Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
 
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
 
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/hugetlb.h>
 
  24#include <linux/profile.h>
  25#include <linux/module.h>
  26#include <linux/mount.h>
  27#include <linux/mempolicy.h>
  28#include <linux/rmap.h>
  29#include <linux/mmu_notifier.h>
 
  30#include <linux/perf_event.h>
  31#include <linux/audit.h>
  32#include <linux/khugepaged.h>
 
 
 
 
 
 
 
 
 
 
  33
  34#include <asm/uaccess.h>
  35#include <asm/cacheflush.h>
  36#include <asm/tlb.h>
  37#include <asm/mmu_context.h>
  38
  39#include "internal.h"
  40
  41#ifndef arch_mmap_check
  42#define arch_mmap_check(addr, len, flags)	(0)
  43#endif
  44
  45#ifndef arch_rebalance_pgtables
  46#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  47#endif
  48
 
 
 
  49static void unmap_region(struct mm_struct *mm,
  50		struct vm_area_struct *vma, struct vm_area_struct *prev,
  51		unsigned long start, unsigned long end);
  52
  53/*
  54 * WARNING: the debugging will use recursive algorithms so never enable this
  55 * unless you know what you are doing.
  56 */
  57#undef DEBUG_MM_RB
  58
  59/* description of effects of mapping type and prot in current implementation.
  60 * this is due to the limited x86 page protection hardware.  The expected
  61 * behavior is in parens:
  62 *
  63 * map_type	prot
  64 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  65 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  66 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  67 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  68 *		
  69 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  70 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  71 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  72 *
 
 
 
 
 
  73 */
  74pgprot_t protection_map[16] = {
  75	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  76	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  77};
  78
 
 
 
 
 
 
 
  79pgprot_t vm_get_page_prot(unsigned long vm_flags)
  80{
  81	return __pgprot(pgprot_val(protection_map[vm_flags &
  82				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  83			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 
 
  84}
  85EXPORT_SYMBOL(vm_get_page_prot);
  86
  87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  88int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  90/*
  91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  92 * other variables. It can be updated by several CPUs frequently.
  93 */
  94struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  95
  96/*
  97 * Check that a process has enough memory to allocate a new virtual
  98 * mapping. 0 means there is enough memory for the allocation to
  99 * succeed and -ENOMEM implies there is not.
 100 *
 101 * We currently support three overcommit policies, which are set via the
 102 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 103 *
 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 105 * Additional code 2002 Jul 20 by Robert Love.
 106 *
 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 108 *
 109 * Note this is a helper function intended to be used by LSMs which
 110 * wish to use this logic.
 111 */
 112int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 113{
 114	unsigned long free, allowed;
 115
 116	vm_acct_memory(pages);
 117
 118	/*
 119	 * Sometimes we want to use more memory than we have
 120	 */
 121	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 122		return 0;
 123
 124	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 125		free = global_page_state(NR_FREE_PAGES);
 126		free += global_page_state(NR_FILE_PAGES);
 127
 128		/*
 129		 * shmem pages shouldn't be counted as free in this
 130		 * case, they can't be purged, only swapped out, and
 131		 * that won't affect the overall amount of available
 132		 * memory in the system.
 133		 */
 134		free -= global_page_state(NR_SHMEM);
 135
 136		free += nr_swap_pages;
 137
 138		/*
 139		 * Any slabs which are created with the
 140		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 141		 * which are reclaimable, under pressure.  The dentry
 142		 * cache and most inode caches should fall into this
 143		 */
 144		free += global_page_state(NR_SLAB_RECLAIMABLE);
 145
 146		/*
 147		 * Leave reserved pages. The pages are not for anonymous pages.
 148		 */
 149		if (free <= totalreserve_pages)
 150			goto error;
 151		else
 152			free -= totalreserve_pages;
 153
 154		/*
 155		 * Leave the last 3% for root
 156		 */
 157		if (!cap_sys_admin)
 158			free -= free / 32;
 159
 160		if (free > pages)
 161			return 0;
 
 
 
 162
 163		goto error;
 
 
 
 164	}
 165
 166	allowed = (totalram_pages - hugetlb_total_pages())
 167	       	* sysctl_overcommit_ratio / 100;
 168	/*
 169	 * Leave the last 3% for root
 170	 */
 171	if (!cap_sys_admin)
 172		allowed -= allowed / 32;
 173	allowed += total_swap_pages;
 174
 175	/* Don't let a single process grow too big:
 176	   leave 3% of the size of this process for other processes */
 177	if (mm)
 178		allowed -= mm->total_vm / 32;
 179
 180	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 181		return 0;
 182error:
 183	vm_unacct_memory(pages);
 184
 185	return -ENOMEM;
 186}
 187
 188/*
 189 * Requires inode->i_mapping->i_mmap_mutex
 190 */
 191static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 192		struct file *file, struct address_space *mapping)
 193{
 194	if (vma->vm_flags & VM_DENYWRITE)
 195		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 196	if (vma->vm_flags & VM_SHARED)
 197		mapping->i_mmap_writable--;
 198
 199	flush_dcache_mmap_lock(mapping);
 200	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 201		list_del_init(&vma->shared.vm_set.list);
 202	else
 203		vma_prio_tree_remove(vma, &mapping->i_mmap);
 204	flush_dcache_mmap_unlock(mapping);
 205}
 206
 207/*
 208 * Unlink a file-based vm structure from its prio_tree, to hide
 209 * vma from rmap and vmtruncate before freeing its page tables.
 210 */
 211void unlink_file_vma(struct vm_area_struct *vma)
 212{
 213	struct file *file = vma->vm_file;
 214
 215	if (file) {
 216		struct address_space *mapping = file->f_mapping;
 217		mutex_lock(&mapping->i_mmap_mutex);
 218		__remove_shared_vm_struct(vma, file, mapping);
 219		mutex_unlock(&mapping->i_mmap_mutex);
 220	}
 221}
 222
 223/*
 224 * Close a vm structure and free it, returning the next.
 225 */
 226static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 227{
 228	struct vm_area_struct *next = vma->vm_next;
 229
 230	might_sleep();
 231	if (vma->vm_ops && vma->vm_ops->close)
 232		vma->vm_ops->close(vma);
 233	if (vma->vm_file) {
 234		fput(vma->vm_file);
 235		if (vma->vm_flags & VM_EXECUTABLE)
 236			removed_exe_file_vma(vma->vm_mm);
 237	}
 238	mpol_put(vma_policy(vma));
 239	kmem_cache_free(vm_area_cachep, vma);
 240	return next;
 241}
 242
 
 
 243SYSCALL_DEFINE1(brk, unsigned long, brk)
 244{
 245	unsigned long rlim, retval;
 246	unsigned long newbrk, oldbrk;
 247	struct mm_struct *mm = current->mm;
 
 248	unsigned long min_brk;
 
 
 
 249
 250	down_write(&mm->mmap_sem);
 
 
 
 
 
 251
 252#ifdef CONFIG_COMPAT_BRK
 253	/*
 254	 * CONFIG_COMPAT_BRK can still be overridden by setting
 255	 * randomize_va_space to 2, which will still cause mm->start_brk
 256	 * to be arbitrarily shifted
 257	 */
 258	if (current->brk_randomized)
 259		min_brk = mm->start_brk;
 260	else
 261		min_brk = mm->end_data;
 262#else
 263	min_brk = mm->start_brk;
 264#endif
 265	if (brk < min_brk)
 266		goto out;
 267
 268	/*
 269	 * Check against rlimit here. If this check is done later after the test
 270	 * of oldbrk with newbrk then it can escape the test and let the data
 271	 * segment grow beyond its set limit the in case where the limit is
 272	 * not page aligned -Ram Gupta
 273	 */
 274	rlim = rlimit(RLIMIT_DATA);
 275	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 276			(mm->end_data - mm->start_data) > rlim)
 277		goto out;
 278
 279	newbrk = PAGE_ALIGN(brk);
 280	oldbrk = PAGE_ALIGN(mm->brk);
 281	if (oldbrk == newbrk)
 282		goto set_brk;
 
 
 283
 284	/* Always allow shrinking brk. */
 
 
 
 285	if (brk <= mm->brk) {
 286		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 287			goto set_brk;
 288		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 290
 291	/* Check against existing mmap mappings. */
 292	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 293		goto out;
 294
 295	/* Ok, looks good - let it rip. */
 296	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 297		goto out;
 298set_brk:
 299	mm->brk = brk;
 
 
 
 
 
 
 
 
 
 
 
 
 300out:
 301	retval = mm->brk;
 302	up_write(&mm->mmap_sem);
 303	return retval;
 304}
 305
 306#ifdef DEBUG_MM_RB
 307static int browse_rb(struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308{
 309	int i = 0, j;
 
 310	struct rb_node *nd, *pn = NULL;
 311	unsigned long prev = 0, pend = 0;
 312
 313	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 314		struct vm_area_struct *vma;
 315		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 316		if (vma->vm_start < prev)
 317			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 318		if (vma->vm_start < pend)
 319			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 320		if (vma->vm_start > vma->vm_end)
 321			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322		i++;
 323		pn = nd;
 324		prev = vma->vm_start;
 325		pend = vma->vm_end;
 326	}
 327	j = 0;
 328	for (nd = pn; nd; nd = rb_prev(nd)) {
 329		j++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	}
 331	if (i != j)
 332		printk("backwards %d, forwards %d\n", j, i), i = 0;
 333	return i;
 334}
 335
 336void validate_mm(struct mm_struct *mm)
 337{
 338	int bug = 0;
 339	int i = 0;
 340	struct vm_area_struct *tmp = mm->mmap;
 341	while (tmp) {
 342		tmp = tmp->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 343		i++;
 344	}
 345	if (i != mm->map_count)
 346		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 347	i = browse_rb(&mm->mm_rb);
 348	if (i != mm->map_count)
 349		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 350	BUG_ON(bug);
 
 
 
 
 
 
 
 
 
 
 351}
 352#else
 
 353#define validate_mm(mm) do { } while (0)
 354#endif
 355
 356static struct vm_area_struct *
 357find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 358		struct vm_area_struct **pprev, struct rb_node ***rb_link,
 359		struct rb_node ** rb_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360{
 361	struct vm_area_struct * vma;
 362	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363
 364	__rb_link = &mm->mm_rb.rb_node;
 365	rb_prev = __rb_parent = NULL;
 366	vma = NULL;
 367
 368	while (*__rb_link) {
 369		struct vm_area_struct *vma_tmp;
 370
 371		__rb_parent = *__rb_link;
 372		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 373
 374		if (vma_tmp->vm_end > addr) {
 375			vma = vma_tmp;
 376			if (vma_tmp->vm_start <= addr)
 377				break;
 378			__rb_link = &__rb_parent->rb_left;
 379		} else {
 380			rb_prev = __rb_parent;
 381			__rb_link = &__rb_parent->rb_right;
 382		}
 383	}
 384
 385	*pprev = NULL;
 386	if (rb_prev)
 387		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 388	*rb_link = __rb_link;
 389	*rb_parent = __rb_parent;
 390	return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 394		struct rb_node **rb_link, struct rb_node *rb_parent)
 395{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 397	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 
 
 398}
 399
 400static void __vma_link_file(struct vm_area_struct *vma)
 401{
 402	struct file *file;
 403
 404	file = vma->vm_file;
 405	if (file) {
 406		struct address_space *mapping = file->f_mapping;
 407
 408		if (vma->vm_flags & VM_DENYWRITE)
 409			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 410		if (vma->vm_flags & VM_SHARED)
 411			mapping->i_mmap_writable++;
 412
 413		flush_dcache_mmap_lock(mapping);
 414		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 415			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 416		else
 417			vma_prio_tree_insert(vma, &mapping->i_mmap);
 418		flush_dcache_mmap_unlock(mapping);
 419	}
 420}
 421
 422static void
 423__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 424	struct vm_area_struct *prev, struct rb_node **rb_link,
 425	struct rb_node *rb_parent)
 426{
 427	__vma_link_list(mm, vma, prev, rb_parent);
 428	__vma_link_rb(mm, vma, rb_link, rb_parent);
 429}
 430
 431static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 432			struct vm_area_struct *prev, struct rb_node **rb_link,
 433			struct rb_node *rb_parent)
 434{
 435	struct address_space *mapping = NULL;
 436
 437	if (vma->vm_file)
 438		mapping = vma->vm_file->f_mapping;
 439
 440	if (mapping)
 441		mutex_lock(&mapping->i_mmap_mutex);
 442
 443	__vma_link(mm, vma, prev, rb_link, rb_parent);
 444	__vma_link_file(vma);
 445
 446	if (mapping)
 447		mutex_unlock(&mapping->i_mmap_mutex);
 448
 449	mm->map_count++;
 450	validate_mm(mm);
 451}
 452
 453/*
 454 * Helper for vma_adjust in the split_vma insert case:
 455 * insert vm structure into list and rbtree and anon_vma,
 456 * but it has already been inserted into prio_tree earlier.
 457 */
 458static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 459{
 460	struct vm_area_struct *__vma, *prev;
 461	struct rb_node **rb_link, *rb_parent;
 462
 463	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 464	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 
 465	__vma_link(mm, vma, prev, rb_link, rb_parent);
 466	mm->map_count++;
 467}
 468
 469static inline void
 470__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 471		struct vm_area_struct *prev)
 472{
 473	struct vm_area_struct *next = vma->vm_next;
 474
 475	prev->vm_next = next;
 
 
 
 
 
 
 
 
 
 
 
 
 476	if (next)
 477		next->vm_prev = prev;
 478	rb_erase(&vma->vm_rb, &mm->mm_rb);
 479	if (mm->mmap_cache == vma)
 480		mm->mmap_cache = prev;
 
 
 
 
 
 
 
 481}
 482
 483/*
 484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 485 * is already present in an i_mmap tree without adjusting the tree.
 486 * The following helper function should be used when such adjustments
 487 * are necessary.  The "insert" vma (if any) is to be inserted
 488 * before we drop the necessary locks.
 489 */
 490int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 491	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 492{
 493	struct mm_struct *mm = vma->vm_mm;
 494	struct vm_area_struct *next = vma->vm_next;
 495	struct vm_area_struct *importer = NULL;
 496	struct address_space *mapping = NULL;
 497	struct prio_tree_root *root = NULL;
 498	struct anon_vma *anon_vma = NULL;
 499	struct file *file = vma->vm_file;
 
 500	long adjust_next = 0;
 501	int remove_next = 0;
 502
 503	if (next && !insert) {
 504		struct vm_area_struct *exporter = NULL;
 505
 506		if (end >= next->vm_end) {
 507			/*
 508			 * vma expands, overlapping all the next, and
 509			 * perhaps the one after too (mprotect case 6).
 
 
 510			 */
 511again:			remove_next = 1 + (end > next->vm_end);
 512			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513			exporter = next;
 514			importer = vma;
 
 
 
 
 
 
 
 
 515		} else if (end > next->vm_start) {
 516			/*
 517			 * vma expands, overlapping part of the next:
 518			 * mprotect case 5 shifting the boundary up.
 519			 */
 520			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 521			exporter = next;
 522			importer = vma;
 
 523		} else if (end < vma->vm_end) {
 524			/*
 525			 * vma shrinks, and !insert tells it's not
 526			 * split_vma inserting another: so it must be
 527			 * mprotect case 4 shifting the boundary down.
 528			 */
 529			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 530			exporter = vma;
 531			importer = next;
 
 532		}
 533
 534		/*
 535		 * Easily overlooked: when mprotect shifts the boundary,
 536		 * make sure the expanding vma has anon_vma set if the
 537		 * shrinking vma had, to cover any anon pages imported.
 538		 */
 539		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 540			if (anon_vma_clone(importer, exporter))
 541				return -ENOMEM;
 542			importer->anon_vma = exporter->anon_vma;
 
 
 
 543		}
 544	}
 
 
 545
 546	if (file) {
 547		mapping = file->f_mapping;
 548		if (!(vma->vm_flags & VM_NONLINEAR))
 549			root = &mapping->i_mmap;
 550		mutex_lock(&mapping->i_mmap_mutex);
 
 
 
 
 551		if (insert) {
 552			/*
 553			 * Put into prio_tree now, so instantiated pages
 554			 * are visible to arm/parisc __flush_dcache_page
 555			 * throughout; but we cannot insert into address
 556			 * space until vma start or end is updated.
 557			 */
 558			__vma_link_file(insert);
 559		}
 560	}
 561
 562	vma_adjust_trans_huge(vma, start, end, adjust_next);
 563
 564	/*
 565	 * When changing only vma->vm_end, we don't really need anon_vma
 566	 * lock. This is a fairly rare case by itself, but the anon_vma
 567	 * lock may be shared between many sibling processes.  Skipping
 568	 * the lock for brk adjustments makes a difference sometimes.
 569	 */
 570	if (vma->anon_vma && (importer || start != vma->vm_start)) {
 571		anon_vma = vma->anon_vma;
 572		anon_vma_lock(anon_vma);
 573	}
 574
 575	if (root) {
 576		flush_dcache_mmap_lock(mapping);
 577		vma_prio_tree_remove(vma, root);
 578		if (adjust_next)
 579			vma_prio_tree_remove(next, root);
 580	}
 581
 582	vma->vm_start = start;
 583	vma->vm_end = end;
 
 
 
 
 
 
 584	vma->vm_pgoff = pgoff;
 585	if (adjust_next) {
 586		next->vm_start += adjust_next << PAGE_SHIFT;
 587		next->vm_pgoff += adjust_next;
 588	}
 589
 590	if (root) {
 591		if (adjust_next)
 592			vma_prio_tree_insert(next, root);
 593		vma_prio_tree_insert(vma, root);
 594		flush_dcache_mmap_unlock(mapping);
 595	}
 596
 597	if (remove_next) {
 598		/*
 599		 * vma_merge has merged next into vma, and needs
 600		 * us to remove next before dropping the locks.
 601		 */
 602		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 603		if (file)
 604			__remove_shared_vm_struct(next, file, mapping);
 605	} else if (insert) {
 606		/*
 607		 * split_vma has split insert from vma, and needs
 608		 * us to insert it before dropping the locks
 609		 * (it may either follow vma or precede it).
 610		 */
 611		__insert_vm_struct(mm, insert);
 
 
 
 
 
 
 
 
 
 612	}
 613
 614	if (anon_vma)
 615		anon_vma_unlock(anon_vma);
 
 
 
 
 616	if (mapping)
 617		mutex_unlock(&mapping->i_mmap_mutex);
 
 
 
 
 
 
 
 618
 619	if (remove_next) {
 620		if (file) {
 
 621			fput(file);
 622			if (next->vm_flags & VM_EXECUTABLE)
 623				removed_exe_file_vma(mm);
 624		}
 625		if (next->anon_vma)
 626			anon_vma_merge(vma, next);
 627		mm->map_count--;
 628		mpol_put(vma_policy(next));
 629		kmem_cache_free(vm_area_cachep, next);
 630		/*
 631		 * In mprotect's case 6 (see comments on vma_merge),
 632		 * we must remove another next too. It would clutter
 633		 * up the code too much to do both in one go.
 634		 */
 635		if (remove_next == 2) {
 
 
 
 
 
 
 636			next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637			goto again;
 638		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639	}
 
 
 640
 641	validate_mm(mm);
 642
 643	return 0;
 644}
 645
 646/*
 647 * If the vma has a ->close operation then the driver probably needs to release
 648 * per-vma resources, so we don't attempt to merge those.
 649 */
 650static inline int is_mergeable_vma(struct vm_area_struct *vma,
 651			struct file *file, unsigned long vm_flags)
 
 652{
 653	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 654	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 
 
 
 
 
 
 
 655		return 0;
 656	if (vma->vm_file != file)
 657		return 0;
 658	if (vma->vm_ops && vma->vm_ops->close)
 659		return 0;
 
 
 660	return 1;
 661}
 662
 663static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 664					struct anon_vma *anon_vma2,
 665					struct vm_area_struct *vma)
 666{
 667	/*
 668	 * The list_is_singular() test is to avoid merging VMA cloned from
 669	 * parents. This can improve scalability caused by anon_vma lock.
 670	 */
 671	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 672		list_is_singular(&vma->anon_vma_chain)))
 673		return 1;
 674	return anon_vma1 == anon_vma2;
 675}
 676
 677/*
 678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 679 * in front of (at a lower virtual address and file offset than) the vma.
 680 *
 681 * We cannot merge two vmas if they have differently assigned (non-NULL)
 682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 683 *
 684 * We don't check here for the merged mmap wrapping around the end of pagecache
 685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 686 * wrap, nor mmaps which cover the final page at index -1UL.
 687 */
 688static int
 689can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 690	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 691{
 692	if (is_mergeable_vma(vma, file, vm_flags) &&
 693	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 694		if (vma->vm_pgoff == vm_pgoff)
 695			return 1;
 696	}
 697	return 0;
 698}
 699
 700/*
 701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 702 * beyond (at a higher virtual address and file offset than) the vma.
 703 *
 704 * We cannot merge two vmas if they have differently assigned (non-NULL)
 705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 706 */
 707static int
 708can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 710{
 711	if (is_mergeable_vma(vma, file, vm_flags) &&
 712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 713		pgoff_t vm_pglen;
 714		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 715		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 716			return 1;
 717	}
 718	return 0;
 719}
 720
 721/*
 722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 723 * whether that can be merged with its predecessor or its successor.
 724 * Or both (it neatly fills a hole).
 725 *
 726 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 727 * certain not to be mapped by the time vma_merge is called; but when
 728 * called for mprotect, it is certain to be already mapped (either at
 729 * an offset within prev, or at the start of next), and the flags of
 730 * this area are about to be changed to vm_flags - and the no-change
 731 * case has already been eliminated.
 732 *
 733 * The following mprotect cases have to be considered, where AAAA is
 734 * the area passed down from mprotect_fixup, never extending beyond one
 735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 736 *
 737 *     AAAA             AAAA                AAAA          AAAA
 738 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 739 *    cannot merge    might become    might become    might become
 740 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 741 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 742 *    mremap move:                                    PPPPNNNNNNNN 8
 743 *        AAAA
 744 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 745 *    might become    case 1 below    case 2 below    case 3 below
 746 *
 747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
 749 */
 750struct vm_area_struct *vma_merge(struct mm_struct *mm,
 751			struct vm_area_struct *prev, unsigned long addr,
 752			unsigned long end, unsigned long vm_flags,
 753		     	struct anon_vma *anon_vma, struct file *file,
 754			pgoff_t pgoff, struct mempolicy *policy)
 
 755{
 756	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 757	struct vm_area_struct *area, *next;
 758	int err;
 759
 760	/*
 761	 * We later require that vma->vm_flags == vm_flags,
 762	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 763	 */
 764	if (vm_flags & VM_SPECIAL)
 765		return NULL;
 766
 767	if (prev)
 768		next = prev->vm_next;
 769	else
 770		next = mm->mmap;
 771	area = next;
 772	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 773		next = next->vm_next;
 774
 
 
 
 
 
 775	/*
 776	 * Can it merge with the predecessor?
 777	 */
 778	if (prev && prev->vm_end == addr &&
 779  			mpol_equal(vma_policy(prev), policy) &&
 780			can_vma_merge_after(prev, vm_flags,
 781						anon_vma, file, pgoff)) {
 
 782		/*
 783		 * OK, it can.  Can we now merge in the successor as well?
 784		 */
 785		if (next && end == next->vm_start &&
 786				mpol_equal(policy, vma_policy(next)) &&
 787				can_vma_merge_before(next, vm_flags,
 788					anon_vma, file, pgoff+pglen) &&
 
 
 789				is_mergeable_anon_vma(prev->anon_vma,
 790						      next->anon_vma, NULL)) {
 791							/* cases 1, 6 */
 792			err = vma_adjust(prev, prev->vm_start,
 793				next->vm_end, prev->vm_pgoff, NULL);
 
 794		} else					/* cases 2, 5, 7 */
 795			err = vma_adjust(prev, prev->vm_start,
 796				end, prev->vm_pgoff, NULL);
 797		if (err)
 798			return NULL;
 799		khugepaged_enter_vma_merge(prev);
 800		return prev;
 801	}
 802
 803	/*
 804	 * Can this new request be merged in front of next?
 805	 */
 806	if (next && end == next->vm_start &&
 807 			mpol_equal(policy, vma_policy(next)) &&
 808			can_vma_merge_before(next, vm_flags,
 809					anon_vma, file, pgoff+pglen)) {
 
 810		if (prev && addr < prev->vm_end)	/* case 4 */
 811			err = vma_adjust(prev, prev->vm_start,
 812				addr, prev->vm_pgoff, NULL);
 813		else					/* cases 3, 8 */
 814			err = vma_adjust(area, addr, next->vm_end,
 815				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
 816		if (err)
 817			return NULL;
 818		khugepaged_enter_vma_merge(area);
 819		return area;
 820	}
 821
 822	return NULL;
 823}
 824
 825/*
 826 * Rough compatbility check to quickly see if it's even worth looking
 827 * at sharing an anon_vma.
 828 *
 829 * They need to have the same vm_file, and the flags can only differ
 830 * in things that mprotect may change.
 831 *
 832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 833 * we can merge the two vma's. For example, we refuse to merge a vma if
 834 * there is a vm_ops->close() function, because that indicates that the
 835 * driver is doing some kind of reference counting. But that doesn't
 836 * really matter for the anon_vma sharing case.
 837 */
 838static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 839{
 840	return a->vm_end == b->vm_start &&
 841		mpol_equal(vma_policy(a), vma_policy(b)) &&
 842		a->vm_file == b->vm_file &&
 843		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 844		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 845}
 846
 847/*
 848 * Do some basic sanity checking to see if we can re-use the anon_vma
 849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 850 * the same as 'old', the other will be the new one that is trying
 851 * to share the anon_vma.
 852 *
 853 * NOTE! This runs with mm_sem held for reading, so it is possible that
 854 * the anon_vma of 'old' is concurrently in the process of being set up
 855 * by another page fault trying to merge _that_. But that's ok: if it
 856 * is being set up, that automatically means that it will be a singleton
 857 * acceptable for merging, so we can do all of this optimistically. But
 858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 859 *
 860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 862 * is to return an anon_vma that is "complex" due to having gone through
 863 * a fork).
 864 *
 865 * We also make sure that the two vma's are compatible (adjacent,
 866 * and with the same memory policies). That's all stable, even with just
 867 * a read lock on the mm_sem.
 868 */
 869static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 870{
 871	if (anon_vma_compatible(a, b)) {
 872		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 873
 874		if (anon_vma && list_is_singular(&old->anon_vma_chain))
 875			return anon_vma;
 876	}
 877	return NULL;
 878}
 879
 880/*
 881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 882 * neighbouring vmas for a suitable anon_vma, before it goes off
 883 * to allocate a new anon_vma.  It checks because a repetitive
 884 * sequence of mprotects and faults may otherwise lead to distinct
 885 * anon_vmas being allocated, preventing vma merge in subsequent
 886 * mprotect.
 887 */
 888struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 889{
 890	struct anon_vma *anon_vma;
 891	struct vm_area_struct *near;
 892
 893	near = vma->vm_next;
 894	if (!near)
 895		goto try_prev;
 896
 897	anon_vma = reusable_anon_vma(near, vma, near);
 898	if (anon_vma)
 899		return anon_vma;
 900try_prev:
 901	near = vma->vm_prev;
 902	if (!near)
 903		goto none;
 904
 905	anon_vma = reusable_anon_vma(near, near, vma);
 906	if (anon_vma)
 907		return anon_vma;
 908none:
 909	/*
 910	 * There's no absolute need to look only at touching neighbours:
 911	 * we could search further afield for "compatible" anon_vmas.
 912	 * But it would probably just be a waste of time searching,
 913	 * or lead to too many vmas hanging off the same anon_vma.
 914	 * We're trying to allow mprotect remerging later on,
 915	 * not trying to minimize memory used for anon_vmas.
 916	 */
 917	return NULL;
 918}
 919
 920#ifdef CONFIG_PROC_FS
 921void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 922						struct file *file, long pages)
 
 
 923{
 924	const unsigned long stack_flags
 925		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 
 
 
 
 926
 927	if (file) {
 928		mm->shared_vm += pages;
 929		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 930			mm->exec_vm += pages;
 931	} else if (flags & stack_flags)
 932		mm->stack_vm += pages;
 933	if (flags & (VM_RESERVED|VM_IO))
 934		mm->reserved_vm += pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936#endif /* CONFIG_PROC_FS */
 937
 938/*
 939 * The caller must hold down_write(&current->mm->mmap_sem).
 940 */
 941
 942unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 943			unsigned long len, unsigned long prot,
 944			unsigned long flags, unsigned long pgoff)
 
 
 945{
 946	struct mm_struct * mm = current->mm;
 947	struct inode *inode;
 948	vm_flags_t vm_flags;
 949	int error;
 950	unsigned long reqprot = prot;
 
 
 951
 952	/*
 953	 * Does the application expect PROT_READ to imply PROT_EXEC?
 954	 *
 955	 * (the exception is when the underlying filesystem is noexec
 956	 *  mounted, in which case we dont add PROT_EXEC.)
 957	 */
 958	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 959		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 960			prot |= PROT_EXEC;
 961
 962	if (!len)
 963		return -EINVAL;
 
 964
 965	if (!(flags & MAP_FIXED))
 966		addr = round_hint_to_min(addr);
 967
 968	/* Careful about overflows.. */
 969	len = PAGE_ALIGN(len);
 970	if (!len)
 971		return -ENOMEM;
 972
 973	/* offset overflow? */
 974	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 975               return -EOVERFLOW;
 976
 977	/* Too many mappings? */
 978	if (mm->map_count > sysctl_max_map_count)
 979		return -ENOMEM;
 980
 981	/* Obtain the address to map to. we verify (or select) it and ensure
 982	 * that it represents a valid section of the address space.
 983	 */
 984	addr = get_unmapped_area(file, addr, len, pgoff, flags);
 985	if (addr & ~PAGE_MASK)
 986		return addr;
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 988	/* Do simple checking here so the lower-level routines won't have
 989	 * to. we assume access permissions have been handled by the open
 990	 * of the memory object, so we don't do any here.
 991	 */
 992	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
 993			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 994
 995	if (flags & MAP_LOCKED)
 996		if (!can_do_mlock())
 997			return -EPERM;
 998
 999	/* mlock MCL_FUTURE? */
1000	if (vm_flags & VM_LOCKED) {
1001		unsigned long locked, lock_limit;
1002		locked = len >> PAGE_SHIFT;
1003		locked += mm->locked_vm;
1004		lock_limit = rlimit(RLIMIT_MEMLOCK);
1005		lock_limit >>= PAGE_SHIFT;
1006		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007			return -EAGAIN;
1008	}
1009
1010	inode = file ? file->f_path.dentry->d_inode : NULL;
1011
1012	if (file) {
 
 
 
 
 
 
 
 
1013		switch (flags & MAP_TYPE) {
1014		case MAP_SHARED:
1015			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018			/*
1019			 * Make sure we don't allow writing to an append-only
1020			 * file..
1021			 */
1022			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023				return -EACCES;
1024
1025			/*
1026			 * Make sure there are no mandatory locks on the file.
1027			 */
1028			if (locks_verify_locked(inode))
1029				return -EAGAIN;
1030
1031			vm_flags |= VM_SHARED | VM_MAYSHARE;
1032			if (!(file->f_mode & FMODE_WRITE))
1033				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034
1035			/* fall through */
1036		case MAP_PRIVATE:
1037			if (!(file->f_mode & FMODE_READ))
1038				return -EACCES;
1039			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040				if (vm_flags & VM_EXEC)
1041					return -EPERM;
1042				vm_flags &= ~VM_MAYEXEC;
1043			}
1044
1045			if (!file->f_op || !file->f_op->mmap)
1046				return -ENODEV;
 
 
1047			break;
1048
1049		default:
1050			return -EINVAL;
1051		}
1052	} else {
1053		switch (flags & MAP_TYPE) {
1054		case MAP_SHARED:
 
 
1055			/*
1056			 * Ignore pgoff.
1057			 */
1058			pgoff = 0;
1059			vm_flags |= VM_SHARED | VM_MAYSHARE;
1060			break;
1061		case MAP_PRIVATE:
1062			/*
1063			 * Set pgoff according to addr for anon_vma.
1064			 */
1065			pgoff = addr >> PAGE_SHIFT;
1066			break;
1067		default:
1068			return -EINVAL;
1069		}
1070	}
1071
1072	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073	if (error)
1074		return error;
 
 
 
 
 
 
 
 
 
 
1075
1076	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
 
 
 
 
 
1077}
1078EXPORT_SYMBOL(do_mmap_pgoff);
1079
1080SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081		unsigned long, prot, unsigned long, flags,
1082		unsigned long, fd, unsigned long, pgoff)
1083{
1084	struct file *file = NULL;
1085	unsigned long retval = -EBADF;
 
 
1086
1087	if (!(flags & MAP_ANONYMOUS)) {
1088		audit_mmap_fd(fd, flags);
1089		if (unlikely(flags & MAP_HUGETLB))
1090			return -EINVAL;
1091		file = fget(fd);
1092		if (!file)
1093			goto out;
 
 
 
 
 
1094	} else if (flags & MAP_HUGETLB) {
1095		struct user_struct *user = NULL;
 
 
 
 
 
 
 
1096		/*
1097		 * VM_NORESERVE is used because the reservations will be
1098		 * taken when vm_ops->mmap() is called
1099		 * A dummy user value is used because we are not locking
1100		 * memory so no accounting is necessary
1101		 */
1102		len = ALIGN(len, huge_page_size(&default_hstate));
1103		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104						&user, HUGETLB_ANONHUGE_INODE);
 
1105		if (IS_ERR(file))
1106			return PTR_ERR(file);
1107	}
1108
1109	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110
1111	down_write(&current->mm->mmap_sem);
1112	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113	up_write(&current->mm->mmap_sem);
1114
1115	if (file)
1116		fput(file);
1117out:
1118	return retval;
1119}
1120
 
 
 
 
 
 
 
1121#ifdef __ARCH_WANT_SYS_OLD_MMAP
1122struct mmap_arg_struct {
1123	unsigned long addr;
1124	unsigned long len;
1125	unsigned long prot;
1126	unsigned long flags;
1127	unsigned long fd;
1128	unsigned long offset;
1129};
1130
1131SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132{
1133	struct mmap_arg_struct a;
1134
1135	if (copy_from_user(&a, arg, sizeof(a)))
1136		return -EFAULT;
1137	if (a.offset & ~PAGE_MASK)
1138		return -EINVAL;
1139
1140	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141			      a.offset >> PAGE_SHIFT);
1142}
1143#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144
1145/*
1146 * Some shared mappigns will want the pages marked read-only
1147 * to track write events. If so, we'll downgrade vm_page_prot
1148 * to the private version (using protection_map[] without the
1149 * VM_SHARED bit).
1150 */
1151int vma_wants_writenotify(struct vm_area_struct *vma)
1152{
1153	vm_flags_t vm_flags = vma->vm_flags;
 
1154
1155	/* If it was private or non-writable, the write bit is already clear */
1156	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157		return 0;
1158
1159	/* The backer wishes to know when pages are first written to? */
1160	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161		return 1;
1162
1163	/* The open routine did something to the protections already? */
1164	if (pgprot_val(vma->vm_page_prot) !=
1165	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1166		return 0;
1167
 
 
 
 
1168	/* Specialty mapping? */
1169	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170		return 0;
1171
1172	/* Can the mapping track the dirty pages? */
1173	return vma->vm_file && vma->vm_file->f_mapping &&
1174		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175}
1176
1177/*
1178 * We account for memory if it's a private writeable mapping,
1179 * not hugepages and VM_NORESERVE wasn't set.
1180 */
1181static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182{
1183	/*
1184	 * hugetlb has its own accounting separate from the core VM
1185	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186	 */
1187	if (file && is_file_hugepages(file))
1188		return 0;
1189
1190	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191}
1192
1193unsigned long mmap_region(struct file *file, unsigned long addr,
1194			  unsigned long len, unsigned long flags,
1195			  vm_flags_t vm_flags, unsigned long pgoff)
1196{
1197	struct mm_struct *mm = current->mm;
1198	struct vm_area_struct *vma, *prev;
1199	int correct_wcount = 0;
1200	int error;
1201	struct rb_node **rb_link, *rb_parent;
1202	unsigned long charged = 0;
1203	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204
1205	/* Clear old maps */
1206	error = -ENOMEM;
1207munmap_back:
1208	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209	if (vma && vma->vm_start < addr + len) {
1210		if (do_munmap(mm, addr, len))
1211			return -ENOMEM;
1212		goto munmap_back;
1213	}
1214
1215	/* Check against address space limit. */
1216	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217		return -ENOMEM;
1218
1219	/*
1220	 * Set 'VM_NORESERVE' if we should not account for the
1221	 * memory use of this mapping.
1222	 */
1223	if ((flags & MAP_NORESERVE)) {
1224		/* We honor MAP_NORESERVE if allowed to overcommit */
1225		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226			vm_flags |= VM_NORESERVE;
1227
1228		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229		if (file && is_file_hugepages(file))
1230			vm_flags |= VM_NORESERVE;
 
 
 
 
 
 
 
1231	}
1232
1233	/*
1234	 * Private writable mapping: check memory availability
1235	 */
1236	if (accountable_mapping(file, vm_flags)) {
1237		charged = len >> PAGE_SHIFT;
1238		if (security_vm_enough_memory(charged))
1239			return -ENOMEM;
1240		vm_flags |= VM_ACCOUNT;
1241	}
1242
1243	/*
1244	 * Can we just expand an old mapping?
1245	 */
1246	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1247	if (vma)
1248		goto out;
1249
1250	/*
1251	 * Determine the object being mapped and call the appropriate
1252	 * specific mapper. the address has already been validated, but
1253	 * not unmapped, but the maps are removed from the list.
1254	 */
1255	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256	if (!vma) {
1257		error = -ENOMEM;
1258		goto unacct_error;
1259	}
1260
1261	vma->vm_mm = mm;
1262	vma->vm_start = addr;
1263	vma->vm_end = addr + len;
1264	vma->vm_flags = vm_flags;
1265	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266	vma->vm_pgoff = pgoff;
1267	INIT_LIST_HEAD(&vma->anon_vma_chain);
1268
1269	if (file) {
1270		error = -EINVAL;
1271		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272			goto free_vma;
1273		if (vm_flags & VM_DENYWRITE) {
1274			error = deny_write_access(file);
1275			if (error)
1276				goto free_vma;
1277			correct_wcount = 1;
1278		}
1279		vma->vm_file = file;
1280		get_file(file);
1281		error = file->f_op->mmap(file, vma);
 
 
 
 
 
 
 
 
 
 
1282		if (error)
1283			goto unmap_and_free_vma;
1284		if (vm_flags & VM_EXECUTABLE)
1285			added_exe_file_vma(mm);
1286
1287		/* Can addr have changed??
1288		 *
1289		 * Answer: Yes, several device drivers can do it in their
1290		 *         f_op->mmap method. -DaveM
 
 
1291		 */
 
 
1292		addr = vma->vm_start;
1293		pgoff = vma->vm_pgoff;
1294		vm_flags = vma->vm_flags;
1295	} else if (vm_flags & VM_SHARED) {
1296		error = shmem_zero_setup(vma);
1297		if (error)
1298			goto free_vma;
1299	}
1300
1301	if (vma_wants_writenotify(vma)) {
1302		pgprot_t pprot = vma->vm_page_prot;
1303
1304		/* Can vma->vm_page_prot have changed??
1305		 *
1306		 * Answer: Yes, drivers may have changed it in their
1307		 *         f_op->mmap method.
1308		 *
1309		 * Ensures that vmas marked as uncached stay that way.
1310		 */
1311		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314	}
1315
1316	vma_link(mm, vma, prev, rb_link, rb_parent);
1317	file = vma->vm_file;
1318
1319	/* Once vma denies write, undo our temporary denial count */
1320	if (correct_wcount)
1321		atomic_inc(&inode->i_writecount);
 
 
 
 
 
1322out:
1323	perf_event_mmap(vma);
1324
1325	mm->total_vm += len >> PAGE_SHIFT;
1326	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327	if (vm_flags & VM_LOCKED) {
1328		if (!mlock_vma_pages_range(vma, addr, addr + len))
 
 
 
 
1329			mm->locked_vm += (len >> PAGE_SHIFT);
1330	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331		make_pages_present(addr, addr + len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332	return addr;
1333
1334unmap_and_free_vma:
1335	if (correct_wcount)
1336		atomic_inc(&inode->i_writecount);
1337	vma->vm_file = NULL;
1338	fput(file);
1339
1340	/* Undo any partial mapping done by a device driver. */
1341	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342	charged = 0;
 
 
 
 
 
1343free_vma:
1344	kmem_cache_free(vm_area_cachep, vma);
1345unacct_error:
1346	if (charged)
1347		vm_unacct_memory(charged);
1348	return error;
1349}
1350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351/* Get an address range which is currently unmapped.
1352 * For shmat() with addr=0.
1353 *
1354 * Ugly calling convention alert:
1355 * Return value with the low bits set means error value,
1356 * ie
1357 *	if (ret & ~PAGE_MASK)
1358 *		error = ret;
1359 *
1360 * This function "knows" that -ENOMEM has the bits set.
1361 */
1362#ifndef HAVE_ARCH_UNMAPPED_AREA
1363unsigned long
1364arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365		unsigned long len, unsigned long pgoff, unsigned long flags)
1366{
1367	struct mm_struct *mm = current->mm;
1368	struct vm_area_struct *vma;
1369	unsigned long start_addr;
 
1370
1371	if (len > TASK_SIZE)
1372		return -ENOMEM;
1373
1374	if (flags & MAP_FIXED)
1375		return addr;
1376
1377	if (addr) {
1378		addr = PAGE_ALIGN(addr);
1379		vma = find_vma(mm, addr);
1380		if (TASK_SIZE - len >= addr &&
1381		    (!vma || addr + len <= vma->vm_start))
1382			return addr;
1383	}
1384	if (len > mm->cached_hole_size) {
1385	        start_addr = addr = mm->free_area_cache;
1386	} else {
1387	        start_addr = addr = TASK_UNMAPPED_BASE;
1388	        mm->cached_hole_size = 0;
1389	}
1390
1391full_search:
1392	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393		/* At this point:  (!vma || addr < vma->vm_end). */
1394		if (TASK_SIZE - len < addr) {
1395			/*
1396			 * Start a new search - just in case we missed
1397			 * some holes.
1398			 */
1399			if (start_addr != TASK_UNMAPPED_BASE) {
1400				addr = TASK_UNMAPPED_BASE;
1401			        start_addr = addr;
1402				mm->cached_hole_size = 0;
1403				goto full_search;
1404			}
1405			return -ENOMEM;
1406		}
1407		if (!vma || addr + len <= vma->vm_start) {
1408			/*
1409			 * Remember the place where we stopped the search:
1410			 */
1411			mm->free_area_cache = addr + len;
1412			return addr;
1413		}
1414		if (addr + mm->cached_hole_size < vma->vm_start)
1415		        mm->cached_hole_size = vma->vm_start - addr;
1416		addr = vma->vm_end;
1417	}
1418}
1419#endif	
1420
1421void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1422{
1423	/*
1424	 * Is this a new hole at the lowest possible address?
1425	 */
1426	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427		mm->free_area_cache = addr;
1428		mm->cached_hole_size = ~0UL;
1429	}
1430}
 
1431
1432/*
1433 * This mmap-allocator allocates new areas top-down from below the
1434 * stack's low limit (the base):
1435 */
1436#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437unsigned long
1438arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439			  const unsigned long len, const unsigned long pgoff,
1440			  const unsigned long flags)
1441{
1442	struct vm_area_struct *vma;
1443	struct mm_struct *mm = current->mm;
1444	unsigned long addr = addr0;
 
1445
1446	/* requested length too big for entire address space */
1447	if (len > TASK_SIZE)
1448		return -ENOMEM;
1449
1450	if (flags & MAP_FIXED)
1451		return addr;
1452
1453	/* requesting a specific address */
1454	if (addr) {
1455		addr = PAGE_ALIGN(addr);
1456		vma = find_vma(mm, addr);
1457		if (TASK_SIZE - len >= addr &&
1458				(!vma || addr + len <= vma->vm_start))
 
1459			return addr;
1460	}
1461
1462	/* check if free_area_cache is useful for us */
1463	if (len <= mm->cached_hole_size) {
1464 	        mm->cached_hole_size = 0;
1465 		mm->free_area_cache = mm->mmap_base;
1466 	}
1467
1468	/* either no address requested or can't fit in requested address hole */
1469	addr = mm->free_area_cache;
1470
1471	/* make sure it can fit in the remaining address space */
1472	if (addr > len) {
1473		vma = find_vma(mm, addr-len);
1474		if (!vma || addr <= vma->vm_start)
1475			/* remember the address as a hint for next time */
1476			return (mm->free_area_cache = addr-len);
1477	}
1478
1479	if (mm->mmap_base < len)
1480		goto bottomup;
1481
1482	addr = mm->mmap_base-len;
1483
1484	do {
1485		/*
1486		 * Lookup failure means no vma is above this address,
1487		 * else if new region fits below vma->vm_start,
1488		 * return with success:
1489		 */
1490		vma = find_vma(mm, addr);
1491		if (!vma || addr+len <= vma->vm_start)
1492			/* remember the address as a hint for next time */
1493			return (mm->free_area_cache = addr);
1494
1495 		/* remember the largest hole we saw so far */
1496 		if (addr + mm->cached_hole_size < vma->vm_start)
1497 		        mm->cached_hole_size = vma->vm_start - addr;
1498
1499		/* try just below the current vma->vm_start */
1500		addr = vma->vm_start-len;
1501	} while (len < vma->vm_start);
1502
1503bottomup:
1504	/*
1505	 * A failed mmap() very likely causes application failure,
1506	 * so fall back to the bottom-up function here. This scenario
1507	 * can happen with large stack limits and large mmap()
1508	 * allocations.
1509	 */
1510	mm->cached_hole_size = ~0UL;
1511  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1512	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513	/*
1514	 * Restore the topdown base:
1515	 */
1516	mm->free_area_cache = mm->mmap_base;
1517	mm->cached_hole_size = ~0UL;
1518
1519	return addr;
1520}
1521#endif
1522
1523void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1524{
1525	/*
1526	 * Is this a new hole at the highest possible address?
1527	 */
1528	if (addr > mm->free_area_cache)
1529		mm->free_area_cache = addr;
1530
1531	/* dont allow allocations above current base */
1532	if (mm->free_area_cache > mm->mmap_base)
1533		mm->free_area_cache = mm->mmap_base;
1534}
1535
1536unsigned long
1537get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538		unsigned long pgoff, unsigned long flags)
1539{
1540	unsigned long (*get_area)(struct file *, unsigned long,
1541				  unsigned long, unsigned long, unsigned long);
1542
1543	unsigned long error = arch_mmap_check(addr, len, flags);
1544	if (error)
1545		return error;
1546
1547	/* Careful about overflows.. */
1548	if (len > TASK_SIZE)
1549		return -ENOMEM;
1550
1551	get_area = current->mm->get_unmapped_area;
1552	if (file && file->f_op && file->f_op->get_unmapped_area)
1553		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1554	addr = get_area(file, addr, len, pgoff, flags);
1555	if (IS_ERR_VALUE(addr))
1556		return addr;
1557
1558	if (addr > TASK_SIZE - len)
1559		return -ENOMEM;
1560	if (addr & ~PAGE_MASK)
1561		return -EINVAL;
1562
1563	return arch_rebalance_pgtables(addr, len);
 
1564}
1565
1566EXPORT_SYMBOL(get_unmapped_area);
1567
1568/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1569struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1570{
1571	struct vm_area_struct *vma = NULL;
 
1572
1573	if (mm) {
1574		/* Check the cache first. */
1575		/* (Cache hit rate is typically around 35%.) */
1576		vma = mm->mmap_cache;
1577		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578			struct rb_node * rb_node;
1579
1580			rb_node = mm->mm_rb.rb_node;
1581			vma = NULL;
1582
1583			while (rb_node) {
1584				struct vm_area_struct * vma_tmp;
1585
1586				vma_tmp = rb_entry(rb_node,
1587						struct vm_area_struct, vm_rb);
1588
1589				if (vma_tmp->vm_end > addr) {
1590					vma = vma_tmp;
1591					if (vma_tmp->vm_start <= addr)
1592						break;
1593					rb_node = rb_node->rb_left;
1594				} else
1595					rb_node = rb_node->rb_right;
1596			}
1597			if (vma)
1598				mm->mmap_cache = vma;
1599		}
1600	}
 
 
 
1601	return vma;
1602}
1603
1604EXPORT_SYMBOL(find_vma);
1605
1606/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
 
 
1607struct vm_area_struct *
1608find_vma_prev(struct mm_struct *mm, unsigned long addr,
1609			struct vm_area_struct **pprev)
1610{
1611	struct vm_area_struct *vma = NULL, *prev = NULL;
1612	struct rb_node *rb_node;
1613	if (!mm)
1614		goto out;
1615
1616	/* Guard against addr being lower than the first VMA */
1617	vma = mm->mmap;
1618
1619	/* Go through the RB tree quickly. */
1620	rb_node = mm->mm_rb.rb_node;
1621
1622	while (rb_node) {
1623		struct vm_area_struct *vma_tmp;
1624		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
 
1625
1626		if (addr < vma_tmp->vm_end) {
1627			rb_node = rb_node->rb_left;
1628		} else {
1629			prev = vma_tmp;
1630			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1631				break;
1632			rb_node = rb_node->rb_right;
1633		}
1634	}
1635
1636out:
1637	*pprev = prev;
1638	return prev ? prev->vm_next : vma;
1639}
1640
1641/*
1642 * Verify that the stack growth is acceptable and
1643 * update accounting. This is shared with both the
1644 * grow-up and grow-down cases.
1645 */
1646static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
1647{
1648	struct mm_struct *mm = vma->vm_mm;
1649	struct rlimit *rlim = current->signal->rlim;
1650	unsigned long new_start;
1651
1652	/* address space limit tests */
1653	if (!may_expand_vm(mm, grow))
1654		return -ENOMEM;
1655
1656	/* Stack limit test */
1657	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1658		return -ENOMEM;
1659
1660	/* mlock limit tests */
1661	if (vma->vm_flags & VM_LOCKED) {
1662		unsigned long locked;
1663		unsigned long limit;
1664		locked = mm->locked_vm + grow;
1665		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1666		limit >>= PAGE_SHIFT;
1667		if (locked > limit && !capable(CAP_IPC_LOCK))
1668			return -ENOMEM;
1669	}
1670
1671	/* Check to ensure the stack will not grow into a hugetlb-only region */
1672	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1673			vma->vm_end - size;
1674	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1675		return -EFAULT;
1676
1677	/*
1678	 * Overcommit..  This must be the final test, as it will
1679	 * update security statistics.
1680	 */
1681	if (security_vm_enough_memory_mm(mm, grow))
1682		return -ENOMEM;
1683
1684	/* Ok, everything looks good - let it rip */
1685	mm->total_vm += grow;
1686	if (vma->vm_flags & VM_LOCKED)
1687		mm->locked_vm += grow;
1688	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1689	return 0;
1690}
1691
1692#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1693/*
1694 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1695 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1696 */
1697int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1698{
1699	int error;
 
 
 
1700
1701	if (!(vma->vm_flags & VM_GROWSUP))
1702		return -EFAULT;
1703
1704	/*
1705	 * We must make sure the anon_vma is allocated
1706	 * so that the anon_vma locking is not a noop.
1707	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708	if (unlikely(anon_vma_prepare(vma)))
1709		return -ENOMEM;
1710	vma_lock_anon_vma(vma);
1711
1712	/*
1713	 * vma->vm_start/vm_end cannot change under us because the caller
1714	 * is required to hold the mmap_sem in read mode.  We need the
1715	 * anon_vma lock to serialize against concurrent expand_stacks.
1716	 * Also guard against wrapping around to address 0.
1717	 */
1718	if (address < PAGE_ALIGN(address+4))
1719		address = PAGE_ALIGN(address+4);
1720	else {
1721		vma_unlock_anon_vma(vma);
1722		return -ENOMEM;
1723	}
1724	error = 0;
1725
1726	/* Somebody else might have raced and expanded it already */
1727	if (address > vma->vm_end) {
1728		unsigned long size, grow;
1729
1730		size = address - vma->vm_start;
1731		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1732
1733		error = -ENOMEM;
1734		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1735			error = acct_stack_growth(vma, size, grow);
1736			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737				vma->vm_end = address;
 
 
 
 
 
 
 
1738				perf_event_mmap(vma);
1739			}
1740		}
1741	}
1742	vma_unlock_anon_vma(vma);
1743	khugepaged_enter_vma_merge(vma);
 
1744	return error;
1745}
1746#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1747
1748/*
1749 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1750 */
1751int expand_downwards(struct vm_area_struct *vma,
1752				   unsigned long address)
1753{
1754	int error;
1755
1756	/*
1757	 * We must make sure the anon_vma is allocated
1758	 * so that the anon_vma locking is not a noop.
1759	 */
1760	if (unlikely(anon_vma_prepare(vma)))
1761		return -ENOMEM;
1762
1763	address &= PAGE_MASK;
1764	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1765	if (error)
1766		return error;
1767
1768	vma_lock_anon_vma(vma);
 
 
 
 
 
 
 
 
 
 
 
1769
1770	/*
1771	 * vma->vm_start/vm_end cannot change under us because the caller
1772	 * is required to hold the mmap_sem in read mode.  We need the
1773	 * anon_vma lock to serialize against concurrent expand_stacks.
1774	 */
 
1775
1776	/* Somebody else might have raced and expanded it already */
1777	if (address < vma->vm_start) {
1778		unsigned long size, grow;
1779
1780		size = vma->vm_end - address;
1781		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1782
1783		error = -ENOMEM;
1784		if (grow <= vma->vm_pgoff) {
1785			error = acct_stack_growth(vma, size, grow);
1786			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787				vma->vm_start = address;
1788				vma->vm_pgoff -= grow;
 
 
 
 
1789				perf_event_mmap(vma);
1790			}
1791		}
1792	}
1793	vma_unlock_anon_vma(vma);
1794	khugepaged_enter_vma_merge(vma);
 
1795	return error;
1796}
1797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798#ifdef CONFIG_STACK_GROWSUP
1799int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800{
1801	return expand_upwards(vma, address);
1802}
1803
1804struct vm_area_struct *
1805find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806{
1807	struct vm_area_struct *vma, *prev;
1808
1809	addr &= PAGE_MASK;
1810	vma = find_vma_prev(mm, addr, &prev);
1811	if (vma && (vma->vm_start <= addr))
1812		return vma;
1813	if (!prev || expand_stack(prev, addr))
 
1814		return NULL;
1815	if (prev->vm_flags & VM_LOCKED) {
1816		mlock_vma_pages_range(prev, addr, prev->vm_end);
1817	}
1818	return prev;
1819}
1820#else
1821int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822{
1823	return expand_downwards(vma, address);
1824}
1825
1826struct vm_area_struct *
1827find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828{
1829	struct vm_area_struct * vma;
1830	unsigned long start;
1831
1832	addr &= PAGE_MASK;
1833	vma = find_vma(mm,addr);
1834	if (!vma)
1835		return NULL;
1836	if (vma->vm_start <= addr)
1837		return vma;
1838	if (!(vma->vm_flags & VM_GROWSDOWN))
1839		return NULL;
 
 
 
1840	start = vma->vm_start;
1841	if (expand_stack(vma, addr))
1842		return NULL;
1843	if (vma->vm_flags & VM_LOCKED) {
1844		mlock_vma_pages_range(vma, addr, start);
1845	}
1846	return vma;
1847}
1848#endif
1849
 
 
1850/*
1851 * Ok - we have the memory areas we should free on the vma list,
1852 * so release them, and do the vma updates.
1853 *
1854 * Called with the mm semaphore held.
1855 */
1856static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857{
 
 
1858	/* Update high watermark before we lower total_vm */
1859	update_hiwater_vm(mm);
1860	do {
1861		long nrpages = vma_pages(vma);
1862
1863		mm->total_vm -= nrpages;
1864		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
 
1865		vma = remove_vma(vma);
1866	} while (vma);
 
1867	validate_mm(mm);
1868}
1869
1870/*
1871 * Get rid of page table information in the indicated region.
1872 *
1873 * Called with the mm semaphore held.
1874 */
1875static void unmap_region(struct mm_struct *mm,
1876		struct vm_area_struct *vma, struct vm_area_struct *prev,
1877		unsigned long start, unsigned long end)
1878{
1879	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880	struct mmu_gather tlb;
1881	unsigned long nr_accounted = 0;
1882
1883	lru_add_drain();
1884	tlb_gather_mmu(&tlb, mm, 0);
1885	update_hiwater_rss(mm);
1886	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887	vm_unacct_memory(nr_accounted);
1888	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1889				 next ? next->vm_start : 0);
1890	tlb_finish_mmu(&tlb, start, end);
1891}
1892
1893/*
1894 * Create a list of vma's touched by the unmap, removing them from the mm's
1895 * vma list as we go..
1896 */
1897static void
1898detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899	struct vm_area_struct *prev, unsigned long end)
1900{
1901	struct vm_area_struct **insertion_point;
1902	struct vm_area_struct *tail_vma = NULL;
1903	unsigned long addr;
1904
1905	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906	vma->vm_prev = NULL;
1907	do {
1908		rb_erase(&vma->vm_rb, &mm->mm_rb);
1909		mm->map_count--;
1910		tail_vma = vma;
1911		vma = vma->vm_next;
1912	} while (vma && vma->vm_start < end);
1913	*insertion_point = vma;
1914	if (vma)
1915		vma->vm_prev = prev;
 
 
 
1916	tail_vma->vm_next = NULL;
1917	if (mm->unmap_area == arch_unmap_area)
1918		addr = prev ? prev->vm_end : mm->mmap_base;
1919	else
1920		addr = vma ?  vma->vm_start : mm->mmap_base;
1921	mm->unmap_area(mm, addr);
1922	mm->mmap_cache = NULL;		/* Kill the cache. */
1923}
1924
1925/*
1926 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1927 * munmap path where it doesn't make sense to fail.
1928 */
1929static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1930	      unsigned long addr, int new_below)
1931{
1932	struct mempolicy *pol;
1933	struct vm_area_struct *new;
1934	int err = -ENOMEM;
1935
1936	if (is_vm_hugetlb_page(vma) && (addr &
1937					~(huge_page_mask(hstate_vma(vma)))))
1938		return -EINVAL;
 
 
1939
1940	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1941	if (!new)
1942		goto out_err;
1943
1944	/* most fields are the same, copy all, and then fixup */
1945	*new = *vma;
1946
1947	INIT_LIST_HEAD(&new->anon_vma_chain);
1948
1949	if (new_below)
1950		new->vm_end = addr;
1951	else {
1952		new->vm_start = addr;
1953		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1954	}
1955
1956	pol = mpol_dup(vma_policy(vma));
1957	if (IS_ERR(pol)) {
1958		err = PTR_ERR(pol);
1959		goto out_free_vma;
1960	}
1961	vma_set_policy(new, pol);
1962
1963	if (anon_vma_clone(new, vma))
 
1964		goto out_free_mpol;
1965
1966	if (new->vm_file) {
1967		get_file(new->vm_file);
1968		if (vma->vm_flags & VM_EXECUTABLE)
1969			added_exe_file_vma(mm);
1970	}
1971
1972	if (new->vm_ops && new->vm_ops->open)
1973		new->vm_ops->open(new);
1974
1975	if (new_below)
1976		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1977			((addr - new->vm_start) >> PAGE_SHIFT), new);
1978	else
1979		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1980
1981	/* Success. */
1982	if (!err)
1983		return 0;
1984
1985	/* Clean everything up if vma_adjust failed. */
1986	if (new->vm_ops && new->vm_ops->close)
1987		new->vm_ops->close(new);
1988	if (new->vm_file) {
1989		if (vma->vm_flags & VM_EXECUTABLE)
1990			removed_exe_file_vma(mm);
1991		fput(new->vm_file);
1992	}
1993	unlink_anon_vmas(new);
1994 out_free_mpol:
1995	mpol_put(pol);
1996 out_free_vma:
1997	kmem_cache_free(vm_area_cachep, new);
1998 out_err:
1999	return err;
2000}
2001
2002/*
2003 * Split a vma into two pieces at address 'addr', a new vma is allocated
2004 * either for the first part or the tail.
2005 */
2006int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2007	      unsigned long addr, int new_below)
2008{
2009	if (mm->map_count >= sysctl_max_map_count)
2010		return -ENOMEM;
2011
2012	return __split_vma(mm, vma, addr, new_below);
2013}
2014
2015/* Munmap is split into 2 main parts -- this part which finds
2016 * what needs doing, and the areas themselves, which do the
2017 * work.  This now handles partial unmappings.
2018 * Jeremy Fitzhardinge <jeremy@goop.org>
2019 */
2020int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
2021{
2022	unsigned long end;
2023	struct vm_area_struct *vma, *prev, *last;
2024
2025	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2026		return -EINVAL;
2027
2028	if ((len = PAGE_ALIGN(len)) == 0)
 
 
2029		return -EINVAL;
2030
 
 
 
 
 
 
 
2031	/* Find the first overlapping VMA */
2032	vma = find_vma(mm, start);
2033	if (!vma)
2034		return 0;
2035	prev = vma->vm_prev;
2036	/* we have  start < vma->vm_end  */
2037
2038	/* if it doesn't overlap, we have nothing.. */
2039	end = start + len;
2040	if (vma->vm_start >= end)
2041		return 0;
2042
2043	/*
2044	 * If we need to split any vma, do it now to save pain later.
2045	 *
2046	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2047	 * unmapped vm_area_struct will remain in use: so lower split_vma
2048	 * places tmp vma above, and higher split_vma places tmp vma below.
2049	 */
2050	if (start > vma->vm_start) {
2051		int error;
2052
2053		/*
2054		 * Make sure that map_count on return from munmap() will
2055		 * not exceed its limit; but let map_count go just above
2056		 * its limit temporarily, to help free resources as expected.
2057		 */
2058		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2059			return -ENOMEM;
2060
2061		error = __split_vma(mm, vma, start, 0);
2062		if (error)
2063			return error;
2064		prev = vma;
2065	}
2066
2067	/* Does it split the last one? */
2068	last = find_vma(mm, end);
2069	if (last && end > last->vm_start) {
2070		int error = __split_vma(mm, last, end, 1);
2071		if (error)
2072			return error;
2073	}
2074	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075
2076	/*
2077	 * unlock any mlock()ed ranges before detaching vmas
2078	 */
2079	if (mm->locked_vm) {
2080		struct vm_area_struct *tmp = vma;
2081		while (tmp && tmp->vm_start < end) {
2082			if (tmp->vm_flags & VM_LOCKED) {
2083				mm->locked_vm -= vma_pages(tmp);
2084				munlock_vma_pages_all(tmp);
2085			}
 
2086			tmp = tmp->vm_next;
2087		}
2088	}
2089
2090	/*
2091	 * Remove the vma's, and unmap the actual pages
2092	 */
2093	detach_vmas_to_be_unmapped(mm, vma, prev, end);
 
 
 
 
2094	unmap_region(mm, vma, prev, start, end);
2095
2096	/* Fix up all other VM information */
2097	remove_vma_list(mm, vma);
2098
2099	return 0;
2100}
2101
2102EXPORT_SYMBOL(do_munmap);
 
 
 
 
2103
2104SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2105{
2106	int ret;
2107	struct mm_struct *mm = current->mm;
 
2108
2109	profile_munmap(addr);
 
2110
2111	down_write(&mm->mmap_sem);
2112	ret = do_munmap(mm, addr, len);
2113	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
2114	return ret;
2115}
2116
2117static inline void verify_mm_writelocked(struct mm_struct *mm)
2118{
2119#ifdef CONFIG_DEBUG_VM
2120	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2121		WARN_ON(1);
2122		up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123	}
2124#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125}
2126
2127/*
2128 *  this is really a simplified "do_mmap".  it only handles
2129 *  anonymous maps.  eventually we may be able to do some
2130 *  brk-specific accounting here.
2131 */
2132unsigned long do_brk(unsigned long addr, unsigned long len)
2133{
2134	struct mm_struct * mm = current->mm;
2135	struct vm_area_struct * vma, * prev;
2136	unsigned long flags;
2137	struct rb_node ** rb_link, * rb_parent;
2138	pgoff_t pgoff = addr >> PAGE_SHIFT;
2139	int error;
2140
2141	len = PAGE_ALIGN(len);
2142	if (!len)
2143		return addr;
2144
2145	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2146	if (error)
2147		return error;
2148
2149	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2150
2151	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2152	if (error & ~PAGE_MASK)
2153		return error;
2154
2155	/*
2156	 * mlock MCL_FUTURE?
2157	 */
2158	if (mm->def_flags & VM_LOCKED) {
2159		unsigned long locked, lock_limit;
2160		locked = len >> PAGE_SHIFT;
2161		locked += mm->locked_vm;
2162		lock_limit = rlimit(RLIMIT_MEMLOCK);
2163		lock_limit >>= PAGE_SHIFT;
2164		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2165			return -EAGAIN;
2166	}
2167
2168	/*
2169	 * mm->mmap_sem is required to protect against another thread
2170	 * changing the mappings in case we sleep.
2171	 */
2172	verify_mm_writelocked(mm);
2173
2174	/*
2175	 * Clear old maps.  this also does some error checking for us
2176	 */
2177 munmap_back:
2178	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2179	if (vma && vma->vm_start < addr + len) {
2180		if (do_munmap(mm, addr, len))
2181			return -ENOMEM;
2182		goto munmap_back;
2183	}
2184
2185	/* Check against address space limits *after* clearing old maps... */
2186	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2187		return -ENOMEM;
2188
2189	if (mm->map_count > sysctl_max_map_count)
2190		return -ENOMEM;
2191
2192	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2193		return -ENOMEM;
2194
2195	/* Can we just expand an old private anonymous mapping? */
2196	vma = vma_merge(mm, prev, addr, addr + len, flags,
2197					NULL, NULL, pgoff, NULL);
2198	if (vma)
2199		goto out;
2200
2201	/*
2202	 * create a vma struct for an anonymous mapping
2203	 */
2204	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2205	if (!vma) {
2206		vm_unacct_memory(len >> PAGE_SHIFT);
2207		return -ENOMEM;
2208	}
2209
2210	INIT_LIST_HEAD(&vma->anon_vma_chain);
2211	vma->vm_mm = mm;
2212	vma->vm_start = addr;
2213	vma->vm_end = addr + len;
2214	vma->vm_pgoff = pgoff;
2215	vma->vm_flags = flags;
2216	vma->vm_page_prot = vm_get_page_prot(flags);
2217	vma_link(mm, vma, prev, rb_link, rb_parent);
2218out:
2219	perf_event_mmap(vma);
2220	mm->total_vm += len >> PAGE_SHIFT;
2221	if (flags & VM_LOCKED) {
2222		if (!mlock_vma_pages_range(vma, addr, addr + len))
2223			mm->locked_vm += (len >> PAGE_SHIFT);
2224	}
2225	return addr;
2226}
2227
2228EXPORT_SYMBOL(do_brk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229
2230/* Release all mmaps. */
2231void exit_mmap(struct mm_struct *mm)
2232{
2233	struct mmu_gather tlb;
2234	struct vm_area_struct *vma;
2235	unsigned long nr_accounted = 0;
2236	unsigned long end;
2237
2238	/* mm's last user has gone, and its about to be pulled down */
2239	mmu_notifier_release(mm);
2240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241	if (mm->locked_vm) {
2242		vma = mm->mmap;
2243		while (vma) {
2244			if (vma->vm_flags & VM_LOCKED)
2245				munlock_vma_pages_all(vma);
2246			vma = vma->vm_next;
2247		}
2248	}
2249
2250	arch_exit_mmap(mm);
2251
2252	vma = mm->mmap;
2253	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2254		return;
2255
2256	lru_add_drain();
2257	flush_cache_mm(mm);
2258	tlb_gather_mmu(&tlb, mm, 1);
2259	/* update_hiwater_rss(mm) here? but nobody should be looking */
2260	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2261	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2262	vm_unacct_memory(nr_accounted);
2263
2264	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2265	tlb_finish_mmu(&tlb, 0, end);
2266
2267	/*
2268	 * Walk the list again, actually closing and freeing it,
2269	 * with preemption enabled, without holding any MM locks.
2270	 */
2271	while (vma)
 
 
2272		vma = remove_vma(vma);
2273
2274	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2275}
2276
2277/* Insert vm structure into process list sorted by address
2278 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2279 * then i_mmap_mutex is taken here.
2280 */
2281int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2282{
2283	struct vm_area_struct * __vma, * prev;
2284	struct rb_node ** rb_link, * rb_parent;
 
 
 
 
 
 
 
2285
2286	/*
2287	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2288	 * until its first write fault, when page's anon_vma and index
2289	 * are set.  But now set the vm_pgoff it will almost certainly
2290	 * end up with (unless mremap moves it elsewhere before that
2291	 * first wfault), so /proc/pid/maps tells a consistent story.
2292	 *
2293	 * By setting it to reflect the virtual start address of the
2294	 * vma, merges and splits can happen in a seamless way, just
2295	 * using the existing file pgoff checks and manipulations.
2296	 * Similarly in do_mmap_pgoff and in do_brk.
2297	 */
2298	if (!vma->vm_file) {
2299		BUG_ON(vma->anon_vma);
2300		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2301	}
2302	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2303	if (__vma && __vma->vm_start < vma->vm_end)
2304		return -ENOMEM;
2305	if ((vma->vm_flags & VM_ACCOUNT) &&
2306	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2307		return -ENOMEM;
2308	vma_link(mm, vma, prev, rb_link, rb_parent);
2309	return 0;
2310}
2311
2312/*
2313 * Copy the vma structure to a new location in the same mm,
2314 * prior to moving page table entries, to effect an mremap move.
2315 */
2316struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2317	unsigned long addr, unsigned long len, pgoff_t pgoff)
 
2318{
2319	struct vm_area_struct *vma = *vmap;
2320	unsigned long vma_start = vma->vm_start;
2321	struct mm_struct *mm = vma->vm_mm;
2322	struct vm_area_struct *new_vma, *prev;
2323	struct rb_node **rb_link, *rb_parent;
2324	struct mempolicy *pol;
2325
2326	/*
2327	 * If anonymous vma has not yet been faulted, update new pgoff
2328	 * to match new location, to increase its chance of merging.
2329	 */
2330	if (!vma->vm_file && !vma->anon_vma)
2331		pgoff = addr >> PAGE_SHIFT;
 
 
2332
2333	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
 
2334	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2335			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2336	if (new_vma) {
2337		/*
2338		 * Source vma may have been merged into new_vma
2339		 */
2340		if (vma_start >= new_vma->vm_start &&
2341		    vma_start < new_vma->vm_end)
2342			*vmap = new_vma;
2343	} else {
2344		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2345		if (new_vma) {
2346			*new_vma = *vma;
2347			pol = mpol_dup(vma_policy(vma));
2348			if (IS_ERR(pol))
2349				goto out_free_vma;
2350			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2351			if (anon_vma_clone(new_vma, vma))
2352				goto out_free_mempol;
2353			vma_set_policy(new_vma, pol);
2354			new_vma->vm_start = addr;
2355			new_vma->vm_end = addr + len;
2356			new_vma->vm_pgoff = pgoff;
2357			if (new_vma->vm_file) {
2358				get_file(new_vma->vm_file);
2359				if (vma->vm_flags & VM_EXECUTABLE)
2360					added_exe_file_vma(mm);
2361			}
2362			if (new_vma->vm_ops && new_vma->vm_ops->open)
2363				new_vma->vm_ops->open(new_vma);
2364			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2365		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366	}
2367	return new_vma;
2368
2369 out_free_mempol:
2370	mpol_put(pol);
2371 out_free_vma:
2372	kmem_cache_free(vm_area_cachep, new_vma);
 
2373	return NULL;
2374}
2375
2376/*
2377 * Return true if the calling process may expand its vm space by the passed
2378 * number of pages
2379 */
2380int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2381{
2382	unsigned long cur = mm->total_vm;	/* pages */
2383	unsigned long lim;
2384
2385	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
 
2386
2387	if (cur + npages > lim)
2388		return 0;
2389	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390}
2391
 
 
 
 
 
 
 
 
 
 
 
2392
2393static int special_mapping_fault(struct vm_area_struct *vma,
2394				struct vm_fault *vmf)
2395{
 
2396	pgoff_t pgoff;
2397	struct page **pages;
2398
2399	/*
2400	 * special mappings have no vm_file, and in that case, the mm
2401	 * uses vm_pgoff internally. So we have to subtract it from here.
2402	 * We are allowed to do this because we are the mm; do not copy
2403	 * this code into drivers!
2404	 */
2405	pgoff = vmf->pgoff - vma->vm_pgoff;
2406
2407	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
 
 
 
 
 
 
2408		pgoff--;
2409
2410	if (*pages) {
2411		struct page *page = *pages;
2412		get_page(page);
2413		vmf->page = page;
2414		return 0;
2415	}
2416
2417	return VM_FAULT_SIGBUS;
2418}
2419
2420/*
2421 * Having a close hook prevents vma merging regardless of flags.
2422 */
2423static void special_mapping_close(struct vm_area_struct *vma)
2424{
2425}
2426
2427static const struct vm_operations_struct special_mapping_vmops = {
2428	.close = special_mapping_close,
2429	.fault = special_mapping_fault,
2430};
2431
2432/*
2433 * Called with mm->mmap_sem held for writing.
2434 * Insert a new vma covering the given region, with the given flags.
2435 * Its pages are supplied by the given array of struct page *.
2436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2437 * The region past the last page supplied will always produce SIGBUS.
2438 * The array pointer and the pages it points to are assumed to stay alive
2439 * for as long as this mapping might exist.
2440 */
2441int install_special_mapping(struct mm_struct *mm,
2442			    unsigned long addr, unsigned long len,
2443			    unsigned long vm_flags, struct page **pages)
2444{
2445	int ret;
2446	struct vm_area_struct *vma;
2447
2448	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2449	if (unlikely(vma == NULL))
2450		return -ENOMEM;
2451
2452	INIT_LIST_HEAD(&vma->anon_vma_chain);
2453	vma->vm_mm = mm;
2454	vma->vm_start = addr;
2455	vma->vm_end = addr + len;
2456
2457	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2458	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2459
2460	vma->vm_ops = &special_mapping_vmops;
2461	vma->vm_private_data = pages;
2462
2463	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2464	if (ret)
2465		goto out;
2466
2467	ret = insert_vm_struct(mm, vma);
2468	if (ret)
2469		goto out;
2470
2471	mm->total_vm += len >> PAGE_SHIFT;
2472
2473	perf_event_mmap(vma);
2474
2475	return 0;
2476
2477out:
2478	kmem_cache_free(vm_area_cachep, vma);
2479	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2480}
2481
2482static DEFINE_MUTEX(mm_all_locks_mutex);
2483
2484static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2485{
2486	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2487		/*
2488		 * The LSB of head.next can't change from under us
2489		 * because we hold the mm_all_locks_mutex.
2490		 */
2491		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2492		/*
2493		 * We can safely modify head.next after taking the
2494		 * anon_vma->root->mutex. If some other vma in this mm shares
2495		 * the same anon_vma we won't take it again.
2496		 *
2497		 * No need of atomic instructions here, head.next
2498		 * can't change from under us thanks to the
2499		 * anon_vma->root->mutex.
2500		 */
2501		if (__test_and_set_bit(0, (unsigned long *)
2502				       &anon_vma->root->head.next))
2503			BUG();
2504	}
2505}
2506
2507static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2508{
2509	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2510		/*
2511		 * AS_MM_ALL_LOCKS can't change from under us because
2512		 * we hold the mm_all_locks_mutex.
2513		 *
2514		 * Operations on ->flags have to be atomic because
2515		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2516		 * mm_all_locks_mutex, there may be other cpus
2517		 * changing other bitflags in parallel to us.
2518		 */
2519		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2520			BUG();
2521		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2522	}
2523}
2524
2525/*
2526 * This operation locks against the VM for all pte/vma/mm related
2527 * operations that could ever happen on a certain mm. This includes
2528 * vmtruncate, try_to_unmap, and all page faults.
2529 *
2530 * The caller must take the mmap_sem in write mode before calling
2531 * mm_take_all_locks(). The caller isn't allowed to release the
2532 * mmap_sem until mm_drop_all_locks() returns.
2533 *
2534 * mmap_sem in write mode is required in order to block all operations
2535 * that could modify pagetables and free pages without need of
2536 * altering the vma layout (for example populate_range() with
2537 * nonlinear vmas). It's also needed in write mode to avoid new
2538 * anon_vmas to be associated with existing vmas.
2539 *
2540 * A single task can't take more than one mm_take_all_locks() in a row
2541 * or it would deadlock.
2542 *
2543 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2544 * mapping->flags avoid to take the same lock twice, if more than one
2545 * vma in this mm is backed by the same anon_vma or address_space.
2546 *
2547 * We can take all the locks in random order because the VM code
2548 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2549 * takes more than one of them in a row. Secondly we're protected
2550 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
2551 *
2552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2553 * that may have to take thousand of locks.
2554 *
2555 * mm_take_all_locks() can fail if it's interrupted by signals.
2556 */
2557int mm_take_all_locks(struct mm_struct *mm)
2558{
2559	struct vm_area_struct *vma;
2560	struct anon_vma_chain *avc;
2561	int ret = -EINTR;
2562
2563	BUG_ON(down_read_trylock(&mm->mmap_sem));
2564
2565	mutex_lock(&mm_all_locks_mutex);
2566
2567	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2568		if (signal_pending(current))
2569			goto out_unlock;
2570		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
2571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2572	}
2573
2574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2575		if (signal_pending(current))
2576			goto out_unlock;
2577		if (vma->anon_vma)
2578			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2579				vm_lock_anon_vma(mm, avc->anon_vma);
2580	}
2581
2582	ret = 0;
2583
2584out_unlock:
2585	if (ret)
2586		mm_drop_all_locks(mm);
2587
2588	return ret;
2589}
2590
2591static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2592{
2593	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2594		/*
2595		 * The LSB of head.next can't change to 0 from under
2596		 * us because we hold the mm_all_locks_mutex.
2597		 *
2598		 * We must however clear the bitflag before unlocking
2599		 * the vma so the users using the anon_vma->head will
2600		 * never see our bitflag.
2601		 *
2602		 * No need of atomic instructions here, head.next
2603		 * can't change from under us until we release the
2604		 * anon_vma->root->mutex.
2605		 */
2606		if (!__test_and_clear_bit(0, (unsigned long *)
2607					  &anon_vma->root->head.next))
2608			BUG();
2609		anon_vma_unlock(anon_vma);
2610	}
2611}
2612
2613static void vm_unlock_mapping(struct address_space *mapping)
2614{
2615	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2616		/*
2617		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2618		 * because we hold the mm_all_locks_mutex.
2619		 */
2620		mutex_unlock(&mapping->i_mmap_mutex);
2621		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2622					&mapping->flags))
2623			BUG();
2624	}
2625}
2626
2627/*
2628 * The mmap_sem cannot be released by the caller until
2629 * mm_drop_all_locks() returns.
2630 */
2631void mm_drop_all_locks(struct mm_struct *mm)
2632{
2633	struct vm_area_struct *vma;
2634	struct anon_vma_chain *avc;
2635
2636	BUG_ON(down_read_trylock(&mm->mmap_sem));
2637	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2638
2639	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640		if (vma->anon_vma)
2641			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2642				vm_unlock_anon_vma(avc->anon_vma);
2643		if (vma->vm_file && vma->vm_file->f_mapping)
2644			vm_unlock_mapping(vma->vm_file->f_mapping);
2645	}
2646
2647	mutex_unlock(&mm_all_locks_mutex);
2648}
2649
2650/*
2651 * initialise the VMA slab
2652 */
2653void __init mmap_init(void)
2654{
2655	int ret;
2656
2657	ret = percpu_counter_init(&vm_committed_as, 0);
2658	VM_BUG_ON(ret);
2659}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#include "internal.h"
  57
  58#ifndef arch_mmap_check
  59#define arch_mmap_check(addr, len, flags)	(0)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
 
 
 
 
 
 
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  95 * MAP_PRIVATE:
  96 *								r: (no) no
  97 *								w: (no) no
  98 *								x: (yes) yes
  99 */
 100pgprot_t protection_map[16] __ro_after_init = {
 101	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 102	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 103};
 104
 105#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 106static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 107{
 108	return prot;
 109}
 110#endif
 111
 112pgprot_t vm_get_page_prot(unsigned long vm_flags)
 113{
 114	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 115				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 116			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 117
 118	return arch_filter_pgprot(ret);
 119}
 120EXPORT_SYMBOL(vm_get_page_prot);
 121
 122static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 124	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 125}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 128void vma_set_page_prot(struct vm_area_struct *vma)
 129{
 130	unsigned long vm_flags = vma->vm_flags;
 131	pgprot_t vm_page_prot;
 132
 133	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 134	if (vma_wants_writenotify(vma, vm_page_prot)) {
 135		vm_flags &= ~VM_SHARED;
 136		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 137	}
 138	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 139	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140}
 141
 142/*
 143 * Requires inode->i_mapping->i_mmap_rwsem
 144 */
 145static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 146		struct file *file, struct address_space *mapping)
 147{
 148	if (vma->vm_flags & VM_DENYWRITE)
 149		atomic_inc(&file_inode(file)->i_writecount);
 150	if (vma->vm_flags & VM_SHARED)
 151		mapping_unmap_writable(mapping);
 152
 153	flush_dcache_mmap_lock(mapping);
 154	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 155	flush_dcache_mmap_unlock(mapping);
 156}
 157
 158/*
 159 * Unlink a file-based vm structure from its interval tree, to hide
 160 * vma from rmap and vmtruncate before freeing its page tables.
 161 */
 162void unlink_file_vma(struct vm_area_struct *vma)
 163{
 164	struct file *file = vma->vm_file;
 165
 166	if (file) {
 167		struct address_space *mapping = file->f_mapping;
 168		i_mmap_lock_write(mapping);
 169		__remove_shared_vm_struct(vma, file, mapping);
 170		i_mmap_unlock_write(mapping);
 171	}
 172}
 173
 174/*
 175 * Close a vm structure and free it, returning the next.
 176 */
 177static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 178{
 179	struct vm_area_struct *next = vma->vm_next;
 180
 181	might_sleep();
 182	if (vma->vm_ops && vma->vm_ops->close)
 183		vma->vm_ops->close(vma);
 184	if (vma->vm_file)
 185		fput(vma->vm_file);
 
 
 
 186	mpol_put(vma_policy(vma));
 187	vm_area_free(vma);
 188	return next;
 189}
 190
 191static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 192		struct list_head *uf);
 193SYSCALL_DEFINE1(brk, unsigned long, brk)
 194{
 195	unsigned long retval;
 196	unsigned long newbrk, oldbrk, origbrk;
 197	struct mm_struct *mm = current->mm;
 198	struct vm_area_struct *next;
 199	unsigned long min_brk;
 200	bool populate;
 201	bool downgraded = false;
 202	LIST_HEAD(uf);
 203
 204	brk = untagged_addr(brk);
 205
 206	if (down_write_killable(&mm->mmap_sem))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_sem to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 251		/*
 252		 * mm->brk must to be protected by write mmap_sem so update it
 253		 * before downgrading mmap_sem. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 
 275	mm->brk = brk;
 276
 277success:
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		up_read(&mm->mmap_sem);
 281	else
 282		up_write(&mm->mmap_sem);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	retval = origbrk;
 290	up_write(&mm->mmap_sem);
 291	return retval;
 292}
 293
 294static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 295{
 296	unsigned long gap, prev_end;
 297
 298	/*
 299	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 300	 * allow two stack_guard_gaps between them here, and when choosing
 301	 * an unmapped area; whereas when expanding we only require one.
 302	 * That's a little inconsistent, but keeps the code here simpler.
 303	 */
 304	gap = vm_start_gap(vma);
 305	if (vma->vm_prev) {
 306		prev_end = vm_end_gap(vma->vm_prev);
 307		if (gap > prev_end)
 308			gap -= prev_end;
 309		else
 310			gap = 0;
 311	}
 312	return gap;
 313}
 314
 315#ifdef CONFIG_DEBUG_VM_RB
 316static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 317{
 318	unsigned long max = vma_compute_gap(vma), subtree_gap;
 319	if (vma->vm_rb.rb_left) {
 320		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 321				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 322		if (subtree_gap > max)
 323			max = subtree_gap;
 324	}
 325	if (vma->vm_rb.rb_right) {
 326		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 327				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 328		if (subtree_gap > max)
 329			max = subtree_gap;
 330	}
 331	return max;
 332}
 333
 334static int browse_rb(struct mm_struct *mm)
 335{
 336	struct rb_root *root = &mm->mm_rb;
 337	int i = 0, j, bug = 0;
 338	struct rb_node *nd, *pn = NULL;
 339	unsigned long prev = 0, pend = 0;
 340
 341	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 342		struct vm_area_struct *vma;
 343		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 344		if (vma->vm_start < prev) {
 345			pr_emerg("vm_start %lx < prev %lx\n",
 346				  vma->vm_start, prev);
 347			bug = 1;
 348		}
 349		if (vma->vm_start < pend) {
 350			pr_emerg("vm_start %lx < pend %lx\n",
 351				  vma->vm_start, pend);
 352			bug = 1;
 353		}
 354		if (vma->vm_start > vma->vm_end) {
 355			pr_emerg("vm_start %lx > vm_end %lx\n",
 356				  vma->vm_start, vma->vm_end);
 357			bug = 1;
 358		}
 359		spin_lock(&mm->page_table_lock);
 360		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 361			pr_emerg("free gap %lx, correct %lx\n",
 362			       vma->rb_subtree_gap,
 363			       vma_compute_subtree_gap(vma));
 364			bug = 1;
 365		}
 366		spin_unlock(&mm->page_table_lock);
 367		i++;
 368		pn = nd;
 369		prev = vma->vm_start;
 370		pend = vma->vm_end;
 371	}
 372	j = 0;
 373	for (nd = pn; nd; nd = rb_prev(nd))
 374		j++;
 375	if (i != j) {
 376		pr_emerg("backwards %d, forwards %d\n", j, i);
 377		bug = 1;
 378	}
 379	return bug ? -1 : i;
 380}
 381
 382static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 383{
 384	struct rb_node *nd;
 385
 386	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 387		struct vm_area_struct *vma;
 388		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 389		VM_BUG_ON_VMA(vma != ignore &&
 390			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 391			vma);
 392	}
 
 
 
 393}
 394
 395static void validate_mm(struct mm_struct *mm)
 396{
 397	int bug = 0;
 398	int i = 0;
 399	unsigned long highest_address = 0;
 400	struct vm_area_struct *vma = mm->mmap;
 401
 402	while (vma) {
 403		struct anon_vma *anon_vma = vma->anon_vma;
 404		struct anon_vma_chain *avc;
 405
 406		if (anon_vma) {
 407			anon_vma_lock_read(anon_vma);
 408			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 409				anon_vma_interval_tree_verify(avc);
 410			anon_vma_unlock_read(anon_vma);
 411		}
 412
 413		highest_address = vm_end_gap(vma);
 414		vma = vma->vm_next;
 415		i++;
 416	}
 417	if (i != mm->map_count) {
 418		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 419		bug = 1;
 420	}
 421	if (highest_address != mm->highest_vm_end) {
 422		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 423			  mm->highest_vm_end, highest_address);
 424		bug = 1;
 425	}
 426	i = browse_rb(mm);
 427	if (i != mm->map_count) {
 428		if (i != -1)
 429			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 430		bug = 1;
 431	}
 432	VM_BUG_ON_MM(bug, mm);
 433}
 434#else
 435#define validate_mm_rb(root, ignore) do { } while (0)
 436#define validate_mm(mm) do { } while (0)
 437#endif
 438
 439RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 440			 struct vm_area_struct, vm_rb,
 441			 unsigned long, rb_subtree_gap, vma_compute_gap)
 442
 443/*
 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 446 * in the rbtree.
 447 */
 448static void vma_gap_update(struct vm_area_struct *vma)
 449{
 450	/*
 451	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 452	 * a callback function that does exactly what we want.
 453	 */
 454	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 455}
 456
 457static inline void vma_rb_insert(struct vm_area_struct *vma,
 458				 struct rb_root *root)
 459{
 460	/* All rb_subtree_gap values must be consistent prior to insertion */
 461	validate_mm_rb(root, NULL);
 462
 463	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 464}
 465
 466static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 467{
 468	/*
 469	 * Note rb_erase_augmented is a fairly large inline function,
 470	 * so make sure we instantiate it only once with our desired
 471	 * augmented rbtree callbacks.
 472	 */
 473	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 474}
 475
 476static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 477						struct rb_root *root,
 478						struct vm_area_struct *ignore)
 479{
 480	/*
 481	 * All rb_subtree_gap values must be consistent prior to erase,
 482	 * with the possible exception of the "next" vma being erased if
 483	 * next->vm_start was reduced.
 484	 */
 485	validate_mm_rb(root, ignore);
 486
 487	__vma_rb_erase(vma, root);
 488}
 489
 490static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 491					 struct rb_root *root)
 492{
 493	/*
 494	 * All rb_subtree_gap values must be consistent prior to erase,
 495	 * with the possible exception of the vma being erased.
 496	 */
 497	validate_mm_rb(root, vma);
 498
 499	__vma_rb_erase(vma, root);
 500}
 501
 502/*
 503 * vma has some anon_vma assigned, and is already inserted on that
 504 * anon_vma's interval trees.
 505 *
 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 507 * vma must be removed from the anon_vma's interval trees using
 508 * anon_vma_interval_tree_pre_update_vma().
 509 *
 510 * After the update, the vma will be reinserted using
 511 * anon_vma_interval_tree_post_update_vma().
 512 *
 513 * The entire update must be protected by exclusive mmap_sem and by
 514 * the root anon_vma's mutex.
 515 */
 516static inline void
 517anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 518{
 519	struct anon_vma_chain *avc;
 520
 521	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 522		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 523}
 524
 525static inline void
 526anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 527{
 528	struct anon_vma_chain *avc;
 529
 530	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 531		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 532}
 533
 534static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 535		unsigned long end, struct vm_area_struct **pprev,
 536		struct rb_node ***rb_link, struct rb_node **rb_parent)
 537{
 538	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 539
 540	__rb_link = &mm->mm_rb.rb_node;
 541	rb_prev = __rb_parent = NULL;
 
 542
 543	while (*__rb_link) {
 544		struct vm_area_struct *vma_tmp;
 545
 546		__rb_parent = *__rb_link;
 547		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 548
 549		if (vma_tmp->vm_end > addr) {
 550			/* Fail if an existing vma overlaps the area */
 551			if (vma_tmp->vm_start < end)
 552				return -ENOMEM;
 553			__rb_link = &__rb_parent->rb_left;
 554		} else {
 555			rb_prev = __rb_parent;
 556			__rb_link = &__rb_parent->rb_right;
 557		}
 558	}
 559
 560	*pprev = NULL;
 561	if (rb_prev)
 562		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 563	*rb_link = __rb_link;
 564	*rb_parent = __rb_parent;
 565	return 0;
 566}
 567
 568static unsigned long count_vma_pages_range(struct mm_struct *mm,
 569		unsigned long addr, unsigned long end)
 570{
 571	unsigned long nr_pages = 0;
 572	struct vm_area_struct *vma;
 573
 574	/* Find first overlaping mapping */
 575	vma = find_vma_intersection(mm, addr, end);
 576	if (!vma)
 577		return 0;
 578
 579	nr_pages = (min(end, vma->vm_end) -
 580		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 581
 582	/* Iterate over the rest of the overlaps */
 583	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 584		unsigned long overlap_len;
 585
 586		if (vma->vm_start > end)
 587			break;
 588
 589		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 590		nr_pages += overlap_len >> PAGE_SHIFT;
 591	}
 592
 593	return nr_pages;
 594}
 595
 596void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 597		struct rb_node **rb_link, struct rb_node *rb_parent)
 598{
 599	/* Update tracking information for the gap following the new vma. */
 600	if (vma->vm_next)
 601		vma_gap_update(vma->vm_next);
 602	else
 603		mm->highest_vm_end = vm_end_gap(vma);
 604
 605	/*
 606	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 607	 * correct insertion point for that vma. As a result, we could not
 608	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 609	 * So, we first insert the vma with a zero rb_subtree_gap value
 610	 * (to be consistent with what we did on the way down), and then
 611	 * immediately update the gap to the correct value. Finally we
 612	 * rebalance the rbtree after all augmented values have been set.
 613	 */
 614	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 615	vma->rb_subtree_gap = 0;
 616	vma_gap_update(vma);
 617	vma_rb_insert(vma, &mm->mm_rb);
 618}
 619
 620static void __vma_link_file(struct vm_area_struct *vma)
 621{
 622	struct file *file;
 623
 624	file = vma->vm_file;
 625	if (file) {
 626		struct address_space *mapping = file->f_mapping;
 627
 628		if (vma->vm_flags & VM_DENYWRITE)
 629			atomic_dec(&file_inode(file)->i_writecount);
 630		if (vma->vm_flags & VM_SHARED)
 631			atomic_inc(&mapping->i_mmap_writable);
 632
 633		flush_dcache_mmap_lock(mapping);
 634		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 635		flush_dcache_mmap_unlock(mapping);
 636	}
 637}
 638
 639static void
 640__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 641	struct vm_area_struct *prev, struct rb_node **rb_link,
 642	struct rb_node *rb_parent)
 643{
 644	__vma_link_list(mm, vma, prev, rb_parent);
 645	__vma_link_rb(mm, vma, rb_link, rb_parent);
 646}
 647
 648static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 649			struct vm_area_struct *prev, struct rb_node **rb_link,
 650			struct rb_node *rb_parent)
 651{
 652	struct address_space *mapping = NULL;
 653
 654	if (vma->vm_file) {
 655		mapping = vma->vm_file->f_mapping;
 656		i_mmap_lock_write(mapping);
 657	}
 
 658
 659	__vma_link(mm, vma, prev, rb_link, rb_parent);
 660	__vma_link_file(vma);
 661
 662	if (mapping)
 663		i_mmap_unlock_write(mapping);
 664
 665	mm->map_count++;
 666	validate_mm(mm);
 667}
 668
 669/*
 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 671 * mm's list and rbtree.  It has already been inserted into the interval tree.
 
 672 */
 673static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 674{
 675	struct vm_area_struct *prev;
 676	struct rb_node **rb_link, *rb_parent;
 677
 678	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 679			   &prev, &rb_link, &rb_parent))
 680		BUG();
 681	__vma_link(mm, vma, prev, rb_link, rb_parent);
 682	mm->map_count++;
 683}
 684
 685static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 686						struct vm_area_struct *vma,
 687						struct vm_area_struct *prev,
 688						bool has_prev,
 689						struct vm_area_struct *ignore)
 690{
 691	struct vm_area_struct *next;
 692
 693	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 694	next = vma->vm_next;
 695	if (has_prev)
 696		prev->vm_next = next;
 697	else {
 698		prev = vma->vm_prev;
 699		if (prev)
 700			prev->vm_next = next;
 701		else
 702			mm->mmap = next;
 703	}
 704	if (next)
 705		next->vm_prev = prev;
 706
 707	/* Kill the cache */
 708	vmacache_invalidate(mm);
 709}
 710
 711static inline void __vma_unlink_prev(struct mm_struct *mm,
 712				     struct vm_area_struct *vma,
 713				     struct vm_area_struct *prev)
 714{
 715	__vma_unlink_common(mm, vma, prev, true, vma);
 716}
 717
 718/*
 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 720 * is already present in an i_mmap tree without adjusting the tree.
 721 * The following helper function should be used when such adjustments
 722 * are necessary.  The "insert" vma (if any) is to be inserted
 723 * before we drop the necessary locks.
 724 */
 725int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 726	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 727	struct vm_area_struct *expand)
 728{
 729	struct mm_struct *mm = vma->vm_mm;
 730	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 731	struct address_space *mapping = NULL;
 732	struct rb_root_cached *root = NULL;
 733	struct anon_vma *anon_vma = NULL;
 734	struct file *file = vma->vm_file;
 735	bool start_changed = false, end_changed = false;
 736	long adjust_next = 0;
 737	int remove_next = 0;
 738
 739	if (next && !insert) {
 740		struct vm_area_struct *exporter = NULL, *importer = NULL;
 741
 742		if (end >= next->vm_end) {
 743			/*
 744			 * vma expands, overlapping all the next, and
 745			 * perhaps the one after too (mprotect case 6).
 746			 * The only other cases that gets here are
 747			 * case 1, case 7 and case 8.
 748			 */
 749			if (next == expand) {
 750				/*
 751				 * The only case where we don't expand "vma"
 752				 * and we expand "next" instead is case 8.
 753				 */
 754				VM_WARN_ON(end != next->vm_end);
 755				/*
 756				 * remove_next == 3 means we're
 757				 * removing "vma" and that to do so we
 758				 * swapped "vma" and "next".
 759				 */
 760				remove_next = 3;
 761				VM_WARN_ON(file != next->vm_file);
 762				swap(vma, next);
 763			} else {
 764				VM_WARN_ON(expand != vma);
 765				/*
 766				 * case 1, 6, 7, remove_next == 2 is case 6,
 767				 * remove_next == 1 is case 1 or 7.
 768				 */
 769				remove_next = 1 + (end > next->vm_end);
 770				VM_WARN_ON(remove_next == 2 &&
 771					   end != next->vm_next->vm_end);
 772				VM_WARN_ON(remove_next == 1 &&
 773					   end != next->vm_end);
 774				/* trim end to next, for case 6 first pass */
 775				end = next->vm_end;
 776			}
 777
 778			exporter = next;
 779			importer = vma;
 780
 781			/*
 782			 * If next doesn't have anon_vma, import from vma after
 783			 * next, if the vma overlaps with it.
 784			 */
 785			if (remove_next == 2 && !next->anon_vma)
 786				exporter = next->vm_next;
 787
 788		} else if (end > next->vm_start) {
 789			/*
 790			 * vma expands, overlapping part of the next:
 791			 * mprotect case 5 shifting the boundary up.
 792			 */
 793			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 794			exporter = next;
 795			importer = vma;
 796			VM_WARN_ON(expand != importer);
 797		} else if (end < vma->vm_end) {
 798			/*
 799			 * vma shrinks, and !insert tells it's not
 800			 * split_vma inserting another: so it must be
 801			 * mprotect case 4 shifting the boundary down.
 802			 */
 803			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 804			exporter = vma;
 805			importer = next;
 806			VM_WARN_ON(expand != importer);
 807		}
 808
 809		/*
 810		 * Easily overlooked: when mprotect shifts the boundary,
 811		 * make sure the expanding vma has anon_vma set if the
 812		 * shrinking vma had, to cover any anon pages imported.
 813		 */
 814		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 815			int error;
 816
 817			importer->anon_vma = exporter->anon_vma;
 818			error = anon_vma_clone(importer, exporter);
 819			if (error)
 820				return error;
 821		}
 822	}
 823again:
 824	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 825
 826	if (file) {
 827		mapping = file->f_mapping;
 828		root = &mapping->i_mmap;
 829		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 830
 831		if (adjust_next)
 832			uprobe_munmap(next, next->vm_start, next->vm_end);
 833
 834		i_mmap_lock_write(mapping);
 835		if (insert) {
 836			/*
 837			 * Put into interval tree now, so instantiated pages
 838			 * are visible to arm/parisc __flush_dcache_page
 839			 * throughout; but we cannot insert into address
 840			 * space until vma start or end is updated.
 841			 */
 842			__vma_link_file(insert);
 843		}
 844	}
 845
 846	anon_vma = vma->anon_vma;
 847	if (!anon_vma && adjust_next)
 848		anon_vma = next->anon_vma;
 849	if (anon_vma) {
 850		VM_WARN_ON(adjust_next && next->anon_vma &&
 851			   anon_vma != next->anon_vma);
 852		anon_vma_lock_write(anon_vma);
 853		anon_vma_interval_tree_pre_update_vma(vma);
 854		if (adjust_next)
 855			anon_vma_interval_tree_pre_update_vma(next);
 
 856	}
 857
 858	if (root) {
 859		flush_dcache_mmap_lock(mapping);
 860		vma_interval_tree_remove(vma, root);
 861		if (adjust_next)
 862			vma_interval_tree_remove(next, root);
 863	}
 864
 865	if (start != vma->vm_start) {
 866		vma->vm_start = start;
 867		start_changed = true;
 868	}
 869	if (end != vma->vm_end) {
 870		vma->vm_end = end;
 871		end_changed = true;
 872	}
 873	vma->vm_pgoff = pgoff;
 874	if (adjust_next) {
 875		next->vm_start += adjust_next << PAGE_SHIFT;
 876		next->vm_pgoff += adjust_next;
 877	}
 878
 879	if (root) {
 880		if (adjust_next)
 881			vma_interval_tree_insert(next, root);
 882		vma_interval_tree_insert(vma, root);
 883		flush_dcache_mmap_unlock(mapping);
 884	}
 885
 886	if (remove_next) {
 887		/*
 888		 * vma_merge has merged next into vma, and needs
 889		 * us to remove next before dropping the locks.
 890		 */
 891		if (remove_next != 3)
 892			__vma_unlink_prev(mm, next, vma);
 893		else
 894			/*
 895			 * vma is not before next if they've been
 896			 * swapped.
 897			 *
 898			 * pre-swap() next->vm_start was reduced so
 899			 * tell validate_mm_rb to ignore pre-swap()
 900			 * "next" (which is stored in post-swap()
 901			 * "vma").
 902			 */
 903			__vma_unlink_common(mm, next, NULL, false, vma);
 904		if (file)
 905			__remove_shared_vm_struct(next, file, mapping);
 906	} else if (insert) {
 907		/*
 908		 * split_vma has split insert from vma, and needs
 909		 * us to insert it before dropping the locks
 910		 * (it may either follow vma or precede it).
 911		 */
 912		__insert_vm_struct(mm, insert);
 913	} else {
 914		if (start_changed)
 915			vma_gap_update(vma);
 916		if (end_changed) {
 917			if (!next)
 918				mm->highest_vm_end = vm_end_gap(vma);
 919			else if (!adjust_next)
 920				vma_gap_update(next);
 921		}
 922	}
 923
 924	if (anon_vma) {
 925		anon_vma_interval_tree_post_update_vma(vma);
 926		if (adjust_next)
 927			anon_vma_interval_tree_post_update_vma(next);
 928		anon_vma_unlock_write(anon_vma);
 929	}
 930	if (mapping)
 931		i_mmap_unlock_write(mapping);
 932
 933	if (root) {
 934		uprobe_mmap(vma);
 935
 936		if (adjust_next)
 937			uprobe_mmap(next);
 938	}
 939
 940	if (remove_next) {
 941		if (file) {
 942			uprobe_munmap(next, next->vm_start, next->vm_end);
 943			fput(file);
 
 
 944		}
 945		if (next->anon_vma)
 946			anon_vma_merge(vma, next);
 947		mm->map_count--;
 948		mpol_put(vma_policy(next));
 949		vm_area_free(next);
 950		/*
 951		 * In mprotect's case 6 (see comments on vma_merge),
 952		 * we must remove another next too. It would clutter
 953		 * up the code too much to do both in one go.
 954		 */
 955		if (remove_next != 3) {
 956			/*
 957			 * If "next" was removed and vma->vm_end was
 958			 * expanded (up) over it, in turn
 959			 * "next->vm_prev->vm_end" changed and the
 960			 * "vma->vm_next" gap must be updated.
 961			 */
 962			next = vma->vm_next;
 963		} else {
 964			/*
 965			 * For the scope of the comment "next" and
 966			 * "vma" considered pre-swap(): if "vma" was
 967			 * removed, next->vm_start was expanded (down)
 968			 * over it and the "next" gap must be updated.
 969			 * Because of the swap() the post-swap() "vma"
 970			 * actually points to pre-swap() "next"
 971			 * (post-swap() "next" as opposed is now a
 972			 * dangling pointer).
 973			 */
 974			next = vma;
 975		}
 976		if (remove_next == 2) {
 977			remove_next = 1;
 978			end = next->vm_end;
 979			goto again;
 980		}
 981		else if (next)
 982			vma_gap_update(next);
 983		else {
 984			/*
 985			 * If remove_next == 2 we obviously can't
 986			 * reach this path.
 987			 *
 988			 * If remove_next == 3 we can't reach this
 989			 * path because pre-swap() next is always not
 990			 * NULL. pre-swap() "next" is not being
 991			 * removed and its next->vm_end is not altered
 992			 * (and furthermore "end" already matches
 993			 * next->vm_end in remove_next == 3).
 994			 *
 995			 * We reach this only in the remove_next == 1
 996			 * case if the "next" vma that was removed was
 997			 * the highest vma of the mm. However in such
 998			 * case next->vm_end == "end" and the extended
 999			 * "vma" has vma->vm_end == next->vm_end so
1000			 * mm->highest_vm_end doesn't need any update
1001			 * in remove_next == 1 case.
1002			 */
1003			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1004		}
1005	}
1006	if (insert && file)
1007		uprobe_mmap(insert);
1008
1009	validate_mm(mm);
1010
1011	return 0;
1012}
1013
1014/*
1015 * If the vma has a ->close operation then the driver probably needs to release
1016 * per-vma resources, so we don't attempt to merge those.
1017 */
1018static inline int is_mergeable_vma(struct vm_area_struct *vma,
1019				struct file *file, unsigned long vm_flags,
1020				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1021{
1022	/*
1023	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1024	 * match the flags but dirty bit -- the caller should mark
1025	 * merged VMA as dirty. If dirty bit won't be excluded from
1026	 * comparison, we increase pressure on the memory system forcing
1027	 * the kernel to generate new VMAs when old one could be
1028	 * extended instead.
1029	 */
1030	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1031		return 0;
1032	if (vma->vm_file != file)
1033		return 0;
1034	if (vma->vm_ops && vma->vm_ops->close)
1035		return 0;
1036	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1037		return 0;
1038	return 1;
1039}
1040
1041static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1042					struct anon_vma *anon_vma2,
1043					struct vm_area_struct *vma)
1044{
1045	/*
1046	 * The list_is_singular() test is to avoid merging VMA cloned from
1047	 * parents. This can improve scalability caused by anon_vma lock.
1048	 */
1049	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1050		list_is_singular(&vma->anon_vma_chain)))
1051		return 1;
1052	return anon_vma1 == anon_vma2;
1053}
1054
1055/*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * in front of (at a lower virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 *
1062 * We don't check here for the merged mmap wrapping around the end of pagecache
1063 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1064 * wrap, nor mmaps which cover the final page at index -1UL.
1065 */
1066static int
1067can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1068		     struct anon_vma *anon_vma, struct file *file,
1069		     pgoff_t vm_pgoff,
1070		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1071{
1072	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1073	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1074		if (vma->vm_pgoff == vm_pgoff)
1075			return 1;
1076	}
1077	return 0;
1078}
1079
1080/*
1081 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1082 * beyond (at a higher virtual address and file offset than) the vma.
1083 *
1084 * We cannot merge two vmas if they have differently assigned (non-NULL)
1085 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1086 */
1087static int
1088can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1089		    struct anon_vma *anon_vma, struct file *file,
1090		    pgoff_t vm_pgoff,
1091		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1092{
1093	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1094	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1095		pgoff_t vm_pglen;
1096		vm_pglen = vma_pages(vma);
1097		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1098			return 1;
1099	}
1100	return 0;
1101}
1102
1103/*
1104 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1105 * whether that can be merged with its predecessor or its successor.
1106 * Or both (it neatly fills a hole).
1107 *
1108 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1109 * certain not to be mapped by the time vma_merge is called; but when
1110 * called for mprotect, it is certain to be already mapped (either at
1111 * an offset within prev, or at the start of next), and the flags of
1112 * this area are about to be changed to vm_flags - and the no-change
1113 * case has already been eliminated.
1114 *
1115 * The following mprotect cases have to be considered, where AAAA is
1116 * the area passed down from mprotect_fixup, never extending beyond one
1117 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1118 *
1119 *     AAAA             AAAA                AAAA          AAAA
1120 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1121 *    cannot merge    might become    might become    might become
1122 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1123 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1124 *    mremap move:                                    PPPPXXXXXXXX 8
1125 *        AAAA
1126 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1127 *    might become    case 1 below    case 2 below    case 3 below
1128 *
1129 * It is important for case 8 that the vma NNNN overlapping the
1130 * region AAAA is never going to extended over XXXX. Instead XXXX must
1131 * be extended in region AAAA and NNNN must be removed. This way in
1132 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1133 * rmap_locks, the properties of the merged vma will be already
1134 * correct for the whole merged range. Some of those properties like
1135 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1136 * be correct for the whole merged range immediately after the
1137 * rmap_locks are released. Otherwise if XXXX would be removed and
1138 * NNNN would be extended over the XXXX range, remove_migration_ptes
1139 * or other rmap walkers (if working on addresses beyond the "end"
1140 * parameter) may establish ptes with the wrong permissions of NNNN
1141 * instead of the right permissions of XXXX.
1142 */
1143struct vm_area_struct *vma_merge(struct mm_struct *mm,
1144			struct vm_area_struct *prev, unsigned long addr,
1145			unsigned long end, unsigned long vm_flags,
1146			struct anon_vma *anon_vma, struct file *file,
1147			pgoff_t pgoff, struct mempolicy *policy,
1148			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1149{
1150	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151	struct vm_area_struct *area, *next;
1152	int err;
1153
1154	/*
1155	 * We later require that vma->vm_flags == vm_flags,
1156	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157	 */
1158	if (vm_flags & VM_SPECIAL)
1159		return NULL;
1160
1161	if (prev)
1162		next = prev->vm_next;
1163	else
1164		next = mm->mmap;
1165	area = next;
1166	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1167		next = next->vm_next;
1168
1169	/* verify some invariant that must be enforced by the caller */
1170	VM_WARN_ON(prev && addr <= prev->vm_start);
1171	VM_WARN_ON(area && end > area->vm_end);
1172	VM_WARN_ON(addr >= end);
1173
1174	/*
1175	 * Can it merge with the predecessor?
1176	 */
1177	if (prev && prev->vm_end == addr &&
1178			mpol_equal(vma_policy(prev), policy) &&
1179			can_vma_merge_after(prev, vm_flags,
1180					    anon_vma, file, pgoff,
1181					    vm_userfaultfd_ctx)) {
1182		/*
1183		 * OK, it can.  Can we now merge in the successor as well?
1184		 */
1185		if (next && end == next->vm_start &&
1186				mpol_equal(policy, vma_policy(next)) &&
1187				can_vma_merge_before(next, vm_flags,
1188						     anon_vma, file,
1189						     pgoff+pglen,
1190						     vm_userfaultfd_ctx) &&
1191				is_mergeable_anon_vma(prev->anon_vma,
1192						      next->anon_vma, NULL)) {
1193							/* cases 1, 6 */
1194			err = __vma_adjust(prev, prev->vm_start,
1195					 next->vm_end, prev->vm_pgoff, NULL,
1196					 prev);
1197		} else					/* cases 2, 5, 7 */
1198			err = __vma_adjust(prev, prev->vm_start,
1199					 end, prev->vm_pgoff, NULL, prev);
1200		if (err)
1201			return NULL;
1202		khugepaged_enter_vma_merge(prev, vm_flags);
1203		return prev;
1204	}
1205
1206	/*
1207	 * Can this new request be merged in front of next?
1208	 */
1209	if (next && end == next->vm_start &&
1210			mpol_equal(policy, vma_policy(next)) &&
1211			can_vma_merge_before(next, vm_flags,
1212					     anon_vma, file, pgoff+pglen,
1213					     vm_userfaultfd_ctx)) {
1214		if (prev && addr < prev->vm_end)	/* case 4 */
1215			err = __vma_adjust(prev, prev->vm_start,
1216					 addr, prev->vm_pgoff, NULL, next);
1217		else {					/* cases 3, 8 */
1218			err = __vma_adjust(area, addr, next->vm_end,
1219					 next->vm_pgoff - pglen, NULL, next);
1220			/*
1221			 * In case 3 area is already equal to next and
1222			 * this is a noop, but in case 8 "area" has
1223			 * been removed and next was expanded over it.
1224			 */
1225			area = next;
1226		}
1227		if (err)
1228			return NULL;
1229		khugepaged_enter_vma_merge(area, vm_flags);
1230		return area;
1231	}
1232
1233	return NULL;
1234}
1235
1236/*
1237 * Rough compatbility check to quickly see if it's even worth looking
1238 * at sharing an anon_vma.
1239 *
1240 * They need to have the same vm_file, and the flags can only differ
1241 * in things that mprotect may change.
1242 *
1243 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1244 * we can merge the two vma's. For example, we refuse to merge a vma if
1245 * there is a vm_ops->close() function, because that indicates that the
1246 * driver is doing some kind of reference counting. But that doesn't
1247 * really matter for the anon_vma sharing case.
1248 */
1249static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1250{
1251	return a->vm_end == b->vm_start &&
1252		mpol_equal(vma_policy(a), vma_policy(b)) &&
1253		a->vm_file == b->vm_file &&
1254		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1255		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1256}
1257
1258/*
1259 * Do some basic sanity checking to see if we can re-use the anon_vma
1260 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1261 * the same as 'old', the other will be the new one that is trying
1262 * to share the anon_vma.
1263 *
1264 * NOTE! This runs with mm_sem held for reading, so it is possible that
1265 * the anon_vma of 'old' is concurrently in the process of being set up
1266 * by another page fault trying to merge _that_. But that's ok: if it
1267 * is being set up, that automatically means that it will be a singleton
1268 * acceptable for merging, so we can do all of this optimistically. But
1269 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1270 *
1271 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1272 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1273 * is to return an anon_vma that is "complex" due to having gone through
1274 * a fork).
1275 *
1276 * We also make sure that the two vma's are compatible (adjacent,
1277 * and with the same memory policies). That's all stable, even with just
1278 * a read lock on the mm_sem.
1279 */
1280static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1281{
1282	if (anon_vma_compatible(a, b)) {
1283		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1284
1285		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1286			return anon_vma;
1287	}
1288	return NULL;
1289}
1290
1291/*
1292 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1293 * neighbouring vmas for a suitable anon_vma, before it goes off
1294 * to allocate a new anon_vma.  It checks because a repetitive
1295 * sequence of mprotects and faults may otherwise lead to distinct
1296 * anon_vmas being allocated, preventing vma merge in subsequent
1297 * mprotect.
1298 */
1299struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1300{
1301	struct anon_vma *anon_vma;
1302	struct vm_area_struct *near;
1303
1304	near = vma->vm_next;
1305	if (!near)
1306		goto try_prev;
1307
1308	anon_vma = reusable_anon_vma(near, vma, near);
1309	if (anon_vma)
1310		return anon_vma;
1311try_prev:
1312	near = vma->vm_prev;
1313	if (!near)
1314		goto none;
1315
1316	anon_vma = reusable_anon_vma(near, near, vma);
1317	if (anon_vma)
1318		return anon_vma;
1319none:
1320	/*
1321	 * There's no absolute need to look only at touching neighbours:
1322	 * we could search further afield for "compatible" anon_vmas.
1323	 * But it would probably just be a waste of time searching,
1324	 * or lead to too many vmas hanging off the same anon_vma.
1325	 * We're trying to allow mprotect remerging later on,
1326	 * not trying to minimize memory used for anon_vmas.
1327	 */
1328	return NULL;
1329}
1330
1331/*
1332 * If a hint addr is less than mmap_min_addr change hint to be as
1333 * low as possible but still greater than mmap_min_addr
1334 */
1335static inline unsigned long round_hint_to_min(unsigned long hint)
1336{
1337	hint &= PAGE_MASK;
1338	if (((void *)hint != NULL) &&
1339	    (hint < mmap_min_addr))
1340		return PAGE_ALIGN(mmap_min_addr);
1341	return hint;
1342}
1343
1344static inline int mlock_future_check(struct mm_struct *mm,
1345				     unsigned long flags,
1346				     unsigned long len)
1347{
1348	unsigned long locked, lock_limit;
1349
1350	/*  mlock MCL_FUTURE? */
1351	if (flags & VM_LOCKED) {
1352		locked = len >> PAGE_SHIFT;
1353		locked += mm->locked_vm;
1354		lock_limit = rlimit(RLIMIT_MEMLOCK);
1355		lock_limit >>= PAGE_SHIFT;
1356		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1357			return -EAGAIN;
1358	}
1359	return 0;
1360}
1361
1362static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1363{
1364	if (S_ISREG(inode->i_mode))
1365		return MAX_LFS_FILESIZE;
1366
1367	if (S_ISBLK(inode->i_mode))
1368		return MAX_LFS_FILESIZE;
1369
1370	if (S_ISSOCK(inode->i_mode))
1371		return MAX_LFS_FILESIZE;
1372
1373	/* Special "we do even unsigned file positions" case */
1374	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1375		return 0;
1376
1377	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1378	return ULONG_MAX;
1379}
1380
1381static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1382				unsigned long pgoff, unsigned long len)
1383{
1384	u64 maxsize = file_mmap_size_max(file, inode);
1385
1386	if (maxsize && len > maxsize)
1387		return false;
1388	maxsize -= len;
1389	if (pgoff > maxsize >> PAGE_SHIFT)
1390		return false;
1391	return true;
1392}
 
1393
1394/*
1395 * The caller must hold down_write(&current->mm->mmap_sem).
1396 */
1397unsigned long do_mmap(struct file *file, unsigned long addr,
 
1398			unsigned long len, unsigned long prot,
1399			unsigned long flags, vm_flags_t vm_flags,
1400			unsigned long pgoff, unsigned long *populate,
1401			struct list_head *uf)
1402{
1403	struct mm_struct *mm = current->mm;
1404	int pkey = 0;
1405
1406	*populate = 0;
1407
1408	if (!len)
1409		return -EINVAL;
1410
1411	/*
1412	 * Does the application expect PROT_READ to imply PROT_EXEC?
1413	 *
1414	 * (the exception is when the underlying filesystem is noexec
1415	 *  mounted, in which case we dont add PROT_EXEC.)
1416	 */
1417	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1418		if (!(file && path_noexec(&file->f_path)))
1419			prot |= PROT_EXEC;
1420
1421	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1422	if (flags & MAP_FIXED_NOREPLACE)
1423		flags |= MAP_FIXED;
1424
1425	if (!(flags & MAP_FIXED))
1426		addr = round_hint_to_min(addr);
1427
1428	/* Careful about overflows.. */
1429	len = PAGE_ALIGN(len);
1430	if (!len)
1431		return -ENOMEM;
1432
1433	/* offset overflow? */
1434	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1435		return -EOVERFLOW;
1436
1437	/* Too many mappings? */
1438	if (mm->map_count > sysctl_max_map_count)
1439		return -ENOMEM;
1440
1441	/* Obtain the address to map to. we verify (or select) it and ensure
1442	 * that it represents a valid section of the address space.
1443	 */
1444	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1445	if (offset_in_page(addr))
1446		return addr;
1447
1448	if (flags & MAP_FIXED_NOREPLACE) {
1449		struct vm_area_struct *vma = find_vma(mm, addr);
1450
1451		if (vma && vma->vm_start < addr + len)
1452			return -EEXIST;
1453	}
1454
1455	if (prot == PROT_EXEC) {
1456		pkey = execute_only_pkey(mm);
1457		if (pkey < 0)
1458			pkey = 0;
1459	}
1460
1461	/* Do simple checking here so the lower-level routines won't have
1462	 * to. we assume access permissions have been handled by the open
1463	 * of the memory object, so we don't do any here.
1464	 */
1465	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1466			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1467
1468	if (flags & MAP_LOCKED)
1469		if (!can_do_mlock())
1470			return -EPERM;
1471
1472	if (mlock_future_check(mm, vm_flags, len))
1473		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
1474
1475	if (file) {
1476		struct inode *inode = file_inode(file);
1477		unsigned long flags_mask;
1478
1479		if (!file_mmap_ok(file, inode, pgoff, len))
1480			return -EOVERFLOW;
1481
1482		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1483
1484		switch (flags & MAP_TYPE) {
1485		case MAP_SHARED:
1486			/*
1487			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1488			 * flags. E.g. MAP_SYNC is dangerous to use with
1489			 * MAP_SHARED as you don't know which consistency model
1490			 * you will get. We silently ignore unsupported flags
1491			 * with MAP_SHARED to preserve backward compatibility.
1492			 */
1493			flags &= LEGACY_MAP_MASK;
1494			/* fall through */
1495		case MAP_SHARED_VALIDATE:
1496			if (flags & ~flags_mask)
1497				return -EOPNOTSUPP;
1498			if (prot & PROT_WRITE) {
1499				if (!(file->f_mode & FMODE_WRITE))
1500					return -EACCES;
1501				if (IS_SWAPFILE(file->f_mapping->host))
1502					return -ETXTBSY;
1503			}
1504
1505			/*
1506			 * Make sure we don't allow writing to an append-only
1507			 * file..
1508			 */
1509			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1510				return -EACCES;
1511
1512			/*
1513			 * Make sure there are no mandatory locks on the file.
1514			 */
1515			if (locks_verify_locked(file))
1516				return -EAGAIN;
1517
1518			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519			if (!(file->f_mode & FMODE_WRITE))
1520				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1521
1522			/* fall through */
1523		case MAP_PRIVATE:
1524			if (!(file->f_mode & FMODE_READ))
1525				return -EACCES;
1526			if (path_noexec(&file->f_path)) {
1527				if (vm_flags & VM_EXEC)
1528					return -EPERM;
1529				vm_flags &= ~VM_MAYEXEC;
1530			}
1531
1532			if (!file->f_op->mmap)
1533				return -ENODEV;
1534			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1535				return -EINVAL;
1536			break;
1537
1538		default:
1539			return -EINVAL;
1540		}
1541	} else {
1542		switch (flags & MAP_TYPE) {
1543		case MAP_SHARED:
1544			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545				return -EINVAL;
1546			/*
1547			 * Ignore pgoff.
1548			 */
1549			pgoff = 0;
1550			vm_flags |= VM_SHARED | VM_MAYSHARE;
1551			break;
1552		case MAP_PRIVATE:
1553			/*
1554			 * Set pgoff according to addr for anon_vma.
1555			 */
1556			pgoff = addr >> PAGE_SHIFT;
1557			break;
1558		default:
1559			return -EINVAL;
1560		}
1561	}
1562
1563	/*
1564	 * Set 'VM_NORESERVE' if we should not account for the
1565	 * memory use of this mapping.
1566	 */
1567	if (flags & MAP_NORESERVE) {
1568		/* We honor MAP_NORESERVE if allowed to overcommit */
1569		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1570			vm_flags |= VM_NORESERVE;
1571
1572		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1573		if (file && is_file_hugepages(file))
1574			vm_flags |= VM_NORESERVE;
1575	}
1576
1577	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1578	if (!IS_ERR_VALUE(addr) &&
1579	    ((vm_flags & VM_LOCKED) ||
1580	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1581		*populate = len;
1582	return addr;
1583}
 
1584
1585unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1586			      unsigned long prot, unsigned long flags,
1587			      unsigned long fd, unsigned long pgoff)
1588{
1589	struct file *file = NULL;
1590	unsigned long retval;
1591
1592	addr = untagged_addr(addr);
1593
1594	if (!(flags & MAP_ANONYMOUS)) {
1595		audit_mmap_fd(fd, flags);
 
 
1596		file = fget(fd);
1597		if (!file)
1598			return -EBADF;
1599		if (is_file_hugepages(file))
1600			len = ALIGN(len, huge_page_size(hstate_file(file)));
1601		retval = -EINVAL;
1602		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1603			goto out_fput;
1604	} else if (flags & MAP_HUGETLB) {
1605		struct user_struct *user = NULL;
1606		struct hstate *hs;
1607
1608		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609		if (!hs)
1610			return -EINVAL;
1611
1612		len = ALIGN(len, huge_page_size(hs));
1613		/*
1614		 * VM_NORESERVE is used because the reservations will be
1615		 * taken when vm_ops->mmap() is called
1616		 * A dummy user value is used because we are not locking
1617		 * memory so no accounting is necessary
1618		 */
1619		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620				VM_NORESERVE,
1621				&user, HUGETLB_ANONHUGE_INODE,
1622				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623		if (IS_ERR(file))
1624			return PTR_ERR(file);
1625	}
1626
1627	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1628
1629	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630out_fput:
 
 
1631	if (file)
1632		fput(file);
 
1633	return retval;
1634}
1635
1636SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637		unsigned long, prot, unsigned long, flags,
1638		unsigned long, fd, unsigned long, pgoff)
1639{
1640	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLD_MMAP
1644struct mmap_arg_struct {
1645	unsigned long addr;
1646	unsigned long len;
1647	unsigned long prot;
1648	unsigned long flags;
1649	unsigned long fd;
1650	unsigned long offset;
1651};
1652
1653SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654{
1655	struct mmap_arg_struct a;
1656
1657	if (copy_from_user(&a, arg, sizeof(a)))
1658		return -EFAULT;
1659	if (offset_in_page(a.offset))
1660		return -EINVAL;
1661
1662	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663			       a.offset >> PAGE_SHIFT);
1664}
1665#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666
1667/*
1668 * Some shared mappings will want the pages marked read-only
1669 * to track write events. If so, we'll downgrade vm_page_prot
1670 * to the private version (using protection_map[] without the
1671 * VM_SHARED bit).
1672 */
1673int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674{
1675	vm_flags_t vm_flags = vma->vm_flags;
1676	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677
1678	/* If it was private or non-writable, the write bit is already clear */
1679	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680		return 0;
1681
1682	/* The backer wishes to know when pages are first written to? */
1683	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684		return 1;
1685
1686	/* The open routine did something to the protections that pgprot_modify
1687	 * won't preserve? */
1688	if (pgprot_val(vm_page_prot) !=
1689	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690		return 0;
1691
1692	/* Do we need to track softdirty? */
1693	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1694		return 1;
1695
1696	/* Specialty mapping? */
1697	if (vm_flags & VM_PFNMAP)
1698		return 0;
1699
1700	/* Can the mapping track the dirty pages? */
1701	return vma->vm_file && vma->vm_file->f_mapping &&
1702		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1703}
1704
1705/*
1706 * We account for memory if it's a private writeable mapping,
1707 * not hugepages and VM_NORESERVE wasn't set.
1708 */
1709static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710{
1711	/*
1712	 * hugetlb has its own accounting separate from the core VM
1713	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714	 */
1715	if (file && is_file_hugepages(file))
1716		return 0;
1717
1718	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719}
1720
1721unsigned long mmap_region(struct file *file, unsigned long addr,
1722		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723		struct list_head *uf)
1724{
1725	struct mm_struct *mm = current->mm;
1726	struct vm_area_struct *vma, *prev;
 
1727	int error;
1728	struct rb_node **rb_link, *rb_parent;
1729	unsigned long charged = 0;
 
 
 
 
 
 
 
 
 
 
 
1730
1731	/* Check against address space limit. */
1732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733		unsigned long nr_pages;
1734
1735		/*
1736		 * MAP_FIXED may remove pages of mappings that intersects with
1737		 * requested mapping. Account for the pages it would unmap.
1738		 */
1739		nr_pages = count_vma_pages_range(mm, addr, addr + len);
 
 
 
1740
1741		if (!may_expand_vm(mm, vm_flags,
1742					(len >> PAGE_SHIFT) - nr_pages))
1743			return -ENOMEM;
1744	}
1745
1746	/* Clear old maps */
1747	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1748			      &rb_parent)) {
1749		if (do_munmap(mm, addr, len, uf))
1750			return -ENOMEM;
1751	}
1752
1753	/*
1754	 * Private writable mapping: check memory availability
1755	 */
1756	if (accountable_mapping(file, vm_flags)) {
1757		charged = len >> PAGE_SHIFT;
1758		if (security_vm_enough_memory_mm(mm, charged))
1759			return -ENOMEM;
1760		vm_flags |= VM_ACCOUNT;
1761	}
1762
1763	/*
1764	 * Can we just expand an old mapping?
1765	 */
1766	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1768	if (vma)
1769		goto out;
1770
1771	/*
1772	 * Determine the object being mapped and call the appropriate
1773	 * specific mapper. the address has already been validated, but
1774	 * not unmapped, but the maps are removed from the list.
1775	 */
1776	vma = vm_area_alloc(mm);
1777	if (!vma) {
1778		error = -ENOMEM;
1779		goto unacct_error;
1780	}
1781
 
1782	vma->vm_start = addr;
1783	vma->vm_end = addr + len;
1784	vma->vm_flags = vm_flags;
1785	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786	vma->vm_pgoff = pgoff;
 
1787
1788	if (file) {
 
 
 
1789		if (vm_flags & VM_DENYWRITE) {
1790			error = deny_write_access(file);
1791			if (error)
1792				goto free_vma;
 
1793		}
1794		if (vm_flags & VM_SHARED) {
1795			error = mapping_map_writable(file->f_mapping);
1796			if (error)
1797				goto allow_write_and_free_vma;
1798		}
1799
1800		/* ->mmap() can change vma->vm_file, but must guarantee that
1801		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1802		 * and map writably if VM_SHARED is set. This usually means the
1803		 * new file must not have been exposed to user-space, yet.
1804		 */
1805		vma->vm_file = get_file(file);
1806		error = call_mmap(file, vma);
1807		if (error)
1808			goto unmap_and_free_vma;
 
 
1809
1810		/* Can addr have changed??
1811		 *
1812		 * Answer: Yes, several device drivers can do it in their
1813		 *         f_op->mmap method. -DaveM
1814		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1815		 *      be updated for vma_link()
1816		 */
1817		WARN_ON_ONCE(addr != vma->vm_start);
1818
1819		addr = vma->vm_start;
 
1820		vm_flags = vma->vm_flags;
1821	} else if (vm_flags & VM_SHARED) {
1822		error = shmem_zero_setup(vma);
1823		if (error)
1824			goto free_vma;
1825	} else {
1826		vma_set_anonymous(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
1827	}
1828
1829	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
1830	/* Once vma denies write, undo our temporary denial count */
1831	if (file) {
1832		if (vm_flags & VM_SHARED)
1833			mapping_unmap_writable(file->f_mapping);
1834		if (vm_flags & VM_DENYWRITE)
1835			allow_write_access(file);
1836	}
1837	file = vma->vm_file;
1838out:
1839	perf_event_mmap(vma);
1840
1841	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
 
1842	if (vm_flags & VM_LOCKED) {
1843		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844					is_vm_hugetlb_page(vma) ||
1845					vma == get_gate_vma(current->mm))
1846			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847		else
1848			mm->locked_vm += (len >> PAGE_SHIFT);
1849	}
1850
1851	if (file)
1852		uprobe_mmap(vma);
1853
1854	/*
1855	 * New (or expanded) vma always get soft dirty status.
1856	 * Otherwise user-space soft-dirty page tracker won't
1857	 * be able to distinguish situation when vma area unmapped,
1858	 * then new mapped in-place (which must be aimed as
1859	 * a completely new data area).
1860	 */
1861	vma->vm_flags |= VM_SOFTDIRTY;
1862
1863	vma_set_page_prot(vma);
1864
1865	return addr;
1866
1867unmap_and_free_vma:
 
 
1868	vma->vm_file = NULL;
1869	fput(file);
1870
1871	/* Undo any partial mapping done by a device driver. */
1872	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873	charged = 0;
1874	if (vm_flags & VM_SHARED)
1875		mapping_unmap_writable(file->f_mapping);
1876allow_write_and_free_vma:
1877	if (vm_flags & VM_DENYWRITE)
1878		allow_write_access(file);
1879free_vma:
1880	vm_area_free(vma);
1881unacct_error:
1882	if (charged)
1883		vm_unacct_memory(charged);
1884	return error;
1885}
1886
1887unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888{
1889	/*
1890	 * We implement the search by looking for an rbtree node that
1891	 * immediately follows a suitable gap. That is,
1892	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894	 * - gap_end - gap_start >= length
1895	 */
1896
1897	struct mm_struct *mm = current->mm;
1898	struct vm_area_struct *vma;
1899	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901	/* Adjust search length to account for worst case alignment overhead */
1902	length = info->length + info->align_mask;
1903	if (length < info->length)
1904		return -ENOMEM;
1905
1906	/* Adjust search limits by the desired length */
1907	if (info->high_limit < length)
1908		return -ENOMEM;
1909	high_limit = info->high_limit - length;
1910
1911	if (info->low_limit > high_limit)
1912		return -ENOMEM;
1913	low_limit = info->low_limit + length;
1914
1915	/* Check if rbtree root looks promising */
1916	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917		goto check_highest;
1918	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919	if (vma->rb_subtree_gap < length)
1920		goto check_highest;
1921
1922	while (true) {
1923		/* Visit left subtree if it looks promising */
1924		gap_end = vm_start_gap(vma);
1925		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926			struct vm_area_struct *left =
1927				rb_entry(vma->vm_rb.rb_left,
1928					 struct vm_area_struct, vm_rb);
1929			if (left->rb_subtree_gap >= length) {
1930				vma = left;
1931				continue;
1932			}
1933		}
1934
1935		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936check_current:
1937		/* Check if current node has a suitable gap */
1938		if (gap_start > high_limit)
1939			return -ENOMEM;
1940		if (gap_end >= low_limit &&
1941		    gap_end > gap_start && gap_end - gap_start >= length)
1942			goto found;
1943
1944		/* Visit right subtree if it looks promising */
1945		if (vma->vm_rb.rb_right) {
1946			struct vm_area_struct *right =
1947				rb_entry(vma->vm_rb.rb_right,
1948					 struct vm_area_struct, vm_rb);
1949			if (right->rb_subtree_gap >= length) {
1950				vma = right;
1951				continue;
1952			}
1953		}
1954
1955		/* Go back up the rbtree to find next candidate node */
1956		while (true) {
1957			struct rb_node *prev = &vma->vm_rb;
1958			if (!rb_parent(prev))
1959				goto check_highest;
1960			vma = rb_entry(rb_parent(prev),
1961				       struct vm_area_struct, vm_rb);
1962			if (prev == vma->vm_rb.rb_left) {
1963				gap_start = vm_end_gap(vma->vm_prev);
1964				gap_end = vm_start_gap(vma);
1965				goto check_current;
1966			}
1967		}
1968	}
1969
1970check_highest:
1971	/* Check highest gap, which does not precede any rbtree node */
1972	gap_start = mm->highest_vm_end;
1973	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974	if (gap_start > high_limit)
1975		return -ENOMEM;
1976
1977found:
1978	/* We found a suitable gap. Clip it with the original low_limit. */
1979	if (gap_start < info->low_limit)
1980		gap_start = info->low_limit;
1981
1982	/* Adjust gap address to the desired alignment */
1983	gap_start += (info->align_offset - gap_start) & info->align_mask;
1984
1985	VM_BUG_ON(gap_start + info->length > info->high_limit);
1986	VM_BUG_ON(gap_start + info->length > gap_end);
1987	return gap_start;
1988}
1989
1990unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1991{
1992	struct mm_struct *mm = current->mm;
1993	struct vm_area_struct *vma;
1994	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995
1996	/* Adjust search length to account for worst case alignment overhead */
1997	length = info->length + info->align_mask;
1998	if (length < info->length)
1999		return -ENOMEM;
2000
2001	/*
2002	 * Adjust search limits by the desired length.
2003	 * See implementation comment at top of unmapped_area().
2004	 */
2005	gap_end = info->high_limit;
2006	if (gap_end < length)
2007		return -ENOMEM;
2008	high_limit = gap_end - length;
2009
2010	if (info->low_limit > high_limit)
2011		return -ENOMEM;
2012	low_limit = info->low_limit + length;
2013
2014	/* Check highest gap, which does not precede any rbtree node */
2015	gap_start = mm->highest_vm_end;
2016	if (gap_start <= high_limit)
2017		goto found_highest;
2018
2019	/* Check if rbtree root looks promising */
2020	if (RB_EMPTY_ROOT(&mm->mm_rb))
2021		return -ENOMEM;
2022	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023	if (vma->rb_subtree_gap < length)
2024		return -ENOMEM;
2025
2026	while (true) {
2027		/* Visit right subtree if it looks promising */
2028		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030			struct vm_area_struct *right =
2031				rb_entry(vma->vm_rb.rb_right,
2032					 struct vm_area_struct, vm_rb);
2033			if (right->rb_subtree_gap >= length) {
2034				vma = right;
2035				continue;
2036			}
2037		}
2038
2039check_current:
2040		/* Check if current node has a suitable gap */
2041		gap_end = vm_start_gap(vma);
2042		if (gap_end < low_limit)
2043			return -ENOMEM;
2044		if (gap_start <= high_limit &&
2045		    gap_end > gap_start && gap_end - gap_start >= length)
2046			goto found;
2047
2048		/* Visit left subtree if it looks promising */
2049		if (vma->vm_rb.rb_left) {
2050			struct vm_area_struct *left =
2051				rb_entry(vma->vm_rb.rb_left,
2052					 struct vm_area_struct, vm_rb);
2053			if (left->rb_subtree_gap >= length) {
2054				vma = left;
2055				continue;
2056			}
2057		}
2058
2059		/* Go back up the rbtree to find next candidate node */
2060		while (true) {
2061			struct rb_node *prev = &vma->vm_rb;
2062			if (!rb_parent(prev))
2063				return -ENOMEM;
2064			vma = rb_entry(rb_parent(prev),
2065				       struct vm_area_struct, vm_rb);
2066			if (prev == vma->vm_rb.rb_right) {
2067				gap_start = vma->vm_prev ?
2068					vm_end_gap(vma->vm_prev) : 0;
2069				goto check_current;
2070			}
2071		}
2072	}
2073
2074found:
2075	/* We found a suitable gap. Clip it with the original high_limit. */
2076	if (gap_end > info->high_limit)
2077		gap_end = info->high_limit;
2078
2079found_highest:
2080	/* Compute highest gap address at the desired alignment */
2081	gap_end -= info->length;
2082	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083
2084	VM_BUG_ON(gap_end < info->low_limit);
2085	VM_BUG_ON(gap_end < gap_start);
2086	return gap_end;
2087}
2088
2089
2090#ifndef arch_get_mmap_end
2091#define arch_get_mmap_end(addr)	(TASK_SIZE)
2092#endif
2093
2094#ifndef arch_get_mmap_base
2095#define arch_get_mmap_base(addr, base) (base)
2096#endif
2097
2098/* Get an address range which is currently unmapped.
2099 * For shmat() with addr=0.
2100 *
2101 * Ugly calling convention alert:
2102 * Return value with the low bits set means error value,
2103 * ie
2104 *	if (ret & ~PAGE_MASK)
2105 *		error = ret;
2106 *
2107 * This function "knows" that -ENOMEM has the bits set.
2108 */
2109#ifndef HAVE_ARCH_UNMAPPED_AREA
2110unsigned long
2111arch_get_unmapped_area(struct file *filp, unsigned long addr,
2112		unsigned long len, unsigned long pgoff, unsigned long flags)
2113{
2114	struct mm_struct *mm = current->mm;
2115	struct vm_area_struct *vma, *prev;
2116	struct vm_unmapped_area_info info;
2117	const unsigned long mmap_end = arch_get_mmap_end(addr);
2118
2119	if (len > mmap_end - mmap_min_addr)
2120		return -ENOMEM;
2121
2122	if (flags & MAP_FIXED)
2123		return addr;
2124
2125	if (addr) {
2126		addr = PAGE_ALIGN(addr);
2127		vma = find_vma_prev(mm, addr, &prev);
2128		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2129		    (!vma || addr + len <= vm_start_gap(vma)) &&
2130		    (!prev || addr >= vm_end_gap(prev)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131			return addr;
 
 
 
 
2132	}
 
 
2133
2134	info.flags = 0;
2135	info.length = len;
2136	info.low_limit = mm->mmap_base;
2137	info.high_limit = mmap_end;
2138	info.align_mask = 0;
2139	return vm_unmapped_area(&info);
 
 
 
2140}
2141#endif
2142
2143/*
2144 * This mmap-allocator allocates new areas top-down from below the
2145 * stack's low limit (the base):
2146 */
2147#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2148unsigned long
2149arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2150			  unsigned long len, unsigned long pgoff,
2151			  unsigned long flags)
2152{
2153	struct vm_area_struct *vma, *prev;
2154	struct mm_struct *mm = current->mm;
2155	struct vm_unmapped_area_info info;
2156	const unsigned long mmap_end = arch_get_mmap_end(addr);
2157
2158	/* requested length too big for entire address space */
2159	if (len > mmap_end - mmap_min_addr)
2160		return -ENOMEM;
2161
2162	if (flags & MAP_FIXED)
2163		return addr;
2164
2165	/* requesting a specific address */
2166	if (addr) {
2167		addr = PAGE_ALIGN(addr);
2168		vma = find_vma_prev(mm, addr, &prev);
2169		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2170				(!vma || addr + len <= vm_start_gap(vma)) &&
2171				(!prev || addr >= vm_end_gap(prev)))
2172			return addr;
2173	}
2174
2175	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2176	info.length = len;
2177	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2178	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2179	info.align_mask = 0;
2180	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181
 
2182	/*
2183	 * A failed mmap() very likely causes application failure,
2184	 * so fall back to the bottom-up function here. This scenario
2185	 * can happen with large stack limits and large mmap()
2186	 * allocations.
2187	 */
2188	if (offset_in_page(addr)) {
2189		VM_BUG_ON(addr != -ENOMEM);
2190		info.flags = 0;
2191		info.low_limit = TASK_UNMAPPED_BASE;
2192		info.high_limit = mmap_end;
2193		addr = vm_unmapped_area(&info);
2194	}
 
2195
2196	return addr;
2197}
2198#endif
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
2200unsigned long
2201get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2202		unsigned long pgoff, unsigned long flags)
2203{
2204	unsigned long (*get_area)(struct file *, unsigned long,
2205				  unsigned long, unsigned long, unsigned long);
2206
2207	unsigned long error = arch_mmap_check(addr, len, flags);
2208	if (error)
2209		return error;
2210
2211	/* Careful about overflows.. */
2212	if (len > TASK_SIZE)
2213		return -ENOMEM;
2214
2215	get_area = current->mm->get_unmapped_area;
2216	if (file) {
2217		if (file->f_op->get_unmapped_area)
2218			get_area = file->f_op->get_unmapped_area;
2219	} else if (flags & MAP_SHARED) {
2220		/*
2221		 * mmap_region() will call shmem_zero_setup() to create a file,
2222		 * so use shmem's get_unmapped_area in case it can be huge.
2223		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2224		 */
2225		pgoff = 0;
2226		get_area = shmem_get_unmapped_area;
2227	}
2228
2229	addr = get_area(file, addr, len, pgoff, flags);
2230	if (IS_ERR_VALUE(addr))
2231		return addr;
2232
2233	if (addr > TASK_SIZE - len)
2234		return -ENOMEM;
2235	if (offset_in_page(addr))
2236		return -EINVAL;
2237
2238	error = security_mmap_addr(addr);
2239	return error ? error : addr;
2240}
2241
2242EXPORT_SYMBOL(get_unmapped_area);
2243
2244/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2245struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2246{
2247	struct rb_node *rb_node;
2248	struct vm_area_struct *vma;
2249
2250	/* Check the cache first. */
2251	vma = vmacache_find(mm, addr);
2252	if (likely(vma))
2253		return vma;
2254
2255	rb_node = mm->mm_rb.rb_node;
2256
2257	while (rb_node) {
2258		struct vm_area_struct *tmp;
2259
2260		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2261
2262		if (tmp->vm_end > addr) {
2263			vma = tmp;
2264			if (tmp->vm_start <= addr)
2265				break;
2266			rb_node = rb_node->rb_left;
2267		} else
2268			rb_node = rb_node->rb_right;
 
 
 
 
 
 
 
 
2269	}
2270
2271	if (vma)
2272		vmacache_update(addr, vma);
2273	return vma;
2274}
2275
2276EXPORT_SYMBOL(find_vma);
2277
2278/*
2279 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2280 */
2281struct vm_area_struct *
2282find_vma_prev(struct mm_struct *mm, unsigned long addr,
2283			struct vm_area_struct **pprev)
2284{
2285	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
2286
2287	vma = find_vma(mm, addr);
2288	if (vma) {
2289		*pprev = vma->vm_prev;
2290	} else {
2291		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2292
2293		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
 
 
 
 
 
 
 
2294	}
2295	return vma;
 
 
 
2296}
2297
2298/*
2299 * Verify that the stack growth is acceptable and
2300 * update accounting. This is shared with both the
2301 * grow-up and grow-down cases.
2302 */
2303static int acct_stack_growth(struct vm_area_struct *vma,
2304			     unsigned long size, unsigned long grow)
2305{
2306	struct mm_struct *mm = vma->vm_mm;
 
2307	unsigned long new_start;
2308
2309	/* address space limit tests */
2310	if (!may_expand_vm(mm, vma->vm_flags, grow))
2311		return -ENOMEM;
2312
2313	/* Stack limit test */
2314	if (size > rlimit(RLIMIT_STACK))
2315		return -ENOMEM;
2316
2317	/* mlock limit tests */
2318	if (vma->vm_flags & VM_LOCKED) {
2319		unsigned long locked;
2320		unsigned long limit;
2321		locked = mm->locked_vm + grow;
2322		limit = rlimit(RLIMIT_MEMLOCK);
2323		limit >>= PAGE_SHIFT;
2324		if (locked > limit && !capable(CAP_IPC_LOCK))
2325			return -ENOMEM;
2326	}
2327
2328	/* Check to ensure the stack will not grow into a hugetlb-only region */
2329	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2330			vma->vm_end - size;
2331	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2332		return -EFAULT;
2333
2334	/*
2335	 * Overcommit..  This must be the final test, as it will
2336	 * update security statistics.
2337	 */
2338	if (security_vm_enough_memory_mm(mm, grow))
2339		return -ENOMEM;
2340
 
 
 
 
 
2341	return 0;
2342}
2343
2344#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2345/*
2346 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2347 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2348 */
2349int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2350{
2351	struct mm_struct *mm = vma->vm_mm;
2352	struct vm_area_struct *next;
2353	unsigned long gap_addr;
2354	int error = 0;
2355
2356	if (!(vma->vm_flags & VM_GROWSUP))
2357		return -EFAULT;
2358
2359	/* Guard against exceeding limits of the address space. */
2360	address &= PAGE_MASK;
2361	if (address >= (TASK_SIZE & PAGE_MASK))
2362		return -ENOMEM;
2363	address += PAGE_SIZE;
2364
2365	/* Enforce stack_guard_gap */
2366	gap_addr = address + stack_guard_gap;
2367
2368	/* Guard against overflow */
2369	if (gap_addr < address || gap_addr > TASK_SIZE)
2370		gap_addr = TASK_SIZE;
2371
2372	next = vma->vm_next;
2373	if (next && next->vm_start < gap_addr &&
2374			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2375		if (!(next->vm_flags & VM_GROWSUP))
2376			return -ENOMEM;
2377		/* Check that both stack segments have the same anon_vma? */
2378	}
2379
2380	/* We must make sure the anon_vma is allocated. */
2381	if (unlikely(anon_vma_prepare(vma)))
2382		return -ENOMEM;
 
2383
2384	/*
2385	 * vma->vm_start/vm_end cannot change under us because the caller
2386	 * is required to hold the mmap_sem in read mode.  We need the
2387	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2388	 */
2389	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2390
2391	/* Somebody else might have raced and expanded it already */
2392	if (address > vma->vm_end) {
2393		unsigned long size, grow;
2394
2395		size = address - vma->vm_start;
2396		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2397
2398		error = -ENOMEM;
2399		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2400			error = acct_stack_growth(vma, size, grow);
2401			if (!error) {
2402				/*
2403				 * vma_gap_update() doesn't support concurrent
2404				 * updates, but we only hold a shared mmap_sem
2405				 * lock here, so we need to protect against
2406				 * concurrent vma expansions.
2407				 * anon_vma_lock_write() doesn't help here, as
2408				 * we don't guarantee that all growable vmas
2409				 * in a mm share the same root anon vma.
2410				 * So, we reuse mm->page_table_lock to guard
2411				 * against concurrent vma expansions.
2412				 */
2413				spin_lock(&mm->page_table_lock);
2414				if (vma->vm_flags & VM_LOCKED)
2415					mm->locked_vm += grow;
2416				vm_stat_account(mm, vma->vm_flags, grow);
2417				anon_vma_interval_tree_pre_update_vma(vma);
2418				vma->vm_end = address;
2419				anon_vma_interval_tree_post_update_vma(vma);
2420				if (vma->vm_next)
2421					vma_gap_update(vma->vm_next);
2422				else
2423					mm->highest_vm_end = vm_end_gap(vma);
2424				spin_unlock(&mm->page_table_lock);
2425
2426				perf_event_mmap(vma);
2427			}
2428		}
2429	}
2430	anon_vma_unlock_write(vma->anon_vma);
2431	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2432	validate_mm(mm);
2433	return error;
2434}
2435#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2436
2437/*
2438 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2439 */
2440int expand_downwards(struct vm_area_struct *vma,
2441				   unsigned long address)
2442{
2443	struct mm_struct *mm = vma->vm_mm;
2444	struct vm_area_struct *prev;
2445	int error = 0;
 
 
 
 
 
2446
2447	address &= PAGE_MASK;
2448	if (address < mmap_min_addr)
2449		return -EPERM;
 
2450
2451	/* Enforce stack_guard_gap */
2452	prev = vma->vm_prev;
2453	/* Check that both stack segments have the same anon_vma? */
2454	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2455			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2456		if (address - prev->vm_end < stack_guard_gap)
2457			return -ENOMEM;
2458	}
2459
2460	/* We must make sure the anon_vma is allocated. */
2461	if (unlikely(anon_vma_prepare(vma)))
2462		return -ENOMEM;
2463
2464	/*
2465	 * vma->vm_start/vm_end cannot change under us because the caller
2466	 * is required to hold the mmap_sem in read mode.  We need the
2467	 * anon_vma lock to serialize against concurrent expand_stacks.
2468	 */
2469	anon_vma_lock_write(vma->anon_vma);
2470
2471	/* Somebody else might have raced and expanded it already */
2472	if (address < vma->vm_start) {
2473		unsigned long size, grow;
2474
2475		size = vma->vm_end - address;
2476		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2477
2478		error = -ENOMEM;
2479		if (grow <= vma->vm_pgoff) {
2480			error = acct_stack_growth(vma, size, grow);
2481			if (!error) {
2482				/*
2483				 * vma_gap_update() doesn't support concurrent
2484				 * updates, but we only hold a shared mmap_sem
2485				 * lock here, so we need to protect against
2486				 * concurrent vma expansions.
2487				 * anon_vma_lock_write() doesn't help here, as
2488				 * we don't guarantee that all growable vmas
2489				 * in a mm share the same root anon vma.
2490				 * So, we reuse mm->page_table_lock to guard
2491				 * against concurrent vma expansions.
2492				 */
2493				spin_lock(&mm->page_table_lock);
2494				if (vma->vm_flags & VM_LOCKED)
2495					mm->locked_vm += grow;
2496				vm_stat_account(mm, vma->vm_flags, grow);
2497				anon_vma_interval_tree_pre_update_vma(vma);
2498				vma->vm_start = address;
2499				vma->vm_pgoff -= grow;
2500				anon_vma_interval_tree_post_update_vma(vma);
2501				vma_gap_update(vma);
2502				spin_unlock(&mm->page_table_lock);
2503
2504				perf_event_mmap(vma);
2505			}
2506		}
2507	}
2508	anon_vma_unlock_write(vma->anon_vma);
2509	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2510	validate_mm(mm);
2511	return error;
2512}
2513
2514/* enforced gap between the expanding stack and other mappings. */
2515unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2516
2517static int __init cmdline_parse_stack_guard_gap(char *p)
2518{
2519	unsigned long val;
2520	char *endptr;
2521
2522	val = simple_strtoul(p, &endptr, 10);
2523	if (!*endptr)
2524		stack_guard_gap = val << PAGE_SHIFT;
2525
2526	return 0;
2527}
2528__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2529
2530#ifdef CONFIG_STACK_GROWSUP
2531int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532{
2533	return expand_upwards(vma, address);
2534}
2535
2536struct vm_area_struct *
2537find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538{
2539	struct vm_area_struct *vma, *prev;
2540
2541	addr &= PAGE_MASK;
2542	vma = find_vma_prev(mm, addr, &prev);
2543	if (vma && (vma->vm_start <= addr))
2544		return vma;
2545	/* don't alter vm_end if the coredump is running */
2546	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2547		return NULL;
2548	if (prev->vm_flags & VM_LOCKED)
2549		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
 
2550	return prev;
2551}
2552#else
2553int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554{
2555	return expand_downwards(vma, address);
2556}
2557
2558struct vm_area_struct *
2559find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560{
2561	struct vm_area_struct *vma;
2562	unsigned long start;
2563
2564	addr &= PAGE_MASK;
2565	vma = find_vma(mm, addr);
2566	if (!vma)
2567		return NULL;
2568	if (vma->vm_start <= addr)
2569		return vma;
2570	if (!(vma->vm_flags & VM_GROWSDOWN))
2571		return NULL;
2572	/* don't alter vm_start if the coredump is running */
2573	if (!mmget_still_valid(mm))
2574		return NULL;
2575	start = vma->vm_start;
2576	if (expand_stack(vma, addr))
2577		return NULL;
2578	if (vma->vm_flags & VM_LOCKED)
2579		populate_vma_page_range(vma, addr, start, NULL);
 
2580	return vma;
2581}
2582#endif
2583
2584EXPORT_SYMBOL_GPL(find_extend_vma);
2585
2586/*
2587 * Ok - we have the memory areas we should free on the vma list,
2588 * so release them, and do the vma updates.
2589 *
2590 * Called with the mm semaphore held.
2591 */
2592static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2593{
2594	unsigned long nr_accounted = 0;
2595
2596	/* Update high watermark before we lower total_vm */
2597	update_hiwater_vm(mm);
2598	do {
2599		long nrpages = vma_pages(vma);
2600
2601		if (vma->vm_flags & VM_ACCOUNT)
2602			nr_accounted += nrpages;
2603		vm_stat_account(mm, vma->vm_flags, -nrpages);
2604		vma = remove_vma(vma);
2605	} while (vma);
2606	vm_unacct_memory(nr_accounted);
2607	validate_mm(mm);
2608}
2609
2610/*
2611 * Get rid of page table information in the indicated region.
2612 *
2613 * Called with the mm semaphore held.
2614 */
2615static void unmap_region(struct mm_struct *mm,
2616		struct vm_area_struct *vma, struct vm_area_struct *prev,
2617		unsigned long start, unsigned long end)
2618{
2619	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2620	struct mmu_gather tlb;
 
2621
2622	lru_add_drain();
2623	tlb_gather_mmu(&tlb, mm, start, end);
2624	update_hiwater_rss(mm);
2625	unmap_vmas(&tlb, vma, start, end);
 
2626	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2627				 next ? next->vm_start : USER_PGTABLES_CEILING);
2628	tlb_finish_mmu(&tlb, start, end);
2629}
2630
2631/*
2632 * Create a list of vma's touched by the unmap, removing them from the mm's
2633 * vma list as we go..
2634 */
2635static void
2636detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2637	struct vm_area_struct *prev, unsigned long end)
2638{
2639	struct vm_area_struct **insertion_point;
2640	struct vm_area_struct *tail_vma = NULL;
 
2641
2642	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2643	vma->vm_prev = NULL;
2644	do {
2645		vma_rb_erase(vma, &mm->mm_rb);
2646		mm->map_count--;
2647		tail_vma = vma;
2648		vma = vma->vm_next;
2649	} while (vma && vma->vm_start < end);
2650	*insertion_point = vma;
2651	if (vma) {
2652		vma->vm_prev = prev;
2653		vma_gap_update(vma);
2654	} else
2655		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2656	tail_vma->vm_next = NULL;
2657
2658	/* Kill the cache */
2659	vmacache_invalidate(mm);
 
 
 
2660}
2661
2662/*
2663 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2664 * has already been checked or doesn't make sense to fail.
2665 */
2666int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2667		unsigned long addr, int new_below)
2668{
 
2669	struct vm_area_struct *new;
2670	int err;
2671
2672	if (vma->vm_ops && vma->vm_ops->split) {
2673		err = vma->vm_ops->split(vma, addr);
2674		if (err)
2675			return err;
2676	}
2677
2678	new = vm_area_dup(vma);
2679	if (!new)
2680		return -ENOMEM;
 
 
 
 
 
2681
2682	if (new_below)
2683		new->vm_end = addr;
2684	else {
2685		new->vm_start = addr;
2686		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2687	}
2688
2689	err = vma_dup_policy(vma, new);
2690	if (err)
 
2691		goto out_free_vma;
 
 
2692
2693	err = anon_vma_clone(new, vma);
2694	if (err)
2695		goto out_free_mpol;
2696
2697	if (new->vm_file)
2698		get_file(new->vm_file);
 
 
 
2699
2700	if (new->vm_ops && new->vm_ops->open)
2701		new->vm_ops->open(new);
2702
2703	if (new_below)
2704		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2705			((addr - new->vm_start) >> PAGE_SHIFT), new);
2706	else
2707		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2708
2709	/* Success. */
2710	if (!err)
2711		return 0;
2712
2713	/* Clean everything up if vma_adjust failed. */
2714	if (new->vm_ops && new->vm_ops->close)
2715		new->vm_ops->close(new);
2716	if (new->vm_file)
 
 
2717		fput(new->vm_file);
 
2718	unlink_anon_vmas(new);
2719 out_free_mpol:
2720	mpol_put(vma_policy(new));
2721 out_free_vma:
2722	vm_area_free(new);
 
2723	return err;
2724}
2725
2726/*
2727 * Split a vma into two pieces at address 'addr', a new vma is allocated
2728 * either for the first part or the tail.
2729 */
2730int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731	      unsigned long addr, int new_below)
2732{
2733	if (mm->map_count >= sysctl_max_map_count)
2734		return -ENOMEM;
2735
2736	return __split_vma(mm, vma, addr, new_below);
2737}
2738
2739/* Munmap is split into 2 main parts -- this part which finds
2740 * what needs doing, and the areas themselves, which do the
2741 * work.  This now handles partial unmappings.
2742 * Jeremy Fitzhardinge <jeremy@goop.org>
2743 */
2744int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2745		struct list_head *uf, bool downgrade)
2746{
2747	unsigned long end;
2748	struct vm_area_struct *vma, *prev, *last;
2749
2750	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2751		return -EINVAL;
2752
2753	len = PAGE_ALIGN(len);
2754	end = start + len;
2755	if (len == 0)
2756		return -EINVAL;
2757
2758	/*
2759	 * arch_unmap() might do unmaps itself.  It must be called
2760	 * and finish any rbtree manipulation before this code
2761	 * runs and also starts to manipulate the rbtree.
2762	 */
2763	arch_unmap(mm, start, end);
2764
2765	/* Find the first overlapping VMA */
2766	vma = find_vma(mm, start);
2767	if (!vma)
2768		return 0;
2769	prev = vma->vm_prev;
2770	/* we have  start < vma->vm_end  */
2771
2772	/* if it doesn't overlap, we have nothing.. */
 
2773	if (vma->vm_start >= end)
2774		return 0;
2775
2776	/*
2777	 * If we need to split any vma, do it now to save pain later.
2778	 *
2779	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2780	 * unmapped vm_area_struct will remain in use: so lower split_vma
2781	 * places tmp vma above, and higher split_vma places tmp vma below.
2782	 */
2783	if (start > vma->vm_start) {
2784		int error;
2785
2786		/*
2787		 * Make sure that map_count on return from munmap() will
2788		 * not exceed its limit; but let map_count go just above
2789		 * its limit temporarily, to help free resources as expected.
2790		 */
2791		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2792			return -ENOMEM;
2793
2794		error = __split_vma(mm, vma, start, 0);
2795		if (error)
2796			return error;
2797		prev = vma;
2798	}
2799
2800	/* Does it split the last one? */
2801	last = find_vma(mm, end);
2802	if (last && end > last->vm_start) {
2803		int error = __split_vma(mm, last, end, 1);
2804		if (error)
2805			return error;
2806	}
2807	vma = prev ? prev->vm_next : mm->mmap;
2808
2809	if (unlikely(uf)) {
2810		/*
2811		 * If userfaultfd_unmap_prep returns an error the vmas
2812		 * will remain splitted, but userland will get a
2813		 * highly unexpected error anyway. This is no
2814		 * different than the case where the first of the two
2815		 * __split_vma fails, but we don't undo the first
2816		 * split, despite we could. This is unlikely enough
2817		 * failure that it's not worth optimizing it for.
2818		 */
2819		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2820		if (error)
2821			return error;
2822	}
2823
2824	/*
2825	 * unlock any mlock()ed ranges before detaching vmas
2826	 */
2827	if (mm->locked_vm) {
2828		struct vm_area_struct *tmp = vma;
2829		while (tmp && tmp->vm_start < end) {
2830			if (tmp->vm_flags & VM_LOCKED) {
2831				mm->locked_vm -= vma_pages(tmp);
2832				munlock_vma_pages_all(tmp);
2833			}
2834
2835			tmp = tmp->vm_next;
2836		}
2837	}
2838
2839	/* Detach vmas from rbtree */
 
 
2840	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2841
2842	if (downgrade)
2843		downgrade_write(&mm->mmap_sem);
2844
2845	unmap_region(mm, vma, prev, start, end);
2846
2847	/* Fix up all other VM information */
2848	remove_vma_list(mm, vma);
2849
2850	return downgrade ? 1 : 0;
2851}
2852
2853int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2854	      struct list_head *uf)
2855{
2856	return __do_munmap(mm, start, len, uf, false);
2857}
2858
2859static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2860{
2861	int ret;
2862	struct mm_struct *mm = current->mm;
2863	LIST_HEAD(uf);
2864
2865	if (down_write_killable(&mm->mmap_sem))
2866		return -EINTR;
2867
2868	ret = __do_munmap(mm, start, len, &uf, downgrade);
2869	/*
2870	 * Returning 1 indicates mmap_sem is downgraded.
2871	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2872	 * it to 0 before return.
2873	 */
2874	if (ret == 1) {
2875		up_read(&mm->mmap_sem);
2876		ret = 0;
2877	} else
2878		up_write(&mm->mmap_sem);
2879
2880	userfaultfd_unmap_complete(mm, &uf);
2881	return ret;
2882}
2883
2884int vm_munmap(unsigned long start, size_t len)
2885{
2886	return __vm_munmap(start, len, false);
2887}
2888EXPORT_SYMBOL(vm_munmap);
2889
2890SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2891{
2892	addr = untagged_addr(addr);
2893	profile_munmap(addr);
2894	return __vm_munmap(addr, len, true);
2895}
2896
2897
2898/*
2899 * Emulation of deprecated remap_file_pages() syscall.
2900 */
2901SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2902		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2903{
2904
2905	struct mm_struct *mm = current->mm;
2906	struct vm_area_struct *vma;
2907	unsigned long populate = 0;
2908	unsigned long ret = -EINVAL;
2909	struct file *file;
2910
2911	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2912		     current->comm, current->pid);
2913
2914	if (prot)
2915		return ret;
2916	start = start & PAGE_MASK;
2917	size = size & PAGE_MASK;
2918
2919	if (start + size <= start)
2920		return ret;
2921
2922	/* Does pgoff wrap? */
2923	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2924		return ret;
2925
2926	if (down_write_killable(&mm->mmap_sem))
2927		return -EINTR;
2928
2929	vma = find_vma(mm, start);
2930
2931	if (!vma || !(vma->vm_flags & VM_SHARED))
2932		goto out;
2933
2934	if (start < vma->vm_start)
2935		goto out;
2936
2937	if (start + size > vma->vm_end) {
2938		struct vm_area_struct *next;
2939
2940		for (next = vma->vm_next; next; next = next->vm_next) {
2941			/* hole between vmas ? */
2942			if (next->vm_start != next->vm_prev->vm_end)
2943				goto out;
2944
2945			if (next->vm_file != vma->vm_file)
2946				goto out;
2947
2948			if (next->vm_flags != vma->vm_flags)
2949				goto out;
2950
2951			if (start + size <= next->vm_end)
2952				break;
2953		}
2954
2955		if (!next)
2956			goto out;
2957	}
2958
2959	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2960	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2961	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2962
2963	flags &= MAP_NONBLOCK;
2964	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2965	if (vma->vm_flags & VM_LOCKED) {
2966		struct vm_area_struct *tmp;
2967		flags |= MAP_LOCKED;
2968
2969		/* drop PG_Mlocked flag for over-mapped range */
2970		for (tmp = vma; tmp->vm_start >= start + size;
2971				tmp = tmp->vm_next) {
2972			/*
2973			 * Split pmd and munlock page on the border
2974			 * of the range.
2975			 */
2976			vma_adjust_trans_huge(tmp, start, start + size, 0);
2977
2978			munlock_vma_pages_range(tmp,
2979					max(tmp->vm_start, start),
2980					min(tmp->vm_end, start + size));
2981		}
2982	}
2983
2984	file = get_file(vma->vm_file);
2985	ret = do_mmap_pgoff(vma->vm_file, start, size,
2986			prot, flags, pgoff, &populate, NULL);
2987	fput(file);
2988out:
2989	up_write(&mm->mmap_sem);
2990	if (populate)
2991		mm_populate(ret, populate);
2992	if (!IS_ERR_VALUE(ret))
2993		ret = 0;
2994	return ret;
2995}
2996
2997/*
2998 *  this is really a simplified "do_mmap".  it only handles
2999 *  anonymous maps.  eventually we may be able to do some
3000 *  brk-specific accounting here.
3001 */
3002static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003{
3004	struct mm_struct *mm = current->mm;
3005	struct vm_area_struct *vma, *prev;
3006	struct rb_node **rb_link, *rb_parent;
 
3007	pgoff_t pgoff = addr >> PAGE_SHIFT;
3008	int error;
3009
3010	/* Until we need other flags, refuse anything except VM_EXEC. */
3011	if ((flags & (~VM_EXEC)) != 0)
3012		return -EINVAL;
3013	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
3014
3015	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016	if (offset_in_page(error))
3017		return error;
3018
3019	error = mlock_future_check(mm, mm->def_flags, len);
3020	if (error)
3021		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022
3023	/*
3024	 * Clear old maps.  this also does some error checking for us
3025	 */
3026	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027			      &rb_parent)) {
3028		if (do_munmap(mm, addr, len, uf))
 
3029			return -ENOMEM;
 
3030	}
3031
3032	/* Check against address space limits *after* clearing old maps... */
3033	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034		return -ENOMEM;
3035
3036	if (mm->map_count > sysctl_max_map_count)
3037		return -ENOMEM;
3038
3039	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040		return -ENOMEM;
3041
3042	/* Can we just expand an old private anonymous mapping? */
3043	vma = vma_merge(mm, prev, addr, addr + len, flags,
3044			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045	if (vma)
3046		goto out;
3047
3048	/*
3049	 * create a vma struct for an anonymous mapping
3050	 */
3051	vma = vm_area_alloc(mm);
3052	if (!vma) {
3053		vm_unacct_memory(len >> PAGE_SHIFT);
3054		return -ENOMEM;
3055	}
3056
3057	vma_set_anonymous(vma);
 
3058	vma->vm_start = addr;
3059	vma->vm_end = addr + len;
3060	vma->vm_pgoff = pgoff;
3061	vma->vm_flags = flags;
3062	vma->vm_page_prot = vm_get_page_prot(flags);
3063	vma_link(mm, vma, prev, rb_link, rb_parent);
3064out:
3065	perf_event_mmap(vma);
3066	mm->total_vm += len >> PAGE_SHIFT;
3067	mm->data_vm += len >> PAGE_SHIFT;
3068	if (flags & VM_LOCKED)
3069		mm->locked_vm += (len >> PAGE_SHIFT);
3070	vma->vm_flags |= VM_SOFTDIRTY;
3071	return 0;
3072}
3073
3074int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075{
3076	struct mm_struct *mm = current->mm;
3077	unsigned long len;
3078	int ret;
3079	bool populate;
3080	LIST_HEAD(uf);
3081
3082	len = PAGE_ALIGN(request);
3083	if (len < request)
3084		return -ENOMEM;
3085	if (!len)
3086		return 0;
3087
3088	if (down_write_killable(&mm->mmap_sem))
3089		return -EINTR;
3090
3091	ret = do_brk_flags(addr, len, flags, &uf);
3092	populate = ((mm->def_flags & VM_LOCKED) != 0);
3093	up_write(&mm->mmap_sem);
3094	userfaultfd_unmap_complete(mm, &uf);
3095	if (populate && !ret)
3096		mm_populate(addr, len);
3097	return ret;
3098}
3099EXPORT_SYMBOL(vm_brk_flags);
3100
3101int vm_brk(unsigned long addr, unsigned long len)
3102{
3103	return vm_brk_flags(addr, len, 0);
3104}
3105EXPORT_SYMBOL(vm_brk);
3106
3107/* Release all mmaps. */
3108void exit_mmap(struct mm_struct *mm)
3109{
3110	struct mmu_gather tlb;
3111	struct vm_area_struct *vma;
3112	unsigned long nr_accounted = 0;
 
3113
3114	/* mm's last user has gone, and its about to be pulled down */
3115	mmu_notifier_release(mm);
3116
3117	if (unlikely(mm_is_oom_victim(mm))) {
3118		/*
3119		 * Manually reap the mm to free as much memory as possible.
3120		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121		 * this mm from further consideration.  Taking mm->mmap_sem for
3122		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123		 * reaper will not run on this mm again after mmap_sem is
3124		 * dropped.
3125		 *
3126		 * Nothing can be holding mm->mmap_sem here and the above call
3127		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128		 * __oom_reap_task_mm() will not block.
3129		 *
3130		 * This needs to be done before calling munlock_vma_pages_all(),
3131		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132		 * reliably test it.
3133		 */
3134		(void)__oom_reap_task_mm(mm);
3135
3136		set_bit(MMF_OOM_SKIP, &mm->flags);
3137		down_write(&mm->mmap_sem);
3138		up_write(&mm->mmap_sem);
3139	}
3140
3141	if (mm->locked_vm) {
3142		vma = mm->mmap;
3143		while (vma) {
3144			if (vma->vm_flags & VM_LOCKED)
3145				munlock_vma_pages_all(vma);
3146			vma = vma->vm_next;
3147		}
3148	}
3149
3150	arch_exit_mmap(mm);
3151
3152	vma = mm->mmap;
3153	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3154		return;
3155
3156	lru_add_drain();
3157	flush_cache_mm(mm);
3158	tlb_gather_mmu(&tlb, mm, 0, -1);
3159	/* update_hiwater_rss(mm) here? but nobody should be looking */
3160	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3161	unmap_vmas(&tlb, vma, 0, -1);
3162	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163	tlb_finish_mmu(&tlb, 0, -1);
 
 
3164
3165	/*
3166	 * Walk the list again, actually closing and freeing it,
3167	 * with preemption enabled, without holding any MM locks.
3168	 */
3169	while (vma) {
3170		if (vma->vm_flags & VM_ACCOUNT)
3171			nr_accounted += vma_pages(vma);
3172		vma = remove_vma(vma);
3173	}
3174	vm_unacct_memory(nr_accounted);
3175}
3176
3177/* Insert vm structure into process list sorted by address
3178 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3179 * then i_mmap_rwsem is taken here.
3180 */
3181int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182{
3183	struct vm_area_struct *prev;
3184	struct rb_node **rb_link, *rb_parent;
3185
3186	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187			   &prev, &rb_link, &rb_parent))
3188		return -ENOMEM;
3189	if ((vma->vm_flags & VM_ACCOUNT) &&
3190	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191		return -ENOMEM;
3192
3193	/*
3194	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195	 * until its first write fault, when page's anon_vma and index
3196	 * are set.  But now set the vm_pgoff it will almost certainly
3197	 * end up with (unless mremap moves it elsewhere before that
3198	 * first wfault), so /proc/pid/maps tells a consistent story.
3199	 *
3200	 * By setting it to reflect the virtual start address of the
3201	 * vma, merges and splits can happen in a seamless way, just
3202	 * using the existing file pgoff checks and manipulations.
3203	 * Similarly in do_mmap_pgoff and in do_brk.
3204	 */
3205	if (vma_is_anonymous(vma)) {
3206		BUG_ON(vma->anon_vma);
3207		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208	}
3209
 
 
 
 
 
3210	vma_link(mm, vma, prev, rb_link, rb_parent);
3211	return 0;
3212}
3213
3214/*
3215 * Copy the vma structure to a new location in the same mm,
3216 * prior to moving page table entries, to effect an mremap move.
3217 */
3218struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219	unsigned long addr, unsigned long len, pgoff_t pgoff,
3220	bool *need_rmap_locks)
3221{
3222	struct vm_area_struct *vma = *vmap;
3223	unsigned long vma_start = vma->vm_start;
3224	struct mm_struct *mm = vma->vm_mm;
3225	struct vm_area_struct *new_vma, *prev;
3226	struct rb_node **rb_link, *rb_parent;
3227	bool faulted_in_anon_vma = true;
3228
3229	/*
3230	 * If anonymous vma has not yet been faulted, update new pgoff
3231	 * to match new location, to increase its chance of merging.
3232	 */
3233	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234		pgoff = addr >> PAGE_SHIFT;
3235		faulted_in_anon_vma = false;
3236	}
3237
3238	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3239		return NULL;	/* should never get here */
3240	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242			    vma->vm_userfaultfd_ctx);
3243	if (new_vma) {
3244		/*
3245		 * Source vma may have been merged into new_vma
3246		 */
3247		if (unlikely(vma_start >= new_vma->vm_start &&
3248			     vma_start < new_vma->vm_end)) {
3249			/*
3250			 * The only way we can get a vma_merge with
3251			 * self during an mremap is if the vma hasn't
3252			 * been faulted in yet and we were allowed to
3253			 * reset the dst vma->vm_pgoff to the
3254			 * destination address of the mremap to allow
3255			 * the merge to happen. mremap must change the
3256			 * vm_pgoff linearity between src and dst vmas
3257			 * (in turn preventing a vma_merge) to be
3258			 * safe. It is only safe to keep the vm_pgoff
3259			 * linear if there are no pages mapped yet.
3260			 */
3261			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262			*vmap = vma = new_vma;
 
 
 
 
 
 
 
 
 
3263		}
3264		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265	} else {
3266		new_vma = vm_area_dup(vma);
3267		if (!new_vma)
3268			goto out;
3269		new_vma->vm_start = addr;
3270		new_vma->vm_end = addr + len;
3271		new_vma->vm_pgoff = pgoff;
3272		if (vma_dup_policy(vma, new_vma))
3273			goto out_free_vma;
3274		if (anon_vma_clone(new_vma, vma))
3275			goto out_free_mempol;
3276		if (new_vma->vm_file)
3277			get_file(new_vma->vm_file);
3278		if (new_vma->vm_ops && new_vma->vm_ops->open)
3279			new_vma->vm_ops->open(new_vma);
3280		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3281		*need_rmap_locks = false;
3282	}
3283	return new_vma;
3284
3285out_free_mempol:
3286	mpol_put(vma_policy(new_vma));
3287out_free_vma:
3288	vm_area_free(new_vma);
3289out:
3290	return NULL;
3291}
3292
3293/*
3294 * Return true if the calling process may expand its vm space by the passed
3295 * number of pages
3296 */
3297bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298{
3299	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300		return false;
3301
3302	if (is_data_mapping(flags) &&
3303	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304		/* Workaround for Valgrind */
3305		if (rlimit(RLIMIT_DATA) == 0 &&
3306		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307			return true;
3308
3309		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310			     current->comm, current->pid,
3311			     (mm->data_vm + npages) << PAGE_SHIFT,
3312			     rlimit(RLIMIT_DATA),
3313			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314
3315		if (!ignore_rlimit_data)
3316			return false;
3317	}
3318
3319	return true;
3320}
3321
3322void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323{
3324	mm->total_vm += npages;
3325
3326	if (is_exec_mapping(flags))
3327		mm->exec_vm += npages;
3328	else if (is_stack_mapping(flags))
3329		mm->stack_vm += npages;
3330	else if (is_data_mapping(flags))
3331		mm->data_vm += npages;
3332}
3333
3334static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3335
3336/*
3337 * Having a close hook prevents vma merging regardless of flags.
3338 */
3339static void special_mapping_close(struct vm_area_struct *vma)
3340{
3341}
3342
3343static const char *special_mapping_name(struct vm_area_struct *vma)
3344{
3345	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346}
3347
3348static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349{
3350	struct vm_special_mapping *sm = new_vma->vm_private_data;
3351
3352	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353		return -EFAULT;
3354
3355	if (sm->mremap)
3356		return sm->mremap(sm, new_vma);
3357
3358	return 0;
3359}
3360
3361static const struct vm_operations_struct special_mapping_vmops = {
3362	.close = special_mapping_close,
3363	.fault = special_mapping_fault,
3364	.mremap = special_mapping_mremap,
3365	.name = special_mapping_name,
3366};
3367
3368static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369	.close = special_mapping_close,
3370	.fault = special_mapping_fault,
3371};
3372
3373static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
 
3374{
3375	struct vm_area_struct *vma = vmf->vma;
3376	pgoff_t pgoff;
3377	struct page **pages;
3378
3379	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380		pages = vma->vm_private_data;
3381	} else {
3382		struct vm_special_mapping *sm = vma->vm_private_data;
 
 
 
3383
3384		if (sm->fault)
3385			return sm->fault(sm, vmf->vma, vmf);
3386
3387		pages = sm->pages;
3388	}
3389
3390	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391		pgoff--;
3392
3393	if (*pages) {
3394		struct page *page = *pages;
3395		get_page(page);
3396		vmf->page = page;
3397		return 0;
3398	}
3399
3400	return VM_FAULT_SIGBUS;
3401}
3402
3403static struct vm_area_struct *__install_special_mapping(
3404	struct mm_struct *mm,
3405	unsigned long addr, unsigned long len,
3406	unsigned long vm_flags, void *priv,
3407	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408{
3409	int ret;
3410	struct vm_area_struct *vma;
3411
3412	vma = vm_area_alloc(mm);
3413	if (unlikely(vma == NULL))
3414		return ERR_PTR(-ENOMEM);
3415
 
 
3416	vma->vm_start = addr;
3417	vma->vm_end = addr + len;
3418
3419	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3420	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421
3422	vma->vm_ops = ops;
3423	vma->vm_private_data = priv;
 
 
 
 
3424
3425	ret = insert_vm_struct(mm, vma);
3426	if (ret)
3427		goto out;
3428
3429	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430
3431	perf_event_mmap(vma);
3432
3433	return vma;
3434
3435out:
3436	vm_area_free(vma);
3437	return ERR_PTR(ret);
3438}
3439
3440bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441	const struct vm_special_mapping *sm)
3442{
3443	return vma->vm_private_data == sm &&
3444		(vma->vm_ops == &special_mapping_vmops ||
3445		 vma->vm_ops == &legacy_special_mapping_vmops);
3446}
3447
3448/*
3449 * Called with mm->mmap_sem held for writing.
3450 * Insert a new vma covering the given region, with the given flags.
3451 * Its pages are supplied by the given array of struct page *.
3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453 * The region past the last page supplied will always produce SIGBUS.
3454 * The array pointer and the pages it points to are assumed to stay alive
3455 * for as long as this mapping might exist.
3456 */
3457struct vm_area_struct *_install_special_mapping(
3458	struct mm_struct *mm,
3459	unsigned long addr, unsigned long len,
3460	unsigned long vm_flags, const struct vm_special_mapping *spec)
3461{
3462	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463					&special_mapping_vmops);
3464}
3465
3466int install_special_mapping(struct mm_struct *mm,
3467			    unsigned long addr, unsigned long len,
3468			    unsigned long vm_flags, struct page **pages)
3469{
3470	struct vm_area_struct *vma = __install_special_mapping(
3471		mm, addr, len, vm_flags, (void *)pages,
3472		&legacy_special_mapping_vmops);
3473
3474	return PTR_ERR_OR_ZERO(vma);
3475}
3476
3477static DEFINE_MUTEX(mm_all_locks_mutex);
3478
3479static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480{
3481	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482		/*
3483		 * The LSB of head.next can't change from under us
3484		 * because we hold the mm_all_locks_mutex.
3485		 */
3486		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487		/*
3488		 * We can safely modify head.next after taking the
3489		 * anon_vma->root->rwsem. If some other vma in this mm shares
3490		 * the same anon_vma we won't take it again.
3491		 *
3492		 * No need of atomic instructions here, head.next
3493		 * can't change from under us thanks to the
3494		 * anon_vma->root->rwsem.
3495		 */
3496		if (__test_and_set_bit(0, (unsigned long *)
3497				       &anon_vma->root->rb_root.rb_root.rb_node))
3498			BUG();
3499	}
3500}
3501
3502static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503{
3504	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505		/*
3506		 * AS_MM_ALL_LOCKS can't change from under us because
3507		 * we hold the mm_all_locks_mutex.
3508		 *
3509		 * Operations on ->flags have to be atomic because
3510		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511		 * mm_all_locks_mutex, there may be other cpus
3512		 * changing other bitflags in parallel to us.
3513		 */
3514		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515			BUG();
3516		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517	}
3518}
3519
3520/*
3521 * This operation locks against the VM for all pte/vma/mm related
3522 * operations that could ever happen on a certain mm. This includes
3523 * vmtruncate, try_to_unmap, and all page faults.
3524 *
3525 * The caller must take the mmap_sem in write mode before calling
3526 * mm_take_all_locks(). The caller isn't allowed to release the
3527 * mmap_sem until mm_drop_all_locks() returns.
3528 *
3529 * mmap_sem in write mode is required in order to block all operations
3530 * that could modify pagetables and free pages without need of
3531 * altering the vma layout. It's also needed in write mode to avoid new
 
3532 * anon_vmas to be associated with existing vmas.
3533 *
3534 * A single task can't take more than one mm_take_all_locks() in a row
3535 * or it would deadlock.
3536 *
3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538 * mapping->flags avoid to take the same lock twice, if more than one
3539 * vma in this mm is backed by the same anon_vma or address_space.
3540 *
3541 * We take locks in following order, accordingly to comment at beginning
3542 * of mm/rmap.c:
3543 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544 *     hugetlb mapping);
3545 *   - all i_mmap_rwsem locks;
3546 *   - all anon_vma->rwseml
3547 *
3548 * We can take all locks within these types randomly because the VM code
3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550 * mm_all_locks_mutex.
3551 *
3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553 * that may have to take thousand of locks.
3554 *
3555 * mm_take_all_locks() can fail if it's interrupted by signals.
3556 */
3557int mm_take_all_locks(struct mm_struct *mm)
3558{
3559	struct vm_area_struct *vma;
3560	struct anon_vma_chain *avc;
 
3561
3562	BUG_ON(down_read_trylock(&mm->mmap_sem));
3563
3564	mutex_lock(&mm_all_locks_mutex);
3565
3566	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567		if (signal_pending(current))
3568			goto out_unlock;
3569		if (vma->vm_file && vma->vm_file->f_mapping &&
3570				is_vm_hugetlb_page(vma))
3571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572	}
3573
3574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575		if (signal_pending(current))
3576			goto out_unlock;
3577		if (vma->vm_file && vma->vm_file->f_mapping &&
3578				!is_vm_hugetlb_page(vma))
3579			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580	}
3581
3582	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583		if (signal_pending(current))
3584			goto out_unlock;
3585		if (vma->anon_vma)
3586			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587				vm_lock_anon_vma(mm, avc->anon_vma);
3588	}
3589
3590	return 0;
3591
3592out_unlock:
3593	mm_drop_all_locks(mm);
3594	return -EINTR;
 
 
3595}
3596
3597static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598{
3599	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600		/*
3601		 * The LSB of head.next can't change to 0 from under
3602		 * us because we hold the mm_all_locks_mutex.
3603		 *
3604		 * We must however clear the bitflag before unlocking
3605		 * the vma so the users using the anon_vma->rb_root will
3606		 * never see our bitflag.
3607		 *
3608		 * No need of atomic instructions here, head.next
3609		 * can't change from under us until we release the
3610		 * anon_vma->root->rwsem.
3611		 */
3612		if (!__test_and_clear_bit(0, (unsigned long *)
3613					  &anon_vma->root->rb_root.rb_root.rb_node))
3614			BUG();
3615		anon_vma_unlock_write(anon_vma);
3616	}
3617}
3618
3619static void vm_unlock_mapping(struct address_space *mapping)
3620{
3621	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622		/*
3623		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624		 * because we hold the mm_all_locks_mutex.
3625		 */
3626		i_mmap_unlock_write(mapping);
3627		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628					&mapping->flags))
3629			BUG();
3630	}
3631}
3632
3633/*
3634 * The mmap_sem cannot be released by the caller until
3635 * mm_drop_all_locks() returns.
3636 */
3637void mm_drop_all_locks(struct mm_struct *mm)
3638{
3639	struct vm_area_struct *vma;
3640	struct anon_vma_chain *avc;
3641
3642	BUG_ON(down_read_trylock(&mm->mmap_sem));
3643	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644
3645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646		if (vma->anon_vma)
3647			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648				vm_unlock_anon_vma(avc->anon_vma);
3649		if (vma->vm_file && vma->vm_file->f_mapping)
3650			vm_unlock_mapping(vma->vm_file->f_mapping);
3651	}
3652
3653	mutex_unlock(&mm_all_locks_mutex);
3654}
3655
3656/*
3657 * initialise the percpu counter for VM
3658 */
3659void __init mmap_init(void)
3660{
3661	int ret;
3662
3663	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664	VM_BUG_ON(ret);
3665}
3666
3667/*
3668 * Initialise sysctl_user_reserve_kbytes.
3669 *
3670 * This is intended to prevent a user from starting a single memory hogging
3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672 * mode.
3673 *
3674 * The default value is min(3% of free memory, 128MB)
3675 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676 */
3677static int init_user_reserve(void)
3678{
3679	unsigned long free_kbytes;
3680
3681	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684	return 0;
3685}
3686subsys_initcall(init_user_reserve);
3687
3688/*
3689 * Initialise sysctl_admin_reserve_kbytes.
3690 *
3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692 * to log in and kill a memory hogging process.
3693 *
3694 * Systems with more than 256MB will reserve 8MB, enough to recover
3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696 * only reserve 3% of free pages by default.
3697 */
3698static int init_admin_reserve(void)
3699{
3700	unsigned long free_kbytes;
3701
3702	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703
3704	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705	return 0;
3706}
3707subsys_initcall(init_admin_reserve);
3708
3709/*
3710 * Reinititalise user and admin reserves if memory is added or removed.
3711 *
3712 * The default user reserve max is 128MB, and the default max for the
3713 * admin reserve is 8MB. These are usually, but not always, enough to
3714 * enable recovery from a memory hogging process using login/sshd, a shell,
3715 * and tools like top. It may make sense to increase or even disable the
3716 * reserve depending on the existence of swap or variations in the recovery
3717 * tools. So, the admin may have changed them.
3718 *
3719 * If memory is added and the reserves have been eliminated or increased above
3720 * the default max, then we'll trust the admin.
3721 *
3722 * If memory is removed and there isn't enough free memory, then we
3723 * need to reset the reserves.
3724 *
3725 * Otherwise keep the reserve set by the admin.
3726 */
3727static int reserve_mem_notifier(struct notifier_block *nb,
3728			     unsigned long action, void *data)
3729{
3730	unsigned long tmp, free_kbytes;
3731
3732	switch (action) {
3733	case MEM_ONLINE:
3734		/* Default max is 128MB. Leave alone if modified by operator. */
3735		tmp = sysctl_user_reserve_kbytes;
3736		if (0 < tmp && tmp < (1UL << 17))
3737			init_user_reserve();
3738
3739		/* Default max is 8MB.  Leave alone if modified by operator. */
3740		tmp = sysctl_admin_reserve_kbytes;
3741		if (0 < tmp && tmp < (1UL << 13))
3742			init_admin_reserve();
3743
3744		break;
3745	case MEM_OFFLINE:
3746		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747
3748		if (sysctl_user_reserve_kbytes > free_kbytes) {
3749			init_user_reserve();
3750			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751				sysctl_user_reserve_kbytes);
3752		}
3753
3754		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755			init_admin_reserve();
3756			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757				sysctl_admin_reserve_kbytes);
3758		}
3759		break;
3760	default:
3761		break;
3762	}
3763	return NOTIFY_OK;
3764}
3765
3766static struct notifier_block reserve_mem_nb = {
3767	.notifier_call = reserve_mem_notifier,
3768};
3769
3770static int __meminit init_reserve_notifier(void)
3771{
3772	if (register_hotmemory_notifier(&reserve_mem_nb))
3773		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774
3775	return 0;
3776}
3777subsys_initcall(init_reserve_notifier);