Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Slab allocator functions that are independent of the allocator strategy
   3 *
   4 * (C) 2012 Christoph Lameter <cl@linux.com>
   5 */
   6#include <linux/slab.h>
   7
   8#include <linux/mm.h>
   9#include <linux/poison.h>
  10#include <linux/interrupt.h>
  11#include <linux/memory.h>
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/cpu.h>
  15#include <linux/uaccess.h>
  16#include <linux/seq_file.h>
  17#include <linux/proc_fs.h>
  18#include <asm/cacheflush.h>
  19#include <asm/tlbflush.h>
  20#include <asm/page.h>
  21#include <linux/memcontrol.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/kmem.h>
  25
  26#include "slab.h"
  27
  28enum slab_state slab_state;
  29LIST_HEAD(slab_caches);
  30DEFINE_MUTEX(slab_mutex);
  31struct kmem_cache *kmem_cache;
  32
  33/*
  34 * Set of flags that will prevent slab merging
  35 */
  36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  37		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  38		SLAB_FAILSLAB | SLAB_KASAN)
  39
  40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  41			 SLAB_NOTRACK | SLAB_ACCOUNT)
  42
  43/*
  44 * Merge control. If this is set then no merging of slab caches will occur.
  45 * (Could be removed. This was introduced to pacify the merge skeptics.)
  46 */
  47static int slab_nomerge;
  48
  49static int __init setup_slab_nomerge(char *str)
  50{
  51	slab_nomerge = 1;
  52	return 1;
  53}
  54
  55#ifdef CONFIG_SLUB
  56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  57#endif
  58
  59__setup("slab_nomerge", setup_slab_nomerge);
  60
  61/*
  62 * Determine the size of a slab object
  63 */
  64unsigned int kmem_cache_size(struct kmem_cache *s)
  65{
  66	return s->object_size;
  67}
  68EXPORT_SYMBOL(kmem_cache_size);
  69
  70#ifdef CONFIG_DEBUG_VM
  71static int kmem_cache_sanity_check(const char *name, size_t size)
  72{
  73	struct kmem_cache *s = NULL;
  74
  75	if (!name || in_interrupt() || size < sizeof(void *) ||
  76		size > KMALLOC_MAX_SIZE) {
  77		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  78		return -EINVAL;
  79	}
  80
  81	list_for_each_entry(s, &slab_caches, list) {
  82		char tmp;
  83		int res;
  84
  85		/*
  86		 * This happens when the module gets unloaded and doesn't
  87		 * destroy its slab cache and no-one else reuses the vmalloc
  88		 * area of the module.  Print a warning.
  89		 */
  90		res = probe_kernel_address(s->name, tmp);
  91		if (res) {
  92			pr_err("Slab cache with size %d has lost its name\n",
  93			       s->object_size);
  94			continue;
  95		}
  96	}
  97
  98	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  99	return 0;
 100}
 101#else
 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
 103{
 104	return 0;
 105}
 106#endif
 107
 108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 109{
 110	size_t i;
 111
 112	for (i = 0; i < nr; i++) {
 113		if (s)
 114			kmem_cache_free(s, p[i]);
 115		else
 116			kfree(p[i]);
 117	}
 118}
 119
 120int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 121								void **p)
 122{
 123	size_t i;
 124
 125	for (i = 0; i < nr; i++) {
 126		void *x = p[i] = kmem_cache_alloc(s, flags);
 127		if (!x) {
 128			__kmem_cache_free_bulk(s, i, p);
 129			return 0;
 130		}
 131	}
 132	return i;
 133}
 134
 135#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 136void slab_init_memcg_params(struct kmem_cache *s)
 137{
 138	s->memcg_params.is_root_cache = true;
 139	INIT_LIST_HEAD(&s->memcg_params.list);
 140	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 141}
 142
 143static int init_memcg_params(struct kmem_cache *s,
 144		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 145{
 146	struct memcg_cache_array *arr;
 147
 148	if (memcg) {
 149		s->memcg_params.is_root_cache = false;
 150		s->memcg_params.memcg = memcg;
 151		s->memcg_params.root_cache = root_cache;
 152		return 0;
 153	}
 154
 155	slab_init_memcg_params(s);
 156
 157	if (!memcg_nr_cache_ids)
 158		return 0;
 159
 160	arr = kzalloc(sizeof(struct memcg_cache_array) +
 161		      memcg_nr_cache_ids * sizeof(void *),
 162		      GFP_KERNEL);
 163	if (!arr)
 164		return -ENOMEM;
 165
 166	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 167	return 0;
 168}
 169
 170static void destroy_memcg_params(struct kmem_cache *s)
 171{
 172	if (is_root_cache(s))
 173		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 174}
 175
 176static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 177{
 178	struct memcg_cache_array *old, *new;
 179
 180	if (!is_root_cache(s))
 181		return 0;
 182
 183	new = kzalloc(sizeof(struct memcg_cache_array) +
 184		      new_array_size * sizeof(void *), GFP_KERNEL);
 185	if (!new)
 186		return -ENOMEM;
 187
 188	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 189					lockdep_is_held(&slab_mutex));
 190	if (old)
 191		memcpy(new->entries, old->entries,
 192		       memcg_nr_cache_ids * sizeof(void *));
 193
 194	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 195	if (old)
 196		kfree_rcu(old, rcu);
 197	return 0;
 198}
 199
 200int memcg_update_all_caches(int num_memcgs)
 201{
 202	struct kmem_cache *s;
 203	int ret = 0;
 204
 205	mutex_lock(&slab_mutex);
 206	list_for_each_entry(s, &slab_caches, list) {
 207		ret = update_memcg_params(s, num_memcgs);
 208		/*
 209		 * Instead of freeing the memory, we'll just leave the caches
 210		 * up to this point in an updated state.
 211		 */
 212		if (ret)
 213			break;
 214	}
 215	mutex_unlock(&slab_mutex);
 216	return ret;
 217}
 218#else
 219static inline int init_memcg_params(struct kmem_cache *s,
 220		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 221{
 222	return 0;
 223}
 224
 225static inline void destroy_memcg_params(struct kmem_cache *s)
 226{
 227}
 228#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 229
 230/*
 231 * Find a mergeable slab cache
 232 */
 233int slab_unmergeable(struct kmem_cache *s)
 234{
 235	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 236		return 1;
 237
 238	if (!is_root_cache(s))
 239		return 1;
 240
 241	if (s->ctor)
 242		return 1;
 243
 244	/*
 245	 * We may have set a slab to be unmergeable during bootstrap.
 246	 */
 247	if (s->refcount < 0)
 248		return 1;
 249
 250	return 0;
 251}
 252
 253struct kmem_cache *find_mergeable(size_t size, size_t align,
 254		unsigned long flags, const char *name, void (*ctor)(void *))
 255{
 256	struct kmem_cache *s;
 257
 258	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
 259		return NULL;
 260
 261	if (ctor)
 262		return NULL;
 263
 264	size = ALIGN(size, sizeof(void *));
 265	align = calculate_alignment(flags, align, size);
 266	size = ALIGN(size, align);
 267	flags = kmem_cache_flags(size, flags, name, NULL);
 268
 269	list_for_each_entry_reverse(s, &slab_caches, list) {
 270		if (slab_unmergeable(s))
 271			continue;
 272
 273		if (size > s->size)
 274			continue;
 275
 276		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 277			continue;
 278		/*
 279		 * Check if alignment is compatible.
 280		 * Courtesy of Adrian Drzewiecki
 281		 */
 282		if ((s->size & ~(align - 1)) != s->size)
 283			continue;
 284
 285		if (s->size - size >= sizeof(void *))
 286			continue;
 287
 288		if (IS_ENABLED(CONFIG_SLAB) && align &&
 289			(align > s->align || s->align % align))
 290			continue;
 291
 292		return s;
 293	}
 294	return NULL;
 295}
 296
 297/*
 298 * Figure out what the alignment of the objects will be given a set of
 299 * flags, a user specified alignment and the size of the objects.
 300 */
 301unsigned long calculate_alignment(unsigned long flags,
 302		unsigned long align, unsigned long size)
 303{
 304	/*
 305	 * If the user wants hardware cache aligned objects then follow that
 306	 * suggestion if the object is sufficiently large.
 307	 *
 308	 * The hardware cache alignment cannot override the specified
 309	 * alignment though. If that is greater then use it.
 310	 */
 311	if (flags & SLAB_HWCACHE_ALIGN) {
 312		unsigned long ralign = cache_line_size();
 313		while (size <= ralign / 2)
 314			ralign /= 2;
 315		align = max(align, ralign);
 316	}
 317
 318	if (align < ARCH_SLAB_MINALIGN)
 319		align = ARCH_SLAB_MINALIGN;
 320
 321	return ALIGN(align, sizeof(void *));
 322}
 323
 324static struct kmem_cache *create_cache(const char *name,
 325		size_t object_size, size_t size, size_t align,
 326		unsigned long flags, void (*ctor)(void *),
 327		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 328{
 329	struct kmem_cache *s;
 330	int err;
 331
 332	err = -ENOMEM;
 333	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 334	if (!s)
 335		goto out;
 336
 337	s->name = name;
 338	s->object_size = object_size;
 339	s->size = size;
 340	s->align = align;
 341	s->ctor = ctor;
 342
 343	err = init_memcg_params(s, memcg, root_cache);
 344	if (err)
 345		goto out_free_cache;
 346
 347	err = __kmem_cache_create(s, flags);
 348	if (err)
 349		goto out_free_cache;
 350
 351	s->refcount = 1;
 352	list_add(&s->list, &slab_caches);
 353out:
 354	if (err)
 355		return ERR_PTR(err);
 356	return s;
 357
 358out_free_cache:
 359	destroy_memcg_params(s);
 360	kmem_cache_free(kmem_cache, s);
 361	goto out;
 362}
 363
 364/*
 365 * kmem_cache_create - Create a cache.
 366 * @name: A string which is used in /proc/slabinfo to identify this cache.
 367 * @size: The size of objects to be created in this cache.
 368 * @align: The required alignment for the objects.
 369 * @flags: SLAB flags
 370 * @ctor: A constructor for the objects.
 371 *
 372 * Returns a ptr to the cache on success, NULL on failure.
 373 * Cannot be called within a interrupt, but can be interrupted.
 374 * The @ctor is run when new pages are allocated by the cache.
 375 *
 376 * The flags are
 377 *
 378 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 379 * to catch references to uninitialised memory.
 380 *
 381 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 382 * for buffer overruns.
 383 *
 384 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 385 * cacheline.  This can be beneficial if you're counting cycles as closely
 386 * as davem.
 387 */
 388struct kmem_cache *
 389kmem_cache_create(const char *name, size_t size, size_t align,
 390		  unsigned long flags, void (*ctor)(void *))
 391{
 392	struct kmem_cache *s = NULL;
 393	const char *cache_name;
 394	int err;
 395
 396	get_online_cpus();
 397	get_online_mems();
 398	memcg_get_cache_ids();
 399
 400	mutex_lock(&slab_mutex);
 401
 402	err = kmem_cache_sanity_check(name, size);
 403	if (err) {
 404		goto out_unlock;
 405	}
 406
 407	/* Refuse requests with allocator specific flags */
 408	if (flags & ~SLAB_FLAGS_PERMITTED) {
 409		err = -EINVAL;
 410		goto out_unlock;
 411	}
 412
 413	/*
 414	 * Some allocators will constraint the set of valid flags to a subset
 415	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 416	 * case, and we'll just provide them with a sanitized version of the
 417	 * passed flags.
 418	 */
 419	flags &= CACHE_CREATE_MASK;
 420
 421	s = __kmem_cache_alias(name, size, align, flags, ctor);
 422	if (s)
 423		goto out_unlock;
 424
 425	cache_name = kstrdup_const(name, GFP_KERNEL);
 426	if (!cache_name) {
 427		err = -ENOMEM;
 428		goto out_unlock;
 429	}
 430
 431	s = create_cache(cache_name, size, size,
 432			 calculate_alignment(flags, align, size),
 433			 flags, ctor, NULL, NULL);
 434	if (IS_ERR(s)) {
 435		err = PTR_ERR(s);
 436		kfree_const(cache_name);
 437	}
 438
 439out_unlock:
 440	mutex_unlock(&slab_mutex);
 441
 442	memcg_put_cache_ids();
 443	put_online_mems();
 444	put_online_cpus();
 445
 446	if (err) {
 447		if (flags & SLAB_PANIC)
 448			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 449				name, err);
 450		else {
 451			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 452				name, err);
 453			dump_stack();
 454		}
 455		return NULL;
 456	}
 457	return s;
 458}
 459EXPORT_SYMBOL(kmem_cache_create);
 460
 461static int shutdown_cache(struct kmem_cache *s,
 462		struct list_head *release, bool *need_rcu_barrier)
 463{
 464	if (__kmem_cache_shutdown(s) != 0)
 465		return -EBUSY;
 466
 467	if (s->flags & SLAB_DESTROY_BY_RCU)
 468		*need_rcu_barrier = true;
 469
 470	list_move(&s->list, release);
 471	return 0;
 472}
 473
 474static void release_caches(struct list_head *release, bool need_rcu_barrier)
 475{
 476	struct kmem_cache *s, *s2;
 477
 478	if (need_rcu_barrier)
 479		rcu_barrier();
 480
 481	list_for_each_entry_safe(s, s2, release, list) {
 482#ifdef SLAB_SUPPORTS_SYSFS
 483		sysfs_slab_remove(s);
 484#else
 485		slab_kmem_cache_release(s);
 486#endif
 487	}
 488}
 489
 490#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 491/*
 492 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 493 * @memcg: The memory cgroup the new cache is for.
 494 * @root_cache: The parent of the new cache.
 495 *
 496 * This function attempts to create a kmem cache that will serve allocation
 497 * requests going from @memcg to @root_cache. The new cache inherits properties
 498 * from its parent.
 499 */
 500void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 501			     struct kmem_cache *root_cache)
 502{
 503	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 504	struct cgroup_subsys_state *css = &memcg->css;
 505	struct memcg_cache_array *arr;
 506	struct kmem_cache *s = NULL;
 507	char *cache_name;
 508	int idx;
 509
 510	get_online_cpus();
 511	get_online_mems();
 512
 513	mutex_lock(&slab_mutex);
 514
 515	/*
 516	 * The memory cgroup could have been offlined while the cache
 517	 * creation work was pending.
 518	 */
 519	if (memcg->kmem_state != KMEM_ONLINE)
 520		goto out_unlock;
 521
 522	idx = memcg_cache_id(memcg);
 523	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 524					lockdep_is_held(&slab_mutex));
 525
 526	/*
 527	 * Since per-memcg caches are created asynchronously on first
 528	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 529	 * create the same cache, but only one of them may succeed.
 530	 */
 531	if (arr->entries[idx])
 532		goto out_unlock;
 533
 534	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 535	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 536			       css->serial_nr, memcg_name_buf);
 537	if (!cache_name)
 538		goto out_unlock;
 539
 540	s = create_cache(cache_name, root_cache->object_size,
 541			 root_cache->size, root_cache->align,
 542			 root_cache->flags & CACHE_CREATE_MASK,
 543			 root_cache->ctor, memcg, root_cache);
 544	/*
 545	 * If we could not create a memcg cache, do not complain, because
 546	 * that's not critical at all as we can always proceed with the root
 547	 * cache.
 548	 */
 549	if (IS_ERR(s)) {
 550		kfree(cache_name);
 551		goto out_unlock;
 552	}
 553
 554	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
 555
 556	/*
 557	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
 558	 * barrier here to ensure nobody will see the kmem_cache partially
 559	 * initialized.
 560	 */
 561	smp_wmb();
 562	arr->entries[idx] = s;
 563
 564out_unlock:
 565	mutex_unlock(&slab_mutex);
 566
 567	put_online_mems();
 568	put_online_cpus();
 569}
 570
 571void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 572{
 573	int idx;
 574	struct memcg_cache_array *arr;
 575	struct kmem_cache *s, *c;
 576
 577	idx = memcg_cache_id(memcg);
 578
 579	get_online_cpus();
 580	get_online_mems();
 581
 582#ifdef CONFIG_SLUB
 583	/*
 584	 * In case of SLUB, we need to disable empty slab caching to
 585	 * avoid pinning the offline memory cgroup by freeable kmem
 586	 * pages charged to it. SLAB doesn't need this, as it
 587	 * periodically purges unused slabs.
 588	 */
 589	mutex_lock(&slab_mutex);
 590	list_for_each_entry(s, &slab_caches, list) {
 591		c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
 592		if (c) {
 593			c->cpu_partial = 0;
 594			c->min_partial = 0;
 595		}
 596	}
 597	mutex_unlock(&slab_mutex);
 598	/*
 599	 * kmem_cache->cpu_partial is checked locklessly (see
 600	 * put_cpu_partial()). Make sure the change is visible.
 601	 */
 602	synchronize_sched();
 603#endif
 604
 605	mutex_lock(&slab_mutex);
 606	list_for_each_entry(s, &slab_caches, list) {
 607		if (!is_root_cache(s))
 608			continue;
 609
 610		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 611						lockdep_is_held(&slab_mutex));
 612		c = arr->entries[idx];
 613		if (!c)
 614			continue;
 615
 616		__kmem_cache_shrink(c);
 617		arr->entries[idx] = NULL;
 618	}
 619	mutex_unlock(&slab_mutex);
 620
 621	put_online_mems();
 622	put_online_cpus();
 623}
 624
 625static int __shutdown_memcg_cache(struct kmem_cache *s,
 626		struct list_head *release, bool *need_rcu_barrier)
 627{
 628	BUG_ON(is_root_cache(s));
 629
 630	if (shutdown_cache(s, release, need_rcu_barrier))
 631		return -EBUSY;
 632
 633	list_del(&s->memcg_params.list);
 634	return 0;
 635}
 636
 637void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 638{
 639	LIST_HEAD(release);
 640	bool need_rcu_barrier = false;
 641	struct kmem_cache *s, *s2;
 642
 643	get_online_cpus();
 644	get_online_mems();
 645
 646	mutex_lock(&slab_mutex);
 647	list_for_each_entry_safe(s, s2, &slab_caches, list) {
 648		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
 649			continue;
 650		/*
 651		 * The cgroup is about to be freed and therefore has no charges
 652		 * left. Hence, all its caches must be empty by now.
 653		 */
 654		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
 655	}
 656	mutex_unlock(&slab_mutex);
 657
 658	put_online_mems();
 659	put_online_cpus();
 660
 661	release_caches(&release, need_rcu_barrier);
 662}
 663
 664static int shutdown_memcg_caches(struct kmem_cache *s,
 665		struct list_head *release, bool *need_rcu_barrier)
 666{
 667	struct memcg_cache_array *arr;
 668	struct kmem_cache *c, *c2;
 669	LIST_HEAD(busy);
 670	int i;
 671
 672	BUG_ON(!is_root_cache(s));
 673
 674	/*
 675	 * First, shutdown active caches, i.e. caches that belong to online
 676	 * memory cgroups.
 677	 */
 678	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 679					lockdep_is_held(&slab_mutex));
 680	for_each_memcg_cache_index(i) {
 681		c = arr->entries[i];
 682		if (!c)
 683			continue;
 684		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
 685			/*
 686			 * The cache still has objects. Move it to a temporary
 687			 * list so as not to try to destroy it for a second
 688			 * time while iterating over inactive caches below.
 689			 */
 690			list_move(&c->memcg_params.list, &busy);
 691		else
 692			/*
 693			 * The cache is empty and will be destroyed soon. Clear
 694			 * the pointer to it in the memcg_caches array so that
 695			 * it will never be accessed even if the root cache
 696			 * stays alive.
 697			 */
 698			arr->entries[i] = NULL;
 699	}
 700
 701	/*
 702	 * Second, shutdown all caches left from memory cgroups that are now
 703	 * offline.
 704	 */
 705	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
 706				 memcg_params.list)
 707		__shutdown_memcg_cache(c, release, need_rcu_barrier);
 708
 709	list_splice(&busy, &s->memcg_params.list);
 710
 711	/*
 712	 * A cache being destroyed must be empty. In particular, this means
 713	 * that all per memcg caches attached to it must be empty too.
 714	 */
 715	if (!list_empty(&s->memcg_params.list))
 716		return -EBUSY;
 717	return 0;
 718}
 719#else
 720static inline int shutdown_memcg_caches(struct kmem_cache *s,
 721		struct list_head *release, bool *need_rcu_barrier)
 722{
 723	return 0;
 724}
 725#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 726
 727void slab_kmem_cache_release(struct kmem_cache *s)
 728{
 729	__kmem_cache_release(s);
 730	destroy_memcg_params(s);
 731	kfree_const(s->name);
 732	kmem_cache_free(kmem_cache, s);
 733}
 734
 735void kmem_cache_destroy(struct kmem_cache *s)
 736{
 737	LIST_HEAD(release);
 738	bool need_rcu_barrier = false;
 739	int err;
 740
 741	if (unlikely(!s))
 742		return;
 743
 744	get_online_cpus();
 745	get_online_mems();
 746
 747	kasan_cache_destroy(s);
 748	mutex_lock(&slab_mutex);
 749
 750	s->refcount--;
 751	if (s->refcount)
 752		goto out_unlock;
 753
 754	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
 755	if (!err)
 756		err = shutdown_cache(s, &release, &need_rcu_barrier);
 757
 758	if (err) {
 759		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 760		       s->name);
 761		dump_stack();
 762	}
 763out_unlock:
 764	mutex_unlock(&slab_mutex);
 765
 766	put_online_mems();
 767	put_online_cpus();
 768
 769	release_caches(&release, need_rcu_barrier);
 770}
 771EXPORT_SYMBOL(kmem_cache_destroy);
 772
 773/**
 774 * kmem_cache_shrink - Shrink a cache.
 775 * @cachep: The cache to shrink.
 776 *
 777 * Releases as many slabs as possible for a cache.
 778 * To help debugging, a zero exit status indicates all slabs were released.
 779 */
 780int kmem_cache_shrink(struct kmem_cache *cachep)
 781{
 782	int ret;
 783
 784	get_online_cpus();
 785	get_online_mems();
 786	kasan_cache_shrink(cachep);
 787	ret = __kmem_cache_shrink(cachep);
 788	put_online_mems();
 789	put_online_cpus();
 790	return ret;
 791}
 792EXPORT_SYMBOL(kmem_cache_shrink);
 793
 794bool slab_is_available(void)
 795{
 796	return slab_state >= UP;
 797}
 798
 799#ifndef CONFIG_SLOB
 800/* Create a cache during boot when no slab services are available yet */
 801void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
 802		unsigned long flags)
 803{
 804	int err;
 805
 806	s->name = name;
 807	s->size = s->object_size = size;
 808	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 809
 810	slab_init_memcg_params(s);
 811
 812	err = __kmem_cache_create(s, flags);
 813
 814	if (err)
 815		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 816					name, size, err);
 817
 818	s->refcount = -1;	/* Exempt from merging for now */
 819}
 820
 821struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
 822				unsigned long flags)
 823{
 824	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 825
 826	if (!s)
 827		panic("Out of memory when creating slab %s\n", name);
 828
 829	create_boot_cache(s, name, size, flags);
 830	list_add(&s->list, &slab_caches);
 831	s->refcount = 1;
 832	return s;
 833}
 834
 835struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 836EXPORT_SYMBOL(kmalloc_caches);
 837
 838#ifdef CONFIG_ZONE_DMA
 839struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 840EXPORT_SYMBOL(kmalloc_dma_caches);
 841#endif
 842
 843/*
 844 * Conversion table for small slabs sizes / 8 to the index in the
 845 * kmalloc array. This is necessary for slabs < 192 since we have non power
 846 * of two cache sizes there. The size of larger slabs can be determined using
 847 * fls.
 848 */
 849static s8 size_index[24] = {
 850	3,	/* 8 */
 851	4,	/* 16 */
 852	5,	/* 24 */
 853	5,	/* 32 */
 854	6,	/* 40 */
 855	6,	/* 48 */
 856	6,	/* 56 */
 857	6,	/* 64 */
 858	1,	/* 72 */
 859	1,	/* 80 */
 860	1,	/* 88 */
 861	1,	/* 96 */
 862	7,	/* 104 */
 863	7,	/* 112 */
 864	7,	/* 120 */
 865	7,	/* 128 */
 866	2,	/* 136 */
 867	2,	/* 144 */
 868	2,	/* 152 */
 869	2,	/* 160 */
 870	2,	/* 168 */
 871	2,	/* 176 */
 872	2,	/* 184 */
 873	2	/* 192 */
 874};
 875
 876static inline int size_index_elem(size_t bytes)
 877{
 878	return (bytes - 1) / 8;
 879}
 880
 881/*
 882 * Find the kmem_cache structure that serves a given size of
 883 * allocation
 884 */
 885struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 886{
 887	int index;
 888
 889	if (unlikely(size > KMALLOC_MAX_SIZE)) {
 890		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 891		return NULL;
 892	}
 893
 894	if (size <= 192) {
 895		if (!size)
 896			return ZERO_SIZE_PTR;
 897
 898		index = size_index[size_index_elem(size)];
 899	} else
 900		index = fls(size - 1);
 901
 902#ifdef CONFIG_ZONE_DMA
 903	if (unlikely((flags & GFP_DMA)))
 904		return kmalloc_dma_caches[index];
 905
 906#endif
 907	return kmalloc_caches[index];
 908}
 909
 910/*
 911 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 912 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 913 * kmalloc-67108864.
 914 */
 915static struct {
 916	const char *name;
 917	unsigned long size;
 918} const kmalloc_info[] __initconst = {
 919	{NULL,                      0},		{"kmalloc-96",             96},
 920	{"kmalloc-192",           192},		{"kmalloc-8",               8},
 921	{"kmalloc-16",             16},		{"kmalloc-32",             32},
 922	{"kmalloc-64",             64},		{"kmalloc-128",           128},
 923	{"kmalloc-256",           256},		{"kmalloc-512",           512},
 924	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
 925	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
 926	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
 927	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
 928	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
 929	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
 930	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
 931	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
 932	{"kmalloc-67108864", 67108864}
 933};
 934
 935/*
 936 * Patch up the size_index table if we have strange large alignment
 937 * requirements for the kmalloc array. This is only the case for
 938 * MIPS it seems. The standard arches will not generate any code here.
 939 *
 940 * Largest permitted alignment is 256 bytes due to the way we
 941 * handle the index determination for the smaller caches.
 942 *
 943 * Make sure that nothing crazy happens if someone starts tinkering
 944 * around with ARCH_KMALLOC_MINALIGN
 945 */
 946void __init setup_kmalloc_cache_index_table(void)
 947{
 948	int i;
 949
 950	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 951		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 952
 953	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 954		int elem = size_index_elem(i);
 955
 956		if (elem >= ARRAY_SIZE(size_index))
 957			break;
 958		size_index[elem] = KMALLOC_SHIFT_LOW;
 959	}
 960
 961	if (KMALLOC_MIN_SIZE >= 64) {
 962		/*
 963		 * The 96 byte size cache is not used if the alignment
 964		 * is 64 byte.
 965		 */
 966		for (i = 64 + 8; i <= 96; i += 8)
 967			size_index[size_index_elem(i)] = 7;
 968
 969	}
 970
 971	if (KMALLOC_MIN_SIZE >= 128) {
 972		/*
 973		 * The 192 byte sized cache is not used if the alignment
 974		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 975		 * instead.
 976		 */
 977		for (i = 128 + 8; i <= 192; i += 8)
 978			size_index[size_index_elem(i)] = 8;
 979	}
 980}
 981
 982static void __init new_kmalloc_cache(int idx, unsigned long flags)
 983{
 984	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
 985					kmalloc_info[idx].size, flags);
 986}
 987
 988/*
 989 * Create the kmalloc array. Some of the regular kmalloc arrays
 990 * may already have been created because they were needed to
 991 * enable allocations for slab creation.
 992 */
 993void __init create_kmalloc_caches(unsigned long flags)
 994{
 995	int i;
 996
 997	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 998		if (!kmalloc_caches[i])
 999			new_kmalloc_cache(i, flags);
1000
1001		/*
1002		 * Caches that are not of the two-to-the-power-of size.
1003		 * These have to be created immediately after the
1004		 * earlier power of two caches
1005		 */
1006		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1007			new_kmalloc_cache(1, flags);
1008		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1009			new_kmalloc_cache(2, flags);
1010	}
1011
1012	/* Kmalloc array is now usable */
1013	slab_state = UP;
1014
1015#ifdef CONFIG_ZONE_DMA
1016	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1017		struct kmem_cache *s = kmalloc_caches[i];
1018
1019		if (s) {
1020			int size = kmalloc_size(i);
1021			char *n = kasprintf(GFP_NOWAIT,
1022				 "dma-kmalloc-%d", size);
1023
1024			BUG_ON(!n);
1025			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1026				size, SLAB_CACHE_DMA | flags);
1027		}
1028	}
1029#endif
1030}
1031#endif /* !CONFIG_SLOB */
1032
1033/*
1034 * To avoid unnecessary overhead, we pass through large allocation requests
1035 * directly to the page allocator. We use __GFP_COMP, because we will need to
1036 * know the allocation order to free the pages properly in kfree.
1037 */
1038void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1039{
1040	void *ret;
1041	struct page *page;
1042
1043	flags |= __GFP_COMP;
1044	page = alloc_pages(flags, order);
1045	ret = page ? page_address(page) : NULL;
1046	kmemleak_alloc(ret, size, 1, flags);
1047	kasan_kmalloc_large(ret, size, flags);
1048	return ret;
1049}
1050EXPORT_SYMBOL(kmalloc_order);
1051
1052#ifdef CONFIG_TRACING
1053void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1054{
1055	void *ret = kmalloc_order(size, flags, order);
1056	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1057	return ret;
1058}
1059EXPORT_SYMBOL(kmalloc_order_trace);
1060#endif
1061
1062#ifdef CONFIG_SLAB_FREELIST_RANDOM
1063/* Randomize a generic freelist */
1064static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1065			size_t count)
1066{
1067	size_t i;
1068	unsigned int rand;
1069
1070	for (i = 0; i < count; i++)
1071		list[i] = i;
1072
1073	/* Fisher-Yates shuffle */
1074	for (i = count - 1; i > 0; i--) {
1075		rand = prandom_u32_state(state);
1076		rand %= (i + 1);
1077		swap(list[i], list[rand]);
1078	}
1079}
1080
1081/* Create a random sequence per cache */
1082int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1083				    gfp_t gfp)
1084{
1085	struct rnd_state state;
1086
1087	if (count < 2 || cachep->random_seq)
1088		return 0;
1089
1090	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1091	if (!cachep->random_seq)
1092		return -ENOMEM;
1093
1094	/* Get best entropy at this stage of boot */
1095	prandom_seed_state(&state, get_random_long());
1096
1097	freelist_randomize(&state, cachep->random_seq, count);
1098	return 0;
1099}
1100
1101/* Destroy the per-cache random freelist sequence */
1102void cache_random_seq_destroy(struct kmem_cache *cachep)
1103{
1104	kfree(cachep->random_seq);
1105	cachep->random_seq = NULL;
1106}
1107#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1108
1109#ifdef CONFIG_SLABINFO
1110
1111#ifdef CONFIG_SLAB
1112#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1113#else
1114#define SLABINFO_RIGHTS S_IRUSR
1115#endif
1116
1117static void print_slabinfo_header(struct seq_file *m)
1118{
1119	/*
1120	 * Output format version, so at least we can change it
1121	 * without _too_ many complaints.
1122	 */
1123#ifdef CONFIG_DEBUG_SLAB
1124	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1125#else
1126	seq_puts(m, "slabinfo - version: 2.1\n");
1127#endif
1128	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1129	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1130	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1131#ifdef CONFIG_DEBUG_SLAB
1132	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1133	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1134#endif
1135	seq_putc(m, '\n');
1136}
1137
1138void *slab_start(struct seq_file *m, loff_t *pos)
1139{
1140	mutex_lock(&slab_mutex);
1141	return seq_list_start(&slab_caches, *pos);
1142}
1143
1144void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1145{
1146	return seq_list_next(p, &slab_caches, pos);
1147}
1148
1149void slab_stop(struct seq_file *m, void *p)
1150{
1151	mutex_unlock(&slab_mutex);
1152}
1153
1154static void
1155memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1156{
1157	struct kmem_cache *c;
1158	struct slabinfo sinfo;
1159
1160	if (!is_root_cache(s))
1161		return;
1162
1163	for_each_memcg_cache(c, s) {
1164		memset(&sinfo, 0, sizeof(sinfo));
1165		get_slabinfo(c, &sinfo);
1166
1167		info->active_slabs += sinfo.active_slabs;
1168		info->num_slabs += sinfo.num_slabs;
1169		info->shared_avail += sinfo.shared_avail;
1170		info->active_objs += sinfo.active_objs;
1171		info->num_objs += sinfo.num_objs;
1172	}
1173}
1174
1175static void cache_show(struct kmem_cache *s, struct seq_file *m)
1176{
1177	struct slabinfo sinfo;
1178
1179	memset(&sinfo, 0, sizeof(sinfo));
1180	get_slabinfo(s, &sinfo);
1181
1182	memcg_accumulate_slabinfo(s, &sinfo);
1183
1184	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1185		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1186		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1187
1188	seq_printf(m, " : tunables %4u %4u %4u",
1189		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1190	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1191		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1192	slabinfo_show_stats(m, s);
1193	seq_putc(m, '\n');
1194}
1195
1196static int slab_show(struct seq_file *m, void *p)
1197{
1198	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1199
1200	if (p == slab_caches.next)
1201		print_slabinfo_header(m);
1202	if (is_root_cache(s))
1203		cache_show(s, m);
1204	return 0;
1205}
1206
1207#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1208int memcg_slab_show(struct seq_file *m, void *p)
1209{
1210	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1211	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1212
1213	if (p == slab_caches.next)
1214		print_slabinfo_header(m);
1215	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1216		cache_show(s, m);
1217	return 0;
1218}
1219#endif
1220
1221/*
1222 * slabinfo_op - iterator that generates /proc/slabinfo
1223 *
1224 * Output layout:
1225 * cache-name
1226 * num-active-objs
1227 * total-objs
1228 * object size
1229 * num-active-slabs
1230 * total-slabs
1231 * num-pages-per-slab
1232 * + further values on SMP and with statistics enabled
1233 */
1234static const struct seq_operations slabinfo_op = {
1235	.start = slab_start,
1236	.next = slab_next,
1237	.stop = slab_stop,
1238	.show = slab_show,
1239};
1240
1241static int slabinfo_open(struct inode *inode, struct file *file)
1242{
1243	return seq_open(file, &slabinfo_op);
1244}
1245
1246static const struct file_operations proc_slabinfo_operations = {
1247	.open		= slabinfo_open,
1248	.read		= seq_read,
1249	.write          = slabinfo_write,
1250	.llseek		= seq_lseek,
1251	.release	= seq_release,
1252};
1253
1254static int __init slab_proc_init(void)
1255{
1256	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1257						&proc_slabinfo_operations);
1258	return 0;
1259}
1260module_init(slab_proc_init);
1261#endif /* CONFIG_SLABINFO */
1262
1263static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1264					   gfp_t flags)
1265{
1266	void *ret;
1267	size_t ks = 0;
1268
1269	if (p)
1270		ks = ksize(p);
1271
1272	if (ks >= new_size) {
1273		kasan_krealloc((void *)p, new_size, flags);
1274		return (void *)p;
1275	}
1276
1277	ret = kmalloc_track_caller(new_size, flags);
1278	if (ret && p)
1279		memcpy(ret, p, ks);
1280
1281	return ret;
1282}
1283
1284/**
1285 * __krealloc - like krealloc() but don't free @p.
1286 * @p: object to reallocate memory for.
1287 * @new_size: how many bytes of memory are required.
1288 * @flags: the type of memory to allocate.
1289 *
1290 * This function is like krealloc() except it never frees the originally
1291 * allocated buffer. Use this if you don't want to free the buffer immediately
1292 * like, for example, with RCU.
1293 */
1294void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1295{
1296	if (unlikely(!new_size))
1297		return ZERO_SIZE_PTR;
1298
1299	return __do_krealloc(p, new_size, flags);
1300
1301}
1302EXPORT_SYMBOL(__krealloc);
1303
1304/**
1305 * krealloc - reallocate memory. The contents will remain unchanged.
1306 * @p: object to reallocate memory for.
1307 * @new_size: how many bytes of memory are required.
1308 * @flags: the type of memory to allocate.
1309 *
1310 * The contents of the object pointed to are preserved up to the
1311 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1312 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1313 * %NULL pointer, the object pointed to is freed.
1314 */
1315void *krealloc(const void *p, size_t new_size, gfp_t flags)
1316{
1317	void *ret;
1318
1319	if (unlikely(!new_size)) {
1320		kfree(p);
1321		return ZERO_SIZE_PTR;
1322	}
1323
1324	ret = __do_krealloc(p, new_size, flags);
1325	if (ret && p != ret)
1326		kfree(p);
1327
1328	return ret;
1329}
1330EXPORT_SYMBOL(krealloc);
1331
1332/**
1333 * kzfree - like kfree but zero memory
1334 * @p: object to free memory of
1335 *
1336 * The memory of the object @p points to is zeroed before freed.
1337 * If @p is %NULL, kzfree() does nothing.
1338 *
1339 * Note: this function zeroes the whole allocated buffer which can be a good
1340 * deal bigger than the requested buffer size passed to kmalloc(). So be
1341 * careful when using this function in performance sensitive code.
1342 */
1343void kzfree(const void *p)
1344{
1345	size_t ks;
1346	void *mem = (void *)p;
1347
1348	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1349		return;
1350	ks = ksize(mem);
1351	memset(mem, 0, ks);
1352	kfree(mem);
1353}
1354EXPORT_SYMBOL(kzfree);
1355
1356/* Tracepoints definitions. */
1357EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1358EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1359EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1360EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1361EXPORT_TRACEPOINT_SYMBOL(kfree);
1362EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);