Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/swiotlb.h>
  22#include <linux/proc_fs.h>
  23#include <linux/debugfs.h>
  24#include <linux/kmemleak.h>
  25#include <linux/kasan.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/page.h>
  29#include <linux/memcontrol.h>
  30#include <linux/stackdepot.h>
  31
  32#include "internal.h"
  33#include "slab.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/kmem.h>
  37
  38enum slab_state slab_state;
  39LIST_HEAD(slab_caches);
  40DEFINE_MUTEX(slab_mutex);
  41struct kmem_cache *kmem_cache;
  42
  43static LIST_HEAD(slab_caches_to_rcu_destroy);
  44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  46		    slab_caches_to_rcu_destroy_workfn);
  47
  48/*
  49 * Set of flags that will prevent slab merging
  50 */
  51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  52		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  53		SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
  54
  55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  56			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  57
  58/*
  59 * Merge control. If this is set then no merging of slab caches will occur.
  60 */
  61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  62
  63static int __init setup_slab_nomerge(char *str)
  64{
  65	slab_nomerge = true;
  66	return 1;
  67}
  68
  69static int __init setup_slab_merge(char *str)
  70{
  71	slab_nomerge = false;
  72	return 1;
  73}
  74
  75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  77
  78__setup("slab_nomerge", setup_slab_nomerge);
  79__setup("slab_merge", setup_slab_merge);
  80
  81/*
  82 * Determine the size of a slab object
  83 */
  84unsigned int kmem_cache_size(struct kmem_cache *s)
  85{
  86	return s->object_size;
  87}
  88EXPORT_SYMBOL(kmem_cache_size);
  89
  90#ifdef CONFIG_DEBUG_VM
  91static int kmem_cache_sanity_check(const char *name, unsigned int size)
  92{
  93	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
  94		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  95		return -EINVAL;
  96	}
  97
  98	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  99	return 0;
 100}
 101#else
 102static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 103{
 104	return 0;
 105}
 106#endif
 107
 108/*
 109 * Figure out what the alignment of the objects will be given a set of
 110 * flags, a user specified alignment and the size of the objects.
 111 */
 112static unsigned int calculate_alignment(slab_flags_t flags,
 113		unsigned int align, unsigned int size)
 114{
 115	/*
 116	 * If the user wants hardware cache aligned objects then follow that
 117	 * suggestion if the object is sufficiently large.
 118	 *
 119	 * The hardware cache alignment cannot override the specified
 120	 * alignment though. If that is greater then use it.
 121	 */
 122	if (flags & SLAB_HWCACHE_ALIGN) {
 123		unsigned int ralign;
 124
 125		ralign = cache_line_size();
 126		while (size <= ralign / 2)
 127			ralign /= 2;
 128		align = max(align, ralign);
 129	}
 130
 131	align = max(align, arch_slab_minalign());
 132
 133	return ALIGN(align, sizeof(void *));
 134}
 135
 136/*
 137 * Find a mergeable slab cache
 138 */
 139int slab_unmergeable(struct kmem_cache *s)
 140{
 141	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 142		return 1;
 143
 144	if (s->ctor)
 145		return 1;
 146
 147#ifdef CONFIG_HARDENED_USERCOPY
 148	if (s->usersize)
 149		return 1;
 150#endif
 151
 152	/*
 153	 * We may have set a slab to be unmergeable during bootstrap.
 154	 */
 155	if (s->refcount < 0)
 156		return 1;
 157
 158	return 0;
 159}
 160
 161struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 162		slab_flags_t flags, const char *name, void (*ctor)(void *))
 163{
 164	struct kmem_cache *s;
 165
 166	if (slab_nomerge)
 167		return NULL;
 168
 169	if (ctor)
 170		return NULL;
 171
 172	size = ALIGN(size, sizeof(void *));
 173	align = calculate_alignment(flags, align, size);
 174	size = ALIGN(size, align);
 175	flags = kmem_cache_flags(size, flags, name);
 176
 177	if (flags & SLAB_NEVER_MERGE)
 178		return NULL;
 179
 180	list_for_each_entry_reverse(s, &slab_caches, list) {
 181		if (slab_unmergeable(s))
 182			continue;
 183
 184		if (size > s->size)
 185			continue;
 186
 187		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 188			continue;
 189		/*
 190		 * Check if alignment is compatible.
 191		 * Courtesy of Adrian Drzewiecki
 192		 */
 193		if ((s->size & ~(align - 1)) != s->size)
 194			continue;
 195
 196		if (s->size - size >= sizeof(void *))
 197			continue;
 198
 199		return s;
 200	}
 201	return NULL;
 202}
 203
 204static struct kmem_cache *create_cache(const char *name,
 205		unsigned int object_size, unsigned int align,
 206		slab_flags_t flags, unsigned int useroffset,
 207		unsigned int usersize, void (*ctor)(void *),
 208		struct kmem_cache *root_cache)
 209{
 210	struct kmem_cache *s;
 211	int err;
 212
 213	if (WARN_ON(useroffset + usersize > object_size))
 214		useroffset = usersize = 0;
 215
 216	err = -ENOMEM;
 217	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 218	if (!s)
 219		goto out;
 220
 221	s->name = name;
 222	s->size = s->object_size = object_size;
 223	s->align = align;
 224	s->ctor = ctor;
 225#ifdef CONFIG_HARDENED_USERCOPY
 226	s->useroffset = useroffset;
 227	s->usersize = usersize;
 228#endif
 229
 230	err = __kmem_cache_create(s, flags);
 231	if (err)
 232		goto out_free_cache;
 233
 234	s->refcount = 1;
 235	list_add(&s->list, &slab_caches);
 236	return s;
 237
 238out_free_cache:
 239	kmem_cache_free(kmem_cache, s);
 240out:
 241	return ERR_PTR(err);
 242}
 243
 244/**
 245 * kmem_cache_create_usercopy - Create a cache with a region suitable
 246 * for copying to userspace
 247 * @name: A string which is used in /proc/slabinfo to identify this cache.
 248 * @size: The size of objects to be created in this cache.
 249 * @align: The required alignment for the objects.
 250 * @flags: SLAB flags
 251 * @useroffset: Usercopy region offset
 252 * @usersize: Usercopy region size
 253 * @ctor: A constructor for the objects.
 254 *
 255 * Cannot be called within a interrupt, but can be interrupted.
 256 * The @ctor is run when new pages are allocated by the cache.
 257 *
 258 * The flags are
 259 *
 260 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 261 * to catch references to uninitialised memory.
 262 *
 263 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 264 * for buffer overruns.
 265 *
 266 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 267 * cacheline.  This can be beneficial if you're counting cycles as closely
 268 * as davem.
 269 *
 270 * Return: a pointer to the cache on success, NULL on failure.
 271 */
 272struct kmem_cache *
 273kmem_cache_create_usercopy(const char *name,
 274		  unsigned int size, unsigned int align,
 275		  slab_flags_t flags,
 276		  unsigned int useroffset, unsigned int usersize,
 277		  void (*ctor)(void *))
 278{
 279	struct kmem_cache *s = NULL;
 280	const char *cache_name;
 281	int err;
 282
 283#ifdef CONFIG_SLUB_DEBUG
 284	/*
 285	 * If no slub_debug was enabled globally, the static key is not yet
 286	 * enabled by setup_slub_debug(). Enable it if the cache is being
 287	 * created with any of the debugging flags passed explicitly.
 288	 * It's also possible that this is the first cache created with
 289	 * SLAB_STORE_USER and we should init stack_depot for it.
 290	 */
 291	if (flags & SLAB_DEBUG_FLAGS)
 292		static_branch_enable(&slub_debug_enabled);
 293	if (flags & SLAB_STORE_USER)
 294		stack_depot_init();
 295#endif
 296
 297	mutex_lock(&slab_mutex);
 298
 299	err = kmem_cache_sanity_check(name, size);
 300	if (err) {
 301		goto out_unlock;
 302	}
 303
 304	/* Refuse requests with allocator specific flags */
 305	if (flags & ~SLAB_FLAGS_PERMITTED) {
 306		err = -EINVAL;
 307		goto out_unlock;
 308	}
 309
 310	/*
 311	 * Some allocators will constraint the set of valid flags to a subset
 312	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 313	 * case, and we'll just provide them with a sanitized version of the
 314	 * passed flags.
 315	 */
 316	flags &= CACHE_CREATE_MASK;
 317
 318	/* Fail closed on bad usersize of useroffset values. */
 319	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 320	    WARN_ON(!usersize && useroffset) ||
 321	    WARN_ON(size < usersize || size - usersize < useroffset))
 322		usersize = useroffset = 0;
 323
 324	if (!usersize)
 325		s = __kmem_cache_alias(name, size, align, flags, ctor);
 326	if (s)
 327		goto out_unlock;
 328
 329	cache_name = kstrdup_const(name, GFP_KERNEL);
 330	if (!cache_name) {
 331		err = -ENOMEM;
 332		goto out_unlock;
 333	}
 334
 335	s = create_cache(cache_name, size,
 336			 calculate_alignment(flags, align, size),
 337			 flags, useroffset, usersize, ctor, NULL);
 338	if (IS_ERR(s)) {
 339		err = PTR_ERR(s);
 340		kfree_const(cache_name);
 341	}
 342
 343out_unlock:
 344	mutex_unlock(&slab_mutex);
 345
 346	if (err) {
 347		if (flags & SLAB_PANIC)
 348			panic("%s: Failed to create slab '%s'. Error %d\n",
 349				__func__, name, err);
 350		else {
 351			pr_warn("%s(%s) failed with error %d\n",
 352				__func__, name, err);
 353			dump_stack();
 354		}
 355		return NULL;
 356	}
 357	return s;
 358}
 359EXPORT_SYMBOL(kmem_cache_create_usercopy);
 360
 361/**
 362 * kmem_cache_create - Create a cache.
 363 * @name: A string which is used in /proc/slabinfo to identify this cache.
 364 * @size: The size of objects to be created in this cache.
 365 * @align: The required alignment for the objects.
 366 * @flags: SLAB flags
 367 * @ctor: A constructor for the objects.
 368 *
 369 * Cannot be called within a interrupt, but can be interrupted.
 370 * The @ctor is run when new pages are allocated by the cache.
 371 *
 372 * The flags are
 373 *
 374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 375 * to catch references to uninitialised memory.
 376 *
 377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 378 * for buffer overruns.
 379 *
 380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 381 * cacheline.  This can be beneficial if you're counting cycles as closely
 382 * as davem.
 383 *
 384 * Return: a pointer to the cache on success, NULL on failure.
 385 */
 386struct kmem_cache *
 387kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 388		slab_flags_t flags, void (*ctor)(void *))
 389{
 390	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 391					  ctor);
 392}
 393EXPORT_SYMBOL(kmem_cache_create);
 394
 395#ifdef SLAB_SUPPORTS_SYSFS
 396/*
 397 * For a given kmem_cache, kmem_cache_destroy() should only be called
 398 * once or there will be a use-after-free problem. The actual deletion
 399 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 400 * protection. So they are now done without holding those locks.
 401 *
 402 * Note that there will be a slight delay in the deletion of sysfs files
 403 * if kmem_cache_release() is called indrectly from a work function.
 404 */
 405static void kmem_cache_release(struct kmem_cache *s)
 406{
 407	sysfs_slab_unlink(s);
 408	sysfs_slab_release(s);
 409}
 410#else
 411static void kmem_cache_release(struct kmem_cache *s)
 412{
 413	slab_kmem_cache_release(s);
 414}
 415#endif
 416
 417static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 418{
 419	LIST_HEAD(to_destroy);
 420	struct kmem_cache *s, *s2;
 421
 422	/*
 423	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 424	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 425	 * through RCU and the associated kmem_cache are dereferenced
 426	 * while freeing the pages, so the kmem_caches should be freed only
 427	 * after the pending RCU operations are finished.  As rcu_barrier()
 428	 * is a pretty slow operation, we batch all pending destructions
 429	 * asynchronously.
 430	 */
 431	mutex_lock(&slab_mutex);
 432	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 433	mutex_unlock(&slab_mutex);
 434
 435	if (list_empty(&to_destroy))
 436		return;
 437
 438	rcu_barrier();
 439
 440	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 441		debugfs_slab_release(s);
 442		kfence_shutdown_cache(s);
 443		kmem_cache_release(s);
 444	}
 445}
 446
 447static int shutdown_cache(struct kmem_cache *s)
 448{
 449	/* free asan quarantined objects */
 450	kasan_cache_shutdown(s);
 451
 452	if (__kmem_cache_shutdown(s) != 0)
 453		return -EBUSY;
 454
 455	list_del(&s->list);
 456
 457	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 458		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 459		schedule_work(&slab_caches_to_rcu_destroy_work);
 460	} else {
 461		kfence_shutdown_cache(s);
 462		debugfs_slab_release(s);
 463	}
 464
 465	return 0;
 466}
 467
 468void slab_kmem_cache_release(struct kmem_cache *s)
 469{
 470	__kmem_cache_release(s);
 471	kfree_const(s->name);
 472	kmem_cache_free(kmem_cache, s);
 473}
 474
 475void kmem_cache_destroy(struct kmem_cache *s)
 476{
 477	int err = -EBUSY;
 478	bool rcu_set;
 479
 480	if (unlikely(!s) || !kasan_check_byte(s))
 481		return;
 482
 483	cpus_read_lock();
 484	mutex_lock(&slab_mutex);
 485
 486	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
 487
 488	s->refcount--;
 489	if (s->refcount)
 490		goto out_unlock;
 491
 492	err = shutdown_cache(s);
 493	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
 494	     __func__, s->name, (void *)_RET_IP_);
 495out_unlock:
 496	mutex_unlock(&slab_mutex);
 497	cpus_read_unlock();
 498	if (!err && !rcu_set)
 499		kmem_cache_release(s);
 500}
 501EXPORT_SYMBOL(kmem_cache_destroy);
 502
 503/**
 504 * kmem_cache_shrink - Shrink a cache.
 505 * @cachep: The cache to shrink.
 506 *
 507 * Releases as many slabs as possible for a cache.
 508 * To help debugging, a zero exit status indicates all slabs were released.
 509 *
 510 * Return: %0 if all slabs were released, non-zero otherwise
 511 */
 512int kmem_cache_shrink(struct kmem_cache *cachep)
 513{
 514	kasan_cache_shrink(cachep);
 515
 516	return __kmem_cache_shrink(cachep);
 517}
 518EXPORT_SYMBOL(kmem_cache_shrink);
 519
 520bool slab_is_available(void)
 521{
 522	return slab_state >= UP;
 523}
 524
 525#ifdef CONFIG_PRINTK
 526static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 527{
 528	if (__kfence_obj_info(kpp, object, slab))
 529		return;
 530	__kmem_obj_info(kpp, object, slab);
 531}
 532
 533/**
 534 * kmem_dump_obj - Print available slab provenance information
 535 * @object: slab object for which to find provenance information.
 536 *
 537 * This function uses pr_cont(), so that the caller is expected to have
 538 * printed out whatever preamble is appropriate.  The provenance information
 539 * depends on the type of object and on how much debugging is enabled.
 540 * For a slab-cache object, the fact that it is a slab object is printed,
 541 * and, if available, the slab name, return address, and stack trace from
 542 * the allocation and last free path of that object.
 543 *
 544 * Return: %true if the pointer is to a not-yet-freed object from
 545 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 546 * is to an already-freed object, and %false otherwise.
 547 */
 548bool kmem_dump_obj(void *object)
 549{
 550	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 551	int i;
 552	struct slab *slab;
 553	unsigned long ptroffset;
 554	struct kmem_obj_info kp = { };
 555
 556	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 557	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 558		return false;
 559	slab = virt_to_slab(object);
 560	if (!slab)
 561		return false;
 562
 563	kmem_obj_info(&kp, object, slab);
 564	if (kp.kp_slab_cache)
 565		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 566	else
 567		pr_cont(" slab%s", cp);
 568	if (is_kfence_address(object))
 569		pr_cont(" (kfence)");
 570	if (kp.kp_objp)
 571		pr_cont(" start %px", kp.kp_objp);
 572	if (kp.kp_data_offset)
 573		pr_cont(" data offset %lu", kp.kp_data_offset);
 574	if (kp.kp_objp) {
 575		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 576		pr_cont(" pointer offset %lu", ptroffset);
 577	}
 578	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 579		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 580	if (kp.kp_ret)
 581		pr_cont(" allocated at %pS\n", kp.kp_ret);
 582	else
 583		pr_cont("\n");
 584	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 585		if (!kp.kp_stack[i])
 586			break;
 587		pr_info("    %pS\n", kp.kp_stack[i]);
 588	}
 589
 590	if (kp.kp_free_stack[0])
 591		pr_cont(" Free path:\n");
 592
 593	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 594		if (!kp.kp_free_stack[i])
 595			break;
 596		pr_info("    %pS\n", kp.kp_free_stack[i]);
 597	}
 598
 599	return true;
 600}
 601EXPORT_SYMBOL_GPL(kmem_dump_obj);
 602#endif
 603
 604/* Create a cache during boot when no slab services are available yet */
 605void __init create_boot_cache(struct kmem_cache *s, const char *name,
 606		unsigned int size, slab_flags_t flags,
 607		unsigned int useroffset, unsigned int usersize)
 608{
 609	int err;
 610	unsigned int align = ARCH_KMALLOC_MINALIGN;
 611
 612	s->name = name;
 613	s->size = s->object_size = size;
 614
 615	/*
 616	 * For power of two sizes, guarantee natural alignment for kmalloc
 617	 * caches, regardless of SL*B debugging options.
 618	 */
 619	if (is_power_of_2(size))
 620		align = max(align, size);
 621	s->align = calculate_alignment(flags, align, size);
 622
 623#ifdef CONFIG_HARDENED_USERCOPY
 624	s->useroffset = useroffset;
 625	s->usersize = usersize;
 626#endif
 627
 628	err = __kmem_cache_create(s, flags);
 629
 630	if (err)
 631		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 632					name, size, err);
 633
 634	s->refcount = -1;	/* Exempt from merging for now */
 635}
 636
 637static struct kmem_cache *__init create_kmalloc_cache(const char *name,
 638						      unsigned int size,
 639						      slab_flags_t flags)
 640{
 641	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 642
 643	if (!s)
 644		panic("Out of memory when creating slab %s\n", name);
 645
 646	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
 647	list_add(&s->list, &slab_caches);
 648	s->refcount = 1;
 649	return s;
 650}
 651
 652struct kmem_cache *
 653kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 654{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 655EXPORT_SYMBOL(kmalloc_caches);
 656
 657#ifdef CONFIG_RANDOM_KMALLOC_CACHES
 658unsigned long random_kmalloc_seed __ro_after_init;
 659EXPORT_SYMBOL(random_kmalloc_seed);
 660#endif
 661
 662/*
 663 * Conversion table for small slabs sizes / 8 to the index in the
 664 * kmalloc array. This is necessary for slabs < 192 since we have non power
 665 * of two cache sizes there. The size of larger slabs can be determined using
 666 * fls.
 667 */
 668u8 kmalloc_size_index[24] __ro_after_init = {
 669	3,	/* 8 */
 670	4,	/* 16 */
 671	5,	/* 24 */
 672	5,	/* 32 */
 673	6,	/* 40 */
 674	6,	/* 48 */
 675	6,	/* 56 */
 676	6,	/* 64 */
 677	1,	/* 72 */
 678	1,	/* 80 */
 679	1,	/* 88 */
 680	1,	/* 96 */
 681	7,	/* 104 */
 682	7,	/* 112 */
 683	7,	/* 120 */
 684	7,	/* 128 */
 685	2,	/* 136 */
 686	2,	/* 144 */
 687	2,	/* 152 */
 688	2,	/* 160 */
 689	2,	/* 168 */
 690	2,	/* 176 */
 691	2,	/* 184 */
 692	2	/* 192 */
 693};
 694
 695size_t kmalloc_size_roundup(size_t size)
 696{
 697	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
 698		/*
 699		 * The flags don't matter since size_index is common to all.
 700		 * Neither does the caller for just getting ->object_size.
 701		 */
 702		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
 703	}
 704
 705	/* Above the smaller buckets, size is a multiple of page size. */
 706	if (size && size <= KMALLOC_MAX_SIZE)
 707		return PAGE_SIZE << get_order(size);
 708
 709	/*
 710	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
 711	 * and very large size - kmalloc() may fail.
 712	 */
 713	return size;
 714
 715}
 716EXPORT_SYMBOL(kmalloc_size_roundup);
 717
 718#ifdef CONFIG_ZONE_DMA
 719#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 720#else
 721#define KMALLOC_DMA_NAME(sz)
 722#endif
 723
 724#ifdef CONFIG_MEMCG_KMEM
 725#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 726#else
 727#define KMALLOC_CGROUP_NAME(sz)
 728#endif
 729
 730#ifndef CONFIG_SLUB_TINY
 731#define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 732#else
 733#define KMALLOC_RCL_NAME(sz)
 734#endif
 735
 736#ifdef CONFIG_RANDOM_KMALLOC_CACHES
 737#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
 738#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
 739#define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
 740#define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
 741#define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
 742#define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
 743#define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
 744#define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
 745#define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
 746#define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
 747#define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
 748#define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
 749#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
 750#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
 751#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
 752#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
 753#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
 754#else // CONFIG_RANDOM_KMALLOC_CACHES
 755#define KMALLOC_RANDOM_NAME(N, sz)
 756#endif
 757
 758#define INIT_KMALLOC_INFO(__size, __short_size)			\
 759{								\
 760	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 761	KMALLOC_RCL_NAME(__short_size)				\
 762	KMALLOC_CGROUP_NAME(__short_size)			\
 763	KMALLOC_DMA_NAME(__short_size)				\
 764	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
 765	.size = __size,						\
 766}
 767
 768/*
 769 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 770 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 771 * kmalloc-2M.
 772 */
 773const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 774	INIT_KMALLOC_INFO(0, 0),
 775	INIT_KMALLOC_INFO(96, 96),
 776	INIT_KMALLOC_INFO(192, 192),
 777	INIT_KMALLOC_INFO(8, 8),
 778	INIT_KMALLOC_INFO(16, 16),
 779	INIT_KMALLOC_INFO(32, 32),
 780	INIT_KMALLOC_INFO(64, 64),
 781	INIT_KMALLOC_INFO(128, 128),
 782	INIT_KMALLOC_INFO(256, 256),
 783	INIT_KMALLOC_INFO(512, 512),
 784	INIT_KMALLOC_INFO(1024, 1k),
 785	INIT_KMALLOC_INFO(2048, 2k),
 786	INIT_KMALLOC_INFO(4096, 4k),
 787	INIT_KMALLOC_INFO(8192, 8k),
 788	INIT_KMALLOC_INFO(16384, 16k),
 789	INIT_KMALLOC_INFO(32768, 32k),
 790	INIT_KMALLOC_INFO(65536, 64k),
 791	INIT_KMALLOC_INFO(131072, 128k),
 792	INIT_KMALLOC_INFO(262144, 256k),
 793	INIT_KMALLOC_INFO(524288, 512k),
 794	INIT_KMALLOC_INFO(1048576, 1M),
 795	INIT_KMALLOC_INFO(2097152, 2M)
 796};
 797
 798/*
 799 * Patch up the size_index table if we have strange large alignment
 800 * requirements for the kmalloc array. This is only the case for
 801 * MIPS it seems. The standard arches will not generate any code here.
 802 *
 803 * Largest permitted alignment is 256 bytes due to the way we
 804 * handle the index determination for the smaller caches.
 805 *
 806 * Make sure that nothing crazy happens if someone starts tinkering
 807 * around with ARCH_KMALLOC_MINALIGN
 808 */
 809void __init setup_kmalloc_cache_index_table(void)
 810{
 811	unsigned int i;
 812
 813	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 814		!is_power_of_2(KMALLOC_MIN_SIZE));
 815
 816	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 817		unsigned int elem = size_index_elem(i);
 818
 819		if (elem >= ARRAY_SIZE(kmalloc_size_index))
 820			break;
 821		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
 822	}
 823
 824	if (KMALLOC_MIN_SIZE >= 64) {
 825		/*
 826		 * The 96 byte sized cache is not used if the alignment
 827		 * is 64 byte.
 828		 */
 829		for (i = 64 + 8; i <= 96; i += 8)
 830			kmalloc_size_index[size_index_elem(i)] = 7;
 831
 832	}
 833
 834	if (KMALLOC_MIN_SIZE >= 128) {
 835		/*
 836		 * The 192 byte sized cache is not used if the alignment
 837		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 838		 * instead.
 839		 */
 840		for (i = 128 + 8; i <= 192; i += 8)
 841			kmalloc_size_index[size_index_elem(i)] = 8;
 842	}
 843}
 844
 845static unsigned int __kmalloc_minalign(void)
 846{
 847	unsigned int minalign = dma_get_cache_alignment();
 848
 849	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
 850	    is_swiotlb_allocated())
 851		minalign = ARCH_KMALLOC_MINALIGN;
 852
 853	return max(minalign, arch_slab_minalign());
 854}
 855
 856void __init
 857new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 858{
 859	unsigned int minalign = __kmalloc_minalign();
 860	unsigned int aligned_size = kmalloc_info[idx].size;
 861	int aligned_idx = idx;
 862
 863	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 864		flags |= SLAB_RECLAIM_ACCOUNT;
 865	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 866		if (mem_cgroup_kmem_disabled()) {
 867			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 868			return;
 869		}
 870		flags |= SLAB_ACCOUNT;
 871	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 872		flags |= SLAB_CACHE_DMA;
 873	}
 874
 875#ifdef CONFIG_RANDOM_KMALLOC_CACHES
 876	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
 877		flags |= SLAB_NO_MERGE;
 878#endif
 879
 880	/*
 881	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 882	 * KMALLOC_NORMAL caches.
 883	 */
 884	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 885		flags |= SLAB_NO_MERGE;
 886
 887	if (minalign > ARCH_KMALLOC_MINALIGN) {
 888		aligned_size = ALIGN(aligned_size, minalign);
 889		aligned_idx = __kmalloc_index(aligned_size, false);
 890	}
 891
 892	if (!kmalloc_caches[type][aligned_idx])
 893		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
 894					kmalloc_info[aligned_idx].name[type],
 895					aligned_size, flags);
 896	if (idx != aligned_idx)
 897		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
 898}
 899
 900/*
 901 * Create the kmalloc array. Some of the regular kmalloc arrays
 902 * may already have been created because they were needed to
 903 * enable allocations for slab creation.
 904 */
 905void __init create_kmalloc_caches(slab_flags_t flags)
 906{
 907	int i;
 908	enum kmalloc_cache_type type;
 909
 910	/*
 911	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 912	 */
 913	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 914		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 915			if (!kmalloc_caches[type][i])
 916				new_kmalloc_cache(i, type, flags);
 917
 918			/*
 919			 * Caches that are not of the two-to-the-power-of size.
 920			 * These have to be created immediately after the
 921			 * earlier power of two caches
 922			 */
 923			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 924					!kmalloc_caches[type][1])
 925				new_kmalloc_cache(1, type, flags);
 926			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 927					!kmalloc_caches[type][2])
 928				new_kmalloc_cache(2, type, flags);
 929		}
 930	}
 931#ifdef CONFIG_RANDOM_KMALLOC_CACHES
 932	random_kmalloc_seed = get_random_u64();
 933#endif
 934
 935	/* Kmalloc array is now usable */
 936	slab_state = UP;
 937}
 938
 939/**
 940 * __ksize -- Report full size of underlying allocation
 941 * @object: pointer to the object
 942 *
 943 * This should only be used internally to query the true size of allocations.
 944 * It is not meant to be a way to discover the usable size of an allocation
 945 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
 946 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
 947 * and/or FORTIFY_SOURCE.
 948 *
 949 * Return: size of the actual memory used by @object in bytes
 950 */
 951size_t __ksize(const void *object)
 952{
 953	struct folio *folio;
 954
 955	if (unlikely(object == ZERO_SIZE_PTR))
 956		return 0;
 957
 958	folio = virt_to_folio(object);
 959
 960	if (unlikely(!folio_test_slab(folio))) {
 961		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
 962			return 0;
 963		if (WARN_ON(object != folio_address(folio)))
 964			return 0;
 965		return folio_size(folio);
 966	}
 967
 968#ifdef CONFIG_SLUB_DEBUG
 969	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
 970#endif
 971
 972	return slab_ksize(folio_slab(folio)->slab_cache);
 973}
 974
 975gfp_t kmalloc_fix_flags(gfp_t flags)
 976{
 977	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 978
 979	flags &= ~GFP_SLAB_BUG_MASK;
 980	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 981			invalid_mask, &invalid_mask, flags, &flags);
 982	dump_stack();
 983
 984	return flags;
 985}
 986
 987#ifdef CONFIG_SLAB_FREELIST_RANDOM
 988/* Randomize a generic freelist */
 989static void freelist_randomize(unsigned int *list,
 990			       unsigned int count)
 991{
 992	unsigned int rand;
 993	unsigned int i;
 994
 995	for (i = 0; i < count; i++)
 996		list[i] = i;
 997
 998	/* Fisher-Yates shuffle */
 999	for (i = count - 1; i > 0; i--) {
1000		rand = get_random_u32_below(i + 1);
1001		swap(list[i], list[rand]);
1002	}
1003}
1004
1005/* Create a random sequence per cache */
1006int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1007				    gfp_t gfp)
1008{
1009
1010	if (count < 2 || cachep->random_seq)
1011		return 0;
1012
1013	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1014	if (!cachep->random_seq)
1015		return -ENOMEM;
1016
1017	freelist_randomize(cachep->random_seq, count);
1018	return 0;
1019}
1020
1021/* Destroy the per-cache random freelist sequence */
1022void cache_random_seq_destroy(struct kmem_cache *cachep)
1023{
1024	kfree(cachep->random_seq);
1025	cachep->random_seq = NULL;
1026}
1027#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1028
1029#ifdef CONFIG_SLUB_DEBUG
1030#define SLABINFO_RIGHTS (0400)
1031
1032static void print_slabinfo_header(struct seq_file *m)
1033{
1034	/*
1035	 * Output format version, so at least we can change it
1036	 * without _too_ many complaints.
1037	 */
1038	seq_puts(m, "slabinfo - version: 2.1\n");
1039	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1040	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1041	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1042	seq_putc(m, '\n');
1043}
1044
1045static void *slab_start(struct seq_file *m, loff_t *pos)
1046{
1047	mutex_lock(&slab_mutex);
1048	return seq_list_start(&slab_caches, *pos);
1049}
1050
1051static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1052{
1053	return seq_list_next(p, &slab_caches, pos);
1054}
1055
1056static void slab_stop(struct seq_file *m, void *p)
1057{
1058	mutex_unlock(&slab_mutex);
1059}
1060
1061static void cache_show(struct kmem_cache *s, struct seq_file *m)
1062{
1063	struct slabinfo sinfo;
1064
1065	memset(&sinfo, 0, sizeof(sinfo));
1066	get_slabinfo(s, &sinfo);
1067
1068	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1069		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1070		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1071
1072	seq_printf(m, " : tunables %4u %4u %4u",
1073		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1074	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1075		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1076	slabinfo_show_stats(m, s);
1077	seq_putc(m, '\n');
1078}
1079
1080static int slab_show(struct seq_file *m, void *p)
1081{
1082	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1083
1084	if (p == slab_caches.next)
1085		print_slabinfo_header(m);
1086	cache_show(s, m);
1087	return 0;
1088}
1089
1090void dump_unreclaimable_slab(void)
1091{
1092	struct kmem_cache *s;
1093	struct slabinfo sinfo;
1094
1095	/*
1096	 * Here acquiring slab_mutex is risky since we don't prefer to get
1097	 * sleep in oom path. But, without mutex hold, it may introduce a
1098	 * risk of crash.
1099	 * Use mutex_trylock to protect the list traverse, dump nothing
1100	 * without acquiring the mutex.
1101	 */
1102	if (!mutex_trylock(&slab_mutex)) {
1103		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1104		return;
1105	}
1106
1107	pr_info("Unreclaimable slab info:\n");
1108	pr_info("Name                      Used          Total\n");
1109
1110	list_for_each_entry(s, &slab_caches, list) {
1111		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1112			continue;
1113
1114		get_slabinfo(s, &sinfo);
1115
1116		if (sinfo.num_objs > 0)
1117			pr_info("%-17s %10luKB %10luKB\n", s->name,
1118				(sinfo.active_objs * s->size) / 1024,
1119				(sinfo.num_objs * s->size) / 1024);
1120	}
1121	mutex_unlock(&slab_mutex);
1122}
1123
1124/*
1125 * slabinfo_op - iterator that generates /proc/slabinfo
1126 *
1127 * Output layout:
1128 * cache-name
1129 * num-active-objs
1130 * total-objs
1131 * object size
1132 * num-active-slabs
1133 * total-slabs
1134 * num-pages-per-slab
1135 * + further values on SMP and with statistics enabled
1136 */
1137static const struct seq_operations slabinfo_op = {
1138	.start = slab_start,
1139	.next = slab_next,
1140	.stop = slab_stop,
1141	.show = slab_show,
1142};
1143
1144static int slabinfo_open(struct inode *inode, struct file *file)
1145{
1146	return seq_open(file, &slabinfo_op);
1147}
1148
1149static const struct proc_ops slabinfo_proc_ops = {
1150	.proc_flags	= PROC_ENTRY_PERMANENT,
1151	.proc_open	= slabinfo_open,
1152	.proc_read	= seq_read,
1153	.proc_write	= slabinfo_write,
1154	.proc_lseek	= seq_lseek,
1155	.proc_release	= seq_release,
1156};
1157
1158static int __init slab_proc_init(void)
1159{
1160	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1161	return 0;
1162}
1163module_init(slab_proc_init);
1164
1165#endif /* CONFIG_SLUB_DEBUG */
1166
1167static __always_inline __realloc_size(2) void *
1168__do_krealloc(const void *p, size_t new_size, gfp_t flags)
1169{
1170	void *ret;
1171	size_t ks;
1172
1173	/* Check for double-free before calling ksize. */
1174	if (likely(!ZERO_OR_NULL_PTR(p))) {
1175		if (!kasan_check_byte(p))
1176			return NULL;
1177		ks = ksize(p);
1178	} else
1179		ks = 0;
1180
1181	/* If the object still fits, repoison it precisely. */
1182	if (ks >= new_size) {
1183		p = kasan_krealloc((void *)p, new_size, flags);
1184		return (void *)p;
1185	}
1186
1187	ret = kmalloc_track_caller(new_size, flags);
1188	if (ret && p) {
1189		/* Disable KASAN checks as the object's redzone is accessed. */
1190		kasan_disable_current();
1191		memcpy(ret, kasan_reset_tag(p), ks);
1192		kasan_enable_current();
1193	}
1194
1195	return ret;
1196}
1197
1198/**
1199 * krealloc - reallocate memory. The contents will remain unchanged.
1200 * @p: object to reallocate memory for.
1201 * @new_size: how many bytes of memory are required.
1202 * @flags: the type of memory to allocate.
1203 *
1204 * The contents of the object pointed to are preserved up to the
1205 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1206 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1207 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1208 *
1209 * Return: pointer to the allocated memory or %NULL in case of error
1210 */
1211void *krealloc(const void *p, size_t new_size, gfp_t flags)
1212{
1213	void *ret;
1214
1215	if (unlikely(!new_size)) {
1216		kfree(p);
1217		return ZERO_SIZE_PTR;
1218	}
1219
1220	ret = __do_krealloc(p, new_size, flags);
1221	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1222		kfree(p);
1223
1224	return ret;
1225}
1226EXPORT_SYMBOL(krealloc);
1227
1228/**
1229 * kfree_sensitive - Clear sensitive information in memory before freeing
1230 * @p: object to free memory of
1231 *
1232 * The memory of the object @p points to is zeroed before freed.
1233 * If @p is %NULL, kfree_sensitive() does nothing.
1234 *
1235 * Note: this function zeroes the whole allocated buffer which can be a good
1236 * deal bigger than the requested buffer size passed to kmalloc(). So be
1237 * careful when using this function in performance sensitive code.
1238 */
1239void kfree_sensitive(const void *p)
1240{
1241	size_t ks;
1242	void *mem = (void *)p;
1243
1244	ks = ksize(mem);
1245	if (ks) {
1246		kasan_unpoison_range(mem, ks);
1247		memzero_explicit(mem, ks);
1248	}
1249	kfree(mem);
1250}
1251EXPORT_SYMBOL(kfree_sensitive);
1252
1253size_t ksize(const void *objp)
1254{
1255	/*
1256	 * We need to first check that the pointer to the object is valid.
1257	 * The KASAN report printed from ksize() is more useful, then when
1258	 * it's printed later when the behaviour could be undefined due to
1259	 * a potential use-after-free or double-free.
1260	 *
1261	 * We use kasan_check_byte(), which is supported for the hardware
1262	 * tag-based KASAN mode, unlike kasan_check_read/write().
1263	 *
1264	 * If the pointed to memory is invalid, we return 0 to avoid users of
1265	 * ksize() writing to and potentially corrupting the memory region.
1266	 *
1267	 * We want to perform the check before __ksize(), to avoid potentially
1268	 * crashing in __ksize() due to accessing invalid metadata.
1269	 */
1270	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1271		return 0;
1272
1273	return kfence_ksize(objp) ?: __ksize(objp);
1274}
1275EXPORT_SYMBOL(ksize);
1276
1277/* Tracepoints definitions. */
1278EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1279EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1280EXPORT_TRACEPOINT_SYMBOL(kfree);
1281EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1282