Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/kmem.h>
  30
  31#include "internal.h"
  32
  33#include "slab.h"
  34
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
  40#ifdef CONFIG_HARDENED_USERCOPY
  41bool usercopy_fallback __ro_after_init =
  42		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  43module_param(usercopy_fallback, bool, 0400);
  44MODULE_PARM_DESC(usercopy_fallback,
  45		"WARN instead of reject usercopy whitelist violations");
  46#endif
  47
  48static LIST_HEAD(slab_caches_to_rcu_destroy);
  49static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  50static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  51		    slab_caches_to_rcu_destroy_workfn);
  52
  53/*
  54 * Set of flags that will prevent slab merging
  55 */
  56#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  57		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  58		SLAB_FAILSLAB | kasan_never_merge())
  59
  60#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  61			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  62
  63/*
  64 * Merge control. If this is set then no merging of slab caches will occur.
  65 */
  66static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  67
  68static int __init setup_slab_nomerge(char *str)
  69{
  70	slab_nomerge = true;
  71	return 1;
  72}
  73
  74static int __init setup_slab_merge(char *str)
  75{
  76	slab_nomerge = false;
  77	return 1;
  78}
  79
  80#ifdef CONFIG_SLUB
  81__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  82__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  83#endif
  84
  85__setup("slab_nomerge", setup_slab_nomerge);
  86__setup("slab_merge", setup_slab_merge);
  87
  88/*
  89 * Determine the size of a slab object
  90 */
  91unsigned int kmem_cache_size(struct kmem_cache *s)
  92{
  93	return s->object_size;
  94}
  95EXPORT_SYMBOL(kmem_cache_size);
  96
  97#ifdef CONFIG_DEBUG_VM
  98static int kmem_cache_sanity_check(const char *name, unsigned int size)
  99{
 100	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 101		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 102		return -EINVAL;
 103	}
 104
 105	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 106	return 0;
 107}
 108#else
 109static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 110{
 111	return 0;
 112}
 113#endif
 114
 115void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 116{
 117	size_t i;
 118
 119	for (i = 0; i < nr; i++) {
 120		if (s)
 121			kmem_cache_free(s, p[i]);
 122		else
 123			kfree(p[i]);
 124	}
 125}
 126
 127int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 128								void **p)
 129{
 130	size_t i;
 131
 132	for (i = 0; i < nr; i++) {
 133		void *x = p[i] = kmem_cache_alloc(s, flags);
 134		if (!x) {
 135			__kmem_cache_free_bulk(s, i, p);
 136			return 0;
 137		}
 138	}
 139	return i;
 140}
 141
 142/*
 143 * Figure out what the alignment of the objects will be given a set of
 144 * flags, a user specified alignment and the size of the objects.
 145 */
 146static unsigned int calculate_alignment(slab_flags_t flags,
 147		unsigned int align, unsigned int size)
 148{
 149	/*
 150	 * If the user wants hardware cache aligned objects then follow that
 151	 * suggestion if the object is sufficiently large.
 152	 *
 153	 * The hardware cache alignment cannot override the specified
 154	 * alignment though. If that is greater then use it.
 155	 */
 156	if (flags & SLAB_HWCACHE_ALIGN) {
 157		unsigned int ralign;
 158
 159		ralign = cache_line_size();
 160		while (size <= ralign / 2)
 161			ralign /= 2;
 162		align = max(align, ralign);
 163	}
 164
 165	if (align < ARCH_SLAB_MINALIGN)
 166		align = ARCH_SLAB_MINALIGN;
 167
 168	return ALIGN(align, sizeof(void *));
 169}
 170
 171/*
 172 * Find a mergeable slab cache
 173 */
 174int slab_unmergeable(struct kmem_cache *s)
 175{
 176	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 177		return 1;
 178
 179	if (s->ctor)
 180		return 1;
 181
 182	if (s->usersize)
 183		return 1;
 184
 185	/*
 186	 * We may have set a slab to be unmergeable during bootstrap.
 187	 */
 188	if (s->refcount < 0)
 189		return 1;
 190
 191	return 0;
 192}
 193
 194struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 195		slab_flags_t flags, const char *name, void (*ctor)(void *))
 196{
 197	struct kmem_cache *s;
 198
 199	if (slab_nomerge)
 200		return NULL;
 201
 202	if (ctor)
 203		return NULL;
 204
 205	size = ALIGN(size, sizeof(void *));
 206	align = calculate_alignment(flags, align, size);
 207	size = ALIGN(size, align);
 208	flags = kmem_cache_flags(size, flags, name);
 209
 210	if (flags & SLAB_NEVER_MERGE)
 211		return NULL;
 212
 213	list_for_each_entry_reverse(s, &slab_caches, list) {
 214		if (slab_unmergeable(s))
 215			continue;
 216
 217		if (size > s->size)
 218			continue;
 219
 220		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 221			continue;
 222		/*
 223		 * Check if alignment is compatible.
 224		 * Courtesy of Adrian Drzewiecki
 225		 */
 226		if ((s->size & ~(align - 1)) != s->size)
 227			continue;
 228
 229		if (s->size - size >= sizeof(void *))
 230			continue;
 231
 232		if (IS_ENABLED(CONFIG_SLAB) && align &&
 233			(align > s->align || s->align % align))
 234			continue;
 235
 236		return s;
 237	}
 238	return NULL;
 239}
 240
 241static struct kmem_cache *create_cache(const char *name,
 242		unsigned int object_size, unsigned int align,
 243		slab_flags_t flags, unsigned int useroffset,
 244		unsigned int usersize, void (*ctor)(void *),
 245		struct kmem_cache *root_cache)
 246{
 247	struct kmem_cache *s;
 248	int err;
 249
 250	if (WARN_ON(useroffset + usersize > object_size))
 251		useroffset = usersize = 0;
 252
 253	err = -ENOMEM;
 254	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 255	if (!s)
 256		goto out;
 257
 258	s->name = name;
 259	s->size = s->object_size = object_size;
 260	s->align = align;
 261	s->ctor = ctor;
 262	s->useroffset = useroffset;
 263	s->usersize = usersize;
 264
 265	err = __kmem_cache_create(s, flags);
 266	if (err)
 267		goto out_free_cache;
 268
 269	s->refcount = 1;
 270	list_add(&s->list, &slab_caches);
 271out:
 272	if (err)
 273		return ERR_PTR(err);
 274	return s;
 275
 276out_free_cache:
 277	kmem_cache_free(kmem_cache, s);
 278	goto out;
 279}
 280
 281/**
 282 * kmem_cache_create_usercopy - Create a cache with a region suitable
 283 * for copying to userspace
 284 * @name: A string which is used in /proc/slabinfo to identify this cache.
 285 * @size: The size of objects to be created in this cache.
 286 * @align: The required alignment for the objects.
 287 * @flags: SLAB flags
 288 * @useroffset: Usercopy region offset
 289 * @usersize: Usercopy region size
 290 * @ctor: A constructor for the objects.
 291 *
 292 * Cannot be called within a interrupt, but can be interrupted.
 293 * The @ctor is run when new pages are allocated by the cache.
 294 *
 295 * The flags are
 296 *
 297 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 298 * to catch references to uninitialised memory.
 299 *
 300 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 301 * for buffer overruns.
 302 *
 303 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 304 * cacheline.  This can be beneficial if you're counting cycles as closely
 305 * as davem.
 306 *
 307 * Return: a pointer to the cache on success, NULL on failure.
 308 */
 309struct kmem_cache *
 310kmem_cache_create_usercopy(const char *name,
 311		  unsigned int size, unsigned int align,
 312		  slab_flags_t flags,
 313		  unsigned int useroffset, unsigned int usersize,
 314		  void (*ctor)(void *))
 315{
 316	struct kmem_cache *s = NULL;
 317	const char *cache_name;
 318	int err;
 319
 320#ifdef CONFIG_SLUB_DEBUG
 321	/*
 322	 * If no slub_debug was enabled globally, the static key is not yet
 323	 * enabled by setup_slub_debug(). Enable it if the cache is being
 324	 * created with any of the debugging flags passed explicitly.
 325	 */
 326	if (flags & SLAB_DEBUG_FLAGS)
 327		static_branch_enable(&slub_debug_enabled);
 328#endif
 329
 330	mutex_lock(&slab_mutex);
 331
 332	err = kmem_cache_sanity_check(name, size);
 333	if (err) {
 334		goto out_unlock;
 335	}
 336
 337	/* Refuse requests with allocator specific flags */
 338	if (flags & ~SLAB_FLAGS_PERMITTED) {
 339		err = -EINVAL;
 340		goto out_unlock;
 341	}
 342
 343	/*
 344	 * Some allocators will constraint the set of valid flags to a subset
 345	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 346	 * case, and we'll just provide them with a sanitized version of the
 347	 * passed flags.
 348	 */
 349	flags &= CACHE_CREATE_MASK;
 350
 351	/* Fail closed on bad usersize of useroffset values. */
 352	if (WARN_ON(!usersize && useroffset) ||
 353	    WARN_ON(size < usersize || size - usersize < useroffset))
 354		usersize = useroffset = 0;
 355
 356	if (!usersize)
 357		s = __kmem_cache_alias(name, size, align, flags, ctor);
 358	if (s)
 359		goto out_unlock;
 360
 361	cache_name = kstrdup_const(name, GFP_KERNEL);
 362	if (!cache_name) {
 363		err = -ENOMEM;
 364		goto out_unlock;
 365	}
 366
 367	s = create_cache(cache_name, size,
 368			 calculate_alignment(flags, align, size),
 369			 flags, useroffset, usersize, ctor, NULL);
 370	if (IS_ERR(s)) {
 371		err = PTR_ERR(s);
 372		kfree_const(cache_name);
 373	}
 374
 375out_unlock:
 376	mutex_unlock(&slab_mutex);
 377
 378	if (err) {
 379		if (flags & SLAB_PANIC)
 380			panic("%s: Failed to create slab '%s'. Error %d\n",
 381				__func__, name, err);
 382		else {
 383			pr_warn("%s(%s) failed with error %d\n",
 384				__func__, name, err);
 385			dump_stack();
 386		}
 387		return NULL;
 388	}
 389	return s;
 390}
 391EXPORT_SYMBOL(kmem_cache_create_usercopy);
 392
 393/**
 394 * kmem_cache_create - Create a cache.
 395 * @name: A string which is used in /proc/slabinfo to identify this cache.
 396 * @size: The size of objects to be created in this cache.
 397 * @align: The required alignment for the objects.
 398 * @flags: SLAB flags
 399 * @ctor: A constructor for the objects.
 400 *
 401 * Cannot be called within a interrupt, but can be interrupted.
 402 * The @ctor is run when new pages are allocated by the cache.
 403 *
 404 * The flags are
 405 *
 406 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 407 * to catch references to uninitialised memory.
 408 *
 409 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 410 * for buffer overruns.
 411 *
 412 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 413 * cacheline.  This can be beneficial if you're counting cycles as closely
 414 * as davem.
 415 *
 416 * Return: a pointer to the cache on success, NULL on failure.
 417 */
 418struct kmem_cache *
 419kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 420		slab_flags_t flags, void (*ctor)(void *))
 421{
 422	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 423					  ctor);
 424}
 425EXPORT_SYMBOL(kmem_cache_create);
 426
 427static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 428{
 429	LIST_HEAD(to_destroy);
 430	struct kmem_cache *s, *s2;
 431
 432	/*
 433	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 434	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 435	 * through RCU and the associated kmem_cache are dereferenced
 436	 * while freeing the pages, so the kmem_caches should be freed only
 437	 * after the pending RCU operations are finished.  As rcu_barrier()
 438	 * is a pretty slow operation, we batch all pending destructions
 439	 * asynchronously.
 440	 */
 441	mutex_lock(&slab_mutex);
 442	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 443	mutex_unlock(&slab_mutex);
 444
 445	if (list_empty(&to_destroy))
 446		return;
 447
 448	rcu_barrier();
 449
 450	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 451		debugfs_slab_release(s);
 452		kfence_shutdown_cache(s);
 453#ifdef SLAB_SUPPORTS_SYSFS
 454		sysfs_slab_release(s);
 455#else
 456		slab_kmem_cache_release(s);
 457#endif
 458	}
 459}
 460
 461static int shutdown_cache(struct kmem_cache *s)
 462{
 463	/* free asan quarantined objects */
 464	kasan_cache_shutdown(s);
 465
 466	if (__kmem_cache_shutdown(s) != 0)
 467		return -EBUSY;
 468
 469	list_del(&s->list);
 470
 471	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 472#ifdef SLAB_SUPPORTS_SYSFS
 473		sysfs_slab_unlink(s);
 474#endif
 475		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 476		schedule_work(&slab_caches_to_rcu_destroy_work);
 477	} else {
 478		kfence_shutdown_cache(s);
 479		debugfs_slab_release(s);
 480#ifdef SLAB_SUPPORTS_SYSFS
 481		sysfs_slab_unlink(s);
 482		sysfs_slab_release(s);
 483#else
 484		slab_kmem_cache_release(s);
 485#endif
 486	}
 487
 488	return 0;
 489}
 490
 491void slab_kmem_cache_release(struct kmem_cache *s)
 492{
 493	__kmem_cache_release(s);
 494	kfree_const(s->name);
 495	kmem_cache_free(kmem_cache, s);
 496}
 497
 498void kmem_cache_destroy(struct kmem_cache *s)
 499{
 500	int err;
 501
 502	if (unlikely(!s))
 503		return;
 504
 505	mutex_lock(&slab_mutex);
 506
 507	s->refcount--;
 508	if (s->refcount)
 509		goto out_unlock;
 510
 511	err = shutdown_cache(s);
 512	if (err) {
 513		pr_err("%s %s: Slab cache still has objects\n",
 514		       __func__, s->name);
 515		dump_stack();
 516	}
 517out_unlock:
 518	mutex_unlock(&slab_mutex);
 519}
 520EXPORT_SYMBOL(kmem_cache_destroy);
 521
 522/**
 523 * kmem_cache_shrink - Shrink a cache.
 524 * @cachep: The cache to shrink.
 525 *
 526 * Releases as many slabs as possible for a cache.
 527 * To help debugging, a zero exit status indicates all slabs were released.
 528 *
 529 * Return: %0 if all slabs were released, non-zero otherwise
 530 */
 531int kmem_cache_shrink(struct kmem_cache *cachep)
 532{
 533	int ret;
 534
 535
 536	kasan_cache_shrink(cachep);
 537	ret = __kmem_cache_shrink(cachep);
 538
 539	return ret;
 540}
 541EXPORT_SYMBOL(kmem_cache_shrink);
 542
 543bool slab_is_available(void)
 544{
 545	return slab_state >= UP;
 546}
 547
 548#ifdef CONFIG_PRINTK
 549/**
 550 * kmem_valid_obj - does the pointer reference a valid slab object?
 551 * @object: pointer to query.
 552 *
 553 * Return: %true if the pointer is to a not-yet-freed object from
 554 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 555 * is to an already-freed object, and %false otherwise.
 556 */
 557bool kmem_valid_obj(void *object)
 558{
 559	struct page *page;
 560
 561	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 562	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 563		return false;
 564	page = virt_to_head_page(object);
 565	return PageSlab(page);
 566}
 567EXPORT_SYMBOL_GPL(kmem_valid_obj);
 568
 569/**
 570 * kmem_dump_obj - Print available slab provenance information
 571 * @object: slab object for which to find provenance information.
 572 *
 573 * This function uses pr_cont(), so that the caller is expected to have
 574 * printed out whatever preamble is appropriate.  The provenance information
 575 * depends on the type of object and on how much debugging is enabled.
 576 * For a slab-cache object, the fact that it is a slab object is printed,
 577 * and, if available, the slab name, return address, and stack trace from
 578 * the allocation and last free path of that object.
 579 *
 580 * This function will splat if passed a pointer to a non-slab object.
 581 * If you are not sure what type of object you have, you should instead
 582 * use mem_dump_obj().
 583 */
 584void kmem_dump_obj(void *object)
 585{
 586	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 587	int i;
 588	struct page *page;
 589	unsigned long ptroffset;
 590	struct kmem_obj_info kp = { };
 591
 592	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 593		return;
 594	page = virt_to_head_page(object);
 595	if (WARN_ON_ONCE(!PageSlab(page))) {
 596		pr_cont(" non-slab memory.\n");
 597		return;
 598	}
 599	kmem_obj_info(&kp, object, page);
 600	if (kp.kp_slab_cache)
 601		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 602	else
 603		pr_cont(" slab%s", cp);
 604	if (kp.kp_objp)
 605		pr_cont(" start %px", kp.kp_objp);
 606	if (kp.kp_data_offset)
 607		pr_cont(" data offset %lu", kp.kp_data_offset);
 608	if (kp.kp_objp) {
 609		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 610		pr_cont(" pointer offset %lu", ptroffset);
 611	}
 612	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
 613		pr_cont(" size %u", kp.kp_slab_cache->usersize);
 614	if (kp.kp_ret)
 615		pr_cont(" allocated at %pS\n", kp.kp_ret);
 616	else
 617		pr_cont("\n");
 618	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 619		if (!kp.kp_stack[i])
 620			break;
 621		pr_info("    %pS\n", kp.kp_stack[i]);
 622	}
 623
 624	if (kp.kp_free_stack[0])
 625		pr_cont(" Free path:\n");
 626
 627	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 628		if (!kp.kp_free_stack[i])
 629			break;
 630		pr_info("    %pS\n", kp.kp_free_stack[i]);
 631	}
 632
 633}
 634EXPORT_SYMBOL_GPL(kmem_dump_obj);
 635#endif
 636
 637#ifndef CONFIG_SLOB
 638/* Create a cache during boot when no slab services are available yet */
 639void __init create_boot_cache(struct kmem_cache *s, const char *name,
 640		unsigned int size, slab_flags_t flags,
 641		unsigned int useroffset, unsigned int usersize)
 642{
 643	int err;
 644	unsigned int align = ARCH_KMALLOC_MINALIGN;
 645
 646	s->name = name;
 647	s->size = s->object_size = size;
 648
 649	/*
 650	 * For power of two sizes, guarantee natural alignment for kmalloc
 651	 * caches, regardless of SL*B debugging options.
 652	 */
 653	if (is_power_of_2(size))
 654		align = max(align, size);
 655	s->align = calculate_alignment(flags, align, size);
 656
 657	s->useroffset = useroffset;
 658	s->usersize = usersize;
 659
 660	err = __kmem_cache_create(s, flags);
 661
 662	if (err)
 663		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 664					name, size, err);
 665
 666	s->refcount = -1;	/* Exempt from merging for now */
 667}
 668
 669struct kmem_cache *__init create_kmalloc_cache(const char *name,
 670		unsigned int size, slab_flags_t flags,
 671		unsigned int useroffset, unsigned int usersize)
 672{
 673	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 674
 675	if (!s)
 676		panic("Out of memory when creating slab %s\n", name);
 677
 678	create_boot_cache(s, name, size, flags, useroffset, usersize);
 679	kasan_cache_create_kmalloc(s);
 680	list_add(&s->list, &slab_caches);
 681	s->refcount = 1;
 682	return s;
 683}
 684
 685struct kmem_cache *
 686kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 687{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 688EXPORT_SYMBOL(kmalloc_caches);
 689
 690/*
 691 * Conversion table for small slabs sizes / 8 to the index in the
 692 * kmalloc array. This is necessary for slabs < 192 since we have non power
 693 * of two cache sizes there. The size of larger slabs can be determined using
 694 * fls.
 695 */
 696static u8 size_index[24] __ro_after_init = {
 697	3,	/* 8 */
 698	4,	/* 16 */
 699	5,	/* 24 */
 700	5,	/* 32 */
 701	6,	/* 40 */
 702	6,	/* 48 */
 703	6,	/* 56 */
 704	6,	/* 64 */
 705	1,	/* 72 */
 706	1,	/* 80 */
 707	1,	/* 88 */
 708	1,	/* 96 */
 709	7,	/* 104 */
 710	7,	/* 112 */
 711	7,	/* 120 */
 712	7,	/* 128 */
 713	2,	/* 136 */
 714	2,	/* 144 */
 715	2,	/* 152 */
 716	2,	/* 160 */
 717	2,	/* 168 */
 718	2,	/* 176 */
 719	2,	/* 184 */
 720	2	/* 192 */
 721};
 722
 723static inline unsigned int size_index_elem(unsigned int bytes)
 724{
 725	return (bytes - 1) / 8;
 726}
 727
 728/*
 729 * Find the kmem_cache structure that serves a given size of
 730 * allocation
 731 */
 732struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 733{
 734	unsigned int index;
 735
 736	if (size <= 192) {
 737		if (!size)
 738			return ZERO_SIZE_PTR;
 739
 740		index = size_index[size_index_elem(size)];
 741	} else {
 742		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 743			return NULL;
 744		index = fls(size - 1);
 745	}
 746
 747	return kmalloc_caches[kmalloc_type(flags)][index];
 748}
 749
 750#ifdef CONFIG_ZONE_DMA
 751#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 752#else
 753#define KMALLOC_DMA_NAME(sz)
 754#endif
 755
 756#ifdef CONFIG_MEMCG_KMEM
 757#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 758#else
 759#define KMALLOC_CGROUP_NAME(sz)
 760#endif
 761
 762#define INIT_KMALLOC_INFO(__size, __short_size)			\
 763{								\
 764	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 765	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 766	KMALLOC_CGROUP_NAME(__short_size)			\
 767	KMALLOC_DMA_NAME(__short_size)				\
 768	.size = __size,						\
 769}
 770
 771/*
 772 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 773 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
 774 * kmalloc-32M.
 775 */
 776const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 777	INIT_KMALLOC_INFO(0, 0),
 778	INIT_KMALLOC_INFO(96, 96),
 779	INIT_KMALLOC_INFO(192, 192),
 780	INIT_KMALLOC_INFO(8, 8),
 781	INIT_KMALLOC_INFO(16, 16),
 782	INIT_KMALLOC_INFO(32, 32),
 783	INIT_KMALLOC_INFO(64, 64),
 784	INIT_KMALLOC_INFO(128, 128),
 785	INIT_KMALLOC_INFO(256, 256),
 786	INIT_KMALLOC_INFO(512, 512),
 787	INIT_KMALLOC_INFO(1024, 1k),
 788	INIT_KMALLOC_INFO(2048, 2k),
 789	INIT_KMALLOC_INFO(4096, 4k),
 790	INIT_KMALLOC_INFO(8192, 8k),
 791	INIT_KMALLOC_INFO(16384, 16k),
 792	INIT_KMALLOC_INFO(32768, 32k),
 793	INIT_KMALLOC_INFO(65536, 64k),
 794	INIT_KMALLOC_INFO(131072, 128k),
 795	INIT_KMALLOC_INFO(262144, 256k),
 796	INIT_KMALLOC_INFO(524288, 512k),
 797	INIT_KMALLOC_INFO(1048576, 1M),
 798	INIT_KMALLOC_INFO(2097152, 2M),
 799	INIT_KMALLOC_INFO(4194304, 4M),
 800	INIT_KMALLOC_INFO(8388608, 8M),
 801	INIT_KMALLOC_INFO(16777216, 16M),
 802	INIT_KMALLOC_INFO(33554432, 32M)
 803};
 804
 805/*
 806 * Patch up the size_index table if we have strange large alignment
 807 * requirements for the kmalloc array. This is only the case for
 808 * MIPS it seems. The standard arches will not generate any code here.
 809 *
 810 * Largest permitted alignment is 256 bytes due to the way we
 811 * handle the index determination for the smaller caches.
 812 *
 813 * Make sure that nothing crazy happens if someone starts tinkering
 814 * around with ARCH_KMALLOC_MINALIGN
 815 */
 816void __init setup_kmalloc_cache_index_table(void)
 817{
 818	unsigned int i;
 819
 820	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 821		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 822
 823	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 824		unsigned int elem = size_index_elem(i);
 825
 826		if (elem >= ARRAY_SIZE(size_index))
 827			break;
 828		size_index[elem] = KMALLOC_SHIFT_LOW;
 829	}
 830
 831	if (KMALLOC_MIN_SIZE >= 64) {
 832		/*
 833		 * The 96 byte size cache is not used if the alignment
 834		 * is 64 byte.
 835		 */
 836		for (i = 64 + 8; i <= 96; i += 8)
 837			size_index[size_index_elem(i)] = 7;
 838
 839	}
 840
 841	if (KMALLOC_MIN_SIZE >= 128) {
 842		/*
 843		 * The 192 byte sized cache is not used if the alignment
 844		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 845		 * instead.
 846		 */
 847		for (i = 128 + 8; i <= 192; i += 8)
 848			size_index[size_index_elem(i)] = 8;
 849	}
 850}
 851
 852static void __init
 853new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 854{
 855	if (type == KMALLOC_RECLAIM) {
 856		flags |= SLAB_RECLAIM_ACCOUNT;
 857	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 858		if (cgroup_memory_nokmem) {
 859			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 860			return;
 861		}
 862		flags |= SLAB_ACCOUNT;
 863	}
 864
 865	kmalloc_caches[type][idx] = create_kmalloc_cache(
 866					kmalloc_info[idx].name[type],
 867					kmalloc_info[idx].size, flags, 0,
 868					kmalloc_info[idx].size);
 869
 870	/*
 871	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 872	 * KMALLOC_NORMAL caches.
 873	 */
 874	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 875		kmalloc_caches[type][idx]->refcount = -1;
 876}
 877
 878/*
 879 * Create the kmalloc array. Some of the regular kmalloc arrays
 880 * may already have been created because they were needed to
 881 * enable allocations for slab creation.
 882 */
 883void __init create_kmalloc_caches(slab_flags_t flags)
 884{
 885	int i;
 886	enum kmalloc_cache_type type;
 887
 888	/*
 889	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 890	 */
 891	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 892		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 893			if (!kmalloc_caches[type][i])
 894				new_kmalloc_cache(i, type, flags);
 895
 896			/*
 897			 * Caches that are not of the two-to-the-power-of size.
 898			 * These have to be created immediately after the
 899			 * earlier power of two caches
 900			 */
 901			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 902					!kmalloc_caches[type][1])
 903				new_kmalloc_cache(1, type, flags);
 904			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 905					!kmalloc_caches[type][2])
 906				new_kmalloc_cache(2, type, flags);
 907		}
 908	}
 909
 910	/* Kmalloc array is now usable */
 911	slab_state = UP;
 912
 913#ifdef CONFIG_ZONE_DMA
 914	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 915		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 916
 917		if (s) {
 918			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 919				kmalloc_info[i].name[KMALLOC_DMA],
 920				kmalloc_info[i].size,
 921				SLAB_CACHE_DMA | flags, 0,
 922				kmalloc_info[i].size);
 923		}
 924	}
 925#endif
 926}
 927#endif /* !CONFIG_SLOB */
 928
 929gfp_t kmalloc_fix_flags(gfp_t flags)
 930{
 931	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 932
 933	flags &= ~GFP_SLAB_BUG_MASK;
 934	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 935			invalid_mask, &invalid_mask, flags, &flags);
 936	dump_stack();
 937
 938	return flags;
 939}
 940
 941/*
 942 * To avoid unnecessary overhead, we pass through large allocation requests
 943 * directly to the page allocator. We use __GFP_COMP, because we will need to
 944 * know the allocation order to free the pages properly in kfree.
 945 */
 946void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 947{
 948	void *ret = NULL;
 949	struct page *page;
 950
 951	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 952		flags = kmalloc_fix_flags(flags);
 953
 954	flags |= __GFP_COMP;
 955	page = alloc_pages(flags, order);
 956	if (likely(page)) {
 957		ret = page_address(page);
 958		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
 959				      PAGE_SIZE << order);
 960	}
 961	ret = kasan_kmalloc_large(ret, size, flags);
 962	/* As ret might get tagged, call kmemleak hook after KASAN. */
 963	kmemleak_alloc(ret, size, 1, flags);
 964	return ret;
 965}
 966EXPORT_SYMBOL(kmalloc_order);
 967
 968#ifdef CONFIG_TRACING
 969void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 970{
 971	void *ret = kmalloc_order(size, flags, order);
 972	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 973	return ret;
 974}
 975EXPORT_SYMBOL(kmalloc_order_trace);
 976#endif
 977
 978#ifdef CONFIG_SLAB_FREELIST_RANDOM
 979/* Randomize a generic freelist */
 980static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 981			       unsigned int count)
 982{
 983	unsigned int rand;
 984	unsigned int i;
 985
 986	for (i = 0; i < count; i++)
 987		list[i] = i;
 988
 989	/* Fisher-Yates shuffle */
 990	for (i = count - 1; i > 0; i--) {
 991		rand = prandom_u32_state(state);
 992		rand %= (i + 1);
 993		swap(list[i], list[rand]);
 994	}
 995}
 996
 997/* Create a random sequence per cache */
 998int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 999				    gfp_t gfp)
1000{
1001	struct rnd_state state;
1002
1003	if (count < 2 || cachep->random_seq)
1004		return 0;
1005
1006	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1007	if (!cachep->random_seq)
1008		return -ENOMEM;
1009
1010	/* Get best entropy at this stage of boot */
1011	prandom_seed_state(&state, get_random_long());
1012
1013	freelist_randomize(&state, cachep->random_seq, count);
1014	return 0;
1015}
1016
1017/* Destroy the per-cache random freelist sequence */
1018void cache_random_seq_destroy(struct kmem_cache *cachep)
1019{
1020	kfree(cachep->random_seq);
1021	cachep->random_seq = NULL;
1022}
1023#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1024
1025#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1026#ifdef CONFIG_SLAB
1027#define SLABINFO_RIGHTS (0600)
1028#else
1029#define SLABINFO_RIGHTS (0400)
1030#endif
1031
1032static void print_slabinfo_header(struct seq_file *m)
1033{
1034	/*
1035	 * Output format version, so at least we can change it
1036	 * without _too_ many complaints.
1037	 */
1038#ifdef CONFIG_DEBUG_SLAB
1039	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1040#else
1041	seq_puts(m, "slabinfo - version: 2.1\n");
1042#endif
1043	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1044	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1045	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1046#ifdef CONFIG_DEBUG_SLAB
1047	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1048	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1049#endif
1050	seq_putc(m, '\n');
1051}
1052
1053void *slab_start(struct seq_file *m, loff_t *pos)
1054{
1055	mutex_lock(&slab_mutex);
1056	return seq_list_start(&slab_caches, *pos);
1057}
1058
1059void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1060{
1061	return seq_list_next(p, &slab_caches, pos);
1062}
1063
1064void slab_stop(struct seq_file *m, void *p)
1065{
1066	mutex_unlock(&slab_mutex);
1067}
1068
1069static void cache_show(struct kmem_cache *s, struct seq_file *m)
1070{
1071	struct slabinfo sinfo;
1072
1073	memset(&sinfo, 0, sizeof(sinfo));
1074	get_slabinfo(s, &sinfo);
1075
1076	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1077		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1078		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1079
1080	seq_printf(m, " : tunables %4u %4u %4u",
1081		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1082	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1083		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1084	slabinfo_show_stats(m, s);
1085	seq_putc(m, '\n');
1086}
1087
1088static int slab_show(struct seq_file *m, void *p)
1089{
1090	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1091
1092	if (p == slab_caches.next)
1093		print_slabinfo_header(m);
1094	cache_show(s, m);
1095	return 0;
1096}
1097
1098void dump_unreclaimable_slab(void)
1099{
1100	struct kmem_cache *s;
1101	struct slabinfo sinfo;
1102
1103	/*
1104	 * Here acquiring slab_mutex is risky since we don't prefer to get
1105	 * sleep in oom path. But, without mutex hold, it may introduce a
1106	 * risk of crash.
1107	 * Use mutex_trylock to protect the list traverse, dump nothing
1108	 * without acquiring the mutex.
1109	 */
1110	if (!mutex_trylock(&slab_mutex)) {
1111		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1112		return;
1113	}
1114
1115	pr_info("Unreclaimable slab info:\n");
1116	pr_info("Name                      Used          Total\n");
1117
1118	list_for_each_entry(s, &slab_caches, list) {
1119		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1120			continue;
1121
1122		get_slabinfo(s, &sinfo);
1123
1124		if (sinfo.num_objs > 0)
1125			pr_info("%-17s %10luKB %10luKB\n", s->name,
1126				(sinfo.active_objs * s->size) / 1024,
1127				(sinfo.num_objs * s->size) / 1024);
1128	}
1129	mutex_unlock(&slab_mutex);
1130}
1131
1132#if defined(CONFIG_MEMCG_KMEM)
1133int memcg_slab_show(struct seq_file *m, void *p)
1134{
1135	/*
1136	 * Deprecated.
1137	 * Please, take a look at tools/cgroup/slabinfo.py .
1138	 */
1139	return 0;
1140}
1141#endif
1142
1143/*
1144 * slabinfo_op - iterator that generates /proc/slabinfo
1145 *
1146 * Output layout:
1147 * cache-name
1148 * num-active-objs
1149 * total-objs
1150 * object size
1151 * num-active-slabs
1152 * total-slabs
1153 * num-pages-per-slab
1154 * + further values on SMP and with statistics enabled
1155 */
1156static const struct seq_operations slabinfo_op = {
1157	.start = slab_start,
1158	.next = slab_next,
1159	.stop = slab_stop,
1160	.show = slab_show,
1161};
1162
1163static int slabinfo_open(struct inode *inode, struct file *file)
1164{
1165	return seq_open(file, &slabinfo_op);
1166}
1167
1168static const struct proc_ops slabinfo_proc_ops = {
1169	.proc_flags	= PROC_ENTRY_PERMANENT,
1170	.proc_open	= slabinfo_open,
1171	.proc_read	= seq_read,
1172	.proc_write	= slabinfo_write,
1173	.proc_lseek	= seq_lseek,
1174	.proc_release	= seq_release,
1175};
1176
1177static int __init slab_proc_init(void)
1178{
1179	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1180	return 0;
1181}
1182module_init(slab_proc_init);
1183
1184#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1185
1186static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1187					   gfp_t flags)
1188{
1189	void *ret;
1190	size_t ks;
1191
1192	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1193	if (likely(!ZERO_OR_NULL_PTR(p))) {
1194		if (!kasan_check_byte(p))
1195			return NULL;
1196		ks = kfence_ksize(p) ?: __ksize(p);
1197	} else
1198		ks = 0;
1199
1200	/* If the object still fits, repoison it precisely. */
1201	if (ks >= new_size) {
1202		p = kasan_krealloc((void *)p, new_size, flags);
1203		return (void *)p;
1204	}
1205
1206	ret = kmalloc_track_caller(new_size, flags);
1207	if (ret && p) {
1208		/* Disable KASAN checks as the object's redzone is accessed. */
1209		kasan_disable_current();
1210		memcpy(ret, kasan_reset_tag(p), ks);
1211		kasan_enable_current();
1212	}
1213
1214	return ret;
1215}
1216
1217/**
1218 * krealloc - reallocate memory. The contents will remain unchanged.
1219 * @p: object to reallocate memory for.
1220 * @new_size: how many bytes of memory are required.
1221 * @flags: the type of memory to allocate.
1222 *
1223 * The contents of the object pointed to are preserved up to the
1224 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1225 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1226 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1227 *
1228 * Return: pointer to the allocated memory or %NULL in case of error
1229 */
1230void *krealloc(const void *p, size_t new_size, gfp_t flags)
1231{
1232	void *ret;
1233
1234	if (unlikely(!new_size)) {
1235		kfree(p);
1236		return ZERO_SIZE_PTR;
1237	}
1238
1239	ret = __do_krealloc(p, new_size, flags);
1240	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1241		kfree(p);
1242
1243	return ret;
1244}
1245EXPORT_SYMBOL(krealloc);
1246
1247/**
1248 * kfree_sensitive - Clear sensitive information in memory before freeing
1249 * @p: object to free memory of
1250 *
1251 * The memory of the object @p points to is zeroed before freed.
1252 * If @p is %NULL, kfree_sensitive() does nothing.
1253 *
1254 * Note: this function zeroes the whole allocated buffer which can be a good
1255 * deal bigger than the requested buffer size passed to kmalloc(). So be
1256 * careful when using this function in performance sensitive code.
1257 */
1258void kfree_sensitive(const void *p)
1259{
1260	size_t ks;
1261	void *mem = (void *)p;
1262
1263	ks = ksize(mem);
1264	if (ks)
1265		memzero_explicit(mem, ks);
1266	kfree(mem);
1267}
1268EXPORT_SYMBOL(kfree_sensitive);
1269
1270/**
1271 * ksize - get the actual amount of memory allocated for a given object
1272 * @objp: Pointer to the object
1273 *
1274 * kmalloc may internally round up allocations and return more memory
1275 * than requested. ksize() can be used to determine the actual amount of
1276 * memory allocated. The caller may use this additional memory, even though
1277 * a smaller amount of memory was initially specified with the kmalloc call.
1278 * The caller must guarantee that objp points to a valid object previously
1279 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1280 * must not be freed during the duration of the call.
1281 *
1282 * Return: size of the actual memory used by @objp in bytes
1283 */
1284size_t ksize(const void *objp)
1285{
1286	size_t size;
1287
1288	/*
1289	 * We need to first check that the pointer to the object is valid, and
1290	 * only then unpoison the memory. The report printed from ksize() is
1291	 * more useful, then when it's printed later when the behaviour could
1292	 * be undefined due to a potential use-after-free or double-free.
1293	 *
1294	 * We use kasan_check_byte(), which is supported for the hardware
1295	 * tag-based KASAN mode, unlike kasan_check_read/write().
1296	 *
1297	 * If the pointed to memory is invalid, we return 0 to avoid users of
1298	 * ksize() writing to and potentially corrupting the memory region.
1299	 *
1300	 * We want to perform the check before __ksize(), to avoid potentially
1301	 * crashing in __ksize() due to accessing invalid metadata.
1302	 */
1303	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1304		return 0;
1305
1306	size = kfence_ksize(objp) ?: __ksize(objp);
1307	/*
1308	 * We assume that ksize callers could use whole allocated area,
1309	 * so we need to unpoison this area.
1310	 */
1311	kasan_unpoison_range(objp, size);
1312	return size;
1313}
1314EXPORT_SYMBOL(ksize);
1315
1316/* Tracepoints definitions. */
1317EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1318EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1319EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1320EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1321EXPORT_TRACEPOINT_SYMBOL(kfree);
1322EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1323
1324int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1325{
1326	if (__should_failslab(s, gfpflags))
1327		return -ENOMEM;
1328	return 0;
1329}
1330ALLOW_ERROR_INJECTION(should_failslab, ERRNO);