			mb();
1257		}
1258
1259		*addr = value;
1260
1261		/*
1262		 * Writes to the same cacheline are serialised by the CPU
1263		 * (including clflush). On the write path, we only require
1264		 * that it hits memory in an orderly fashion and place
1265		 * mb barriers at the start and end of the relocation phase
1266		 * to ensure ordering of clflush wrt to the system.
1267		 */
1268		if (flushes & CLFLUSH_AFTER)
1269			clflushopt(addr);
1270	} else
1271		*addr = value;
1272}
1273
1274static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1275{
1276	struct drm_i915_gem_object *obj = vma->obj;
1277	int err;
1278
1279	i915_vma_lock(vma);
1280
1281	if (obj->cache_dirty & ~obj->cache_coherent)
1282		i915_gem_clflush_object(obj, 0);
1283	obj->write_domain = 0;
1284
1285	err = i915_request_await_object(rq, vma->obj, true);
1286	if (err == 0)
1287		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1288
1289	i915_vma_unlock(vma);
1290
1291	return err;
1292}
1293
1294static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1295			     struct intel_engine_cs *engine,
1296			     unsigned int len)
1297{
1298	struct reloc_cache *cache = &eb->reloc_cache;
1299	struct intel_gt_buffer_pool_node *pool;
1300	struct i915_request *rq;
1301	struct i915_vma *batch;
1302	u32 *cmd;
1303	int err;
1304
1305	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1306	if (IS_ERR(pool))
1307		return PTR_ERR(pool);
1308
1309	cmd = i915_gem_object_pin_map(pool->obj,
1310				      cache->has_llc ?
1311				      I915_MAP_FORCE_WB :
1312				      I915_MAP_FORCE_WC);
1313	if (IS_ERR(cmd)) {
1314		err = PTR_ERR(cmd);
1315		goto out_pool;
1316	}
1317
1318	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1319	if (IS_ERR(batch)) {
1320		err = PTR_ERR(batch);
1321		goto err_unmap;
1322	}
1323
1324	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1325	if (err)
1326		goto err_unmap;
1327
1328	if (engine == eb->context->engine) {
1329		rq = i915_request_create(eb->context);
1330	} else {
1331		struct intel_context *ce;
1332
1333		ce = intel_context_create(engine);
1334		if (IS_ERR(ce)) {
1335			err = PTR_ERR(ce);
1336			goto err_unpin;
1337		}
1338
1339		i915_vm_put(ce->vm);
1340		ce->vm = i915_vm_get(eb->context->vm);
1341
1342		rq = intel_context_create_request(ce);
1343		intel_context_put(ce);
1344	}
1345	if (IS_ERR(rq)) {
1346		err = PTR_ERR(rq);
1347		goto err_unpin;
1348	}
1349
1350	err = intel_gt_buffer_pool_mark_active(pool, rq);
1351	if (err)
1352		goto err_request;
1353
1354	i915_vma_lock(batch);
1355	err = i915_request_await_object(rq, batch->obj, false);
1356	if (err == 0)
1357		err = i915_vma_move_to_active(batch, rq, 0);
1358	i915_vma_unlock(batch);
1359	if (err)
1360		goto skip_request;
1361
1362	rq->batch = batch;
1363	i915_vma_unpin(batch);
1364
1365	cache->rq = rq;
1366	cache->rq_cmd = cmd;
1367	cache->rq_size = 0;
1368	cache->rq_vma = batch;
1369
1370	/* Return with batch mapping (cmd) still pinned */
1371	goto out_pool;
1372
1373skip_request:
1374	i915_request_set_error_once(rq, err);
1375err_request:
1376	i915_request_add(rq);
1377err_unpin:
1378	i915_vma_unpin(batch);
1379err_unmap:
1380	i915_gem_object_unpin_map(pool->obj);
1381out_pool:
1382	intel_gt_buffer_pool_put(pool);
1383	return err;
1384}
1385
1386static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1387{
1388	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1389}
1390
1391static u32 *reloc_gpu(struct i915_execbuffer *eb,
1392		      struct i915_vma *vma,
1393		      unsigned int len)
1394{
1395	struct reloc_cache *cache = &eb->reloc_cache;
1396	u32 *cmd;
1397	int err;
1398
1399	if (unlikely(!cache->rq)) {
1400		struct intel_engine_cs *engine = eb->engine;
1401
1402		if (!reloc_can_use_engine(engine)) {
1403			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1404			if (!engine)
1405				return ERR_PTR(-ENODEV);
1406		}
1407
1408		err = __reloc_gpu_alloc(eb, engine, len);
1409		if (unlikely(err))
1410			return ERR_PTR(err);
1411	}
1412
1413	if (vma != cache->target) {
1414		err = reloc_move_to_gpu(cache->rq, vma);
1415		if (unlikely(err)) {
1416			i915_request_set_error_once(cache->rq, err);
1417			return ERR_PTR(err);
1418		}
1419
1420		cache->target = vma;
1421	}
1422
1423	if (unlikely(cache->rq_size + len >
1424		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
1425		err = reloc_gpu_chain(cache);
1426		if (unlikely(err)) {
1427			i915_request_set_error_once(cache->rq, err);
1428			return ERR_PTR(err);
1429		}
1430	}
1431
1432	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1433	cmd = cache->rq_cmd + cache->rq_size;
1434	cache->rq_size += len;
1435
1436	return cmd;
1437}
1438
1439static inline bool use_reloc_gpu(struct i915_vma *vma)
1440{
1441	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1442		return true;
1443
1444	if (DBG_FORCE_RELOC)
1445		return false;
1446
1447	return !dma_resv_test_signaled_rcu(vma->resv, true);
1448}
1449
1450static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1451{
1452	struct page *page;
1453	unsigned long addr;
1454
1455	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1456
1457	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1458	addr = PFN_PHYS(page_to_pfn(page));
1459	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1460
1461	return addr + offset_in_page(offset);
1462}
1463
1464static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
1465			      struct i915_vma *vma,
1466			      u64 offset,
1467			      u64 target_addr)
1468{
1469	const unsigned int gen = eb->reloc_cache.gen;
1470	unsigned int len;
1471	u32 *batch;
1472	u64 addr;
1473
1474	if (gen >= 8)
1475		len = offset & 7 ? 8 : 5;
1476	else if (gen >= 4)
1477		len = 4;
1478	else
1479		len = 3;
1480
1481	batch = reloc_gpu(eb, vma, len);
1482	if (IS_ERR(batch))
1483		return false;
1484
1485	addr = gen8_canonical_addr(vma->node.start + offset);
1486	if (gen >= 8) {
1487		if (offset & 7) {
1488			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1489			*batch++ = lower_32_bits(addr);
1490			*batch++ = upper_32_bits(addr);
1491			*batch++ = lower_32_bits(target_addr);
1492
1493			addr = gen8_canonical_addr(addr + 4);
1494
1495			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1496			*batch++ = lower_32_bits(addr);
1497			*batch++ = upper_32_bits(addr);
1498			*batch++ = upper_32_bits(target_addr);
1499		} else {
1500			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1501			*batch++ = lower_32_bits(addr);
1502			*batch++ = upper_32_bits(addr);
1503			*batch++ = lower_32_bits(target_addr);
1504			*batch++ = upper_32_bits(target_addr);
1505		}
1506	} else if (gen >= 6) {
1507		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1508		*batch++ = 0;
1509		*batch++ = addr;
1510		*batch++ = target_addr;
1511	} else if (IS_I965G(eb->i915)) {
1512		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1513		*batch++ = 0;
1514		*batch++ = vma_phys_addr(vma, offset);
1515		*batch++ = target_addr;
1516	} else if (gen >= 4) {
1517		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1518		*batch++ = 0;
1519		*batch++ = addr;
1520		*batch++ = target_addr;
1521	} else if (gen >= 3 &&
1522		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1523		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1524		*batch++ = addr;
1525		*batch++ = target_addr;
1526	} else {
1527		*batch++ = MI_STORE_DWORD_IMM;
1528		*batch++ = vma_phys_addr(vma, offset);
1529		*batch++ = target_addr;
1530	}
1531
1532	return true;
1533}
1534
1535static bool reloc_entry_gpu(struct i915_execbuffer *eb,
1536			    struct i915_vma *vma,
1537			    u64 offset,
1538			    u64 target_addr)
1539{
1540	if (eb->reloc_cache.vaddr)
1541		return false;
1542
1543	if (!use_reloc_gpu(vma))
1544		return false;
1545
1546	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1547}
1548
1549static u64
1550relocate_entry(struct i915_vma *vma,
1551	       const struct drm_i915_gem_relocation_entry *reloc,
1552	       struct i915_execbuffer *eb,
1553	       const struct i915_vma *target)
1554{
1555	u64 target_addr = relocation_target(reloc, target);
1556	u64 offset = reloc->offset;
1557
1558	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
1559		bool wide = eb->reloc_cache.use_64bit_reloc;
1560		void *vaddr;
1561
1562repeat:
1563		vaddr = reloc_vaddr(vma->obj,
1564				    &eb->reloc_cache,
1565				    offset >> PAGE_SHIFT);
1566		if (IS_ERR(vaddr))
1567			return PTR_ERR(vaddr);
1568
1569		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1570		clflush_write32(vaddr + offset_in_page(offset),
1571				lower_32_bits(target_addr),
1572				eb->reloc_cache.vaddr);
1573
1574		if (wide) {
1575			offset += sizeof(u32);
1576			target_addr >>= 32;
1577			wide = false;
1578			goto repeat;
1579		}
1580	}
1581
1582	return target->node.start | UPDATE;
1583}
1584
1585static u64
1586eb_relocate_entry(struct i915_execbuffer *eb,
1587		  struct eb_vma *ev,
1588		  const struct drm_i915_gem_relocation_entry *reloc)
1589{
1590	struct drm_i915_private *i915 = eb->i915;
1591	struct eb_vma *target;
1592	int err;
1593
1594	/* we've already hold a reference to all valid objects */
1595	target = eb_get_vma(eb, reloc->target_handle);
1596	if (unlikely(!target))
1597		return -ENOENT;
1598
1599	/* Validate that the target is in a valid r/w GPU domain */
1600	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1601		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1602			  "target %d offset %d "
1603			  "read %08x write %08x",
1604			  reloc->target_handle,
1605			  (int) reloc->offset,
1606			  reloc->read_domains,
1607			  reloc->write_domain);
1608		return -EINVAL;
1609	}
1610	if (unlikely((reloc->write_domain | reloc->read_domains)
1611		     & ~I915_GEM_GPU_DOMAINS)) {
1612		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1613			  "target %d offset %d "
1614			  "read %08x write %08x",
1615			  reloc->target_handle,
1616			  (int) reloc->offset,
1617			  reloc->read_domains,
1618			  reloc->write_domain);
1619		return -EINVAL;
1620	}
1621
1622	if (reloc->write_domain) {
1623		target->flags |= EXEC_OBJECT_WRITE;
1624
1625		/*
1626		 * Sandybridge PPGTT errata: We need a global gtt mapping
1627		 * for MI and pipe_control writes because the gpu doesn't
1628		 * properly redirect them through the ppgtt for non_secure
1629		 * batchbuffers.
1630		 */
1631		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1632		    IS_GEN(eb->i915, 6)) {
1633			err = i915_vma_bind(target->vma,
1634					    target->vma->obj->cache_level,
1635					    PIN_GLOBAL, NULL);
1636			if (err)
1637				return err;
1638		}
1639	}
1640
1641	/*
1642	 * If the relocation already has the right value in it, no
1643	 * more work needs to be done.
1644	 */
1645	if (!DBG_FORCE_RELOC &&
1646	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1647		return 0;
1648
1649	/* Check that the relocation address is valid... */
1650	if (unlikely(reloc->offset >
1651		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1652		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1653			  "target %d offset %d size %d.\n",
1654			  reloc->target_handle,
1655			  (int)reloc->offset,
1656			  (int)ev->vma->size);
1657		return -EINVAL;
1658	}
1659	if (unlikely(reloc->offset & 3)) {
1660		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1661			  "target %d offset %d.\n",
1662			  reloc->target_handle,
1663			  (int)reloc->offset);
1664		return -EINVAL;
1665	}
1666
1667	/*
1668	 * If we write into the object, we need to force the synchronisation
1669	 * barrier, either with an asynchronous clflush or if we executed the
1670	 * patching using the GPU (though that should be serialised by the
1671	 * timeline). To be completely sure, and since we are required to
1672	 * do relocations we are already stalling, disable the user's opt
1673	 * out of our synchronisation.
1674	 */
1675	ev->flags &= ~EXEC_OBJECT_ASYNC;
1676
1677	/* and update the user's relocation entry */
1678	return relocate_entry(ev->vma, reloc, eb, target->vma);
1679}
1680
1681static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1682{
1683#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1684	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1685	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1686	struct drm_i915_gem_relocation_entry __user *urelocs =
1687		u64_to_user_ptr(entry->relocs_ptr);
1688	unsigned long remain = entry->relocation_count;
1689
1690	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1691		return -EINVAL;
1692
1693	/*
1694	 * We must check that the entire relocation array is safe
1695	 * to read. However, if the array is not writable the user loses
1696	 * the updated relocation values.
1697	 */
1698	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1699		return -EFAULT;
1700
1701	do {
1702		struct drm_i915_gem_relocation_entry *r = stack;
1703		unsigned int count =
1704			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1705		unsigned int copied;
1706
1707		/*
1708		 * This is the fast path and we cannot handle a pagefault
1709		 * whilst holding the struct mutex lest the user pass in the
1710		 * relocations contained within a mmaped bo. For in such a case
1711		 * we, the page fault handler would call i915_gem_fault() and
1712		 * we would try to acquire the struct mutex again. Obviously
1713		 * this is bad and so lockdep complains vehemently.
1714		 */
1715		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1716		if (unlikely(copied)) {
1717			remain = -EFAULT;
1718			goto out;
1719		}
1720
1721		remain -= count;
1722		do {
1723			u64 offset = eb_relocate_entry(eb, ev, r);
1724
1725			if (likely(offset == 0)) {
1726			} else if ((s64)offset < 0) {
1727				remain = (int)offset;
1728				goto out;
1729			} else {
1730				/*
1731				 * Note that reporting an error now
1732				 * leaves everything in an inconsistent
1733				 * state as we have *already* changed
1734				 * the relocation value inside the
1735				 * object. As we have not changed the
1736				 * reloc.presumed_offset or will not
1737				 * change the execobject.offset, on the
1738				 * call we may not rewrite the value
1739				 * inside the object, leaving it
1740				 * dangling and causing a GPU hang. Unless
1741				 * userspace dynamically rebuilds the
1742				 * relocations on each execbuf rather than
1743				 * presume a static tree.
1744				 *
1745				 * We did previously check if the relocations
1746				 * were writable (access_ok), an error now
1747				 * would be a strange race with mprotect,
1748				 * having already demonstrated that we
1749				 * can read from this userspace address.
1750				 */
1751				offset = gen8_canonical_addr(offset & ~UPDATE);
1752				__put_user(offset,
1753					   &urelocs[r - stack].presumed_offset);
1754			}
1755		} while (r++, --count);
1756		urelocs += ARRAY_SIZE(stack);
1757	} while (remain);
1758out:
1759	reloc_cache_reset(&eb->reloc_cache);
1760	return remain;
1761}
1762
1763static int eb_relocate(struct i915_execbuffer *eb)
1764{
1765	int err;
1766
1767	err = eb_lookup_vmas(eb);
1768	if (err)
1769		return err;
1770
1771	if (!list_empty(&eb->unbound)) {
1772		err = eb_reserve(eb);
1773		if (err)
1774			return err;
1775	}
1776
1777	/* The objects are in their final locations, apply the relocations. */
1778	if (eb->args->flags & __EXEC_HAS_RELOC) {
1779		struct eb_vma *ev;
1780		int flush;
1781
1782		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1783			err = eb_relocate_vma(eb, ev);
1784			if (err)
1785				break;
1786		}
1787
1788		flush = reloc_gpu_flush(&eb->reloc_cache);
1789		if (!err)
1790			err = flush;
1791	}
1792
1793	return err;
1794}
1795
1796static int eb_move_to_gpu(struct i915_execbuffer *eb)
1797{
1798	const unsigned int count = eb->buffer_count;
1799	struct ww_acquire_ctx acquire;
1800	unsigned int i;
1801	int err = 0;
1802
1803	ww_acquire_init(&acquire, &reservation_ww_class);
1804
1805	for (i = 0; i < count; i++) {
1806		struct eb_vma *ev = &eb->vma[i];
1807		struct i915_vma *vma = ev->vma;
1808
1809		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1810		if (err == -EDEADLK) {
1811			GEM_BUG_ON(i == 0);
1812			do {
1813				int j = i - 1;
1814
1815				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1816
1817				swap(eb->vma[i],  eb->vma[j]);
1818			} while (--i);
1819
1820			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1821							       &acquire);
1822		}
1823		if (err)
1824			break;
1825	}
1826	ww_acquire_done(&acquire);
1827
1828	while (i--) {
1829		struct eb_vma *ev = &eb->vma[i];
1830		struct i915_vma *vma = ev->vma;
1831		unsigned int flags = ev->flags;
1832		struct drm_i915_gem_object *obj = vma->obj;
1833
1834		assert_vma_held(vma);
1835
1836		if (flags & EXEC_OBJECT_CAPTURE) {
1837			struct i915_capture_list *capture;
1838
1839			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1840			if (capture) {
1841				capture->next = eb->request->capture_list;
1842				capture->vma = vma;
1843				eb->request->capture_list = capture;
1844			}
1845		}
1846
1847		/*
1848		 * If the GPU is not _reading_ through the CPU cache, we need
1849		 * to make sure that any writes (both previous GPU writes from
1850		 * before a change in snooping levels and normal CPU writes)
1851		 * caught in that cache are flushed to main memory.
1852		 *
1853		 * We want to say
1854		 *   obj->cache_dirty &&
1855		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1856		 * but gcc's optimiser doesn't handle that as well and emits
1857		 * two jumps instead of one. Maybe one day...
1858		 */
1859		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1860			if (i915_gem_clflush_object(obj, 0))
1861				flags &= ~EXEC_OBJECT_ASYNC;
1862		}
1863
1864		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1865			err = i915_request_await_object
1866				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1867		}
1868
1869		if (err == 0)
1870			err = i915_vma_move_to_active(vma, eb->request, flags);
1871
1872		i915_vma_unlock(vma);
1873		eb_unreserve_vma(ev);
1874	}
1875	ww_acquire_fini(&acquire);
1876
1877	eb_vma_array_put(fetch_and_zero(&eb->array));
1878
1879	if (unlikely(err))
1880		goto err_skip;
1881
1882	/* Unconditionally flush any chipset caches (for streaming writes). */
1883	intel_gt_chipset_flush(eb->engine->gt);
1884	return 0;
1885
1886err_skip:
1887	i915_request_set_error_once(eb->request, err);
1888	return err;
1889}
1890
1891static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1892{
1893	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1894		return -EINVAL;
1895
1896	/* Kernel clipping was a DRI1 misfeature */
1897	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1898		if (exec->num_cliprects || exec->cliprects_ptr)
1899			return -EINVAL;
1900	}
1901
1902	if (exec->DR4 == 0xffffffff) {
1903		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1904		exec->DR4 = 0;
1905	}
1906	if (exec->DR1 || exec->DR4)
1907		return -EINVAL;
1908
1909	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1910		return -EINVAL;
1911
1912	return 0;
1913}
1914
1915static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1916{
1917	u32 *cs;
1918	int i;
1919
1920	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
1921		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1922		return -EINVAL;
1923	}
1924
1925	cs = intel_ring_begin(rq, 4 * 2 + 2);
1926	if (IS_ERR(cs))
1927		return PTR_ERR(cs);
1928
1929	*cs++ = MI_LOAD_REGISTER_IMM(4);
1930	for (i = 0; i < 4; i++) {
1931		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1932		*cs++ = 0;
1933	}
1934	*cs++ = MI_NOOP;
1935	intel_ring_advance(rq, cs);
1936
1937	return 0;
1938}
1939
1940static struct i915_vma *
1941shadow_batch_pin(struct drm_i915_gem_object *obj,
1942		 struct i915_address_space *vm,
1943		 unsigned int flags)
1944{
1945	struct i915_vma *vma;
1946	int err;
1947
1948	vma = i915_vma_instance(obj, vm, NULL);
1949	if (IS_ERR(vma))
1950		return vma;
1951
1952	err = i915_vma_pin(vma, 0, 0, flags);
1953	if (err)
1954		return ERR_PTR(err);
1955
1956	return vma;
1957}
1958
1959struct eb_parse_work {
1960	struct dma_fence_work base;
1961	struct intel_engine_cs *engine;
1962	struct i915_vma *batch;
1963	struct i915_vma *shadow;
1964	struct i915_vma *trampoline;
1965	unsigned int batch_offset;
1966	unsigned int batch_length;
1967};
1968
1969static int __eb_parse(struct dma_fence_work *work)
1970{
1971	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1972
1973	return intel_engine_cmd_parser(pw->engine,
1974				       pw->batch,
1975				       pw->batch_offset,
1976				       pw->batch_length,
1977				       pw->shadow,
1978				       pw->trampoline);
1979}
1980
1981static void __eb_parse_release(struct dma_fence_work *work)
1982{
1983	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1984
1985	if (pw->trampoline)
1986		i915_active_release(&pw->trampoline->active);
1987	i915_active_release(&pw->shadow->active);
1988	i915_active_release(&pw->batch->active);
1989}
1990
1991static const struct dma_fence_work_ops eb_parse_ops = {
1992	.name = "eb_parse",
1993	.work = __eb_parse,
1994	.release = __eb_parse_release,
1995};
1996
1997static inline int
1998__parser_mark_active(struct i915_vma *vma,
1999		     struct intel_timeline *tl,
2000		     struct dma_fence *fence)
2001{
2002	struct intel_gt_buffer_pool_node *node = vma->private;
2003
2004	return i915_active_ref(&node->active, tl, fence);
2005}
2006
2007static int
2008parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2009{
2010	int err;
2011
2012	mutex_lock(&tl->mutex);
2013
2014	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2015	if (err)
2016		goto unlock;
2017
2018	if (pw->trampoline) {
2019		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2020		if (err)
2021			goto unlock;
2022	}
2023
2024unlock:
2025	mutex_unlock(&tl->mutex);
2026	return err;
2027}
2028
2029static int eb_parse_pipeline(struct i915_execbuffer *eb,
2030			     struct i915_vma *shadow,
2031			     struct i915_vma *trampoline)
2032{
2033	struct eb_parse_work *pw;
2034	int err;
2035
2036	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2037	if (!pw)
2038		return -ENOMEM;
2039
2040	err = i915_active_acquire(&eb->batch->vma->active);
2041	if (err)
2042		goto err_free;
2043
2044	err = i915_active_acquire(&shadow->active);
2045	if (err)
2046		goto err_batch;
2047
2048	if (trampoline) {
2049		err = i915_active_acquire(&trampoline->active);
2050		if (err)
2051			goto err_shadow;
2052	}
2053
2054	dma_fence_work_init(&pw->base, &eb_parse_ops);
2055
2056	pw->engine = eb->engine;
2057	pw->batch = eb->batch->vma;
2058	pw->batch_offset = eb->batch_start_offset;
2059	pw->batch_length = eb->batch_len;
2060	pw->shadow = shadow;
2061	pw->trampoline = trampoline;
2062
2063	/* Mark active refs early for this worker, in case we get interrupted */
2064	err = parser_mark_active(pw, eb->context->timeline);
2065	if (err)
2066		goto err_commit;
2067
2068	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2069	if (err)
2070		goto err_commit;
2071
2072	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2073	if (err)
2074		goto err_commit_unlock;
2075
2076	/* Wait for all writes (and relocs) into the batch to complete */
2077	err = i915_sw_fence_await_reservation(&pw->base.chain,
2078					      pw->batch->resv, NULL, false,
2079					      0, I915_FENCE_GFP);
2080	if (err < 0)
2081		goto err_commit_unlock;
2082
2083	/* Keep the batch alive and unwritten as we parse */
2084	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2085
2086	dma_resv_unlock(pw->batch->resv);
2087
2088	/* Force execution to wait for completion of the parser */
2089	dma_resv_lock(shadow->resv, NULL);
2090	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2091	dma_resv_unlock(shadow->resv);
2092
2093	dma_fence_work_commit_imm(&pw->base);
2094	return 0;
2095
2096err_commit_unlock:
2097	dma_resv_unlock(pw->batch->resv);
2098err_commit:
2099	i915_sw_fence_set_error_once(&pw->base.chain, err);
2100	dma_fence_work_commit_imm(&pw->base);
2101	return err;
2102
2103err_shadow:
2104	i915_active_release(&shadow->active);
2105err_batch:
2106	i915_active_release(&eb->batch->vma->active);
2107err_free:
2108	kfree(pw);
2109	return err;
2110}
2111
2112static int eb_parse(struct i915_execbuffer *eb)
2113{
2114	struct drm_i915_private *i915 = eb->i915;
2115	struct intel_gt_buffer_pool_node *pool;
2116	struct i915_vma *shadow, *trampoline;
2117	unsigned int len;
2118	int err;
2119
2120	if (!eb_use_cmdparser(eb))
2121		return 0;
2122
2123	len = eb->batch_len;
2124	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2125		/*
2126		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2127		 * post-scan tampering
2128		 */
2129		if (!eb->context->vm->has_read_only) {
2130			drm_dbg(&i915->drm,
2131				"Cannot prevent post-scan tampering without RO capable vm\n");
2132			return -EINVAL;
2133		}
2134	} else {
2135		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2136	}
2137
2138	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2139	if (IS_ERR(pool))
2140		return PTR_ERR(pool);
2141
2142	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2143	if (IS_ERR(shadow)) {
2144		err = PTR_ERR(shadow);
2145		goto err;
2146	}
2147	i915_gem_object_set_readonly(shadow->obj);
2148	shadow->private = pool;
2149
2150	trampoline = NULL;
2151	if (CMDPARSER_USES_GGTT(eb->i915)) {
2152		trampoline = shadow;
2153
2154		shadow = shadow_batch_pin(pool->obj,
2155					  &eb->engine->gt->ggtt->vm,
2156					  PIN_GLOBAL);
2157		if (IS_ERR(shadow)) {
2158			err = PTR_ERR(shadow);
2159			shadow = trampoline;
2160			goto err_shadow;
2161		}
2162		shadow->private = pool;
2163
2164		eb->batch_flags |= I915_DISPATCH_SECURE;
2165	}
2166
2167	err = eb_parse_pipeline(eb, shadow, trampoline);
2168	if (err)
2169		goto err_trampoline;
2170
2171	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2172	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2173	eb->batch = &eb->vma[eb->buffer_count++];
2174	eb->vma[eb->buffer_count].vma = NULL;
2175
2176	eb->trampoline = trampoline;
2177	eb->batch_start_offset = 0;
2178
2179	return 0;
2180
2181err_trampoline:
2182	if (trampoline)
2183		i915_vma_unpin(trampoline);
2184err_shadow:
2185	i915_vma_unpin(shadow);
2186err:
2187	intel_gt_buffer_pool_put(pool);
2188	return err;
2189}
2190
2191static void
2192add_to_client(struct i915_request *rq, struct drm_file *file)
2193{
2194	struct drm_i915_file_private *file_priv = file->driver_priv;
2195
2196	rq->file_priv = file_priv;
2197
2198	spin_lock(&file_priv->mm.lock);
2199	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2200	spin_unlock(&file_priv->mm.lock);
2201}
2202
2203static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2204{
2205	int err;
2206
2207	err = eb_move_to_gpu(eb);
2208	if (err)
2209		return err;
2210
2211	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2212		err = i915_reset_gen7_sol_offsets(eb->request);
2213		if (err)
2214			return err;
2215	}
2216
2217	/*
2218	 * After we completed waiting for other engines (using HW semaphores)
2219	 * then we can signal that this request/batch is ready to run. This
2220	 * allows us to determine if the batch is still waiting on the GPU
2221	 * or actually running by checking the breadcrumb.
2222	 */
2223	if (eb->engine->emit_init_breadcrumb) {
2224		err = eb->engine->emit_init_breadcrumb(eb->request);
2225		if (err)
2226			return err;
2227	}
2228
2229	err = eb->engine->emit_bb_start(eb->request,
2230					batch->node.start +
2231					eb->batch_start_offset,
2232					eb->batch_len,
2233					eb->batch_flags);
2234	if (err)
2235		return err;
2236
2237	if (eb->trampoline) {
2238		GEM_BUG_ON(eb->batch_start_offset);
2239		err = eb->engine->emit_bb_start(eb->request,
2240						eb->trampoline->node.start +
2241						eb->batch_len,
2242						0, 0);
2243		if (err)
2244			return err;
2245	}
2246
2247	if (intel_context_nopreempt(eb->context))
2248		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2249
2250	return 0;
2251}
2252
2253static int num_vcs_engines(const struct drm_i915_private *i915)
2254{
2255	return hweight64(VDBOX_MASK(&i915->gt));
2256}
2257
2258/*
2259 * Find one BSD ring to dispatch the corresponding BSD command.
2260 * The engine index is returned.
2261 */
2262static unsigned int
2263gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2264			 struct drm_file *file)
2265{
2266	struct drm_i915_file_private *file_priv = file->driver_priv;
2267
2268	/* Check whether the file_priv has already selected one ring. */
2269	if ((int)file_priv->bsd_engine < 0)
2270		file_priv->bsd_engine =
2271			get_random_int() % num_vcs_engines(dev_priv);
2272
2273	return file_priv->bsd_engine;
2274}
2275
2276static const enum intel_engine_id user_ring_map[] = {
2277	[I915_EXEC_DEFAULT]	= RCS0,
2278	[I915_EXEC_RENDER]	= RCS0,
2279	[I915_EXEC_BLT]		= BCS0,
2280	[I915_EXEC_BSD]		= VCS0,
2281	[I915_EXEC_VEBOX]	= VECS0
2282};
2283
2284static struct i915_request *eb_throttle(struct intel_context *ce)
2285{
2286	struct intel_ring *ring = ce->ring;
2287	struct intel_timeline *tl = ce->timeline;
2288	struct i915_request *rq;
2289
2290	/*
2291	 * Completely unscientific finger-in-the-air estimates for suitable
2292	 * maximum user request size (to avoid blocking) and then backoff.
2293	 */
2294	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2295		return NULL;
2296
2297	/*
2298	 * Find a request that after waiting upon, there will be at least half
2299	 * the ring available. The hysteresis allows us to compete for the
2300	 * shared ring and should mean that we sleep less often prior to
2301	 * claiming our resources, but not so long that the ring completely
2302	 * drains before we can submit our next request.
2303	 */
2304	list_for_each_entry(rq, &tl->requests, link) {
2305		if (rq->ring != ring)
2306			continue;
2307
2308		if (__intel_ring_space(rq->postfix,
2309				       ring->emit, ring->size) > ring->size / 2)
2310			break;
2311	}
2312	if (&rq->link == &tl->requests)
2313		return NULL; /* weird, we will check again later for real */
2314
2315	return i915_request_get(rq);
2316}
2317
2318static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2319{
2320	struct intel_timeline *tl;
2321	struct i915_request *rq;
2322	int err;
2323
2324	/*
2325	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2326	 * EIO if the GPU is already wedged.
2327	 */
2328	err = intel_gt_terminally_wedged(ce->engine->gt);
2329	if (err)
2330		return err;
2331
2332	if (unlikely(intel_context_is_banned(ce)))
2333		return -EIO;
2334
2335	/*
2336	 * Pinning the contexts may generate requests in order to acquire
2337	 * GGTT space, so do this first before we reserve a seqno for
2338	 * ourselves.
2339	 */
2340	err = intel_context_pin(ce);
2341	if (err)
2342		return err;
2343
2344	/*
2345	 * Take a local wakeref for preparing to dispatch the execbuf as
2346	 * we expect to access the hardware fairly frequently in the
2347	 * process, and require the engine to be kept awake between accesses.
2348	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2349	 * until the timeline is idle, which in turn releases the wakeref
2350	 * taken on the engine, and the parent device.
2351	 */
2352	tl = intel_context_timeline_lock(ce);
2353	if (IS_ERR(tl)) {
2354		err = PTR_ERR(tl);
2355		goto err_unpin;
2356	}
2357
2358	intel_context_enter(ce);
2359	rq = eb_throttle(ce);
2360
2361	intel_context_timeline_unlock(tl);
2362
2363	if (rq) {
2364		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2365		long timeout;
2366
2367		timeout = MAX_SCHEDULE_TIMEOUT;
2368		if (nonblock)
2369			timeout = 0;
2370
2371		timeout = i915_request_wait(rq,
2372					    I915_WAIT_INTERRUPTIBLE,
2373					    timeout);
2374		i915_request_put(rq);
2375
2376		if (timeout < 0) {
2377			err = nonblock ? -EWOULDBLOCK : timeout;
2378			goto err_exit;
2379		}
2380	}
2381
2382	eb->engine = ce->engine;
2383	eb->context = ce;
2384	return 0;
2385
2386err_exit:
2387	mutex_lock(&tl->mutex);
2388	intel_context_exit(ce);
2389	intel_context_timeline_unlock(tl);
2390err_unpin:
2391	intel_context_unpin(ce);
2392	return err;
2393}
2394
2395static void eb_unpin_engine(struct i915_execbuffer *eb)
2396{
2397	struct intel_context *ce = eb->context;
2398	struct intel_timeline *tl = ce->timeline;
2399
2400	mutex_lock(&tl->mutex);
2401	intel_context_exit(ce);
2402	mutex_unlock(&tl->mutex);
2403
2404	intel_context_unpin(ce);
2405}
2406
2407static unsigned int
2408eb_select_legacy_ring(struct i915_execbuffer *eb,
2409		      struct drm_file *file,
2410		      struct drm_i915_gem_execbuffer2 *args)
2411{
2412	struct drm_i915_private *i915 = eb->i915;
2413	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2414
2415	if (user_ring_id != I915_EXEC_BSD &&
2416	    (args->flags & I915_EXEC_BSD_MASK)) {
2417		drm_dbg(&i915->drm,
2418			"execbuf with non bsd ring but with invalid "
2419			"bsd dispatch flags: %d\n", (int)(args->flags));
2420		return -1;
2421	}
2422
2423	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2424		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2425
2426		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2427			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2428		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2429			   bsd_idx <= I915_EXEC_BSD_RING2) {
2430			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2431			bsd_idx--;
2432		} else {
2433			drm_dbg(&i915->drm,
2434				"execbuf with unknown bsd ring: %u\n",
2435				bsd_idx);
2436			return -1;
2437		}
2438
2439		return _VCS(bsd_idx);
2440	}
2441
2442	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2443		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2444			user_ring_id);
2445		return -1;
2446	}
2447
2448	return user_ring_map[user_ring_id];
2449}
2450
2451static int
2452eb_pin_engine(struct i915_execbuffer *eb,
2453	      struct drm_file *file,
2454	      struct drm_i915_gem_execbuffer2 *args)
2455{
2456	struct intel_context *ce;
2457	unsigned int idx;
2458	int err;
2459
2460	if (i915_gem_context_user_engines(eb->gem_context))
2461		idx = args->flags & I915_EXEC_RING_MASK;
2462	else
2463		idx = eb_select_legacy_ring(eb, file, args);
2464
2465	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2466	if (IS_ERR(ce))
2467		return PTR_ERR(ce);
2468
2469	err = __eb_pin_engine(eb, ce);
2470	intel_context_put(ce);
2471
2472	return err;
2473}
2474
2475static void
2476__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2477{
2478	while (n--)
2479		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2480	kvfree(fences);
2481}
2482
2483static struct drm_syncobj **
2484get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2485		struct drm_file *file)
2486{
2487	const unsigned long nfences = args->num_cliprects;
2488	struct drm_i915_gem_exec_fence __user *user;
2489	struct drm_syncobj **fences;
2490	unsigned long n;
2491	int err;
2492
2493	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2494		return NULL;
2495
2496	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2497	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2498	if (nfences > min_t(unsigned long,
2499			    ULONG_MAX / sizeof(*user),
2500			    SIZE_MAX / sizeof(*fences)))
2501		return ERR_PTR(-EINVAL);
2502
2503	user = u64_to_user_ptr(args->cliprects_ptr);
2504	if (!access_ok(user, nfences * sizeof(*user)))
2505		return ERR_PTR(-EFAULT);
2506
2507	fences = kvmalloc_array(nfences, sizeof(*fences),
2508				__GFP_NOWARN | GFP_KERNEL);
2509	if (!fences)
2510		return ERR_PTR(-ENOMEM);
2511
2512	for (n = 0; n < nfences; n++) {
2513		struct drm_i915_gem_exec_fence fence;
2514		struct drm_syncobj *syncobj;
2515
2516		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2517			err = -EFAULT;
2518			goto err;
2519		}
2520
2521		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2522			err = -EINVAL;
2523			goto err;
2524		}
2525
2526		syncobj = drm_syncobj_find(file, fence.handle);
2527		if (!syncobj) {
2528			DRM_DEBUG("Invalid syncobj handle provided\n");
2529			err = -ENOENT;
2530			goto err;
2531		}
2532
2533		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2534			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2535
2536		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2537	}
2538
2539	return fences;
2540
2541err:
2542	__free_fence_array(fences, n);
2543	return ERR_PTR(err);
2544}
2545
2546static void
2547put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2548		struct drm_syncobj **fences)
2549{
2550	if (fences)
2551		__free_fence_array(fences, args->num_cliprects);
2552}
2553
2554static int
2555await_fence_array(struct i915_execbuffer *eb,
2556		  struct drm_syncobj **fences)
2557{
2558	const unsigned int nfences = eb->args->num_cliprects;
2559	unsigned int n;
2560	int err;
2561
2562	for (n = 0; n < nfences; n++) {
2563		struct drm_syncobj *syncobj;
2564		struct dma_fence *fence;
2565		unsigned int flags;
2566
2567		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2568		if (!(flags & I915_EXEC_FENCE_WAIT))
2569			continue;
2570
2571		fence = drm_syncobj_fence_get(syncobj);
2572		if (!fence)
2573			return -EINVAL;
2574
2575		err = i915_request_await_dma_fence(eb->request, fence);
2576		dma_fence_put(fence);
2577		if (err < 0)
2578			return err;
2579	}
2580
2581	return 0;
2582}
2583
2584static void
2585signal_fence_array(struct i915_execbuffer *eb,
2586		   struct drm_syncobj **fences)
2587{
2588	const unsigned int nfences = eb->args->num_cliprects;
2589	struct dma_fence * const fence = &eb->request->fence;
2590	unsigned int n;
2591
2592	for (n = 0; n < nfences; n++) {
2593		struct drm_syncobj *syncobj;
2594		unsigned int flags;
2595
2596		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2597		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2598			continue;
2599
2600		drm_syncobj_replace_fence(syncobj, fence);
2601	}
2602}
2603
2604static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2605{
2606	struct i915_request *rq, *rn;
2607
2608	list_for_each_entry_safe(rq, rn, &tl->requests, link)
2609		if (rq == end || !i915_request_retire(rq))
2610			break;
2611}
2612
2613static void eb_request_add(struct i915_execbuffer *eb)
2614{
2615	struct i915_request *rq = eb->request;
2616	struct intel_timeline * const tl = i915_request_timeline(rq);
2617	struct i915_sched_attr attr = {};
2618	struct i915_request *prev;
2619
2620	lockdep_assert_held(&tl->mutex);
2621	lockdep_unpin_lock(&tl->mutex, rq->cookie);
2622
2623	trace_i915_request_add(rq);
2624
2625	prev = __i915_request_commit(rq);
2626
2627	/* Check that the context wasn't destroyed before submission */
2628	if (likely(!intel_context_is_closed(eb->context))) {
2629		attr = eb->gem_context->sched;
2630	} else {
2631		/* Serialise with context_close via the add_to_timeline */
2632		i915_request_set_error_once(rq, -ENOENT);
2633		__i915_request_skip(rq);
2634	}
2635
2636	__i915_request_queue(rq, &attr);
2637
2638	/* Try to clean up the client's timeline after submitting the request */
2639	if (prev)
2640		retire_requests(tl, prev);
2641
2642	mutex_unlock(&tl->mutex);
2643}
2644
2645static int
2646i915_gem_do_execbuffer(struct drm_device *dev,
2647		       struct drm_file *file,
2648		       struct drm_i915_gem_execbuffer2 *args,
2649		       struct drm_i915_gem_exec_object2 *exec,
2650		       struct drm_syncobj **fences)
2651{
2652	struct drm_i915_private *i915 = to_i915(dev);
2653	struct i915_execbuffer eb;
2654	struct dma_fence *in_fence = NULL;
2655	struct sync_file *out_fence = NULL;
2656	struct i915_vma *batch;
2657	int out_fence_fd = -1;
2658	int err;
2659
2660	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2661	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2662		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2663
2664	eb.i915 = i915;
2665	eb.file = file;
2666	eb.args = args;
2667	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2668		args->flags |= __EXEC_HAS_RELOC;
2669
2670	eb.exec = exec;
2671
2672	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2673	reloc_cache_init(&eb.reloc_cache, eb.i915);
2674
2675	eb.buffer_count = args->buffer_count;
2676	eb.batch_start_offset = args->batch_start_offset;
2677	eb.batch_len = args->batch_len;
2678	eb.trampoline = NULL;
2679
2680	eb.batch_flags = 0;
2681	if (args->flags & I915_EXEC_SECURE) {
2682		if (INTEL_GEN(i915) >= 11)
2683			return -ENODEV;
2684
2685		/* Return -EPERM to trigger fallback code on old binaries. */
2686		if (!HAS_SECURE_BATCHES(i915))
2687			return -EPERM;
2688
2689		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2690			return -EPERM;
2691
2692		eb.batch_flags |= I915_DISPATCH_SECURE;
2693	}
2694	if (args->flags & I915_EXEC_IS_PINNED)
2695		eb.batch_flags |= I915_DISPATCH_PINNED;
2696
2697#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
2698	if (args->flags & IN_FENCES) {
2699		if ((args->flags & IN_FENCES) == IN_FENCES)
2700			return -EINVAL;
2701
2702		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2703		if (!in_fence)
2704			return -EINVAL;
2705	}
2706#undef IN_FENCES
2707
2708	if (args->flags & I915_EXEC_FENCE_OUT) {
2709		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2710		if (out_fence_fd < 0) {
2711			err = out_fence_fd;
2712			goto err_in_fence;
2713		}
2714	}
2715
2716	err = eb_create(&eb);
2717	if (err)
2718		goto err_out_fence;
2719
2720	GEM_BUG_ON(!eb.lut_size);
2721
2722	err = eb_select_context(&eb);
2723	if (unlikely(err))
2724		goto err_destroy;
2725
2726	err = eb_pin_engine(&eb, file, args);
2727	if (unlikely(err))
2728		goto err_context;
2729
2730	err = eb_relocate(&eb);
2731	if (err) {
2732		/*
2733		 * If the user expects the execobject.offset and
2734		 * reloc.presumed_offset to be an exact match,
2735		 * as for using NO_RELOC, then we cannot update
2736		 * the execobject.offset until we have completed
2737		 * relocation.
2738		 */
2739		args->flags &= ~__EXEC_HAS_RELOC;
2740		goto err_vma;
2741	}
2742
2743	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2744		drm_dbg(&i915->drm,
2745			"Attempting to use self-modifying batch buffer\n");
2746		err = -EINVAL;
2747		goto err_vma;
2748	}
2749
2750	if (range_overflows_t(u64,
2751			      eb.batch_start_offset, eb.batch_len,
2752			      eb.batch->vma->size)) {
2753		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2754		err = -EINVAL;
2755		goto err_vma;
2756	}
2757
2758	if (eb.batch_len == 0)
2759		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2760
2761	err = eb_parse(&eb);
2762	if (err)
2763		goto err_vma;
2764
2765	/*
2766	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2767	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2768	 * hsw should have this fixed, but bdw mucks it up again. */
2769	batch = eb.batch->vma;
2770	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2771		struct i915_vma *vma;
2772
2773		/*
2774		 * So on first glance it looks freaky that we pin the batch here
2775		 * outside of the reservation loop. But:
2776		 * - The batch is already pinned into the relevant ppgtt, so we
2777		 *   already have the backing storage fully allocated.
2778		 * - No other BO uses the global gtt (well contexts, but meh),
2779		 *   so we don't really have issues with multiple objects not
2780		 *   fitting due to fragmentation.
2781		 * So this is actually safe.
2782		 */
2783		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2784		if (IS_ERR(vma)) {
2785			err = PTR_ERR(vma);
2786			goto err_parse;
2787		}
2788
2789		batch = vma;
2790	}
2791
2792	/* All GPU relocation batches must be submitted prior to the user rq */
2793	GEM_BUG_ON(eb.reloc_cache.rq);
2794
2795	/* Allocate a request for this batch buffer nice and early. */
2796	eb.request = i915_request_create(eb.context);
2797	if (IS_ERR(eb.request)) {
2798		err = PTR_ERR(eb.request);
2799		goto err_batch_unpin;
2800	}
2801
2802	if (in_fence) {
2803		if (args->flags & I915_EXEC_FENCE_SUBMIT)
2804			err = i915_request_await_execution(eb.request,
2805							   in_fence,
2806							   eb.engine->bond_execute);
2807		else
2808			err = i915_request_await_dma_fence(eb.request,
2809							   in_fence);
2810		if (err < 0)
2811			goto err_request;
2812	}
2813
2814	if (fences) {
2815		err = await_fence_array(&eb, fences);
2816		if (err)
2817			goto err_request;
2818	}
2819
2820	if (out_fence_fd != -1) {
2821		out_fence = sync_file_create(&eb.request->fence);
2822		if (!out_fence) {
2823			err = -ENOMEM;
2824			goto err_request;
2825		}
2826	}
2827
2828	/*
2829	 * Whilst this request exists, batch_obj will be on the
2830	 * active_list, and so will hold the active reference. Only when this
2831	 * request is retired will the the batch_obj be moved onto the
2832	 * inactive_list and lose its active reference. Hence we do not need
2833	 * to explicitly hold another reference here.
2834	 */
2835	eb.request->batch = batch;
2836	if (batch->private)
2837		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2838
2839	trace_i915_request_queue(eb.request, eb.batch_flags);
2840	err = eb_submit(&eb, batch);
2841err_request:
2842	add_to_client(eb.request, file);
2843	i915_request_get(eb.request);
2844	eb_request_add(&eb);
2845
2846	if (fences)
2847		signal_fence_array(&eb, fences);
2848
2849	if (out_fence) {
2850		if (err == 0) {
2851			fd_install(out_fence_fd, out_fence->file);
2852			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2853			args->rsvd2 |= (u64)out_fence_fd << 32;
2854			out_fence_fd = -1;
2855		} else {
2856			fput(out_fence->file);
2857		}
2858	}
2859	i915_request_put(eb.request);
2860
2861err_batch_unpin:
2862	if (eb.batch_flags & I915_DISPATCH_SECURE)
2863		i915_vma_unpin(batch);
2864err_parse:
2865	if (batch->private)
2866		intel_gt_buffer_pool_put(batch->private);
2867err_vma:
2868	if (eb.trampoline)
2869		i915_vma_unpin(eb.trampoline);
2870	eb_unpin_engine(&eb);
2871err_context:
2872	i915_gem_context_put(eb.gem_context);
2873err_destroy:
2874	eb_destroy(&eb);
2875err_out_fence:
2876	if (out_fence_fd != -1)
2877		put_unused_fd(out_fence_fd);
2878err_in_fence:
2879	dma_fence_put(in_fence);
2880	return err;
2881}
2882
2883static size_t eb_element_size(void)
2884{
2885	return sizeof(struct drm_i915_gem_exec_object2);
2886}
2887
2888static bool check_buffer_count(size_t count)
2889{
2890	const size_t sz = eb_element_size();
2891
2892	/*
2893	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2894	 * array size (see eb_create()). Otherwise, we can accept an array as
2895	 * large as can be addressed (though use large arrays at your peril)!
2896	 */
2897
2898	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2899}
2900
2901/*
2902 * Legacy execbuffer just creates an exec2 list from the original exec object
2903 * list array and passes it to the real function.
2904 */
2905int
2906i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2907			  struct drm_file *file)
2908{
2909	struct drm_i915_private *i915 = to_i915(dev);
2910	struct drm_i915_gem_execbuffer *args = data;
2911	struct drm_i915_gem_execbuffer2 exec2;
2912	struct drm_i915_gem_exec_object *exec_list = NULL;
2913	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2914	const size_t count = args->buffer_count;
2915	unsigned int i;
2916	int err;
2917
2918	if (!check_buffer_count(count)) {
2919		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2920		return -EINVAL;
2921	}
2922
2923	exec2.buffers_ptr = args->buffers_ptr;
2924	exec2.buffer_count = args->buffer_count;
2925	exec2.batch_start_offset = args->batch_start_offset;
2926	exec2.batch_len = args->batch_len;
2927	exec2.DR1 = args->DR1;
2928	exec2.DR4 = args->DR4;
2929	exec2.num_cliprects = args->num_cliprects;
2930	exec2.cliprects_ptr = args->cliprects_ptr;
2931	exec2.flags = I915_EXEC_RENDER;
2932	i915_execbuffer2_set_context_id(exec2, 0);
2933
2934	err = i915_gem_check_execbuffer(&exec2);
2935	if (err)
2936		return err;
2937
2938	/* Copy in the exec list from userland */
2939	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2940				   __GFP_NOWARN | GFP_KERNEL);
2941	exec2_list = kvmalloc_array(count, eb_element_size(),
2942				    __GFP_NOWARN | GFP_KERNEL);
2943	if (exec_list == NULL || exec2_list == NULL) {
2944		drm_dbg(&i915->drm,
2945			"Failed to allocate exec list for %d buffers\n",
2946			args->buffer_count);
2947		kvfree(exec_list);
2948		kvfree(exec2_list);
2949		return -ENOMEM;
2950	}
2951	err = copy_from_user(exec_list,
2952			     u64_to_user_ptr(args->buffers_ptr),
2953			     sizeof(*exec_list) * count);
2954	if (err) {
2955		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2956			args->buffer_count, err);
2957		kvfree(exec_list);
2958		kvfree(exec2_list);
2959		return -EFAULT;
2960	}
2961
2962	for (i = 0; i < args->buffer_count; i++) {
2963		exec2_list[i].handle = exec_list[i].handle;
2964		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2965		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2966		exec2_list[i].alignment = exec_list[i].alignment;
2967		exec2_list[i].offset = exec_list[i].offset;
2968		if (INTEL_GEN(to_i915(dev)) < 4)
2969			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2970		else
2971			exec2_list[i].flags = 0;
2972	}
2973
2974	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2975	if (exec2.flags & __EXEC_HAS_RELOC) {
2976		struct drm_i915_gem_exec_object __user *user_exec_list =
2977			u64_to_user_ptr(args->buffers_ptr);
2978
2979		/* Copy the new buffer offsets back to the user's exec list. */
2980		for (i = 0; i < args->buffer_count; i++) {
2981			if (!(exec2_list[i].offset & UPDATE))
2982				continue;
2983
2984			exec2_list[i].offset =
2985				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2986			exec2_list[i].offset &= PIN_OFFSET_MASK;
2987			if (__copy_to_user(&user_exec_list[i].offset,
2988					   &exec2_list[i].offset,
2989					   sizeof(user_exec_list[i].offset)))
2990				break;
2991		}
2992	}
2993
2994	kvfree(exec_list);
2995	kvfree(exec2_list);
2996	return err;
2997}
2998
2999int
3000i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3001			   struct drm_file *file)
3002{
3003	struct drm_i915_private *i915 = to_i915(dev);
3004	struct drm_i915_gem_execbuffer2 *args = data;
3005	struct drm_i915_gem_exec_object2 *exec2_list;
3006	struct drm_syncobj **fences = NULL;
3007	const size_t count = args->buffer_count;
3008	int err;
3009
3010	if (!check_buffer_count(count)) {
3011		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3012		return -EINVAL;
3013	}
3014
3015	err = i915_gem_check_execbuffer(args);
3016	if (err)
3017		return err;
3018
3019	exec2_list = kvmalloc_array(count, eb_element_size(),
3020				    __GFP_NOWARN | GFP_KERNEL);
3021	if (exec2_list == NULL) {
3022		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3023			count);
3024		return -ENOMEM;
3025	}
3026	if (copy_from_user(exec2_list,
3027			   u64_to_user_ptr(args->buffers_ptr),
3028			   sizeof(*exec2_list) * count)) {
3029		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3030		kvfree(exec2_list);
3031		return -EFAULT;
3032	}
3033
3034	if (args->flags & I915_EXEC_FENCE_ARRAY) {
3035		fences = get_fence_array(args, file);
3036		if (IS_ERR(fences)) {
3037			kvfree(exec2_list);
3038			return PTR_ERR(fences);
3039		}
3040	}
3041
3042	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
3043
3044	/*
3045	 * Now that we have begun execution of the batchbuffer, we ignore
3046	 * any new error after this point. Also given that we have already
3047	 * updated the associated relocations, we try to write out the current
3048	 * object locations irrespective of any error.
3049	 */
3050	if (args->flags & __EXEC_HAS_RELOC) {
3051		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3052			u64_to_user_ptr(args->buffers_ptr);
3053		unsigned int i;
3054
3055		/* Copy the new buffer offsets back to the user's exec list. */
3056		/*
3057		 * Note: count * sizeof(*user_exec_list) does not overflow,
3058		 * because we checked 'count' in check_buffer_count().
3059		 *
3060		 * And this range already got effectively checked earlier
3061		 * when we did the "copy_from_user()" above.
3062		 */
3063		if (!user_write_access_begin(user_exec_list,
3064					     count * sizeof(*user_exec_list)))
3065			goto end;
3066
3067		for (i = 0; i < args->buffer_count; i++) {
3068			if (!(exec2_list[i].offset & UPDATE))
3069				continue;
3070
3071			exec2_list[i].offset =
3072				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3073			unsafe_put_user(exec2_list[i].offset,
3074					&user_exec_list[i].offset,
3075					end_user);
3076		}
3077end_user:
3078		user_write_access_end();
3079end:;
3080	}
3081
3082	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3083	put_fence_array(args, fences);
3084	kvfree(exec2_list);
3085	return err;
3086}
3087
3088#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3089#include "selftests/i915_gem_execbuffer.c"
3090#endif