Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
 
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
 
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/hugetlb.h>
 
  24#include <linux/profile.h>
  25#include <linux/module.h>
  26#include <linux/mount.h>
  27#include <linux/mempolicy.h>
  28#include <linux/rmap.h>
  29#include <linux/mmu_notifier.h>
 
  30#include <linux/perf_event.h>
  31#include <linux/audit.h>
  32#include <linux/khugepaged.h>
 
 
 
 
 
 
 
 
 
 
  33
  34#include <asm/uaccess.h>
  35#include <asm/cacheflush.h>
  36#include <asm/tlb.h>
  37#include <asm/mmu_context.h>
  38
 
 
 
  39#include "internal.h"
  40
  41#ifndef arch_mmap_check
  42#define arch_mmap_check(addr, len, flags)	(0)
  43#endif
  44
  45#ifndef arch_rebalance_pgtables
  46#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  47#endif
  48
  49static void unmap_region(struct mm_struct *mm,
  50		struct vm_area_struct *vma, struct vm_area_struct *prev,
  51		unsigned long start, unsigned long end);
  52
  53/*
  54 * WARNING: the debugging will use recursive algorithms so never enable this
  55 * unless you know what you are doing.
  56 */
  57#undef DEBUG_MM_RB
  58
  59/* description of effects of mapping type and prot in current implementation.
  60 * this is due to the limited x86 page protection hardware.  The expected
  61 * behavior is in parens:
  62 *
  63 * map_type	prot
  64 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  65 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  66 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  67 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  68 *		
  69 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  70 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  71 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  72 *
  73 */
  74pgprot_t protection_map[16] = {
  75	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  76	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  77};
  78
  79pgprot_t vm_get_page_prot(unsigned long vm_flags)
  80{
  81	return __pgprot(pgprot_val(protection_map[vm_flags &
  82				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  83			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  84}
  85EXPORT_SYMBOL(vm_get_page_prot);
  86
  87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  88int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  90/*
  91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  92 * other variables. It can be updated by several CPUs frequently.
  93 */
  94struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  95
  96/*
  97 * Check that a process has enough memory to allocate a new virtual
  98 * mapping. 0 means there is enough memory for the allocation to
  99 * succeed and -ENOMEM implies there is not.
 100 *
 101 * We currently support three overcommit policies, which are set via the
 102 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 103 *
 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 105 * Additional code 2002 Jul 20 by Robert Love.
 106 *
 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 108 *
 109 * Note this is a helper function intended to be used by LSMs which
 110 * wish to use this logic.
 111 */
 112int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 113{
 114	unsigned long free, allowed;
 115
 116	vm_acct_memory(pages);
 117
 118	/*
 119	 * Sometimes we want to use more memory than we have
 120	 */
 121	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 122		return 0;
 123
 124	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 125		free = global_page_state(NR_FREE_PAGES);
 126		free += global_page_state(NR_FILE_PAGES);
 127
 128		/*
 129		 * shmem pages shouldn't be counted as free in this
 130		 * case, they can't be purged, only swapped out, and
 131		 * that won't affect the overall amount of available
 132		 * memory in the system.
 133		 */
 134		free -= global_page_state(NR_SHMEM);
 135
 136		free += nr_swap_pages;
 137
 138		/*
 139		 * Any slabs which are created with the
 140		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 141		 * which are reclaimable, under pressure.  The dentry
 142		 * cache and most inode caches should fall into this
 143		 */
 144		free += global_page_state(NR_SLAB_RECLAIMABLE);
 145
 146		/*
 147		 * Leave reserved pages. The pages are not for anonymous pages.
 148		 */
 149		if (free <= totalreserve_pages)
 150			goto error;
 151		else
 152			free -= totalreserve_pages;
 153
 154		/*
 155		 * Leave the last 3% for root
 156		 */
 157		if (!cap_sys_admin)
 158			free -= free / 32;
 159
 160		if (free > pages)
 161			return 0;
 162
 163		goto error;
 
 
 
 164	}
 165
 166	allowed = (totalram_pages - hugetlb_total_pages())
 167	       	* sysctl_overcommit_ratio / 100;
 168	/*
 169	 * Leave the last 3% for root
 170	 */
 171	if (!cap_sys_admin)
 172		allowed -= allowed / 32;
 173	allowed += total_swap_pages;
 174
 175	/* Don't let a single process grow too big:
 176	   leave 3% of the size of this process for other processes */
 177	if (mm)
 178		allowed -= mm->total_vm / 32;
 179
 180	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 181		return 0;
 182error:
 183	vm_unacct_memory(pages);
 184
 185	return -ENOMEM;
 186}
 187
 188/*
 189 * Requires inode->i_mapping->i_mmap_mutex
 190 */
 191static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 192		struct file *file, struct address_space *mapping)
 193{
 194	if (vma->vm_flags & VM_DENYWRITE)
 195		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 196	if (vma->vm_flags & VM_SHARED)
 197		mapping->i_mmap_writable--;
 198
 199	flush_dcache_mmap_lock(mapping);
 200	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 201		list_del_init(&vma->shared.vm_set.list);
 202	else
 203		vma_prio_tree_remove(vma, &mapping->i_mmap);
 204	flush_dcache_mmap_unlock(mapping);
 205}
 206
 207/*
 208 * Unlink a file-based vm structure from its prio_tree, to hide
 209 * vma from rmap and vmtruncate before freeing its page tables.
 210 */
 211void unlink_file_vma(struct vm_area_struct *vma)
 212{
 213	struct file *file = vma->vm_file;
 214
 215	if (file) {
 216		struct address_space *mapping = file->f_mapping;
 217		mutex_lock(&mapping->i_mmap_mutex);
 218		__remove_shared_vm_struct(vma, file, mapping);
 219		mutex_unlock(&mapping->i_mmap_mutex);
 220	}
 221}
 222
 223/*
 224 * Close a vm structure and free it, returning the next.
 225 */
 226static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 227{
 228	struct vm_area_struct *next = vma->vm_next;
 229
 230	might_sleep();
 231	if (vma->vm_ops && vma->vm_ops->close)
 232		vma->vm_ops->close(vma);
 233	if (vma->vm_file) {
 234		fput(vma->vm_file);
 235		if (vma->vm_flags & VM_EXECUTABLE)
 236			removed_exe_file_vma(vma->vm_mm);
 237	}
 238	mpol_put(vma_policy(vma));
 239	kmem_cache_free(vm_area_cachep, vma);
 240	return next;
 
 
 241}
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243SYSCALL_DEFINE1(brk, unsigned long, brk)
 244{
 245	unsigned long rlim, retval;
 246	unsigned long newbrk, oldbrk;
 247	struct mm_struct *mm = current->mm;
 
 248	unsigned long min_brk;
 
 
 
 
 
 
 249
 250	down_write(&mm->mmap_sem);
 251
 252#ifdef CONFIG_COMPAT_BRK
 253	/*
 254	 * CONFIG_COMPAT_BRK can still be overridden by setting
 255	 * randomize_va_space to 2, which will still cause mm->start_brk
 256	 * to be arbitrarily shifted
 257	 */
 258	if (current->brk_randomized)
 259		min_brk = mm->start_brk;
 260	else
 261		min_brk = mm->end_data;
 262#else
 263	min_brk = mm->start_brk;
 264#endif
 265	if (brk < min_brk)
 266		goto out;
 267
 268	/*
 269	 * Check against rlimit here. If this check is done later after the test
 270	 * of oldbrk with newbrk then it can escape the test and let the data
 271	 * segment grow beyond its set limit the in case where the limit is
 272	 * not page aligned -Ram Gupta
 273	 */
 274	rlim = rlimit(RLIMIT_DATA);
 275	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 276			(mm->end_data - mm->start_data) > rlim)
 277		goto out;
 278
 279	newbrk = PAGE_ALIGN(brk);
 280	oldbrk = PAGE_ALIGN(mm->brk);
 281	if (oldbrk == newbrk)
 282		goto set_brk;
 
 
 283
 284	/* Always allow shrinking brk. */
 285	if (brk <= mm->brk) {
 286		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 287			goto set_brk;
 288		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 290
 291	/* Check against existing mmap mappings. */
 292	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 
 
 
 
 
 
 
 293		goto out;
 294
 
 295	/* Ok, looks good - let it rip. */
 296	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 297		goto out;
 298set_brk:
 299	mm->brk = brk;
 300out:
 301	retval = mm->brk;
 302	up_write(&mm->mmap_sem);
 303	return retval;
 304}
 305
 306#ifdef DEBUG_MM_RB
 307static int browse_rb(struct rb_root *root)
 308{
 309	int i = 0, j;
 310	struct rb_node *nd, *pn = NULL;
 311	unsigned long prev = 0, pend = 0;
 312
 313	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 314		struct vm_area_struct *vma;
 315		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 316		if (vma->vm_start < prev)
 317			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 318		if (vma->vm_start < pend)
 319			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 320		if (vma->vm_start > vma->vm_end)
 321			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 322		i++;
 323		pn = nd;
 324		prev = vma->vm_start;
 325		pend = vma->vm_end;
 326	}
 327	j = 0;
 328	for (nd = pn; nd; nd = rb_prev(nd)) {
 329		j++;
 330	}
 331	if (i != j)
 332		printk("backwards %d, forwards %d\n", j, i), i = 0;
 333	return i;
 334}
 335
 336void validate_mm(struct mm_struct *mm)
 
 337{
 338	int bug = 0;
 339	int i = 0;
 340	struct vm_area_struct *tmp = mm->mmap;
 341	while (tmp) {
 342		tmp = tmp->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343		i++;
 344	}
 345	if (i != mm->map_count)
 346		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 347	i = browse_rb(&mm->mm_rb);
 348	if (i != mm->map_count)
 349		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 350	BUG_ON(bug);
 351}
 352#else
 
 353#define validate_mm(mm) do { } while (0)
 354#endif
 355
 356static struct vm_area_struct *
 357find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 358		struct vm_area_struct **pprev, struct rb_node ***rb_link,
 359		struct rb_node ** rb_parent)
 360{
 361	struct vm_area_struct * vma;
 362	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 363
 364	__rb_link = &mm->mm_rb.rb_node;
 365	rb_prev = __rb_parent = NULL;
 366	vma = NULL;
 367
 368	while (*__rb_link) {
 369		struct vm_area_struct *vma_tmp;
 370
 371		__rb_parent = *__rb_link;
 372		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 373
 374		if (vma_tmp->vm_end > addr) {
 375			vma = vma_tmp;
 376			if (vma_tmp->vm_start <= addr)
 377				break;
 378			__rb_link = &__rb_parent->rb_left;
 379		} else {
 380			rb_prev = __rb_parent;
 381			__rb_link = &__rb_parent->rb_right;
 382		}
 383	}
 384
 385	*pprev = NULL;
 386	if (rb_prev)
 387		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 388	*rb_link = __rb_link;
 389	*rb_parent = __rb_parent;
 390	return vma;
 391}
 392
 393void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 394		struct rb_node **rb_link, struct rb_node *rb_parent)
 395{
 396	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 397	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 
 
 398}
 399
 400static void __vma_link_file(struct vm_area_struct *vma)
 
 401{
 402	struct file *file;
 
 
 403
 404	file = vma->vm_file;
 405	if (file) {
 406		struct address_space *mapping = file->f_mapping;
 407
 408		if (vma->vm_flags & VM_DENYWRITE)
 409			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 410		if (vma->vm_flags & VM_SHARED)
 411			mapping->i_mmap_writable++;
 412
 413		flush_dcache_mmap_lock(mapping);
 414		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 415			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 416		else
 417			vma_prio_tree_insert(vma, &mapping->i_mmap);
 418		flush_dcache_mmap_unlock(mapping);
 419	}
 
 
 420}
 421
 422static void
 423__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 424	struct vm_area_struct *prev, struct rb_node **rb_link,
 425	struct rb_node *rb_parent)
 426{
 427	__vma_link_list(mm, vma, prev, rb_parent);
 428	__vma_link_rb(mm, vma, rb_link, rb_parent);
 
 
 
 
 429}
 430
 431static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 432			struct vm_area_struct *prev, struct rb_node **rb_link,
 433			struct rb_node *rb_parent)
 434{
 
 435	struct address_space *mapping = NULL;
 436
 437	if (vma->vm_file)
 438		mapping = vma->vm_file->f_mapping;
 
 439
 440	if (mapping)
 441		mutex_lock(&mapping->i_mmap_mutex);
 442
 443	__vma_link(mm, vma, prev, rb_link, rb_parent);
 444	__vma_link_file(vma);
 445
 446	if (mapping)
 447		mutex_unlock(&mapping->i_mmap_mutex);
 
 
 
 
 448
 449	mm->map_count++;
 450	validate_mm(mm);
 
 451}
 452
 453/*
 454 * Helper for vma_adjust in the split_vma insert case:
 455 * insert vm structure into list and rbtree and anon_vma,
 456 * but it has already been inserted into prio_tree earlier.
 457 */
 458static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 459{
 460	struct vm_area_struct *__vma, *prev;
 461	struct rb_node **rb_link, *rb_parent;
 462
 463	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 464	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 465	__vma_link(mm, vma, prev, rb_link, rb_parent);
 466	mm->map_count++;
 467}
 468
 469static inline void
 470__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 471		struct vm_area_struct *prev)
 472{
 473	struct vm_area_struct *next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 474
 475	prev->vm_next = next;
 476	if (next)
 477		next->vm_prev = prev;
 478	rb_erase(&vma->vm_rb, &mm->mm_rb);
 479	if (mm->mmap_cache == vma)
 480		mm->mmap_cache = prev;
 481}
 482
 483/*
 484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 485 * is already present in an i_mmap tree without adjusting the tree.
 486 * The following helper function should be used when such adjustments
 487 * are necessary.  The "insert" vma (if any) is to be inserted
 488 * before we drop the necessary locks.
 489 */
 490int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 491	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 492{
 493	struct mm_struct *mm = vma->vm_mm;
 494	struct vm_area_struct *next = vma->vm_next;
 495	struct vm_area_struct *importer = NULL;
 496	struct address_space *mapping = NULL;
 497	struct prio_tree_root *root = NULL;
 498	struct anon_vma *anon_vma = NULL;
 499	struct file *file = vma->vm_file;
 500	long adjust_next = 0;
 501	int remove_next = 0;
 502
 503	if (next && !insert) {
 504		struct vm_area_struct *exporter = NULL;
 505
 506		if (end >= next->vm_end) {
 507			/*
 508			 * vma expands, overlapping all the next, and
 509			 * perhaps the one after too (mprotect case 6).
 510			 */
 511again:			remove_next = 1 + (end > next->vm_end);
 512			end = next->vm_end;
 513			exporter = next;
 514			importer = vma;
 515		} else if (end > next->vm_start) {
 516			/*
 517			 * vma expands, overlapping part of the next:
 518			 * mprotect case 5 shifting the boundary up.
 519			 */
 520			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 521			exporter = next;
 522			importer = vma;
 523		} else if (end < vma->vm_end) {
 524			/*
 525			 * vma shrinks, and !insert tells it's not
 526			 * split_vma inserting another: so it must be
 527			 * mprotect case 4 shifting the boundary down.
 528			 */
 529			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 530			exporter = vma;
 531			importer = next;
 532		}
 533
 534		/*
 535		 * Easily overlooked: when mprotect shifts the boundary,
 536		 * make sure the expanding vma has anon_vma set if the
 537		 * shrinking vma had, to cover any anon pages imported.
 538		 */
 539		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 540			if (anon_vma_clone(importer, exporter))
 541				return -ENOMEM;
 542			importer->anon_vma = exporter->anon_vma;
 543		}
 544	}
 545
 546	if (file) {
 547		mapping = file->f_mapping;
 548		if (!(vma->vm_flags & VM_NONLINEAR))
 549			root = &mapping->i_mmap;
 550		mutex_lock(&mapping->i_mmap_mutex);
 551		if (insert) {
 552			/*
 553			 * Put into prio_tree now, so instantiated pages
 554			 * are visible to arm/parisc __flush_dcache_page
 555			 * throughout; but we cannot insert into address
 556			 * space until vma start or end is updated.
 557			 */
 558			__vma_link_file(insert);
 
 559		}
 560	}
 561
 562	vma_adjust_trans_huge(vma, start, end, adjust_next);
 563
 564	/*
 565	 * When changing only vma->vm_end, we don't really need anon_vma
 566	 * lock. This is a fairly rare case by itself, but the anon_vma
 567	 * lock may be shared between many sibling processes.  Skipping
 568	 * the lock for brk adjustments makes a difference sometimes.
 569	 */
 570	if (vma->anon_vma && (importer || start != vma->vm_start)) {
 571		anon_vma = vma->anon_vma;
 572		anon_vma_lock(anon_vma);
 573	}
 574
 575	if (root) {
 576		flush_dcache_mmap_lock(mapping);
 577		vma_prio_tree_remove(vma, root);
 578		if (adjust_next)
 579			vma_prio_tree_remove(next, root);
 
 580	}
 581
 582	vma->vm_start = start;
 583	vma->vm_end = end;
 584	vma->vm_pgoff = pgoff;
 585	if (adjust_next) {
 586		next->vm_start += adjust_next << PAGE_SHIFT;
 587		next->vm_pgoff += adjust_next;
 588	}
 589
 590	if (root) {
 591		if (adjust_next)
 592			vma_prio_tree_insert(next, root);
 593		vma_prio_tree_insert(vma, root);
 594		flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 595	}
 596
 597	if (remove_next) {
 598		/*
 599		 * vma_merge has merged next into vma, and needs
 600		 * us to remove next before dropping the locks.
 601		 */
 602		__vma_unlink(mm, next, vma);
 603		if (file)
 604			__remove_shared_vm_struct(next, file, mapping);
 605	} else if (insert) {
 606		/*
 607		 * split_vma has split insert from vma, and needs
 608		 * us to insert it before dropping the locks
 609		 * (it may either follow vma or precede it).
 610		 */
 611		__insert_vm_struct(mm, insert);
 
 
 
 
 
 
 
 
 612	}
 613
 614	if (anon_vma)
 615		anon_vma_unlock(anon_vma);
 616	if (mapping)
 617		mutex_unlock(&mapping->i_mmap_mutex);
 618
 619	if (remove_next) {
 620		if (file) {
 621			fput(file);
 622			if (next->vm_flags & VM_EXECUTABLE)
 623				removed_exe_file_vma(mm);
 
 
 
 
 
 624		}
 625		if (next->anon_vma)
 626			anon_vma_merge(vma, next);
 627		mm->map_count--;
 628		mpol_put(vma_policy(next));
 629		kmem_cache_free(vm_area_cachep, next);
 
 
 
 630		/*
 631		 * In mprotect's case 6 (see comments on vma_merge),
 632		 * we must remove another next too. It would clutter
 633		 * up the code too much to do both in one go.
 634		 */
 635		if (remove_next == 2) {
 636			next = vma->vm_next;
 
 637			goto again;
 638		}
 639	}
 640
 
 641	validate_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	return 0;
 644}
 645
 646/*
 647 * If the vma has a ->close operation then the driver probably needs to release
 648 * per-vma resources, so we don't attempt to merge those.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649 */
 650static inline int is_mergeable_vma(struct vm_area_struct *vma,
 651			struct file *file, unsigned long vm_flags)
 652{
 653	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 654	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 655		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	if (vma->vm_file != file)
 657		return 0;
 658	if (vma->vm_ops && vma->vm_ops->close)
 659		return 0;
 660	return 1;
 
 
 
 
 661}
 662
 663static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 664					struct anon_vma *anon_vma2,
 665					struct vm_area_struct *vma)
 666{
 667	/*
 668	 * The list_is_singular() test is to avoid merging VMA cloned from
 669	 * parents. This can improve scalability caused by anon_vma lock.
 670	 */
 671	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 672		list_is_singular(&vma->anon_vma_chain)))
 673		return 1;
 674	return anon_vma1 == anon_vma2;
 675}
 676
 677/*
 678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 679 * in front of (at a lower virtual address and file offset than) the vma.
 680 *
 681 * We cannot merge two vmas if they have differently assigned (non-NULL)
 682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 683 *
 684 * We don't check here for the merged mmap wrapping around the end of pagecache
 685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 686 * wrap, nor mmaps which cover the final page at index -1UL.
 
 
 687 */
 688static int
 689can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 690	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 691{
 692	if (is_mergeable_vma(vma, file, vm_flags) &&
 693	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 694		if (vma->vm_pgoff == vm_pgoff)
 695			return 1;
 696	}
 697	return 0;
 698}
 699
 700/*
 701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 702 * beyond (at a higher virtual address and file offset than) the vma.
 703 *
 704 * We cannot merge two vmas if they have differently assigned (non-NULL)
 705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 
 
 706 */
 707static int
 708can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 710{
 711	if (is_mergeable_vma(vma, file, vm_flags) &&
 712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 713		pgoff_t vm_pglen;
 714		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 715		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 716			return 1;
 717	}
 718	return 0;
 719}
 720
 721/*
 722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 723 * whether that can be merged with its predecessor or its successor.
 724 * Or both (it neatly fills a hole).
 725 *
 726 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 727 * certain not to be mapped by the time vma_merge is called; but when
 728 * called for mprotect, it is certain to be already mapped (either at
 729 * an offset within prev, or at the start of next), and the flags of
 730 * this area are about to be changed to vm_flags - and the no-change
 731 * case has already been eliminated.
 732 *
 733 * The following mprotect cases have to be considered, where AAAA is
 734 * the area passed down from mprotect_fixup, never extending beyond one
 735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 736 *
 737 *     AAAA             AAAA                AAAA          AAAA
 738 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 739 *    cannot merge    might become    might become    might become
 740 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 741 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 742 *    mremap move:                                    PPPPNNNNNNNN 8
 743 *        AAAA
 744 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 745 *    might become    case 1 below    case 2 below    case 3 below
 746 *
 747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 749 */
 750struct vm_area_struct *vma_merge(struct mm_struct *mm,
 751			struct vm_area_struct *prev, unsigned long addr,
 752			unsigned long end, unsigned long vm_flags,
 753		     	struct anon_vma *anon_vma, struct file *file,
 754			pgoff_t pgoff, struct mempolicy *policy)
 755{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 757	struct vm_area_struct *area, *next;
 758	int err;
 759
 760	/*
 761	 * We later require that vma->vm_flags == vm_flags,
 762	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 763	 */
 764	if (vm_flags & VM_SPECIAL)
 765		return NULL;
 766
 767	if (prev)
 768		next = prev->vm_next;
 
 
 
 
 769	else
 770		next = mm->mmap;
 771	area = next;
 772	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 773		next = next->vm_next;
 774
 775	/*
 776	 * Can it merge with the predecessor?
 777	 */
 778	if (prev && prev->vm_end == addr &&
 779  			mpol_equal(vma_policy(prev), policy) &&
 780			can_vma_merge_after(prev, vm_flags,
 781						anon_vma, file, pgoff)) {
 782		/*
 783		 * OK, it can.  Can we now merge in the successor as well?
 784		 */
 785		if (next && end == next->vm_start &&
 786				mpol_equal(policy, vma_policy(next)) &&
 787				can_vma_merge_before(next, vm_flags,
 788					anon_vma, file, pgoff+pglen) &&
 789				is_mergeable_anon_vma(prev->anon_vma,
 790						      next->anon_vma, NULL)) {
 791							/* cases 1, 6 */
 792			err = vma_adjust(prev, prev->vm_start,
 793				next->vm_end, prev->vm_pgoff, NULL);
 794		} else					/* cases 2, 5, 7 */
 795			err = vma_adjust(prev, prev->vm_start,
 796				end, prev->vm_pgoff, NULL);
 797		if (err)
 798			return NULL;
 799		khugepaged_enter_vma_merge(prev);
 800		return prev;
 801	}
 802
 803	/*
 804	 * Can this new request be merged in front of next?
 805	 */
 806	if (next && end == next->vm_start &&
 807 			mpol_equal(policy, vma_policy(next)) &&
 808			can_vma_merge_before(next, vm_flags,
 809					anon_vma, file, pgoff+pglen)) {
 810		if (prev && addr < prev->vm_end)	/* case 4 */
 811			err = vma_adjust(prev, prev->vm_start,
 812				addr, prev->vm_pgoff, NULL);
 813		else					/* cases 3, 8 */
 814			err = vma_adjust(area, addr, next->vm_end,
 815				next->vm_pgoff - pglen, NULL);
 816		if (err)
 817			return NULL;
 818		khugepaged_enter_vma_merge(area);
 819		return area;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820	}
 821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822	return NULL;
 823}
 824
 825/*
 826 * Rough compatbility check to quickly see if it's even worth looking
 827 * at sharing an anon_vma.
 828 *
 829 * They need to have the same vm_file, and the flags can only differ
 830 * in things that mprotect may change.
 831 *
 832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 833 * we can merge the two vma's. For example, we refuse to merge a vma if
 834 * there is a vm_ops->close() function, because that indicates that the
 835 * driver is doing some kind of reference counting. But that doesn't
 836 * really matter for the anon_vma sharing case.
 837 */
 838static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 839{
 840	return a->vm_end == b->vm_start &&
 841		mpol_equal(vma_policy(a), vma_policy(b)) &&
 842		a->vm_file == b->vm_file &&
 843		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 844		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 845}
 846
 847/*
 848 * Do some basic sanity checking to see if we can re-use the anon_vma
 849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 850 * the same as 'old', the other will be the new one that is trying
 851 * to share the anon_vma.
 852 *
 853 * NOTE! This runs with mm_sem held for reading, so it is possible that
 854 * the anon_vma of 'old' is concurrently in the process of being set up
 855 * by another page fault trying to merge _that_. But that's ok: if it
 856 * is being set up, that automatically means that it will be a singleton
 857 * acceptable for merging, so we can do all of this optimistically. But
 858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 859 *
 860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 862 * is to return an anon_vma that is "complex" due to having gone through
 863 * a fork).
 864 *
 865 * We also make sure that the two vma's are compatible (adjacent,
 866 * and with the same memory policies). That's all stable, even with just
 867 * a read lock on the mm_sem.
 868 */
 869static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 870{
 871	if (anon_vma_compatible(a, b)) {
 872		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 873
 874		if (anon_vma && list_is_singular(&old->anon_vma_chain))
 875			return anon_vma;
 876	}
 877	return NULL;
 878}
 879
 880/*
 881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 882 * neighbouring vmas for a suitable anon_vma, before it goes off
 883 * to allocate a new anon_vma.  It checks because a repetitive
 884 * sequence of mprotects and faults may otherwise lead to distinct
 885 * anon_vmas being allocated, preventing vma merge in subsequent
 886 * mprotect.
 887 */
 888struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 889{
 890	struct anon_vma *anon_vma;
 891	struct vm_area_struct *near;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892
 893	near = vma->vm_next;
 894	if (!near)
 895		goto try_prev;
 896
 897	anon_vma = reusable_anon_vma(near, vma, near);
 898	if (anon_vma)
 899		return anon_vma;
 900try_prev:
 901	near = vma->vm_prev;
 902	if (!near)
 903		goto none;
 904
 905	anon_vma = reusable_anon_vma(near, near, vma);
 906	if (anon_vma)
 907		return anon_vma;
 908none:
 909	/*
 
 
 910	 * There's no absolute need to look only at touching neighbours:
 911	 * we could search further afield for "compatible" anon_vmas.
 912	 * But it would probably just be a waste of time searching,
 913	 * or lead to too many vmas hanging off the same anon_vma.
 914	 * We're trying to allow mprotect remerging later on,
 915	 * not trying to minimize memory used for anon_vmas.
 916	 */
 917	return NULL;
 918}
 919
 920#ifdef CONFIG_PROC_FS
 921void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 922						struct file *file, long pages)
 
 
 923{
 924	const unsigned long stack_flags
 925		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 
 
 
 
 926
 927	if (file) {
 928		mm->shared_vm += pages;
 929		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 930			mm->exec_vm += pages;
 931	} else if (flags & stack_flags)
 932		mm->stack_vm += pages;
 933	if (flags & (VM_RESERVED|VM_IO))
 934		mm->reserved_vm += pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936#endif /* CONFIG_PROC_FS */
 937
 938/*
 939 * The caller must hold down_write(&current->mm->mmap_sem).
 940 */
 941
 942unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 943			unsigned long len, unsigned long prot,
 944			unsigned long flags, unsigned long pgoff)
 
 
 945{
 946	struct mm_struct * mm = current->mm;
 947	struct inode *inode;
 948	vm_flags_t vm_flags;
 949	int error;
 950	unsigned long reqprot = prot;
 
 
 951
 952	/*
 953	 * Does the application expect PROT_READ to imply PROT_EXEC?
 954	 *
 955	 * (the exception is when the underlying filesystem is noexec
 956	 *  mounted, in which case we dont add PROT_EXEC.)
 957	 */
 958	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 959		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 960			prot |= PROT_EXEC;
 961
 962	if (!len)
 963		return -EINVAL;
 
 964
 965	if (!(flags & MAP_FIXED))
 966		addr = round_hint_to_min(addr);
 967
 968	/* Careful about overflows.. */
 969	len = PAGE_ALIGN(len);
 970	if (!len)
 971		return -ENOMEM;
 972
 973	/* offset overflow? */
 974	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 975               return -EOVERFLOW;
 976
 977	/* Too many mappings? */
 978	if (mm->map_count > sysctl_max_map_count)
 979		return -ENOMEM;
 980
 981	/* Obtain the address to map to. we verify (or select) it and ensure
 982	 * that it represents a valid section of the address space.
 983	 */
 984	addr = get_unmapped_area(file, addr, len, pgoff, flags);
 985	if (addr & ~PAGE_MASK)
 986		return addr;
 987
 
 
 
 
 
 
 
 
 
 
 
 988	/* Do simple checking here so the lower-level routines won't have
 989	 * to. we assume access permissions have been handled by the open
 990	 * of the memory object, so we don't do any here.
 991	 */
 992	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
 993			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 994
 995	if (flags & MAP_LOCKED)
 996		if (!can_do_mlock())
 997			return -EPERM;
 998
 999	/* mlock MCL_FUTURE? */
1000	if (vm_flags & VM_LOCKED) {
1001		unsigned long locked, lock_limit;
1002		locked = len >> PAGE_SHIFT;
1003		locked += mm->locked_vm;
1004		lock_limit = rlimit(RLIMIT_MEMLOCK);
1005		lock_limit >>= PAGE_SHIFT;
1006		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007			return -EAGAIN;
1008	}
1009
1010	inode = file ? file->f_path.dentry->d_inode : NULL;
1011
1012	if (file) {
 
 
 
 
 
 
 
 
1013		switch (flags & MAP_TYPE) {
1014		case MAP_SHARED:
1015			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018			/*
1019			 * Make sure we don't allow writing to an append-only
1020			 * file..
1021			 */
1022			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023				return -EACCES;
1024
1025			/*
1026			 * Make sure there are no mandatory locks on the file.
1027			 */
1028			if (locks_verify_locked(inode))
1029				return -EAGAIN;
1030
1031			vm_flags |= VM_SHARED | VM_MAYSHARE;
1032			if (!(file->f_mode & FMODE_WRITE))
1033				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034
1035			/* fall through */
1036		case MAP_PRIVATE:
1037			if (!(file->f_mode & FMODE_READ))
1038				return -EACCES;
1039			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040				if (vm_flags & VM_EXEC)
1041					return -EPERM;
1042				vm_flags &= ~VM_MAYEXEC;
1043			}
1044
1045			if (!file->f_op || !file->f_op->mmap)
1046				return -ENODEV;
 
 
1047			break;
1048
1049		default:
1050			return -EINVAL;
1051		}
1052	} else {
1053		switch (flags & MAP_TYPE) {
1054		case MAP_SHARED:
 
 
1055			/*
1056			 * Ignore pgoff.
1057			 */
1058			pgoff = 0;
1059			vm_flags |= VM_SHARED | VM_MAYSHARE;
1060			break;
1061		case MAP_PRIVATE:
1062			/*
1063			 * Set pgoff according to addr for anon_vma.
1064			 */
1065			pgoff = addr >> PAGE_SHIFT;
1066			break;
1067		default:
1068			return -EINVAL;
1069		}
1070	}
1071
1072	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073	if (error)
1074		return error;
 
 
 
 
 
 
 
 
 
 
1075
1076	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
 
 
 
 
 
1077}
1078EXPORT_SYMBOL(do_mmap_pgoff);
1079
1080SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081		unsigned long, prot, unsigned long, flags,
1082		unsigned long, fd, unsigned long, pgoff)
1083{
1084	struct file *file = NULL;
1085	unsigned long retval = -EBADF;
1086
1087	if (!(flags & MAP_ANONYMOUS)) {
1088		audit_mmap_fd(fd, flags);
1089		if (unlikely(flags & MAP_HUGETLB))
1090			return -EINVAL;
1091		file = fget(fd);
1092		if (!file)
1093			goto out;
 
 
 
 
 
 
1094	} else if (flags & MAP_HUGETLB) {
1095		struct user_struct *user = NULL;
 
 
 
 
 
 
1096		/*
1097		 * VM_NORESERVE is used because the reservations will be
1098		 * taken when vm_ops->mmap() is called
1099		 * A dummy user value is used because we are not locking
1100		 * memory so no accounting is necessary
1101		 */
1102		len = ALIGN(len, huge_page_size(&default_hstate));
1103		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104						&user, HUGETLB_ANONHUGE_INODE);
 
1105		if (IS_ERR(file))
1106			return PTR_ERR(file);
1107	}
1108
1109	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110
1111	down_write(&current->mm->mmap_sem);
1112	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113	up_write(&current->mm->mmap_sem);
1114
1115	if (file)
1116		fput(file);
1117out:
1118	return retval;
1119}
1120
 
 
 
 
 
 
 
1121#ifdef __ARCH_WANT_SYS_OLD_MMAP
1122struct mmap_arg_struct {
1123	unsigned long addr;
1124	unsigned long len;
1125	unsigned long prot;
1126	unsigned long flags;
1127	unsigned long fd;
1128	unsigned long offset;
1129};
1130
1131SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132{
1133	struct mmap_arg_struct a;
1134
1135	if (copy_from_user(&a, arg, sizeof(a)))
1136		return -EFAULT;
1137	if (a.offset & ~PAGE_MASK)
1138		return -EINVAL;
1139
1140	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141			      a.offset >> PAGE_SHIFT);
1142}
1143#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145/*
1146 * Some shared mappigns will want the pages marked read-only
1147 * to track write events. If so, we'll downgrade vm_page_prot
1148 * to the private version (using protection_map[] without the
1149 * VM_SHARED bit).
1150 */
1151int vma_wants_writenotify(struct vm_area_struct *vma)
1152{
1153	vm_flags_t vm_flags = vma->vm_flags;
1154
1155	/* If it was private or non-writable, the write bit is already clear */
1156	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157		return 0;
1158
1159	/* The backer wishes to know when pages are first written to? */
1160	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161		return 1;
1162
1163	/* The open routine did something to the protections already? */
1164	if (pgprot_val(vma->vm_page_prot) !=
1165	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1166		return 0;
1167
1168	/* Specialty mapping? */
1169	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170		return 0;
 
 
 
 
 
 
 
1171
1172	/* Can the mapping track the dirty pages? */
1173	return vma->vm_file && vma->vm_file->f_mapping &&
1174		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175}
1176
1177/*
1178 * We account for memory if it's a private writeable mapping,
1179 * not hugepages and VM_NORESERVE wasn't set.
1180 */
1181static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182{
1183	/*
1184	 * hugetlb has its own accounting separate from the core VM
1185	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186	 */
1187	if (file && is_file_hugepages(file))
1188		return 0;
1189
1190	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191}
1192
1193unsigned long mmap_region(struct file *file, unsigned long addr,
1194			  unsigned long len, unsigned long flags,
1195			  vm_flags_t vm_flags, unsigned long pgoff)
 
 
 
 
 
 
 
 
1196{
1197	struct mm_struct *mm = current->mm;
1198	struct vm_area_struct *vma, *prev;
1199	int correct_wcount = 0;
1200	int error;
1201	struct rb_node **rb_link, *rb_parent;
1202	unsigned long charged = 0;
1203	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204
1205	/* Clear old maps */
1206	error = -ENOMEM;
1207munmap_back:
1208	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209	if (vma && vma->vm_start < addr + len) {
1210		if (do_munmap(mm, addr, len))
1211			return -ENOMEM;
1212		goto munmap_back;
1213	}
1214
1215	/* Check against address space limit. */
1216	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
 
1217		return -ENOMEM;
1218
1219	/*
1220	 * Set 'VM_NORESERVE' if we should not account for the
1221	 * memory use of this mapping.
1222	 */
1223	if ((flags & MAP_NORESERVE)) {
1224		/* We honor MAP_NORESERVE if allowed to overcommit */
1225		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226			vm_flags |= VM_NORESERVE;
1227
1228		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229		if (file && is_file_hugepages(file))
1230			vm_flags |= VM_NORESERVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
1231	}
1232
1233	/*
1234	 * Private writable mapping: check memory availability
1235	 */
1236	if (accountable_mapping(file, vm_flags)) {
1237		charged = len >> PAGE_SHIFT;
1238		if (security_vm_enough_memory(charged))
1239			return -ENOMEM;
1240		vm_flags |= VM_ACCOUNT;
1241	}
1242
1243	/*
1244	 * Can we just expand an old mapping?
1245	 */
1246	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247	if (vma)
1248		goto out;
 
 
 
 
 
 
 
 
 
1249
1250	/*
1251	 * Determine the object being mapped and call the appropriate
1252	 * specific mapper. the address has already been validated, but
1253	 * not unmapped, but the maps are removed from the list.
1254	 */
1255	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256	if (!vma) {
1257		error = -ENOMEM;
1258		goto unacct_error;
1259	}
1260
1261	vma->vm_mm = mm;
1262	vma->vm_start = addr;
1263	vma->vm_end = addr + len;
1264	vma->vm_flags = vm_flags;
1265	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266	vma->vm_pgoff = pgoff;
1267	INIT_LIST_HEAD(&vma->anon_vma_chain);
1268
1269	if (file) {
1270		error = -EINVAL;
1271		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272			goto free_vma;
1273		if (vm_flags & VM_DENYWRITE) {
1274			error = deny_write_access(file);
1275			if (error)
1276				goto free_vma;
1277			correct_wcount = 1;
 
 
 
 
 
 
 
1278		}
1279		vma->vm_file = file;
1280		get_file(file);
1281		error = file->f_op->mmap(file, vma);
1282		if (error)
1283			goto unmap_and_free_vma;
1284		if (vm_flags & VM_EXECUTABLE)
1285			added_exe_file_vma(mm);
1286
1287		/* Can addr have changed??
1288		 *
1289		 * Answer: Yes, several device drivers can do it in their
1290		 *         f_op->mmap method. -DaveM
1291		 */
1292		addr = vma->vm_start;
1293		pgoff = vma->vm_pgoff;
1294		vm_flags = vma->vm_flags;
1295	} else if (vm_flags & VM_SHARED) {
1296		error = shmem_zero_setup(vma);
1297		if (error)
1298			goto free_vma;
1299	}
1300
1301	if (vma_wants_writenotify(vma)) {
1302		pgprot_t pprot = vma->vm_page_prot;
1303
1304		/* Can vma->vm_page_prot have changed??
1305		 *
1306		 * Answer: Yes, drivers may have changed it in their
1307		 *         f_op->mmap method.
1308		 *
1309		 * Ensures that vmas marked as uncached stay that way.
1310		 */
1311		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314	}
1315
1316	vma_link(mm, vma, prev, rb_link, rb_parent);
1317	file = vma->vm_file;
 
 
 
 
 
 
 
 
 
 
1318
1319	/* Once vma denies write, undo our temporary denial count */
1320	if (correct_wcount)
1321		atomic_inc(&inode->i_writecount);
1322out:
1323	perf_event_mmap(vma);
1324
1325	mm->total_vm += len >> PAGE_SHIFT;
1326	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327	if (vm_flags & VM_LOCKED) {
1328		if (!mlock_vma_pages_range(vma, addr, addr + len))
1329			mm->locked_vm += (len >> PAGE_SHIFT);
1330	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331		make_pages_present(addr, addr + len);
1332	return addr;
1333
1334unmap_and_free_vma:
1335	if (correct_wcount)
1336		atomic_inc(&inode->i_writecount);
1337	vma->vm_file = NULL;
1338	fput(file);
1339
1340	/* Undo any partial mapping done by a device driver. */
1341	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342	charged = 0;
1343free_vma:
1344	kmem_cache_free(vm_area_cachep, vma);
1345unacct_error:
1346	if (charged)
1347		vm_unacct_memory(charged);
1348	return error;
1349}
1350
1351/* Get an address range which is currently unmapped.
1352 * For shmat() with addr=0.
1353 *
1354 * Ugly calling convention alert:
1355 * Return value with the low bits set means error value,
1356 * ie
1357 *	if (ret & ~PAGE_MASK)
1358 *		error = ret;
1359 *
1360 * This function "knows" that -ENOMEM has the bits set.
1361 */
1362#ifndef HAVE_ARCH_UNMAPPED_AREA
1363unsigned long
1364arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365		unsigned long len, unsigned long pgoff, unsigned long flags)
 
1366{
1367	struct mm_struct *mm = current->mm;
1368	struct vm_area_struct *vma;
1369	unsigned long start_addr;
 
1370
1371	if (len > TASK_SIZE)
1372		return -ENOMEM;
1373
1374	if (flags & MAP_FIXED)
1375		return addr;
1376
1377	if (addr) {
1378		addr = PAGE_ALIGN(addr);
1379		vma = find_vma(mm, addr);
1380		if (TASK_SIZE - len >= addr &&
1381		    (!vma || addr + len <= vma->vm_start))
 
1382			return addr;
1383	}
1384	if (len > mm->cached_hole_size) {
1385	        start_addr = addr = mm->free_area_cache;
1386	} else {
1387	        start_addr = addr = TASK_UNMAPPED_BASE;
1388	        mm->cached_hole_size = 0;
1389	}
1390
1391full_search:
1392	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393		/* At this point:  (!vma || addr < vma->vm_end). */
1394		if (TASK_SIZE - len < addr) {
1395			/*
1396			 * Start a new search - just in case we missed
1397			 * some holes.
1398			 */
1399			if (start_addr != TASK_UNMAPPED_BASE) {
1400				addr = TASK_UNMAPPED_BASE;
1401			        start_addr = addr;
1402				mm->cached_hole_size = 0;
1403				goto full_search;
1404			}
1405			return -ENOMEM;
1406		}
1407		if (!vma || addr + len <= vma->vm_start) {
1408			/*
1409			 * Remember the place where we stopped the search:
1410			 */
1411			mm->free_area_cache = addr + len;
1412			return addr;
1413		}
1414		if (addr + mm->cached_hole_size < vma->vm_start)
1415		        mm->cached_hole_size = vma->vm_start - addr;
1416		addr = vma->vm_end;
1417	}
1418}
1419#endif	
1420
1421void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
 
 
 
 
1422{
1423	/*
1424	 * Is this a new hole at the lowest possible address?
1425	 */
1426	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427		mm->free_area_cache = addr;
1428		mm->cached_hole_size = ~0UL;
1429	}
1430}
 
1431
1432/*
1433 * This mmap-allocator allocates new areas top-down from below the
1434 * stack's low limit (the base):
1435 */
1436#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437unsigned long
1438arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439			  const unsigned long len, const unsigned long pgoff,
1440			  const unsigned long flags)
1441{
1442	struct vm_area_struct *vma;
1443	struct mm_struct *mm = current->mm;
1444	unsigned long addr = addr0;
 
1445
1446	/* requested length too big for entire address space */
1447	if (len > TASK_SIZE)
1448		return -ENOMEM;
1449
1450	if (flags & MAP_FIXED)
1451		return addr;
1452
1453	/* requesting a specific address */
1454	if (addr) {
1455		addr = PAGE_ALIGN(addr);
1456		vma = find_vma(mm, addr);
1457		if (TASK_SIZE - len >= addr &&
1458				(!vma || addr + len <= vma->vm_start))
 
1459			return addr;
1460	}
1461
1462	/* check if free_area_cache is useful for us */
1463	if (len <= mm->cached_hole_size) {
1464 	        mm->cached_hole_size = 0;
1465 		mm->free_area_cache = mm->mmap_base;
1466 	}
1467
1468	/* either no address requested or can't fit in requested address hole */
1469	addr = mm->free_area_cache;
1470
1471	/* make sure it can fit in the remaining address space */
1472	if (addr > len) {
1473		vma = find_vma(mm, addr-len);
1474		if (!vma || addr <= vma->vm_start)
1475			/* remember the address as a hint for next time */
1476			return (mm->free_area_cache = addr-len);
1477	}
1478
1479	if (mm->mmap_base < len)
1480		goto bottomup;
1481
1482	addr = mm->mmap_base-len;
1483
1484	do {
1485		/*
1486		 * Lookup failure means no vma is above this address,
1487		 * else if new region fits below vma->vm_start,
1488		 * return with success:
1489		 */
1490		vma = find_vma(mm, addr);
1491		if (!vma || addr+len <= vma->vm_start)
1492			/* remember the address as a hint for next time */
1493			return (mm->free_area_cache = addr);
1494
1495 		/* remember the largest hole we saw so far */
1496 		if (addr + mm->cached_hole_size < vma->vm_start)
1497 		        mm->cached_hole_size = vma->vm_start - addr;
1498
1499		/* try just below the current vma->vm_start */
1500		addr = vma->vm_start-len;
1501	} while (len < vma->vm_start);
1502
1503bottomup:
1504	/*
1505	 * A failed mmap() very likely causes application failure,
1506	 * so fall back to the bottom-up function here. This scenario
1507	 * can happen with large stack limits and large mmap()
1508	 * allocations.
1509	 */
1510	mm->cached_hole_size = ~0UL;
1511  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1512	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513	/*
1514	 * Restore the topdown base:
1515	 */
1516	mm->free_area_cache = mm->mmap_base;
1517	mm->cached_hole_size = ~0UL;
1518
1519	return addr;
1520}
1521#endif
1522
1523void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
 
 
 
 
1524{
1525	/*
1526	 * Is this a new hole at the highest possible address?
1527	 */
1528	if (addr > mm->free_area_cache)
1529		mm->free_area_cache = addr;
1530
1531	/* dont allow allocations above current base */
1532	if (mm->free_area_cache > mm->mmap_base)
1533		mm->free_area_cache = mm->mmap_base;
1534}
 
1535
1536unsigned long
1537get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538		unsigned long pgoff, unsigned long flags)
1539{
1540	unsigned long (*get_area)(struct file *, unsigned long,
1541				  unsigned long, unsigned long, unsigned long);
1542
1543	unsigned long error = arch_mmap_check(addr, len, flags);
1544	if (error)
1545		return error;
1546
1547	/* Careful about overflows.. */
1548	if (len > TASK_SIZE)
1549		return -ENOMEM;
1550
1551	get_area = current->mm->get_unmapped_area;
1552	if (file && file->f_op && file->f_op->get_unmapped_area)
1553		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	addr = get_area(file, addr, len, pgoff, flags);
1555	if (IS_ERR_VALUE(addr))
1556		return addr;
1557
1558	if (addr > TASK_SIZE - len)
1559		return -ENOMEM;
1560	if (addr & ~PAGE_MASK)
1561		return -EINVAL;
1562
1563	return arch_rebalance_pgtables(addr, len);
 
1564}
1565
1566EXPORT_SYMBOL(get_unmapped_area);
1567
1568/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1569struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
1570{
1571	struct vm_area_struct *vma = NULL;
1572
1573	if (mm) {
1574		/* Check the cache first. */
1575		/* (Cache hit rate is typically around 35%.) */
1576		vma = mm->mmap_cache;
1577		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578			struct rb_node * rb_node;
1579
1580			rb_node = mm->mm_rb.rb_node;
1581			vma = NULL;
1582
1583			while (rb_node) {
1584				struct vm_area_struct * vma_tmp;
1585
1586				vma_tmp = rb_entry(rb_node,
1587						struct vm_area_struct, vm_rb);
1588
1589				if (vma_tmp->vm_end > addr) {
1590					vma = vma_tmp;
1591					if (vma_tmp->vm_start <= addr)
1592						break;
1593					rb_node = rb_node->rb_left;
1594				} else
1595					rb_node = rb_node->rb_right;
1596			}
1597			if (vma)
1598				mm->mmap_cache = vma;
1599		}
1600	}
1601	return vma;
1602}
 
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604EXPORT_SYMBOL(find_vma);
1605
1606/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
 
 
 
 
 
 
 
 
 
 
 
 
1607struct vm_area_struct *
1608find_vma_prev(struct mm_struct *mm, unsigned long addr,
1609			struct vm_area_struct **pprev)
1610{
1611	struct vm_area_struct *vma = NULL, *prev = NULL;
1612	struct rb_node *rb_node;
1613	if (!mm)
1614		goto out;
1615
1616	/* Guard against addr being lower than the first VMA */
1617	vma = mm->mmap;
1618
1619	/* Go through the RB tree quickly. */
1620	rb_node = mm->mm_rb.rb_node;
1621
1622	while (rb_node) {
1623		struct vm_area_struct *vma_tmp;
1624		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1625
1626		if (addr < vma_tmp->vm_end) {
1627			rb_node = rb_node->rb_left;
1628		} else {
1629			prev = vma_tmp;
1630			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1631				break;
1632			rb_node = rb_node->rb_right;
1633		}
1634	}
1635
1636out:
1637	*pprev = prev;
1638	return prev ? prev->vm_next : vma;
 
 
1639}
1640
1641/*
1642 * Verify that the stack growth is acceptable and
1643 * update accounting. This is shared with both the
1644 * grow-up and grow-down cases.
1645 */
1646static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
1647{
1648	struct mm_struct *mm = vma->vm_mm;
1649	struct rlimit *rlim = current->signal->rlim;
1650	unsigned long new_start;
1651
1652	/* address space limit tests */
1653	if (!may_expand_vm(mm, grow))
1654		return -ENOMEM;
1655
1656	/* Stack limit test */
1657	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1658		return -ENOMEM;
1659
1660	/* mlock limit tests */
1661	if (vma->vm_flags & VM_LOCKED) {
1662		unsigned long locked;
1663		unsigned long limit;
1664		locked = mm->locked_vm + grow;
1665		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1666		limit >>= PAGE_SHIFT;
1667		if (locked > limit && !capable(CAP_IPC_LOCK))
1668			return -ENOMEM;
1669	}
1670
1671	/* Check to ensure the stack will not grow into a hugetlb-only region */
1672	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1673			vma->vm_end - size;
1674	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1675		return -EFAULT;
1676
1677	/*
1678	 * Overcommit..  This must be the final test, as it will
1679	 * update security statistics.
1680	 */
1681	if (security_vm_enough_memory_mm(mm, grow))
1682		return -ENOMEM;
1683
1684	/* Ok, everything looks good - let it rip */
1685	mm->total_vm += grow;
1686	if (vma->vm_flags & VM_LOCKED)
1687		mm->locked_vm += grow;
1688	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1689	return 0;
1690}
1691
1692#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1693/*
1694 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1695 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1696 */
1697int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1698{
1699	int error;
 
 
 
 
1700
1701	if (!(vma->vm_flags & VM_GROWSUP))
1702		return -EFAULT;
1703
1704	/*
1705	 * We must make sure the anon_vma is allocated
1706	 * so that the anon_vma locking is not a noop.
1707	 */
1708	if (unlikely(anon_vma_prepare(vma)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709		return -ENOMEM;
1710	vma_lock_anon_vma(vma);
1711
 
 
1712	/*
1713	 * vma->vm_start/vm_end cannot change under us because the caller
1714	 * is required to hold the mmap_sem in read mode.  We need the
1715	 * anon_vma lock to serialize against concurrent expand_stacks.
1716	 * Also guard against wrapping around to address 0.
1717	 */
1718	if (address < PAGE_ALIGN(address+4))
1719		address = PAGE_ALIGN(address+4);
1720	else {
1721		vma_unlock_anon_vma(vma);
1722		return -ENOMEM;
1723	}
1724	error = 0;
1725
1726	/* Somebody else might have raced and expanded it already */
1727	if (address > vma->vm_end) {
1728		unsigned long size, grow;
1729
1730		size = address - vma->vm_start;
1731		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1732
1733		error = -ENOMEM;
1734		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1735			error = acct_stack_growth(vma, size, grow);
1736			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737				vma->vm_end = address;
 
 
 
 
 
1738				perf_event_mmap(vma);
1739			}
1740		}
1741	}
1742	vma_unlock_anon_vma(vma);
1743	khugepaged_enter_vma_merge(vma);
 
 
1744	return error;
1745}
1746#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1747
1748/*
1749 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
1750 */
1751int expand_downwards(struct vm_area_struct *vma,
1752				   unsigned long address)
1753{
1754	int error;
 
 
 
1755
1756	/*
1757	 * We must make sure the anon_vma is allocated
1758	 * so that the anon_vma locking is not a noop.
1759	 */
1760	if (unlikely(anon_vma_prepare(vma)))
1761		return -ENOMEM;
1762
1763	address &= PAGE_MASK;
1764	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1765	if (error)
1766		return error;
1767
1768	vma_lock_anon_vma(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769
 
 
 
 
 
 
 
 
1770	/*
1771	 * vma->vm_start/vm_end cannot change under us because the caller
1772	 * is required to hold the mmap_sem in read mode.  We need the
1773	 * anon_vma lock to serialize against concurrent expand_stacks.
1774	 */
 
1775
1776	/* Somebody else might have raced and expanded it already */
1777	if (address < vma->vm_start) {
1778		unsigned long size, grow;
1779
1780		size = vma->vm_end - address;
1781		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1782
1783		error = -ENOMEM;
1784		if (grow <= vma->vm_pgoff) {
1785			error = acct_stack_growth(vma, size, grow);
1786			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787				vma->vm_start = address;
1788				vma->vm_pgoff -= grow;
 
 
 
 
 
1789				perf_event_mmap(vma);
1790			}
1791		}
1792	}
1793	vma_unlock_anon_vma(vma);
1794	khugepaged_enter_vma_merge(vma);
 
 
1795	return error;
1796}
1797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798#ifdef CONFIG_STACK_GROWSUP
1799int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800{
1801	return expand_upwards(vma, address);
1802}
1803
1804struct vm_area_struct *
1805find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806{
1807	struct vm_area_struct *vma, *prev;
1808
1809	addr &= PAGE_MASK;
1810	vma = find_vma_prev(mm, addr, &prev);
1811	if (vma && (vma->vm_start <= addr))
1812		return vma;
1813	if (!prev || expand_stack(prev, addr))
1814		return NULL;
1815	if (prev->vm_flags & VM_LOCKED) {
1816		mlock_vma_pages_range(prev, addr, prev->vm_end);
1817	}
 
1818	return prev;
1819}
1820#else
1821int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822{
1823	return expand_downwards(vma, address);
1824}
1825
1826struct vm_area_struct *
1827find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828{
1829	struct vm_area_struct * vma;
1830	unsigned long start;
1831
1832	addr &= PAGE_MASK;
1833	vma = find_vma(mm,addr);
1834	if (!vma)
1835		return NULL;
1836	if (vma->vm_start <= addr)
1837		return vma;
1838	if (!(vma->vm_flags & VM_GROWSDOWN))
1839		return NULL;
1840	start = vma->vm_start;
1841	if (expand_stack(vma, addr))
1842		return NULL;
1843	if (vma->vm_flags & VM_LOCKED) {
1844		mlock_vma_pages_range(vma, addr, start);
1845	}
1846	return vma;
1847}
1848#endif
1849
 
 
 
 
 
 
 
 
 
 
 
 
1850/*
1851 * Ok - we have the memory areas we should free on the vma list,
1852 * so release them, and do the vma updates.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853 *
1854 * Called with the mm semaphore held.
1855 */
1856static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857{
 
 
 
1858	/* Update high watermark before we lower total_vm */
1859	update_hiwater_vm(mm);
1860	do {
1861		long nrpages = vma_pages(vma);
1862
1863		mm->total_vm -= nrpages;
1864		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1865		vma = remove_vma(vma);
1866	} while (vma);
1867	validate_mm(mm);
 
1868}
1869
1870/*
1871 * Get rid of page table information in the indicated region.
1872 *
1873 * Called with the mm semaphore held.
1874 */
1875static void unmap_region(struct mm_struct *mm,
1876		struct vm_area_struct *vma, struct vm_area_struct *prev,
1877		unsigned long start, unsigned long end)
 
1878{
1879	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880	struct mmu_gather tlb;
1881	unsigned long nr_accounted = 0;
1882
1883	lru_add_drain();
1884	tlb_gather_mmu(&tlb, mm, 0);
1885	update_hiwater_rss(mm);
1886	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887	vm_unacct_memory(nr_accounted);
1888	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1889				 next ? next->vm_start : 0);
1890	tlb_finish_mmu(&tlb, start, end);
 
1891}
1892
1893/*
1894 * Create a list of vma's touched by the unmap, removing them from the mm's
1895 * vma list as we go..
 
1896 */
1897static void
1898detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899	struct vm_area_struct *prev, unsigned long end)
1900{
1901	struct vm_area_struct **insertion_point;
1902	struct vm_area_struct *tail_vma = NULL;
1903	unsigned long addr;
1904
1905	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906	vma->vm_prev = NULL;
1907	do {
1908		rb_erase(&vma->vm_rb, &mm->mm_rb);
1909		mm->map_count--;
1910		tail_vma = vma;
1911		vma = vma->vm_next;
1912	} while (vma && vma->vm_start < end);
1913	*insertion_point = vma;
1914	if (vma)
1915		vma->vm_prev = prev;
1916	tail_vma->vm_next = NULL;
1917	if (mm->unmap_area == arch_unmap_area)
1918		addr = prev ? prev->vm_end : mm->mmap_base;
1919	else
1920		addr = vma ?  vma->vm_start : mm->mmap_base;
1921	mm->unmap_area(mm, addr);
1922	mm->mmap_cache = NULL;		/* Kill the cache. */
1923}
1924
1925/*
1926 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1927 * munmap path where it doesn't make sense to fail.
1928 */
1929static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1930	      unsigned long addr, int new_below)
1931{
1932	struct mempolicy *pol;
1933	struct vm_area_struct *new;
1934	int err = -ENOMEM;
1935
1936	if (is_vm_hugetlb_page(vma) && (addr &
1937					~(huge_page_mask(hstate_vma(vma)))))
1938		return -EINVAL;
1939
1940	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1941	if (!new)
1942		goto out_err;
1943
1944	/* most fields are the same, copy all, and then fixup */
1945	*new = *vma;
1946
1947	INIT_LIST_HEAD(&new->anon_vma_chain);
 
 
1948
1949	if (new_below)
1950		new->vm_end = addr;
1951	else {
1952		new->vm_start = addr;
1953		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1954	}
1955
1956	pol = mpol_dup(vma_policy(vma));
1957	if (IS_ERR(pol)) {
1958		err = PTR_ERR(pol);
1959		goto out_free_vma;
1960	}
1961	vma_set_policy(new, pol);
1962
1963	if (anon_vma_clone(new, vma))
 
 
 
 
 
1964		goto out_free_mpol;
1965
1966	if (new->vm_file) {
1967		get_file(new->vm_file);
1968		if (vma->vm_flags & VM_EXECUTABLE)
1969			added_exe_file_vma(mm);
1970	}
1971
1972	if (new->vm_ops && new->vm_ops->open)
1973		new->vm_ops->open(new);
1974
1975	if (new_below)
1976		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1977			((addr - new->vm_start) >> PAGE_SHIFT), new);
1978	else
1979		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
 
 
 
 
 
 
 
 
 
 
 
 
1980
1981	/* Success. */
1982	if (!err)
1983		return 0;
 
1984
1985	/* Clean everything up if vma_adjust failed. */
1986	if (new->vm_ops && new->vm_ops->close)
1987		new->vm_ops->close(new);
1988	if (new->vm_file) {
1989		if (vma->vm_flags & VM_EXECUTABLE)
1990			removed_exe_file_vma(mm);
1991		fput(new->vm_file);
1992	}
1993	unlink_anon_vmas(new);
1994 out_free_mpol:
1995	mpol_put(pol);
1996 out_free_vma:
1997	kmem_cache_free(vm_area_cachep, new);
1998 out_err:
1999	return err;
2000}
2001
2002/*
2003 * Split a vma into two pieces at address 'addr', a new vma is allocated
2004 * either for the first part or the tail.
2005 */
2006int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2007	      unsigned long addr, int new_below)
2008{
2009	if (mm->map_count >= sysctl_max_map_count)
2010		return -ENOMEM;
2011
2012	return __split_vma(mm, vma, addr, new_below);
2013}
2014
2015/* Munmap is split into 2 main parts -- this part which finds
2016 * what needs doing, and the areas themselves, which do the
2017 * work.  This now handles partial unmappings.
2018 * Jeremy Fitzhardinge <jeremy@goop.org>
 
 
 
 
 
 
 
 
2019 */
2020int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
 
 
 
 
 
 
2021{
2022	unsigned long end;
2023	struct vm_area_struct *vma, *prev, *last;
2024
2025	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2026		return -EINVAL;
 
 
 
2027
2028	if ((len = PAGE_ALIGN(len)) == 0)
2029		return -EINVAL;
2030
2031	/* Find the first overlapping VMA */
2032	vma = find_vma(mm, start);
2033	if (!vma)
2034		return 0;
2035	prev = vma->vm_prev;
2036	/* we have  start < vma->vm_end  */
2037
2038	/* if it doesn't overlap, we have nothing.. */
2039	end = start + len;
2040	if (vma->vm_start >= end)
2041		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043	/*
2044	 * If we need to split any vma, do it now to save pain later.
2045	 *
2046	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2047	 * unmapped vm_area_struct will remain in use: so lower split_vma
2048	 * places tmp vma above, and higher split_vma places tmp vma below.
2049	 */
 
 
2050	if (start > vma->vm_start) {
2051		int error;
2052
2053		/*
2054		 * Make sure that map_count on return from munmap() will
2055		 * not exceed its limit; but let map_count go just above
2056		 * its limit temporarily, to help free resources as expected.
2057		 */
2058		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2059			return -ENOMEM;
2060
2061		error = __split_vma(mm, vma, start, 0);
2062		if (error)
2063			return error;
2064		prev = vma;
2065	}
2066
2067	/* Does it split the last one? */
2068	last = find_vma(mm, end);
2069	if (last && end > last->vm_start) {
2070		int error = __split_vma(mm, last, end, 1);
 
 
 
 
 
 
 
 
 
 
 
2071		if (error)
2072			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073	}
2074	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075
2076	/*
2077	 * unlock any mlock()ed ranges before detaching vmas
 
 
2078	 */
2079	if (mm->locked_vm) {
2080		struct vm_area_struct *tmp = vma;
2081		while (tmp && tmp->vm_start < end) {
2082			if (tmp->vm_flags & VM_LOCKED) {
2083				mm->locked_vm -= vma_pages(tmp);
2084				munlock_vma_pages_all(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085			}
2086			tmp = tmp->vm_next;
2087		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088	}
2089
2090	/*
2091	 * Remove the vma's, and unmap the actual pages
 
2092	 */
2093	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2094	unmap_region(mm, vma, prev, start, end);
2095
2096	/* Fix up all other VM information */
2097	remove_vma_list(mm, vma);
 
 
 
 
 
 
2098
2099	return 0;
2100}
 
 
 
 
 
 
 
2101
2102EXPORT_SYMBOL(do_munmap);
 
2103
2104SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105{
2106	int ret;
2107	struct mm_struct *mm = current->mm;
 
 
 
 
 
2108
2109	profile_munmap(addr);
 
 
2110
2111	down_write(&mm->mmap_sem);
2112	ret = do_munmap(mm, addr, len);
2113	up_write(&mm->mmap_sem);
2114	return ret;
2115}
2116
2117static inline void verify_mm_writelocked(struct mm_struct *mm)
2118{
2119#ifdef CONFIG_DEBUG_VM
2120	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2121		WARN_ON(1);
2122		up_read(&mm->mmap_sem);
2123	}
2124#endif
2125}
 
 
 
 
 
 
 
 
2126
2127/*
2128 *  this is really a simplified "do_mmap".  it only handles
2129 *  anonymous maps.  eventually we may be able to do some
2130 *  brk-specific accounting here.
2131 */
2132unsigned long do_brk(unsigned long addr, unsigned long len)
 
2133{
2134	struct mm_struct * mm = current->mm;
2135	struct vm_area_struct * vma, * prev;
2136	unsigned long flags;
2137	struct rb_node ** rb_link, * rb_parent;
2138	pgoff_t pgoff = addr >> PAGE_SHIFT;
2139	int error;
2140
2141	len = PAGE_ALIGN(len);
2142	if (!len)
2143		return addr;
 
 
2144
2145	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2146	if (error)
2147		return error;
2148
2149	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
2150
2151	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2152	if (error & ~PAGE_MASK)
2153		return error;
2154
2155	/*
2156	 * mlock MCL_FUTURE?
2157	 */
2158	if (mm->def_flags & VM_LOCKED) {
2159		unsigned long locked, lock_limit;
2160		locked = len >> PAGE_SHIFT;
2161		locked += mm->locked_vm;
2162		lock_limit = rlimit(RLIMIT_MEMLOCK);
2163		lock_limit >>= PAGE_SHIFT;
2164		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2165			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166	}
2167
2168	/*
2169	 * mm->mmap_sem is required to protect against another thread
2170	 * changing the mappings in case we sleep.
2171	 */
2172	verify_mm_writelocked(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173
2174	/*
2175	 * Clear old maps.  this also does some error checking for us
 
2176	 */
2177 munmap_back:
2178	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2179	if (vma && vma->vm_start < addr + len) {
2180		if (do_munmap(mm, addr, len))
2181			return -ENOMEM;
2182		goto munmap_back;
2183	}
2184
2185	/* Check against address space limits *after* clearing old maps... */
2186	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2187		return -ENOMEM;
2188
2189	if (mm->map_count > sysctl_max_map_count)
2190		return -ENOMEM;
2191
2192	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2193		return -ENOMEM;
2194
2195	/* Can we just expand an old private anonymous mapping? */
2196	vma = vma_merge(mm, prev, addr, addr + len, flags,
2197					NULL, NULL, pgoff, NULL);
2198	if (vma)
2199		goto out;
2200
2201	/*
2202	 * create a vma struct for an anonymous mapping
 
2203	 */
2204	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2205	if (!vma) {
2206		vm_unacct_memory(len >> PAGE_SHIFT);
2207		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208	}
2209
2210	INIT_LIST_HEAD(&vma->anon_vma_chain);
2211	vma->vm_mm = mm;
 
 
 
 
 
 
2212	vma->vm_start = addr;
2213	vma->vm_end = addr + len;
2214	vma->vm_pgoff = pgoff;
2215	vma->vm_flags = flags;
2216	vma->vm_page_prot = vm_get_page_prot(flags);
2217	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
2218out:
2219	perf_event_mmap(vma);
2220	mm->total_vm += len >> PAGE_SHIFT;
2221	if (flags & VM_LOCKED) {
2222		if (!mlock_vma_pages_range(vma, addr, addr + len))
2223			mm->locked_vm += (len >> PAGE_SHIFT);
2224	}
2225	return addr;
 
 
 
 
 
 
2226}
2227
2228EXPORT_SYMBOL(do_brk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229
2230/* Release all mmaps. */
2231void exit_mmap(struct mm_struct *mm)
2232{
2233	struct mmu_gather tlb;
2234	struct vm_area_struct *vma;
2235	unsigned long nr_accounted = 0;
2236	unsigned long end;
 
2237
2238	/* mm's last user has gone, and its about to be pulled down */
2239	mmu_notifier_release(mm);
2240
2241	if (mm->locked_vm) {
2242		vma = mm->mmap;
2243		while (vma) {
2244			if (vma->vm_flags & VM_LOCKED)
2245				munlock_vma_pages_all(vma);
2246			vma = vma->vm_next;
2247		}
2248	}
2249
2250	arch_exit_mmap(mm);
2251
2252	vma = mm->mmap;
2253	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2254		return;
 
 
 
 
2255
2256	lru_add_drain();
2257	flush_cache_mm(mm);
2258	tlb_gather_mmu(&tlb, mm, 1);
2259	/* update_hiwater_rss(mm) here? but nobody should be looking */
2260	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2261	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2262	vm_unacct_memory(nr_accounted);
2263
2264	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2265	tlb_finish_mmu(&tlb, 0, end);
2266
2267	/*
2268	 * Walk the list again, actually closing and freeing it,
2269	 * with preemption enabled, without holding any MM locks.
2270	 */
2271	while (vma)
2272		vma = remove_vma(vma);
 
 
 
 
 
2273
2274	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275}
2276
2277/* Insert vm structure into process list sorted by address
2278 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2279 * then i_mmap_mutex is taken here.
2280 */
2281int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2282{
2283	struct vm_area_struct * __vma, * prev;
2284	struct rb_node ** rb_link, * rb_parent;
 
 
 
 
 
 
 
2285
2286	/*
2287	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2288	 * until its first write fault, when page's anon_vma and index
2289	 * are set.  But now set the vm_pgoff it will almost certainly
2290	 * end up with (unless mremap moves it elsewhere before that
2291	 * first wfault), so /proc/pid/maps tells a consistent story.
2292	 *
2293	 * By setting it to reflect the virtual start address of the
2294	 * vma, merges and splits can happen in a seamless way, just
2295	 * using the existing file pgoff checks and manipulations.
2296	 * Similarly in do_mmap_pgoff and in do_brk.
2297	 */
2298	if (!vma->vm_file) {
2299		BUG_ON(vma->anon_vma);
2300		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2301	}
2302	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2303	if (__vma && __vma->vm_start < vma->vm_end)
2304		return -ENOMEM;
2305	if ((vma->vm_flags & VM_ACCOUNT) &&
2306	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2307		return -ENOMEM;
2308	vma_link(mm, vma, prev, rb_link, rb_parent);
 
2309	return 0;
2310}
2311
2312/*
2313 * Copy the vma structure to a new location in the same mm,
2314 * prior to moving page table entries, to effect an mremap move.
2315 */
2316struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2317	unsigned long addr, unsigned long len, pgoff_t pgoff)
 
2318{
2319	struct vm_area_struct *vma = *vmap;
2320	unsigned long vma_start = vma->vm_start;
2321	struct mm_struct *mm = vma->vm_mm;
2322	struct vm_area_struct *new_vma, *prev;
2323	struct rb_node **rb_link, *rb_parent;
2324	struct mempolicy *pol;
2325
2326	/*
2327	 * If anonymous vma has not yet been faulted, update new pgoff
2328	 * to match new location, to increase its chance of merging.
2329	 */
2330	if (!vma->vm_file && !vma->anon_vma)
2331		pgoff = addr >> PAGE_SHIFT;
 
 
2332
2333	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2334	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2335			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
 
2336	if (new_vma) {
2337		/*
2338		 * Source vma may have been merged into new_vma
2339		 */
2340		if (vma_start >= new_vma->vm_start &&
2341		    vma_start < new_vma->vm_end)
2342			*vmap = new_vma;
2343	} else {
2344		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2345		if (new_vma) {
2346			*new_vma = *vma;
2347			pol = mpol_dup(vma_policy(vma));
2348			if (IS_ERR(pol))
2349				goto out_free_vma;
2350			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2351			if (anon_vma_clone(new_vma, vma))
2352				goto out_free_mempol;
2353			vma_set_policy(new_vma, pol);
2354			new_vma->vm_start = addr;
2355			new_vma->vm_end = addr + len;
2356			new_vma->vm_pgoff = pgoff;
2357			if (new_vma->vm_file) {
2358				get_file(new_vma->vm_file);
2359				if (vma->vm_flags & VM_EXECUTABLE)
2360					added_exe_file_vma(mm);
2361			}
2362			if (new_vma->vm_ops && new_vma->vm_ops->open)
2363				new_vma->vm_ops->open(new_vma);
2364			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2365		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366	}
2367	return new_vma;
2368
2369 out_free_mempol:
2370	mpol_put(pol);
2371 out_free_vma:
2372	kmem_cache_free(vm_area_cachep, new_vma);
 
 
 
 
 
 
 
 
 
2373	return NULL;
2374}
2375
2376/*
2377 * Return true if the calling process may expand its vm space by the passed
2378 * number of pages
2379 */
2380int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2381{
2382	unsigned long cur = mm->total_vm;	/* pages */
2383	unsigned long lim;
2384
2385	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
 
2386
2387	if (cur + npages > lim)
2388		return 0;
2389	return 1;
 
 
 
 
 
 
 
 
2390}
2391
 
 
 
2392
2393static int special_mapping_fault(struct vm_area_struct *vma,
2394				struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
2395{
2396	pgoff_t pgoff;
2397	struct page **pages;
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399	/*
2400	 * special mappings have no vm_file, and in that case, the mm
2401	 * uses vm_pgoff internally. So we have to subtract it from here.
2402	 * We are allowed to do this because we are the mm; do not copy
2403	 * this code into drivers!
2404	 */
2405	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406
2407	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2408		pgoff--;
2409
2410	if (*pages) {
2411		struct page *page = *pages;
2412		get_page(page);
2413		vmf->page = page;
2414		return 0;
2415	}
2416
2417	return VM_FAULT_SIGBUS;
2418}
2419
2420/*
2421 * Having a close hook prevents vma merging regardless of flags.
2422 */
2423static void special_mapping_close(struct vm_area_struct *vma)
2424{
2425}
2426
2427static const struct vm_operations_struct special_mapping_vmops = {
2428	.close = special_mapping_close,
2429	.fault = special_mapping_fault,
2430};
2431
2432/*
2433 * Called with mm->mmap_sem held for writing.
2434 * Insert a new vma covering the given region, with the given flags.
2435 * Its pages are supplied by the given array of struct page *.
2436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2437 * The region past the last page supplied will always produce SIGBUS.
2438 * The array pointer and the pages it points to are assumed to stay alive
2439 * for as long as this mapping might exist.
2440 */
2441int install_special_mapping(struct mm_struct *mm,
2442			    unsigned long addr, unsigned long len,
2443			    unsigned long vm_flags, struct page **pages)
2444{
2445	int ret;
2446	struct vm_area_struct *vma;
2447
2448	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2449	if (unlikely(vma == NULL))
2450		return -ENOMEM;
2451
2452	INIT_LIST_HEAD(&vma->anon_vma_chain);
2453	vma->vm_mm = mm;
2454	vma->vm_start = addr;
2455	vma->vm_end = addr + len;
2456
2457	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
 
2458	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2459
2460	vma->vm_ops = &special_mapping_vmops;
2461	vma->vm_private_data = pages;
2462
2463	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2464	if (ret)
2465		goto out;
2466
2467	ret = insert_vm_struct(mm, vma);
2468	if (ret)
2469		goto out;
2470
2471	mm->total_vm += len >> PAGE_SHIFT;
2472
2473	perf_event_mmap(vma);
2474
2475	return 0;
2476
2477out:
2478	kmem_cache_free(vm_area_cachep, vma);
2479	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2480}
2481
2482static DEFINE_MUTEX(mm_all_locks_mutex);
2483
2484static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2485{
2486	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2487		/*
2488		 * The LSB of head.next can't change from under us
2489		 * because we hold the mm_all_locks_mutex.
2490		 */
2491		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2492		/*
2493		 * We can safely modify head.next after taking the
2494		 * anon_vma->root->mutex. If some other vma in this mm shares
2495		 * the same anon_vma we won't take it again.
2496		 *
2497		 * No need of atomic instructions here, head.next
2498		 * can't change from under us thanks to the
2499		 * anon_vma->root->mutex.
2500		 */
2501		if (__test_and_set_bit(0, (unsigned long *)
2502				       &anon_vma->root->head.next))
2503			BUG();
2504	}
2505}
2506
2507static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2508{
2509	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2510		/*
2511		 * AS_MM_ALL_LOCKS can't change from under us because
2512		 * we hold the mm_all_locks_mutex.
2513		 *
2514		 * Operations on ->flags have to be atomic because
2515		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2516		 * mm_all_locks_mutex, there may be other cpus
2517		 * changing other bitflags in parallel to us.
2518		 */
2519		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2520			BUG();
2521		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2522	}
2523}
2524
2525/*
2526 * This operation locks against the VM for all pte/vma/mm related
2527 * operations that could ever happen on a certain mm. This includes
2528 * vmtruncate, try_to_unmap, and all page faults.
2529 *
2530 * The caller must take the mmap_sem in write mode before calling
2531 * mm_take_all_locks(). The caller isn't allowed to release the
2532 * mmap_sem until mm_drop_all_locks() returns.
2533 *
2534 * mmap_sem in write mode is required in order to block all operations
2535 * that could modify pagetables and free pages without need of
2536 * altering the vma layout (for example populate_range() with
2537 * nonlinear vmas). It's also needed in write mode to avoid new
2538 * anon_vmas to be associated with existing vmas.
2539 *
2540 * A single task can't take more than one mm_take_all_locks() in a row
2541 * or it would deadlock.
2542 *
2543 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2544 * mapping->flags avoid to take the same lock twice, if more than one
2545 * vma in this mm is backed by the same anon_vma or address_space.
2546 *
2547 * We can take all the locks in random order because the VM code
2548 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2549 * takes more than one of them in a row. Secondly we're protected
2550 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
 
2551 *
2552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2553 * that may have to take thousand of locks.
2554 *
2555 * mm_take_all_locks() can fail if it's interrupted by signals.
2556 */
2557int mm_take_all_locks(struct mm_struct *mm)
2558{
2559	struct vm_area_struct *vma;
2560	struct anon_vma_chain *avc;
2561	int ret = -EINTR;
2562
2563	BUG_ON(down_read_trylock(&mm->mmap_sem));
2564
2565	mutex_lock(&mm_all_locks_mutex);
2566
2567	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
 
 
 
 
 
2568		if (signal_pending(current))
2569			goto out_unlock;
2570		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
2571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2572	}
2573
2574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
 
 
 
 
 
 
 
 
 
2575		if (signal_pending(current))
2576			goto out_unlock;
2577		if (vma->anon_vma)
2578			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2579				vm_lock_anon_vma(mm, avc->anon_vma);
2580	}
2581
2582	ret = 0;
2583
2584out_unlock:
2585	if (ret)
2586		mm_drop_all_locks(mm);
2587
2588	return ret;
2589}
2590
2591static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2592{
2593	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2594		/*
2595		 * The LSB of head.next can't change to 0 from under
2596		 * us because we hold the mm_all_locks_mutex.
2597		 *
2598		 * We must however clear the bitflag before unlocking
2599		 * the vma so the users using the anon_vma->head will
2600		 * never see our bitflag.
2601		 *
2602		 * No need of atomic instructions here, head.next
2603		 * can't change from under us until we release the
2604		 * anon_vma->root->mutex.
2605		 */
2606		if (!__test_and_clear_bit(0, (unsigned long *)
2607					  &anon_vma->root->head.next))
2608			BUG();
2609		anon_vma_unlock(anon_vma);
2610	}
2611}
2612
2613static void vm_unlock_mapping(struct address_space *mapping)
2614{
2615	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2616		/*
2617		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2618		 * because we hold the mm_all_locks_mutex.
2619		 */
2620		mutex_unlock(&mapping->i_mmap_mutex);
2621		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2622					&mapping->flags))
2623			BUG();
2624	}
2625}
2626
2627/*
2628 * The mmap_sem cannot be released by the caller until
2629 * mm_drop_all_locks() returns.
2630 */
2631void mm_drop_all_locks(struct mm_struct *mm)
2632{
2633	struct vm_area_struct *vma;
2634	struct anon_vma_chain *avc;
 
2635
2636	BUG_ON(down_read_trylock(&mm->mmap_sem));
2637	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2638
2639	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640		if (vma->anon_vma)
2641			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2642				vm_unlock_anon_vma(avc->anon_vma);
2643		if (vma->vm_file && vma->vm_file->f_mapping)
2644			vm_unlock_mapping(vma->vm_file->f_mapping);
2645	}
2646
2647	mutex_unlock(&mm_all_locks_mutex);
2648}
2649
2650/*
2651 * initialise the VMA slab
2652 */
2653void __init mmap_init(void)
2654{
2655	int ret;
2656
2657	ret = percpu_counter_init(&vm_committed_as, 0);
2658	VM_BUG_ON(ret);
2659}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
 
 
 
 
 
 
 
  78
  79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		struct vm_area_struct *next, unsigned long start,
  82		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
  85{
  86	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 
 
  87}
 
 
 
 
 
 
 
 
 
 
  88
  89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  90void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91{
  92	unsigned long vm_flags = vma->vm_flags;
  93	pgprot_t vm_page_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  96	if (vma_wants_writenotify(vma, vm_page_prot)) {
  97		vm_flags &= ~VM_SHARED;
  98		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
  99	}
 100	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 101	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104/*
 105 * Requires inode->i_mapping->i_mmap_rwsem
 106 */
 107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 108		struct file *file, struct address_space *mapping)
 109{
 110	if (vma_is_shared_maywrite(vma))
 111		mapping_unmap_writable(mapping);
 
 
 112
 113	flush_dcache_mmap_lock(mapping);
 114	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 115	flush_dcache_mmap_unlock(mapping);
 116}
 117
 118/*
 119 * Unlink a file-based vm structure from its interval tree, to hide
 120 * vma from rmap and vmtruncate before freeing its page tables.
 121 */
 122void unlink_file_vma(struct vm_area_struct *vma)
 123{
 124	struct file *file = vma->vm_file;
 125
 126	if (file) {
 127		struct address_space *mapping = file->f_mapping;
 128		i_mmap_lock_write(mapping);
 129		__remove_shared_vm_struct(vma, file, mapping);
 130		i_mmap_unlock_write(mapping);
 131	}
 132}
 133
 134/*
 135 * Close a vm structure and free it.
 136 */
 137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
 138{
 
 
 139	might_sleep();
 140	if (vma->vm_ops && vma->vm_ops->close)
 141		vma->vm_ops->close(vma);
 142	if (vma->vm_file)
 143		fput(vma->vm_file);
 
 
 
 144	mpol_put(vma_policy(vma));
 145	if (unreachable)
 146		__vm_area_free(vma);
 147	else
 148		vm_area_free(vma);
 149}
 150
 151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
 152						    unsigned long min)
 153{
 154	return mas_prev(&vmi->mas, min);
 155}
 156
 157/*
 158 * check_brk_limits() - Use platform specific check of range & verify mlock
 159 * limits.
 160 * @addr: The address to check
 161 * @len: The size of increase.
 162 *
 163 * Return: 0 on success.
 164 */
 165static int check_brk_limits(unsigned long addr, unsigned long len)
 166{
 167	unsigned long mapped_addr;
 168
 169	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 170	if (IS_ERR_VALUE(mapped_addr))
 171		return mapped_addr;
 172
 173	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 174		? 0 : -EAGAIN;
 175}
 176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 177		unsigned long addr, unsigned long request, unsigned long flags);
 178SYSCALL_DEFINE1(brk, unsigned long, brk)
 179{
 180	unsigned long newbrk, oldbrk, origbrk;
 
 181	struct mm_struct *mm = current->mm;
 182	struct vm_area_struct *brkvma, *next = NULL;
 183	unsigned long min_brk;
 184	bool populate = false;
 185	LIST_HEAD(uf);
 186	struct vma_iterator vmi;
 187
 188	if (mmap_write_lock_killable(mm))
 189		return -EINTR;
 190
 191	origbrk = mm->brk;
 192
 193#ifdef CONFIG_COMPAT_BRK
 194	/*
 195	 * CONFIG_COMPAT_BRK can still be overridden by setting
 196	 * randomize_va_space to 2, which will still cause mm->start_brk
 197	 * to be arbitrarily shifted
 198	 */
 199	if (current->brk_randomized)
 200		min_brk = mm->start_brk;
 201	else
 202		min_brk = mm->end_data;
 203#else
 204	min_brk = mm->start_brk;
 205#endif
 206	if (brk < min_brk)
 207		goto out;
 208
 209	/*
 210	 * Check against rlimit here. If this check is done later after the test
 211	 * of oldbrk with newbrk then it can escape the test and let the data
 212	 * segment grow beyond its set limit the in case where the limit is
 213	 * not page aligned -Ram Gupta
 214	 */
 215	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 216			      mm->end_data, mm->start_data))
 
 217		goto out;
 218
 219	newbrk = PAGE_ALIGN(brk);
 220	oldbrk = PAGE_ALIGN(mm->brk);
 221	if (oldbrk == newbrk) {
 222		mm->brk = brk;
 223		goto success;
 224	}
 225
 226	/* Always allow shrinking brk. */
 227	if (brk <= mm->brk) {
 228		/* Search one past newbrk */
 229		vma_iter_init(&vmi, mm, newbrk);
 230		brkvma = vma_find(&vmi, oldbrk);
 231		if (!brkvma || brkvma->vm_start >= oldbrk)
 232			goto out; /* mapping intersects with an existing non-brk vma. */
 233		/*
 234		 * mm->brk must be protected by write mmap_lock.
 235		 * do_vma_munmap() will drop the lock on success,  so update it
 236		 * before calling do_vma_munmap().
 237		 */
 238		mm->brk = brk;
 239		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
 240			goto out;
 241
 242		goto success_unlocked;
 243	}
 244
 245	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 246		goto out;
 247
 248	/*
 249	 * Only check if the next VMA is within the stack_guard_gap of the
 250	 * expansion area
 251	 */
 252	vma_iter_init(&vmi, mm, oldbrk);
 253	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 254	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 255		goto out;
 256
 257	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 258	/* Ok, looks good - let it rip. */
 259	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 260		goto out;
 261
 262	mm->brk = brk;
 263	if (mm->def_flags & VM_LOCKED)
 264		populate = true;
 
 
 
 265
 266success:
 267	mmap_write_unlock(mm);
 268success_unlocked:
 269	userfaultfd_unmap_complete(mm, &uf);
 270	if (populate)
 271		mm_populate(oldbrk, newbrk - oldbrk);
 272	return brk;
 273
 274out:
 275	mm->brk = origbrk;
 276	mmap_write_unlock(mm);
 277	return origbrk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
 281static void validate_mm(struct mm_struct *mm)
 282{
 283	int bug = 0;
 284	int i = 0;
 285	struct vm_area_struct *vma;
 286	VMA_ITERATOR(vmi, mm, 0);
 287
 288	mt_validate(&mm->mm_mt);
 289	for_each_vma(vmi, vma) {
 290#ifdef CONFIG_DEBUG_VM_RB
 291		struct anon_vma *anon_vma = vma->anon_vma;
 292		struct anon_vma_chain *avc;
 293#endif
 294		unsigned long vmi_start, vmi_end;
 295		bool warn = 0;
 296
 297		vmi_start = vma_iter_addr(&vmi);
 298		vmi_end = vma_iter_end(&vmi);
 299		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
 300			warn = 1;
 301
 302		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
 303			warn = 1;
 304
 305		if (warn) {
 306			pr_emerg("issue in %s\n", current->comm);
 307			dump_stack();
 308			dump_vma(vma);
 309			pr_emerg("tree range: %px start %lx end %lx\n", vma,
 310				 vmi_start, vmi_end - 1);
 311			vma_iter_dump_tree(&vmi);
 312		}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315		if (anon_vma) {
 316			anon_vma_lock_read(anon_vma);
 317			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 318				anon_vma_interval_tree_verify(avc);
 319			anon_vma_unlock_read(anon_vma);
 320		}
 321#endif
 322		i++;
 323	}
 324	if (i != mm->map_count) {
 325		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
 326		bug = 1;
 327	}
 328	VM_BUG_ON_MM(bug, mm);
 
 329}
 330
 331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
 332#define validate_mm(mm) do { } while (0)
 333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
 334
 335/*
 336 * vma has some anon_vma assigned, and is already inserted on that
 337 * anon_vma's interval trees.
 338 *
 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 340 * vma must be removed from the anon_vma's interval trees using
 341 * anon_vma_interval_tree_pre_update_vma().
 342 *
 343 * After the update, the vma will be reinserted using
 344 * anon_vma_interval_tree_post_update_vma().
 345 *
 346 * The entire update must be protected by exclusive mmap_lock and by
 347 * the root anon_vma's mutex.
 348 */
 349static inline void
 350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 351{
 352	struct anon_vma_chain *avc;
 
 
 
 
 
 
 
 
 
 
 353
 354	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 355		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 
 
 
 
 356}
 357
 358static inline void
 359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 360{
 361	struct anon_vma_chain *avc;
 362
 363	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 364		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 365}
 366
 367static unsigned long count_vma_pages_range(struct mm_struct *mm,
 368		unsigned long addr, unsigned long end)
 369{
 370	VMA_ITERATOR(vmi, mm, addr);
 371	struct vm_area_struct *vma;
 372	unsigned long nr_pages = 0;
 373
 374	for_each_vma_range(vmi, vma, end) {
 375		unsigned long vm_start = max(addr, vma->vm_start);
 376		unsigned long vm_end = min(end, vma->vm_end);
 377
 378		nr_pages += PHYS_PFN(vm_end - vm_start);
 
 
 
 
 
 
 
 
 
 
 379	}
 380
 381	return nr_pages;
 382}
 383
 384static void __vma_link_file(struct vm_area_struct *vma,
 385			    struct address_space *mapping)
 
 
 386{
 387	if (vma_is_shared_maywrite(vma))
 388		mapping_allow_writable(mapping);
 389
 390	flush_dcache_mmap_lock(mapping);
 391	vma_interval_tree_insert(vma, &mapping->i_mmap);
 392	flush_dcache_mmap_unlock(mapping);
 393}
 394
 395static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
 
 
 396{
 397	VMA_ITERATOR(vmi, mm, 0);
 398	struct address_space *mapping = NULL;
 399
 400	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
 401	if (vma_iter_prealloc(&vmi, vma))
 402		return -ENOMEM;
 403
 404	vma_start_write(vma);
 
 405
 406	vma_iter_store(&vmi, vma);
 
 407
 408	if (vma->vm_file) {
 409		mapping = vma->vm_file->f_mapping;
 410		i_mmap_lock_write(mapping);
 411		__vma_link_file(vma, mapping);
 412		i_mmap_unlock_write(mapping);
 413	}
 414
 415	mm->map_count++;
 416	validate_mm(mm);
 417	return 0;
 418}
 419
 420/*
 421 * init_multi_vma_prep() - Initializer for struct vma_prepare
 422 * @vp: The vma_prepare struct
 423 * @vma: The vma that will be altered once locked
 424 * @next: The next vma if it is to be adjusted
 425 * @remove: The first vma to be removed
 426 * @remove2: The second vma to be removed
 427 */
 428static inline void init_multi_vma_prep(struct vma_prepare *vp,
 429		struct vm_area_struct *vma, struct vm_area_struct *next,
 430		struct vm_area_struct *remove, struct vm_area_struct *remove2)
 
 
 
 
 
 
 
 
 431{
 432	memset(vp, 0, sizeof(struct vma_prepare));
 433	vp->vma = vma;
 434	vp->anon_vma = vma->anon_vma;
 435	vp->remove = remove;
 436	vp->remove2 = remove2;
 437	vp->adj_next = next;
 438	if (!vp->anon_vma && next)
 439		vp->anon_vma = next->anon_vma;
 440
 441	vp->file = vma->vm_file;
 442	if (vp->file)
 443		vp->mapping = vma->vm_file->f_mapping;
 444
 
 
 
 
 
 
 445}
 446
 447/*
 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct
 449 * @vp: The vma_prepare struct
 450 * @vma: The vma that will be altered once locked
 
 
 451 */
 452static inline void init_vma_prep(struct vma_prepare *vp,
 453				 struct vm_area_struct *vma)
 454{
 455	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
 456}
 
 
 
 
 
 
 
 457
 
 
 458
 459/*
 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering
 461 * @vp: The initialized vma_prepare struct
 462 */
 463static inline void vma_prepare(struct vma_prepare *vp)
 464{
 465	if (vp->file) {
 466		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468		if (vp->adj_next)
 469			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
 470				      vp->adj_next->vm_end);
 
 
 
 
 
 
 
 
 471
 472		i_mmap_lock_write(vp->mapping);
 473		if (vp->insert && vp->insert->vm_file) {
 
 
 
 
 474			/*
 475			 * Put into interval tree now, so instantiated pages
 476			 * are visible to arm/parisc __flush_dcache_page
 477			 * throughout; but we cannot insert into address
 478			 * space until vma start or end is updated.
 479			 */
 480			__vma_link_file(vp->insert,
 481					vp->insert->vm_file->f_mapping);
 482		}
 483	}
 484
 485	if (vp->anon_vma) {
 486		anon_vma_lock_write(vp->anon_vma);
 487		anon_vma_interval_tree_pre_update_vma(vp->vma);
 488		if (vp->adj_next)
 489			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
 
 
 
 
 
 
 490	}
 491
 492	if (vp->file) {
 493		flush_dcache_mmap_lock(vp->mapping);
 494		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
 495		if (vp->adj_next)
 496			vma_interval_tree_remove(vp->adj_next,
 497						 &vp->mapping->i_mmap);
 498	}
 499
 500}
 
 
 
 
 
 
 501
 502/*
 503 * vma_complete- Helper function for handling the unlocking after altering VMAs,
 504 * or for inserting a VMA.
 505 *
 506 * @vp: The vma_prepare struct
 507 * @vmi: The vma iterator
 508 * @mm: The mm_struct
 509 */
 510static inline void vma_complete(struct vma_prepare *vp,
 511				struct vma_iterator *vmi, struct mm_struct *mm)
 512{
 513	if (vp->file) {
 514		if (vp->adj_next)
 515			vma_interval_tree_insert(vp->adj_next,
 516						 &vp->mapping->i_mmap);
 517		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
 518		flush_dcache_mmap_unlock(vp->mapping);
 519	}
 520
 521	if (vp->remove && vp->file) {
 522		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
 523		if (vp->remove2)
 524			__remove_shared_vm_struct(vp->remove2, vp->file,
 525						  vp->mapping);
 526	} else if (vp->insert) {
 
 
 
 527		/*
 528		 * split_vma has split insert from vma, and needs
 529		 * us to insert it before dropping the locks
 530		 * (it may either follow vma or precede it).
 531		 */
 532		vma_iter_store(vmi, vp->insert);
 533		mm->map_count++;
 534	}
 535
 536	if (vp->anon_vma) {
 537		anon_vma_interval_tree_post_update_vma(vp->vma);
 538		if (vp->adj_next)
 539			anon_vma_interval_tree_post_update_vma(vp->adj_next);
 540		anon_vma_unlock_write(vp->anon_vma);
 541	}
 542
 543	if (vp->file) {
 544		i_mmap_unlock_write(vp->mapping);
 545		uprobe_mmap(vp->vma);
 546
 547		if (vp->adj_next)
 548			uprobe_mmap(vp->adj_next);
 549	}
 550
 551	if (vp->remove) {
 552again:
 553		vma_mark_detached(vp->remove, true);
 554		if (vp->file) {
 555			uprobe_munmap(vp->remove, vp->remove->vm_start,
 556				      vp->remove->vm_end);
 557			fput(vp->file);
 558		}
 559		if (vp->remove->anon_vma)
 560			anon_vma_merge(vp->vma, vp->remove);
 561		mm->map_count--;
 562		mpol_put(vma_policy(vp->remove));
 563		if (!vp->remove2)
 564			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
 565		vm_area_free(vp->remove);
 566
 567		/*
 568		 * In mprotect's case 6 (see comments on vma_merge),
 569		 * we are removing both mid and next vmas
 
 570		 */
 571		if (vp->remove2) {
 572			vp->remove = vp->remove2;
 573			vp->remove2 = NULL;
 574			goto again;
 575		}
 576	}
 577	if (vp->insert && vp->file)
 578		uprobe_mmap(vp->insert);
 579	validate_mm(mm);
 580}
 581
 582/*
 583 * dup_anon_vma() - Helper function to duplicate anon_vma
 584 * @dst: The destination VMA
 585 * @src: The source VMA
 586 * @dup: Pointer to the destination VMA when successful.
 587 *
 588 * Returns: 0 on success.
 589 */
 590static inline int dup_anon_vma(struct vm_area_struct *dst,
 591		struct vm_area_struct *src, struct vm_area_struct **dup)
 592{
 593	/*
 594	 * Easily overlooked: when mprotect shifts the boundary, make sure the
 595	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
 596	 * anon pages imported.
 597	 */
 598	if (src->anon_vma && !dst->anon_vma) {
 599		int ret;
 600
 601		vma_assert_write_locked(dst);
 602		dst->anon_vma = src->anon_vma;
 603		ret = anon_vma_clone(dst, src);
 604		if (ret)
 605			return ret;
 606
 607		*dup = dst;
 608	}
 609
 610	return 0;
 611}
 612
 613/*
 614 * vma_expand - Expand an existing VMA
 615 *
 616 * @vmi: The vma iterator
 617 * @vma: The vma to expand
 618 * @start: The start of the vma
 619 * @end: The exclusive end of the vma
 620 * @pgoff: The page offset of vma
 621 * @next: The current of next vma.
 622 *
 623 * Expand @vma to @start and @end.  Can expand off the start and end.  Will
 624 * expand over @next if it's different from @vma and @end == @next->vm_end.
 625 * Checking if the @vma can expand and merge with @next needs to be handled by
 626 * the caller.
 627 *
 628 * Returns: 0 on success
 629 */
 630int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
 631	       unsigned long start, unsigned long end, pgoff_t pgoff,
 632	       struct vm_area_struct *next)
 633{
 634	struct vm_area_struct *anon_dup = NULL;
 635	bool remove_next = false;
 636	struct vma_prepare vp;
 637
 638	vma_start_write(vma);
 639	if (next && (vma != next) && (end == next->vm_end)) {
 640		int ret;
 641
 642		remove_next = true;
 643		vma_start_write(next);
 644		ret = dup_anon_vma(vma, next, &anon_dup);
 645		if (ret)
 646			return ret;
 647	}
 648
 649	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
 650	/* Not merging but overwriting any part of next is not handled. */
 651	VM_WARN_ON(next && !vp.remove &&
 652		  next != vma && end > next->vm_start);
 653	/* Only handles expanding */
 654	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
 655
 656	/* Note: vma iterator must be pointing to 'start' */
 657	vma_iter_config(vmi, start, end);
 658	if (vma_iter_prealloc(vmi, vma))
 659		goto nomem;
 660
 661	vma_prepare(&vp);
 662	vma_adjust_trans_huge(vma, start, end, 0);
 663	vma->vm_start = start;
 664	vma->vm_end = end;
 665	vma->vm_pgoff = pgoff;
 666	vma_iter_store(vmi, vma);
 667
 668	vma_complete(&vp, vmi, vma->vm_mm);
 669	return 0;
 670
 671nomem:
 672	if (anon_dup)
 673		unlink_anon_vmas(anon_dup);
 674	return -ENOMEM;
 675}
 676
 677/*
 678 * vma_shrink() - Reduce an existing VMAs memory area
 679 * @vmi: The vma iterator
 680 * @vma: The VMA to modify
 681 * @start: The new start
 682 * @end: The new end
 683 *
 684 * Returns: 0 on success, -ENOMEM otherwise
 685 */
 686int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
 687	       unsigned long start, unsigned long end, pgoff_t pgoff)
 688{
 689	struct vma_prepare vp;
 690
 691	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
 692
 693	if (vma->vm_start < start)
 694		vma_iter_config(vmi, vma->vm_start, start);
 695	else
 696		vma_iter_config(vmi, end, vma->vm_end);
 697
 698	if (vma_iter_prealloc(vmi, NULL))
 699		return -ENOMEM;
 700
 701	vma_start_write(vma);
 702
 703	init_vma_prep(&vp, vma);
 704	vma_prepare(&vp);
 705	vma_adjust_trans_huge(vma, start, end, 0);
 706
 707	vma_iter_clear(vmi);
 708	vma->vm_start = start;
 709	vma->vm_end = end;
 710	vma->vm_pgoff = pgoff;
 711	vma_complete(&vp, vmi, vma->vm_mm);
 712	return 0;
 713}
 714
 715/*
 716 * If the vma has a ->close operation then the driver probably needs to release
 717 * per-vma resources, so we don't attempt to merge those if the caller indicates
 718 * the current vma may be removed as part of the merge.
 719 */
 720static inline bool is_mergeable_vma(struct vm_area_struct *vma,
 721		struct file *file, unsigned long vm_flags,
 722		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 723		struct anon_vma_name *anon_name, bool may_remove_vma)
 724{
 725	/*
 726	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 727	 * match the flags but dirty bit -- the caller should mark
 728	 * merged VMA as dirty. If dirty bit won't be excluded from
 729	 * comparison, we increase pressure on the memory system forcing
 730	 * the kernel to generate new VMAs when old one could be
 731	 * extended instead.
 732	 */
 733	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 734		return false;
 735	if (vma->vm_file != file)
 736		return false;
 737	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
 738		return false;
 739	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 740		return false;
 741	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
 742		return false;
 743	return true;
 744}
 745
 746static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 747		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
 
 748{
 749	/*
 750	 * The list_is_singular() test is to avoid merging VMA cloned from
 751	 * parents. This can improve scalability caused by anon_vma lock.
 752	 */
 753	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 754		list_is_singular(&vma->anon_vma_chain)))
 755		return true;
 756	return anon_vma1 == anon_vma2;
 757}
 758
 759/*
 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 761 * in front of (at a lower virtual address and file offset than) the vma.
 762 *
 763 * We cannot merge two vmas if they have differently assigned (non-NULL)
 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 765 *
 766 * We don't check here for the merged mmap wrapping around the end of pagecache
 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
 768 * wrap, nor mmaps which cover the final page at index -1UL.
 769 *
 770 * We assume the vma may be removed as part of the merge.
 771 */
 772static bool
 773can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 774		struct anon_vma *anon_vma, struct file *file,
 775		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 776		struct anon_vma_name *anon_name)
 777{
 778	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
 779	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 780		if (vma->vm_pgoff == vm_pgoff)
 781			return true;
 782	}
 783	return false;
 784}
 785
 786/*
 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 788 * beyond (at a higher virtual address and file offset than) the vma.
 789 *
 790 * We cannot merge two vmas if they have differently assigned (non-NULL)
 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 792 *
 793 * We assume that vma is not removed as part of the merge.
 794 */
 795static bool
 796can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 797		struct anon_vma *anon_vma, struct file *file,
 798		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 799		struct anon_vma_name *anon_name)
 800{
 801	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
 802	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 803		pgoff_t vm_pglen;
 804		vm_pglen = vma_pages(vma);
 805		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 806			return true;
 807	}
 808	return false;
 809}
 810
 811/*
 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
 813 * figure out whether that can be merged with its predecessor or its
 814 * successor.  Or both (it neatly fills a hole).
 815 *
 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 817 * certain not to be mapped by the time vma_merge is called; but when
 818 * called for mprotect, it is certain to be already mapped (either at
 819 * an offset within prev, or at the start of next), and the flags of
 820 * this area are about to be changed to vm_flags - and the no-change
 821 * case has already been eliminated.
 822 *
 823 * The following mprotect cases have to be considered, where **** is
 824 * the area passed down from mprotect_fixup, never extending beyond one
 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
 826 * at the same address as **** and is of the same or larger span, and
 827 * NNNN the next vma after ****:
 828 *
 829 *     ****             ****                   ****
 830 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
 831 *    cannot merge    might become       might become
 832 *                    PPNNNNNNNNNN       PPPPPPPPPPCC
 833 *    mmap, brk or    case 4 below       case 5 below
 834 *    mremap move:
 835 *                        ****               ****
 836 *                    PPPP    NNNN       PPPPCCCCNNNN
 837 *                    might become       might become
 838 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
 839 *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
 840 *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
 841 *
 842 * It is important for case 8 that the vma CCCC overlapping the
 843 * region **** is never going to extended over NNNN. Instead NNNN must
 844 * be extended in region **** and CCCC must be removed. This way in
 845 * all cases where vma_merge succeeds, the moment vma_merge drops the
 846 * rmap_locks, the properties of the merged vma will be already
 847 * correct for the whole merged range. Some of those properties like
 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
 849 * be correct for the whole merged range immediately after the
 850 * rmap_locks are released. Otherwise if NNNN would be removed and
 851 * CCCC would be extended over the NNNN range, remove_migration_ptes
 852 * or other rmap walkers (if working on addresses beyond the "end"
 853 * parameter) may establish ptes with the wrong permissions of CCCC
 854 * instead of the right permissions of NNNN.
 855 *
 856 * In the code below:
 857 * PPPP is represented by *prev
 858 * CCCC is represented by *curr or not represented at all (NULL)
 859 * NNNN is represented by *next or not represented at all (NULL)
 860 * **** is not represented - it will be merged and the vma containing the
 861 *      area is returned, or the function will return NULL
 862 */
 863static struct vm_area_struct
 864*vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
 865	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
 866	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
 867	   pgoff_t pgoff, struct mempolicy *policy,
 868	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 869	   struct anon_vma_name *anon_name)
 870{
 871	struct vm_area_struct *curr, *next, *res;
 872	struct vm_area_struct *vma, *adjust, *remove, *remove2;
 873	struct vm_area_struct *anon_dup = NULL;
 874	struct vma_prepare vp;
 875	pgoff_t vma_pgoff;
 876	int err = 0;
 877	bool merge_prev = false;
 878	bool merge_next = false;
 879	bool vma_expanded = false;
 880	unsigned long vma_start = addr;
 881	unsigned long vma_end = end;
 882	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 883	long adj_start = 0;
 
 884
 885	/*
 886	 * We later require that vma->vm_flags == vm_flags,
 887	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 888	 */
 889	if (vm_flags & VM_SPECIAL)
 890		return NULL;
 891
 892	/* Does the input range span an existing VMA? (cases 5 - 8) */
 893	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
 894
 895	if (!curr ||			/* cases 1 - 4 */
 896	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
 897		next = vma_lookup(mm, end);
 898	else
 899		next = NULL;		/* case 5 */
 
 
 
 900
 901	if (prev) {
 902		vma_start = prev->vm_start;
 903		vma_pgoff = prev->vm_pgoff;
 904
 905		/* Can we merge the predecessor? */
 906		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
 907		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
 908					   pgoff, vm_userfaultfd_ctx, anon_name)) {
 909			merge_prev = true;
 910			vma_prev(vmi);
 911		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913
 914	/* Can we merge the successor? */
 915	if (next && mpol_equal(policy, vma_policy(next)) &&
 916	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
 917				 vm_userfaultfd_ctx, anon_name)) {
 918		merge_next = true;
 919	}
 920
 921	/* Verify some invariant that must be enforced by the caller. */
 922	VM_WARN_ON(prev && addr <= prev->vm_start);
 923	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
 924	VM_WARN_ON(addr >= end);
 925
 926	if (!merge_prev && !merge_next)
 927		return NULL; /* Not mergeable. */
 928
 929	if (merge_prev)
 930		vma_start_write(prev);
 931
 932	res = vma = prev;
 933	remove = remove2 = adjust = NULL;
 934
 935	/* Can we merge both the predecessor and the successor? */
 936	if (merge_prev && merge_next &&
 937	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
 938		vma_start_write(next);
 939		remove = next;				/* case 1 */
 940		vma_end = next->vm_end;
 941		err = dup_anon_vma(prev, next, &anon_dup);
 942		if (curr) {				/* case 6 */
 943			vma_start_write(curr);
 944			remove = curr;
 945			remove2 = next;
 946			/*
 947			 * Note that the dup_anon_vma below cannot overwrite err
 948			 * since the first caller would do nothing unless next
 949			 * has an anon_vma.
 950			 */
 951			if (!next->anon_vma)
 952				err = dup_anon_vma(prev, curr, &anon_dup);
 953		}
 954	} else if (merge_prev) {			/* case 2 */
 955		if (curr) {
 956			vma_start_write(curr);
 957			if (end == curr->vm_end) {	/* case 7 */
 958				/*
 959				 * can_vma_merge_after() assumed we would not be
 960				 * removing prev vma, so it skipped the check
 961				 * for vm_ops->close, but we are removing curr
 962				 */
 963				if (curr->vm_ops && curr->vm_ops->close)
 964					err = -EINVAL;
 965				remove = curr;
 966			} else {			/* case 5 */
 967				adjust = curr;
 968				adj_start = (end - curr->vm_start);
 969			}
 970			if (!err)
 971				err = dup_anon_vma(prev, curr, &anon_dup);
 972		}
 973	} else { /* merge_next */
 974		vma_start_write(next);
 975		res = next;
 976		if (prev && addr < prev->vm_end) {	/* case 4 */
 977			vma_start_write(prev);
 978			vma_end = addr;
 979			adjust = next;
 980			adj_start = -(prev->vm_end - addr);
 981			err = dup_anon_vma(next, prev, &anon_dup);
 982		} else {
 983			/*
 984			 * Note that cases 3 and 8 are the ONLY ones where prev
 985			 * is permitted to be (but is not necessarily) NULL.
 986			 */
 987			vma = next;			/* case 3 */
 988			vma_start = addr;
 989			vma_end = next->vm_end;
 990			vma_pgoff = next->vm_pgoff - pglen;
 991			if (curr) {			/* case 8 */
 992				vma_pgoff = curr->vm_pgoff;
 993				vma_start_write(curr);
 994				remove = curr;
 995				err = dup_anon_vma(next, curr, &anon_dup);
 996			}
 997		}
 998	}
 999
1000	/* Error in anon_vma clone. */
1001	if (err)
1002		goto anon_vma_fail;
1003
1004	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005		vma_expanded = true;
1006
1007	if (vma_expanded) {
1008		vma_iter_config(vmi, vma_start, vma_end);
1009	} else {
1010		vma_iter_config(vmi, adjust->vm_start + adj_start,
1011				adjust->vm_end);
1012	}
1013
1014	if (vma_iter_prealloc(vmi, vma))
1015		goto prealloc_fail;
1016
1017	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019		   vp.anon_vma != adjust->anon_vma);
1020
1021	vma_prepare(&vp);
1022	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023
1024	vma->vm_start = vma_start;
1025	vma->vm_end = vma_end;
1026	vma->vm_pgoff = vma_pgoff;
1027
1028	if (vma_expanded)
1029		vma_iter_store(vmi, vma);
1030
1031	if (adj_start) {
1032		adjust->vm_start += adj_start;
1033		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034		if (adj_start < 0) {
1035			WARN_ON(vma_expanded);
1036			vma_iter_store(vmi, next);
1037		}
1038	}
1039
1040	vma_complete(&vp, vmi, mm);
1041	khugepaged_enter_vma(res, vm_flags);
1042	return res;
1043
1044prealloc_fail:
1045	if (anon_dup)
1046		unlink_anon_vmas(anon_dup);
1047
1048anon_vma_fail:
1049	vma_iter_set(vmi, addr);
1050	vma_iter_load(vmi);
1051	return NULL;
1052}
1053
1054/*
1055 * Rough compatibility check to quickly see if it's even worth looking
1056 * at sharing an anon_vma.
1057 *
1058 * They need to have the same vm_file, and the flags can only differ
1059 * in things that mprotect may change.
1060 *
1061 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062 * we can merge the two vma's. For example, we refuse to merge a vma if
1063 * there is a vm_ops->close() function, because that indicates that the
1064 * driver is doing some kind of reference counting. But that doesn't
1065 * really matter for the anon_vma sharing case.
1066 */
1067static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068{
1069	return a->vm_end == b->vm_start &&
1070		mpol_equal(vma_policy(a), vma_policy(b)) &&
1071		a->vm_file == b->vm_file &&
1072		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074}
1075
1076/*
1077 * Do some basic sanity checking to see if we can re-use the anon_vma
1078 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079 * the same as 'old', the other will be the new one that is trying
1080 * to share the anon_vma.
1081 *
1082 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083 * the anon_vma of 'old' is concurrently in the process of being set up
1084 * by another page fault trying to merge _that_. But that's ok: if it
1085 * is being set up, that automatically means that it will be a singleton
1086 * acceptable for merging, so we can do all of this optimistically. But
1087 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088 *
1089 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091 * is to return an anon_vma that is "complex" due to having gone through
1092 * a fork).
1093 *
1094 * We also make sure that the two vma's are compatible (adjacent,
1095 * and with the same memory policies). That's all stable, even with just
1096 * a read lock on the mmap_lock.
1097 */
1098static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099{
1100	if (anon_vma_compatible(a, b)) {
1101		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102
1103		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104			return anon_vma;
1105	}
1106	return NULL;
1107}
1108
1109/*
1110 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111 * neighbouring vmas for a suitable anon_vma, before it goes off
1112 * to allocate a new anon_vma.  It checks because a repetitive
1113 * sequence of mprotects and faults may otherwise lead to distinct
1114 * anon_vmas being allocated, preventing vma merge in subsequent
1115 * mprotect.
1116 */
1117struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118{
1119	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120	struct anon_vma *anon_vma = NULL;
1121	struct vm_area_struct *prev, *next;
1122
1123	/* Try next first. */
1124	next = mas_walk(&mas);
1125	if (next) {
1126		anon_vma = reusable_anon_vma(next, vma, next);
1127		if (anon_vma)
1128			return anon_vma;
1129	}
1130
1131	prev = mas_prev(&mas, 0);
1132	VM_BUG_ON_VMA(prev != vma, vma);
1133	prev = mas_prev(&mas, 0);
1134	/* Try prev next. */
1135	if (prev)
1136		anon_vma = reusable_anon_vma(prev, prev, vma);
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138	/*
1139	 * We might reach here with anon_vma == NULL if we can't find
1140	 * any reusable anon_vma.
1141	 * There's no absolute need to look only at touching neighbours:
1142	 * we could search further afield for "compatible" anon_vmas.
1143	 * But it would probably just be a waste of time searching,
1144	 * or lead to too many vmas hanging off the same anon_vma.
1145	 * We're trying to allow mprotect remerging later on,
1146	 * not trying to minimize memory used for anon_vmas.
1147	 */
1148	return anon_vma;
1149}
1150
1151/*
1152 * If a hint addr is less than mmap_min_addr change hint to be as
1153 * low as possible but still greater than mmap_min_addr
1154 */
1155static inline unsigned long round_hint_to_min(unsigned long hint)
1156{
1157	hint &= PAGE_MASK;
1158	if (((void *)hint != NULL) &&
1159	    (hint < mmap_min_addr))
1160		return PAGE_ALIGN(mmap_min_addr);
1161	return hint;
1162}
1163
1164bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165			unsigned long bytes)
1166{
1167	unsigned long locked_pages, limit_pages;
1168
1169	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170		return true;
1171
1172	locked_pages = bytes >> PAGE_SHIFT;
1173	locked_pages += mm->locked_vm;
1174
1175	limit_pages = rlimit(RLIMIT_MEMLOCK);
1176	limit_pages >>= PAGE_SHIFT;
1177
1178	return locked_pages <= limit_pages;
1179}
1180
1181static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182{
1183	if (S_ISREG(inode->i_mode))
1184		return MAX_LFS_FILESIZE;
1185
1186	if (S_ISBLK(inode->i_mode))
1187		return MAX_LFS_FILESIZE;
1188
1189	if (S_ISSOCK(inode->i_mode))
1190		return MAX_LFS_FILESIZE;
1191
1192	/* Special "we do even unsigned file positions" case */
1193	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194		return 0;
1195
1196	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197	return ULONG_MAX;
1198}
1199
1200static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201				unsigned long pgoff, unsigned long len)
1202{
1203	u64 maxsize = file_mmap_size_max(file, inode);
1204
1205	if (maxsize && len > maxsize)
1206		return false;
1207	maxsize -= len;
1208	if (pgoff > maxsize >> PAGE_SHIFT)
1209		return false;
1210	return true;
1211}
 
1212
1213/*
1214 * The caller must write-lock current->mm->mmap_lock.
1215 */
1216unsigned long do_mmap(struct file *file, unsigned long addr,
 
1217			unsigned long len, unsigned long prot,
1218			unsigned long flags, vm_flags_t vm_flags,
1219			unsigned long pgoff, unsigned long *populate,
1220			struct list_head *uf)
1221{
1222	struct mm_struct *mm = current->mm;
1223	int pkey = 0;
1224
1225	*populate = 0;
1226
1227	if (!len)
1228		return -EINVAL;
1229
1230	/*
1231	 * Does the application expect PROT_READ to imply PROT_EXEC?
1232	 *
1233	 * (the exception is when the underlying filesystem is noexec
1234	 *  mounted, in which case we don't add PROT_EXEC.)
1235	 */
1236	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237		if (!(file && path_noexec(&file->f_path)))
1238			prot |= PROT_EXEC;
1239
1240	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1241	if (flags & MAP_FIXED_NOREPLACE)
1242		flags |= MAP_FIXED;
1243
1244	if (!(flags & MAP_FIXED))
1245		addr = round_hint_to_min(addr);
1246
1247	/* Careful about overflows.. */
1248	len = PAGE_ALIGN(len);
1249	if (!len)
1250		return -ENOMEM;
1251
1252	/* offset overflow? */
1253	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254		return -EOVERFLOW;
1255
1256	/* Too many mappings? */
1257	if (mm->map_count > sysctl_max_map_count)
1258		return -ENOMEM;
1259
1260	/* Obtain the address to map to. we verify (or select) it and ensure
1261	 * that it represents a valid section of the address space.
1262	 */
1263	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264	if (IS_ERR_VALUE(addr))
1265		return addr;
1266
1267	if (flags & MAP_FIXED_NOREPLACE) {
1268		if (find_vma_intersection(mm, addr, addr + len))
1269			return -EEXIST;
1270	}
1271
1272	if (prot == PROT_EXEC) {
1273		pkey = execute_only_pkey(mm);
1274		if (pkey < 0)
1275			pkey = 0;
1276	}
1277
1278	/* Do simple checking here so the lower-level routines won't have
1279	 * to. we assume access permissions have been handled by the open
1280	 * of the memory object, so we don't do any here.
1281	 */
1282	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1283			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285	if (flags & MAP_LOCKED)
1286		if (!can_do_mlock())
1287			return -EPERM;
1288
1289	if (!mlock_future_ok(mm, vm_flags, len))
1290		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
1291
1292	if (file) {
1293		struct inode *inode = file_inode(file);
1294		unsigned long flags_mask;
1295
1296		if (!file_mmap_ok(file, inode, pgoff, len))
1297			return -EOVERFLOW;
1298
1299		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300
1301		switch (flags & MAP_TYPE) {
1302		case MAP_SHARED:
1303			/*
1304			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305			 * flags. E.g. MAP_SYNC is dangerous to use with
1306			 * MAP_SHARED as you don't know which consistency model
1307			 * you will get. We silently ignore unsupported flags
1308			 * with MAP_SHARED to preserve backward compatibility.
1309			 */
1310			flags &= LEGACY_MAP_MASK;
1311			fallthrough;
1312		case MAP_SHARED_VALIDATE:
1313			if (flags & ~flags_mask)
1314				return -EOPNOTSUPP;
1315			if (prot & PROT_WRITE) {
1316				if (!(file->f_mode & FMODE_WRITE))
1317					return -EACCES;
1318				if (IS_SWAPFILE(file->f_mapping->host))
1319					return -ETXTBSY;
1320			}
1321
1322			/*
1323			 * Make sure we don't allow writing to an append-only
1324			 * file..
1325			 */
1326			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327				return -EACCES;
1328
 
 
 
 
 
 
1329			vm_flags |= VM_SHARED | VM_MAYSHARE;
1330			if (!(file->f_mode & FMODE_WRITE))
1331				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332			fallthrough;
 
1333		case MAP_PRIVATE:
1334			if (!(file->f_mode & FMODE_READ))
1335				return -EACCES;
1336			if (path_noexec(&file->f_path)) {
1337				if (vm_flags & VM_EXEC)
1338					return -EPERM;
1339				vm_flags &= ~VM_MAYEXEC;
1340			}
1341
1342			if (!file->f_op->mmap)
1343				return -ENODEV;
1344			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345				return -EINVAL;
1346			break;
1347
1348		default:
1349			return -EINVAL;
1350		}
1351	} else {
1352		switch (flags & MAP_TYPE) {
1353		case MAP_SHARED:
1354			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355				return -EINVAL;
1356			/*
1357			 * Ignore pgoff.
1358			 */
1359			pgoff = 0;
1360			vm_flags |= VM_SHARED | VM_MAYSHARE;
1361			break;
1362		case MAP_PRIVATE:
1363			/*
1364			 * Set pgoff according to addr for anon_vma.
1365			 */
1366			pgoff = addr >> PAGE_SHIFT;
1367			break;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	/*
1374	 * Set 'VM_NORESERVE' if we should not account for the
1375	 * memory use of this mapping.
1376	 */
1377	if (flags & MAP_NORESERVE) {
1378		/* We honor MAP_NORESERVE if allowed to overcommit */
1379		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380			vm_flags |= VM_NORESERVE;
1381
1382		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383		if (file && is_file_hugepages(file))
1384			vm_flags |= VM_NORESERVE;
1385	}
1386
1387	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388	if (!IS_ERR_VALUE(addr) &&
1389	    ((vm_flags & VM_LOCKED) ||
1390	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391		*populate = len;
1392	return addr;
1393}
 
1394
1395unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396			      unsigned long prot, unsigned long flags,
1397			      unsigned long fd, unsigned long pgoff)
1398{
1399	struct file *file = NULL;
1400	unsigned long retval;
1401
1402	if (!(flags & MAP_ANONYMOUS)) {
1403		audit_mmap_fd(fd, flags);
 
 
1404		file = fget(fd);
1405		if (!file)
1406			return -EBADF;
1407		if (is_file_hugepages(file)) {
1408			len = ALIGN(len, huge_page_size(hstate_file(file)));
1409		} else if (unlikely(flags & MAP_HUGETLB)) {
1410			retval = -EINVAL;
1411			goto out_fput;
1412		}
1413	} else if (flags & MAP_HUGETLB) {
1414		struct hstate *hs;
1415
1416		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417		if (!hs)
1418			return -EINVAL;
1419
1420		len = ALIGN(len, huge_page_size(hs));
1421		/*
1422		 * VM_NORESERVE is used because the reservations will be
1423		 * taken when vm_ops->mmap() is called
 
 
1424		 */
1425		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426				VM_NORESERVE,
1427				HUGETLB_ANONHUGE_INODE,
1428				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429		if (IS_ERR(file))
1430			return PTR_ERR(file);
1431	}
1432
1433	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434out_fput:
 
 
 
 
1435	if (file)
1436		fput(file);
 
1437	return retval;
1438}
1439
1440SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441		unsigned long, prot, unsigned long, flags,
1442		unsigned long, fd, unsigned long, pgoff)
1443{
1444	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445}
1446
1447#ifdef __ARCH_WANT_SYS_OLD_MMAP
1448struct mmap_arg_struct {
1449	unsigned long addr;
1450	unsigned long len;
1451	unsigned long prot;
1452	unsigned long flags;
1453	unsigned long fd;
1454	unsigned long offset;
1455};
1456
1457SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458{
1459	struct mmap_arg_struct a;
1460
1461	if (copy_from_user(&a, arg, sizeof(a)))
1462		return -EFAULT;
1463	if (offset_in_page(a.offset))
1464		return -EINVAL;
1465
1466	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467			       a.offset >> PAGE_SHIFT);
1468}
1469#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472{
1473	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474}
1475
1476static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477{
1478	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479		(VM_WRITE | VM_SHARED);
1480}
1481
1482static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483{
1484	/* No managed pages to writeback. */
1485	if (vma->vm_flags & VM_PFNMAP)
1486		return false;
1487
1488	return vma->vm_file && vma->vm_file->f_mapping &&
1489		mapping_can_writeback(vma->vm_file->f_mapping);
1490}
1491
1492/*
1493 * Does this VMA require the underlying folios to have their dirty state
1494 * tracked?
1495 */
1496bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497{
1498	/* Only shared, writable VMAs require dirty tracking. */
1499	if (!vma_is_shared_writable(vma))
1500		return false;
1501
1502	/* Does the filesystem need to be notified? */
1503	if (vm_ops_needs_writenotify(vma->vm_ops))
1504		return true;
1505
1506	/*
1507	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508	 * can writeback, dirty tracking is still required.
1509	 */
1510	return vma_fs_can_writeback(vma);
1511}
1512
1513/*
1514 * Some shared mappings will want the pages marked read-only
1515 * to track write events. If so, we'll downgrade vm_page_prot
1516 * to the private version (using protection_map[] without the
1517 * VM_SHARED bit).
1518 */
1519int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520{
 
 
1521	/* If it was private or non-writable, the write bit is already clear */
1522	if (!vma_is_shared_writable(vma))
1523		return 0;
1524
1525	/* The backer wishes to know when pages are first written to? */
1526	if (vm_ops_needs_writenotify(vma->vm_ops))
1527		return 1;
1528
1529	/* The open routine did something to the protections that pgprot_modify
1530	 * won't preserve? */
1531	if (pgprot_val(vm_page_prot) !=
1532	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533		return 0;
1534
1535	/*
1536	 * Do we need to track softdirty? hugetlb does not support softdirty
1537	 * tracking yet.
1538	 */
1539	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540		return 1;
1541
1542	/* Do we need write faults for uffd-wp tracking? */
1543	if (userfaultfd_wp(vma))
1544		return 1;
1545
1546	/* Can the mapping track the dirty pages? */
1547	return vma_fs_can_writeback(vma);
 
1548}
1549
1550/*
1551 * We account for memory if it's a private writeable mapping,
1552 * not hugepages and VM_NORESERVE wasn't set.
1553 */
1554static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555{
1556	/*
1557	 * hugetlb has its own accounting separate from the core VM
1558	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559	 */
1560	if (file && is_file_hugepages(file))
1561		return 0;
1562
1563	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564}
1565
1566/**
1567 * unmapped_area() - Find an area between the low_limit and the high_limit with
1568 * the correct alignment and offset, all from @info. Note: current->mm is used
1569 * for the search.
1570 *
1571 * @info: The unmapped area information including the range [low_limit -
1572 * high_limit), the alignment offset and mask.
1573 *
1574 * Return: A memory address or -ENOMEM.
1575 */
1576static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577{
1578	unsigned long length, gap;
1579	unsigned long low_limit, high_limit;
1580	struct vm_area_struct *tmp;
 
 
 
 
1581
1582	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
 
 
 
 
 
 
 
 
1583
1584	/* Adjust search length to account for worst case alignment overhead */
1585	length = info->length + info->align_mask;
1586	if (length < info->length)
1587		return -ENOMEM;
1588
1589	low_limit = info->low_limit;
1590	if (low_limit < mmap_min_addr)
1591		low_limit = mmap_min_addr;
1592	high_limit = info->high_limit;
1593retry:
1594	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595		return -ENOMEM;
 
1596
1597	gap = mas.index;
1598	gap += (info->align_offset - gap) & info->align_mask;
1599	tmp = mas_next(&mas, ULONG_MAX);
1600	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601		if (vm_start_gap(tmp) < gap + length - 1) {
1602			low_limit = tmp->vm_end;
1603			mas_reset(&mas);
1604			goto retry;
1605		}
1606	} else {
1607		tmp = mas_prev(&mas, 0);
1608		if (tmp && vm_end_gap(tmp) > gap) {
1609			low_limit = vm_end_gap(tmp);
1610			mas_reset(&mas);
1611			goto retry;
1612		}
1613	}
1614
1615	return gap;
1616}
 
 
 
 
 
 
 
1617
1618/**
1619 * unmapped_area_topdown() - Find an area between the low_limit and the
1620 * high_limit with the correct alignment and offset at the highest available
1621 * address, all from @info. Note: current->mm is used for the search.
1622 *
1623 * @info: The unmapped area information including the range [low_limit -
1624 * high_limit), the alignment offset and mask.
1625 *
1626 * Return: A memory address or -ENOMEM.
1627 */
1628static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629{
1630	unsigned long length, gap, gap_end;
1631	unsigned long low_limit, high_limit;
1632	struct vm_area_struct *tmp;
1633
1634	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635	/* Adjust search length to account for worst case alignment overhead */
1636	length = info->length + info->align_mask;
1637	if (length < info->length)
1638		return -ENOMEM;
 
 
 
 
 
1639
1640	low_limit = info->low_limit;
1641	if (low_limit < mmap_min_addr)
1642		low_limit = mmap_min_addr;
1643	high_limit = info->high_limit;
1644retry:
1645	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646		return -ENOMEM;
1647
1648	gap = mas.last + 1 - info->length;
1649	gap -= (gap - info->align_offset) & info->align_mask;
1650	gap_end = mas.last;
1651	tmp = mas_next(&mas, ULONG_MAX);
1652	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653		if (vm_start_gap(tmp) <= gap_end) {
1654			high_limit = vm_start_gap(tmp);
1655			mas_reset(&mas);
1656			goto retry;
1657		}
1658	} else {
1659		tmp = mas_prev(&mas, 0);
1660		if (tmp && vm_end_gap(tmp) > gap) {
1661			high_limit = tmp->vm_start;
1662			mas_reset(&mas);
1663			goto retry;
1664		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665	}
1666
1667	return gap;
1668}
 
 
 
 
 
 
 
 
 
 
 
 
1669
1670/*
1671 * Search for an unmapped address range.
1672 *
1673 * We are looking for a range that:
1674 * - does not intersect with any VMA;
1675 * - is contained within the [low_limit, high_limit) interval;
1676 * - is at least the desired size.
1677 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678 */
1679unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680{
1681	unsigned long addr;
1682
1683	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684		addr = unmapped_area_topdown(info);
1685	else
1686		addr = unmapped_area(info);
 
1687
1688	trace_vm_unmapped_area(addr, info);
 
 
 
 
 
 
1689	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690}
1691
1692/* Get an address range which is currently unmapped.
1693 * For shmat() with addr=0.
1694 *
1695 * Ugly calling convention alert:
1696 * Return value with the low bits set means error value,
1697 * ie
1698 *	if (ret & ~PAGE_MASK)
1699 *		error = ret;
1700 *
1701 * This function "knows" that -ENOMEM has the bits set.
1702 */
 
1703unsigned long
1704generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705			  unsigned long len, unsigned long pgoff,
1706			  unsigned long flags)
1707{
1708	struct mm_struct *mm = current->mm;
1709	struct vm_area_struct *vma, *prev;
1710	struct vm_unmapped_area_info info;
1711	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712
1713	if (len > mmap_end - mmap_min_addr)
1714		return -ENOMEM;
1715
1716	if (flags & MAP_FIXED)
1717		return addr;
1718
1719	if (addr) {
1720		addr = PAGE_ALIGN(addr);
1721		vma = find_vma_prev(mm, addr, &prev);
1722		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723		    (!vma || addr + len <= vm_start_gap(vma)) &&
1724		    (!prev || addr >= vm_end_gap(prev)))
1725			return addr;
1726	}
 
 
 
 
 
 
1727
1728	info.flags = 0;
1729	info.length = len;
1730	info.low_limit = mm->mmap_base;
1731	info.high_limit = mmap_end;
1732	info.align_mask = 0;
1733	info.align_offset = 0;
1734	return vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735}
 
1736
1737#ifndef HAVE_ARCH_UNMAPPED_AREA
1738unsigned long
1739arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740		       unsigned long len, unsigned long pgoff,
1741		       unsigned long flags)
1742{
1743	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
 
 
 
 
 
 
1744}
1745#endif
1746
1747/*
1748 * This mmap-allocator allocates new areas top-down from below the
1749 * stack's low limit (the base):
1750 */
 
1751unsigned long
1752generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753				  unsigned long len, unsigned long pgoff,
1754				  unsigned long flags)
1755{
1756	struct vm_area_struct *vma, *prev;
1757	struct mm_struct *mm = current->mm;
1758	struct vm_unmapped_area_info info;
1759	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761	/* requested length too big for entire address space */
1762	if (len > mmap_end - mmap_min_addr)
1763		return -ENOMEM;
1764
1765	if (flags & MAP_FIXED)
1766		return addr;
1767
1768	/* requesting a specific address */
1769	if (addr) {
1770		addr = PAGE_ALIGN(addr);
1771		vma = find_vma_prev(mm, addr, &prev);
1772		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773				(!vma || addr + len <= vm_start_gap(vma)) &&
1774				(!prev || addr >= vm_end_gap(prev)))
1775			return addr;
1776	}
1777
1778	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779	info.length = len;
1780	info.low_limit = PAGE_SIZE;
1781	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782	info.align_mask = 0;
1783	info.align_offset = 0;
1784	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
 
1786	/*
1787	 * A failed mmap() very likely causes application failure,
1788	 * so fall back to the bottom-up function here. This scenario
1789	 * can happen with large stack limits and large mmap()
1790	 * allocations.
1791	 */
1792	if (offset_in_page(addr)) {
1793		VM_BUG_ON(addr != -ENOMEM);
1794		info.flags = 0;
1795		info.low_limit = TASK_UNMAPPED_BASE;
1796		info.high_limit = mmap_end;
1797		addr = vm_unmapped_area(&info);
1798	}
 
1799
1800	return addr;
1801}
 
1802
1803#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804unsigned long
1805arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806			       unsigned long len, unsigned long pgoff,
1807			       unsigned long flags)
1808{
1809	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
 
 
 
 
 
 
 
 
1810}
1811#endif
1812
1813unsigned long
1814get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815		unsigned long pgoff, unsigned long flags)
1816{
1817	unsigned long (*get_area)(struct file *, unsigned long,
1818				  unsigned long, unsigned long, unsigned long);
1819
1820	unsigned long error = arch_mmap_check(addr, len, flags);
1821	if (error)
1822		return error;
1823
1824	/* Careful about overflows.. */
1825	if (len > TASK_SIZE)
1826		return -ENOMEM;
1827
1828	get_area = current->mm->get_unmapped_area;
1829	if (file) {
1830		if (file->f_op->get_unmapped_area)
1831			get_area = file->f_op->get_unmapped_area;
1832	} else if (flags & MAP_SHARED) {
1833		/*
1834		 * mmap_region() will call shmem_zero_setup() to create a file,
1835		 * so use shmem's get_unmapped_area in case it can be huge.
1836		 */
1837		get_area = shmem_get_unmapped_area;
1838	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839		/* Ensures that larger anonymous mappings are THP aligned. */
1840		get_area = thp_get_unmapped_area;
1841	}
1842
1843	/* Always treat pgoff as zero for anonymous memory. */
1844	if (!file)
1845		pgoff = 0;
1846
1847	addr = get_area(file, addr, len, pgoff, flags);
1848	if (IS_ERR_VALUE(addr))
1849		return addr;
1850
1851	if (addr > TASK_SIZE - len)
1852		return -ENOMEM;
1853	if (offset_in_page(addr))
1854		return -EINVAL;
1855
1856	error = security_mmap_addr(addr);
1857	return error ? error : addr;
1858}
1859
1860EXPORT_SYMBOL(get_unmapped_area);
1861
1862/**
1863 * find_vma_intersection() - Look up the first VMA which intersects the interval
1864 * @mm: The process address space.
1865 * @start_addr: The inclusive start user address.
1866 * @end_addr: The exclusive end user address.
1867 *
1868 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869 * start_addr < end_addr.
1870 */
1871struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872					     unsigned long start_addr,
1873					     unsigned long end_addr)
1874{
1875	unsigned long index = start_addr;
1876
1877	mmap_assert_locked(mm);
1878	return mt_find(&mm->mm_mt, &index, end_addr - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879}
1880EXPORT_SYMBOL(find_vma_intersection);
1881
1882/**
1883 * find_vma() - Find the VMA for a given address, or the next VMA.
1884 * @mm: The mm_struct to check
1885 * @addr: The address
1886 *
1887 * Returns: The VMA associated with addr, or the next VMA.
1888 * May return %NULL in the case of no VMA at addr or above.
1889 */
1890struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891{
1892	unsigned long index = addr;
1893
1894	mmap_assert_locked(mm);
1895	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1896}
1897EXPORT_SYMBOL(find_vma);
1898
1899/**
1900 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901 * set %pprev to the previous VMA, if any.
1902 * @mm: The mm_struct to check
1903 * @addr: The address
1904 * @pprev: The pointer to set to the previous VMA
1905 *
1906 * Note that RCU lock is missing here since the external mmap_lock() is used
1907 * instead.
1908 *
1909 * Returns: The VMA associated with @addr, or the next vma.
1910 * May return %NULL in the case of no vma at addr or above.
1911 */
1912struct vm_area_struct *
1913find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914			struct vm_area_struct **pprev)
1915{
1916	struct vm_area_struct *vma;
1917	MA_STATE(mas, &mm->mm_mt, addr, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918
1919	vma = mas_walk(&mas);
1920	*pprev = mas_prev(&mas, 0);
1921	if (!vma)
1922		vma = mas_next(&mas, ULONG_MAX);
1923	return vma;
1924}
1925
1926/*
1927 * Verify that the stack growth is acceptable and
1928 * update accounting. This is shared with both the
1929 * grow-up and grow-down cases.
1930 */
1931static int acct_stack_growth(struct vm_area_struct *vma,
1932			     unsigned long size, unsigned long grow)
1933{
1934	struct mm_struct *mm = vma->vm_mm;
 
1935	unsigned long new_start;
1936
1937	/* address space limit tests */
1938	if (!may_expand_vm(mm, vma->vm_flags, grow))
1939		return -ENOMEM;
1940
1941	/* Stack limit test */
1942	if (size > rlimit(RLIMIT_STACK))
1943		return -ENOMEM;
1944
1945	/* mlock limit tests */
1946	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947		return -ENOMEM;
 
 
 
 
 
 
 
1948
1949	/* Check to ensure the stack will not grow into a hugetlb-only region */
1950	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951			vma->vm_end - size;
1952	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953		return -EFAULT;
1954
1955	/*
1956	 * Overcommit..  This must be the final test, as it will
1957	 * update security statistics.
1958	 */
1959	if (security_vm_enough_memory_mm(mm, grow))
1960		return -ENOMEM;
1961
 
 
 
 
 
1962	return 0;
1963}
1964
1965#if defined(CONFIG_STACK_GROWSUP)
1966/*
1967 * PA-RISC uses this for its stack.
1968 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969 */
1970static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971{
1972	struct mm_struct *mm = vma->vm_mm;
1973	struct vm_area_struct *next;
1974	unsigned long gap_addr;
1975	int error = 0;
1976	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977
1978	if (!(vma->vm_flags & VM_GROWSUP))
1979		return -EFAULT;
1980
1981	/* Guard against exceeding limits of the address space. */
1982	address &= PAGE_MASK;
1983	if (address >= (TASK_SIZE & PAGE_MASK))
1984		return -ENOMEM;
1985	address += PAGE_SIZE;
1986
1987	/* Enforce stack_guard_gap */
1988	gap_addr = address + stack_guard_gap;
1989
1990	/* Guard against overflow */
1991	if (gap_addr < address || gap_addr > TASK_SIZE)
1992		gap_addr = TASK_SIZE;
1993
1994	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995	if (next && vma_is_accessible(next)) {
1996		if (!(next->vm_flags & VM_GROWSUP))
1997			return -ENOMEM;
1998		/* Check that both stack segments have the same anon_vma? */
1999	}
2000
2001	if (next)
2002		mas_prev_range(&mas, address);
2003
2004	__mas_set_range(&mas, vma->vm_start, address - 1);
2005	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006		return -ENOMEM;
2007
2008	/* We must make sure the anon_vma is allocated. */
2009	if (unlikely(anon_vma_prepare(vma))) {
2010		mas_destroy(&mas);
2011		return -ENOMEM;
2012	}
2013
2014	/* Lock the VMA before expanding to prevent concurrent page faults */
2015	vma_start_write(vma);
2016	/*
2017	 * vma->vm_start/vm_end cannot change under us because the caller
2018	 * is required to hold the mmap_lock in read mode.  We need the
2019	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2020	 */
2021	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2022
2023	/* Somebody else might have raced and expanded it already */
2024	if (address > vma->vm_end) {
2025		unsigned long size, grow;
2026
2027		size = address - vma->vm_start;
2028		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029
2030		error = -ENOMEM;
2031		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032			error = acct_stack_growth(vma, size, grow);
2033			if (!error) {
2034				/*
2035				 * We only hold a shared mmap_lock lock here, so
2036				 * we need to protect against concurrent vma
2037				 * expansions.  anon_vma_lock_write() doesn't
2038				 * help here, as we don't guarantee that all
2039				 * growable vmas in a mm share the same root
2040				 * anon vma.  So, we reuse mm->page_table_lock
2041				 * to guard against concurrent vma expansions.
2042				 */
2043				spin_lock(&mm->page_table_lock);
2044				if (vma->vm_flags & VM_LOCKED)
2045					mm->locked_vm += grow;
2046				vm_stat_account(mm, vma->vm_flags, grow);
2047				anon_vma_interval_tree_pre_update_vma(vma);
2048				vma->vm_end = address;
2049				/* Overwrite old entry in mtree. */
2050				mas_store_prealloc(&mas, vma);
2051				anon_vma_interval_tree_post_update_vma(vma);
2052				spin_unlock(&mm->page_table_lock);
2053
2054				perf_event_mmap(vma);
2055			}
2056		}
2057	}
2058	anon_vma_unlock_write(vma->anon_vma);
2059	khugepaged_enter_vma(vma, vma->vm_flags);
2060	mas_destroy(&mas);
2061	validate_mm(mm);
2062	return error;
2063}
2064#endif /* CONFIG_STACK_GROWSUP */
2065
2066/*
2067 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2068 * mmap_lock held for writing.
2069 */
2070int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
2071{
2072	struct mm_struct *mm = vma->vm_mm;
2073	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2074	struct vm_area_struct *prev;
2075	int error = 0;
2076
2077	if (!(vma->vm_flags & VM_GROWSDOWN))
2078		return -EFAULT;
 
 
 
 
2079
2080	address &= PAGE_MASK;
2081	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2082		return -EPERM;
 
2083
2084	/* Enforce stack_guard_gap */
2085	prev = mas_prev(&mas, 0);
2086	/* Check that both stack segments have the same anon_vma? */
2087	if (prev) {
2088		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2089		    vma_is_accessible(prev) &&
2090		    (address - prev->vm_end < stack_guard_gap))
2091			return -ENOMEM;
2092	}
2093
2094	if (prev)
2095		mas_next_range(&mas, vma->vm_start);
2096
2097	__mas_set_range(&mas, address, vma->vm_end - 1);
2098	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2099		return -ENOMEM;
2100
2101	/* We must make sure the anon_vma is allocated. */
2102	if (unlikely(anon_vma_prepare(vma))) {
2103		mas_destroy(&mas);
2104		return -ENOMEM;
2105	}
2106
2107	/* Lock the VMA before expanding to prevent concurrent page faults */
2108	vma_start_write(vma);
2109	/*
2110	 * vma->vm_start/vm_end cannot change under us because the caller
2111	 * is required to hold the mmap_lock in read mode.  We need the
2112	 * anon_vma lock to serialize against concurrent expand_stacks.
2113	 */
2114	anon_vma_lock_write(vma->anon_vma);
2115
2116	/* Somebody else might have raced and expanded it already */
2117	if (address < vma->vm_start) {
2118		unsigned long size, grow;
2119
2120		size = vma->vm_end - address;
2121		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2122
2123		error = -ENOMEM;
2124		if (grow <= vma->vm_pgoff) {
2125			error = acct_stack_growth(vma, size, grow);
2126			if (!error) {
2127				/*
2128				 * We only hold a shared mmap_lock lock here, so
2129				 * we need to protect against concurrent vma
2130				 * expansions.  anon_vma_lock_write() doesn't
2131				 * help here, as we don't guarantee that all
2132				 * growable vmas in a mm share the same root
2133				 * anon vma.  So, we reuse mm->page_table_lock
2134				 * to guard against concurrent vma expansions.
2135				 */
2136				spin_lock(&mm->page_table_lock);
2137				if (vma->vm_flags & VM_LOCKED)
2138					mm->locked_vm += grow;
2139				vm_stat_account(mm, vma->vm_flags, grow);
2140				anon_vma_interval_tree_pre_update_vma(vma);
2141				vma->vm_start = address;
2142				vma->vm_pgoff -= grow;
2143				/* Overwrite old entry in mtree. */
2144				mas_store_prealloc(&mas, vma);
2145				anon_vma_interval_tree_post_update_vma(vma);
2146				spin_unlock(&mm->page_table_lock);
2147
2148				perf_event_mmap(vma);
2149			}
2150		}
2151	}
2152	anon_vma_unlock_write(vma->anon_vma);
2153	khugepaged_enter_vma(vma, vma->vm_flags);
2154	mas_destroy(&mas);
2155	validate_mm(mm);
2156	return error;
2157}
2158
2159/* enforced gap between the expanding stack and other mappings. */
2160unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2161
2162static int __init cmdline_parse_stack_guard_gap(char *p)
2163{
2164	unsigned long val;
2165	char *endptr;
2166
2167	val = simple_strtoul(p, &endptr, 10);
2168	if (!*endptr)
2169		stack_guard_gap = val << PAGE_SHIFT;
2170
2171	return 1;
2172}
2173__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2174
2175#ifdef CONFIG_STACK_GROWSUP
2176int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2177{
2178	return expand_upwards(vma, address);
2179}
2180
2181struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2182{
2183	struct vm_area_struct *vma, *prev;
2184
2185	addr &= PAGE_MASK;
2186	vma = find_vma_prev(mm, addr, &prev);
2187	if (vma && (vma->vm_start <= addr))
2188		return vma;
2189	if (!prev)
2190		return NULL;
2191	if (expand_stack_locked(prev, addr))
2192		return NULL;
2193	if (prev->vm_flags & VM_LOCKED)
2194		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2195	return prev;
2196}
2197#else
2198int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2199{
2200	return expand_downwards(vma, address);
2201}
2202
2203struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2204{
2205	struct vm_area_struct *vma;
2206	unsigned long start;
2207
2208	addr &= PAGE_MASK;
2209	vma = find_vma(mm, addr);
2210	if (!vma)
2211		return NULL;
2212	if (vma->vm_start <= addr)
2213		return vma;
 
 
2214	start = vma->vm_start;
2215	if (expand_stack_locked(vma, addr))
2216		return NULL;
2217	if (vma->vm_flags & VM_LOCKED)
2218		populate_vma_page_range(vma, addr, start, NULL);
 
2219	return vma;
2220}
2221#endif
2222
2223#if defined(CONFIG_STACK_GROWSUP)
2224
2225#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226#define vma_expand_down(vma, addr) (-EFAULT)
2227
2228#else
2229
2230#define vma_expand_up(vma,addr) (-EFAULT)
2231#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232
2233#endif
2234
2235/*
2236 * expand_stack(): legacy interface for page faulting. Don't use unless
2237 * you have to.
2238 *
2239 * This is called with the mm locked for reading, drops the lock, takes
2240 * the lock for writing, tries to look up a vma again, expands it if
2241 * necessary, and downgrades the lock to reading again.
2242 *
2243 * If no vma is found or it can't be expanded, it returns NULL and has
2244 * dropped the lock.
2245 */
2246struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247{
2248	struct vm_area_struct *vma, *prev;
2249
2250	mmap_read_unlock(mm);
2251	if (mmap_write_lock_killable(mm))
2252		return NULL;
2253
2254	vma = find_vma_prev(mm, addr, &prev);
2255	if (vma && vma->vm_start <= addr)
2256		goto success;
2257
2258	if (prev && !vma_expand_up(prev, addr)) {
2259		vma = prev;
2260		goto success;
2261	}
2262
2263	if (vma && !vma_expand_down(vma, addr))
2264		goto success;
2265
2266	mmap_write_unlock(mm);
2267	return NULL;
2268
2269success:
2270	mmap_write_downgrade(mm);
2271	return vma;
2272}
2273
2274/*
2275 * Ok - we have the memory areas we should free on a maple tree so release them,
2276 * and do the vma updates.
2277 *
2278 * Called with the mm semaphore held.
2279 */
2280static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281{
2282	unsigned long nr_accounted = 0;
2283	struct vm_area_struct *vma;
2284
2285	/* Update high watermark before we lower total_vm */
2286	update_hiwater_vm(mm);
2287	mas_for_each(mas, vma, ULONG_MAX) {
2288		long nrpages = vma_pages(vma);
2289
2290		if (vma->vm_flags & VM_ACCOUNT)
2291			nr_accounted += nrpages;
2292		vm_stat_account(mm, vma->vm_flags, -nrpages);
2293		remove_vma(vma, false);
2294	}
2295	vm_unacct_memory(nr_accounted);
2296}
2297
2298/*
2299 * Get rid of page table information in the indicated region.
2300 *
2301 * Called with the mm semaphore held.
2302 */
2303static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2304		struct vm_area_struct *vma, struct vm_area_struct *prev,
2305		struct vm_area_struct *next, unsigned long start,
2306		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2307{
 
2308	struct mmu_gather tlb;
2309	unsigned long mt_start = mas->index;
2310
2311	lru_add_drain();
2312	tlb_gather_mmu(&tlb, mm);
2313	update_hiwater_rss(mm);
2314	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2315	mas_set(mas, mt_start);
2316	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2317				 next ? next->vm_start : USER_PGTABLES_CEILING,
2318				 mm_wr_locked);
2319	tlb_finish_mmu(&tlb);
2320}
2321
2322/*
2323 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2324 * has already been checked or doesn't make sense to fail.
2325 * VMA Iterator will point to the end VMA.
2326 */
2327static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2328		       unsigned long addr, int new_below)
 
2329{
2330	struct vma_prepare vp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331	struct vm_area_struct *new;
2332	int err;
2333
2334	WARN_ON(vma->vm_start >= addr);
2335	WARN_ON(vma->vm_end <= addr);
 
2336
2337	if (vma->vm_ops && vma->vm_ops->may_split) {
2338		err = vma->vm_ops->may_split(vma, addr);
2339		if (err)
2340			return err;
2341	}
 
2342
2343	new = vm_area_dup(vma);
2344	if (!new)
2345		return -ENOMEM;
2346
2347	if (new_below) {
2348		new->vm_end = addr;
2349	} else {
2350		new->vm_start = addr;
2351		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352	}
2353
2354	err = -ENOMEM;
2355	vma_iter_config(vmi, new->vm_start, new->vm_end);
2356	if (vma_iter_prealloc(vmi, new))
2357		goto out_free_vma;
 
 
2358
2359	err = vma_dup_policy(vma, new);
2360	if (err)
2361		goto out_free_vmi;
2362
2363	err = anon_vma_clone(new, vma);
2364	if (err)
2365		goto out_free_mpol;
2366
2367	if (new->vm_file)
2368		get_file(new->vm_file);
 
 
 
2369
2370	if (new->vm_ops && new->vm_ops->open)
2371		new->vm_ops->open(new);
2372
2373	vma_start_write(vma);
2374	vma_start_write(new);
2375
2376	init_vma_prep(&vp, vma);
2377	vp.insert = new;
2378	vma_prepare(&vp);
2379	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2380
2381	if (new_below) {
2382		vma->vm_start = addr;
2383		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384	} else {
2385		vma->vm_end = addr;
2386	}
2387
2388	/* vma_complete stores the new vma */
2389	vma_complete(&vp, vmi, vma->vm_mm);
2390
2391	/* Success. */
2392	if (new_below)
2393		vma_next(vmi);
2394	return 0;
2395
2396out_free_mpol:
2397	mpol_put(vma_policy(new));
2398out_free_vmi:
2399	vma_iter_free(vmi);
2400out_free_vma:
2401	vm_area_free(new);
 
 
 
 
 
 
 
 
2402	return err;
2403}
2404
2405/*
2406 * Split a vma into two pieces at address 'addr', a new vma is allocated
2407 * either for the first part or the tail.
2408 */
2409static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2410		     unsigned long addr, int new_below)
2411{
2412	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413		return -ENOMEM;
2414
2415	return __split_vma(vmi, vma, addr, new_below);
2416}
2417
2418/*
2419 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2420 * context and anonymous VMA name within the range [start, end).
2421 *
2422 * As a result, we might be able to merge the newly modified VMA range with an
2423 * adjacent VMA with identical properties.
2424 *
2425 * If no merge is possible and the range does not span the entirety of the VMA,
2426 * we then need to split the VMA to accommodate the change.
2427 *
2428 * The function returns either the merged VMA, the original VMA if a split was
2429 * required instead, or an error if the split failed.
2430 */
2431struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2432				  struct vm_area_struct *prev,
2433				  struct vm_area_struct *vma,
2434				  unsigned long start, unsigned long end,
2435				  unsigned long vm_flags,
2436				  struct mempolicy *policy,
2437				  struct vm_userfaultfd_ctx uffd_ctx,
2438				  struct anon_vma_name *anon_name)
2439{
2440	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2441	struct vm_area_struct *merged;
2442
2443	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2444			   vma->anon_vma, vma->vm_file, pgoff, policy,
2445			   uffd_ctx, anon_name);
2446	if (merged)
2447		return merged;
2448
2449	if (vma->vm_start < start) {
2450		int err = split_vma(vmi, vma, start, 1);
2451
2452		if (err)
2453			return ERR_PTR(err);
2454	}
 
 
 
2455
2456	if (vma->vm_end > end) {
2457		int err = split_vma(vmi, vma, end, 0);
2458
2459		if (err)
2460			return ERR_PTR(err);
2461	}
2462
2463	return vma;
2464}
2465
2466/*
2467 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2468 * must ensure that [start, end) does not overlap any existing VMA.
2469 */
2470static struct vm_area_struct
2471*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2472		   struct vm_area_struct *vma, unsigned long start,
2473		   unsigned long end, pgoff_t pgoff)
2474{
2475	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2476			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2477			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2478}
2479
2480/*
2481 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2482 * VMA with identical properties.
2483 */
2484struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2485					struct vm_area_struct *vma,
2486					unsigned long delta)
2487{
2488	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2489
2490	/* vma is specified as prev, so case 1 or 2 will apply. */
2491	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2492			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2493			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2494			 anon_vma_name(vma));
2495}
2496
2497/*
2498 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2499 * @vmi: The vma iterator
2500 * @vma: The starting vm_area_struct
2501 * @mm: The mm_struct
2502 * @start: The aligned start address to munmap.
2503 * @end: The aligned end address to munmap.
2504 * @uf: The userfaultfd list_head
2505 * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2506 * success.
2507 *
2508 * Return: 0 on success and drops the lock if so directed, error and leaves the
2509 * lock held otherwise.
2510 */
2511static int
2512do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2513		    struct mm_struct *mm, unsigned long start,
2514		    unsigned long end, struct list_head *uf, bool unlock)
2515{
2516	struct vm_area_struct *prev, *next = NULL;
2517	struct maple_tree mt_detach;
2518	int count = 0;
2519	int error = -ENOMEM;
2520	unsigned long locked_vm = 0;
2521	MA_STATE(mas_detach, &mt_detach, 0, 0);
2522	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2523	mt_on_stack(mt_detach);
2524
2525	/*
2526	 * If we need to split any vma, do it now to save pain later.
2527	 *
2528	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2529	 * unmapped vm_area_struct will remain in use: so lower split_vma
2530	 * places tmp vma above, and higher split_vma places tmp vma below.
2531	 */
2532
2533	/* Does it split the first one? */
2534	if (start > vma->vm_start) {
 
2535
2536		/*
2537		 * Make sure that map_count on return from munmap() will
2538		 * not exceed its limit; but let map_count go just above
2539		 * its limit temporarily, to help free resources as expected.
2540		 */
2541		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2542			goto map_count_exceeded;
2543
2544		error = __split_vma(vmi, vma, start, 1);
2545		if (error)
2546			goto start_split_failed;
 
2547	}
2548
2549	/*
2550	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2551	 * it is always overwritten.
2552	 */
2553	next = vma;
2554	do {
2555		/* Does it split the end? */
2556		if (next->vm_end > end) {
2557			error = __split_vma(vmi, next, end, 0);
2558			if (error)
2559				goto end_split_failed;
2560		}
2561		vma_start_write(next);
2562		mas_set(&mas_detach, count);
2563		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2564		if (error)
2565			goto munmap_gather_failed;
2566		vma_mark_detached(next, true);
2567		if (next->vm_flags & VM_LOCKED)
2568			locked_vm += vma_pages(next);
2569
2570		count++;
2571		if (unlikely(uf)) {
2572			/*
2573			 * If userfaultfd_unmap_prep returns an error the vmas
2574			 * will remain split, but userland will get a
2575			 * highly unexpected error anyway. This is no
2576			 * different than the case where the first of the two
2577			 * __split_vma fails, but we don't undo the first
2578			 * split, despite we could. This is unlikely enough
2579			 * failure that it's not worth optimizing it for.
2580			 */
2581			error = userfaultfd_unmap_prep(next, start, end, uf);
2582
2583			if (error)
2584				goto userfaultfd_error;
2585		}
2586#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2587		BUG_ON(next->vm_start < start);
2588		BUG_ON(next->vm_start > end);
2589#endif
2590	} for_each_vma_range(*vmi, next, end);
2591
2592#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2593	/* Make sure no VMAs are about to be lost. */
2594	{
2595		MA_STATE(test, &mt_detach, 0, 0);
2596		struct vm_area_struct *vma_mas, *vma_test;
2597		int test_count = 0;
2598
2599		vma_iter_set(vmi, start);
2600		rcu_read_lock();
2601		vma_test = mas_find(&test, count - 1);
2602		for_each_vma_range(*vmi, vma_mas, end) {
2603			BUG_ON(vma_mas != vma_test);
2604			test_count++;
2605			vma_test = mas_next(&test, count - 1);
2606		}
2607		rcu_read_unlock();
2608		BUG_ON(count != test_count);
2609	}
2610#endif
2611
2612	while (vma_iter_addr(vmi) > start)
2613		vma_iter_prev_range(vmi);
2614
2615	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2616	if (error)
2617		goto clear_tree_failed;
2618
2619	/* Point of no return */
2620	mm->locked_vm -= locked_vm;
2621	mm->map_count -= count;
2622	if (unlock)
2623		mmap_write_downgrade(mm);
2624
2625	prev = vma_iter_prev_range(vmi);
2626	next = vma_next(vmi);
2627	if (next)
2628		vma_iter_prev_range(vmi);
2629
2630	/*
2631	 * We can free page tables without write-locking mmap_lock because VMAs
2632	 * were isolated before we downgraded mmap_lock.
2633	 */
2634	mas_set(&mas_detach, 1);
2635	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2636		     !unlock);
2637	/* Statistics and freeing VMAs */
2638	mas_set(&mas_detach, 0);
2639	remove_mt(mm, &mas_detach);
2640	validate_mm(mm);
2641	if (unlock)
2642		mmap_read_unlock(mm);
2643
2644	__mt_destroy(&mt_detach);
2645	return 0;
2646
2647clear_tree_failed:
2648userfaultfd_error:
2649munmap_gather_failed:
2650end_split_failed:
2651	mas_set(&mas_detach, 0);
2652	mas_for_each(&mas_detach, next, end)
2653		vma_mark_detached(next, false);
2654
2655	__mt_destroy(&mt_detach);
2656start_split_failed:
2657map_count_exceeded:
2658	validate_mm(mm);
2659	return error;
2660}
2661
2662/*
2663 * do_vmi_munmap() - munmap a given range.
2664 * @vmi: The vma iterator
2665 * @mm: The mm_struct
2666 * @start: The start address to munmap
2667 * @len: The length of the range to munmap
2668 * @uf: The userfaultfd list_head
2669 * @unlock: set to true if the user wants to drop the mmap_lock on success
2670 *
2671 * This function takes a @mas that is either pointing to the previous VMA or set
2672 * to MA_START and sets it up to remove the mapping(s).  The @len will be
2673 * aligned and any arch_unmap work will be preformed.
2674 *
2675 * Return: 0 on success and drops the lock if so directed, error and leaves the
2676 * lock held otherwise.
2677 */
2678int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2679		  unsigned long start, size_t len, struct list_head *uf,
2680		  bool unlock)
2681{
2682	unsigned long end;
2683	struct vm_area_struct *vma;
2684
2685	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2686		return -EINVAL;
2687
2688	end = start + PAGE_ALIGN(len);
2689	if (end == start)
2690		return -EINVAL;
2691
2692	 /* arch_unmap() might do unmaps itself.  */
2693	arch_unmap(mm, start, end);
2694
2695	/* Find the first overlapping VMA */
2696	vma = vma_find(vmi, end);
2697	if (!vma) {
2698		if (unlock)
2699			mmap_write_unlock(mm);
2700		return 0;
2701	}
2702
2703	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2704}
2705
2706/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2707 * @mm: The mm_struct
2708 * @start: The start address to munmap
2709 * @len: The length to be munmapped.
2710 * @uf: The userfaultfd list_head
2711 *
2712 * Return: 0 on success, error otherwise.
2713 */
2714int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715	      struct list_head *uf)
2716{
2717	VMA_ITERATOR(vmi, mm, start);
2718
2719	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2720}
2721
2722unsigned long mmap_region(struct file *file, unsigned long addr,
2723		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2724		struct list_head *uf)
2725{
2726	struct mm_struct *mm = current->mm;
2727	struct vm_area_struct *vma = NULL;
2728	struct vm_area_struct *next, *prev, *merge;
2729	pgoff_t pglen = len >> PAGE_SHIFT;
2730	unsigned long charged = 0;
2731	unsigned long end = addr + len;
2732	unsigned long merge_start = addr, merge_end = end;
2733	bool writable_file_mapping = false;
2734	pgoff_t vm_pgoff;
2735	int error;
2736	VMA_ITERATOR(vmi, mm, addr);
2737
2738	/* Check against address space limit. */
2739	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2740		unsigned long nr_pages;
2741
2742		/*
2743		 * MAP_FIXED may remove pages of mappings that intersects with
2744		 * requested mapping. Account for the pages it would unmap.
2745		 */
2746		nr_pages = count_vma_pages_range(mm, addr, end);
2747
2748		if (!may_expand_vm(mm, vm_flags,
2749					(len >> PAGE_SHIFT) - nr_pages))
2750			return -ENOMEM;
2751	}
2752
2753	/* Unmap any existing mapping in the area */
2754	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2755		return -ENOMEM;
2756
2757	/*
2758	 * Private writable mapping: check memory availability
2759	 */
2760	if (accountable_mapping(file, vm_flags)) {
2761		charged = len >> PAGE_SHIFT;
2762		if (security_vm_enough_memory_mm(mm, charged))
2763			return -ENOMEM;
2764		vm_flags |= VM_ACCOUNT;
2765	}
2766
2767	next = vma_next(&vmi);
2768	prev = vma_prev(&vmi);
2769	if (vm_flags & VM_SPECIAL) {
2770		if (prev)
2771			vma_iter_next_range(&vmi);
2772		goto cannot_expand;
2773	}
2774
2775	/* Attempt to expand an old mapping */
2776	/* Check next */
2777	if (next && next->vm_start == end && !vma_policy(next) &&
2778	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2779				 NULL_VM_UFFD_CTX, NULL)) {
2780		merge_end = next->vm_end;
2781		vma = next;
2782		vm_pgoff = next->vm_pgoff - pglen;
2783	}
2784
2785	/* Check prev */
2786	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2787	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2788				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2789		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2790				       NULL_VM_UFFD_CTX, NULL))) {
2791		merge_start = prev->vm_start;
2792		vma = prev;
2793		vm_pgoff = prev->vm_pgoff;
2794	} else if (prev) {
2795		vma_iter_next_range(&vmi);
2796	}
2797
2798	/* Actually expand, if possible */
2799	if (vma &&
2800	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2801		khugepaged_enter_vma(vma, vm_flags);
2802		goto expanded;
2803	}
2804
2805	if (vma == prev)
2806		vma_iter_set(&vmi, addr);
2807cannot_expand:
2808
2809	/*
2810	 * Determine the object being mapped and call the appropriate
2811	 * specific mapper. the address has already been validated, but
2812	 * not unmapped, but the maps are removed from the list.
2813	 */
2814	vma = vm_area_alloc(mm);
2815	if (!vma) {
2816		error = -ENOMEM;
2817		goto unacct_error;
2818	}
2819
2820	vma_iter_config(&vmi, addr, end);
2821	vma->vm_start = addr;
2822	vma->vm_end = end;
2823	vm_flags_init(vma, vm_flags);
2824	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2825	vma->vm_pgoff = pgoff;
2826
2827	if (file) {
2828		vma->vm_file = get_file(file);
2829		error = call_mmap(file, vma);
2830		if (error)
2831			goto unmap_and_free_vma;
2832
2833		if (vma_is_shared_maywrite(vma)) {
2834			error = mapping_map_writable(file->f_mapping);
2835			if (error)
2836				goto close_and_free_vma;
2837
2838			writable_file_mapping = true;
2839		}
2840
2841		/*
2842		 * Expansion is handled above, merging is handled below.
2843		 * Drivers should not alter the address of the VMA.
2844		 */
2845		error = -EINVAL;
2846		if (WARN_ON((addr != vma->vm_start)))
2847			goto close_and_free_vma;
2848
2849		vma_iter_config(&vmi, addr, end);
2850		/*
2851		 * If vm_flags changed after call_mmap(), we should try merge
2852		 * vma again as we may succeed this time.
2853		 */
2854		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2855			merge = vma_merge_new_vma(&vmi, prev, vma,
2856						  vma->vm_start, vma->vm_end,
2857						  vma->vm_pgoff);
2858			if (merge) {
2859				/*
2860				 * ->mmap() can change vma->vm_file and fput
2861				 * the original file. So fput the vma->vm_file
2862				 * here or we would add an extra fput for file
2863				 * and cause general protection fault
2864				 * ultimately.
2865				 */
2866				fput(vma->vm_file);
2867				vm_area_free(vma);
2868				vma = merge;
2869				/* Update vm_flags to pick up the change. */
2870				vm_flags = vma->vm_flags;
2871				goto unmap_writable;
2872			}
 
2873		}
2874
2875		vm_flags = vma->vm_flags;
2876	} else if (vm_flags & VM_SHARED) {
2877		error = shmem_zero_setup(vma);
2878		if (error)
2879			goto free_vma;
2880	} else {
2881		vma_set_anonymous(vma);
2882	}
2883
2884	if (map_deny_write_exec(vma, vma->vm_flags)) {
2885		error = -EACCES;
2886		goto close_and_free_vma;
2887	}
2888
2889	/* Allow architectures to sanity-check the vm_flags */
2890	error = -EINVAL;
2891	if (!arch_validate_flags(vma->vm_flags))
2892		goto close_and_free_vma;
2893
2894	error = -ENOMEM;
2895	if (vma_iter_prealloc(&vmi, vma))
2896		goto close_and_free_vma;
2897
2898	/* Lock the VMA since it is modified after insertion into VMA tree */
2899	vma_start_write(vma);
2900	vma_iter_store(&vmi, vma);
2901	mm->map_count++;
2902	if (vma->vm_file) {
2903		i_mmap_lock_write(vma->vm_file->f_mapping);
2904		if (vma_is_shared_maywrite(vma))
2905			mapping_allow_writable(vma->vm_file->f_mapping);
2906
2907		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2908		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2909		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2910		i_mmap_unlock_write(vma->vm_file->f_mapping);
2911	}
2912
2913	/*
2914	 * vma_merge() calls khugepaged_enter_vma() either, the below
2915	 * call covers the non-merge case.
2916	 */
2917	khugepaged_enter_vma(vma, vma->vm_flags);
 
2918
2919	/* Once vma denies write, undo our temporary denial count */
2920unmap_writable:
2921	if (writable_file_mapping)
2922		mapping_unmap_writable(file->f_mapping);
2923	file = vma->vm_file;
2924	ksm_add_vma(vma);
2925expanded:
2926	perf_event_mmap(vma);
2927
2928	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2929	if (vm_flags & VM_LOCKED) {
2930		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2931					is_vm_hugetlb_page(vma) ||
2932					vma == get_gate_vma(current->mm))
2933			vm_flags_clear(vma, VM_LOCKED_MASK);
2934		else
2935			mm->locked_vm += (len >> PAGE_SHIFT);
2936	}
2937
2938	if (file)
2939		uprobe_mmap(vma);
2940
2941	/*
2942	 * New (or expanded) vma always get soft dirty status.
2943	 * Otherwise user-space soft-dirty page tracker won't
2944	 * be able to distinguish situation when vma area unmapped,
2945	 * then new mapped in-place (which must be aimed as
2946	 * a completely new data area).
2947	 */
2948	vm_flags_set(vma, VM_SOFTDIRTY);
2949
2950	vma_set_page_prot(vma);
2951
2952	validate_mm(mm);
2953	return addr;
2954
2955close_and_free_vma:
2956	if (file && vma->vm_ops && vma->vm_ops->close)
2957		vma->vm_ops->close(vma);
2958
2959	if (file || vma->vm_file) {
2960unmap_and_free_vma:
2961		fput(vma->vm_file);
2962		vma->vm_file = NULL;
2963
2964		vma_iter_set(&vmi, vma->vm_end);
2965		/* Undo any partial mapping done by a device driver. */
2966		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2967			     vma->vm_end, vma->vm_end, true);
2968	}
2969	if (writable_file_mapping)
2970		mapping_unmap_writable(file->f_mapping);
2971free_vma:
2972	vm_area_free(vma);
2973unacct_error:
2974	if (charged)
2975		vm_unacct_memory(charged);
2976	validate_mm(mm);
2977	return error;
2978}
2979
2980static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2981{
2982	int ret;
2983	struct mm_struct *mm = current->mm;
2984	LIST_HEAD(uf);
2985	VMA_ITERATOR(vmi, mm, start);
2986
2987	if (mmap_write_lock_killable(mm))
2988		return -EINTR;
2989
2990	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2991	if (ret || !unlock)
2992		mmap_write_unlock(mm);
2993
2994	userfaultfd_unmap_complete(mm, &uf);
 
 
2995	return ret;
2996}
2997
2998int vm_munmap(unsigned long start, size_t len)
2999{
3000	return __vm_munmap(start, len, false);
 
 
 
 
 
3001}
3002EXPORT_SYMBOL(vm_munmap);
3003
3004SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3005{
3006	addr = untagged_addr(addr);
3007	return __vm_munmap(addr, len, true);
3008}
3009
3010
3011/*
3012 * Emulation of deprecated remap_file_pages() syscall.
 
 
3013 */
3014SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3015		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3016{
 
 
 
 
 
 
3017
3018	struct mm_struct *mm = current->mm;
3019	struct vm_area_struct *vma;
3020	unsigned long populate = 0;
3021	unsigned long ret = -EINVAL;
3022	struct file *file;
3023
3024	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3025		     current->comm, current->pid);
 
3026
3027	if (prot)
3028		return ret;
3029	start = start & PAGE_MASK;
3030	size = size & PAGE_MASK;
3031
3032	if (start + size <= start)
3033		return ret;
 
3034
3035	/* Does pgoff wrap? */
3036	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3037		return ret;
3038
3039	if (mmap_write_lock_killable(mm))
3040		return -EINTR;
3041
3042	vma = vma_lookup(mm, start);
3043
3044	if (!vma || !(vma->vm_flags & VM_SHARED))
3045		goto out;
3046
3047	if (start + size > vma->vm_end) {
3048		VMA_ITERATOR(vmi, mm, vma->vm_end);
3049		struct vm_area_struct *next, *prev = vma;
3050
3051		for_each_vma_range(vmi, next, start + size) {
3052			/* hole between vmas ? */
3053			if (next->vm_start != prev->vm_end)
3054				goto out;
3055
3056			if (next->vm_file != vma->vm_file)
3057				goto out;
3058
3059			if (next->vm_flags != vma->vm_flags)
3060				goto out;
3061
3062			if (start + size <= next->vm_end)
3063				break;
3064
3065			prev = next;
3066		}
3067
3068		if (!next)
3069			goto out;
3070	}
3071
3072	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3073	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3074	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3075
3076	flags &= MAP_NONBLOCK;
3077	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3078	if (vma->vm_flags & VM_LOCKED)
3079		flags |= MAP_LOCKED;
3080
3081	file = get_file(vma->vm_file);
3082	ret = do_mmap(vma->vm_file, start, size,
3083			prot, flags, 0, pgoff, &populate, NULL);
3084	fput(file);
3085out:
3086	mmap_write_unlock(mm);
3087	if (populate)
3088		mm_populate(ret, populate);
3089	if (!IS_ERR_VALUE(ret))
3090		ret = 0;
3091	return ret;
3092}
3093
3094/*
3095 * do_vma_munmap() - Unmap a full or partial vma.
3096 * @vmi: The vma iterator pointing at the vma
3097 * @vma: The first vma to be munmapped
3098 * @start: the start of the address to unmap
3099 * @end: The end of the address to unmap
3100 * @uf: The userfaultfd list_head
3101 * @unlock: Drop the lock on success
3102 *
3103 * unmaps a VMA mapping when the vma iterator is already in position.
3104 * Does not handle alignment.
3105 *
3106 * Return: 0 on success drops the lock of so directed, error on failure and will
3107 * still hold the lock.
3108 */
3109int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110		unsigned long start, unsigned long end, struct list_head *uf,
3111		bool unlock)
3112{
3113	struct mm_struct *mm = vma->vm_mm;
3114
3115	arch_unmap(mm, start, end);
3116	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3117}
3118
3119/*
3120 * do_brk_flags() - Increase the brk vma if the flags match.
3121 * @vmi: The vma iterator
3122 * @addr: The start address
3123 * @len: The length of the increase
3124 * @vma: The vma,
3125 * @flags: The VMA Flags
3126 *
3127 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3128 * do not match then create a new anonymous VMA.  Eventually we may be able to
3129 * do some brk-specific accounting here.
3130 */
3131static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132		unsigned long addr, unsigned long len, unsigned long flags)
3133{
3134	struct mm_struct *mm = current->mm;
3135	struct vma_prepare vp;
3136
3137	/*
3138	 * Check against address space limits by the changed size
3139	 * Note: This happens *after* clearing old mappings in some code paths.
3140	 */
3141	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3142	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
 
 
 
 
 
 
 
 
3143		return -ENOMEM;
3144
3145	if (mm->map_count > sysctl_max_map_count)
3146		return -ENOMEM;
3147
3148	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3149		return -ENOMEM;
3150
 
 
 
 
 
 
3151	/*
3152	 * Expand the existing vma if possible; Note that singular lists do not
3153	 * occur after forking, so the expand will only happen on new VMAs.
3154	 */
3155	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3156	    can_vma_merge_after(vma, flags, NULL, NULL,
3157				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3158		vma_iter_config(vmi, vma->vm_start, addr + len);
3159		if (vma_iter_prealloc(vmi, vma))
3160			goto unacct_fail;
3161
3162		vma_start_write(vma);
3163
3164		init_vma_prep(&vp, vma);
3165		vma_prepare(&vp);
3166		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3167		vma->vm_end = addr + len;
3168		vm_flags_set(vma, VM_SOFTDIRTY);
3169		vma_iter_store(vmi, vma);
3170
3171		vma_complete(&vp, vmi, mm);
3172		khugepaged_enter_vma(vma, flags);
3173		goto out;
3174	}
3175
3176	if (vma)
3177		vma_iter_next_range(vmi);
3178	/* create a vma struct for an anonymous mapping */
3179	vma = vm_area_alloc(mm);
3180	if (!vma)
3181		goto unacct_fail;
3182
3183	vma_set_anonymous(vma);
3184	vma->vm_start = addr;
3185	vma->vm_end = addr + len;
3186	vma->vm_pgoff = addr >> PAGE_SHIFT;
3187	vm_flags_init(vma, flags);
3188	vma->vm_page_prot = vm_get_page_prot(flags);
3189	vma_start_write(vma);
3190	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3191		goto mas_store_fail;
3192
3193	mm->map_count++;
3194	validate_mm(mm);
3195	ksm_add_vma(vma);
3196out:
3197	perf_event_mmap(vma);
3198	mm->total_vm += len >> PAGE_SHIFT;
3199	mm->data_vm += len >> PAGE_SHIFT;
3200	if (flags & VM_LOCKED)
3201		mm->locked_vm += (len >> PAGE_SHIFT);
3202	vm_flags_set(vma, VM_SOFTDIRTY);
3203	return 0;
3204
3205mas_store_fail:
3206	vm_area_free(vma);
3207unacct_fail:
3208	vm_unacct_memory(len >> PAGE_SHIFT);
3209	return -ENOMEM;
3210}
3211
3212int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3213{
3214	struct mm_struct *mm = current->mm;
3215	struct vm_area_struct *vma = NULL;
3216	unsigned long len;
3217	int ret;
3218	bool populate;
3219	LIST_HEAD(uf);
3220	VMA_ITERATOR(vmi, mm, addr);
3221
3222	len = PAGE_ALIGN(request);
3223	if (len < request)
3224		return -ENOMEM;
3225	if (!len)
3226		return 0;
3227
3228	/* Until we need other flags, refuse anything except VM_EXEC. */
3229	if ((flags & (~VM_EXEC)) != 0)
3230		return -EINVAL;
3231
3232	if (mmap_write_lock_killable(mm))
3233		return -EINTR;
3234
3235	ret = check_brk_limits(addr, len);
3236	if (ret)
3237		goto limits_failed;
3238
3239	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3240	if (ret)
3241		goto munmap_failed;
3242
3243	vma = vma_prev(&vmi);
3244	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3245	populate = ((mm->def_flags & VM_LOCKED) != 0);
3246	mmap_write_unlock(mm);
3247	userfaultfd_unmap_complete(mm, &uf);
3248	if (populate && !ret)
3249		mm_populate(addr, len);
3250	return ret;
3251
3252munmap_failed:
3253limits_failed:
3254	mmap_write_unlock(mm);
3255	return ret;
3256}
3257EXPORT_SYMBOL(vm_brk_flags);
3258
3259/* Release all mmaps. */
3260void exit_mmap(struct mm_struct *mm)
3261{
3262	struct mmu_gather tlb;
3263	struct vm_area_struct *vma;
3264	unsigned long nr_accounted = 0;
3265	MA_STATE(mas, &mm->mm_mt, 0, 0);
3266	int count = 0;
3267
3268	/* mm's last user has gone, and its about to be pulled down */
3269	mmu_notifier_release(mm);
3270
3271	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
3272	arch_exit_mmap(mm);
3273
3274	vma = mas_find(&mas, ULONG_MAX);
3275	if (!vma || unlikely(xa_is_zero(vma))) {
3276		/* Can happen if dup_mmap() received an OOM */
3277		mmap_read_unlock(mm);
3278		mmap_write_lock(mm);
3279		goto destroy;
3280	}
3281
3282	lru_add_drain();
3283	flush_cache_mm(mm);
3284	tlb_gather_mmu_fullmm(&tlb, mm);
3285	/* update_hiwater_rss(mm) here? but nobody should be looking */
3286	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3287	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3288	mmap_read_unlock(mm);
 
 
 
3289
3290	/*
3291	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3292	 * because the memory has been already freed.
3293	 */
3294	set_bit(MMF_OOM_SKIP, &mm->flags);
3295	mmap_write_lock(mm);
3296	mt_clear_in_rcu(&mm->mm_mt);
3297	mas_set(&mas, vma->vm_end);
3298	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3299		      USER_PGTABLES_CEILING, true);
3300	tlb_finish_mmu(&tlb);
3301
3302	/*
3303	 * Walk the list again, actually closing and freeing it, with preemption
3304	 * enabled, without holding any MM locks besides the unreachable
3305	 * mmap_write_lock.
3306	 */
3307	mas_set(&mas, vma->vm_end);
3308	do {
3309		if (vma->vm_flags & VM_ACCOUNT)
3310			nr_accounted += vma_pages(vma);
3311		remove_vma(vma, true);
3312		count++;
3313		cond_resched();
3314		vma = mas_find(&mas, ULONG_MAX);
3315	} while (vma && likely(!xa_is_zero(vma)));
3316
3317	BUG_ON(count != mm->map_count);
3318
3319	trace_exit_mmap(mm);
3320destroy:
3321	__mt_destroy(&mm->mm_mt);
3322	mmap_write_unlock(mm);
3323	vm_unacct_memory(nr_accounted);
3324}
3325
3326/* Insert vm structure into process list sorted by address
3327 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3328 * then i_mmap_rwsem is taken here.
3329 */
3330int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3331{
3332	unsigned long charged = vma_pages(vma);
3333
3334
3335	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3336		return -ENOMEM;
3337
3338	if ((vma->vm_flags & VM_ACCOUNT) &&
3339	     security_vm_enough_memory_mm(mm, charged))
3340		return -ENOMEM;
3341
3342	/*
3343	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3344	 * until its first write fault, when page's anon_vma and index
3345	 * are set.  But now set the vm_pgoff it will almost certainly
3346	 * end up with (unless mremap moves it elsewhere before that
3347	 * first wfault), so /proc/pid/maps tells a consistent story.
3348	 *
3349	 * By setting it to reflect the virtual start address of the
3350	 * vma, merges and splits can happen in a seamless way, just
3351	 * using the existing file pgoff checks and manipulations.
3352	 * Similarly in do_mmap and in do_brk_flags.
3353	 */
3354	if (vma_is_anonymous(vma)) {
3355		BUG_ON(vma->anon_vma);
3356		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3357	}
3358
3359	if (vma_link(mm, vma)) {
3360		if (vma->vm_flags & VM_ACCOUNT)
3361			vm_unacct_memory(charged);
 
3362		return -ENOMEM;
3363	}
3364
3365	return 0;
3366}
3367
3368/*
3369 * Copy the vma structure to a new location in the same mm,
3370 * prior to moving page table entries, to effect an mremap move.
3371 */
3372struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3373	unsigned long addr, unsigned long len, pgoff_t pgoff,
3374	bool *need_rmap_locks)
3375{
3376	struct vm_area_struct *vma = *vmap;
3377	unsigned long vma_start = vma->vm_start;
3378	struct mm_struct *mm = vma->vm_mm;
3379	struct vm_area_struct *new_vma, *prev;
3380	bool faulted_in_anon_vma = true;
3381	VMA_ITERATOR(vmi, mm, addr);
3382
3383	/*
3384	 * If anonymous vma has not yet been faulted, update new pgoff
3385	 * to match new location, to increase its chance of merging.
3386	 */
3387	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3388		pgoff = addr >> PAGE_SHIFT;
3389		faulted_in_anon_vma = false;
3390	}
3391
3392	new_vma = find_vma_prev(mm, addr, &prev);
3393	if (new_vma && new_vma->vm_start < addr + len)
3394		return NULL;	/* should never get here */
3395
3396	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3397	if (new_vma) {
3398		/*
3399		 * Source vma may have been merged into new_vma
3400		 */
3401		if (unlikely(vma_start >= new_vma->vm_start &&
3402			     vma_start < new_vma->vm_end)) {
3403			/*
3404			 * The only way we can get a vma_merge with
3405			 * self during an mremap is if the vma hasn't
3406			 * been faulted in yet and we were allowed to
3407			 * reset the dst vma->vm_pgoff to the
3408			 * destination address of the mremap to allow
3409			 * the merge to happen. mremap must change the
3410			 * vm_pgoff linearity between src and dst vmas
3411			 * (in turn preventing a vma_merge) to be
3412			 * safe. It is only safe to keep the vm_pgoff
3413			 * linear if there are no pages mapped yet.
3414			 */
3415			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3416			*vmap = vma = new_vma;
 
 
 
 
 
 
 
 
 
3417		}
3418		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3419	} else {
3420		new_vma = vm_area_dup(vma);
3421		if (!new_vma)
3422			goto out;
3423		new_vma->vm_start = addr;
3424		new_vma->vm_end = addr + len;
3425		new_vma->vm_pgoff = pgoff;
3426		if (vma_dup_policy(vma, new_vma))
3427			goto out_free_vma;
3428		if (anon_vma_clone(new_vma, vma))
3429			goto out_free_mempol;
3430		if (new_vma->vm_file)
3431			get_file(new_vma->vm_file);
3432		if (new_vma->vm_ops && new_vma->vm_ops->open)
3433			new_vma->vm_ops->open(new_vma);
3434		if (vma_link(mm, new_vma))
3435			goto out_vma_link;
3436		*need_rmap_locks = false;
3437	}
3438	return new_vma;
3439
3440out_vma_link:
3441	if (new_vma->vm_ops && new_vma->vm_ops->close)
3442		new_vma->vm_ops->close(new_vma);
3443
3444	if (new_vma->vm_file)
3445		fput(new_vma->vm_file);
3446
3447	unlink_anon_vmas(new_vma);
3448out_free_mempol:
3449	mpol_put(vma_policy(new_vma));
3450out_free_vma:
3451	vm_area_free(new_vma);
3452out:
3453	return NULL;
3454}
3455
3456/*
3457 * Return true if the calling process may expand its vm space by the passed
3458 * number of pages
3459 */
3460bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3461{
3462	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3463		return false;
3464
3465	if (is_data_mapping(flags) &&
3466	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3467		/* Workaround for Valgrind */
3468		if (rlimit(RLIMIT_DATA) == 0 &&
3469		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3470			return true;
3471
3472		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3473			     current->comm, current->pid,
3474			     (mm->data_vm + npages) << PAGE_SHIFT,
3475			     rlimit(RLIMIT_DATA),
3476			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3477
3478		if (!ignore_rlimit_data)
3479			return false;
3480	}
3481
3482	return true;
3483}
3484
3485void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3486{
3487	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3488
3489	if (is_exec_mapping(flags))
3490		mm->exec_vm += npages;
3491	else if (is_stack_mapping(flags))
3492		mm->stack_vm += npages;
3493	else if (is_data_mapping(flags))
3494		mm->data_vm += npages;
3495}
3496
3497static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3498
3499/*
3500 * Having a close hook prevents vma merging regardless of flags.
3501 */
3502static void special_mapping_close(struct vm_area_struct *vma)
3503{
3504}
 
3505
3506static const char *special_mapping_name(struct vm_area_struct *vma)
3507{
3508	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3509}
3510
3511static int special_mapping_mremap(struct vm_area_struct *new_vma)
3512{
3513	struct vm_special_mapping *sm = new_vma->vm_private_data;
3514
3515	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3516		return -EFAULT;
3517
3518	if (sm->mremap)
3519		return sm->mremap(sm, new_vma);
3520
3521	return 0;
3522}
3523
3524static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3525{
3526	/*
3527	 * Forbid splitting special mappings - kernel has expectations over
3528	 * the number of pages in mapping. Together with VM_DONTEXPAND
3529	 * the size of vma should stay the same over the special mapping's
3530	 * lifetime.
3531	 */
3532	return -EINVAL;
3533}
3534
3535static const struct vm_operations_struct special_mapping_vmops = {
3536	.close = special_mapping_close,
3537	.fault = special_mapping_fault,
3538	.mremap = special_mapping_mremap,
3539	.name = special_mapping_name,
3540	/* vDSO code relies that VVAR can't be accessed remotely */
3541	.access = NULL,
3542	.may_split = special_mapping_split,
3543};
3544
3545static const struct vm_operations_struct legacy_special_mapping_vmops = {
3546	.close = special_mapping_close,
3547	.fault = special_mapping_fault,
3548};
3549
3550static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3551{
3552	struct vm_area_struct *vma = vmf->vma;
3553	pgoff_t pgoff;
3554	struct page **pages;
3555
3556	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3557		pages = vma->vm_private_data;
3558	} else {
3559		struct vm_special_mapping *sm = vma->vm_private_data;
3560
3561		if (sm->fault)
3562			return sm->fault(sm, vmf->vma, vmf);
3563
3564		pages = sm->pages;
3565	}
3566
3567	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3568		pgoff--;
3569
3570	if (*pages) {
3571		struct page *page = *pages;
3572		get_page(page);
3573		vmf->page = page;
3574		return 0;
3575	}
3576
3577	return VM_FAULT_SIGBUS;
3578}
3579
3580static struct vm_area_struct *__install_special_mapping(
3581	struct mm_struct *mm,
3582	unsigned long addr, unsigned long len,
3583	unsigned long vm_flags, void *priv,
3584	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585{
3586	int ret;
3587	struct vm_area_struct *vma;
3588
3589	vma = vm_area_alloc(mm);
3590	if (unlikely(vma == NULL))
3591		return ERR_PTR(-ENOMEM);
3592
 
 
3593	vma->vm_start = addr;
3594	vma->vm_end = addr + len;
3595
3596	vm_flags_init(vma, (vm_flags | mm->def_flags |
3597		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3598	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3599
3600	vma->vm_ops = ops;
3601	vma->vm_private_data = priv;
 
 
 
 
3602
3603	ret = insert_vm_struct(mm, vma);
3604	if (ret)
3605		goto out;
3606
3607	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3608
3609	perf_event_mmap(vma);
3610
3611	return vma;
3612
3613out:
3614	vm_area_free(vma);
3615	return ERR_PTR(ret);
3616}
3617
3618bool vma_is_special_mapping(const struct vm_area_struct *vma,
3619	const struct vm_special_mapping *sm)
3620{
3621	return vma->vm_private_data == sm &&
3622		(vma->vm_ops == &special_mapping_vmops ||
3623		 vma->vm_ops == &legacy_special_mapping_vmops);
3624}
3625
3626/*
3627 * Called with mm->mmap_lock held for writing.
3628 * Insert a new vma covering the given region, with the given flags.
3629 * Its pages are supplied by the given array of struct page *.
3630 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3631 * The region past the last page supplied will always produce SIGBUS.
3632 * The array pointer and the pages it points to are assumed to stay alive
3633 * for as long as this mapping might exist.
3634 */
3635struct vm_area_struct *_install_special_mapping(
3636	struct mm_struct *mm,
3637	unsigned long addr, unsigned long len,
3638	unsigned long vm_flags, const struct vm_special_mapping *spec)
3639{
3640	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3641					&special_mapping_vmops);
3642}
3643
3644int install_special_mapping(struct mm_struct *mm,
3645			    unsigned long addr, unsigned long len,
3646			    unsigned long vm_flags, struct page **pages)
3647{
3648	struct vm_area_struct *vma = __install_special_mapping(
3649		mm, addr, len, vm_flags, (void *)pages,
3650		&legacy_special_mapping_vmops);
3651
3652	return PTR_ERR_OR_ZERO(vma);
3653}
3654
3655static DEFINE_MUTEX(mm_all_locks_mutex);
3656
3657static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3658{
3659	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3660		/*
3661		 * The LSB of head.next can't change from under us
3662		 * because we hold the mm_all_locks_mutex.
3663		 */
3664		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3665		/*
3666		 * We can safely modify head.next after taking the
3667		 * anon_vma->root->rwsem. If some other vma in this mm shares
3668		 * the same anon_vma we won't take it again.
3669		 *
3670		 * No need of atomic instructions here, head.next
3671		 * can't change from under us thanks to the
3672		 * anon_vma->root->rwsem.
3673		 */
3674		if (__test_and_set_bit(0, (unsigned long *)
3675				       &anon_vma->root->rb_root.rb_root.rb_node))
3676			BUG();
3677	}
3678}
3679
3680static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3681{
3682	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3683		/*
3684		 * AS_MM_ALL_LOCKS can't change from under us because
3685		 * we hold the mm_all_locks_mutex.
3686		 *
3687		 * Operations on ->flags have to be atomic because
3688		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3689		 * mm_all_locks_mutex, there may be other cpus
3690		 * changing other bitflags in parallel to us.
3691		 */
3692		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3693			BUG();
3694		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3695	}
3696}
3697
3698/*
3699 * This operation locks against the VM for all pte/vma/mm related
3700 * operations that could ever happen on a certain mm. This includes
3701 * vmtruncate, try_to_unmap, and all page faults.
3702 *
3703 * The caller must take the mmap_lock in write mode before calling
3704 * mm_take_all_locks(). The caller isn't allowed to release the
3705 * mmap_lock until mm_drop_all_locks() returns.
3706 *
3707 * mmap_lock in write mode is required in order to block all operations
3708 * that could modify pagetables and free pages without need of
3709 * altering the vma layout. It's also needed in write mode to avoid new
 
3710 * anon_vmas to be associated with existing vmas.
3711 *
3712 * A single task can't take more than one mm_take_all_locks() in a row
3713 * or it would deadlock.
3714 *
3715 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3716 * mapping->flags avoid to take the same lock twice, if more than one
3717 * vma in this mm is backed by the same anon_vma or address_space.
3718 *
3719 * We take locks in following order, accordingly to comment at beginning
3720 * of mm/rmap.c:
3721 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3722 *     hugetlb mapping);
3723 *   - all vmas marked locked
3724 *   - all i_mmap_rwsem locks;
3725 *   - all anon_vma->rwseml
3726 *
3727 * We can take all locks within these types randomly because the VM code
3728 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3729 * mm_all_locks_mutex.
3730 *
3731 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3732 * that may have to take thousand of locks.
3733 *
3734 * mm_take_all_locks() can fail if it's interrupted by signals.
3735 */
3736int mm_take_all_locks(struct mm_struct *mm)
3737{
3738	struct vm_area_struct *vma;
3739	struct anon_vma_chain *avc;
3740	MA_STATE(mas, &mm->mm_mt, 0, 0);
3741
3742	mmap_assert_write_locked(mm);
3743
3744	mutex_lock(&mm_all_locks_mutex);
3745
3746	/*
3747	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3748	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3749	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3750	 * is reached.
3751	 */
3752	mas_for_each(&mas, vma, ULONG_MAX) {
3753		if (signal_pending(current))
3754			goto out_unlock;
3755		vma_start_write(vma);
3756	}
3757
3758	mas_set(&mas, 0);
3759	mas_for_each(&mas, vma, ULONG_MAX) {
3760		if (signal_pending(current))
3761			goto out_unlock;
3762		if (vma->vm_file && vma->vm_file->f_mapping &&
3763				is_vm_hugetlb_page(vma))
3764			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3765	}
3766
3767	mas_set(&mas, 0);
3768	mas_for_each(&mas, vma, ULONG_MAX) {
3769		if (signal_pending(current))
3770			goto out_unlock;
3771		if (vma->vm_file && vma->vm_file->f_mapping &&
3772				!is_vm_hugetlb_page(vma))
3773			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3774	}
3775
3776	mas_set(&mas, 0);
3777	mas_for_each(&mas, vma, ULONG_MAX) {
3778		if (signal_pending(current))
3779			goto out_unlock;
3780		if (vma->anon_vma)
3781			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3782				vm_lock_anon_vma(mm, avc->anon_vma);
3783	}
3784
3785	return 0;
3786
3787out_unlock:
3788	mm_drop_all_locks(mm);
3789	return -EINTR;
 
 
3790}
3791
3792static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3793{
3794	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3795		/*
3796		 * The LSB of head.next can't change to 0 from under
3797		 * us because we hold the mm_all_locks_mutex.
3798		 *
3799		 * We must however clear the bitflag before unlocking
3800		 * the vma so the users using the anon_vma->rb_root will
3801		 * never see our bitflag.
3802		 *
3803		 * No need of atomic instructions here, head.next
3804		 * can't change from under us until we release the
3805		 * anon_vma->root->rwsem.
3806		 */
3807		if (!__test_and_clear_bit(0, (unsigned long *)
3808					  &anon_vma->root->rb_root.rb_root.rb_node))
3809			BUG();
3810		anon_vma_unlock_write(anon_vma);
3811	}
3812}
3813
3814static void vm_unlock_mapping(struct address_space *mapping)
3815{
3816	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3817		/*
3818		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3819		 * because we hold the mm_all_locks_mutex.
3820		 */
3821		i_mmap_unlock_write(mapping);
3822		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3823					&mapping->flags))
3824			BUG();
3825	}
3826}
3827
3828/*
3829 * The mmap_lock cannot be released by the caller until
3830 * mm_drop_all_locks() returns.
3831 */
3832void mm_drop_all_locks(struct mm_struct *mm)
3833{
3834	struct vm_area_struct *vma;
3835	struct anon_vma_chain *avc;
3836	MA_STATE(mas, &mm->mm_mt, 0, 0);
3837
3838	mmap_assert_write_locked(mm);
3839	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3840
3841	mas_for_each(&mas, vma, ULONG_MAX) {
3842		if (vma->anon_vma)
3843			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3844				vm_unlock_anon_vma(avc->anon_vma);
3845		if (vma->vm_file && vma->vm_file->f_mapping)
3846			vm_unlock_mapping(vma->vm_file->f_mapping);
3847	}
3848
3849	mutex_unlock(&mm_all_locks_mutex);
3850}
3851
3852/*
3853 * initialise the percpu counter for VM
3854 */
3855void __init mmap_init(void)
3856{
3857	int ret;
3858
3859	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3860	VM_BUG_ON(ret);
3861}
3862
3863/*
3864 * Initialise sysctl_user_reserve_kbytes.
3865 *
3866 * This is intended to prevent a user from starting a single memory hogging
3867 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3868 * mode.
3869 *
3870 * The default value is min(3% of free memory, 128MB)
3871 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3872 */
3873static int init_user_reserve(void)
3874{
3875	unsigned long free_kbytes;
3876
3877	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3878
3879	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3880	return 0;
3881}
3882subsys_initcall(init_user_reserve);
3883
3884/*
3885 * Initialise sysctl_admin_reserve_kbytes.
3886 *
3887 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3888 * to log in and kill a memory hogging process.
3889 *
3890 * Systems with more than 256MB will reserve 8MB, enough to recover
3891 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3892 * only reserve 3% of free pages by default.
3893 */
3894static int init_admin_reserve(void)
3895{
3896	unsigned long free_kbytes;
3897
3898	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899
3900	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3901	return 0;
3902}
3903subsys_initcall(init_admin_reserve);
3904
3905/*
3906 * Reinititalise user and admin reserves if memory is added or removed.
3907 *
3908 * The default user reserve max is 128MB, and the default max for the
3909 * admin reserve is 8MB. These are usually, but not always, enough to
3910 * enable recovery from a memory hogging process using login/sshd, a shell,
3911 * and tools like top. It may make sense to increase or even disable the
3912 * reserve depending on the existence of swap or variations in the recovery
3913 * tools. So, the admin may have changed them.
3914 *
3915 * If memory is added and the reserves have been eliminated or increased above
3916 * the default max, then we'll trust the admin.
3917 *
3918 * If memory is removed and there isn't enough free memory, then we
3919 * need to reset the reserves.
3920 *
3921 * Otherwise keep the reserve set by the admin.
3922 */
3923static int reserve_mem_notifier(struct notifier_block *nb,
3924			     unsigned long action, void *data)
3925{
3926	unsigned long tmp, free_kbytes;
3927
3928	switch (action) {
3929	case MEM_ONLINE:
3930		/* Default max is 128MB. Leave alone if modified by operator. */
3931		tmp = sysctl_user_reserve_kbytes;
3932		if (0 < tmp && tmp < (1UL << 17))
3933			init_user_reserve();
3934
3935		/* Default max is 8MB.  Leave alone if modified by operator. */
3936		tmp = sysctl_admin_reserve_kbytes;
3937		if (0 < tmp && tmp < (1UL << 13))
3938			init_admin_reserve();
3939
3940		break;
3941	case MEM_OFFLINE:
3942		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3943
3944		if (sysctl_user_reserve_kbytes > free_kbytes) {
3945			init_user_reserve();
3946			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3947				sysctl_user_reserve_kbytes);
3948		}
3949
3950		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3951			init_admin_reserve();
3952			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3953				sysctl_admin_reserve_kbytes);
3954		}
3955		break;
3956	default:
3957		break;
3958	}
3959	return NOTIFY_OK;
3960}
3961
3962static int __meminit init_reserve_notifier(void)
3963{
3964	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3965		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3966
3967	return 0;
3968}
3969subsys_initcall(init_reserve_notifier);