Loading...
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29#include <linux/mmu_notifier.h>
30#include <linux/perf_event.h>
31#include <linux/audit.h>
32#include <linux/khugepaged.h>
33
34#include <asm/uaccess.h>
35#include <asm/cacheflush.h>
36#include <asm/tlb.h>
37#include <asm/mmu_context.h>
38
39#include "internal.h"
40
41#ifndef arch_mmap_check
42#define arch_mmap_check(addr, len, flags) (0)
43#endif
44
45#ifndef arch_rebalance_pgtables
46#define arch_rebalance_pgtables(addr, len) (addr)
47#endif
48
49static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
52
53/*
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
56 */
57#undef DEBUG_MM_RB
58
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90/*
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
93 */
94struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96/*
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
100 *
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
103 *
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
106 *
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108 *
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
111 */
112int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113{
114 unsigned long free, allowed;
115
116 vm_acct_memory(pages);
117
118 /*
119 * Sometimes we want to use more memory than we have
120 */
121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 return 0;
123
124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 free = global_page_state(NR_FREE_PAGES);
126 free += global_page_state(NR_FILE_PAGES);
127
128 /*
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
133 */
134 free -= global_page_state(NR_SHMEM);
135
136 free += nr_swap_pages;
137
138 /*
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
143 */
144 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146 /*
147 * Leave reserved pages. The pages are not for anonymous pages.
148 */
149 if (free <= totalreserve_pages)
150 goto error;
151 else
152 free -= totalreserve_pages;
153
154 /*
155 * Leave the last 3% for root
156 */
157 if (!cap_sys_admin)
158 free -= free / 32;
159
160 if (free > pages)
161 return 0;
162
163 goto error;
164 }
165
166 allowed = (totalram_pages - hugetlb_total_pages())
167 * sysctl_overcommit_ratio / 100;
168 /*
169 * Leave the last 3% for root
170 */
171 if (!cap_sys_admin)
172 allowed -= allowed / 32;
173 allowed += total_swap_pages;
174
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
177 if (mm)
178 allowed -= mm->total_vm / 32;
179
180 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 return 0;
182error:
183 vm_unacct_memory(pages);
184
185 return -ENOMEM;
186}
187
188/*
189 * Requires inode->i_mapping->i_mmap_mutex
190 */
191static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 struct file *file, struct address_space *mapping)
193{
194 if (vma->vm_flags & VM_DENYWRITE)
195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 if (vma->vm_flags & VM_SHARED)
197 mapping->i_mmap_writable--;
198
199 flush_dcache_mmap_lock(mapping);
200 if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 list_del_init(&vma->shared.vm_set.list);
202 else
203 vma_prio_tree_remove(vma, &mapping->i_mmap);
204 flush_dcache_mmap_unlock(mapping);
205}
206
207/*
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
210 */
211void unlink_file_vma(struct vm_area_struct *vma)
212{
213 struct file *file = vma->vm_file;
214
215 if (file) {
216 struct address_space *mapping = file->f_mapping;
217 mutex_lock(&mapping->i_mmap_mutex);
218 __remove_shared_vm_struct(vma, file, mapping);
219 mutex_unlock(&mapping->i_mmap_mutex);
220 }
221}
222
223/*
224 * Close a vm structure and free it, returning the next.
225 */
226static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227{
228 struct vm_area_struct *next = vma->vm_next;
229
230 might_sleep();
231 if (vma->vm_ops && vma->vm_ops->close)
232 vma->vm_ops->close(vma);
233 if (vma->vm_file) {
234 fput(vma->vm_file);
235 if (vma->vm_flags & VM_EXECUTABLE)
236 removed_exe_file_vma(vma->vm_mm);
237 }
238 mpol_put(vma_policy(vma));
239 kmem_cache_free(vm_area_cachep, vma);
240 return next;
241}
242
243SYSCALL_DEFINE1(brk, unsigned long, brk)
244{
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
249
250 down_write(&mm->mmap_sem);
251
252#ifdef CONFIG_COMPAT_BRK
253 /*
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
257 */
258 if (current->brk_randomized)
259 min_brk = mm->start_brk;
260 else
261 min_brk = mm->end_data;
262#else
263 min_brk = mm->start_brk;
264#endif
265 if (brk < min_brk)
266 goto out;
267
268 /*
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
273 */
274 rlim = rlimit(RLIMIT_DATA);
275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 (mm->end_data - mm->start_data) > rlim)
277 goto out;
278
279 newbrk = PAGE_ALIGN(brk);
280 oldbrk = PAGE_ALIGN(mm->brk);
281 if (oldbrk == newbrk)
282 goto set_brk;
283
284 /* Always allow shrinking brk. */
285 if (brk <= mm->brk) {
286 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 goto set_brk;
288 goto out;
289 }
290
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 goto out;
294
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 goto out;
298set_brk:
299 mm->brk = brk;
300out:
301 retval = mm->brk;
302 up_write(&mm->mmap_sem);
303 return retval;
304}
305
306#ifdef DEBUG_MM_RB
307static int browse_rb(struct rb_root *root)
308{
309 int i = 0, j;
310 struct rb_node *nd, *pn = NULL;
311 unsigned long prev = 0, pend = 0;
312
313 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 struct vm_area_struct *vma;
315 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 if (vma->vm_start < prev)
317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 if (vma->vm_start < pend)
319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end)
321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 i++;
323 pn = nd;
324 prev = vma->vm_start;
325 pend = vma->vm_end;
326 }
327 j = 0;
328 for (nd = pn; nd; nd = rb_prev(nd)) {
329 j++;
330 }
331 if (i != j)
332 printk("backwards %d, forwards %d\n", j, i), i = 0;
333 return i;
334}
335
336void validate_mm(struct mm_struct *mm)
337{
338 int bug = 0;
339 int i = 0;
340 struct vm_area_struct *tmp = mm->mmap;
341 while (tmp) {
342 tmp = tmp->vm_next;
343 i++;
344 }
345 if (i != mm->map_count)
346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 i = browse_rb(&mm->mm_rb);
348 if (i != mm->map_count)
349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 BUG_ON(bug);
351}
352#else
353#define validate_mm(mm) do { } while (0)
354#endif
355
356static struct vm_area_struct *
357find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 struct rb_node ** rb_parent)
360{
361 struct vm_area_struct * vma;
362 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364 __rb_link = &mm->mm_rb.rb_node;
365 rb_prev = __rb_parent = NULL;
366 vma = NULL;
367
368 while (*__rb_link) {
369 struct vm_area_struct *vma_tmp;
370
371 __rb_parent = *__rb_link;
372 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374 if (vma_tmp->vm_end > addr) {
375 vma = vma_tmp;
376 if (vma_tmp->vm_start <= addr)
377 break;
378 __rb_link = &__rb_parent->rb_left;
379 } else {
380 rb_prev = __rb_parent;
381 __rb_link = &__rb_parent->rb_right;
382 }
383 }
384
385 *pprev = NULL;
386 if (rb_prev)
387 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 *rb_link = __rb_link;
389 *rb_parent = __rb_parent;
390 return vma;
391}
392
393void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct rb_node **rb_link, struct rb_node *rb_parent)
395{
396 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398}
399
400static void __vma_link_file(struct vm_area_struct *vma)
401{
402 struct file *file;
403
404 file = vma->vm_file;
405 if (file) {
406 struct address_space *mapping = file->f_mapping;
407
408 if (vma->vm_flags & VM_DENYWRITE)
409 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 if (vma->vm_flags & VM_SHARED)
411 mapping->i_mmap_writable++;
412
413 flush_dcache_mmap_lock(mapping);
414 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 else
417 vma_prio_tree_insert(vma, &mapping->i_mmap);
418 flush_dcache_mmap_unlock(mapping);
419 }
420}
421
422static void
423__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 struct vm_area_struct *prev, struct rb_node **rb_link,
425 struct rb_node *rb_parent)
426{
427 __vma_link_list(mm, vma, prev, rb_parent);
428 __vma_link_rb(mm, vma, rb_link, rb_parent);
429}
430
431static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 struct vm_area_struct *prev, struct rb_node **rb_link,
433 struct rb_node *rb_parent)
434{
435 struct address_space *mapping = NULL;
436
437 if (vma->vm_file)
438 mapping = vma->vm_file->f_mapping;
439
440 if (mapping)
441 mutex_lock(&mapping->i_mmap_mutex);
442
443 __vma_link(mm, vma, prev, rb_link, rb_parent);
444 __vma_link_file(vma);
445
446 if (mapping)
447 mutex_unlock(&mapping->i_mmap_mutex);
448
449 mm->map_count++;
450 validate_mm(mm);
451}
452
453/*
454 * Helper for vma_adjust in the split_vma insert case:
455 * insert vm structure into list and rbtree and anon_vma,
456 * but it has already been inserted into prio_tree earlier.
457 */
458static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459{
460 struct vm_area_struct *__vma, *prev;
461 struct rb_node **rb_link, *rb_parent;
462
463 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465 __vma_link(mm, vma, prev, rb_link, rb_parent);
466 mm->map_count++;
467}
468
469static inline void
470__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471 struct vm_area_struct *prev)
472{
473 struct vm_area_struct *next = vma->vm_next;
474
475 prev->vm_next = next;
476 if (next)
477 next->vm_prev = prev;
478 rb_erase(&vma->vm_rb, &mm->mm_rb);
479 if (mm->mmap_cache == vma)
480 mm->mmap_cache = prev;
481}
482
483/*
484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485 * is already present in an i_mmap tree without adjusting the tree.
486 * The following helper function should be used when such adjustments
487 * are necessary. The "insert" vma (if any) is to be inserted
488 * before we drop the necessary locks.
489 */
490int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492{
493 struct mm_struct *mm = vma->vm_mm;
494 struct vm_area_struct *next = vma->vm_next;
495 struct vm_area_struct *importer = NULL;
496 struct address_space *mapping = NULL;
497 struct prio_tree_root *root = NULL;
498 struct anon_vma *anon_vma = NULL;
499 struct file *file = vma->vm_file;
500 long adjust_next = 0;
501 int remove_next = 0;
502
503 if (next && !insert) {
504 struct vm_area_struct *exporter = NULL;
505
506 if (end >= next->vm_end) {
507 /*
508 * vma expands, overlapping all the next, and
509 * perhaps the one after too (mprotect case 6).
510 */
511again: remove_next = 1 + (end > next->vm_end);
512 end = next->vm_end;
513 exporter = next;
514 importer = vma;
515 } else if (end > next->vm_start) {
516 /*
517 * vma expands, overlapping part of the next:
518 * mprotect case 5 shifting the boundary up.
519 */
520 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521 exporter = next;
522 importer = vma;
523 } else if (end < vma->vm_end) {
524 /*
525 * vma shrinks, and !insert tells it's not
526 * split_vma inserting another: so it must be
527 * mprotect case 4 shifting the boundary down.
528 */
529 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530 exporter = vma;
531 importer = next;
532 }
533
534 /*
535 * Easily overlooked: when mprotect shifts the boundary,
536 * make sure the expanding vma has anon_vma set if the
537 * shrinking vma had, to cover any anon pages imported.
538 */
539 if (exporter && exporter->anon_vma && !importer->anon_vma) {
540 if (anon_vma_clone(importer, exporter))
541 return -ENOMEM;
542 importer->anon_vma = exporter->anon_vma;
543 }
544 }
545
546 if (file) {
547 mapping = file->f_mapping;
548 if (!(vma->vm_flags & VM_NONLINEAR))
549 root = &mapping->i_mmap;
550 mutex_lock(&mapping->i_mmap_mutex);
551 if (insert) {
552 /*
553 * Put into prio_tree now, so instantiated pages
554 * are visible to arm/parisc __flush_dcache_page
555 * throughout; but we cannot insert into address
556 * space until vma start or end is updated.
557 */
558 __vma_link_file(insert);
559 }
560 }
561
562 vma_adjust_trans_huge(vma, start, end, adjust_next);
563
564 /*
565 * When changing only vma->vm_end, we don't really need anon_vma
566 * lock. This is a fairly rare case by itself, but the anon_vma
567 * lock may be shared between many sibling processes. Skipping
568 * the lock for brk adjustments makes a difference sometimes.
569 */
570 if (vma->anon_vma && (importer || start != vma->vm_start)) {
571 anon_vma = vma->anon_vma;
572 anon_vma_lock(anon_vma);
573 }
574
575 if (root) {
576 flush_dcache_mmap_lock(mapping);
577 vma_prio_tree_remove(vma, root);
578 if (adjust_next)
579 vma_prio_tree_remove(next, root);
580 }
581
582 vma->vm_start = start;
583 vma->vm_end = end;
584 vma->vm_pgoff = pgoff;
585 if (adjust_next) {
586 next->vm_start += adjust_next << PAGE_SHIFT;
587 next->vm_pgoff += adjust_next;
588 }
589
590 if (root) {
591 if (adjust_next)
592 vma_prio_tree_insert(next, root);
593 vma_prio_tree_insert(vma, root);
594 flush_dcache_mmap_unlock(mapping);
595 }
596
597 if (remove_next) {
598 /*
599 * vma_merge has merged next into vma, and needs
600 * us to remove next before dropping the locks.
601 */
602 __vma_unlink(mm, next, vma);
603 if (file)
604 __remove_shared_vm_struct(next, file, mapping);
605 } else if (insert) {
606 /*
607 * split_vma has split insert from vma, and needs
608 * us to insert it before dropping the locks
609 * (it may either follow vma or precede it).
610 */
611 __insert_vm_struct(mm, insert);
612 }
613
614 if (anon_vma)
615 anon_vma_unlock(anon_vma);
616 if (mapping)
617 mutex_unlock(&mapping->i_mmap_mutex);
618
619 if (remove_next) {
620 if (file) {
621 fput(file);
622 if (next->vm_flags & VM_EXECUTABLE)
623 removed_exe_file_vma(mm);
624 }
625 if (next->anon_vma)
626 anon_vma_merge(vma, next);
627 mm->map_count--;
628 mpol_put(vma_policy(next));
629 kmem_cache_free(vm_area_cachep, next);
630 /*
631 * In mprotect's case 6 (see comments on vma_merge),
632 * we must remove another next too. It would clutter
633 * up the code too much to do both in one go.
634 */
635 if (remove_next == 2) {
636 next = vma->vm_next;
637 goto again;
638 }
639 }
640
641 validate_mm(mm);
642
643 return 0;
644}
645
646/*
647 * If the vma has a ->close operation then the driver probably needs to release
648 * per-vma resources, so we don't attempt to merge those.
649 */
650static inline int is_mergeable_vma(struct vm_area_struct *vma,
651 struct file *file, unsigned long vm_flags)
652{
653 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655 return 0;
656 if (vma->vm_file != file)
657 return 0;
658 if (vma->vm_ops && vma->vm_ops->close)
659 return 0;
660 return 1;
661}
662
663static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664 struct anon_vma *anon_vma2,
665 struct vm_area_struct *vma)
666{
667 /*
668 * The list_is_singular() test is to avoid merging VMA cloned from
669 * parents. This can improve scalability caused by anon_vma lock.
670 */
671 if ((!anon_vma1 || !anon_vma2) && (!vma ||
672 list_is_singular(&vma->anon_vma_chain)))
673 return 1;
674 return anon_vma1 == anon_vma2;
675}
676
677/*
678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679 * in front of (at a lower virtual address and file offset than) the vma.
680 *
681 * We cannot merge two vmas if they have differently assigned (non-NULL)
682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683 *
684 * We don't check here for the merged mmap wrapping around the end of pagecache
685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686 * wrap, nor mmaps which cover the final page at index -1UL.
687 */
688static int
689can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
691{
692 if (is_mergeable_vma(vma, file, vm_flags) &&
693 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694 if (vma->vm_pgoff == vm_pgoff)
695 return 1;
696 }
697 return 0;
698}
699
700/*
701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702 * beyond (at a higher virtual address and file offset than) the vma.
703 *
704 * We cannot merge two vmas if they have differently assigned (non-NULL)
705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
706 */
707static int
708can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710{
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 pgoff_t vm_pglen;
714 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716 return 1;
717 }
718 return 0;
719}
720
721/*
722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723 * whether that can be merged with its predecessor or its successor.
724 * Or both (it neatly fills a hole).
725 *
726 * In most cases - when called for mmap, brk or mremap - [addr,end) is
727 * certain not to be mapped by the time vma_merge is called; but when
728 * called for mprotect, it is certain to be already mapped (either at
729 * an offset within prev, or at the start of next), and the flags of
730 * this area are about to be changed to vm_flags - and the no-change
731 * case has already been eliminated.
732 *
733 * The following mprotect cases have to be considered, where AAAA is
734 * the area passed down from mprotect_fixup, never extending beyond one
735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736 *
737 * AAAA AAAA AAAA AAAA
738 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
739 * cannot merge might become might become might become
740 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
741 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
742 * mremap move: PPPPNNNNNNNN 8
743 * AAAA
744 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
745 * might become case 1 below case 2 below case 3 below
746 *
747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749 */
750struct vm_area_struct *vma_merge(struct mm_struct *mm,
751 struct vm_area_struct *prev, unsigned long addr,
752 unsigned long end, unsigned long vm_flags,
753 struct anon_vma *anon_vma, struct file *file,
754 pgoff_t pgoff, struct mempolicy *policy)
755{
756 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757 struct vm_area_struct *area, *next;
758 int err;
759
760 /*
761 * We later require that vma->vm_flags == vm_flags,
762 * so this tests vma->vm_flags & VM_SPECIAL, too.
763 */
764 if (vm_flags & VM_SPECIAL)
765 return NULL;
766
767 if (prev)
768 next = prev->vm_next;
769 else
770 next = mm->mmap;
771 area = next;
772 if (next && next->vm_end == end) /* cases 6, 7, 8 */
773 next = next->vm_next;
774
775 /*
776 * Can it merge with the predecessor?
777 */
778 if (prev && prev->vm_end == addr &&
779 mpol_equal(vma_policy(prev), policy) &&
780 can_vma_merge_after(prev, vm_flags,
781 anon_vma, file, pgoff)) {
782 /*
783 * OK, it can. Can we now merge in the successor as well?
784 */
785 if (next && end == next->vm_start &&
786 mpol_equal(policy, vma_policy(next)) &&
787 can_vma_merge_before(next, vm_flags,
788 anon_vma, file, pgoff+pglen) &&
789 is_mergeable_anon_vma(prev->anon_vma,
790 next->anon_vma, NULL)) {
791 /* cases 1, 6 */
792 err = vma_adjust(prev, prev->vm_start,
793 next->vm_end, prev->vm_pgoff, NULL);
794 } else /* cases 2, 5, 7 */
795 err = vma_adjust(prev, prev->vm_start,
796 end, prev->vm_pgoff, NULL);
797 if (err)
798 return NULL;
799 khugepaged_enter_vma_merge(prev);
800 return prev;
801 }
802
803 /*
804 * Can this new request be merged in front of next?
805 */
806 if (next && end == next->vm_start &&
807 mpol_equal(policy, vma_policy(next)) &&
808 can_vma_merge_before(next, vm_flags,
809 anon_vma, file, pgoff+pglen)) {
810 if (prev && addr < prev->vm_end) /* case 4 */
811 err = vma_adjust(prev, prev->vm_start,
812 addr, prev->vm_pgoff, NULL);
813 else /* cases 3, 8 */
814 err = vma_adjust(area, addr, next->vm_end,
815 next->vm_pgoff - pglen, NULL);
816 if (err)
817 return NULL;
818 khugepaged_enter_vma_merge(area);
819 return area;
820 }
821
822 return NULL;
823}
824
825/*
826 * Rough compatbility check to quickly see if it's even worth looking
827 * at sharing an anon_vma.
828 *
829 * They need to have the same vm_file, and the flags can only differ
830 * in things that mprotect may change.
831 *
832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833 * we can merge the two vma's. For example, we refuse to merge a vma if
834 * there is a vm_ops->close() function, because that indicates that the
835 * driver is doing some kind of reference counting. But that doesn't
836 * really matter for the anon_vma sharing case.
837 */
838static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
839{
840 return a->vm_end == b->vm_start &&
841 mpol_equal(vma_policy(a), vma_policy(b)) &&
842 a->vm_file == b->vm_file &&
843 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
845}
846
847/*
848 * Do some basic sanity checking to see if we can re-use the anon_vma
849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850 * the same as 'old', the other will be the new one that is trying
851 * to share the anon_vma.
852 *
853 * NOTE! This runs with mm_sem held for reading, so it is possible that
854 * the anon_vma of 'old' is concurrently in the process of being set up
855 * by another page fault trying to merge _that_. But that's ok: if it
856 * is being set up, that automatically means that it will be a singleton
857 * acceptable for merging, so we can do all of this optimistically. But
858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859 *
860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862 * is to return an anon_vma that is "complex" due to having gone through
863 * a fork).
864 *
865 * We also make sure that the two vma's are compatible (adjacent,
866 * and with the same memory policies). That's all stable, even with just
867 * a read lock on the mm_sem.
868 */
869static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
870{
871 if (anon_vma_compatible(a, b)) {
872 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
873
874 if (anon_vma && list_is_singular(&old->anon_vma_chain))
875 return anon_vma;
876 }
877 return NULL;
878}
879
880/*
881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882 * neighbouring vmas for a suitable anon_vma, before it goes off
883 * to allocate a new anon_vma. It checks because a repetitive
884 * sequence of mprotects and faults may otherwise lead to distinct
885 * anon_vmas being allocated, preventing vma merge in subsequent
886 * mprotect.
887 */
888struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
889{
890 struct anon_vma *anon_vma;
891 struct vm_area_struct *near;
892
893 near = vma->vm_next;
894 if (!near)
895 goto try_prev;
896
897 anon_vma = reusable_anon_vma(near, vma, near);
898 if (anon_vma)
899 return anon_vma;
900try_prev:
901 near = vma->vm_prev;
902 if (!near)
903 goto none;
904
905 anon_vma = reusable_anon_vma(near, near, vma);
906 if (anon_vma)
907 return anon_vma;
908none:
909 /*
910 * There's no absolute need to look only at touching neighbours:
911 * we could search further afield for "compatible" anon_vmas.
912 * But it would probably just be a waste of time searching,
913 * or lead to too many vmas hanging off the same anon_vma.
914 * We're trying to allow mprotect remerging later on,
915 * not trying to minimize memory used for anon_vmas.
916 */
917 return NULL;
918}
919
920#ifdef CONFIG_PROC_FS
921void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922 struct file *file, long pages)
923{
924 const unsigned long stack_flags
925 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
926
927 if (file) {
928 mm->shared_vm += pages;
929 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930 mm->exec_vm += pages;
931 } else if (flags & stack_flags)
932 mm->stack_vm += pages;
933 if (flags & (VM_RESERVED|VM_IO))
934 mm->reserved_vm += pages;
935}
936#endif /* CONFIG_PROC_FS */
937
938/*
939 * The caller must hold down_write(¤t->mm->mmap_sem).
940 */
941
942unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
943 unsigned long len, unsigned long prot,
944 unsigned long flags, unsigned long pgoff)
945{
946 struct mm_struct * mm = current->mm;
947 struct inode *inode;
948 vm_flags_t vm_flags;
949 int error;
950 unsigned long reqprot = prot;
951
952 /*
953 * Does the application expect PROT_READ to imply PROT_EXEC?
954 *
955 * (the exception is when the underlying filesystem is noexec
956 * mounted, in which case we dont add PROT_EXEC.)
957 */
958 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
959 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
960 prot |= PROT_EXEC;
961
962 if (!len)
963 return -EINVAL;
964
965 if (!(flags & MAP_FIXED))
966 addr = round_hint_to_min(addr);
967
968 /* Careful about overflows.. */
969 len = PAGE_ALIGN(len);
970 if (!len)
971 return -ENOMEM;
972
973 /* offset overflow? */
974 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
975 return -EOVERFLOW;
976
977 /* Too many mappings? */
978 if (mm->map_count > sysctl_max_map_count)
979 return -ENOMEM;
980
981 /* Obtain the address to map to. we verify (or select) it and ensure
982 * that it represents a valid section of the address space.
983 */
984 addr = get_unmapped_area(file, addr, len, pgoff, flags);
985 if (addr & ~PAGE_MASK)
986 return addr;
987
988 /* Do simple checking here so the lower-level routines won't have
989 * to. we assume access permissions have been handled by the open
990 * of the memory object, so we don't do any here.
991 */
992 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
993 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
994
995 if (flags & MAP_LOCKED)
996 if (!can_do_mlock())
997 return -EPERM;
998
999 /* mlock MCL_FUTURE? */
1000 if (vm_flags & VM_LOCKED) {
1001 unsigned long locked, lock_limit;
1002 locked = len >> PAGE_SHIFT;
1003 locked += mm->locked_vm;
1004 lock_limit = rlimit(RLIMIT_MEMLOCK);
1005 lock_limit >>= PAGE_SHIFT;
1006 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007 return -EAGAIN;
1008 }
1009
1010 inode = file ? file->f_path.dentry->d_inode : NULL;
1011
1012 if (file) {
1013 switch (flags & MAP_TYPE) {
1014 case MAP_SHARED:
1015 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016 return -EACCES;
1017
1018 /*
1019 * Make sure we don't allow writing to an append-only
1020 * file..
1021 */
1022 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023 return -EACCES;
1024
1025 /*
1026 * Make sure there are no mandatory locks on the file.
1027 */
1028 if (locks_verify_locked(inode))
1029 return -EAGAIN;
1030
1031 vm_flags |= VM_SHARED | VM_MAYSHARE;
1032 if (!(file->f_mode & FMODE_WRITE))
1033 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034
1035 /* fall through */
1036 case MAP_PRIVATE:
1037 if (!(file->f_mode & FMODE_READ))
1038 return -EACCES;
1039 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040 if (vm_flags & VM_EXEC)
1041 return -EPERM;
1042 vm_flags &= ~VM_MAYEXEC;
1043 }
1044
1045 if (!file->f_op || !file->f_op->mmap)
1046 return -ENODEV;
1047 break;
1048
1049 default:
1050 return -EINVAL;
1051 }
1052 } else {
1053 switch (flags & MAP_TYPE) {
1054 case MAP_SHARED:
1055 /*
1056 * Ignore pgoff.
1057 */
1058 pgoff = 0;
1059 vm_flags |= VM_SHARED | VM_MAYSHARE;
1060 break;
1061 case MAP_PRIVATE:
1062 /*
1063 * Set pgoff according to addr for anon_vma.
1064 */
1065 pgoff = addr >> PAGE_SHIFT;
1066 break;
1067 default:
1068 return -EINVAL;
1069 }
1070 }
1071
1072 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073 if (error)
1074 return error;
1075
1076 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1077}
1078EXPORT_SYMBOL(do_mmap_pgoff);
1079
1080SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081 unsigned long, prot, unsigned long, flags,
1082 unsigned long, fd, unsigned long, pgoff)
1083{
1084 struct file *file = NULL;
1085 unsigned long retval = -EBADF;
1086
1087 if (!(flags & MAP_ANONYMOUS)) {
1088 audit_mmap_fd(fd, flags);
1089 if (unlikely(flags & MAP_HUGETLB))
1090 return -EINVAL;
1091 file = fget(fd);
1092 if (!file)
1093 goto out;
1094 } else if (flags & MAP_HUGETLB) {
1095 struct user_struct *user = NULL;
1096 /*
1097 * VM_NORESERVE is used because the reservations will be
1098 * taken when vm_ops->mmap() is called
1099 * A dummy user value is used because we are not locking
1100 * memory so no accounting is necessary
1101 */
1102 len = ALIGN(len, huge_page_size(&default_hstate));
1103 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104 &user, HUGETLB_ANONHUGE_INODE);
1105 if (IS_ERR(file))
1106 return PTR_ERR(file);
1107 }
1108
1109 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110
1111 down_write(¤t->mm->mmap_sem);
1112 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113 up_write(¤t->mm->mmap_sem);
1114
1115 if (file)
1116 fput(file);
1117out:
1118 return retval;
1119}
1120
1121#ifdef __ARCH_WANT_SYS_OLD_MMAP
1122struct mmap_arg_struct {
1123 unsigned long addr;
1124 unsigned long len;
1125 unsigned long prot;
1126 unsigned long flags;
1127 unsigned long fd;
1128 unsigned long offset;
1129};
1130
1131SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132{
1133 struct mmap_arg_struct a;
1134
1135 if (copy_from_user(&a, arg, sizeof(a)))
1136 return -EFAULT;
1137 if (a.offset & ~PAGE_MASK)
1138 return -EINVAL;
1139
1140 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141 a.offset >> PAGE_SHIFT);
1142}
1143#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144
1145/*
1146 * Some shared mappigns will want the pages marked read-only
1147 * to track write events. If so, we'll downgrade vm_page_prot
1148 * to the private version (using protection_map[] without the
1149 * VM_SHARED bit).
1150 */
1151int vma_wants_writenotify(struct vm_area_struct *vma)
1152{
1153 vm_flags_t vm_flags = vma->vm_flags;
1154
1155 /* If it was private or non-writable, the write bit is already clear */
1156 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157 return 0;
1158
1159 /* The backer wishes to know when pages are first written to? */
1160 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161 return 1;
1162
1163 /* The open routine did something to the protections already? */
1164 if (pgprot_val(vma->vm_page_prot) !=
1165 pgprot_val(vm_get_page_prot(vm_flags)))
1166 return 0;
1167
1168 /* Specialty mapping? */
1169 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170 return 0;
1171
1172 /* Can the mapping track the dirty pages? */
1173 return vma->vm_file && vma->vm_file->f_mapping &&
1174 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175}
1176
1177/*
1178 * We account for memory if it's a private writeable mapping,
1179 * not hugepages and VM_NORESERVE wasn't set.
1180 */
1181static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182{
1183 /*
1184 * hugetlb has its own accounting separate from the core VM
1185 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186 */
1187 if (file && is_file_hugepages(file))
1188 return 0;
1189
1190 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191}
1192
1193unsigned long mmap_region(struct file *file, unsigned long addr,
1194 unsigned long len, unsigned long flags,
1195 vm_flags_t vm_flags, unsigned long pgoff)
1196{
1197 struct mm_struct *mm = current->mm;
1198 struct vm_area_struct *vma, *prev;
1199 int correct_wcount = 0;
1200 int error;
1201 struct rb_node **rb_link, *rb_parent;
1202 unsigned long charged = 0;
1203 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1204
1205 /* Clear old maps */
1206 error = -ENOMEM;
1207munmap_back:
1208 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209 if (vma && vma->vm_start < addr + len) {
1210 if (do_munmap(mm, addr, len))
1211 return -ENOMEM;
1212 goto munmap_back;
1213 }
1214
1215 /* Check against address space limit. */
1216 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217 return -ENOMEM;
1218
1219 /*
1220 * Set 'VM_NORESERVE' if we should not account for the
1221 * memory use of this mapping.
1222 */
1223 if ((flags & MAP_NORESERVE)) {
1224 /* We honor MAP_NORESERVE if allowed to overcommit */
1225 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226 vm_flags |= VM_NORESERVE;
1227
1228 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 if (file && is_file_hugepages(file))
1230 vm_flags |= VM_NORESERVE;
1231 }
1232
1233 /*
1234 * Private writable mapping: check memory availability
1235 */
1236 if (accountable_mapping(file, vm_flags)) {
1237 charged = len >> PAGE_SHIFT;
1238 if (security_vm_enough_memory(charged))
1239 return -ENOMEM;
1240 vm_flags |= VM_ACCOUNT;
1241 }
1242
1243 /*
1244 * Can we just expand an old mapping?
1245 */
1246 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247 if (vma)
1248 goto out;
1249
1250 /*
1251 * Determine the object being mapped and call the appropriate
1252 * specific mapper. the address has already been validated, but
1253 * not unmapped, but the maps are removed from the list.
1254 */
1255 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256 if (!vma) {
1257 error = -ENOMEM;
1258 goto unacct_error;
1259 }
1260
1261 vma->vm_mm = mm;
1262 vma->vm_start = addr;
1263 vma->vm_end = addr + len;
1264 vma->vm_flags = vm_flags;
1265 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266 vma->vm_pgoff = pgoff;
1267 INIT_LIST_HEAD(&vma->anon_vma_chain);
1268
1269 if (file) {
1270 error = -EINVAL;
1271 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272 goto free_vma;
1273 if (vm_flags & VM_DENYWRITE) {
1274 error = deny_write_access(file);
1275 if (error)
1276 goto free_vma;
1277 correct_wcount = 1;
1278 }
1279 vma->vm_file = file;
1280 get_file(file);
1281 error = file->f_op->mmap(file, vma);
1282 if (error)
1283 goto unmap_and_free_vma;
1284 if (vm_flags & VM_EXECUTABLE)
1285 added_exe_file_vma(mm);
1286
1287 /* Can addr have changed??
1288 *
1289 * Answer: Yes, several device drivers can do it in their
1290 * f_op->mmap method. -DaveM
1291 */
1292 addr = vma->vm_start;
1293 pgoff = vma->vm_pgoff;
1294 vm_flags = vma->vm_flags;
1295 } else if (vm_flags & VM_SHARED) {
1296 error = shmem_zero_setup(vma);
1297 if (error)
1298 goto free_vma;
1299 }
1300
1301 if (vma_wants_writenotify(vma)) {
1302 pgprot_t pprot = vma->vm_page_prot;
1303
1304 /* Can vma->vm_page_prot have changed??
1305 *
1306 * Answer: Yes, drivers may have changed it in their
1307 * f_op->mmap method.
1308 *
1309 * Ensures that vmas marked as uncached stay that way.
1310 */
1311 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314 }
1315
1316 vma_link(mm, vma, prev, rb_link, rb_parent);
1317 file = vma->vm_file;
1318
1319 /* Once vma denies write, undo our temporary denial count */
1320 if (correct_wcount)
1321 atomic_inc(&inode->i_writecount);
1322out:
1323 perf_event_mmap(vma);
1324
1325 mm->total_vm += len >> PAGE_SHIFT;
1326 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327 if (vm_flags & VM_LOCKED) {
1328 if (!mlock_vma_pages_range(vma, addr, addr + len))
1329 mm->locked_vm += (len >> PAGE_SHIFT);
1330 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331 make_pages_present(addr, addr + len);
1332 return addr;
1333
1334unmap_and_free_vma:
1335 if (correct_wcount)
1336 atomic_inc(&inode->i_writecount);
1337 vma->vm_file = NULL;
1338 fput(file);
1339
1340 /* Undo any partial mapping done by a device driver. */
1341 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342 charged = 0;
1343free_vma:
1344 kmem_cache_free(vm_area_cachep, vma);
1345unacct_error:
1346 if (charged)
1347 vm_unacct_memory(charged);
1348 return error;
1349}
1350
1351/* Get an address range which is currently unmapped.
1352 * For shmat() with addr=0.
1353 *
1354 * Ugly calling convention alert:
1355 * Return value with the low bits set means error value,
1356 * ie
1357 * if (ret & ~PAGE_MASK)
1358 * error = ret;
1359 *
1360 * This function "knows" that -ENOMEM has the bits set.
1361 */
1362#ifndef HAVE_ARCH_UNMAPPED_AREA
1363unsigned long
1364arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365 unsigned long len, unsigned long pgoff, unsigned long flags)
1366{
1367 struct mm_struct *mm = current->mm;
1368 struct vm_area_struct *vma;
1369 unsigned long start_addr;
1370
1371 if (len > TASK_SIZE)
1372 return -ENOMEM;
1373
1374 if (flags & MAP_FIXED)
1375 return addr;
1376
1377 if (addr) {
1378 addr = PAGE_ALIGN(addr);
1379 vma = find_vma(mm, addr);
1380 if (TASK_SIZE - len >= addr &&
1381 (!vma || addr + len <= vma->vm_start))
1382 return addr;
1383 }
1384 if (len > mm->cached_hole_size) {
1385 start_addr = addr = mm->free_area_cache;
1386 } else {
1387 start_addr = addr = TASK_UNMAPPED_BASE;
1388 mm->cached_hole_size = 0;
1389 }
1390
1391full_search:
1392 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393 /* At this point: (!vma || addr < vma->vm_end). */
1394 if (TASK_SIZE - len < addr) {
1395 /*
1396 * Start a new search - just in case we missed
1397 * some holes.
1398 */
1399 if (start_addr != TASK_UNMAPPED_BASE) {
1400 addr = TASK_UNMAPPED_BASE;
1401 start_addr = addr;
1402 mm->cached_hole_size = 0;
1403 goto full_search;
1404 }
1405 return -ENOMEM;
1406 }
1407 if (!vma || addr + len <= vma->vm_start) {
1408 /*
1409 * Remember the place where we stopped the search:
1410 */
1411 mm->free_area_cache = addr + len;
1412 return addr;
1413 }
1414 if (addr + mm->cached_hole_size < vma->vm_start)
1415 mm->cached_hole_size = vma->vm_start - addr;
1416 addr = vma->vm_end;
1417 }
1418}
1419#endif
1420
1421void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1422{
1423 /*
1424 * Is this a new hole at the lowest possible address?
1425 */
1426 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427 mm->free_area_cache = addr;
1428 mm->cached_hole_size = ~0UL;
1429 }
1430}
1431
1432/*
1433 * This mmap-allocator allocates new areas top-down from below the
1434 * stack's low limit (the base):
1435 */
1436#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437unsigned long
1438arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439 const unsigned long len, const unsigned long pgoff,
1440 const unsigned long flags)
1441{
1442 struct vm_area_struct *vma;
1443 struct mm_struct *mm = current->mm;
1444 unsigned long addr = addr0;
1445
1446 /* requested length too big for entire address space */
1447 if (len > TASK_SIZE)
1448 return -ENOMEM;
1449
1450 if (flags & MAP_FIXED)
1451 return addr;
1452
1453 /* requesting a specific address */
1454 if (addr) {
1455 addr = PAGE_ALIGN(addr);
1456 vma = find_vma(mm, addr);
1457 if (TASK_SIZE - len >= addr &&
1458 (!vma || addr + len <= vma->vm_start))
1459 return addr;
1460 }
1461
1462 /* check if free_area_cache is useful for us */
1463 if (len <= mm->cached_hole_size) {
1464 mm->cached_hole_size = 0;
1465 mm->free_area_cache = mm->mmap_base;
1466 }
1467
1468 /* either no address requested or can't fit in requested address hole */
1469 addr = mm->free_area_cache;
1470
1471 /* make sure it can fit in the remaining address space */
1472 if (addr > len) {
1473 vma = find_vma(mm, addr-len);
1474 if (!vma || addr <= vma->vm_start)
1475 /* remember the address as a hint for next time */
1476 return (mm->free_area_cache = addr-len);
1477 }
1478
1479 if (mm->mmap_base < len)
1480 goto bottomup;
1481
1482 addr = mm->mmap_base-len;
1483
1484 do {
1485 /*
1486 * Lookup failure means no vma is above this address,
1487 * else if new region fits below vma->vm_start,
1488 * return with success:
1489 */
1490 vma = find_vma(mm, addr);
1491 if (!vma || addr+len <= vma->vm_start)
1492 /* remember the address as a hint for next time */
1493 return (mm->free_area_cache = addr);
1494
1495 /* remember the largest hole we saw so far */
1496 if (addr + mm->cached_hole_size < vma->vm_start)
1497 mm->cached_hole_size = vma->vm_start - addr;
1498
1499 /* try just below the current vma->vm_start */
1500 addr = vma->vm_start-len;
1501 } while (len < vma->vm_start);
1502
1503bottomup:
1504 /*
1505 * A failed mmap() very likely causes application failure,
1506 * so fall back to the bottom-up function here. This scenario
1507 * can happen with large stack limits and large mmap()
1508 * allocations.
1509 */
1510 mm->cached_hole_size = ~0UL;
1511 mm->free_area_cache = TASK_UNMAPPED_BASE;
1512 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513 /*
1514 * Restore the topdown base:
1515 */
1516 mm->free_area_cache = mm->mmap_base;
1517 mm->cached_hole_size = ~0UL;
1518
1519 return addr;
1520}
1521#endif
1522
1523void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1524{
1525 /*
1526 * Is this a new hole at the highest possible address?
1527 */
1528 if (addr > mm->free_area_cache)
1529 mm->free_area_cache = addr;
1530
1531 /* dont allow allocations above current base */
1532 if (mm->free_area_cache > mm->mmap_base)
1533 mm->free_area_cache = mm->mmap_base;
1534}
1535
1536unsigned long
1537get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538 unsigned long pgoff, unsigned long flags)
1539{
1540 unsigned long (*get_area)(struct file *, unsigned long,
1541 unsigned long, unsigned long, unsigned long);
1542
1543 unsigned long error = arch_mmap_check(addr, len, flags);
1544 if (error)
1545 return error;
1546
1547 /* Careful about overflows.. */
1548 if (len > TASK_SIZE)
1549 return -ENOMEM;
1550
1551 get_area = current->mm->get_unmapped_area;
1552 if (file && file->f_op && file->f_op->get_unmapped_area)
1553 get_area = file->f_op->get_unmapped_area;
1554 addr = get_area(file, addr, len, pgoff, flags);
1555 if (IS_ERR_VALUE(addr))
1556 return addr;
1557
1558 if (addr > TASK_SIZE - len)
1559 return -ENOMEM;
1560 if (addr & ~PAGE_MASK)
1561 return -EINVAL;
1562
1563 return arch_rebalance_pgtables(addr, len);
1564}
1565
1566EXPORT_SYMBOL(get_unmapped_area);
1567
1568/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1569struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1570{
1571 struct vm_area_struct *vma = NULL;
1572
1573 if (mm) {
1574 /* Check the cache first. */
1575 /* (Cache hit rate is typically around 35%.) */
1576 vma = mm->mmap_cache;
1577 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578 struct rb_node * rb_node;
1579
1580 rb_node = mm->mm_rb.rb_node;
1581 vma = NULL;
1582
1583 while (rb_node) {
1584 struct vm_area_struct * vma_tmp;
1585
1586 vma_tmp = rb_entry(rb_node,
1587 struct vm_area_struct, vm_rb);
1588
1589 if (vma_tmp->vm_end > addr) {
1590 vma = vma_tmp;
1591 if (vma_tmp->vm_start <= addr)
1592 break;
1593 rb_node = rb_node->rb_left;
1594 } else
1595 rb_node = rb_node->rb_right;
1596 }
1597 if (vma)
1598 mm->mmap_cache = vma;
1599 }
1600 }
1601 return vma;
1602}
1603
1604EXPORT_SYMBOL(find_vma);
1605
1606/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1607struct vm_area_struct *
1608find_vma_prev(struct mm_struct *mm, unsigned long addr,
1609 struct vm_area_struct **pprev)
1610{
1611 struct vm_area_struct *vma = NULL, *prev = NULL;
1612 struct rb_node *rb_node;
1613 if (!mm)
1614 goto out;
1615
1616 /* Guard against addr being lower than the first VMA */
1617 vma = mm->mmap;
1618
1619 /* Go through the RB tree quickly. */
1620 rb_node = mm->mm_rb.rb_node;
1621
1622 while (rb_node) {
1623 struct vm_area_struct *vma_tmp;
1624 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1625
1626 if (addr < vma_tmp->vm_end) {
1627 rb_node = rb_node->rb_left;
1628 } else {
1629 prev = vma_tmp;
1630 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1631 break;
1632 rb_node = rb_node->rb_right;
1633 }
1634 }
1635
1636out:
1637 *pprev = prev;
1638 return prev ? prev->vm_next : vma;
1639}
1640
1641/*
1642 * Verify that the stack growth is acceptable and
1643 * update accounting. This is shared with both the
1644 * grow-up and grow-down cases.
1645 */
1646static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1647{
1648 struct mm_struct *mm = vma->vm_mm;
1649 struct rlimit *rlim = current->signal->rlim;
1650 unsigned long new_start;
1651
1652 /* address space limit tests */
1653 if (!may_expand_vm(mm, grow))
1654 return -ENOMEM;
1655
1656 /* Stack limit test */
1657 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1658 return -ENOMEM;
1659
1660 /* mlock limit tests */
1661 if (vma->vm_flags & VM_LOCKED) {
1662 unsigned long locked;
1663 unsigned long limit;
1664 locked = mm->locked_vm + grow;
1665 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1666 limit >>= PAGE_SHIFT;
1667 if (locked > limit && !capable(CAP_IPC_LOCK))
1668 return -ENOMEM;
1669 }
1670
1671 /* Check to ensure the stack will not grow into a hugetlb-only region */
1672 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1673 vma->vm_end - size;
1674 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1675 return -EFAULT;
1676
1677 /*
1678 * Overcommit.. This must be the final test, as it will
1679 * update security statistics.
1680 */
1681 if (security_vm_enough_memory_mm(mm, grow))
1682 return -ENOMEM;
1683
1684 /* Ok, everything looks good - let it rip */
1685 mm->total_vm += grow;
1686 if (vma->vm_flags & VM_LOCKED)
1687 mm->locked_vm += grow;
1688 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1689 return 0;
1690}
1691
1692#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1693/*
1694 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1695 * vma is the last one with address > vma->vm_end. Have to extend vma.
1696 */
1697int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1698{
1699 int error;
1700
1701 if (!(vma->vm_flags & VM_GROWSUP))
1702 return -EFAULT;
1703
1704 /*
1705 * We must make sure the anon_vma is allocated
1706 * so that the anon_vma locking is not a noop.
1707 */
1708 if (unlikely(anon_vma_prepare(vma)))
1709 return -ENOMEM;
1710 vma_lock_anon_vma(vma);
1711
1712 /*
1713 * vma->vm_start/vm_end cannot change under us because the caller
1714 * is required to hold the mmap_sem in read mode. We need the
1715 * anon_vma lock to serialize against concurrent expand_stacks.
1716 * Also guard against wrapping around to address 0.
1717 */
1718 if (address < PAGE_ALIGN(address+4))
1719 address = PAGE_ALIGN(address+4);
1720 else {
1721 vma_unlock_anon_vma(vma);
1722 return -ENOMEM;
1723 }
1724 error = 0;
1725
1726 /* Somebody else might have raced and expanded it already */
1727 if (address > vma->vm_end) {
1728 unsigned long size, grow;
1729
1730 size = address - vma->vm_start;
1731 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1732
1733 error = -ENOMEM;
1734 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1735 error = acct_stack_growth(vma, size, grow);
1736 if (!error) {
1737 vma->vm_end = address;
1738 perf_event_mmap(vma);
1739 }
1740 }
1741 }
1742 vma_unlock_anon_vma(vma);
1743 khugepaged_enter_vma_merge(vma);
1744 return error;
1745}
1746#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1747
1748/*
1749 * vma is the first one with address < vma->vm_start. Have to extend vma.
1750 */
1751int expand_downwards(struct vm_area_struct *vma,
1752 unsigned long address)
1753{
1754 int error;
1755
1756 /*
1757 * We must make sure the anon_vma is allocated
1758 * so that the anon_vma locking is not a noop.
1759 */
1760 if (unlikely(anon_vma_prepare(vma)))
1761 return -ENOMEM;
1762
1763 address &= PAGE_MASK;
1764 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1765 if (error)
1766 return error;
1767
1768 vma_lock_anon_vma(vma);
1769
1770 /*
1771 * vma->vm_start/vm_end cannot change under us because the caller
1772 * is required to hold the mmap_sem in read mode. We need the
1773 * anon_vma lock to serialize against concurrent expand_stacks.
1774 */
1775
1776 /* Somebody else might have raced and expanded it already */
1777 if (address < vma->vm_start) {
1778 unsigned long size, grow;
1779
1780 size = vma->vm_end - address;
1781 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1782
1783 error = -ENOMEM;
1784 if (grow <= vma->vm_pgoff) {
1785 error = acct_stack_growth(vma, size, grow);
1786 if (!error) {
1787 vma->vm_start = address;
1788 vma->vm_pgoff -= grow;
1789 perf_event_mmap(vma);
1790 }
1791 }
1792 }
1793 vma_unlock_anon_vma(vma);
1794 khugepaged_enter_vma_merge(vma);
1795 return error;
1796}
1797
1798#ifdef CONFIG_STACK_GROWSUP
1799int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800{
1801 return expand_upwards(vma, address);
1802}
1803
1804struct vm_area_struct *
1805find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806{
1807 struct vm_area_struct *vma, *prev;
1808
1809 addr &= PAGE_MASK;
1810 vma = find_vma_prev(mm, addr, &prev);
1811 if (vma && (vma->vm_start <= addr))
1812 return vma;
1813 if (!prev || expand_stack(prev, addr))
1814 return NULL;
1815 if (prev->vm_flags & VM_LOCKED) {
1816 mlock_vma_pages_range(prev, addr, prev->vm_end);
1817 }
1818 return prev;
1819}
1820#else
1821int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822{
1823 return expand_downwards(vma, address);
1824}
1825
1826struct vm_area_struct *
1827find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828{
1829 struct vm_area_struct * vma;
1830 unsigned long start;
1831
1832 addr &= PAGE_MASK;
1833 vma = find_vma(mm,addr);
1834 if (!vma)
1835 return NULL;
1836 if (vma->vm_start <= addr)
1837 return vma;
1838 if (!(vma->vm_flags & VM_GROWSDOWN))
1839 return NULL;
1840 start = vma->vm_start;
1841 if (expand_stack(vma, addr))
1842 return NULL;
1843 if (vma->vm_flags & VM_LOCKED) {
1844 mlock_vma_pages_range(vma, addr, start);
1845 }
1846 return vma;
1847}
1848#endif
1849
1850/*
1851 * Ok - we have the memory areas we should free on the vma list,
1852 * so release them, and do the vma updates.
1853 *
1854 * Called with the mm semaphore held.
1855 */
1856static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857{
1858 /* Update high watermark before we lower total_vm */
1859 update_hiwater_vm(mm);
1860 do {
1861 long nrpages = vma_pages(vma);
1862
1863 mm->total_vm -= nrpages;
1864 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1865 vma = remove_vma(vma);
1866 } while (vma);
1867 validate_mm(mm);
1868}
1869
1870/*
1871 * Get rid of page table information in the indicated region.
1872 *
1873 * Called with the mm semaphore held.
1874 */
1875static void unmap_region(struct mm_struct *mm,
1876 struct vm_area_struct *vma, struct vm_area_struct *prev,
1877 unsigned long start, unsigned long end)
1878{
1879 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880 struct mmu_gather tlb;
1881 unsigned long nr_accounted = 0;
1882
1883 lru_add_drain();
1884 tlb_gather_mmu(&tlb, mm, 0);
1885 update_hiwater_rss(mm);
1886 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887 vm_unacct_memory(nr_accounted);
1888 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1889 next ? next->vm_start : 0);
1890 tlb_finish_mmu(&tlb, start, end);
1891}
1892
1893/*
1894 * Create a list of vma's touched by the unmap, removing them from the mm's
1895 * vma list as we go..
1896 */
1897static void
1898detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899 struct vm_area_struct *prev, unsigned long end)
1900{
1901 struct vm_area_struct **insertion_point;
1902 struct vm_area_struct *tail_vma = NULL;
1903 unsigned long addr;
1904
1905 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906 vma->vm_prev = NULL;
1907 do {
1908 rb_erase(&vma->vm_rb, &mm->mm_rb);
1909 mm->map_count--;
1910 tail_vma = vma;
1911 vma = vma->vm_next;
1912 } while (vma && vma->vm_start < end);
1913 *insertion_point = vma;
1914 if (vma)
1915 vma->vm_prev = prev;
1916 tail_vma->vm_next = NULL;
1917 if (mm->unmap_area == arch_unmap_area)
1918 addr = prev ? prev->vm_end : mm->mmap_base;
1919 else
1920 addr = vma ? vma->vm_start : mm->mmap_base;
1921 mm->unmap_area(mm, addr);
1922 mm->mmap_cache = NULL; /* Kill the cache. */
1923}
1924
1925/*
1926 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1927 * munmap path where it doesn't make sense to fail.
1928 */
1929static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1930 unsigned long addr, int new_below)
1931{
1932 struct mempolicy *pol;
1933 struct vm_area_struct *new;
1934 int err = -ENOMEM;
1935
1936 if (is_vm_hugetlb_page(vma) && (addr &
1937 ~(huge_page_mask(hstate_vma(vma)))))
1938 return -EINVAL;
1939
1940 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1941 if (!new)
1942 goto out_err;
1943
1944 /* most fields are the same, copy all, and then fixup */
1945 *new = *vma;
1946
1947 INIT_LIST_HEAD(&new->anon_vma_chain);
1948
1949 if (new_below)
1950 new->vm_end = addr;
1951 else {
1952 new->vm_start = addr;
1953 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1954 }
1955
1956 pol = mpol_dup(vma_policy(vma));
1957 if (IS_ERR(pol)) {
1958 err = PTR_ERR(pol);
1959 goto out_free_vma;
1960 }
1961 vma_set_policy(new, pol);
1962
1963 if (anon_vma_clone(new, vma))
1964 goto out_free_mpol;
1965
1966 if (new->vm_file) {
1967 get_file(new->vm_file);
1968 if (vma->vm_flags & VM_EXECUTABLE)
1969 added_exe_file_vma(mm);
1970 }
1971
1972 if (new->vm_ops && new->vm_ops->open)
1973 new->vm_ops->open(new);
1974
1975 if (new_below)
1976 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1977 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1978 else
1979 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1980
1981 /* Success. */
1982 if (!err)
1983 return 0;
1984
1985 /* Clean everything up if vma_adjust failed. */
1986 if (new->vm_ops && new->vm_ops->close)
1987 new->vm_ops->close(new);
1988 if (new->vm_file) {
1989 if (vma->vm_flags & VM_EXECUTABLE)
1990 removed_exe_file_vma(mm);
1991 fput(new->vm_file);
1992 }
1993 unlink_anon_vmas(new);
1994 out_free_mpol:
1995 mpol_put(pol);
1996 out_free_vma:
1997 kmem_cache_free(vm_area_cachep, new);
1998 out_err:
1999 return err;
2000}
2001
2002/*
2003 * Split a vma into two pieces at address 'addr', a new vma is allocated
2004 * either for the first part or the tail.
2005 */
2006int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2007 unsigned long addr, int new_below)
2008{
2009 if (mm->map_count >= sysctl_max_map_count)
2010 return -ENOMEM;
2011
2012 return __split_vma(mm, vma, addr, new_below);
2013}
2014
2015/* Munmap is split into 2 main parts -- this part which finds
2016 * what needs doing, and the areas themselves, which do the
2017 * work. This now handles partial unmappings.
2018 * Jeremy Fitzhardinge <jeremy@goop.org>
2019 */
2020int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2021{
2022 unsigned long end;
2023 struct vm_area_struct *vma, *prev, *last;
2024
2025 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2026 return -EINVAL;
2027
2028 if ((len = PAGE_ALIGN(len)) == 0)
2029 return -EINVAL;
2030
2031 /* Find the first overlapping VMA */
2032 vma = find_vma(mm, start);
2033 if (!vma)
2034 return 0;
2035 prev = vma->vm_prev;
2036 /* we have start < vma->vm_end */
2037
2038 /* if it doesn't overlap, we have nothing.. */
2039 end = start + len;
2040 if (vma->vm_start >= end)
2041 return 0;
2042
2043 /*
2044 * If we need to split any vma, do it now to save pain later.
2045 *
2046 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2047 * unmapped vm_area_struct will remain in use: so lower split_vma
2048 * places tmp vma above, and higher split_vma places tmp vma below.
2049 */
2050 if (start > vma->vm_start) {
2051 int error;
2052
2053 /*
2054 * Make sure that map_count on return from munmap() will
2055 * not exceed its limit; but let map_count go just above
2056 * its limit temporarily, to help free resources as expected.
2057 */
2058 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2059 return -ENOMEM;
2060
2061 error = __split_vma(mm, vma, start, 0);
2062 if (error)
2063 return error;
2064 prev = vma;
2065 }
2066
2067 /* Does it split the last one? */
2068 last = find_vma(mm, end);
2069 if (last && end > last->vm_start) {
2070 int error = __split_vma(mm, last, end, 1);
2071 if (error)
2072 return error;
2073 }
2074 vma = prev? prev->vm_next: mm->mmap;
2075
2076 /*
2077 * unlock any mlock()ed ranges before detaching vmas
2078 */
2079 if (mm->locked_vm) {
2080 struct vm_area_struct *tmp = vma;
2081 while (tmp && tmp->vm_start < end) {
2082 if (tmp->vm_flags & VM_LOCKED) {
2083 mm->locked_vm -= vma_pages(tmp);
2084 munlock_vma_pages_all(tmp);
2085 }
2086 tmp = tmp->vm_next;
2087 }
2088 }
2089
2090 /*
2091 * Remove the vma's, and unmap the actual pages
2092 */
2093 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2094 unmap_region(mm, vma, prev, start, end);
2095
2096 /* Fix up all other VM information */
2097 remove_vma_list(mm, vma);
2098
2099 return 0;
2100}
2101
2102EXPORT_SYMBOL(do_munmap);
2103
2104SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2105{
2106 int ret;
2107 struct mm_struct *mm = current->mm;
2108
2109 profile_munmap(addr);
2110
2111 down_write(&mm->mmap_sem);
2112 ret = do_munmap(mm, addr, len);
2113 up_write(&mm->mmap_sem);
2114 return ret;
2115}
2116
2117static inline void verify_mm_writelocked(struct mm_struct *mm)
2118{
2119#ifdef CONFIG_DEBUG_VM
2120 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2121 WARN_ON(1);
2122 up_read(&mm->mmap_sem);
2123 }
2124#endif
2125}
2126
2127/*
2128 * this is really a simplified "do_mmap". it only handles
2129 * anonymous maps. eventually we may be able to do some
2130 * brk-specific accounting here.
2131 */
2132unsigned long do_brk(unsigned long addr, unsigned long len)
2133{
2134 struct mm_struct * mm = current->mm;
2135 struct vm_area_struct * vma, * prev;
2136 unsigned long flags;
2137 struct rb_node ** rb_link, * rb_parent;
2138 pgoff_t pgoff = addr >> PAGE_SHIFT;
2139 int error;
2140
2141 len = PAGE_ALIGN(len);
2142 if (!len)
2143 return addr;
2144
2145 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2146 if (error)
2147 return error;
2148
2149 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2150
2151 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2152 if (error & ~PAGE_MASK)
2153 return error;
2154
2155 /*
2156 * mlock MCL_FUTURE?
2157 */
2158 if (mm->def_flags & VM_LOCKED) {
2159 unsigned long locked, lock_limit;
2160 locked = len >> PAGE_SHIFT;
2161 locked += mm->locked_vm;
2162 lock_limit = rlimit(RLIMIT_MEMLOCK);
2163 lock_limit >>= PAGE_SHIFT;
2164 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2165 return -EAGAIN;
2166 }
2167
2168 /*
2169 * mm->mmap_sem is required to protect against another thread
2170 * changing the mappings in case we sleep.
2171 */
2172 verify_mm_writelocked(mm);
2173
2174 /*
2175 * Clear old maps. this also does some error checking for us
2176 */
2177 munmap_back:
2178 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2179 if (vma && vma->vm_start < addr + len) {
2180 if (do_munmap(mm, addr, len))
2181 return -ENOMEM;
2182 goto munmap_back;
2183 }
2184
2185 /* Check against address space limits *after* clearing old maps... */
2186 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2187 return -ENOMEM;
2188
2189 if (mm->map_count > sysctl_max_map_count)
2190 return -ENOMEM;
2191
2192 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2193 return -ENOMEM;
2194
2195 /* Can we just expand an old private anonymous mapping? */
2196 vma = vma_merge(mm, prev, addr, addr + len, flags,
2197 NULL, NULL, pgoff, NULL);
2198 if (vma)
2199 goto out;
2200
2201 /*
2202 * create a vma struct for an anonymous mapping
2203 */
2204 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2205 if (!vma) {
2206 vm_unacct_memory(len >> PAGE_SHIFT);
2207 return -ENOMEM;
2208 }
2209
2210 INIT_LIST_HEAD(&vma->anon_vma_chain);
2211 vma->vm_mm = mm;
2212 vma->vm_start = addr;
2213 vma->vm_end = addr + len;
2214 vma->vm_pgoff = pgoff;
2215 vma->vm_flags = flags;
2216 vma->vm_page_prot = vm_get_page_prot(flags);
2217 vma_link(mm, vma, prev, rb_link, rb_parent);
2218out:
2219 perf_event_mmap(vma);
2220 mm->total_vm += len >> PAGE_SHIFT;
2221 if (flags & VM_LOCKED) {
2222 if (!mlock_vma_pages_range(vma, addr, addr + len))
2223 mm->locked_vm += (len >> PAGE_SHIFT);
2224 }
2225 return addr;
2226}
2227
2228EXPORT_SYMBOL(do_brk);
2229
2230/* Release all mmaps. */
2231void exit_mmap(struct mm_struct *mm)
2232{
2233 struct mmu_gather tlb;
2234 struct vm_area_struct *vma;
2235 unsigned long nr_accounted = 0;
2236 unsigned long end;
2237
2238 /* mm's last user has gone, and its about to be pulled down */
2239 mmu_notifier_release(mm);
2240
2241 if (mm->locked_vm) {
2242 vma = mm->mmap;
2243 while (vma) {
2244 if (vma->vm_flags & VM_LOCKED)
2245 munlock_vma_pages_all(vma);
2246 vma = vma->vm_next;
2247 }
2248 }
2249
2250 arch_exit_mmap(mm);
2251
2252 vma = mm->mmap;
2253 if (!vma) /* Can happen if dup_mmap() received an OOM */
2254 return;
2255
2256 lru_add_drain();
2257 flush_cache_mm(mm);
2258 tlb_gather_mmu(&tlb, mm, 1);
2259 /* update_hiwater_rss(mm) here? but nobody should be looking */
2260 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2261 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2262 vm_unacct_memory(nr_accounted);
2263
2264 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2265 tlb_finish_mmu(&tlb, 0, end);
2266
2267 /*
2268 * Walk the list again, actually closing and freeing it,
2269 * with preemption enabled, without holding any MM locks.
2270 */
2271 while (vma)
2272 vma = remove_vma(vma);
2273
2274 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2275}
2276
2277/* Insert vm structure into process list sorted by address
2278 * and into the inode's i_mmap tree. If vm_file is non-NULL
2279 * then i_mmap_mutex is taken here.
2280 */
2281int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2282{
2283 struct vm_area_struct * __vma, * prev;
2284 struct rb_node ** rb_link, * rb_parent;
2285
2286 /*
2287 * The vm_pgoff of a purely anonymous vma should be irrelevant
2288 * until its first write fault, when page's anon_vma and index
2289 * are set. But now set the vm_pgoff it will almost certainly
2290 * end up with (unless mremap moves it elsewhere before that
2291 * first wfault), so /proc/pid/maps tells a consistent story.
2292 *
2293 * By setting it to reflect the virtual start address of the
2294 * vma, merges and splits can happen in a seamless way, just
2295 * using the existing file pgoff checks and manipulations.
2296 * Similarly in do_mmap_pgoff and in do_brk.
2297 */
2298 if (!vma->vm_file) {
2299 BUG_ON(vma->anon_vma);
2300 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2301 }
2302 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2303 if (__vma && __vma->vm_start < vma->vm_end)
2304 return -ENOMEM;
2305 if ((vma->vm_flags & VM_ACCOUNT) &&
2306 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2307 return -ENOMEM;
2308 vma_link(mm, vma, prev, rb_link, rb_parent);
2309 return 0;
2310}
2311
2312/*
2313 * Copy the vma structure to a new location in the same mm,
2314 * prior to moving page table entries, to effect an mremap move.
2315 */
2316struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2317 unsigned long addr, unsigned long len, pgoff_t pgoff)
2318{
2319 struct vm_area_struct *vma = *vmap;
2320 unsigned long vma_start = vma->vm_start;
2321 struct mm_struct *mm = vma->vm_mm;
2322 struct vm_area_struct *new_vma, *prev;
2323 struct rb_node **rb_link, *rb_parent;
2324 struct mempolicy *pol;
2325
2326 /*
2327 * If anonymous vma has not yet been faulted, update new pgoff
2328 * to match new location, to increase its chance of merging.
2329 */
2330 if (!vma->vm_file && !vma->anon_vma)
2331 pgoff = addr >> PAGE_SHIFT;
2332
2333 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2334 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2335 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2336 if (new_vma) {
2337 /*
2338 * Source vma may have been merged into new_vma
2339 */
2340 if (vma_start >= new_vma->vm_start &&
2341 vma_start < new_vma->vm_end)
2342 *vmap = new_vma;
2343 } else {
2344 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2345 if (new_vma) {
2346 *new_vma = *vma;
2347 pol = mpol_dup(vma_policy(vma));
2348 if (IS_ERR(pol))
2349 goto out_free_vma;
2350 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2351 if (anon_vma_clone(new_vma, vma))
2352 goto out_free_mempol;
2353 vma_set_policy(new_vma, pol);
2354 new_vma->vm_start = addr;
2355 new_vma->vm_end = addr + len;
2356 new_vma->vm_pgoff = pgoff;
2357 if (new_vma->vm_file) {
2358 get_file(new_vma->vm_file);
2359 if (vma->vm_flags & VM_EXECUTABLE)
2360 added_exe_file_vma(mm);
2361 }
2362 if (new_vma->vm_ops && new_vma->vm_ops->open)
2363 new_vma->vm_ops->open(new_vma);
2364 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2365 }
2366 }
2367 return new_vma;
2368
2369 out_free_mempol:
2370 mpol_put(pol);
2371 out_free_vma:
2372 kmem_cache_free(vm_area_cachep, new_vma);
2373 return NULL;
2374}
2375
2376/*
2377 * Return true if the calling process may expand its vm space by the passed
2378 * number of pages
2379 */
2380int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2381{
2382 unsigned long cur = mm->total_vm; /* pages */
2383 unsigned long lim;
2384
2385 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2386
2387 if (cur + npages > lim)
2388 return 0;
2389 return 1;
2390}
2391
2392
2393static int special_mapping_fault(struct vm_area_struct *vma,
2394 struct vm_fault *vmf)
2395{
2396 pgoff_t pgoff;
2397 struct page **pages;
2398
2399 /*
2400 * special mappings have no vm_file, and in that case, the mm
2401 * uses vm_pgoff internally. So we have to subtract it from here.
2402 * We are allowed to do this because we are the mm; do not copy
2403 * this code into drivers!
2404 */
2405 pgoff = vmf->pgoff - vma->vm_pgoff;
2406
2407 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2408 pgoff--;
2409
2410 if (*pages) {
2411 struct page *page = *pages;
2412 get_page(page);
2413 vmf->page = page;
2414 return 0;
2415 }
2416
2417 return VM_FAULT_SIGBUS;
2418}
2419
2420/*
2421 * Having a close hook prevents vma merging regardless of flags.
2422 */
2423static void special_mapping_close(struct vm_area_struct *vma)
2424{
2425}
2426
2427static const struct vm_operations_struct special_mapping_vmops = {
2428 .close = special_mapping_close,
2429 .fault = special_mapping_fault,
2430};
2431
2432/*
2433 * Called with mm->mmap_sem held for writing.
2434 * Insert a new vma covering the given region, with the given flags.
2435 * Its pages are supplied by the given array of struct page *.
2436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2437 * The region past the last page supplied will always produce SIGBUS.
2438 * The array pointer and the pages it points to are assumed to stay alive
2439 * for as long as this mapping might exist.
2440 */
2441int install_special_mapping(struct mm_struct *mm,
2442 unsigned long addr, unsigned long len,
2443 unsigned long vm_flags, struct page **pages)
2444{
2445 int ret;
2446 struct vm_area_struct *vma;
2447
2448 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2449 if (unlikely(vma == NULL))
2450 return -ENOMEM;
2451
2452 INIT_LIST_HEAD(&vma->anon_vma_chain);
2453 vma->vm_mm = mm;
2454 vma->vm_start = addr;
2455 vma->vm_end = addr + len;
2456
2457 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2458 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2459
2460 vma->vm_ops = &special_mapping_vmops;
2461 vma->vm_private_data = pages;
2462
2463 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2464 if (ret)
2465 goto out;
2466
2467 ret = insert_vm_struct(mm, vma);
2468 if (ret)
2469 goto out;
2470
2471 mm->total_vm += len >> PAGE_SHIFT;
2472
2473 perf_event_mmap(vma);
2474
2475 return 0;
2476
2477out:
2478 kmem_cache_free(vm_area_cachep, vma);
2479 return ret;
2480}
2481
2482static DEFINE_MUTEX(mm_all_locks_mutex);
2483
2484static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2485{
2486 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2487 /*
2488 * The LSB of head.next can't change from under us
2489 * because we hold the mm_all_locks_mutex.
2490 */
2491 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2492 /*
2493 * We can safely modify head.next after taking the
2494 * anon_vma->root->mutex. If some other vma in this mm shares
2495 * the same anon_vma we won't take it again.
2496 *
2497 * No need of atomic instructions here, head.next
2498 * can't change from under us thanks to the
2499 * anon_vma->root->mutex.
2500 */
2501 if (__test_and_set_bit(0, (unsigned long *)
2502 &anon_vma->root->head.next))
2503 BUG();
2504 }
2505}
2506
2507static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2508{
2509 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2510 /*
2511 * AS_MM_ALL_LOCKS can't change from under us because
2512 * we hold the mm_all_locks_mutex.
2513 *
2514 * Operations on ->flags have to be atomic because
2515 * even if AS_MM_ALL_LOCKS is stable thanks to the
2516 * mm_all_locks_mutex, there may be other cpus
2517 * changing other bitflags in parallel to us.
2518 */
2519 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2520 BUG();
2521 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2522 }
2523}
2524
2525/*
2526 * This operation locks against the VM for all pte/vma/mm related
2527 * operations that could ever happen on a certain mm. This includes
2528 * vmtruncate, try_to_unmap, and all page faults.
2529 *
2530 * The caller must take the mmap_sem in write mode before calling
2531 * mm_take_all_locks(). The caller isn't allowed to release the
2532 * mmap_sem until mm_drop_all_locks() returns.
2533 *
2534 * mmap_sem in write mode is required in order to block all operations
2535 * that could modify pagetables and free pages without need of
2536 * altering the vma layout (for example populate_range() with
2537 * nonlinear vmas). It's also needed in write mode to avoid new
2538 * anon_vmas to be associated with existing vmas.
2539 *
2540 * A single task can't take more than one mm_take_all_locks() in a row
2541 * or it would deadlock.
2542 *
2543 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2544 * mapping->flags avoid to take the same lock twice, if more than one
2545 * vma in this mm is backed by the same anon_vma or address_space.
2546 *
2547 * We can take all the locks in random order because the VM code
2548 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2549 * takes more than one of them in a row. Secondly we're protected
2550 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2551 *
2552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2553 * that may have to take thousand of locks.
2554 *
2555 * mm_take_all_locks() can fail if it's interrupted by signals.
2556 */
2557int mm_take_all_locks(struct mm_struct *mm)
2558{
2559 struct vm_area_struct *vma;
2560 struct anon_vma_chain *avc;
2561 int ret = -EINTR;
2562
2563 BUG_ON(down_read_trylock(&mm->mmap_sem));
2564
2565 mutex_lock(&mm_all_locks_mutex);
2566
2567 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2568 if (signal_pending(current))
2569 goto out_unlock;
2570 if (vma->vm_file && vma->vm_file->f_mapping)
2571 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2572 }
2573
2574 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2575 if (signal_pending(current))
2576 goto out_unlock;
2577 if (vma->anon_vma)
2578 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2579 vm_lock_anon_vma(mm, avc->anon_vma);
2580 }
2581
2582 ret = 0;
2583
2584out_unlock:
2585 if (ret)
2586 mm_drop_all_locks(mm);
2587
2588 return ret;
2589}
2590
2591static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2592{
2593 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2594 /*
2595 * The LSB of head.next can't change to 0 from under
2596 * us because we hold the mm_all_locks_mutex.
2597 *
2598 * We must however clear the bitflag before unlocking
2599 * the vma so the users using the anon_vma->head will
2600 * never see our bitflag.
2601 *
2602 * No need of atomic instructions here, head.next
2603 * can't change from under us until we release the
2604 * anon_vma->root->mutex.
2605 */
2606 if (!__test_and_clear_bit(0, (unsigned long *)
2607 &anon_vma->root->head.next))
2608 BUG();
2609 anon_vma_unlock(anon_vma);
2610 }
2611}
2612
2613static void vm_unlock_mapping(struct address_space *mapping)
2614{
2615 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2616 /*
2617 * AS_MM_ALL_LOCKS can't change to 0 from under us
2618 * because we hold the mm_all_locks_mutex.
2619 */
2620 mutex_unlock(&mapping->i_mmap_mutex);
2621 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2622 &mapping->flags))
2623 BUG();
2624 }
2625}
2626
2627/*
2628 * The mmap_sem cannot be released by the caller until
2629 * mm_drop_all_locks() returns.
2630 */
2631void mm_drop_all_locks(struct mm_struct *mm)
2632{
2633 struct vm_area_struct *vma;
2634 struct anon_vma_chain *avc;
2635
2636 BUG_ON(down_read_trylock(&mm->mmap_sem));
2637 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2638
2639 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640 if (vma->anon_vma)
2641 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2642 vm_unlock_anon_vma(avc->anon_vma);
2643 if (vma->vm_file && vma->vm_file->f_mapping)
2644 vm_unlock_mapping(vma->vm_file->f_mapping);
2645 }
2646
2647 mutex_unlock(&mm_all_locks_mutex);
2648}
2649
2650/*
2651 * initialise the VMA slab
2652 */
2653void __init mmap_init(void)
2654{
2655 int ret;
2656
2657 ret = percpu_counter_init(&vm_committed_as, 0);
2658 VM_BUG_ON(ret);
2659}
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/vmacache.h>
14#include <linux/shm.h>
15#include <linux/mman.h>
16#include <linux/pagemap.h>
17#include <linux/swap.h>
18#include <linux/syscalls.h>
19#include <linux/capability.h>
20#include <linux/init.h>
21#include <linux/file.h>
22#include <linux/fs.h>
23#include <linux/personality.h>
24#include <linux/security.h>
25#include <linux/hugetlb.h>
26#include <linux/profile.h>
27#include <linux/export.h>
28#include <linux/mount.h>
29#include <linux/mempolicy.h>
30#include <linux/rmap.h>
31#include <linux/mmu_notifier.h>
32#include <linux/perf_event.h>
33#include <linux/audit.h>
34#include <linux/khugepaged.h>
35#include <linux/uprobes.h>
36#include <linux/rbtree_augmented.h>
37#include <linux/sched/sysctl.h>
38#include <linux/notifier.h>
39#include <linux/memory.h>
40
41#include <asm/uaccess.h>
42#include <asm/cacheflush.h>
43#include <asm/tlb.h>
44#include <asm/mmu_context.h>
45
46#include "internal.h"
47
48#ifndef arch_mmap_check
49#define arch_mmap_check(addr, len, flags) (0)
50#endif
51
52#ifndef arch_rebalance_pgtables
53#define arch_rebalance_pgtables(addr, len) (addr)
54#endif
55
56static void unmap_region(struct mm_struct *mm,
57 struct vm_area_struct *vma, struct vm_area_struct *prev,
58 unsigned long start, unsigned long end);
59
60/* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78};
79
80pgprot_t vm_get_page_prot(unsigned long vm_flags)
81{
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85}
86EXPORT_SYMBOL(vm_get_page_prot);
87
88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90unsigned long sysctl_overcommit_kbytes __read_mostly;
91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94/*
95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
96 * other variables. It can be updated by several CPUs frequently.
97 */
98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99
100/*
101 * The global memory commitment made in the system can be a metric
102 * that can be used to drive ballooning decisions when Linux is hosted
103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104 * balancing memory across competing virtual machines that are hosted.
105 * Several metrics drive this policy engine including the guest reported
106 * memory commitment.
107 */
108unsigned long vm_memory_committed(void)
109{
110 return percpu_counter_read_positive(&vm_committed_as);
111}
112EXPORT_SYMBOL_GPL(vm_memory_committed);
113
114/*
115 * Check that a process has enough memory to allocate a new virtual
116 * mapping. 0 means there is enough memory for the allocation to
117 * succeed and -ENOMEM implies there is not.
118 *
119 * We currently support three overcommit policies, which are set via the
120 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
121 *
122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123 * Additional code 2002 Jul 20 by Robert Love.
124 *
125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126 *
127 * Note this is a helper function intended to be used by LSMs which
128 * wish to use this logic.
129 */
130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131{
132 unsigned long free, allowed, reserve;
133
134 vm_acct_memory(pages);
135
136 /*
137 * Sometimes we want to use more memory than we have
138 */
139 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 return 0;
141
142 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143 free = global_page_state(NR_FREE_PAGES);
144 free += global_page_state(NR_FILE_PAGES);
145
146 /*
147 * shmem pages shouldn't be counted as free in this
148 * case, they can't be purged, only swapped out, and
149 * that won't affect the overall amount of available
150 * memory in the system.
151 */
152 free -= global_page_state(NR_SHMEM);
153
154 free += get_nr_swap_pages();
155
156 /*
157 * Any slabs which are created with the
158 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159 * which are reclaimable, under pressure. The dentry
160 * cache and most inode caches should fall into this
161 */
162 free += global_page_state(NR_SLAB_RECLAIMABLE);
163
164 /*
165 * Leave reserved pages. The pages are not for anonymous pages.
166 */
167 if (free <= totalreserve_pages)
168 goto error;
169 else
170 free -= totalreserve_pages;
171
172 /*
173 * Reserve some for root
174 */
175 if (!cap_sys_admin)
176 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177
178 if (free > pages)
179 return 0;
180
181 goto error;
182 }
183
184 allowed = vm_commit_limit();
185 /*
186 * Reserve some for root
187 */
188 if (!cap_sys_admin)
189 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205}
206
207/*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212{
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224}
225
226/*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230void unlink_file_vma(struct vm_area_struct *vma)
231{
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240}
241
242/*
243 * Close a vm structure and free it, returning the next.
244 */
245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246{
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257}
258
259static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261SYSCALL_DEFINE1(brk, unsigned long, brk)
262{
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271#ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281#else
282 min_brk = mm->start_brk;
283#endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330}
331
332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333{
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351}
352
353#ifdef CONFIG_DEBUG_VM_RB
354static int browse_rb(struct rb_root *root)
355{
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395}
396
397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398{
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407}
408
409static void validate_mm(struct mm_struct *mm)
410{
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440}
441#else
442#define validate_mm_rb(root, ignore) do { } while (0)
443#define validate_mm(mm) do { } while (0)
444#endif
445
446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449/*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454static void vma_gap_update(struct vm_area_struct *vma)
455{
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461}
462
463static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465{
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470}
471
472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473{
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486}
487
488/*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502static inline void
503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504{
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509}
510
511static inline void
512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513{
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518}
519
520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523{
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552}
553
554static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556{
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580}
581
582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584{
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604}
605
606static void __vma_link_file(struct vm_area_struct *vma)
607{
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626}
627
628static void
629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632{
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635}
636
637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640{
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657}
658
659/*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664{
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673}
674
675static inline void
676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678{
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685
686 /* Kill the cache */
687 vmacache_invalidate(mm);
688}
689
690/*
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
696 */
697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699{
700 struct mm_struct *mm = vma->vm_mm;
701 struct vm_area_struct *next = vma->vm_next;
702 struct vm_area_struct *importer = NULL;
703 struct address_space *mapping = NULL;
704 struct rb_root *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
709 int remove_next = 0;
710
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL;
713
714 if (end >= next->vm_end) {
715 /*
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 */
719again: remove_next = 1 + (end > next->vm_end);
720 end = next->vm_end;
721 exporter = next;
722 importer = vma;
723 } else if (end > next->vm_start) {
724 /*
725 * vma expands, overlapping part of the next:
726 * mprotect case 5 shifting the boundary up.
727 */
728 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729 exporter = next;
730 importer = vma;
731 } else if (end < vma->vm_end) {
732 /*
733 * vma shrinks, and !insert tells it's not
734 * split_vma inserting another: so it must be
735 * mprotect case 4 shifting the boundary down.
736 */
737 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738 exporter = vma;
739 importer = next;
740 }
741
742 /*
743 * Easily overlooked: when mprotect shifts the boundary,
744 * make sure the expanding vma has anon_vma set if the
745 * shrinking vma had, to cover any anon pages imported.
746 */
747 if (exporter && exporter->anon_vma && !importer->anon_vma) {
748 if (anon_vma_clone(importer, exporter))
749 return -ENOMEM;
750 importer->anon_vma = exporter->anon_vma;
751 }
752 }
753
754 if (file) {
755 mapping = file->f_mapping;
756 if (!(vma->vm_flags & VM_NONLINEAR)) {
757 root = &mapping->i_mmap;
758 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759
760 if (adjust_next)
761 uprobe_munmap(next, next->vm_start,
762 next->vm_end);
763 }
764
765 mutex_lock(&mapping->i_mmap_mutex);
766 if (insert) {
767 /*
768 * Put into interval tree now, so instantiated pages
769 * are visible to arm/parisc __flush_dcache_page
770 * throughout; but we cannot insert into address
771 * space until vma start or end is updated.
772 */
773 __vma_link_file(insert);
774 }
775 }
776
777 vma_adjust_trans_huge(vma, start, end, adjust_next);
778
779 anon_vma = vma->anon_vma;
780 if (!anon_vma && adjust_next)
781 anon_vma = next->anon_vma;
782 if (anon_vma) {
783 VM_BUG_ON(adjust_next && next->anon_vma &&
784 anon_vma != next->anon_vma);
785 anon_vma_lock_write(anon_vma);
786 anon_vma_interval_tree_pre_update_vma(vma);
787 if (adjust_next)
788 anon_vma_interval_tree_pre_update_vma(next);
789 }
790
791 if (root) {
792 flush_dcache_mmap_lock(mapping);
793 vma_interval_tree_remove(vma, root);
794 if (adjust_next)
795 vma_interval_tree_remove(next, root);
796 }
797
798 if (start != vma->vm_start) {
799 vma->vm_start = start;
800 start_changed = true;
801 }
802 if (end != vma->vm_end) {
803 vma->vm_end = end;
804 end_changed = true;
805 }
806 vma->vm_pgoff = pgoff;
807 if (adjust_next) {
808 next->vm_start += adjust_next << PAGE_SHIFT;
809 next->vm_pgoff += adjust_next;
810 }
811
812 if (root) {
813 if (adjust_next)
814 vma_interval_tree_insert(next, root);
815 vma_interval_tree_insert(vma, root);
816 flush_dcache_mmap_unlock(mapping);
817 }
818
819 if (remove_next) {
820 /*
821 * vma_merge has merged next into vma, and needs
822 * us to remove next before dropping the locks.
823 */
824 __vma_unlink(mm, next, vma);
825 if (file)
826 __remove_shared_vm_struct(next, file, mapping);
827 } else if (insert) {
828 /*
829 * split_vma has split insert from vma, and needs
830 * us to insert it before dropping the locks
831 * (it may either follow vma or precede it).
832 */
833 __insert_vm_struct(mm, insert);
834 } else {
835 if (start_changed)
836 vma_gap_update(vma);
837 if (end_changed) {
838 if (!next)
839 mm->highest_vm_end = end;
840 else if (!adjust_next)
841 vma_gap_update(next);
842 }
843 }
844
845 if (anon_vma) {
846 anon_vma_interval_tree_post_update_vma(vma);
847 if (adjust_next)
848 anon_vma_interval_tree_post_update_vma(next);
849 anon_vma_unlock_write(anon_vma);
850 }
851 if (mapping)
852 mutex_unlock(&mapping->i_mmap_mutex);
853
854 if (root) {
855 uprobe_mmap(vma);
856
857 if (adjust_next)
858 uprobe_mmap(next);
859 }
860
861 if (remove_next) {
862 if (file) {
863 uprobe_munmap(next, next->vm_start, next->vm_end);
864 fput(file);
865 }
866 if (next->anon_vma)
867 anon_vma_merge(vma, next);
868 mm->map_count--;
869 mpol_put(vma_policy(next));
870 kmem_cache_free(vm_area_cachep, next);
871 /*
872 * In mprotect's case 6 (see comments on vma_merge),
873 * we must remove another next too. It would clutter
874 * up the code too much to do both in one go.
875 */
876 next = vma->vm_next;
877 if (remove_next == 2)
878 goto again;
879 else if (next)
880 vma_gap_update(next);
881 else
882 mm->highest_vm_end = end;
883 }
884 if (insert && file)
885 uprobe_mmap(insert);
886
887 validate_mm(mm);
888
889 return 0;
890}
891
892/*
893 * If the vma has a ->close operation then the driver probably needs to release
894 * per-vma resources, so we don't attempt to merge those.
895 */
896static inline int is_mergeable_vma(struct vm_area_struct *vma,
897 struct file *file, unsigned long vm_flags)
898{
899 /*
900 * VM_SOFTDIRTY should not prevent from VMA merging, if we
901 * match the flags but dirty bit -- the caller should mark
902 * merged VMA as dirty. If dirty bit won't be excluded from
903 * comparison, we increase pressue on the memory system forcing
904 * the kernel to generate new VMAs when old one could be
905 * extended instead.
906 */
907 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
908 return 0;
909 if (vma->vm_file != file)
910 return 0;
911 if (vma->vm_ops && vma->vm_ops->close)
912 return 0;
913 return 1;
914}
915
916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
917 struct anon_vma *anon_vma2,
918 struct vm_area_struct *vma)
919{
920 /*
921 * The list_is_singular() test is to avoid merging VMA cloned from
922 * parents. This can improve scalability caused by anon_vma lock.
923 */
924 if ((!anon_vma1 || !anon_vma2) && (!vma ||
925 list_is_singular(&vma->anon_vma_chain)))
926 return 1;
927 return anon_vma1 == anon_vma2;
928}
929
930/*
931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
932 * in front of (at a lower virtual address and file offset than) the vma.
933 *
934 * We cannot merge two vmas if they have differently assigned (non-NULL)
935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
936 *
937 * We don't check here for the merged mmap wrapping around the end of pagecache
938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
939 * wrap, nor mmaps which cover the final page at index -1UL.
940 */
941static int
942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
943 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
944{
945 if (is_mergeable_vma(vma, file, vm_flags) &&
946 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
947 if (vma->vm_pgoff == vm_pgoff)
948 return 1;
949 }
950 return 0;
951}
952
953/*
954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
955 * beyond (at a higher virtual address and file offset than) the vma.
956 *
957 * We cannot merge two vmas if they have differently assigned (non-NULL)
958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959 */
960static int
961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
962 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
963{
964 if (is_mergeable_vma(vma, file, vm_flags) &&
965 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
966 pgoff_t vm_pglen;
967 vm_pglen = vma_pages(vma);
968 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
969 return 1;
970 }
971 return 0;
972}
973
974/*
975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
976 * whether that can be merged with its predecessor or its successor.
977 * Or both (it neatly fills a hole).
978 *
979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
980 * certain not to be mapped by the time vma_merge is called; but when
981 * called for mprotect, it is certain to be already mapped (either at
982 * an offset within prev, or at the start of next), and the flags of
983 * this area are about to be changed to vm_flags - and the no-change
984 * case has already been eliminated.
985 *
986 * The following mprotect cases have to be considered, where AAAA is
987 * the area passed down from mprotect_fixup, never extending beyond one
988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
989 *
990 * AAAA AAAA AAAA AAAA
991 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
992 * cannot merge might become might become might become
993 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
994 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
995 * mremap move: PPPPNNNNNNNN 8
996 * AAAA
997 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
998 * might become case 1 below case 2 below case 3 below
999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004 struct vm_area_struct *prev, unsigned long addr,
1005 unsigned long end, unsigned long vm_flags,
1006 struct anon_vma *anon_vma, struct file *file,
1007 pgoff_t pgoff, struct mempolicy *policy)
1008{
1009 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010 struct vm_area_struct *area, *next;
1011 int err;
1012
1013 /*
1014 * We later require that vma->vm_flags == vm_flags,
1015 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 */
1017 if (vm_flags & VM_SPECIAL)
1018 return NULL;
1019
1020 if (prev)
1021 next = prev->vm_next;
1022 else
1023 next = mm->mmap;
1024 area = next;
1025 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1026 next = next->vm_next;
1027
1028 /*
1029 * Can it merge with the predecessor?
1030 */
1031 if (prev && prev->vm_end == addr &&
1032 mpol_equal(vma_policy(prev), policy) &&
1033 can_vma_merge_after(prev, vm_flags,
1034 anon_vma, file, pgoff)) {
1035 /*
1036 * OK, it can. Can we now merge in the successor as well?
1037 */
1038 if (next && end == next->vm_start &&
1039 mpol_equal(policy, vma_policy(next)) &&
1040 can_vma_merge_before(next, vm_flags,
1041 anon_vma, file, pgoff+pglen) &&
1042 is_mergeable_anon_vma(prev->anon_vma,
1043 next->anon_vma, NULL)) {
1044 /* cases 1, 6 */
1045 err = vma_adjust(prev, prev->vm_start,
1046 next->vm_end, prev->vm_pgoff, NULL);
1047 } else /* cases 2, 5, 7 */
1048 err = vma_adjust(prev, prev->vm_start,
1049 end, prev->vm_pgoff, NULL);
1050 if (err)
1051 return NULL;
1052 khugepaged_enter_vma_merge(prev);
1053 return prev;
1054 }
1055
1056 /*
1057 * Can this new request be merged in front of next?
1058 */
1059 if (next && end == next->vm_start &&
1060 mpol_equal(policy, vma_policy(next)) &&
1061 can_vma_merge_before(next, vm_flags,
1062 anon_vma, file, pgoff+pglen)) {
1063 if (prev && addr < prev->vm_end) /* case 4 */
1064 err = vma_adjust(prev, prev->vm_start,
1065 addr, prev->vm_pgoff, NULL);
1066 else /* cases 3, 8 */
1067 err = vma_adjust(area, addr, next->vm_end,
1068 next->vm_pgoff - pglen, NULL);
1069 if (err)
1070 return NULL;
1071 khugepaged_enter_vma_merge(area);
1072 return area;
1073 }
1074
1075 return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093 return a->vm_end == b->vm_start &&
1094 mpol_equal(vma_policy(a), vma_policy(b)) &&
1095 a->vm_file == b->vm_file &&
1096 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124 if (anon_vma_compatible(a, b)) {
1125 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128 return anon_vma;
1129 }
1130 return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma. It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143 struct anon_vma *anon_vma;
1144 struct vm_area_struct *near;
1145
1146 near = vma->vm_next;
1147 if (!near)
1148 goto try_prev;
1149
1150 anon_vma = reusable_anon_vma(near, vma, near);
1151 if (anon_vma)
1152 return anon_vma;
1153try_prev:
1154 near = vma->vm_prev;
1155 if (!near)
1156 goto none;
1157
1158 anon_vma = reusable_anon_vma(near, near, vma);
1159 if (anon_vma)
1160 return anon_vma;
1161none:
1162 /*
1163 * There's no absolute need to look only at touching neighbours:
1164 * we could search further afield for "compatible" anon_vmas.
1165 * But it would probably just be a waste of time searching,
1166 * or lead to too many vmas hanging off the same anon_vma.
1167 * We're trying to allow mprotect remerging later on,
1168 * not trying to minimize memory used for anon_vmas.
1169 */
1170 return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175 struct file *file, long pages)
1176{
1177 const unsigned long stack_flags
1178 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180 mm->total_vm += pages;
1181
1182 if (file) {
1183 mm->shared_vm += pages;
1184 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185 mm->exec_vm += pages;
1186 } else if (flags & stack_flags)
1187 mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197 hint &= PAGE_MASK;
1198 if (((void *)hint != NULL) &&
1199 (hint < mmap_min_addr))
1200 return PAGE_ALIGN(mmap_min_addr);
1201 return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205 unsigned long flags,
1206 unsigned long len)
1207{
1208 unsigned long locked, lock_limit;
1209
1210 /* mlock MCL_FUTURE? */
1211 if (flags & VM_LOCKED) {
1212 locked = len >> PAGE_SHIFT;
1213 locked += mm->locked_vm;
1214 lock_limit = rlimit(RLIMIT_MEMLOCK);
1215 lock_limit >>= PAGE_SHIFT;
1216 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217 return -EAGAIN;
1218 }
1219 return 0;
1220}
1221
1222/*
1223 * The caller must hold down_write(¤t->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227 unsigned long len, unsigned long prot,
1228 unsigned long flags, unsigned long pgoff,
1229 unsigned long *populate)
1230{
1231 struct mm_struct * mm = current->mm;
1232 vm_flags_t vm_flags;
1233
1234 *populate = 0;
1235
1236 /*
1237 * Does the application expect PROT_READ to imply PROT_EXEC?
1238 *
1239 * (the exception is when the underlying filesystem is noexec
1240 * mounted, in which case we dont add PROT_EXEC.)
1241 */
1242 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244 prot |= PROT_EXEC;
1245
1246 if (!len)
1247 return -EINVAL;
1248
1249 if (!(flags & MAP_FIXED))
1250 addr = round_hint_to_min(addr);
1251
1252 /* Careful about overflows.. */
1253 len = PAGE_ALIGN(len);
1254 if (!len)
1255 return -ENOMEM;
1256
1257 /* offset overflow? */
1258 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259 return -EOVERFLOW;
1260
1261 /* Too many mappings? */
1262 if (mm->map_count > sysctl_max_map_count)
1263 return -ENOMEM;
1264
1265 /* Obtain the address to map to. we verify (or select) it and ensure
1266 * that it represents a valid section of the address space.
1267 */
1268 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269 if (addr & ~PAGE_MASK)
1270 return addr;
1271
1272 /* Do simple checking here so the lower-level routines won't have
1273 * to. we assume access permissions have been handled by the open
1274 * of the memory object, so we don't do any here.
1275 */
1276 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279 if (flags & MAP_LOCKED)
1280 if (!can_do_mlock())
1281 return -EPERM;
1282
1283 if (mlock_future_check(mm, vm_flags, len))
1284 return -EAGAIN;
1285
1286 if (file) {
1287 struct inode *inode = file_inode(file);
1288
1289 switch (flags & MAP_TYPE) {
1290 case MAP_SHARED:
1291 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292 return -EACCES;
1293
1294 /*
1295 * Make sure we don't allow writing to an append-only
1296 * file..
1297 */
1298 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299 return -EACCES;
1300
1301 /*
1302 * Make sure there are no mandatory locks on the file.
1303 */
1304 if (locks_verify_locked(file))
1305 return -EAGAIN;
1306
1307 vm_flags |= VM_SHARED | VM_MAYSHARE;
1308 if (!(file->f_mode & FMODE_WRITE))
1309 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311 /* fall through */
1312 case MAP_PRIVATE:
1313 if (!(file->f_mode & FMODE_READ))
1314 return -EACCES;
1315 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316 if (vm_flags & VM_EXEC)
1317 return -EPERM;
1318 vm_flags &= ~VM_MAYEXEC;
1319 }
1320
1321 if (!file->f_op->mmap)
1322 return -ENODEV;
1323 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324 return -EINVAL;
1325 break;
1326
1327 default:
1328 return -EINVAL;
1329 }
1330 } else {
1331 switch (flags & MAP_TYPE) {
1332 case MAP_SHARED:
1333 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334 return -EINVAL;
1335 /*
1336 * Ignore pgoff.
1337 */
1338 pgoff = 0;
1339 vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 break;
1341 case MAP_PRIVATE:
1342 /*
1343 * Set pgoff according to addr for anon_vma.
1344 */
1345 pgoff = addr >> PAGE_SHIFT;
1346 break;
1347 default:
1348 return -EINVAL;
1349 }
1350 }
1351
1352 /*
1353 * Set 'VM_NORESERVE' if we should not account for the
1354 * memory use of this mapping.
1355 */
1356 if (flags & MAP_NORESERVE) {
1357 /* We honor MAP_NORESERVE if allowed to overcommit */
1358 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359 vm_flags |= VM_NORESERVE;
1360
1361 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362 if (file && is_file_hugepages(file))
1363 vm_flags |= VM_NORESERVE;
1364 }
1365
1366 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367 if (!IS_ERR_VALUE(addr) &&
1368 ((vm_flags & VM_LOCKED) ||
1369 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370 *populate = len;
1371 return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375 unsigned long, prot, unsigned long, flags,
1376 unsigned long, fd, unsigned long, pgoff)
1377{
1378 struct file *file = NULL;
1379 unsigned long retval = -EBADF;
1380
1381 if (!(flags & MAP_ANONYMOUS)) {
1382 audit_mmap_fd(fd, flags);
1383 file = fget(fd);
1384 if (!file)
1385 goto out;
1386 if (is_file_hugepages(file))
1387 len = ALIGN(len, huge_page_size(hstate_file(file)));
1388 retval = -EINVAL;
1389 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390 goto out_fput;
1391 } else if (flags & MAP_HUGETLB) {
1392 struct user_struct *user = NULL;
1393 struct hstate *hs;
1394
1395 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396 if (!hs)
1397 return -EINVAL;
1398
1399 len = ALIGN(len, huge_page_size(hs));
1400 /*
1401 * VM_NORESERVE is used because the reservations will be
1402 * taken when vm_ops->mmap() is called
1403 * A dummy user value is used because we are not locking
1404 * memory so no accounting is necessary
1405 */
1406 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407 VM_NORESERVE,
1408 &user, HUGETLB_ANONHUGE_INODE,
1409 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410 if (IS_ERR(file))
1411 return PTR_ERR(file);
1412 }
1413
1414 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418 if (file)
1419 fput(file);
1420out:
1421 return retval;
1422}
1423
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426 unsigned long addr;
1427 unsigned long len;
1428 unsigned long prot;
1429 unsigned long flags;
1430 unsigned long fd;
1431 unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436 struct mmap_arg_struct a;
1437
1438 if (copy_from_user(&a, arg, sizeof(a)))
1439 return -EFAULT;
1440 if (a.offset & ~PAGE_MASK)
1441 return -EINVAL;
1442
1443 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444 a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456 vm_flags_t vm_flags = vma->vm_flags;
1457
1458 /* If it was private or non-writable, the write bit is already clear */
1459 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460 return 0;
1461
1462 /* The backer wishes to know when pages are first written to? */
1463 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464 return 1;
1465
1466 /* The open routine did something to the protections already? */
1467 if (pgprot_val(vma->vm_page_prot) !=
1468 pgprot_val(vm_get_page_prot(vm_flags)))
1469 return 0;
1470
1471 /* Specialty mapping? */
1472 if (vm_flags & VM_PFNMAP)
1473 return 0;
1474
1475 /* Can the mapping track the dirty pages? */
1476 return vma->vm_file && vma->vm_file->f_mapping &&
1477 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486 /*
1487 * hugetlb has its own accounting separate from the core VM
1488 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489 */
1490 if (file && is_file_hugepages(file))
1491 return 0;
1492
1493 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498{
1499 struct mm_struct *mm = current->mm;
1500 struct vm_area_struct *vma, *prev;
1501 int error;
1502 struct rb_node **rb_link, *rb_parent;
1503 unsigned long charged = 0;
1504
1505 /* Check against address space limit. */
1506 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507 unsigned long nr_pages;
1508
1509 /*
1510 * MAP_FIXED may remove pages of mappings that intersects with
1511 * requested mapping. Account for the pages it would unmap.
1512 */
1513 if (!(vm_flags & MAP_FIXED))
1514 return -ENOMEM;
1515
1516 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519 return -ENOMEM;
1520 }
1521
1522 /* Clear old maps */
1523 error = -ENOMEM;
1524munmap_back:
1525 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526 if (do_munmap(mm, addr, len))
1527 return -ENOMEM;
1528 goto munmap_back;
1529 }
1530
1531 /*
1532 * Private writable mapping: check memory availability
1533 */
1534 if (accountable_mapping(file, vm_flags)) {
1535 charged = len >> PAGE_SHIFT;
1536 if (security_vm_enough_memory_mm(mm, charged))
1537 return -ENOMEM;
1538 vm_flags |= VM_ACCOUNT;
1539 }
1540
1541 /*
1542 * Can we just expand an old mapping?
1543 */
1544 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545 if (vma)
1546 goto out;
1547
1548 /*
1549 * Determine the object being mapped and call the appropriate
1550 * specific mapper. the address has already been validated, but
1551 * not unmapped, but the maps are removed from the list.
1552 */
1553 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554 if (!vma) {
1555 error = -ENOMEM;
1556 goto unacct_error;
1557 }
1558
1559 vma->vm_mm = mm;
1560 vma->vm_start = addr;
1561 vma->vm_end = addr + len;
1562 vma->vm_flags = vm_flags;
1563 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564 vma->vm_pgoff = pgoff;
1565 INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567 if (file) {
1568 if (vm_flags & VM_DENYWRITE) {
1569 error = deny_write_access(file);
1570 if (error)
1571 goto free_vma;
1572 }
1573 vma->vm_file = get_file(file);
1574 error = file->f_op->mmap(file, vma);
1575 if (error)
1576 goto unmap_and_free_vma;
1577
1578 /* Can addr have changed??
1579 *
1580 * Answer: Yes, several device drivers can do it in their
1581 * f_op->mmap method. -DaveM
1582 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583 * be updated for vma_link()
1584 */
1585 WARN_ON_ONCE(addr != vma->vm_start);
1586
1587 addr = vma->vm_start;
1588 vm_flags = vma->vm_flags;
1589 } else if (vm_flags & VM_SHARED) {
1590 error = shmem_zero_setup(vma);
1591 if (error)
1592 goto free_vma;
1593 }
1594
1595 if (vma_wants_writenotify(vma)) {
1596 pgprot_t pprot = vma->vm_page_prot;
1597
1598 /* Can vma->vm_page_prot have changed??
1599 *
1600 * Answer: Yes, drivers may have changed it in their
1601 * f_op->mmap method.
1602 *
1603 * Ensures that vmas marked as uncached stay that way.
1604 */
1605 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608 }
1609
1610 vma_link(mm, vma, prev, rb_link, rb_parent);
1611 /* Once vma denies write, undo our temporary denial count */
1612 if (vm_flags & VM_DENYWRITE)
1613 allow_write_access(file);
1614 file = vma->vm_file;
1615out:
1616 perf_event_mmap(vma);
1617
1618 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619 if (vm_flags & VM_LOCKED) {
1620 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621 vma == get_gate_vma(current->mm)))
1622 mm->locked_vm += (len >> PAGE_SHIFT);
1623 else
1624 vma->vm_flags &= ~VM_LOCKED;
1625 }
1626
1627 if (file)
1628 uprobe_mmap(vma);
1629
1630 /*
1631 * New (or expanded) vma always get soft dirty status.
1632 * Otherwise user-space soft-dirty page tracker won't
1633 * be able to distinguish situation when vma area unmapped,
1634 * then new mapped in-place (which must be aimed as
1635 * a completely new data area).
1636 */
1637 vma->vm_flags |= VM_SOFTDIRTY;
1638
1639 return addr;
1640
1641unmap_and_free_vma:
1642 if (vm_flags & VM_DENYWRITE)
1643 allow_write_access(file);
1644 vma->vm_file = NULL;
1645 fput(file);
1646
1647 /* Undo any partial mapping done by a device driver. */
1648 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649 charged = 0;
1650free_vma:
1651 kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653 if (charged)
1654 vm_unacct_memory(charged);
1655 return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659{
1660 /*
1661 * We implement the search by looking for an rbtree node that
1662 * immediately follows a suitable gap. That is,
1663 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664 * - gap_end = vma->vm_start >= info->low_limit + length;
1665 * - gap_end - gap_start >= length
1666 */
1667
1668 struct mm_struct *mm = current->mm;
1669 struct vm_area_struct *vma;
1670 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672 /* Adjust search length to account for worst case alignment overhead */
1673 length = info->length + info->align_mask;
1674 if (length < info->length)
1675 return -ENOMEM;
1676
1677 /* Adjust search limits by the desired length */
1678 if (info->high_limit < length)
1679 return -ENOMEM;
1680 high_limit = info->high_limit - length;
1681
1682 if (info->low_limit > high_limit)
1683 return -ENOMEM;
1684 low_limit = info->low_limit + length;
1685
1686 /* Check if rbtree root looks promising */
1687 if (RB_EMPTY_ROOT(&mm->mm_rb))
1688 goto check_highest;
1689 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690 if (vma->rb_subtree_gap < length)
1691 goto check_highest;
1692
1693 while (true) {
1694 /* Visit left subtree if it looks promising */
1695 gap_end = vma->vm_start;
1696 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697 struct vm_area_struct *left =
1698 rb_entry(vma->vm_rb.rb_left,
1699 struct vm_area_struct, vm_rb);
1700 if (left->rb_subtree_gap >= length) {
1701 vma = left;
1702 continue;
1703 }
1704 }
1705
1706 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708 /* Check if current node has a suitable gap */
1709 if (gap_start > high_limit)
1710 return -ENOMEM;
1711 if (gap_end >= low_limit && gap_end - gap_start >= length)
1712 goto found;
1713
1714 /* Visit right subtree if it looks promising */
1715 if (vma->vm_rb.rb_right) {
1716 struct vm_area_struct *right =
1717 rb_entry(vma->vm_rb.rb_right,
1718 struct vm_area_struct, vm_rb);
1719 if (right->rb_subtree_gap >= length) {
1720 vma = right;
1721 continue;
1722 }
1723 }
1724
1725 /* Go back up the rbtree to find next candidate node */
1726 while (true) {
1727 struct rb_node *prev = &vma->vm_rb;
1728 if (!rb_parent(prev))
1729 goto check_highest;
1730 vma = rb_entry(rb_parent(prev),
1731 struct vm_area_struct, vm_rb);
1732 if (prev == vma->vm_rb.rb_left) {
1733 gap_start = vma->vm_prev->vm_end;
1734 gap_end = vma->vm_start;
1735 goto check_current;
1736 }
1737 }
1738 }
1739
1740check_highest:
1741 /* Check highest gap, which does not precede any rbtree node */
1742 gap_start = mm->highest_vm_end;
1743 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1744 if (gap_start > high_limit)
1745 return -ENOMEM;
1746
1747found:
1748 /* We found a suitable gap. Clip it with the original low_limit. */
1749 if (gap_start < info->low_limit)
1750 gap_start = info->low_limit;
1751
1752 /* Adjust gap address to the desired alignment */
1753 gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755 VM_BUG_ON(gap_start + info->length > info->high_limit);
1756 VM_BUG_ON(gap_start + info->length > gap_end);
1757 return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761{
1762 struct mm_struct *mm = current->mm;
1763 struct vm_area_struct *vma;
1764 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766 /* Adjust search length to account for worst case alignment overhead */
1767 length = info->length + info->align_mask;
1768 if (length < info->length)
1769 return -ENOMEM;
1770
1771 /*
1772 * Adjust search limits by the desired length.
1773 * See implementation comment at top of unmapped_area().
1774 */
1775 gap_end = info->high_limit;
1776 if (gap_end < length)
1777 return -ENOMEM;
1778 high_limit = gap_end - length;
1779
1780 if (info->low_limit > high_limit)
1781 return -ENOMEM;
1782 low_limit = info->low_limit + length;
1783
1784 /* Check highest gap, which does not precede any rbtree node */
1785 gap_start = mm->highest_vm_end;
1786 if (gap_start <= high_limit)
1787 goto found_highest;
1788
1789 /* Check if rbtree root looks promising */
1790 if (RB_EMPTY_ROOT(&mm->mm_rb))
1791 return -ENOMEM;
1792 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793 if (vma->rb_subtree_gap < length)
1794 return -ENOMEM;
1795
1796 while (true) {
1797 /* Visit right subtree if it looks promising */
1798 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800 struct vm_area_struct *right =
1801 rb_entry(vma->vm_rb.rb_right,
1802 struct vm_area_struct, vm_rb);
1803 if (right->rb_subtree_gap >= length) {
1804 vma = right;
1805 continue;
1806 }
1807 }
1808
1809check_current:
1810 /* Check if current node has a suitable gap */
1811 gap_end = vma->vm_start;
1812 if (gap_end < low_limit)
1813 return -ENOMEM;
1814 if (gap_start <= high_limit && gap_end - gap_start >= length)
1815 goto found;
1816
1817 /* Visit left subtree if it looks promising */
1818 if (vma->vm_rb.rb_left) {
1819 struct vm_area_struct *left =
1820 rb_entry(vma->vm_rb.rb_left,
1821 struct vm_area_struct, vm_rb);
1822 if (left->rb_subtree_gap >= length) {
1823 vma = left;
1824 continue;
1825 }
1826 }
1827
1828 /* Go back up the rbtree to find next candidate node */
1829 while (true) {
1830 struct rb_node *prev = &vma->vm_rb;
1831 if (!rb_parent(prev))
1832 return -ENOMEM;
1833 vma = rb_entry(rb_parent(prev),
1834 struct vm_area_struct, vm_rb);
1835 if (prev == vma->vm_rb.rb_right) {
1836 gap_start = vma->vm_prev ?
1837 vma->vm_prev->vm_end : 0;
1838 goto check_current;
1839 }
1840 }
1841 }
1842
1843found:
1844 /* We found a suitable gap. Clip it with the original high_limit. */
1845 if (gap_end > info->high_limit)
1846 gap_end = info->high_limit;
1847
1848found_highest:
1849 /* Compute highest gap address at the desired alignment */
1850 gap_end -= info->length;
1851 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853 VM_BUG_ON(gap_end < info->low_limit);
1854 VM_BUG_ON(gap_end < gap_start);
1855 return gap_end;
1856}
1857
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 * if (ret & ~PAGE_MASK)
1865 * error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872 unsigned long len, unsigned long pgoff, unsigned long flags)
1873{
1874 struct mm_struct *mm = current->mm;
1875 struct vm_area_struct *vma;
1876 struct vm_unmapped_area_info info;
1877
1878 if (len > TASK_SIZE - mmap_min_addr)
1879 return -ENOMEM;
1880
1881 if (flags & MAP_FIXED)
1882 return addr;
1883
1884 if (addr) {
1885 addr = PAGE_ALIGN(addr);
1886 vma = find_vma(mm, addr);
1887 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888 (!vma || addr + len <= vma->vm_start))
1889 return addr;
1890 }
1891
1892 info.flags = 0;
1893 info.length = len;
1894 info.low_limit = mm->mmap_base;
1895 info.high_limit = TASK_SIZE;
1896 info.align_mask = 0;
1897 return vm_unmapped_area(&info);
1898}
1899#endif
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908 const unsigned long len, const unsigned long pgoff,
1909 const unsigned long flags)
1910{
1911 struct vm_area_struct *vma;
1912 struct mm_struct *mm = current->mm;
1913 unsigned long addr = addr0;
1914 struct vm_unmapped_area_info info;
1915
1916 /* requested length too big for entire address space */
1917 if (len > TASK_SIZE - mmap_min_addr)
1918 return -ENOMEM;
1919
1920 if (flags & MAP_FIXED)
1921 return addr;
1922
1923 /* requesting a specific address */
1924 if (addr) {
1925 addr = PAGE_ALIGN(addr);
1926 vma = find_vma(mm, addr);
1927 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928 (!vma || addr + len <= vma->vm_start))
1929 return addr;
1930 }
1931
1932 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933 info.length = len;
1934 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935 info.high_limit = mm->mmap_base;
1936 info.align_mask = 0;
1937 addr = vm_unmapped_area(&info);
1938
1939 /*
1940 * A failed mmap() very likely causes application failure,
1941 * so fall back to the bottom-up function here. This scenario
1942 * can happen with large stack limits and large mmap()
1943 * allocations.
1944 */
1945 if (addr & ~PAGE_MASK) {
1946 VM_BUG_ON(addr != -ENOMEM);
1947 info.flags = 0;
1948 info.low_limit = TASK_UNMAPPED_BASE;
1949 info.high_limit = TASK_SIZE;
1950 addr = vm_unmapped_area(&info);
1951 }
1952
1953 return addr;
1954}
1955#endif
1956
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959 unsigned long pgoff, unsigned long flags)
1960{
1961 unsigned long (*get_area)(struct file *, unsigned long,
1962 unsigned long, unsigned long, unsigned long);
1963
1964 unsigned long error = arch_mmap_check(addr, len, flags);
1965 if (error)
1966 return error;
1967
1968 /* Careful about overflows.. */
1969 if (len > TASK_SIZE)
1970 return -ENOMEM;
1971
1972 get_area = current->mm->get_unmapped_area;
1973 if (file && file->f_op->get_unmapped_area)
1974 get_area = file->f_op->get_unmapped_area;
1975 addr = get_area(file, addr, len, pgoff, flags);
1976 if (IS_ERR_VALUE(addr))
1977 return addr;
1978
1979 if (addr > TASK_SIZE - len)
1980 return -ENOMEM;
1981 if (addr & ~PAGE_MASK)
1982 return -EINVAL;
1983
1984 addr = arch_rebalance_pgtables(addr, len);
1985 error = security_mmap_addr(addr);
1986 return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
1990
1991/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993{
1994 struct rb_node *rb_node;
1995 struct vm_area_struct *vma;
1996
1997 /* Check the cache first. */
1998 vma = vmacache_find(mm, addr);
1999 if (likely(vma))
2000 return vma;
2001
2002 rb_node = mm->mm_rb.rb_node;
2003 vma = NULL;
2004
2005 while (rb_node) {
2006 struct vm_area_struct *tmp;
2007
2008 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010 if (tmp->vm_end > addr) {
2011 vma = tmp;
2012 if (tmp->vm_start <= addr)
2013 break;
2014 rb_node = rb_node->rb_left;
2015 } else
2016 rb_node = rb_node->rb_right;
2017 }
2018
2019 if (vma)
2020 vmacache_update(addr, vma);
2021 return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031 struct vm_area_struct **pprev)
2032{
2033 struct vm_area_struct *vma;
2034
2035 vma = find_vma(mm, addr);
2036 if (vma) {
2037 *pprev = vma->vm_prev;
2038 } else {
2039 struct rb_node *rb_node = mm->mm_rb.rb_node;
2040 *pprev = NULL;
2041 while (rb_node) {
2042 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043 rb_node = rb_node->rb_right;
2044 }
2045 }
2046 return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055{
2056 struct mm_struct *mm = vma->vm_mm;
2057 struct rlimit *rlim = current->signal->rlim;
2058 unsigned long new_start;
2059
2060 /* address space limit tests */
2061 if (!may_expand_vm(mm, grow))
2062 return -ENOMEM;
2063
2064 /* Stack limit test */
2065 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066 return -ENOMEM;
2067
2068 /* mlock limit tests */
2069 if (vma->vm_flags & VM_LOCKED) {
2070 unsigned long locked;
2071 unsigned long limit;
2072 locked = mm->locked_vm + grow;
2073 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074 limit >>= PAGE_SHIFT;
2075 if (locked > limit && !capable(CAP_IPC_LOCK))
2076 return -ENOMEM;
2077 }
2078
2079 /* Check to ensure the stack will not grow into a hugetlb-only region */
2080 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081 vma->vm_end - size;
2082 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083 return -EFAULT;
2084
2085 /*
2086 * Overcommit.. This must be the final test, as it will
2087 * update security statistics.
2088 */
2089 if (security_vm_enough_memory_mm(mm, grow))
2090 return -ENOMEM;
2091
2092 /* Ok, everything looks good - let it rip */
2093 if (vma->vm_flags & VM_LOCKED)
2094 mm->locked_vm += grow;
2095 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096 return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end. Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106 int error;
2107
2108 if (!(vma->vm_flags & VM_GROWSUP))
2109 return -EFAULT;
2110
2111 /*
2112 * We must make sure the anon_vma is allocated
2113 * so that the anon_vma locking is not a noop.
2114 */
2115 if (unlikely(anon_vma_prepare(vma)))
2116 return -ENOMEM;
2117 vma_lock_anon_vma(vma);
2118
2119 /*
2120 * vma->vm_start/vm_end cannot change under us because the caller
2121 * is required to hold the mmap_sem in read mode. We need the
2122 * anon_vma lock to serialize against concurrent expand_stacks.
2123 * Also guard against wrapping around to address 0.
2124 */
2125 if (address < PAGE_ALIGN(address+4))
2126 address = PAGE_ALIGN(address+4);
2127 else {
2128 vma_unlock_anon_vma(vma);
2129 return -ENOMEM;
2130 }
2131 error = 0;
2132
2133 /* Somebody else might have raced and expanded it already */
2134 if (address > vma->vm_end) {
2135 unsigned long size, grow;
2136
2137 size = address - vma->vm_start;
2138 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140 error = -ENOMEM;
2141 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142 error = acct_stack_growth(vma, size, grow);
2143 if (!error) {
2144 /*
2145 * vma_gap_update() doesn't support concurrent
2146 * updates, but we only hold a shared mmap_sem
2147 * lock here, so we need to protect against
2148 * concurrent vma expansions.
2149 * vma_lock_anon_vma() doesn't help here, as
2150 * we don't guarantee that all growable vmas
2151 * in a mm share the same root anon vma.
2152 * So, we reuse mm->page_table_lock to guard
2153 * against concurrent vma expansions.
2154 */
2155 spin_lock(&vma->vm_mm->page_table_lock);
2156 anon_vma_interval_tree_pre_update_vma(vma);
2157 vma->vm_end = address;
2158 anon_vma_interval_tree_post_update_vma(vma);
2159 if (vma->vm_next)
2160 vma_gap_update(vma->vm_next);
2161 else
2162 vma->vm_mm->highest_vm_end = address;
2163 spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165 perf_event_mmap(vma);
2166 }
2167 }
2168 }
2169 vma_unlock_anon_vma(vma);
2170 khugepaged_enter_vma_merge(vma);
2171 validate_mm(vma->vm_mm);
2172 return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start. Have to extend vma.
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180 unsigned long address)
2181{
2182 int error;
2183
2184 /*
2185 * We must make sure the anon_vma is allocated
2186 * so that the anon_vma locking is not a noop.
2187 */
2188 if (unlikely(anon_vma_prepare(vma)))
2189 return -ENOMEM;
2190
2191 address &= PAGE_MASK;
2192 error = security_mmap_addr(address);
2193 if (error)
2194 return error;
2195
2196 vma_lock_anon_vma(vma);
2197
2198 /*
2199 * vma->vm_start/vm_end cannot change under us because the caller
2200 * is required to hold the mmap_sem in read mode. We need the
2201 * anon_vma lock to serialize against concurrent expand_stacks.
2202 */
2203
2204 /* Somebody else might have raced and expanded it already */
2205 if (address < vma->vm_start) {
2206 unsigned long size, grow;
2207
2208 size = vma->vm_end - address;
2209 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211 error = -ENOMEM;
2212 if (grow <= vma->vm_pgoff) {
2213 error = acct_stack_growth(vma, size, grow);
2214 if (!error) {
2215 /*
2216 * vma_gap_update() doesn't support concurrent
2217 * updates, but we only hold a shared mmap_sem
2218 * lock here, so we need to protect against
2219 * concurrent vma expansions.
2220 * vma_lock_anon_vma() doesn't help here, as
2221 * we don't guarantee that all growable vmas
2222 * in a mm share the same root anon vma.
2223 * So, we reuse mm->page_table_lock to guard
2224 * against concurrent vma expansions.
2225 */
2226 spin_lock(&vma->vm_mm->page_table_lock);
2227 anon_vma_interval_tree_pre_update_vma(vma);
2228 vma->vm_start = address;
2229 vma->vm_pgoff -= grow;
2230 anon_vma_interval_tree_post_update_vma(vma);
2231 vma_gap_update(vma);
2232 spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234 perf_event_mmap(vma);
2235 }
2236 }
2237 }
2238 vma_unlock_anon_vma(vma);
2239 khugepaged_enter_vma_merge(vma);
2240 validate_mm(vma->vm_mm);
2241 return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258 struct vm_area_struct *next;
2259
2260 address &= PAGE_MASK;
2261 next = vma->vm_next;
2262 if (next && next->vm_start == address + PAGE_SIZE) {
2263 if (!(next->vm_flags & VM_GROWSUP))
2264 return -ENOMEM;
2265 }
2266 return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272 struct vm_area_struct *vma, *prev;
2273
2274 addr &= PAGE_MASK;
2275 vma = find_vma_prev(mm, addr, &prev);
2276 if (vma && (vma->vm_start <= addr))
2277 return vma;
2278 if (!prev || expand_stack(prev, addr))
2279 return NULL;
2280 if (prev->vm_flags & VM_LOCKED)
2281 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282 return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287 struct vm_area_struct *prev;
2288
2289 address &= PAGE_MASK;
2290 prev = vma->vm_prev;
2291 if (prev && prev->vm_end == address) {
2292 if (!(prev->vm_flags & VM_GROWSDOWN))
2293 return -ENOMEM;
2294 }
2295 return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301 struct vm_area_struct * vma;
2302 unsigned long start;
2303
2304 addr &= PAGE_MASK;
2305 vma = find_vma(mm,addr);
2306 if (!vma)
2307 return NULL;
2308 if (vma->vm_start <= addr)
2309 return vma;
2310 if (!(vma->vm_flags & VM_GROWSDOWN))
2311 return NULL;
2312 start = vma->vm_start;
2313 if (expand_stack(vma, addr))
2314 return NULL;
2315 if (vma->vm_flags & VM_LOCKED)
2316 __mlock_vma_pages_range(vma, addr, start, NULL);
2317 return vma;
2318}
2319#endif
2320
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329 unsigned long nr_accounted = 0;
2330
2331 /* Update high watermark before we lower total_vm */
2332 update_hiwater_vm(mm);
2333 do {
2334 long nrpages = vma_pages(vma);
2335
2336 if (vma->vm_flags & VM_ACCOUNT)
2337 nr_accounted += nrpages;
2338 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339 vma = remove_vma(vma);
2340 } while (vma);
2341 vm_unacct_memory(nr_accounted);
2342 validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351 struct vm_area_struct *vma, struct vm_area_struct *prev,
2352 unsigned long start, unsigned long end)
2353{
2354 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355 struct mmu_gather tlb;
2356
2357 lru_add_drain();
2358 tlb_gather_mmu(&tlb, mm, start, end);
2359 update_hiwater_rss(mm);
2360 unmap_vmas(&tlb, vma, start, end);
2361 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362 next ? next->vm_start : USER_PGTABLES_CEILING);
2363 tlb_finish_mmu(&tlb, start, end);
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372 struct vm_area_struct *prev, unsigned long end)
2373{
2374 struct vm_area_struct **insertion_point;
2375 struct vm_area_struct *tail_vma = NULL;
2376
2377 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378 vma->vm_prev = NULL;
2379 do {
2380 vma_rb_erase(vma, &mm->mm_rb);
2381 mm->map_count--;
2382 tail_vma = vma;
2383 vma = vma->vm_next;
2384 } while (vma && vma->vm_start < end);
2385 *insertion_point = vma;
2386 if (vma) {
2387 vma->vm_prev = prev;
2388 vma_gap_update(vma);
2389 } else
2390 mm->highest_vm_end = prev ? prev->vm_end : 0;
2391 tail_vma->vm_next = NULL;
2392
2393 /* Kill the cache */
2394 vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402 unsigned long addr, int new_below)
2403{
2404 struct vm_area_struct *new;
2405 int err = -ENOMEM;
2406
2407 if (is_vm_hugetlb_page(vma) && (addr &
2408 ~(huge_page_mask(hstate_vma(vma)))))
2409 return -EINVAL;
2410
2411 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412 if (!new)
2413 goto out_err;
2414
2415 /* most fields are the same, copy all, and then fixup */
2416 *new = *vma;
2417
2418 INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420 if (new_below)
2421 new->vm_end = addr;
2422 else {
2423 new->vm_start = addr;
2424 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425 }
2426
2427 err = vma_dup_policy(vma, new);
2428 if (err)
2429 goto out_free_vma;
2430
2431 if (anon_vma_clone(new, vma))
2432 goto out_free_mpol;
2433
2434 if (new->vm_file)
2435 get_file(new->vm_file);
2436
2437 if (new->vm_ops && new->vm_ops->open)
2438 new->vm_ops->open(new);
2439
2440 if (new_below)
2441 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2443 else
2444 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446 /* Success. */
2447 if (!err)
2448 return 0;
2449
2450 /* Clean everything up if vma_adjust failed. */
2451 if (new->vm_ops && new->vm_ops->close)
2452 new->vm_ops->close(new);
2453 if (new->vm_file)
2454 fput(new->vm_file);
2455 unlink_anon_vmas(new);
2456 out_free_mpol:
2457 mpol_put(vma_policy(new));
2458 out_free_vma:
2459 kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461 return err;
2462}
2463
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469 unsigned long addr, int new_below)
2470{
2471 if (mm->map_count >= sysctl_max_map_count)
2472 return -ENOMEM;
2473
2474 return __split_vma(mm, vma, addr, new_below);
2475}
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work. This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483{
2484 unsigned long end;
2485 struct vm_area_struct *vma, *prev, *last;
2486
2487 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488 return -EINVAL;
2489
2490 if ((len = PAGE_ALIGN(len)) == 0)
2491 return -EINVAL;
2492
2493 /* Find the first overlapping VMA */
2494 vma = find_vma(mm, start);
2495 if (!vma)
2496 return 0;
2497 prev = vma->vm_prev;
2498 /* we have start < vma->vm_end */
2499
2500 /* if it doesn't overlap, we have nothing.. */
2501 end = start + len;
2502 if (vma->vm_start >= end)
2503 return 0;
2504
2505 /*
2506 * If we need to split any vma, do it now to save pain later.
2507 *
2508 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509 * unmapped vm_area_struct will remain in use: so lower split_vma
2510 * places tmp vma above, and higher split_vma places tmp vma below.
2511 */
2512 if (start > vma->vm_start) {
2513 int error;
2514
2515 /*
2516 * Make sure that map_count on return from munmap() will
2517 * not exceed its limit; but let map_count go just above
2518 * its limit temporarily, to help free resources as expected.
2519 */
2520 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521 return -ENOMEM;
2522
2523 error = __split_vma(mm, vma, start, 0);
2524 if (error)
2525 return error;
2526 prev = vma;
2527 }
2528
2529 /* Does it split the last one? */
2530 last = find_vma(mm, end);
2531 if (last && end > last->vm_start) {
2532 int error = __split_vma(mm, last, end, 1);
2533 if (error)
2534 return error;
2535 }
2536 vma = prev? prev->vm_next: mm->mmap;
2537
2538 /*
2539 * unlock any mlock()ed ranges before detaching vmas
2540 */
2541 if (mm->locked_vm) {
2542 struct vm_area_struct *tmp = vma;
2543 while (tmp && tmp->vm_start < end) {
2544 if (tmp->vm_flags & VM_LOCKED) {
2545 mm->locked_vm -= vma_pages(tmp);
2546 munlock_vma_pages_all(tmp);
2547 }
2548 tmp = tmp->vm_next;
2549 }
2550 }
2551
2552 /*
2553 * Remove the vma's, and unmap the actual pages
2554 */
2555 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556 unmap_region(mm, vma, prev, start, end);
2557
2558 /* Fix up all other VM information */
2559 remove_vma_list(mm, vma);
2560
2561 return 0;
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566 int ret;
2567 struct mm_struct *mm = current->mm;
2568
2569 down_write(&mm->mmap_sem);
2570 ret = do_munmap(mm, start, len);
2571 up_write(&mm->mmap_sem);
2572 return ret;
2573}
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
2578 profile_munmap(addr);
2579 return vm_munmap(addr, len);
2580}
2581
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
2583{
2584#ifdef CONFIG_DEBUG_VM
2585 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586 WARN_ON(1);
2587 up_read(&mm->mmap_sem);
2588 }
2589#endif
2590}
2591
2592/*
2593 * this is really a simplified "do_mmap". it only handles
2594 * anonymous maps. eventually we may be able to do some
2595 * brk-specific accounting here.
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
2598{
2599 struct mm_struct * mm = current->mm;
2600 struct vm_area_struct * vma, * prev;
2601 unsigned long flags;
2602 struct rb_node ** rb_link, * rb_parent;
2603 pgoff_t pgoff = addr >> PAGE_SHIFT;
2604 int error;
2605
2606 len = PAGE_ALIGN(len);
2607 if (!len)
2608 return addr;
2609
2610 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613 if (error & ~PAGE_MASK)
2614 return error;
2615
2616 error = mlock_future_check(mm, mm->def_flags, len);
2617 if (error)
2618 return error;
2619
2620 /*
2621 * mm->mmap_sem is required to protect against another thread
2622 * changing the mappings in case we sleep.
2623 */
2624 verify_mm_writelocked(mm);
2625
2626 /*
2627 * Clear old maps. this also does some error checking for us
2628 */
2629 munmap_back:
2630 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631 if (do_munmap(mm, addr, len))
2632 return -ENOMEM;
2633 goto munmap_back;
2634 }
2635
2636 /* Check against address space limits *after* clearing old maps... */
2637 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638 return -ENOMEM;
2639
2640 if (mm->map_count > sysctl_max_map_count)
2641 return -ENOMEM;
2642
2643 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644 return -ENOMEM;
2645
2646 /* Can we just expand an old private anonymous mapping? */
2647 vma = vma_merge(mm, prev, addr, addr + len, flags,
2648 NULL, NULL, pgoff, NULL);
2649 if (vma)
2650 goto out;
2651
2652 /*
2653 * create a vma struct for an anonymous mapping
2654 */
2655 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656 if (!vma) {
2657 vm_unacct_memory(len >> PAGE_SHIFT);
2658 return -ENOMEM;
2659 }
2660
2661 INIT_LIST_HEAD(&vma->anon_vma_chain);
2662 vma->vm_mm = mm;
2663 vma->vm_start = addr;
2664 vma->vm_end = addr + len;
2665 vma->vm_pgoff = pgoff;
2666 vma->vm_flags = flags;
2667 vma->vm_page_prot = vm_get_page_prot(flags);
2668 vma_link(mm, vma, prev, rb_link, rb_parent);
2669out:
2670 perf_event_mmap(vma);
2671 mm->total_vm += len >> PAGE_SHIFT;
2672 if (flags & VM_LOCKED)
2673 mm->locked_vm += (len >> PAGE_SHIFT);
2674 vma->vm_flags |= VM_SOFTDIRTY;
2675 return addr;
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680 struct mm_struct *mm = current->mm;
2681 unsigned long ret;
2682 bool populate;
2683
2684 down_write(&mm->mmap_sem);
2685 ret = do_brk(addr, len);
2686 populate = ((mm->def_flags & VM_LOCKED) != 0);
2687 up_write(&mm->mmap_sem);
2688 if (populate)
2689 mm_populate(addr, len);
2690 return ret;
2691}
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697 struct mmu_gather tlb;
2698 struct vm_area_struct *vma;
2699 unsigned long nr_accounted = 0;
2700
2701 /* mm's last user has gone, and its about to be pulled down */
2702 mmu_notifier_release(mm);
2703
2704 if (mm->locked_vm) {
2705 vma = mm->mmap;
2706 while (vma) {
2707 if (vma->vm_flags & VM_LOCKED)
2708 munlock_vma_pages_all(vma);
2709 vma = vma->vm_next;
2710 }
2711 }
2712
2713 arch_exit_mmap(mm);
2714
2715 vma = mm->mmap;
2716 if (!vma) /* Can happen if dup_mmap() received an OOM */
2717 return;
2718
2719 lru_add_drain();
2720 flush_cache_mm(mm);
2721 tlb_gather_mmu(&tlb, mm, 0, -1);
2722 /* update_hiwater_rss(mm) here? but nobody should be looking */
2723 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2724 unmap_vmas(&tlb, vma, 0, -1);
2725
2726 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727 tlb_finish_mmu(&tlb, 0, -1);
2728
2729 /*
2730 * Walk the list again, actually closing and freeing it,
2731 * with preemption enabled, without holding any MM locks.
2732 */
2733 while (vma) {
2734 if (vma->vm_flags & VM_ACCOUNT)
2735 nr_accounted += vma_pages(vma);
2736 vma = remove_vma(vma);
2737 }
2738 vm_unacct_memory(nr_accounted);
2739
2740 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree. If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750 struct vm_area_struct *prev;
2751 struct rb_node **rb_link, *rb_parent;
2752
2753 /*
2754 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755 * until its first write fault, when page's anon_vma and index
2756 * are set. But now set the vm_pgoff it will almost certainly
2757 * end up with (unless mremap moves it elsewhere before that
2758 * first wfault), so /proc/pid/maps tells a consistent story.
2759 *
2760 * By setting it to reflect the virtual start address of the
2761 * vma, merges and splits can happen in a seamless way, just
2762 * using the existing file pgoff checks and manipulations.
2763 * Similarly in do_mmap_pgoff and in do_brk.
2764 */
2765 if (!vma->vm_file) {
2766 BUG_ON(vma->anon_vma);
2767 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768 }
2769 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770 &prev, &rb_link, &rb_parent))
2771 return -ENOMEM;
2772 if ((vma->vm_flags & VM_ACCOUNT) &&
2773 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774 return -ENOMEM;
2775
2776 vma_link(mm, vma, prev, rb_link, rb_parent);
2777 return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785 unsigned long addr, unsigned long len, pgoff_t pgoff,
2786 bool *need_rmap_locks)
2787{
2788 struct vm_area_struct *vma = *vmap;
2789 unsigned long vma_start = vma->vm_start;
2790 struct mm_struct *mm = vma->vm_mm;
2791 struct vm_area_struct *new_vma, *prev;
2792 struct rb_node **rb_link, *rb_parent;
2793 bool faulted_in_anon_vma = true;
2794
2795 /*
2796 * If anonymous vma has not yet been faulted, update new pgoff
2797 * to match new location, to increase its chance of merging.
2798 */
2799 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800 pgoff = addr >> PAGE_SHIFT;
2801 faulted_in_anon_vma = false;
2802 }
2803
2804 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805 return NULL; /* should never get here */
2806 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808 if (new_vma) {
2809 /*
2810 * Source vma may have been merged into new_vma
2811 */
2812 if (unlikely(vma_start >= new_vma->vm_start &&
2813 vma_start < new_vma->vm_end)) {
2814 /*
2815 * The only way we can get a vma_merge with
2816 * self during an mremap is if the vma hasn't
2817 * been faulted in yet and we were allowed to
2818 * reset the dst vma->vm_pgoff to the
2819 * destination address of the mremap to allow
2820 * the merge to happen. mremap must change the
2821 * vm_pgoff linearity between src and dst vmas
2822 * (in turn preventing a vma_merge) to be
2823 * safe. It is only safe to keep the vm_pgoff
2824 * linear if there are no pages mapped yet.
2825 */
2826 VM_BUG_ON(faulted_in_anon_vma);
2827 *vmap = vma = new_vma;
2828 }
2829 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830 } else {
2831 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832 if (new_vma) {
2833 *new_vma = *vma;
2834 new_vma->vm_start = addr;
2835 new_vma->vm_end = addr + len;
2836 new_vma->vm_pgoff = pgoff;
2837 if (vma_dup_policy(vma, new_vma))
2838 goto out_free_vma;
2839 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840 if (anon_vma_clone(new_vma, vma))
2841 goto out_free_mempol;
2842 if (new_vma->vm_file)
2843 get_file(new_vma->vm_file);
2844 if (new_vma->vm_ops && new_vma->vm_ops->open)
2845 new_vma->vm_ops->open(new_vma);
2846 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847 *need_rmap_locks = false;
2848 }
2849 }
2850 return new_vma;
2851
2852 out_free_mempol:
2853 mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855 kmem_cache_free(vm_area_cachep, new_vma);
2856 return NULL;
2857}
2858
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864{
2865 unsigned long cur = mm->total_vm; /* pages */
2866 unsigned long lim;
2867
2868 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2869
2870 if (cur + npages > lim)
2871 return 0;
2872 return 1;
2873}
2874
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877 struct vm_fault *vmf)
2878{
2879 pgoff_t pgoff;
2880 struct page **pages;
2881
2882 /*
2883 * special mappings have no vm_file, and in that case, the mm
2884 * uses vm_pgoff internally. So we have to subtract it from here.
2885 * We are allowed to do this because we are the mm; do not copy
2886 * this code into drivers!
2887 */
2888 pgoff = vmf->pgoff - vma->vm_pgoff;
2889
2890 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891 pgoff--;
2892
2893 if (*pages) {
2894 struct page *page = *pages;
2895 get_page(page);
2896 vmf->page = page;
2897 return 0;
2898 }
2899
2900 return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911 .close = special_mapping_close,
2912 .fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925 unsigned long addr, unsigned long len,
2926 unsigned long vm_flags, struct page **pages)
2927{
2928 int ret;
2929 struct vm_area_struct *vma;
2930
2931 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932 if (unlikely(vma == NULL))
2933 return ERR_PTR(-ENOMEM);
2934
2935 INIT_LIST_HEAD(&vma->anon_vma_chain);
2936 vma->vm_mm = mm;
2937 vma->vm_start = addr;
2938 vma->vm_end = addr + len;
2939
2940 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943 vma->vm_ops = &special_mapping_vmops;
2944 vma->vm_private_data = pages;
2945
2946 ret = insert_vm_struct(mm, vma);
2947 if (ret)
2948 goto out;
2949
2950 mm->total_vm += len >> PAGE_SHIFT;
2951
2952 perf_event_mmap(vma);
2953
2954 return vma;
2955
2956out:
2957 kmem_cache_free(vm_area_cachep, vma);
2958 return ERR_PTR(ret);
2959}
2960
2961int install_special_mapping(struct mm_struct *mm,
2962 unsigned long addr, unsigned long len,
2963 unsigned long vm_flags, struct page **pages)
2964{
2965 struct vm_area_struct *vma = _install_special_mapping(mm,
2966 addr, len, vm_flags, pages);
2967
2968 if (IS_ERR(vma))
2969 return PTR_ERR(vma);
2970 return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978 /*
2979 * The LSB of head.next can't change from under us
2980 * because we hold the mm_all_locks_mutex.
2981 */
2982 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983 /*
2984 * We can safely modify head.next after taking the
2985 * anon_vma->root->rwsem. If some other vma in this mm shares
2986 * the same anon_vma we won't take it again.
2987 *
2988 * No need of atomic instructions here, head.next
2989 * can't change from under us thanks to the
2990 * anon_vma->root->rwsem.
2991 */
2992 if (__test_and_set_bit(0, (unsigned long *)
2993 &anon_vma->root->rb_root.rb_node))
2994 BUG();
2995 }
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001 /*
3002 * AS_MM_ALL_LOCKS can't change from under us because
3003 * we hold the mm_all_locks_mutex.
3004 *
3005 * Operations on ->flags have to be atomic because
3006 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007 * mm_all_locks_mutex, there may be other cpus
3008 * changing other bitflags in parallel to us.
3009 */
3010 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011 BUG();
3012 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013 }
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050 struct vm_area_struct *vma;
3051 struct anon_vma_chain *avc;
3052
3053 BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055 mutex_lock(&mm_all_locks_mutex);
3056
3057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058 if (signal_pending(current))
3059 goto out_unlock;
3060 if (vma->vm_file && vma->vm_file->f_mapping)
3061 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062 }
3063
3064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065 if (signal_pending(current))
3066 goto out_unlock;
3067 if (vma->anon_vma)
3068 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069 vm_lock_anon_vma(mm, avc->anon_vma);
3070 }
3071
3072 return 0;
3073
3074out_unlock:
3075 mm_drop_all_locks(mm);
3076 return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082 /*
3083 * The LSB of head.next can't change to 0 from under
3084 * us because we hold the mm_all_locks_mutex.
3085 *
3086 * We must however clear the bitflag before unlocking
3087 * the vma so the users using the anon_vma->rb_root will
3088 * never see our bitflag.
3089 *
3090 * No need of atomic instructions here, head.next
3091 * can't change from under us until we release the
3092 * anon_vma->root->rwsem.
3093 */
3094 if (!__test_and_clear_bit(0, (unsigned long *)
3095 &anon_vma->root->rb_root.rb_node))
3096 BUG();
3097 anon_vma_unlock_write(anon_vma);
3098 }
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104 /*
3105 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106 * because we hold the mm_all_locks_mutex.
3107 */
3108 mutex_unlock(&mapping->i_mmap_mutex);
3109 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110 &mapping->flags))
3111 BUG();
3112 }
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
3120{
3121 struct vm_area_struct *vma;
3122 struct anon_vma_chain *avc;
3123
3124 BUG_ON(down_read_trylock(&mm->mmap_sem));
3125 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128 if (vma->anon_vma)
3129 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130 vm_unlock_anon_vma(avc->anon_vma);
3131 if (vma->vm_file && vma->vm_file->f_mapping)
3132 vm_unlock_mapping(vma->vm_file->f_mapping);
3133 }
3134
3135 mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143 int ret;
3144
3145 ret = percpu_counter_init(&vm_committed_as, 0);
3146 VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161 unsigned long free_kbytes;
3162
3163 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166 return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182 unsigned long free_kbytes;
3183
3184 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187 return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210 unsigned long action, void *data)
3211{
3212 unsigned long tmp, free_kbytes;
3213
3214 switch (action) {
3215 case MEM_ONLINE:
3216 /* Default max is 128MB. Leave alone if modified by operator. */
3217 tmp = sysctl_user_reserve_kbytes;
3218 if (0 < tmp && tmp < (1UL << 17))
3219 init_user_reserve();
3220
3221 /* Default max is 8MB. Leave alone if modified by operator. */
3222 tmp = sysctl_admin_reserve_kbytes;
3223 if (0 < tmp && tmp < (1UL << 13))
3224 init_admin_reserve();
3225
3226 break;
3227 case MEM_OFFLINE:
3228 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230 if (sysctl_user_reserve_kbytes > free_kbytes) {
3231 init_user_reserve();
3232 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233 sysctl_user_reserve_kbytes);
3234 }
3235
3236 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237 init_admin_reserve();
3238 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239 sysctl_admin_reserve_kbytes);
3240 }
3241 break;
3242 default:
3243 break;
3244 }
3245 return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249 .notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254 if (register_hotmemory_notifier(&reserve_mem_nb))
3255 printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257 return 0;
3258}
3259subsys_initcall(init_reserve_notifier);