Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 | /* * SPDX-License-Identifier: MIT * * Copyright © 2008,2010 Intel Corporation */ #include <linux/dma-resv.h> #include <linux/highmem.h> #include <linux/sync_file.h> #include <linux/uaccess.h> #include <drm/drm_auth.h> #include <drm/drm_syncobj.h> #include "display/intel_frontbuffer.h" #include "gem/i915_gem_ioctls.h" #include "gt/intel_context.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_buffer_pool.h" #include "gt/intel_gt_pm.h" #include "gt/intel_ring.h" #include "pxp/intel_pxp.h" #include "i915_cmd_parser.h" #include "i915_drv.h" #include "i915_file_private.h" #include "i915_gem_clflush.h" #include "i915_gem_context.h" #include "i915_gem_evict.h" #include "i915_gem_ioctls.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_user_extensions.h" struct eb_vma { struct i915_vma *vma; unsigned int flags; /** This vma's place in the execbuf reservation list */ struct drm_i915_gem_exec_object2 *exec; struct list_head bind_link; struct list_head reloc_link; struct hlist_node node; u32 handle; }; enum { FORCE_CPU_RELOC = 1, FORCE_GTT_RELOC, FORCE_GPU_RELOC, #define DBG_FORCE_RELOC 0 /* choose one of the above! */ }; /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ #define __EXEC_OBJECT_HAS_PIN BIT(29) #define __EXEC_OBJECT_HAS_FENCE BIT(28) #define __EXEC_OBJECT_USERPTR_INIT BIT(27) #define __EXEC_OBJECT_NEEDS_MAP BIT(26) #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) #define __EXEC_HAS_RELOC BIT(31) #define __EXEC_ENGINE_PINNED BIT(30) #define __EXEC_USERPTR_USED BIT(29) #define __EXEC_INTERNAL_FLAGS (~0u << 29) #define UPDATE PIN_OFFSET_FIXED #define BATCH_OFFSET_BIAS (256*1024) #define __I915_EXEC_ILLEGAL_FLAGS \ (__I915_EXEC_UNKNOWN_FLAGS | \ I915_EXEC_CONSTANTS_MASK | \ I915_EXEC_RESOURCE_STREAMER) /* Catch emission of unexpected errors for CI! */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #undef EINVAL #define EINVAL ({ \ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 22; \ }) #endif /** * DOC: User command execution * * Userspace submits commands to be executed on the GPU as an instruction * stream within a GEM object we call a batchbuffer. This instructions may * refer to other GEM objects containing auxiliary state such as kernels, * samplers, render targets and even secondary batchbuffers. Userspace does * not know where in the GPU memory these objects reside and so before the * batchbuffer is passed to the GPU for execution, those addresses in the * batchbuffer and auxiliary objects are updated. This is known as relocation, * or patching. To try and avoid having to relocate each object on the next * execution, userspace is told the location of those objects in this pass, * but this remains just a hint as the kernel may choose a new location for * any object in the future. * * At the level of talking to the hardware, submitting a batchbuffer for the * GPU to execute is to add content to a buffer from which the HW * command streamer is reading. * * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. * Execlists, this command is not placed on the same buffer as the * remaining items. * * 2. Add a command to invalidate caches to the buffer. * * 3. Add a batchbuffer start command to the buffer; the start command is * essentially a token together with the GPU address of the batchbuffer * to be executed. * * 4. Add a pipeline flush to the buffer. * * 5. Add a memory write command to the buffer to record when the GPU * is done executing the batchbuffer. The memory write writes the * global sequence number of the request, ``i915_request::global_seqno``; * the i915 driver uses the current value in the register to determine * if the GPU has completed the batchbuffer. * * 6. Add a user interrupt command to the buffer. This command instructs * the GPU to issue an interrupt when the command, pipeline flush and * memory write are completed. * * 7. Inform the hardware of the additional commands added to the buffer * (by updating the tail pointer). * * Processing an execbuf ioctl is conceptually split up into a few phases. * * 1. Validation - Ensure all the pointers, handles and flags are valid. * 2. Reservation - Assign GPU address space for every object * 3. Relocation - Update any addresses to point to the final locations * 4. Serialisation - Order the request with respect to its dependencies * 5. Construction - Construct a request to execute the batchbuffer * 6. Submission (at some point in the future execution) * * Reserving resources for the execbuf is the most complicated phase. We * neither want to have to migrate the object in the address space, nor do * we want to have to update any relocations pointing to this object. Ideally, * we want to leave the object where it is and for all the existing relocations * to match. If the object is given a new address, or if userspace thinks the * object is elsewhere, we have to parse all the relocation entries and update * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that * all the target addresses in all of its objects match the value in the * relocation entries and that they all match the presumed offsets given by the * list of execbuffer objects. Using this knowledge, we know that if we haven't * moved any buffers, all the relocation entries are valid and we can skip * the update. (If userspace is wrong, the likely outcome is an impromptu GPU * hang.) The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.presumed_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. * * The reservation is done is multiple phases. First we try and keep any * object already bound in its current location - so as long as meets the * constraints imposed by the new execbuffer. Any object left unbound after the * first pass is then fitted into any available idle space. If an object does * not fit, all objects are removed from the reservation and the process rerun * after sorting the objects into a priority order (more difficult to fit * objects are tried first). Failing that, the entire VM is cleared and we try * to fit the execbuf once last time before concluding that it simply will not * fit. * * A small complication to all of this is that we allow userspace not only to * specify an alignment and a size for the object in the address space, but * we also allow userspace to specify the exact offset. This objects are * simpler to place (the location is known a priori) all we have to do is make * sure the space is available. * * Once all the objects are in place, patching up the buried pointers to point * to the final locations is a fairly simple job of walking over the relocation * entry arrays, looking up the right address and rewriting the value into * the object. Simple! ... The relocation entries are stored in user memory * and so to access them we have to copy them into a local buffer. That copy * has to avoid taking any pagefaults as they may lead back to a GEM object * requiring the struct_mutex (i.e. recursive deadlock). So once again we split * the relocation into multiple passes. First we try to do everything within an * atomic context (avoid the pagefaults) which requires that we never wait. If * we detect that we may wait, or if we need to fault, then we have to fallback * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm * bells yet?) Dropping the mutex means that we lose all the state we have * built up so far for the execbuf and we must reset any global data. However, * we do leave the objects pinned in their final locations - which is a * potential issue for concurrent execbufs. Once we have left the mutex, we can * allocate and copy all the relocation entries into a large array at our * leisure, reacquire the mutex, reclaim all the objects and other state and * then proceed to update any incorrect addresses with the objects. * * As we process the relocation entries, we maintain a record of whether the * object is being written to. Using NORELOC, we expect userspace to provide * this information instead. We also check whether we can skip the relocation * by comparing the expected value inside the relocation entry with the target's * final address. If they differ, we have to map the current object and rewrite * the 4 or 8 byte pointer within. * * Serialising an execbuf is quite simple according to the rules of the GEM * ABI. Execution within each context is ordered by the order of submission. * Writes to any GEM object are in order of submission and are exclusive. Reads * from a GEM object are unordered with respect to other reads, but ordered by * writes. A write submitted after a read cannot occur before the read, and * similarly any read submitted after a write cannot occur before the write. * Writes are ordered between engines such that only one write occurs at any * time (completing any reads beforehand) - using semaphores where available * and CPU serialisation otherwise. Other GEM access obey the same rules, any * write (either via mmaps using set-domain, or via pwrite) must flush all GPU * reads before starting, and any read (either using set-domain or pread) must * flush all GPU writes before starting. (Note we only employ a barrier before, * we currently rely on userspace not concurrently starting a new execution * whilst reading or writing to an object. This may be an advantage or not * depending on how much you trust userspace not to shoot themselves in the * foot.) Serialisation may just result in the request being inserted into * a DAG awaiting its turn, but most simple is to wait on the CPU until * all dependencies are resolved. * * After all of that, is just a matter of closing the request and handing it to * the hardware (well, leaving it in a queue to be executed). However, we also * offer the ability for batchbuffers to be run with elevated privileges so * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) * Before any batch is given extra privileges we first must check that it * contains no nefarious instructions, we check that each instruction is from * our whitelist and all registers are also from an allowed list. We first * copy the user's batchbuffer to a shadow (so that the user doesn't have * access to it, either by the CPU or GPU as we scan it) and then parse each * instruction. If everything is ok, we set a flag telling the hardware to run * the batchbuffer in trusted mode, otherwise the ioctl is rejected. */ struct eb_fence { struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ struct dma_fence *dma_fence; u64 value; struct dma_fence_chain *chain_fence; }; struct i915_execbuffer { struct drm_i915_private *i915; /** i915 backpointer */ struct drm_file *file; /** per-file lookup tables and limits */ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ struct eb_vma *vma; struct intel_gt *gt; /* gt for the execbuf */ struct intel_context *context; /* logical state for the request */ struct i915_gem_context *gem_context; /** caller's context */ intel_wakeref_t wakeref; intel_wakeref_t wakeref_gt0; /** our requests to build */ struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; /** identity of the batch obj/vma */ struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; struct i915_vma *trampoline; /** trampoline used for chaining */ /** used for excl fence in dma_resv objects when > 1 BB submitted */ struct dma_fence *composite_fence; /** actual size of execobj[] as we may extend it for the cmdparser */ unsigned int buffer_count; /* number of batches in execbuf IOCTL */ unsigned int num_batches; /** list of vma not yet bound during reservation phase */ struct list_head unbound; /** list of vma that have execobj.relocation_count */ struct list_head relocs; struct i915_gem_ww_ctx ww; /** * Track the most recently used object for relocations, as we * frequently have to perform multiple relocations within the same * obj/page */ struct reloc_cache { struct drm_mm_node node; /** temporary GTT binding */ unsigned long vaddr; /** Current kmap address */ unsigned long page; /** Currently mapped page index */ unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ bool use_64bit_reloc : 1; bool has_llc : 1; bool has_fence : 1; bool needs_unfenced : 1; } reloc_cache; u64 invalid_flags; /** Set of execobj.flags that are invalid */ /** Length of batch within object */ u64 batch_len[MAX_ENGINE_INSTANCE + 1]; u32 batch_start_offset; /** Location within object of batch */ u32 batch_flags; /** Flags composed for emit_bb_start() */ struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ /** * Indicate either the size of the hastable used to resolve * relocation handles, or if negative that we are using a direct * index into the execobj[]. */ int lut_size; struct hlist_head *buckets; /** ht for relocation handles */ struct eb_fence *fences; unsigned long num_fences; #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; #endif }; static int eb_parse(struct i915_execbuffer *eb); static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); static void eb_unpin_engine(struct i915_execbuffer *eb); static void eb_capture_release(struct i915_execbuffer *eb); static bool eb_use_cmdparser(const struct i915_execbuffer *eb) { return intel_engine_requires_cmd_parser(eb->context->engine) || (intel_engine_using_cmd_parser(eb->context->engine) && eb->args->batch_len); } static int eb_create(struct i915_execbuffer *eb) { if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { unsigned int size = 1 + ilog2(eb->buffer_count); /* * Without a 1:1 association between relocation handles and * the execobject[] index, we instead create a hashtable. * We size it dynamically based on available memory, starting * first with 1:1 assocative hash and scaling back until * the allocation succeeds. * * Later on we use a positive lut_size to indicate we are * using this hashtable, and a negative value to indicate a * direct lookup. */ do { gfp_t flags; /* While we can still reduce the allocation size, don't * raise a warning and allow the allocation to fail. * On the last pass though, we want to try as hard * as possible to perform the allocation and warn * if it fails. */ flags = GFP_KERNEL; if (size > 1) flags |= __GFP_NORETRY | __GFP_NOWARN; eb->buckets = kzalloc(sizeof(struct hlist_head) << size, flags); if (eb->buckets) break; } while (--size); if (unlikely(!size)) return -ENOMEM; eb->lut_size = size; } else { eb->lut_size = -eb->buffer_count; } return 0; } static bool eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, const struct i915_vma *vma, unsigned int flags) { const u64 start = i915_vma_offset(vma); const u64 size = i915_vma_size(vma); if (size < entry->pad_to_size) return true; if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) return true; if (flags & EXEC_OBJECT_PINNED && start != entry->offset) return true; if (flags & __EXEC_OBJECT_NEEDS_BIAS && start < BATCH_OFFSET_BIAS) return true; if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && (start + size + 4095) >> 32) return true; if (flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_map_and_fenceable(vma)) return true; return false; } static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, unsigned int exec_flags) { u64 pin_flags = 0; if (exec_flags & EXEC_OBJECT_NEEDS_GTT) pin_flags |= PIN_GLOBAL; /* * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, * limit address to the first 4GBs for unflagged objects. */ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) pin_flags |= PIN_ZONE_4G; if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) pin_flags |= PIN_MAPPABLE; if (exec_flags & EXEC_OBJECT_PINNED) pin_flags |= entry->offset | PIN_OFFSET_FIXED; else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; return pin_flags; } static int eb_pin_vma(struct i915_execbuffer *eb, const struct drm_i915_gem_exec_object2 *entry, struct eb_vma *ev) { struct i915_vma *vma = ev->vma; u64 pin_flags; int err; if (vma->node.size) pin_flags = __i915_vma_offset(vma); else pin_flags = entry->offset & PIN_OFFSET_MASK; pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) pin_flags |= PIN_GLOBAL; /* Attempt to reuse the current location if available */ err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); if (err == -EDEADLK) return err; if (unlikely(err)) { if (entry->flags & EXEC_OBJECT_PINNED) return err; /* Failing that pick any _free_ space if suitable */ err = i915_vma_pin_ww(vma, &eb->ww, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | PIN_USER | PIN_NOEVICT | PIN_VALIDATE); if (unlikely(err)) return err; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) return err; if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; if (eb_vma_misplaced(entry, vma, ev->flags)) return -EBADSLT; return 0; } static void eb_unreserve_vma(struct eb_vma *ev) { if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) __i915_vma_unpin_fence(ev->vma); ev->flags &= ~__EXEC_OBJECT_RESERVED; } static int eb_validate_vma(struct i915_execbuffer *eb, struct drm_i915_gem_exec_object2 *entry, struct i915_vma *vma) { /* Relocations are disallowed for all platforms after TGL-LP. This * also covers all platforms with local memory. */ if (entry->relocation_count && GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) return -EINVAL; if (unlikely(entry->flags & eb->invalid_flags)) return -EINVAL; if (unlikely(entry->alignment && !is_power_of_2_u64(entry->alignment))) return -EINVAL; /* * Offset can be used as input (EXEC_OBJECT_PINNED), reject * any non-page-aligned or non-canonical addresses. */ if (unlikely(entry->flags & EXEC_OBJECT_PINNED && entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) return -EINVAL; /* pad_to_size was once a reserved field, so sanitize it */ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { if (unlikely(offset_in_page(entry->pad_to_size))) return -EINVAL; } else { entry->pad_to_size = 0; } /* * From drm_mm perspective address space is continuous, * so from this point we're always using non-canonical * form internally. */ entry->offset = gen8_noncanonical_addr(entry->offset); if (!eb->reloc_cache.has_fence) { entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; } else { if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || eb->reloc_cache.needs_unfenced) && i915_gem_object_is_tiled(vma->obj)) entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; } return 0; } static bool is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) { return eb->args->flags & I915_EXEC_BATCH_FIRST ? buffer_idx < eb->num_batches : buffer_idx >= eb->args->buffer_count - eb->num_batches; } static int eb_add_vma(struct i915_execbuffer *eb, unsigned int *current_batch, unsigned int i, struct i915_vma *vma) { struct drm_i915_private *i915 = eb->i915; struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct eb_vma *ev = &eb->vma[i]; ev->vma = vma; ev->exec = entry; ev->flags = entry->flags; if (eb->lut_size > 0) { ev->handle = entry->handle; hlist_add_head(&ev->node, &eb->buckets[hash_32(entry->handle, eb->lut_size)]); } if (entry->relocation_count) list_add_tail(&ev->reloc_link, &eb->relocs); /* * SNA is doing fancy tricks with compressing batch buffers, which leads * to negative relocation deltas. Usually that works out ok since the * relocate address is still positive, except when the batch is placed * very low in the GTT. Ensure this doesn't happen. * * Note that actual hangs have only been observed on gen7, but for * paranoia do it everywhere. */ if (is_batch_buffer(eb, i)) { if (entry->relocation_count && !(ev->flags & EXEC_OBJECT_PINNED)) ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; if (eb->reloc_cache.has_fence) ev->flags |= EXEC_OBJECT_NEEDS_FENCE; eb->batches[*current_batch] = ev; if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { drm_dbg(&i915->drm, "Attempting to use self-modifying batch buffer\n"); return -EINVAL; } if (range_overflows_t(u64, eb->batch_start_offset, eb->args->batch_len, ev->vma->size)) { drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); return -EINVAL; } if (eb->args->batch_len == 0) eb->batch_len[*current_batch] = ev->vma->size - eb->batch_start_offset; else eb->batch_len[*current_batch] = eb->args->batch_len; if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ drm_dbg(&i915->drm, "Invalid batch length\n"); return -EINVAL; } ++*current_batch; } return 0; } static int use_cpu_reloc(const struct reloc_cache *cache, const struct drm_i915_gem_object *obj) { if (!i915_gem_object_has_struct_page(obj)) return false; if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) return true; if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) return false; /* * For objects created by userspace through GEM_CREATE with pat_index * set by set_pat extension, i915_gem_object_has_cache_level() always * return true, otherwise the call would fall back to checking whether * the object is un-cached. */ return (cache->has_llc || obj->cache_dirty || !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); } static int eb_reserve_vma(struct i915_execbuffer *eb, struct eb_vma *ev, u64 pin_flags) { struct drm_i915_gem_exec_object2 *entry = ev->exec; struct i915_vma *vma = ev->vma; int err; if (drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(entry, vma, ev->flags)) { err = i915_vma_unbind(vma); if (err) return err; } err = i915_vma_pin_ww(vma, &eb->ww, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | pin_flags); if (err) return err; if (entry->offset != i915_vma_offset(vma)) { entry->offset = i915_vma_offset(vma) | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) return err; if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); return 0; } static bool eb_unbind(struct i915_execbuffer *eb, bool force) { const unsigned int count = eb->buffer_count; unsigned int i; struct list_head last; bool unpinned = false; /* Resort *all* the objects into priority order */ INIT_LIST_HEAD(&eb->unbound); INIT_LIST_HEAD(&last); for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; unsigned int flags = ev->flags; if (!force && flags & EXEC_OBJECT_PINNED && flags & __EXEC_OBJECT_HAS_PIN) continue; unpinned = true; eb_unreserve_vma(ev); if (flags & EXEC_OBJECT_PINNED) /* Pinned must have their slot */ list_add(&ev->bind_link, &eb->unbound); else if (flags & __EXEC_OBJECT_NEEDS_MAP) /* Map require the lowest 256MiB (aperture) */ list_add_tail(&ev->bind_link, &eb->unbound); else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) /* Prioritise 4GiB region for restricted bo */ list_add(&ev->bind_link, &last); else list_add_tail(&ev->bind_link, &last); } list_splice_tail(&last, &eb->unbound); return unpinned; } static int eb_reserve(struct i915_execbuffer *eb) { struct eb_vma *ev; unsigned int pass; int err = 0; /* * We have one more buffers that we couldn't bind, which could be due to * various reasons. To resolve this we have 4 passes, with every next * level turning the screws tighter: * * 0. Unbind all objects that do not match the GTT constraints for the * execbuffer (fenceable, mappable, alignment etc). Bind all new * objects. This avoids unnecessary unbinding of later objects in order * to make room for the earlier objects *unless* we need to defragment. * * 1. Reorder the buffers, where objects with the most restrictive * placement requirements go first (ignoring fixed location buffers for * now). For example, objects needing the mappable aperture (the first * 256M of GTT), should go first vs objects that can be placed just * about anywhere. Repeat the previous pass. * * 2. Consider buffers that are pinned at a fixed location. Also try to * evict the entire VM this time, leaving only objects that we were * unable to lock. Try again to bind the buffers. (still using the new * buffer order). * * 3. We likely have object lock contention for one or more stubborn * objects in the VM, for which we need to evict to make forward * progress (perhaps we are fighting the shrinker?). When evicting the * VM this time around, anything that we can't lock we now track using * the busy_bo, using the full lock (after dropping the vm->mutex to * prevent deadlocks), instead of trylock. We then continue to evict the * VM, this time with the stubborn object locked, which we can now * hopefully unbind (if still bound in the VM). Repeat until the VM is * evicted. Finally we should be able bind everything. */ for (pass = 0; pass <= 3; pass++) { int pin_flags = PIN_USER | PIN_VALIDATE; if (pass == 0) pin_flags |= PIN_NONBLOCK; if (pass >= 1) eb_unbind(eb, pass >= 2); if (pass == 2) { err = mutex_lock_interruptible(&eb->context->vm->mutex); if (!err) { err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); mutex_unlock(&eb->context->vm->mutex); } if (err) return err; } if (pass == 3) { retry: err = mutex_lock_interruptible(&eb->context->vm->mutex); if (!err) { struct drm_i915_gem_object *busy_bo = NULL; err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); mutex_unlock(&eb->context->vm->mutex); if (err && busy_bo) { err = i915_gem_object_lock(busy_bo, &eb->ww); i915_gem_object_put(busy_bo); if (!err) goto retry; } } if (err) return err; } list_for_each_entry(ev, &eb->unbound, bind_link) { err = eb_reserve_vma(eb, ev, pin_flags); if (err) break; } if (err != -ENOSPC) break; } return err; } static int eb_select_context(struct i915_execbuffer *eb) { struct i915_gem_context *ctx; ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); if (unlikely(IS_ERR(ctx))) return PTR_ERR(ctx); eb->gem_context = ctx; if (i915_gem_context_has_full_ppgtt(ctx)) eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; return 0; } static int __eb_add_lut(struct i915_execbuffer *eb, u32 handle, struct i915_vma *vma) { struct i915_gem_context *ctx = eb->gem_context; struct i915_lut_handle *lut; int err; lut = i915_lut_handle_alloc(); if (unlikely(!lut)) return -ENOMEM; i915_vma_get(vma); if (!atomic_fetch_inc(&vma->open_count)) i915_vma_reopen(vma); lut->handle = handle; lut->ctx = ctx; /* Check that the context hasn't been closed in the meantime */ err = -EINTR; if (!mutex_lock_interruptible(&ctx->lut_mutex)) { if (likely(!i915_gem_context_is_closed(ctx))) err = radix_tree_insert(&ctx->handles_vma, handle, vma); else err = -ENOENT; if (err == 0) { /* And nor has this handle */ struct drm_i915_gem_object *obj = vma->obj; spin_lock(&obj->lut_lock); if (idr_find(&eb->file->object_idr, handle) == obj) { list_add(&lut->obj_link, &obj->lut_list); } else { radix_tree_delete(&ctx->handles_vma, handle); err = -ENOENT; } spin_unlock(&obj->lut_lock); } mutex_unlock(&ctx->lut_mutex); } if (unlikely(err)) goto err; return 0; err: i915_vma_close(vma); i915_vma_put(vma); i915_lut_handle_free(lut); return err; } static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) { struct i915_address_space *vm = eb->context->vm; do { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; rcu_read_lock(); vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); if (likely(vma && vma->vm == vm)) vma = i915_vma_tryget(vma); rcu_read_unlock(); if (likely(vma)) return vma; obj = i915_gem_object_lookup(eb->file, handle); if (unlikely(!obj)) return ERR_PTR(-ENOENT); /* * If the user has opted-in for protected-object tracking, make * sure the object encryption can be used. * We only need to do this when the object is first used with * this context, because the context itself will be banned when * the protected objects become invalid. */ if (i915_gem_context_uses_protected_content(eb->gem_context) && i915_gem_object_is_protected(obj)) { err = intel_pxp_key_check(eb->i915->pxp, obj, true); if (err) { i915_gem_object_put(obj); return ERR_PTR(err); } } vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = __eb_add_lut(eb, handle, vma); if (likely(!err)) return vma; i915_gem_object_put(obj); if (err != -EEXIST) return ERR_PTR(err); } while (1); } static int eb_lookup_vmas(struct i915_execbuffer *eb) { unsigned int i, current_batch = 0; int err = 0; INIT_LIST_HEAD(&eb->relocs); for (i = 0; i < eb->buffer_count; i++) { struct i915_vma *vma; vma = eb_lookup_vma(eb, eb->exec[i].handle); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = eb_validate_vma(eb, &eb->exec[i], vma); if (unlikely(err)) { i915_vma_put(vma); goto err; } err = eb_add_vma(eb, ¤t_batch, i, vma); if (err) return err; if (i915_gem_object_is_userptr(vma->obj)) { err = i915_gem_object_userptr_submit_init(vma->obj); if (err) { if (i + 1 < eb->buffer_count) { /* * Execbuffer code expects last vma entry to be NULL, * since we already initialized this entry, * set the next value to NULL or we mess up * cleanup handling. */ eb->vma[i + 1].vma = NULL; } return err; } eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; eb->args->flags |= __EXEC_USERPTR_USED; } } return 0; err: eb->vma[i].vma = NULL; return err; } static int eb_lock_vmas(struct i915_execbuffer *eb) { unsigned int i; int err; for (i = 0; i < eb->buffer_count; i++) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; err = i915_gem_object_lock(vma->obj, &eb->ww); if (err) return err; } return 0; } static int eb_validate_vmas(struct i915_execbuffer *eb) { unsigned int i; int err; INIT_LIST_HEAD(&eb->unbound); err = eb_lock_vmas(eb); if (err) return err; for (i = 0; i < eb->buffer_count; i++) { struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; err = eb_pin_vma(eb, entry, ev); if (err == -EDEADLK) return err; if (!err) { if (entry->offset != i915_vma_offset(vma)) { entry->offset = i915_vma_offset(vma) | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } } else { eb_unreserve_vma(ev); list_add_tail(&ev->bind_link, &eb->unbound); if (drm_mm_node_allocated(&vma->node)) { err = i915_vma_unbind(vma); if (err) return err; } } /* Reserve enough slots to accommodate composite fences */ err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); if (err) return err; GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); } if (!list_empty(&eb->unbound)) return eb_reserve(eb); return 0; } static struct eb_vma * eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) { if (eb->lut_size < 0) { if (handle >= -eb->lut_size) return NULL; return &eb->vma[handle]; } else { struct hlist_head *head; struct eb_vma *ev; head = &eb->buckets[hash_32(handle, eb->lut_size)]; hlist_for_each_entry(ev, head, node) { if (ev->handle == handle) return ev; } return NULL; } } static void eb_release_vmas(struct i915_execbuffer *eb, bool final) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; if (!vma) break; eb_unreserve_vma(ev); if (final) i915_vma_put(vma); } eb_capture_release(eb); eb_unpin_engine(eb); } static void eb_destroy(const struct i915_execbuffer *eb) { if (eb->lut_size > 0) kfree(eb->buckets); } static u64 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, const struct i915_vma *target) { return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); } static void reloc_cache_init(struct reloc_cache *cache, struct drm_i915_private *i915) { cache->page = -1; cache->vaddr = 0; /* Must be a variable in the struct to allow GCC to unroll. */ cache->graphics_ver = GRAPHICS_VER(i915); cache->has_llc = HAS_LLC(i915); cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); cache->has_fence = cache->graphics_ver < 4; cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; cache->node.flags = 0; } static void *unmask_page(unsigned long p) { return (void *)(uintptr_t)(p & PAGE_MASK); } static unsigned int unmask_flags(unsigned long p) { return p & ~PAGE_MASK; } #define KMAP 0x4 /* after CLFLUSH_FLAGS */ static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) { struct drm_i915_private *i915 = container_of(cache, struct i915_execbuffer, reloc_cache)->i915; return to_gt(i915)->ggtt; } static void reloc_cache_unmap(struct reloc_cache *cache) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) kunmap_local(vaddr); else io_mapping_unmap_atomic((void __iomem *)vaddr); } static void reloc_cache_remap(struct reloc_cache *cache, struct drm_i915_gem_object *obj) { void *vaddr; if (!cache->vaddr) return; if (cache->vaddr & KMAP) { struct page *page = i915_gem_object_get_page(obj, cache->page); vaddr = kmap_local_page(page); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; offset = cache->node.start; if (!drm_mm_node_allocated(&cache->node)) offset += cache->page << PAGE_SHIFT; cache->vaddr = (unsigned long) io_mapping_map_atomic_wc(&ggtt->iomap, offset); } } static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) { struct drm_i915_gem_object *obj = (struct drm_i915_gem_object *)cache->node.mm; if (cache->vaddr & CLFLUSH_AFTER) mb(); kunmap_local(vaddr); i915_gem_object_finish_access(obj); } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __iomem *)vaddr); if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.clear_range(&ggtt->vm, cache->node.start, cache->node.size); mutex_lock(&ggtt->vm.mutex); drm_mm_remove_node(&cache->node); mutex_unlock(&ggtt->vm.mutex); } else { i915_vma_unpin((struct i915_vma *)cache->node.mm); } } cache->vaddr = 0; cache->page = -1; } static void *reloc_kmap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long pageno) { void *vaddr; struct page *page; if (cache->vaddr) { kunmap_local(unmask_page(cache->vaddr)); } else { unsigned int flushes; int err; err = i915_gem_object_prepare_write(obj, &flushes); if (err) return ERR_PTR(err); BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); cache->vaddr = flushes | KMAP; cache->node.mm = (void *)obj; if (flushes) mb(); } page = i915_gem_object_get_page(obj, pageno); if (!obj->mm.dirty) set_page_dirty(page); vaddr = kmap_local_page(page); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; cache->page = pageno; return vaddr; } static void *reloc_iomap(struct i915_vma *batch, struct i915_execbuffer *eb, unsigned long page) { struct drm_i915_gem_object *obj = batch->obj; struct reloc_cache *cache = &eb->reloc_cache; struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; void *vaddr; if (cache->vaddr) { intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma = ERR_PTR(-ENODEV); int err; if (i915_gem_object_is_tiled(obj)) return ERR_PTR(-EINVAL); if (use_cpu_reloc(cache, obj)) return NULL; err = i915_gem_object_set_to_gtt_domain(obj, true); if (err) return ERR_PTR(err); /* * i915_gem_object_ggtt_pin_ww may attempt to remove the batch * VMA from the object list because we no longer pin. * * Only attempt to pin the batch buffer to ggtt if the current batch * is not inside ggtt, or the batch buffer is not misplaced. */ if (!i915_is_ggtt(batch->vm) || !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK /* NOWARN */ | PIN_NOEVICT); } if (vma == ERR_PTR(-EDEADLK)) return vma; if (IS_ERR(vma)) { memset(&cache->node, 0, sizeof(cache->node)); mutex_lock(&ggtt->vm.mutex); err = drm_mm_insert_node_in_range (&ggtt->vm.mm, &cache->node, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); mutex_unlock(&ggtt->vm.mutex); if (err) /* no inactive aperture space, use cpu reloc */ return NULL; } else { cache->node.start = i915_ggtt_offset(vma); cache->node.mm = (void *)vma; } } offset = cache->node.start; if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, page), offset, i915_gem_get_pat_index(ggtt->vm.i915, I915_CACHE_NONE), 0); } else { offset += page << PAGE_SHIFT; } vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; return vaddr; } static void *reloc_vaddr(struct i915_vma *vma, struct i915_execbuffer *eb, unsigned long page) { struct reloc_cache *cache = &eb->reloc_cache; void *vaddr; if (cache->page == page) { vaddr = unmask_page(cache->vaddr); } else { vaddr = NULL; if ((cache->vaddr & KMAP) == 0) vaddr = reloc_iomap(vma, eb, page); if (!vaddr) vaddr = reloc_kmap(vma->obj, cache, page); } return vaddr; } static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) { if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { if (flushes & CLFLUSH_BEFORE) drm_clflush_virt_range(addr, sizeof(*addr)); *addr = value; /* * Writes to the same cacheline are serialised by the CPU * (including clflush). On the write path, we only require * that it hits memory in an orderly fashion and place * mb barriers at the start and end of the relocation phase * to ensure ordering of clflush wrt to the system. */ if (flushes & CLFLUSH_AFTER) drm_clflush_virt_range(addr, sizeof(*addr)); } else *addr = value; } static u64 relocate_entry(struct i915_vma *vma, const struct drm_i915_gem_relocation_entry *reloc, struct i915_execbuffer *eb, const struct i915_vma *target) { u64 target_addr = relocation_target(reloc, target); u64 offset = reloc->offset; bool wide = eb->reloc_cache.use_64bit_reloc; void *vaddr; repeat: vaddr = reloc_vaddr(vma, eb, offset >> PAGE_SHIFT); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); clflush_write32(vaddr + offset_in_page(offset), lower_32_bits(target_addr), eb->reloc_cache.vaddr); if (wide) { offset += sizeof(u32); target_addr >>= 32; wide = false; goto repeat; } return target->node.start | UPDATE; } static u64 eb_relocate_entry(struct i915_execbuffer *eb, struct eb_vma *ev, const struct drm_i915_gem_relocation_entry *reloc) { struct drm_i915_private *i915 = eb->i915; struct eb_vma *target; int err; /* we've already hold a reference to all valid objects */ target = eb_get_vma(eb, reloc->target_handle); if (unlikely(!target)) return -ENOENT; /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { drm_dbg(&i915->drm, "reloc with multiple write domains: " "target %d offset %d " "read %08x write %08x\n", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " "target %d offset %d " "read %08x write %08x\n", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain) { target->flags |= EXEC_OBJECT_WRITE; /* * Sandybridge PPGTT errata: We need a global gtt mapping * for MI and pipe_control writes because the gpu doesn't * properly redirect them through the ppgtt for non_secure * batchbuffers. */ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && GRAPHICS_VER(eb->i915) == 6 && !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { struct i915_vma *vma = target->vma; reloc_cache_unmap(&eb->reloc_cache); mutex_lock(&vma->vm->mutex); err = i915_vma_bind(target->vma, target->vma->obj->pat_index, PIN_GLOBAL, NULL, NULL); mutex_unlock(&vma->vm->mutex); reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); if (err) return err; } } /* * If the relocation already has the right value in it, no * more work needs to be done. */ if (!DBG_FORCE_RELOC && gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { drm_dbg(&i915->drm, "Relocation beyond object bounds: " "target %d offset %d size %d.\n", reloc->target_handle, (int)reloc->offset, (int)ev->vma->size); return -EINVAL; } if (unlikely(reloc->offset & 3)) { drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " "target %d offset %d.\n", reloc->target_handle, (int)reloc->offset); return -EINVAL; } /* * If we write into the object, we need to force the synchronisation * barrier, either with an asynchronous clflush or if we executed the * patching using the GPU (though that should be serialised by the * timeline). To be completely sure, and since we are required to * do relocations we are already stalling, disable the user's opt * out of our synchronisation. */ ev->flags &= ~EXEC_OBJECT_ASYNC; /* and update the user's relocation entry */ return relocate_entry(ev->vma, reloc, eb, target->vma); } static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) { #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; const struct drm_i915_gem_exec_object2 *entry = ev->exec; struct drm_i915_gem_relocation_entry __user *urelocs = u64_to_user_ptr(entry->relocs_ptr); unsigned long remain = entry->relocation_count; if (unlikely(remain > N_RELOC(ULONG_MAX))) return -EINVAL; /* * We must check that the entire relocation array is safe * to read. However, if the array is not writable the user loses * the updated relocation values. */ if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) return -EFAULT; do { struct drm_i915_gem_relocation_entry *r = stack; unsigned int count = min_t(unsigned long, remain, ARRAY_SIZE(stack)); unsigned int copied; /* * This is the fast path and we cannot handle a pagefault * whilst holding the struct mutex lest the user pass in the * relocations contained within a mmaped bo. For in such a case * we, the page fault handler would call i915_gem_fault() and * we would try to acquire the struct mutex again. Obviously * this is bad and so lockdep complains vehemently. */ pagefault_disable(); copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); pagefault_enable(); if (unlikely(copied)) { remain = -EFAULT; goto out; } remain -= count; do { u64 offset = eb_relocate_entry(eb, ev, r); if (likely(offset == 0)) { } else if ((s64)offset < 0) { remain = (int)offset; goto out; } else { /* * Note that reporting an error now * leaves everything in an inconsistent * state as we have *already* changed * the relocation value inside the * object. As we have not changed the * reloc.presumed_offset or will not * change the execobject.offset, on the * call we may not rewrite the value * inside the object, leaving it * dangling and causing a GPU hang. Unless * userspace dynamically rebuilds the * relocations on each execbuf rather than * presume a static tree. * * We did previously check if the relocations * were writable (access_ok), an error now * would be a strange race with mprotect, * having already demonstrated that we * can read from this userspace address. */ offset = gen8_canonical_addr(offset & ~UPDATE); __put_user(offset, &urelocs[r - stack].presumed_offset); } } while (r++, --count); urelocs += ARRAY_SIZE(stack); } while (remain); out: reloc_cache_reset(&eb->reloc_cache, eb); return remain; } static int eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) { const struct drm_i915_gem_exec_object2 *entry = ev->exec; struct drm_i915_gem_relocation_entry *relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); unsigned int i; int err; for (i = 0; i < entry->relocation_count; i++) { u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); if ((s64)offset < 0) { err = (int)offset; goto err; } } err = 0; err: reloc_cache_reset(&eb->reloc_cache, eb); return err; } static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) { const char __user *addr, *end; unsigned long size; char __maybe_unused c; size = entry->relocation_count; if (size == 0) return 0; if (size > N_RELOC(ULONG_MAX)) return -EINVAL; addr = u64_to_user_ptr(entry->relocs_ptr); size *= sizeof(struct drm_i915_gem_relocation_entry); if (!access_ok(addr, size)) return -EFAULT; end = addr + size; for (; addr < end; addr += PAGE_SIZE) { int err = __get_user(c, addr); if (err) return err; } return __get_user(c, end - 1); } static int eb_copy_relocations(const struct i915_execbuffer *eb) { struct drm_i915_gem_relocation_entry *relocs; const unsigned int count = eb->buffer_count; unsigned int i; int err; for (i = 0; i < count; i++) { const unsigned int nreloc = eb->exec[i].relocation_count; struct drm_i915_gem_relocation_entry __user *urelocs; unsigned long size; unsigned long copied; if (nreloc == 0) continue; err = check_relocations(&eb->exec[i]); if (err) goto err; urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); size = nreloc * sizeof(*relocs); relocs = kvmalloc_array(1, size, GFP_KERNEL); if (!relocs) { err = -ENOMEM; goto err; } /* copy_from_user is limited to < 4GiB */ copied = 0; do { unsigned int len = min_t(u64, BIT_ULL(31), size - copied); if (__copy_from_user((char *)relocs + copied, (char __user *)urelocs + copied, len)) goto end; copied += len; } while (copied < size); /* * As we do not update the known relocation offsets after * relocating (due to the complexities in lock handling), * we need to mark them as invalid now so that we force the * relocation processing next time. Just in case the target * object is evicted and then rebound into its old * presumed_offset before the next execbuffer - if that * happened we would make the mistake of assuming that the * relocations were valid. */ if (!user_access_begin(urelocs, size)) goto end; for (copied = 0; copied < nreloc; copied++) unsafe_put_user(-1, &urelocs[copied].presumed_offset, end_user); user_access_end(); eb->exec[i].relocs_ptr = (uintptr_t)relocs; } return 0; end_user: user_access_end(); end: kvfree(relocs); err = -EFAULT; err: while (i--) { relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); if (eb->exec[i].relocation_count) kvfree(relocs); } return err; } static int eb_prefault_relocations(const struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { int err; err = check_relocations(&eb->exec[i]); if (err) return err; } return 0; } static int eb_reinit_userptr(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; int ret; if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) return 0; for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; if (!i915_gem_object_is_userptr(ev->vma->obj)) continue; ret = i915_gem_object_userptr_submit_init(ev->vma->obj); if (ret) return ret; ev->flags |= __EXEC_OBJECT_USERPTR_INIT; } return 0; } static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) { bool have_copy = false; struct eb_vma *ev; int err = 0; repeat: if (signal_pending(current)) { err = -ERESTARTSYS; goto out; } /* We may process another execbuffer during the unlock... */ eb_release_vmas(eb, false); i915_gem_ww_ctx_fini(&eb->ww); /* * We take 3 passes through the slowpatch. * * 1 - we try to just prefault all the user relocation entries and * then attempt to reuse the atomic pagefault disabled fast path again. * * 2 - we copy the user entries to a local buffer here outside of the * local and allow ourselves to wait upon any rendering before * relocations * * 3 - we already have a local copy of the relocation entries, but * were interrupted (EAGAIN) whilst waiting for the objects, try again. */ if (!err) { err = eb_prefault_relocations(eb); } else if (!have_copy) { err = eb_copy_relocations(eb); have_copy = err == 0; } else { cond_resched(); err = 0; } if (!err) err = eb_reinit_userptr(eb); i915_gem_ww_ctx_init(&eb->ww, true); if (err) goto out; /* reacquire the objects */ repeat_validate: err = eb_pin_engine(eb, false); if (err) goto err; err = eb_validate_vmas(eb); if (err) goto err; GEM_BUG_ON(!eb->batches[0]); list_for_each_entry(ev, &eb->relocs, reloc_link) { if (!have_copy) { err = eb_relocate_vma(eb, ev); if (err) break; } else { err = eb_relocate_vma_slow(eb, ev); if (err) break; } } if (err == -EDEADLK) goto err; if (err && !have_copy) goto repeat; if (err) goto err; /* as last step, parse the command buffer */ err = eb_parse(eb); if (err) goto err; /* * Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: if (err == -EDEADLK) { eb_release_vmas(eb, false); err = i915_gem_ww_ctx_backoff(&eb->ww); if (!err) goto repeat_validate; } if (err == -EAGAIN) goto repeat; out: if (have_copy) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct drm_i915_gem_relocation_entry *relocs; if (!entry->relocation_count) continue; relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); kvfree(relocs); } } return err; } static int eb_relocate_parse(struct i915_execbuffer *eb) { int err; bool throttle = true; retry: err = eb_pin_engine(eb, throttle); if (err) { if (err != -EDEADLK) return err; goto err; } /* only throttle once, even if we didn't need to throttle */ throttle = false; err = eb_validate_vmas(eb); if (err == -EAGAIN) goto slow; else if (err) goto err; /* The objects are in their final locations, apply the relocations. */ if (eb->args->flags & __EXEC_HAS_RELOC) { struct eb_vma *ev; list_for_each_entry(ev, &eb->relocs, reloc_link) { err = eb_relocate_vma(eb, ev); if (err) break; } if (err == -EDEADLK) goto err; else if (err) goto slow; } if (!err) err = eb_parse(eb); err: if (err == -EDEADLK) { eb_release_vmas(eb, false); err = i915_gem_ww_ctx_backoff(&eb->ww); if (!err) goto retry; } return err; slow: err = eb_relocate_parse_slow(eb); if (err) /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ eb->args->flags &= ~__EXEC_HAS_RELOC; return err; } /* * Using two helper loops for the order of which requests / batches are created * and added the to backend. Requests are created in order from the parent to * the last child. Requests are added in the reverse order, from the last child * to parent. This is done for locking reasons as the timeline lock is acquired * during request creation and released when the request is added to the * backend. To make lockdep happy (see intel_context_timeline_lock) this must be * the ordering. */ #define for_each_batch_create_order(_eb, _i) \ for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) #define for_each_batch_add_order(_eb, _i) \ BUILD_BUG_ON(!typecheck(int, _i)); \ for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) static struct i915_request * eb_find_first_request_added(struct i915_execbuffer *eb) { int i; for_each_batch_add_order(eb, i) if (eb->requests[i]) return eb->requests[i]; GEM_BUG_ON("Request not found"); return NULL; } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ static int eb_capture_stage(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i = count, j; while (i--) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; unsigned int flags = ev->flags; if (!(flags & EXEC_OBJECT_CAPTURE)) continue; if (i915_gem_context_is_recoverable(eb->gem_context) && (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) return -EINVAL; for_each_batch_create_order(eb, j) { struct i915_capture_list *capture; capture = kmalloc(sizeof(*capture), GFP_KERNEL); if (!capture) continue; capture->next = eb->capture_lists[j]; capture->vma_res = i915_vma_resource_get(vma->resource); eb->capture_lists[j] = capture; } } return 0; } /* Commit once we're in the critical path */ static void eb_capture_commit(struct i915_execbuffer *eb) { unsigned int j; for_each_batch_create_order(eb, j) { struct i915_request *rq = eb->requests[j]; if (!rq) break; rq->capture_list = eb->capture_lists[j]; eb->capture_lists[j] = NULL; } } /* * Release anything that didn't get committed due to errors. * The capture_list will otherwise be freed at request retire. */ static void eb_capture_release(struct i915_execbuffer *eb) { unsigned int j; for_each_batch_create_order(eb, j) { if (eb->capture_lists[j]) { i915_request_free_capture_list(eb->capture_lists[j]); eb->capture_lists[j] = NULL; } } } static void eb_capture_list_clear(struct i915_execbuffer *eb) { memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); } #else static int eb_capture_stage(struct i915_execbuffer *eb) { return 0; } static void eb_capture_commit(struct i915_execbuffer *eb) { } static void eb_capture_release(struct i915_execbuffer *eb) { } static void eb_capture_list_clear(struct i915_execbuffer *eb) { } #endif static int eb_move_to_gpu(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i = count; int err = 0, j; while (i--) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; unsigned int flags = ev->flags; struct drm_i915_gem_object *obj = vma->obj; assert_vma_held(vma); /* * If the GPU is not _reading_ through the CPU cache, we need * to make sure that any writes (both previous GPU writes from * before a change in snooping levels and normal CPU writes) * caught in that cache are flushed to main memory. * * We want to say * obj->cache_dirty && * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) * but gcc's optimiser doesn't handle that as well and emits * two jumps instead of one. Maybe one day... * * FIXME: There is also sync flushing in set_pages(), which * serves a different purpose(some of the time at least). * * We should consider: * * 1. Rip out the async flush code. * * 2. Or make the sync flushing use the async clflush path * using mandatory fences underneath. Currently the below * async flush happens after we bind the object. */ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { if (i915_gem_clflush_object(obj, 0)) flags &= ~EXEC_OBJECT_ASYNC; } /* We only need to await on the first request */ if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { err = i915_request_await_object (eb_find_first_request_added(eb), obj, flags & EXEC_OBJECT_WRITE); } for_each_batch_add_order(eb, j) { if (err) break; if (!eb->requests[j]) continue; err = _i915_vma_move_to_active(vma, eb->requests[j], j ? NULL : eb->composite_fence ? eb->composite_fence : &eb->requests[j]->fence, flags | __EXEC_OBJECT_NO_RESERVE | __EXEC_OBJECT_NO_REQUEST_AWAIT); } } #ifdef CONFIG_MMU_NOTIFIER if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; struct drm_i915_gem_object *obj = ev->vma->obj; if (!i915_gem_object_is_userptr(obj)) continue; err = i915_gem_object_userptr_submit_done(obj); if (err) break; } } #endif if (unlikely(err)) goto err_skip; /* Unconditionally flush any chipset caches (for streaming writes). */ intel_gt_chipset_flush(eb->gt); eb_capture_commit(eb); return 0; err_skip: for_each_batch_create_order(eb, j) { if (!eb->requests[j]) break; i915_request_set_error_once(eb->requests[j], err); } return err; } static int i915_gem_check_execbuffer(struct drm_i915_private *i915, struct drm_i915_gem_execbuffer2 *exec) { if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) return -EINVAL; /* Kernel clipping was a DRI1 misfeature */ if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | I915_EXEC_USE_EXTENSIONS))) { if (exec->num_cliprects || exec->cliprects_ptr) return -EINVAL; } if (exec->DR4 == 0xffffffff) { drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); exec->DR4 = 0; } if (exec->DR1 || exec->DR4) return -EINVAL; if ((exec->batch_start_offset | exec->batch_len) & 0x7) return -EINVAL; return 0; } static int i915_reset_gen7_sol_offsets(struct i915_request *rq) { u32 *cs; int i; if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); return -EINVAL; } cs = intel_ring_begin(rq, 4 * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(4); for (i = 0; i < 4; i++) { *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); *cs++ = 0; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static struct i915_vma * shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj, struct i915_address_space *vm, unsigned int flags) { struct i915_vma *vma; int err; vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) return vma; err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); if (err) return ERR_PTR(err); return vma; } static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) { /* * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure * batch" bit. Hence we need to pin secure batches into the global gtt. * hsw should have this fixed, but bdw mucks it up again. */ if (eb->batch_flags & I915_DISPATCH_SECURE) return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); return NULL; } static int eb_parse(struct i915_execbuffer *eb) { struct drm_i915_private *i915 = eb->i915; struct intel_gt_buffer_pool_node *pool = eb->batch_pool; struct i915_vma *shadow, *trampoline, *batch; unsigned long len; int err; if (!eb_use_cmdparser(eb)) { batch = eb_dispatch_secure(eb, eb->batches[0]->vma); if (IS_ERR(batch)) return PTR_ERR(batch); goto secure_batch; } if (intel_context_is_parallel(eb->context)) return -EINVAL; len = eb->batch_len[0]; if (!CMDPARSER_USES_GGTT(eb->i915)) { /* * ppGTT backed shadow buffers must be mapped RO, to prevent * post-scan tampering */ if (!eb->context->vm->has_read_only) { drm_dbg(&i915->drm, "Cannot prevent post-scan tampering without RO capable vm\n"); return -EINVAL; } } else { len += I915_CMD_PARSER_TRAMPOLINE_SIZE; } if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ return -EINVAL; if (!pool) { pool = intel_gt_get_buffer_pool(eb->gt, len, I915_MAP_WB); if (IS_ERR(pool)) return PTR_ERR(pool); eb->batch_pool = pool; } err = i915_gem_object_lock(pool->obj, &eb->ww); if (err) return err; shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); if (IS_ERR(shadow)) return PTR_ERR(shadow); intel_gt_buffer_pool_mark_used(pool); i915_gem_object_set_readonly(shadow->obj); shadow->private = pool; trampoline = NULL; if (CMDPARSER_USES_GGTT(eb->i915)) { trampoline = shadow; shadow = shadow_batch_pin(eb, pool->obj, &eb->gt->ggtt->vm, PIN_GLOBAL); if (IS_ERR(shadow)) return PTR_ERR(shadow); shadow->private = pool; eb->batch_flags |= I915_DISPATCH_SECURE; } batch = eb_dispatch_secure(eb, shadow); if (IS_ERR(batch)) return PTR_ERR(batch); err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); if (err) return err; err = intel_engine_cmd_parser(eb->context->engine, eb->batches[0]->vma, eb->batch_start_offset, eb->batch_len[0], shadow, trampoline); if (err) return err; eb->batches[0] = &eb->vma[eb->buffer_count++]; eb->batches[0]->vma = i915_vma_get(shadow); eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; eb->trampoline = trampoline; eb->batch_start_offset = 0; secure_batch: if (batch) { if (intel_context_is_parallel(eb->context)) return -EINVAL; eb->batches[0] = &eb->vma[eb->buffer_count++]; eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; eb->batches[0]->vma = i915_vma_get(batch); } return 0; } static int eb_request_submit(struct i915_execbuffer *eb, struct i915_request *rq, struct i915_vma *batch, u64 batch_len) { int err; if (intel_context_nopreempt(rq->context)) __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { err = i915_reset_gen7_sol_offsets(rq); if (err) return err; } /* * After we completed waiting for other engines (using HW semaphores) * then we can signal that this request/batch is ready to run. This * allows us to determine if the batch is still waiting on the GPU * or actually running by checking the breadcrumb. */ if (rq->context->engine->emit_init_breadcrumb) { err = rq->context->engine->emit_init_breadcrumb(rq); if (err) return err; } err = rq->context->engine->emit_bb_start(rq, i915_vma_offset(batch) + eb->batch_start_offset, batch_len, eb->batch_flags); if (err) return err; if (eb->trampoline) { GEM_BUG_ON(intel_context_is_parallel(rq->context)); GEM_BUG_ON(eb->batch_start_offset); err = rq->context->engine->emit_bb_start(rq, i915_vma_offset(eb->trampoline) + batch_len, 0, 0); if (err) return err; } return 0; } static int eb_submit(struct i915_execbuffer *eb) { unsigned int i; int err; err = eb_move_to_gpu(eb); for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; trace_i915_request_queue(eb->requests[i], eb->batch_flags); if (!err) err = eb_request_submit(eb, eb->requests[i], eb->batches[i]->vma, eb->batch_len[i]); } return err; } /* * Find one BSD ring to dispatch the corresponding BSD command. * The engine index is returned. */ static unsigned int gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Check whether the file_priv has already selected one ring. */ if ((int)file_priv->bsd_engine < 0) file_priv->bsd_engine = get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); return file_priv->bsd_engine; } static const enum intel_engine_id user_ring_map[] = { [I915_EXEC_DEFAULT] = RCS0, [I915_EXEC_RENDER] = RCS0, [I915_EXEC_BLT] = BCS0, [I915_EXEC_BSD] = VCS0, [I915_EXEC_VEBOX] = VECS0 }; static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) { struct intel_ring *ring = ce->ring; struct intel_timeline *tl = ce->timeline; struct i915_request *rq; /* * Completely unscientific finger-in-the-air estimates for suitable * maximum user request size (to avoid blocking) and then backoff. */ if (intel_ring_update_space(ring) >= PAGE_SIZE) return NULL; /* * Find a request that after waiting upon, there will be at least half * the ring available. The hysteresis allows us to compete for the * shared ring and should mean that we sleep less often prior to * claiming our resources, but not so long that the ring completely * drains before we can submit our next request. */ list_for_each_entry(rq, &tl->requests, link) { if (rq->ring != ring) continue; if (__intel_ring_space(rq->postfix, ring->emit, ring->size) > ring->size / 2) break; } if (&rq->link == &tl->requests) return NULL; /* weird, we will check again later for real */ return i915_request_get(rq); } static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, bool throttle) { struct intel_timeline *tl; struct i915_request *rq = NULL; /* * Take a local wakeref for preparing to dispatch the execbuf as * we expect to access the hardware fairly frequently in the * process, and require the engine to be kept awake between accesses. * Upon dispatch, we acquire another prolonged wakeref that we hold * until the timeline is idle, which in turn releases the wakeref * taken on the engine, and the parent device. */ tl = intel_context_timeline_lock(ce); if (IS_ERR(tl)) return PTR_ERR(tl); intel_context_enter(ce); if (throttle) rq = eb_throttle(eb, ce); intel_context_timeline_unlock(tl); if (rq) { bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, timeout) < 0) { i915_request_put(rq); /* * Error path, cannot use intel_context_timeline_lock as * that is user interruptable and this clean up step * must be done. */ mutex_lock(&ce->timeline->mutex); intel_context_exit(ce); mutex_unlock(&ce->timeline->mutex); if (nonblock) return -EWOULDBLOCK; else return -EINTR; } i915_request_put(rq); } return 0; } static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) { struct intel_context *ce = eb->context, *child; int err; int i = 0, j = 0; GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); if (unlikely(intel_context_is_banned(ce))) return -EIO; /* * Pinning the contexts may generate requests in order to acquire * GGTT space, so do this first before we reserve a seqno for * ourselves. */ err = intel_context_pin_ww(ce, &eb->ww); if (err) return err; for_each_child(ce, child) { err = intel_context_pin_ww(child, &eb->ww); GEM_BUG_ON(err); /* perma-pinned should incr a counter */ } for_each_child(ce, child) { err = eb_pin_timeline(eb, child, throttle); if (err) goto unwind; ++i; } err = eb_pin_timeline(eb, ce, throttle); if (err) goto unwind; eb->args->flags |= __EXEC_ENGINE_PINNED; return 0; unwind: for_each_child(ce, child) { if (j++ < i) { mutex_lock(&child->timeline->mutex); intel_context_exit(child); mutex_unlock(&child->timeline->mutex); } } for_each_child(ce, child) intel_context_unpin(child); intel_context_unpin(ce); return err; } static void eb_unpin_engine(struct i915_execbuffer *eb) { struct intel_context *ce = eb->context, *child; if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) return; eb->args->flags &= ~__EXEC_ENGINE_PINNED; for_each_child(ce, child) { mutex_lock(&child->timeline->mutex); intel_context_exit(child); mutex_unlock(&child->timeline->mutex); intel_context_unpin(child); } mutex_lock(&ce->timeline->mutex); intel_context_exit(ce); mutex_unlock(&ce->timeline->mutex); intel_context_unpin(ce); } static unsigned int eb_select_legacy_ring(struct i915_execbuffer *eb) { struct drm_i915_private *i915 = eb->i915; struct drm_i915_gem_execbuffer2 *args = eb->args; unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; if (user_ring_id != I915_EXEC_BSD && (args->flags & I915_EXEC_BSD_MASK)) { drm_dbg(&i915->drm, "execbuf with non bsd ring but with invalid " "bsd dispatch flags: %d\n", (int)(args->flags)); return -1; } if (user_ring_id == I915_EXEC_BSD && i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; if (bsd_idx == I915_EXEC_BSD_DEFAULT) { bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); } else if (bsd_idx >= I915_EXEC_BSD_RING1 && bsd_idx <= I915_EXEC_BSD_RING2) { bsd_idx >>= I915_EXEC_BSD_SHIFT; bsd_idx--; } else { drm_dbg(&i915->drm, "execbuf with unknown bsd ring: %u\n", bsd_idx); return -1; } return _VCS(bsd_idx); } if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", user_ring_id); return -1; } return user_ring_map[user_ring_id]; } static int eb_select_engine(struct i915_execbuffer *eb) { struct intel_context *ce, *child; struct intel_gt *gt; unsigned int idx; int err; if (i915_gem_context_user_engines(eb->gem_context)) idx = eb->args->flags & I915_EXEC_RING_MASK; else idx = eb_select_legacy_ring(eb); ce = i915_gem_context_get_engine(eb->gem_context, idx); if (IS_ERR(ce)) return PTR_ERR(ce); if (intel_context_is_parallel(ce)) { if (eb->buffer_count < ce->parallel.number_children + 1) { intel_context_put(ce); return -EINVAL; } if (eb->batch_start_offset || eb->args->batch_len) { intel_context_put(ce); return -EINVAL; } } eb->num_batches = ce->parallel.number_children + 1; gt = ce->engine->gt; for_each_child(ce, child) intel_context_get(child); eb->wakeref = intel_gt_pm_get(ce->engine->gt); /* * Keep GT0 active on MTL so that i915_vma_parked() doesn't * free VMAs while execbuf ioctl is validating VMAs. */ if (gt->info.id) eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915)); if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { err = intel_context_alloc_state(ce); if (err) goto err; } for_each_child(ce, child) { if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { err = intel_context_alloc_state(child); if (err) goto err; } } /* * ABI: Before userspace accesses the GPU (e.g. execbuffer), report * EIO if the GPU is already wedged. */ err = intel_gt_terminally_wedged(ce->engine->gt); if (err) goto err; if (!i915_vm_tryget(ce->vm)) { err = -ENOENT; goto err; } eb->context = ce; eb->gt = ce->engine->gt; /* * Make sure engine pool stays alive even if we call intel_context_put * during ww handling. The pool is destroyed when last pm reference * is dropped, which breaks our -EDEADLK handling. */ return err; err: if (gt->info.id) intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0); intel_gt_pm_put(ce->engine->gt, eb->wakeref); for_each_child(ce, child) intel_context_put(child); intel_context_put(ce); return err; } static void eb_put_engine(struct i915_execbuffer *eb) { struct intel_context *child; i915_vm_put(eb->context->vm); /* * This works in conjunction with eb_select_engine() to prevent * i915_vma_parked() from interfering while execbuf validates vmas. */ if (eb->gt->info.id) intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0); intel_gt_pm_put(eb->context->engine->gt, eb->wakeref); for_each_child(eb->context, child) intel_context_put(child); intel_context_put(eb->context); } static void __free_fence_array(struct eb_fence *fences, unsigned int n) { while (n--) { drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); dma_fence_put(fences[n].dma_fence); dma_fence_chain_free(fences[n].chain_fence); } kvfree(fences); } static int add_timeline_fence_array(struct i915_execbuffer *eb, const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) { struct drm_i915_gem_exec_fence __user *user_fences; u64 __user *user_values; struct eb_fence *f; u64 nfences; int err = 0; nfences = timeline_fences->fence_count; if (!nfences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (nfences > min_t(unsigned long, ULONG_MAX / sizeof(*user_fences), SIZE_MAX / sizeof(*f)) - eb->num_fences) return -EINVAL; user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); if (!access_ok(user_fences, nfences * sizeof(*user_fences))) return -EFAULT; user_values = u64_to_user_ptr(timeline_fences->values_ptr); if (!access_ok(user_values, nfences * sizeof(*user_values))) return -EFAULT; f = krealloc(eb->fences, (eb->num_fences + nfences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; eb->fences = f; f += eb->num_fences; BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); while (nfences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; u64 point; if (__copy_from_user(&user_fence, user_fences++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; if (__get_user(point, user_values++)) return -EFAULT; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { drm_dbg(&eb->i915->drm, "Invalid syncobj handle provided\n"); return -ENOENT; } fence = drm_syncobj_fence_get(syncobj); if (!fence && user_fence.flags && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_dbg(&eb->i915->drm, "Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } if (fence) err = dma_fence_chain_find_seqno(&fence, point); if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_dbg(&eb->i915->drm, "Syncobj handle missing requested point %llu\n", point); dma_fence_put(fence); drm_syncobj_put(syncobj); return err; } /* * A point might have been signaled already and * garbage collected from the timeline. In this case * just ignore the point and carry on. */ if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_syncobj_put(syncobj); continue; } /* * For timeline syncobjs we need to preallocate chains for * later signaling. */ if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { /* * Waiting and signaling the same point (when point != * 0) would break the timeline. */ if (user_fence.flags & I915_EXEC_FENCE_WAIT) { drm_dbg(&eb->i915->drm, "Trying to wait & signal the same timeline point.\n"); dma_fence_put(fence); drm_syncobj_put(syncobj); return -EINVAL; } f->chain_fence = dma_fence_chain_alloc(); if (!f->chain_fence) { drm_syncobj_put(syncobj); dma_fence_put(fence); return -ENOMEM; } } else { f->chain_fence = NULL; } f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = point; f++; eb->num_fences++; } return 0; } static int add_fence_array(struct i915_execbuffer *eb) { struct drm_i915_gem_execbuffer2 *args = eb->args; struct drm_i915_gem_exec_fence __user *user; unsigned long num_fences = args->num_cliprects; struct eb_fence *f; if (!(args->flags & I915_EXEC_FENCE_ARRAY)) return 0; if (!num_fences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (num_fences > min_t(unsigned long, ULONG_MAX / sizeof(*user), SIZE_MAX / sizeof(*f) - eb->num_fences)) return -EINVAL; user = u64_to_user_ptr(args->cliprects_ptr); if (!access_ok(user, num_fences * sizeof(*user))) return -EFAULT; f = krealloc(eb->fences, (eb->num_fences + num_fences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; eb->fences = f; f += eb->num_fences; while (num_fences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { drm_dbg(&eb->i915->drm, "Invalid syncobj handle provided\n"); return -ENOENT; } if (user_fence.flags & I915_EXEC_FENCE_WAIT) { fence = drm_syncobj_fence_get(syncobj); if (!fence) { drm_dbg(&eb->i915->drm, "Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } } BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = 0; f->chain_fence = NULL; f++; eb->num_fences++; } return 0; } static void put_fence_array(struct eb_fence *fences, int num_fences) { if (fences) __free_fence_array(fences, num_fences); } static int await_fence_array(struct i915_execbuffer *eb, struct i915_request *rq) { unsigned int n; int err; for (n = 0; n < eb->num_fences; n++) { if (!eb->fences[n].dma_fence) continue; err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); if (err < 0) return err; } return 0; } static void signal_fence_array(const struct i915_execbuffer *eb, struct dma_fence * const fence) { unsigned int n; for (n = 0; n < eb->num_fences; n++) { struct drm_syncobj *syncobj; unsigned int flags; syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); if (!(flags & I915_EXEC_FENCE_SIGNAL)) continue; if (eb->fences[n].chain_fence) { drm_syncobj_add_point(syncobj, eb->fences[n].chain_fence, fence, eb->fences[n].value); /* * The chain's ownership is transferred to the * timeline. */ eb->fences[n].chain_fence = NULL; } else { drm_syncobj_replace_fence(syncobj, fence); } } } static int parse_timeline_fences(struct i915_user_extension __user *ext, void *data) { struct i915_execbuffer *eb = data; struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) return -EFAULT; return add_timeline_fence_array(eb, &timeline_fences); } static void retire_requests(struct intel_timeline *tl, struct i915_request *end) { struct i915_request *rq, *rn; list_for_each_entry_safe(rq, rn, &tl->requests, link) if (rq == end || !i915_request_retire(rq)) break; } static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, int err, bool last_parallel) { struct intel_timeline * const tl = i915_request_timeline(rq); struct i915_sched_attr attr = {}; struct i915_request *prev; lockdep_assert_held(&tl->mutex); lockdep_unpin_lock(&tl->mutex, rq->cookie); trace_i915_request_add(rq); prev = __i915_request_commit(rq); /* Check that the context wasn't destroyed before submission */ if (likely(!intel_context_is_closed(eb->context))) { attr = eb->gem_context->sched; } else { /* Serialise with context_close via the add_to_timeline */ i915_request_set_error_once(rq, -ENOENT); __i915_request_skip(rq); err = -ENOENT; /* override any transient errors */ } if (intel_context_is_parallel(eb->context)) { if (err) { __i915_request_skip(rq); set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); } if (last_parallel) set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags); } __i915_request_queue(rq, &attr); /* Try to clean up the client's timeline after submitting the request */ if (prev) retire_requests(tl, prev); mutex_unlock(&tl->mutex); return err; } static int eb_requests_add(struct i915_execbuffer *eb, int err) { int i; /* * We iterate in reverse order of creation to release timeline mutexes in * same order. */ for_each_batch_add_order(eb, i) { struct i915_request *rq = eb->requests[i]; if (!rq) continue; err |= eb_request_add(eb, rq, err, i == 0); } return err; } static const i915_user_extension_fn execbuf_extensions[] = { [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, }; static int parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, struct i915_execbuffer *eb) { if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) return 0; /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot * have another flag also using it at the same time. */ if (eb->args->flags & I915_EXEC_FENCE_ARRAY) return -EINVAL; if (args->num_cliprects != 0) return -EINVAL; return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), execbuf_extensions, ARRAY_SIZE(execbuf_extensions), eb); } static void eb_requests_get(struct i915_execbuffer *eb) { unsigned int i; for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; i915_request_get(eb->requests[i]); } } static void eb_requests_put(struct i915_execbuffer *eb) { unsigned int i; for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; i915_request_put(eb->requests[i]); } } static struct sync_file * eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) { struct sync_file *out_fence = NULL; struct dma_fence_array *fence_array; struct dma_fence **fences; unsigned int i; GEM_BUG_ON(!intel_context_is_parent(eb->context)); fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); if (!fences) return ERR_PTR(-ENOMEM); for_each_batch_create_order(eb, i) { fences[i] = &eb->requests[i]->fence; __set_bit(I915_FENCE_FLAG_COMPOSITE, &eb->requests[i]->fence.flags); } fence_array = dma_fence_array_create(eb->num_batches, fences, eb->context->parallel.fence_context, eb->context->parallel.seqno++, false); if (!fence_array) { kfree(fences); return ERR_PTR(-ENOMEM); } /* Move ownership to the dma_fence_array created above */ for_each_batch_create_order(eb, i) dma_fence_get(fences[i]); if (out_fence_fd != -1) { out_fence = sync_file_create(&fence_array->base); /* sync_file now owns fence_arry, drop creation ref */ dma_fence_put(&fence_array->base); if (!out_fence) return ERR_PTR(-ENOMEM); } eb->composite_fence = &fence_array->base; return out_fence; } static struct sync_file * eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, struct dma_fence *in_fence, int out_fence_fd) { struct sync_file *out_fence = NULL; int err; if (unlikely(eb->gem_context->syncobj)) { struct dma_fence *fence; fence = drm_syncobj_fence_get(eb->gem_context->syncobj); err = i915_request_await_dma_fence(rq, fence); dma_fence_put(fence); if (err) return ERR_PTR(err); } if (in_fence) { if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) err = i915_request_await_execution(rq, in_fence); else err = i915_request_await_dma_fence(rq, in_fence); if (err < 0) return ERR_PTR(err); } if (eb->fences) { err = await_fence_array(eb, rq); if (err) return ERR_PTR(err); } if (intel_context_is_parallel(eb->context)) { out_fence = eb_composite_fence_create(eb, out_fence_fd); if (IS_ERR(out_fence)) return ERR_PTR(-ENOMEM); } else if (out_fence_fd != -1) { out_fence = sync_file_create(&rq->fence); if (!out_fence) return ERR_PTR(-ENOMEM); } return out_fence; } static struct intel_context * eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) { struct intel_context *child; if (likely(context_number == 0)) return eb->context; for_each_child(eb->context, child) if (!--context_number) return child; GEM_BUG_ON("Context not found"); return NULL; } static struct sync_file * eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, int out_fence_fd) { struct sync_file *out_fence = NULL; unsigned int i; for_each_batch_create_order(eb, i) { /* Allocate a request for this batch buffer nice and early. */ eb->requests[i] = i915_request_create(eb_find_context(eb, i)); if (IS_ERR(eb->requests[i])) { out_fence = ERR_CAST(eb->requests[i]); eb->requests[i] = NULL; return out_fence; } /* * Only the first request added (committed to backend) has to * take the in fences into account as all subsequent requests * will have fences inserted inbetween them. */ if (i + 1 == eb->num_batches) { out_fence = eb_fences_add(eb, eb->requests[i], in_fence, out_fence_fd); if (IS_ERR(out_fence)) return out_fence; } /* * Not really on stack, but we don't want to call * kfree on the batch_snapshot when we put it, so use the * _onstack interface. */ if (eb->batches[i]->vma) eb->requests[i]->batch_res = i915_vma_resource_get(eb->batches[i]->vma->resource); if (eb->batch_pool) { GEM_BUG_ON(intel_context_is_parallel(eb->context)); intel_gt_buffer_pool_mark_active(eb->batch_pool, eb->requests[i]); } } return out_fence; } static int i915_gem_do_execbuffer(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { struct drm_i915_private *i915 = to_i915(dev); struct i915_execbuffer eb; struct dma_fence *in_fence = NULL; struct sync_file *out_fence = NULL; int out_fence_fd = -1; int err; BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS); eb.i915 = i915; eb.file = file; eb.args = args; if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) args->flags |= __EXEC_HAS_RELOC; eb.exec = exec; eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); eb.vma[0].vma = NULL; eb.batch_pool = NULL; eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; reloc_cache_init(&eb.reloc_cache, eb.i915); eb.buffer_count = args->buffer_count; eb.batch_start_offset = args->batch_start_offset; eb.trampoline = NULL; eb.fences = NULL; eb.num_fences = 0; eb_capture_list_clear(&eb); memset(eb.requests, 0, sizeof(struct i915_request *) * ARRAY_SIZE(eb.requests)); eb.composite_fence = NULL; eb.batch_flags = 0; if (args->flags & I915_EXEC_SECURE) { if (GRAPHICS_VER(i915) >= 11) return -ENODEV; /* Return -EPERM to trigger fallback code on old binaries. */ if (!HAS_SECURE_BATCHES(i915)) return -EPERM; if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) return -EPERM; eb.batch_flags |= I915_DISPATCH_SECURE; } if (args->flags & I915_EXEC_IS_PINNED) eb.batch_flags |= I915_DISPATCH_PINNED; err = parse_execbuf2_extensions(args, &eb); if (err) goto err_ext; err = add_fence_array(&eb); if (err) goto err_ext; #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) if (args->flags & IN_FENCES) { if ((args->flags & IN_FENCES) == IN_FENCES) return -EINVAL; in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!in_fence) { err = -EINVAL; goto err_ext; } } #undef IN_FENCES if (args->flags & I915_EXEC_FENCE_OUT) { out_fence_fd = get_unused_fd_flags(O_CLOEXEC); if (out_fence_fd < 0) { err = out_fence_fd; goto err_in_fence; } } err = eb_create(&eb); if (err) goto err_out_fence; GEM_BUG_ON(!eb.lut_size); err = eb_select_context(&eb); if (unlikely(err)) goto err_destroy; err = eb_select_engine(&eb); if (unlikely(err)) goto err_context; err = eb_lookup_vmas(&eb); if (err) { eb_release_vmas(&eb, true); goto err_engine; } i915_gem_ww_ctx_init(&eb.ww, true); err = eb_relocate_parse(&eb); if (err) { /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ args->flags &= ~__EXEC_HAS_RELOC; goto err_vma; } ww_acquire_done(&eb.ww.ctx); err = eb_capture_stage(&eb); if (err) goto err_vma; out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); if (IS_ERR(out_fence)) { err = PTR_ERR(out_fence); out_fence = NULL; if (eb.requests[0]) goto err_request; else goto err_vma; } err = eb_submit(&eb); err_request: eb_requests_get(&eb); err = eb_requests_add(&eb, err); if (eb.fences) signal_fence_array(&eb, eb.composite_fence ? eb.composite_fence : &eb.requests[0]->fence); if (unlikely(eb.gem_context->syncobj)) { drm_syncobj_replace_fence(eb.gem_context->syncobj, eb.composite_fence ? eb.composite_fence : &eb.requests[0]->fence); } if (out_fence) { if (err == 0) { fd_install(out_fence_fd, out_fence->file); args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ args->rsvd2 |= (u64)out_fence_fd << 32; out_fence_fd = -1; } else { fput(out_fence->file); } } if (!out_fence && eb.composite_fence) dma_fence_put(eb.composite_fence); eb_requests_put(&eb); err_vma: eb_release_vmas(&eb, true); WARN_ON(err == -EDEADLK); i915_gem_ww_ctx_fini(&eb.ww); if (eb.batch_pool) intel_gt_buffer_pool_put(eb.batch_pool); err_engine: eb_put_engine(&eb); err_context: i915_gem_context_put(eb.gem_context); err_destroy: eb_destroy(&eb); err_out_fence: if (out_fence_fd != -1) put_unused_fd(out_fence_fd); err_in_fence: dma_fence_put(in_fence); err_ext: put_fence_array(eb.fences, eb.num_fences); return err; } static size_t eb_element_size(void) { return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); } static bool check_buffer_count(size_t count) { const size_t sz = eb_element_size(); /* * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup * array size (see eb_create()). Otherwise, we can accept an array as * large as can be addressed (though use large arrays at your peril)! */ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); } int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list; const size_t count = args->buffer_count; int err; if (!check_buffer_count(count)) { drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); return -EINVAL; } err = i915_gem_check_execbuffer(i915, args); if (err) return err; /* Allocate extra slots for use by the command parser */ exec2_list = kvmalloc_array(count + 2, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec2_list == NULL) { drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", count); return -ENOMEM; } if (copy_from_user(exec2_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec2_list) * count)) { drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); kvfree(exec2_list); return -EFAULT; } err = i915_gem_do_execbuffer(dev, file, args, exec2_list); /* * Now that we have begun execution of the batchbuffer, we ignore * any new error after this point. Also given that we have already * updated the associated relocations, we try to write out the current * object locations irrespective of any error. */ if (args->flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object2 __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); unsigned int i; /* Copy the new buffer offsets back to the user's exec list. */ /* * Note: count * sizeof(*user_exec_list) does not overflow, * because we checked 'count' in check_buffer_count(). * * And this range already got effectively checked earlier * when we did the "copy_from_user()" above. */ if (!user_write_access_begin(user_exec_list, count * sizeof(*user_exec_list))) goto end; for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); unsafe_put_user(exec2_list[i].offset, &user_exec_list[i].offset, end_user); } end_user: user_write_access_end(); end:; } args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; kvfree(exec2_list); return err; } |