Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Slab allocator functions that are independent of the allocator strategy
  3 *
  4 * (C) 2012 Christoph Lameter <cl@linux.com>
  5 */
  6#include <linux/slab.h>
  7
  8#include <linux/mm.h>
  9#include <linux/poison.h>
 10#include <linux/interrupt.h>
 11#include <linux/memory.h>
 12#include <linux/compiler.h>
 13#include <linux/module.h>
 14#include <linux/cpu.h>
 15#include <linux/uaccess.h>
 16#include <linux/seq_file.h>
 17#include <linux/proc_fs.h>
 18#include <asm/cacheflush.h>
 19#include <asm/tlbflush.h>
 20#include <asm/page.h>
 21#include <linux/memcontrol.h>
 22#include <trace/events/kmem.h>
 23
 24#include "slab.h"
 25
 26enum slab_state slab_state;
 27LIST_HEAD(slab_caches);
 28DEFINE_MUTEX(slab_mutex);
 29struct kmem_cache *kmem_cache;
 30
 31#ifdef CONFIG_DEBUG_VM
 32static int kmem_cache_sanity_check(const char *name, size_t size)
 33{
 34	struct kmem_cache *s = NULL;
 35
 36	if (!name || in_interrupt() || size < sizeof(void *) ||
 37		size > KMALLOC_MAX_SIZE) {
 38		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 39		return -EINVAL;
 40	}
 41
 42	list_for_each_entry(s, &slab_caches, list) {
 43		char tmp;
 44		int res;
 45
 46		/*
 47		 * This happens when the module gets unloaded and doesn't
 48		 * destroy its slab cache and no-one else reuses the vmalloc
 49		 * area of the module.  Print a warning.
 50		 */
 51		res = probe_kernel_address(s->name, tmp);
 52		if (res) {
 53			pr_err("Slab cache with size %d has lost its name\n",
 54			       s->object_size);
 55			continue;
 56		}
 57
 58#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
 59		if (!strcmp(s->name, name)) {
 60			pr_err("%s (%s): Cache name already exists.\n",
 61			       __func__, name);
 62			dump_stack();
 63			s = NULL;
 64			return -EINVAL;
 65		}
 66#endif
 67	}
 68
 69	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 70	return 0;
 71}
 72#else
 73static inline int kmem_cache_sanity_check(const char *name, size_t size)
 74{
 75	return 0;
 76}
 77#endif
 78
 79#ifdef CONFIG_MEMCG_KMEM
 80int memcg_update_all_caches(int num_memcgs)
 81{
 82	struct kmem_cache *s;
 83	int ret = 0;
 84	mutex_lock(&slab_mutex);
 85
 86	list_for_each_entry(s, &slab_caches, list) {
 87		if (!is_root_cache(s))
 88			continue;
 89
 90		ret = memcg_update_cache_size(s, num_memcgs);
 91		/*
 92		 * See comment in memcontrol.c, memcg_update_cache_size:
 93		 * Instead of freeing the memory, we'll just leave the caches
 94		 * up to this point in an updated state.
 95		 */
 96		if (ret)
 97			goto out;
 98	}
 99
100	memcg_update_array_size(num_memcgs);
101out:
102	mutex_unlock(&slab_mutex);
103	return ret;
104}
105#endif
106
107/*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
111unsigned long calculate_alignment(unsigned long flags,
112		unsigned long align, unsigned long size)
113{
114	/*
115	 * If the user wants hardware cache aligned objects then follow that
116	 * suggestion if the object is sufficiently large.
117	 *
118	 * The hardware cache alignment cannot override the specified
119	 * alignment though. If that is greater then use it.
120	 */
121	if (flags & SLAB_HWCACHE_ALIGN) {
122		unsigned long ralign = cache_line_size();
123		while (size <= ralign / 2)
124			ralign /= 2;
125		align = max(align, ralign);
126	}
127
128	if (align < ARCH_SLAB_MINALIGN)
129		align = ARCH_SLAB_MINALIGN;
130
131	return ALIGN(align, sizeof(void *));
132}
133
134static struct kmem_cache *
135do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136		     unsigned long flags, void (*ctor)(void *),
137		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138{
139	struct kmem_cache *s;
140	int err;
141
142	err = -ENOMEM;
143	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144	if (!s)
145		goto out;
146
147	s->name = name;
148	s->object_size = object_size;
149	s->size = size;
150	s->align = align;
151	s->ctor = ctor;
152
153	err = memcg_alloc_cache_params(memcg, s, root_cache);
154	if (err)
155		goto out_free_cache;
156
157	err = __kmem_cache_create(s, flags);
158	if (err)
159		goto out_free_cache;
160
161	s->refcount = 1;
162	list_add(&s->list, &slab_caches);
163	memcg_register_cache(s);
164out:
165	if (err)
166		return ERR_PTR(err);
167	return s;
168
169out_free_cache:
170	memcg_free_cache_params(s);
171	kfree(s);
172	goto out;
173}
174
175/*
176 * kmem_cache_create - Create a cache.
177 * @name: A string which is used in /proc/slabinfo to identify this cache.
178 * @size: The size of objects to be created in this cache.
179 * @align: The required alignment for the objects.
180 * @flags: SLAB flags
181 * @ctor: A constructor for the objects.
182 *
183 * Returns a ptr to the cache on success, NULL on failure.
184 * Cannot be called within a interrupt, but can be interrupted.
185 * The @ctor is run when new pages are allocated by the cache.
186 *
187 * The flags are
188 *
189 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
190 * to catch references to uninitialised memory.
191 *
192 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
193 * for buffer overruns.
194 *
195 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
196 * cacheline.  This can be beneficial if you're counting cycles as closely
197 * as davem.
198 */
199struct kmem_cache *
200kmem_cache_create(const char *name, size_t size, size_t align,
201		  unsigned long flags, void (*ctor)(void *))
202{
203	struct kmem_cache *s;
204	char *cache_name;
205	int err;
206
207	get_online_cpus();
208	mutex_lock(&slab_mutex);
209
210	err = kmem_cache_sanity_check(name, size);
211	if (err)
212		goto out_unlock;
213
214	/*
215	 * Some allocators will constraint the set of valid flags to a subset
216	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
217	 * case, and we'll just provide them with a sanitized version of the
218	 * passed flags.
219	 */
220	flags &= CACHE_CREATE_MASK;
221
222	s = __kmem_cache_alias(name, size, align, flags, ctor);
223	if (s)
224		goto out_unlock;
225
226	cache_name = kstrdup(name, GFP_KERNEL);
227	if (!cache_name) {
228		err = -ENOMEM;
229		goto out_unlock;
230	}
231
232	s = do_kmem_cache_create(cache_name, size, size,
233				 calculate_alignment(flags, align, size),
234				 flags, ctor, NULL, NULL);
235	if (IS_ERR(s)) {
236		err = PTR_ERR(s);
237		kfree(cache_name);
238	}
239
240out_unlock:
241	mutex_unlock(&slab_mutex);
242	put_online_cpus();
243
244	if (err) {
245		if (flags & SLAB_PANIC)
246			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
247				name, err);
248		else {
249			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
250				name, err);
251			dump_stack();
252		}
253		return NULL;
254	}
255	return s;
256}
257EXPORT_SYMBOL(kmem_cache_create);
258
259#ifdef CONFIG_MEMCG_KMEM
260/*
261 * kmem_cache_create_memcg - Create a cache for a memory cgroup.
262 * @memcg: The memory cgroup the new cache is for.
263 * @root_cache: The parent of the new cache.
264 *
265 * This function attempts to create a kmem cache that will serve allocation
266 * requests going from @memcg to @root_cache. The new cache inherits properties
267 * from its parent.
268 */
269void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270{
271	struct kmem_cache *s;
272	char *cache_name;
273
274	get_online_cpus();
275	mutex_lock(&slab_mutex);
276
277	/*
278	 * Since per-memcg caches are created asynchronously on first
279	 * allocation (see memcg_kmem_get_cache()), several threads can try to
280	 * create the same cache, but only one of them may succeed.
281	 */
282	if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
283		goto out_unlock;
284
285	cache_name = memcg_create_cache_name(memcg, root_cache);
286	if (!cache_name)
287		goto out_unlock;
288
289	s = do_kmem_cache_create(cache_name, root_cache->object_size,
290				 root_cache->size, root_cache->align,
291				 root_cache->flags, root_cache->ctor,
292				 memcg, root_cache);
293	if (IS_ERR(s)) {
294		kfree(cache_name);
295		goto out_unlock;
296	}
297
298	s->allocflags |= __GFP_KMEMCG;
299
300out_unlock:
301	mutex_unlock(&slab_mutex);
302	put_online_cpus();
303}
304
305static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
306{
307	int rc;
308
309	if (!s->memcg_params ||
310	    !s->memcg_params->is_root_cache)
311		return 0;
312
313	mutex_unlock(&slab_mutex);
314	rc = __kmem_cache_destroy_memcg_children(s);
315	mutex_lock(&slab_mutex);
316
317	return rc;
318}
319#else
320static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
321{
322	return 0;
323}
324#endif /* CONFIG_MEMCG_KMEM */
325
326void slab_kmem_cache_release(struct kmem_cache *s)
327{
328	kfree(s->name);
329	kmem_cache_free(kmem_cache, s);
330}
331
332void kmem_cache_destroy(struct kmem_cache *s)
333{
334	get_online_cpus();
335	mutex_lock(&slab_mutex);
336
337	s->refcount--;
338	if (s->refcount)
339		goto out_unlock;
340
341	if (kmem_cache_destroy_memcg_children(s) != 0)
342		goto out_unlock;
343
344	list_del(&s->list);
345	memcg_unregister_cache(s);
346
347	if (__kmem_cache_shutdown(s) != 0) {
348		list_add(&s->list, &slab_caches);
349		memcg_register_cache(s);
350		printk(KERN_ERR "kmem_cache_destroy %s: "
351		       "Slab cache still has objects\n", s->name);
352		dump_stack();
353		goto out_unlock;
354	}
355
356	mutex_unlock(&slab_mutex);
357	if (s->flags & SLAB_DESTROY_BY_RCU)
358		rcu_barrier();
359
360	memcg_free_cache_params(s);
361#ifdef SLAB_SUPPORTS_SYSFS
362	sysfs_slab_remove(s);
363#else
364	slab_kmem_cache_release(s);
365#endif
366	goto out_put_cpus;
367
368out_unlock:
369	mutex_unlock(&slab_mutex);
370out_put_cpus:
371	put_online_cpus();
372}
373EXPORT_SYMBOL(kmem_cache_destroy);
374
375int slab_is_available(void)
376{
377	return slab_state >= UP;
378}
379
380#ifndef CONFIG_SLOB
381/* Create a cache during boot when no slab services are available yet */
382void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
383		unsigned long flags)
384{
385	int err;
386
387	s->name = name;
388	s->size = s->object_size = size;
389	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
390	err = __kmem_cache_create(s, flags);
391
392	if (err)
393		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
394					name, size, err);
395
396	s->refcount = -1;	/* Exempt from merging for now */
397}
398
399struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
400				unsigned long flags)
401{
402	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
403
404	if (!s)
405		panic("Out of memory when creating slab %s\n", name);
406
407	create_boot_cache(s, name, size, flags);
408	list_add(&s->list, &slab_caches);
409	s->refcount = 1;
410	return s;
411}
412
413struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
414EXPORT_SYMBOL(kmalloc_caches);
415
416#ifdef CONFIG_ZONE_DMA
417struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
418EXPORT_SYMBOL(kmalloc_dma_caches);
419#endif
420
421/*
422 * Conversion table for small slabs sizes / 8 to the index in the
423 * kmalloc array. This is necessary for slabs < 192 since we have non power
424 * of two cache sizes there. The size of larger slabs can be determined using
425 * fls.
426 */
427static s8 size_index[24] = {
428	3,	/* 8 */
429	4,	/* 16 */
430	5,	/* 24 */
431	5,	/* 32 */
432	6,	/* 40 */
433	6,	/* 48 */
434	6,	/* 56 */
435	6,	/* 64 */
436	1,	/* 72 */
437	1,	/* 80 */
438	1,	/* 88 */
439	1,	/* 96 */
440	7,	/* 104 */
441	7,	/* 112 */
442	7,	/* 120 */
443	7,	/* 128 */
444	2,	/* 136 */
445	2,	/* 144 */
446	2,	/* 152 */
447	2,	/* 160 */
448	2,	/* 168 */
449	2,	/* 176 */
450	2,	/* 184 */
451	2	/* 192 */
452};
453
454static inline int size_index_elem(size_t bytes)
455{
456	return (bytes - 1) / 8;
457}
458
459/*
460 * Find the kmem_cache structure that serves a given size of
461 * allocation
462 */
463struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
464{
465	int index;
466
467	if (unlikely(size > KMALLOC_MAX_SIZE)) {
468		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
469		return NULL;
470	}
471
472	if (size <= 192) {
473		if (!size)
474			return ZERO_SIZE_PTR;
475
476		index = size_index[size_index_elem(size)];
477	} else
478		index = fls(size - 1);
479
480#ifdef CONFIG_ZONE_DMA
481	if (unlikely((flags & GFP_DMA)))
482		return kmalloc_dma_caches[index];
483
484#endif
485	return kmalloc_caches[index];
486}
487
488/*
489 * Create the kmalloc array. Some of the regular kmalloc arrays
490 * may already have been created because they were needed to
491 * enable allocations for slab creation.
492 */
493void __init create_kmalloc_caches(unsigned long flags)
494{
495	int i;
496
497	/*
498	 * Patch up the size_index table if we have strange large alignment
499	 * requirements for the kmalloc array. This is only the case for
500	 * MIPS it seems. The standard arches will not generate any code here.
501	 *
502	 * Largest permitted alignment is 256 bytes due to the way we
503	 * handle the index determination for the smaller caches.
504	 *
505	 * Make sure that nothing crazy happens if someone starts tinkering
506	 * around with ARCH_KMALLOC_MINALIGN
507	 */
508	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
509		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
510
511	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
512		int elem = size_index_elem(i);
513
514		if (elem >= ARRAY_SIZE(size_index))
515			break;
516		size_index[elem] = KMALLOC_SHIFT_LOW;
517	}
518
519	if (KMALLOC_MIN_SIZE >= 64) {
520		/*
521		 * The 96 byte size cache is not used if the alignment
522		 * is 64 byte.
523		 */
524		for (i = 64 + 8; i <= 96; i += 8)
525			size_index[size_index_elem(i)] = 7;
526
527	}
528
529	if (KMALLOC_MIN_SIZE >= 128) {
530		/*
531		 * The 192 byte sized cache is not used if the alignment
532		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
533		 * instead.
534		 */
535		for (i = 128 + 8; i <= 192; i += 8)
536			size_index[size_index_elem(i)] = 8;
537	}
538	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
539		if (!kmalloc_caches[i]) {
540			kmalloc_caches[i] = create_kmalloc_cache(NULL,
541							1 << i, flags);
542		}
543
544		/*
545		 * Caches that are not of the two-to-the-power-of size.
546		 * These have to be created immediately after the
547		 * earlier power of two caches
548		 */
549		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
550			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
551
552		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
553			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
554	}
555
556	/* Kmalloc array is now usable */
557	slab_state = UP;
558
559	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
560		struct kmem_cache *s = kmalloc_caches[i];
561		char *n;
562
563		if (s) {
564			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
565
566			BUG_ON(!n);
567			s->name = n;
568		}
569	}
570
571#ifdef CONFIG_ZONE_DMA
572	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
573		struct kmem_cache *s = kmalloc_caches[i];
574
575		if (s) {
576			int size = kmalloc_size(i);
577			char *n = kasprintf(GFP_NOWAIT,
578				 "dma-kmalloc-%d", size);
579
580			BUG_ON(!n);
581			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
582				size, SLAB_CACHE_DMA | flags);
583		}
584	}
585#endif
586}
587#endif /* !CONFIG_SLOB */
588
589#ifdef CONFIG_TRACING
590void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
591{
592	void *ret = kmalloc_order(size, flags, order);
593	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
594	return ret;
595}
596EXPORT_SYMBOL(kmalloc_order_trace);
597#endif
598
599#ifdef CONFIG_SLABINFO
600
601#ifdef CONFIG_SLAB
602#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
603#else
604#define SLABINFO_RIGHTS S_IRUSR
605#endif
606
607void print_slabinfo_header(struct seq_file *m)
608{
609	/*
610	 * Output format version, so at least we can change it
611	 * without _too_ many complaints.
612	 */
613#ifdef CONFIG_DEBUG_SLAB
614	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
615#else
616	seq_puts(m, "slabinfo - version: 2.1\n");
617#endif
618	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
619		 "<objperslab> <pagesperslab>");
620	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
621	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
622#ifdef CONFIG_DEBUG_SLAB
623	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
624		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
625	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
626#endif
627	seq_putc(m, '\n');
628}
629
630static void *s_start(struct seq_file *m, loff_t *pos)
631{
632	loff_t n = *pos;
633
634	mutex_lock(&slab_mutex);
635	if (!n)
636		print_slabinfo_header(m);
637
638	return seq_list_start(&slab_caches, *pos);
639}
640
641void *slab_next(struct seq_file *m, void *p, loff_t *pos)
642{
643	return seq_list_next(p, &slab_caches, pos);
644}
645
646void slab_stop(struct seq_file *m, void *p)
647{
648	mutex_unlock(&slab_mutex);
649}
650
651static void
652memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
653{
654	struct kmem_cache *c;
655	struct slabinfo sinfo;
656	int i;
657
658	if (!is_root_cache(s))
659		return;
660
661	for_each_memcg_cache_index(i) {
662		c = cache_from_memcg_idx(s, i);
663		if (!c)
664			continue;
665
666		memset(&sinfo, 0, sizeof(sinfo));
667		get_slabinfo(c, &sinfo);
668
669		info->active_slabs += sinfo.active_slabs;
670		info->num_slabs += sinfo.num_slabs;
671		info->shared_avail += sinfo.shared_avail;
672		info->active_objs += sinfo.active_objs;
673		info->num_objs += sinfo.num_objs;
674	}
675}
676
677int cache_show(struct kmem_cache *s, struct seq_file *m)
678{
679	struct slabinfo sinfo;
680
681	memset(&sinfo, 0, sizeof(sinfo));
682	get_slabinfo(s, &sinfo);
683
684	memcg_accumulate_slabinfo(s, &sinfo);
685
686	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
687		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
688		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
689
690	seq_printf(m, " : tunables %4u %4u %4u",
691		   sinfo.limit, sinfo.batchcount, sinfo.shared);
692	seq_printf(m, " : slabdata %6lu %6lu %6lu",
693		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
694	slabinfo_show_stats(m, s);
695	seq_putc(m, '\n');
696	return 0;
697}
698
699static int s_show(struct seq_file *m, void *p)
700{
701	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
702
703	if (!is_root_cache(s))
704		return 0;
705	return cache_show(s, m);
706}
707
708/*
709 * slabinfo_op - iterator that generates /proc/slabinfo
710 *
711 * Output layout:
712 * cache-name
713 * num-active-objs
714 * total-objs
715 * object size
716 * num-active-slabs
717 * total-slabs
718 * num-pages-per-slab
719 * + further values on SMP and with statistics enabled
720 */
721static const struct seq_operations slabinfo_op = {
722	.start = s_start,
723	.next = slab_next,
724	.stop = slab_stop,
725	.show = s_show,
726};
727
728static int slabinfo_open(struct inode *inode, struct file *file)
729{
730	return seq_open(file, &slabinfo_op);
731}
732
733static const struct file_operations proc_slabinfo_operations = {
734	.open		= slabinfo_open,
735	.read		= seq_read,
736	.write          = slabinfo_write,
737	.llseek		= seq_lseek,
738	.release	= seq_release,
739};
740
741static int __init slab_proc_init(void)
742{
743	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
744						&proc_slabinfo_operations);
745	return 0;
746}
747module_init(slab_proc_init);
748#endif /* CONFIG_SLABINFO */