Loading...
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608}
609
610/* Apply policy to a single VMA */
611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612{
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629}
630
631/* Step 2: apply policy to a range and do splits. */
632static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634{
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 unsigned long vmstart;
640 unsigned long vmend;
641
642 vma = find_vma_prev(mm, start, &prev);
643 if (!vma || vma->vm_start > start)
644 return -EFAULT;
645
646 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
647 next = vma->vm_next;
648 vmstart = max(start, vma->vm_start);
649 vmend = min(end, vma->vm_end);
650
651 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
652 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
653 new_pol);
654 if (prev) {
655 vma = prev;
656 next = vma->vm_next;
657 continue;
658 }
659 if (vma->vm_start != vmstart) {
660 err = split_vma(vma->vm_mm, vma, vmstart, 1);
661 if (err)
662 goto out;
663 }
664 if (vma->vm_end != vmend) {
665 err = split_vma(vma->vm_mm, vma, vmend, 0);
666 if (err)
667 goto out;
668 }
669 err = policy_vma(vma, new_pol);
670 if (err)
671 goto out;
672 }
673
674 out:
675 return err;
676}
677
678/*
679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
680 * mempolicy. Allows more rapid checking of this (combined perhaps
681 * with other PF_* flag bits) on memory allocation hot code paths.
682 *
683 * If called from outside this file, the task 'p' should -only- be
684 * a newly forked child not yet visible on the task list, because
685 * manipulating the task flags of a visible task is not safe.
686 *
687 * The above limitation is why this routine has the funny name
688 * mpol_fix_fork_child_flag().
689 *
690 * It is also safe to call this with a task pointer of current,
691 * which the static wrapper mpol_set_task_struct_flag() does,
692 * for use within this file.
693 */
694
695void mpol_fix_fork_child_flag(struct task_struct *p)
696{
697 if (p->mempolicy)
698 p->flags |= PF_MEMPOLICY;
699 else
700 p->flags &= ~PF_MEMPOLICY;
701}
702
703static void mpol_set_task_struct_flag(void)
704{
705 mpol_fix_fork_child_flag(current);
706}
707
708/* Set the process memory policy */
709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
710 nodemask_t *nodes)
711{
712 struct mempolicy *new, *old;
713 struct mm_struct *mm = current->mm;
714 NODEMASK_SCRATCH(scratch);
715 int ret;
716
717 if (!scratch)
718 return -ENOMEM;
719
720 new = mpol_new(mode, flags, nodes);
721 if (IS_ERR(new)) {
722 ret = PTR_ERR(new);
723 goto out;
724 }
725 /*
726 * prevent changing our mempolicy while show_numa_maps()
727 * is using it.
728 * Note: do_set_mempolicy() can be called at init time
729 * with no 'mm'.
730 */
731 if (mm)
732 down_write(&mm->mmap_sem);
733 task_lock(current);
734 ret = mpol_set_nodemask(new, nodes, scratch);
735 if (ret) {
736 task_unlock(current);
737 if (mm)
738 up_write(&mm->mmap_sem);
739 mpol_put(new);
740 goto out;
741 }
742 old = current->mempolicy;
743 current->mempolicy = new;
744 mpol_set_task_struct_flag();
745 if (new && new->mode == MPOL_INTERLEAVE &&
746 nodes_weight(new->v.nodes))
747 current->il_next = first_node(new->v.nodes);
748 task_unlock(current);
749 if (mm)
750 up_write(&mm->mmap_sem);
751
752 mpol_put(old);
753 ret = 0;
754out:
755 NODEMASK_SCRATCH_FREE(scratch);
756 return ret;
757}
758
759/*
760 * Return nodemask for policy for get_mempolicy() query
761 *
762 * Called with task's alloc_lock held
763 */
764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
765{
766 nodes_clear(*nodes);
767 if (p == &default_policy)
768 return;
769
770 switch (p->mode) {
771 case MPOL_BIND:
772 /* Fall through */
773 case MPOL_INTERLEAVE:
774 *nodes = p->v.nodes;
775 break;
776 case MPOL_PREFERRED:
777 if (!(p->flags & MPOL_F_LOCAL))
778 node_set(p->v.preferred_node, *nodes);
779 /* else return empty node mask for local allocation */
780 break;
781 default:
782 BUG();
783 }
784}
785
786static int lookup_node(struct mm_struct *mm, unsigned long addr)
787{
788 struct page *p;
789 int err;
790
791 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
792 if (err >= 0) {
793 err = page_to_nid(p);
794 put_page(p);
795 }
796 return err;
797}
798
799/* Retrieve NUMA policy */
800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
801 unsigned long addr, unsigned long flags)
802{
803 int err;
804 struct mm_struct *mm = current->mm;
805 struct vm_area_struct *vma = NULL;
806 struct mempolicy *pol = current->mempolicy;
807
808 if (flags &
809 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
810 return -EINVAL;
811
812 if (flags & MPOL_F_MEMS_ALLOWED) {
813 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
814 return -EINVAL;
815 *policy = 0; /* just so it's initialized */
816 task_lock(current);
817 *nmask = cpuset_current_mems_allowed;
818 task_unlock(current);
819 return 0;
820 }
821
822 if (flags & MPOL_F_ADDR) {
823 /*
824 * Do NOT fall back to task policy if the
825 * vma/shared policy at addr is NULL. We
826 * want to return MPOL_DEFAULT in this case.
827 */
828 down_read(&mm->mmap_sem);
829 vma = find_vma_intersection(mm, addr, addr+1);
830 if (!vma) {
831 up_read(&mm->mmap_sem);
832 return -EFAULT;
833 }
834 if (vma->vm_ops && vma->vm_ops->get_policy)
835 pol = vma->vm_ops->get_policy(vma, addr);
836 else
837 pol = vma->vm_policy;
838 } else if (addr)
839 return -EINVAL;
840
841 if (!pol)
842 pol = &default_policy; /* indicates default behavior */
843
844 if (flags & MPOL_F_NODE) {
845 if (flags & MPOL_F_ADDR) {
846 err = lookup_node(mm, addr);
847 if (err < 0)
848 goto out;
849 *policy = err;
850 } else if (pol == current->mempolicy &&
851 pol->mode == MPOL_INTERLEAVE) {
852 *policy = current->il_next;
853 } else {
854 err = -EINVAL;
855 goto out;
856 }
857 } else {
858 *policy = pol == &default_policy ? MPOL_DEFAULT :
859 pol->mode;
860 /*
861 * Internal mempolicy flags must be masked off before exposing
862 * the policy to userspace.
863 */
864 *policy |= (pol->flags & MPOL_MODE_FLAGS);
865 }
866
867 if (vma) {
868 up_read(¤t->mm->mmap_sem);
869 vma = NULL;
870 }
871
872 err = 0;
873 if (nmask) {
874 if (mpol_store_user_nodemask(pol)) {
875 *nmask = pol->w.user_nodemask;
876 } else {
877 task_lock(current);
878 get_policy_nodemask(pol, nmask);
879 task_unlock(current);
880 }
881 }
882
883 out:
884 mpol_cond_put(pol);
885 if (vma)
886 up_read(¤t->mm->mmap_sem);
887 return err;
888}
889
890#ifdef CONFIG_MIGRATION
891/*
892 * page migration
893 */
894static void migrate_page_add(struct page *page, struct list_head *pagelist,
895 unsigned long flags)
896{
897 /*
898 * Avoid migrating a page that is shared with others.
899 */
900 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
901 if (!isolate_lru_page(page)) {
902 list_add_tail(&page->lru, pagelist);
903 inc_zone_page_state(page, NR_ISOLATED_ANON +
904 page_is_file_cache(page));
905 }
906 }
907}
908
909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
910{
911 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
912}
913
914/*
915 * Migrate pages from one node to a target node.
916 * Returns error or the number of pages not migrated.
917 */
918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
919 int flags)
920{
921 nodemask_t nmask;
922 LIST_HEAD(pagelist);
923 int err = 0;
924 struct vm_area_struct *vma;
925
926 nodes_clear(nmask);
927 node_set(source, nmask);
928
929 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
930 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
931 if (IS_ERR(vma))
932 return PTR_ERR(vma);
933
934 if (!list_empty(&pagelist)) {
935 err = migrate_pages(&pagelist, new_node_page, dest,
936 false, true);
937 if (err)
938 putback_lru_pages(&pagelist);
939 }
940
941 return err;
942}
943
944/*
945 * Move pages between the two nodesets so as to preserve the physical
946 * layout as much as possible.
947 *
948 * Returns the number of page that could not be moved.
949 */
950int do_migrate_pages(struct mm_struct *mm,
951 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
952{
953 int busy = 0;
954 int err;
955 nodemask_t tmp;
956
957 err = migrate_prep();
958 if (err)
959 return err;
960
961 down_read(&mm->mmap_sem);
962
963 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
964 if (err)
965 goto out;
966
967 /*
968 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
969 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
970 * bit in 'tmp', and return that <source, dest> pair for migration.
971 * The pair of nodemasks 'to' and 'from' define the map.
972 *
973 * If no pair of bits is found that way, fallback to picking some
974 * pair of 'source' and 'dest' bits that are not the same. If the
975 * 'source' and 'dest' bits are the same, this represents a node
976 * that will be migrating to itself, so no pages need move.
977 *
978 * If no bits are left in 'tmp', or if all remaining bits left
979 * in 'tmp' correspond to the same bit in 'to', return false
980 * (nothing left to migrate).
981 *
982 * This lets us pick a pair of nodes to migrate between, such that
983 * if possible the dest node is not already occupied by some other
984 * source node, minimizing the risk of overloading the memory on a
985 * node that would happen if we migrated incoming memory to a node
986 * before migrating outgoing memory source that same node.
987 *
988 * A single scan of tmp is sufficient. As we go, we remember the
989 * most recent <s, d> pair that moved (s != d). If we find a pair
990 * that not only moved, but what's better, moved to an empty slot
991 * (d is not set in tmp), then we break out then, with that pair.
992 * Otherwise when we finish scanning from_tmp, we at least have the
993 * most recent <s, d> pair that moved. If we get all the way through
994 * the scan of tmp without finding any node that moved, much less
995 * moved to an empty node, then there is nothing left worth migrating.
996 */
997
998 tmp = *from_nodes;
999 while (!nodes_empty(tmp)) {
1000 int s,d;
1001 int source = -1;
1002 int dest = 0;
1003
1004 for_each_node_mask(s, tmp) {
1005 d = node_remap(s, *from_nodes, *to_nodes);
1006 if (s == d)
1007 continue;
1008
1009 source = s; /* Node moved. Memorize */
1010 dest = d;
1011
1012 /* dest not in remaining from nodes? */
1013 if (!node_isset(dest, tmp))
1014 break;
1015 }
1016 if (source == -1)
1017 break;
1018
1019 node_clear(source, tmp);
1020 err = migrate_to_node(mm, source, dest, flags);
1021 if (err > 0)
1022 busy += err;
1023 if (err < 0)
1024 break;
1025 }
1026out:
1027 up_read(&mm->mmap_sem);
1028 if (err < 0)
1029 return err;
1030 return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not. N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044 unsigned long uninitialized_var(address);
1045
1046 while (vma) {
1047 address = page_address_in_vma(page, vma);
1048 if (address != -EFAULT)
1049 break;
1050 vma = vma->vm_next;
1051 }
1052
1053 /*
1054 * if !vma, alloc_page_vma() will use task or system default policy
1055 */
1056 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061 unsigned long flags)
1062{
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068 return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073 return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078 unsigned short mode, unsigned short mode_flags,
1079 nodemask_t *nmask, unsigned long flags)
1080{
1081 struct vm_area_struct *vma;
1082 struct mm_struct *mm = current->mm;
1083 struct mempolicy *new;
1084 unsigned long end;
1085 int err;
1086 LIST_HEAD(pagelist);
1087
1088 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090 return -EINVAL;
1091 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092 return -EPERM;
1093
1094 if (start & ~PAGE_MASK)
1095 return -EINVAL;
1096
1097 if (mode == MPOL_DEFAULT)
1098 flags &= ~MPOL_MF_STRICT;
1099
1100 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101 end = start + len;
1102
1103 if (end < start)
1104 return -EINVAL;
1105 if (end == start)
1106 return 0;
1107
1108 new = mpol_new(mode, mode_flags, nmask);
1109 if (IS_ERR(new))
1110 return PTR_ERR(new);
1111
1112 /*
1113 * If we are using the default policy then operation
1114 * on discontinuous address spaces is okay after all
1115 */
1116 if (!new)
1117 flags |= MPOL_MF_DISCONTIG_OK;
1118
1119 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120 start, start + len, mode, mode_flags,
1121 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125 err = migrate_prep();
1126 if (err)
1127 goto mpol_out;
1128 }
1129 {
1130 NODEMASK_SCRATCH(scratch);
1131 if (scratch) {
1132 down_write(&mm->mmap_sem);
1133 task_lock(current);
1134 err = mpol_set_nodemask(new, nmask, scratch);
1135 task_unlock(current);
1136 if (err)
1137 up_write(&mm->mmap_sem);
1138 } else
1139 err = -ENOMEM;
1140 NODEMASK_SCRATCH_FREE(scratch);
1141 }
1142 if (err)
1143 goto mpol_out;
1144
1145 vma = check_range(mm, start, end, nmask,
1146 flags | MPOL_MF_INVERT, &pagelist);
1147
1148 err = PTR_ERR(vma);
1149 if (!IS_ERR(vma)) {
1150 int nr_failed = 0;
1151
1152 err = mbind_range(mm, start, end, new);
1153
1154 if (!list_empty(&pagelist)) {
1155 nr_failed = migrate_pages(&pagelist, new_vma_page,
1156 (unsigned long)vma,
1157 false, true);
1158 if (nr_failed)
1159 putback_lru_pages(&pagelist);
1160 }
1161
1162 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163 err = -EIO;
1164 } else
1165 putback_lru_pages(&pagelist);
1166
1167 up_write(&mm->mmap_sem);
1168 mpol_out:
1169 mpol_put(new);
1170 return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179 unsigned long maxnode)
1180{
1181 unsigned long k;
1182 unsigned long nlongs;
1183 unsigned long endmask;
1184
1185 --maxnode;
1186 nodes_clear(*nodes);
1187 if (maxnode == 0 || !nmask)
1188 return 0;
1189 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190 return -EINVAL;
1191
1192 nlongs = BITS_TO_LONGS(maxnode);
1193 if ((maxnode % BITS_PER_LONG) == 0)
1194 endmask = ~0UL;
1195 else
1196 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198 /* When the user specified more nodes than supported just check
1199 if the non supported part is all zero. */
1200 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201 if (nlongs > PAGE_SIZE/sizeof(long))
1202 return -EINVAL;
1203 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204 unsigned long t;
1205 if (get_user(t, nmask + k))
1206 return -EFAULT;
1207 if (k == nlongs - 1) {
1208 if (t & endmask)
1209 return -EINVAL;
1210 } else if (t)
1211 return -EINVAL;
1212 }
1213 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214 endmask = ~0UL;
1215 }
1216
1217 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218 return -EFAULT;
1219 nodes_addr(*nodes)[nlongs-1] &= endmask;
1220 return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225 nodemask_t *nodes)
1226{
1227 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230 if (copy > nbytes) {
1231 if (copy > PAGE_SIZE)
1232 return -EINVAL;
1233 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234 return -EFAULT;
1235 copy = nbytes;
1236 }
1237 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241 unsigned long, mode, unsigned long __user *, nmask,
1242 unsigned long, maxnode, unsigned, flags)
1243{
1244 nodemask_t nodes;
1245 int err;
1246 unsigned short mode_flags;
1247
1248 mode_flags = mode & MPOL_MODE_FLAGS;
1249 mode &= ~MPOL_MODE_FLAGS;
1250 if (mode >= MPOL_MAX)
1251 return -EINVAL;
1252 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253 (mode_flags & MPOL_F_RELATIVE_NODES))
1254 return -EINVAL;
1255 err = get_nodes(&nodes, nmask, maxnode);
1256 if (err)
1257 return err;
1258 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263 unsigned long, maxnode)
1264{
1265 int err;
1266 nodemask_t nodes;
1267 unsigned short flags;
1268
1269 flags = mode & MPOL_MODE_FLAGS;
1270 mode &= ~MPOL_MODE_FLAGS;
1271 if ((unsigned int)mode >= MPOL_MAX)
1272 return -EINVAL;
1273 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274 return -EINVAL;
1275 err = get_nodes(&nodes, nmask, maxnode);
1276 if (err)
1277 return err;
1278 return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282 const unsigned long __user *, old_nodes,
1283 const unsigned long __user *, new_nodes)
1284{
1285 const struct cred *cred = current_cred(), *tcred;
1286 struct mm_struct *mm = NULL;
1287 struct task_struct *task;
1288 nodemask_t task_nodes;
1289 int err;
1290 nodemask_t *old;
1291 nodemask_t *new;
1292 NODEMASK_SCRATCH(scratch);
1293
1294 if (!scratch)
1295 return -ENOMEM;
1296
1297 old = &scratch->mask1;
1298 new = &scratch->mask2;
1299
1300 err = get_nodes(old, old_nodes, maxnode);
1301 if (err)
1302 goto out;
1303
1304 err = get_nodes(new, new_nodes, maxnode);
1305 if (err)
1306 goto out;
1307
1308 /* Find the mm_struct */
1309 rcu_read_lock();
1310 task = pid ? find_task_by_vpid(pid) : current;
1311 if (!task) {
1312 rcu_read_unlock();
1313 err = -ESRCH;
1314 goto out;
1315 }
1316 mm = get_task_mm(task);
1317 rcu_read_unlock();
1318
1319 err = -EINVAL;
1320 if (!mm)
1321 goto out;
1322
1323 /*
1324 * Check if this process has the right to modify the specified
1325 * process. The right exists if the process has administrative
1326 * capabilities, superuser privileges or the same
1327 * userid as the target process.
1328 */
1329 rcu_read_lock();
1330 tcred = __task_cred(task);
1331 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1333 !capable(CAP_SYS_NICE)) {
1334 rcu_read_unlock();
1335 err = -EPERM;
1336 goto out;
1337 }
1338 rcu_read_unlock();
1339
1340 task_nodes = cpuset_mems_allowed(task);
1341 /* Is the user allowed to access the target nodes? */
1342 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343 err = -EPERM;
1344 goto out;
1345 }
1346
1347 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348 err = -EINVAL;
1349 goto out;
1350 }
1351
1352 err = security_task_movememory(task);
1353 if (err)
1354 goto out;
1355
1356 err = do_migrate_pages(mm, old, new,
1357 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1358out:
1359 if (mm)
1360 mmput(mm);
1361 NODEMASK_SCRATCH_FREE(scratch);
1362
1363 return err;
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369 unsigned long __user *, nmask, unsigned long, maxnode,
1370 unsigned long, addr, unsigned long, flags)
1371{
1372 int err;
1373 int uninitialized_var(pval);
1374 nodemask_t nodes;
1375
1376 if (nmask != NULL && maxnode < MAX_NUMNODES)
1377 return -EINVAL;
1378
1379 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381 if (err)
1382 return err;
1383
1384 if (policy && put_user(pval, policy))
1385 return -EFAULT;
1386
1387 if (nmask)
1388 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390 return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396 compat_ulong_t __user *nmask,
1397 compat_ulong_t maxnode,
1398 compat_ulong_t addr, compat_ulong_t flags)
1399{
1400 long err;
1401 unsigned long __user *nm = NULL;
1402 unsigned long nr_bits, alloc_size;
1403 DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408 if (nmask)
1409 nm = compat_alloc_user_space(alloc_size);
1410
1411 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413 if (!err && nmask) {
1414 unsigned long copy_size;
1415 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416 err = copy_from_user(bm, nm, copy_size);
1417 /* ensure entire bitmap is zeroed */
1418 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419 err |= compat_put_bitmap(nmask, bm, nr_bits);
1420 }
1421
1422 return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426 compat_ulong_t maxnode)
1427{
1428 long err = 0;
1429 unsigned long __user *nm = NULL;
1430 unsigned long nr_bits, alloc_size;
1431 DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436 if (nmask) {
1437 err = compat_get_bitmap(bm, nmask, nr_bits);
1438 nm = compat_alloc_user_space(alloc_size);
1439 err |= copy_to_user(nm, bm, alloc_size);
1440 }
1441
1442 if (err)
1443 return -EFAULT;
1444
1445 return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449 compat_ulong_t mode, compat_ulong_t __user *nmask,
1450 compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452 long err = 0;
1453 unsigned long __user *nm = NULL;
1454 unsigned long nr_bits, alloc_size;
1455 nodemask_t bm;
1456
1457 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460 if (nmask) {
1461 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462 nm = compat_alloc_user_space(alloc_size);
1463 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464 }
1465
1466 if (err)
1467 return -EFAULT;
1468
1469 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma - virtual memory area whose policy is sought
1478 * @addr - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task. It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491 struct vm_area_struct *vma, unsigned long addr)
1492{
1493 struct mempolicy *pol = task->mempolicy;
1494
1495 if (vma) {
1496 if (vma->vm_ops && vma->vm_ops->get_policy) {
1497 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498 addr);
1499 if (vpol)
1500 pol = vpol;
1501 } else if (vma->vm_policy)
1502 pol = vma->vm_policy;
1503 }
1504 if (!pol)
1505 pol = &default_policy;
1506 return pol;
1507}
1508
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1516 if (unlikely(policy->mode == MPOL_BIND) &&
1517 gfp_zone(gfp) >= policy_zone &&
1518 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519 return &policy->v.nodes;
1520
1521 return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526 int nd)
1527{
1528 switch (policy->mode) {
1529 case MPOL_PREFERRED:
1530 if (!(policy->flags & MPOL_F_LOCAL))
1531 nd = policy->v.preferred_node;
1532 break;
1533 case MPOL_BIND:
1534 /*
1535 * Normally, MPOL_BIND allocations are node-local within the
1536 * allowed nodemask. However, if __GFP_THISNODE is set and the
1537 * current node isn't part of the mask, we use the zonelist for
1538 * the first node in the mask instead.
1539 */
1540 if (unlikely(gfp & __GFP_THISNODE) &&
1541 unlikely(!node_isset(nd, policy->v.nodes)))
1542 nd = first_node(policy->v.nodes);
1543 break;
1544 default:
1545 BUG();
1546 }
1547 return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553 unsigned nid, next;
1554 struct task_struct *me = current;
1555
1556 nid = me->il_next;
1557 next = next_node(nid, policy->v.nodes);
1558 if (next >= MAX_NUMNODES)
1559 next = first_node(policy->v.nodes);
1560 if (next < MAX_NUMNODES)
1561 me->il_next = next;
1562 return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller. If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy. The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
1575 if (!policy || policy->flags & MPOL_F_LOCAL)
1576 return numa_node_id();
1577
1578 switch (policy->mode) {
1579 case MPOL_PREFERRED:
1580 /*
1581 * handled MPOL_F_LOCAL above
1582 */
1583 return policy->v.preferred_node;
1584
1585 case MPOL_INTERLEAVE:
1586 return interleave_nodes(policy);
1587
1588 case MPOL_BIND: {
1589 /*
1590 * Follow bind policy behavior and start allocation at the
1591 * first node.
1592 */
1593 struct zonelist *zonelist;
1594 struct zone *zone;
1595 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1598 &policy->v.nodes,
1599 &zone);
1600 return zone ? zone->node : numa_node_id();
1601 }
1602
1603 default:
1604 BUG();
1605 }
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610 struct vm_area_struct *vma, unsigned long off)
1611{
1612 unsigned nnodes = nodes_weight(pol->v.nodes);
1613 unsigned target;
1614 int c;
1615 int nid = -1;
1616
1617 if (!nnodes)
1618 return numa_node_id();
1619 target = (unsigned int)off % nnodes;
1620 c = 0;
1621 do {
1622 nid = next_node(nid, pol->v.nodes);
1623 c++;
1624 } while (c <= target);
1625 return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632 if (vma) {
1633 unsigned long off;
1634
1635 /*
1636 * for small pages, there is no difference between
1637 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638 * for huge pages, since vm_pgoff is in units of small
1639 * pages, we need to shift off the always 0 bits to get
1640 * a useful offset.
1641 */
1642 BUG_ON(shift < PAGE_SHIFT);
1643 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644 off += (addr - vma->vm_start) >> shift;
1645 return offset_il_node(pol, vma, off);
1646 } else
1647 return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656 int w, bit = -1;
1657
1658 w = nodes_weight(*maskp);
1659 if (w)
1660 bit = bitmap_ord_to_pos(maskp->bits,
1661 get_random_int() % w, MAX_NUMNODES);
1662 return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682 gfp_t gfp_flags, struct mempolicy **mpol,
1683 nodemask_t **nodemask)
1684{
1685 struct zonelist *zl;
1686
1687 *mpol = get_vma_policy(current, vma, addr);
1688 *nodemask = NULL; /* assume !MPOL_BIND */
1689
1690 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692 huge_page_shift(hstate_vma(vma))), gfp_flags);
1693 } else {
1694 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695 if ((*mpol)->mode == MPOL_BIND)
1696 *nodemask = &(*mpol)->v.nodes;
1697 }
1698 return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy. Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719 struct mempolicy *mempolicy;
1720 int nid;
1721
1722 if (!(mask && current->mempolicy))
1723 return false;
1724
1725 task_lock(current);
1726 mempolicy = current->mempolicy;
1727 switch (mempolicy->mode) {
1728 case MPOL_PREFERRED:
1729 if (mempolicy->flags & MPOL_F_LOCAL)
1730 nid = numa_node_id();
1731 else
1732 nid = mempolicy->v.preferred_node;
1733 init_nodemask_of_node(mask, nid);
1734 break;
1735
1736 case MPOL_BIND:
1737 /* Fall through */
1738 case MPOL_INTERLEAVE:
1739 *mask = mempolicy->v.nodes;
1740 break;
1741
1742 default:
1743 BUG();
1744 }
1745 task_unlock(current);
1746
1747 return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy. Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762 const nodemask_t *mask)
1763{
1764 struct mempolicy *mempolicy;
1765 bool ret = true;
1766
1767 if (!mask)
1768 return ret;
1769 task_lock(tsk);
1770 mempolicy = tsk->mempolicy;
1771 if (!mempolicy)
1772 goto out;
1773
1774 switch (mempolicy->mode) {
1775 case MPOL_PREFERRED:
1776 /*
1777 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778 * allocate from, they may fallback to other nodes when oom.
1779 * Thus, it's possible for tsk to have allocated memory from
1780 * nodes in mask.
1781 */
1782 break;
1783 case MPOL_BIND:
1784 case MPOL_INTERLEAVE:
1785 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786 break;
1787 default:
1788 BUG();
1789 }
1790out:
1791 task_unlock(tsk);
1792 return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796 Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798 unsigned nid)
1799{
1800 struct zonelist *zl;
1801 struct page *page;
1802
1803 zl = node_zonelist(nid, gfp);
1804 page = __alloc_pages(gfp, order, zl);
1805 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807 return page;
1808}
1809
1810/**
1811 * alloc_pages_vma - Allocate a page for a VMA.
1812 *
1813 * @gfp:
1814 * %GFP_USER user allocation.
1815 * %GFP_KERNEL kernel allocations,
1816 * %GFP_HIGHMEM highmem/user allocations,
1817 * %GFP_FS allocation should not call back into a file system.
1818 * %GFP_ATOMIC don't sleep.
1819 *
1820 * @order:Order of the GFP allocation.
1821 * @vma: Pointer to VMA or NULL if not available.
1822 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1823 *
1824 * This function allocates a page from the kernel page pool and applies
1825 * a NUMA policy associated with the VMA or the current process.
1826 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 * mm_struct of the VMA to prevent it from going away. Should be used for
1828 * all allocations for pages that will be mapped into
1829 * user space. Returns NULL when no page can be allocated.
1830 *
1831 * Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835 unsigned long addr, int node)
1836{
1837 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838 struct zonelist *zl;
1839 struct page *page;
1840
1841 get_mems_allowed();
1842 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843 unsigned nid;
1844
1845 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846 mpol_cond_put(pol);
1847 page = alloc_page_interleave(gfp, order, nid);
1848 put_mems_allowed();
1849 return page;
1850 }
1851 zl = policy_zonelist(gfp, pol, node);
1852 if (unlikely(mpol_needs_cond_ref(pol))) {
1853 /*
1854 * slow path: ref counted shared policy
1855 */
1856 struct page *page = __alloc_pages_nodemask(gfp, order,
1857 zl, policy_nodemask(gfp, pol));
1858 __mpol_put(pol);
1859 put_mems_allowed();
1860 return page;
1861 }
1862 /*
1863 * fast path: default or task policy
1864 */
1865 page = __alloc_pages_nodemask(gfp, order, zl,
1866 policy_nodemask(gfp, pol));
1867 put_mems_allowed();
1868 return page;
1869}
1870
1871/**
1872 * alloc_pages_current - Allocate pages.
1873 *
1874 * @gfp:
1875 * %GFP_USER user allocation,
1876 * %GFP_KERNEL kernel allocation,
1877 * %GFP_HIGHMEM highmem allocation,
1878 * %GFP_FS don't call back into a file system.
1879 * %GFP_ATOMIC don't sleep.
1880 * @order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 * Allocate a page from the kernel page pool. When not in
1883 * interrupt context and apply the current process NUMA policy.
1884 * Returns NULL when no page can be allocated.
1885 *
1886 * Don't call cpuset_update_task_memory_state() unless
1887 * 1) it's ok to take cpuset_sem (can WAIT), and
1888 * 2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892 struct mempolicy *pol = current->mempolicy;
1893 struct page *page;
1894
1895 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896 pol = &default_policy;
1897
1898 get_mems_allowed();
1899 /*
1900 * No reference counting needed for current->mempolicy
1901 * nor system default_policy
1902 */
1903 if (pol->mode == MPOL_INTERLEAVE)
1904 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905 else
1906 page = __alloc_pages_nodemask(gfp, order,
1907 policy_zonelist(gfp, pol, numa_node_id()),
1908 policy_nodemask(gfp, pol));
1909 put_mems_allowed();
1910 return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed(). This
1918 * keeps mempolicies cpuset relative after its cpuset moves. See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930 if (!new)
1931 return ERR_PTR(-ENOMEM);
1932
1933 /* task's mempolicy is protected by alloc_lock */
1934 if (old == current->mempolicy) {
1935 task_lock(current);
1936 *new = *old;
1937 task_unlock(current);
1938 } else
1939 *new = *old;
1940
1941 rcu_read_lock();
1942 if (current_cpuset_is_being_rebound()) {
1943 nodemask_t mems = cpuset_mems_allowed(current);
1944 if (new->flags & MPOL_F_REBINDING)
1945 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946 else
1947 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948 }
1949 rcu_read_unlock();
1950 atomic_set(&new->refcnt, 1);
1951 return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1958 * after return. Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965 struct mempolicy *frompol)
1966{
1967 if (!mpol_needs_cond_ref(frompol))
1968 return frompol;
1969
1970 *tompol = *frompol;
1971 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1972 __mpol_put(frompol);
1973 return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979 if (!a || !b)
1980 return 0;
1981 if (a->mode != b->mode)
1982 return 0;
1983 if (a->flags != b->flags)
1984 return 0;
1985 if (mpol_store_user_nodemask(a))
1986 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987 return 0;
1988
1989 switch (a->mode) {
1990 case MPOL_BIND:
1991 /* Fall through */
1992 case MPOL_INTERLEAVE:
1993 return nodes_equal(a->v.nodes, b->v.nodes);
1994 case MPOL_PREFERRED:
1995 return a->v.preferred_node == b->v.preferred_node;
1996 default:
1997 BUG();
1998 return 0;
1999 }
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016 struct rb_node *n = sp->root.rb_node;
2017
2018 while (n) {
2019 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021 if (start >= p->end)
2022 n = n->rb_right;
2023 else if (end <= p->start)
2024 n = n->rb_left;
2025 else
2026 break;
2027 }
2028 if (!n)
2029 return NULL;
2030 for (;;) {
2031 struct sp_node *w = NULL;
2032 struct rb_node *prev = rb_prev(n);
2033 if (!prev)
2034 break;
2035 w = rb_entry(prev, struct sp_node, nd);
2036 if (w->end <= start)
2037 break;
2038 n = prev;
2039 }
2040 return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047 struct rb_node **p = &sp->root.rb_node;
2048 struct rb_node *parent = NULL;
2049 struct sp_node *nd;
2050
2051 while (*p) {
2052 parent = *p;
2053 nd = rb_entry(parent, struct sp_node, nd);
2054 if (new->start < nd->start)
2055 p = &(*p)->rb_left;
2056 else if (new->end > nd->end)
2057 p = &(*p)->rb_right;
2058 else
2059 BUG();
2060 }
2061 rb_link_node(&new->nd, parent, p);
2062 rb_insert_color(&new->nd, &sp->root);
2063 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071 struct mempolicy *pol = NULL;
2072 struct sp_node *sn;
2073
2074 if (!sp->root.rb_node)
2075 return NULL;
2076 spin_lock(&sp->lock);
2077 sn = sp_lookup(sp, idx, idx+1);
2078 if (sn) {
2079 mpol_get(sn->policy);
2080 pol = sn->policy;
2081 }
2082 spin_unlock(&sp->lock);
2083 return pol;
2084}
2085
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089 rb_erase(&n->nd, &sp->root);
2090 mpol_put(n->policy);
2091 kmem_cache_free(sn_cache, n);
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095 struct mempolicy *pol)
2096{
2097 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2098
2099 if (!n)
2100 return NULL;
2101 n->start = start;
2102 n->end = end;
2103 mpol_get(pol);
2104 pol->flags |= MPOL_F_SHARED; /* for unref */
2105 n->policy = pol;
2106 return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111 unsigned long end, struct sp_node *new)
2112{
2113 struct sp_node *n, *new2 = NULL;
2114
2115restart:
2116 spin_lock(&sp->lock);
2117 n = sp_lookup(sp, start, end);
2118 /* Take care of old policies in the same range. */
2119 while (n && n->start < end) {
2120 struct rb_node *next = rb_next(&n->nd);
2121 if (n->start >= start) {
2122 if (n->end <= end)
2123 sp_delete(sp, n);
2124 else
2125 n->start = end;
2126 } else {
2127 /* Old policy spanning whole new range. */
2128 if (n->end > end) {
2129 if (!new2) {
2130 spin_unlock(&sp->lock);
2131 new2 = sp_alloc(end, n->end, n->policy);
2132 if (!new2)
2133 return -ENOMEM;
2134 goto restart;
2135 }
2136 n->end = start;
2137 sp_insert(sp, new2);
2138 new2 = NULL;
2139 break;
2140 } else
2141 n->end = start;
2142 }
2143 if (!next)
2144 break;
2145 n = rb_entry(next, struct sp_node, nd);
2146 }
2147 if (new)
2148 sp_insert(sp, new);
2149 spin_unlock(&sp->lock);
2150 if (new2) {
2151 mpol_put(new2->policy);
2152 kmem_cache_free(sn_cache, new2);
2153 }
2154 return 0;
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol: struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169 int ret;
2170
2171 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2172 spin_lock_init(&sp->lock);
2173
2174 if (mpol) {
2175 struct vm_area_struct pvma;
2176 struct mempolicy *new;
2177 NODEMASK_SCRATCH(scratch);
2178
2179 if (!scratch)
2180 goto put_mpol;
2181 /* contextualize the tmpfs mount point mempolicy */
2182 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183 if (IS_ERR(new))
2184 goto free_scratch; /* no valid nodemask intersection */
2185
2186 task_lock(current);
2187 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188 task_unlock(current);
2189 if (ret)
2190 goto put_new;
2191
2192 /* Create pseudo-vma that contains just the policy */
2193 memset(&pvma, 0, sizeof(struct vm_area_struct));
2194 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2195 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198 mpol_put(new); /* drop initial ref */
2199free_scratch:
2200 NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2203 }
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207 struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209 int err;
2210 struct sp_node *new = NULL;
2211 unsigned long sz = vma_pages(vma);
2212
2213 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214 vma->vm_pgoff,
2215 sz, npol ? npol->mode : -1,
2216 npol ? npol->flags : -1,
2217 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219 if (npol) {
2220 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221 if (!new)
2222 return -ENOMEM;
2223 }
2224 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225 if (err && new)
2226 kmem_cache_free(sn_cache, new);
2227 return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233 struct sp_node *n;
2234 struct rb_node *next;
2235
2236 if (!p->root.rb_node)
2237 return;
2238 spin_lock(&p->lock);
2239 next = rb_first(&p->root);
2240 while (next) {
2241 n = rb_entry(next, struct sp_node, nd);
2242 next = rb_next(&n->nd);
2243 rb_erase(&n->nd, &p->root);
2244 mpol_put(n->policy);
2245 kmem_cache_free(sn_cache, n);
2246 }
2247 spin_unlock(&p->lock);
2248}
2249
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253 nodemask_t interleave_nodes;
2254 unsigned long largest = 0;
2255 int nid, prefer = 0;
2256
2257 policy_cache = kmem_cache_create("numa_policy",
2258 sizeof(struct mempolicy),
2259 0, SLAB_PANIC, NULL);
2260
2261 sn_cache = kmem_cache_create("shared_policy_node",
2262 sizeof(struct sp_node),
2263 0, SLAB_PANIC, NULL);
2264
2265 /*
2266 * Set interleaving policy for system init. Interleaving is only
2267 * enabled across suitably sized nodes (default is >= 16MB), or
2268 * fall back to the largest node if they're all smaller.
2269 */
2270 nodes_clear(interleave_nodes);
2271 for_each_node_state(nid, N_HIGH_MEMORY) {
2272 unsigned long total_pages = node_present_pages(nid);
2273
2274 /* Preserve the largest node */
2275 if (largest < total_pages) {
2276 largest = total_pages;
2277 prefer = nid;
2278 }
2279
2280 /* Interleave this node? */
2281 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282 node_set(nid, interleave_nodes);
2283 }
2284
2285 /* All too small, use the largest */
2286 if (unlikely(nodes_empty(interleave_nodes)))
2287 node_set(prefer, interleave_nodes);
2288
2289 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290 printk("numa_policy_init: interleaving failed\n");
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310 [MPOL_DEFAULT] = "default",
2311 [MPOL_PREFERRED] = "prefer",
2312 [MPOL_BIND] = "bind",
2313 [MPOL_INTERLEAVE] = "interleave",
2314 [MPOL_LOCAL] = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str: string containing mempolicy to parse
2322 * @mpol: pointer to struct mempolicy pointer, returned on success.
2323 * @no_context: flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 * <mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy. This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2331 * mount option. Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved. Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339 struct mempolicy *new = NULL;
2340 unsigned short mode;
2341 unsigned short uninitialized_var(mode_flags);
2342 nodemask_t nodes;
2343 char *nodelist = strchr(str, ':');
2344 char *flags = strchr(str, '=');
2345 int err = 1;
2346
2347 if (nodelist) {
2348 /* NUL-terminate mode or flags string */
2349 *nodelist++ = '\0';
2350 if (nodelist_parse(nodelist, nodes))
2351 goto out;
2352 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353 goto out;
2354 } else
2355 nodes_clear(nodes);
2356
2357 if (flags)
2358 *flags++ = '\0'; /* terminate mode string */
2359
2360 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361 if (!strcmp(str, policy_modes[mode])) {
2362 break;
2363 }
2364 }
2365 if (mode > MPOL_LOCAL)
2366 goto out;
2367
2368 switch (mode) {
2369 case MPOL_PREFERRED:
2370 /*
2371 * Insist on a nodelist of one node only
2372 */
2373 if (nodelist) {
2374 char *rest = nodelist;
2375 while (isdigit(*rest))
2376 rest++;
2377 if (*rest)
2378 goto out;
2379 }
2380 break;
2381 case MPOL_INTERLEAVE:
2382 /*
2383 * Default to online nodes with memory if no nodelist
2384 */
2385 if (!nodelist)
2386 nodes = node_states[N_HIGH_MEMORY];
2387 break;
2388 case MPOL_LOCAL:
2389 /*
2390 * Don't allow a nodelist; mpol_new() checks flags
2391 */
2392 if (nodelist)
2393 goto out;
2394 mode = MPOL_PREFERRED;
2395 break;
2396 case MPOL_DEFAULT:
2397 /*
2398 * Insist on a empty nodelist
2399 */
2400 if (!nodelist)
2401 err = 0;
2402 goto out;
2403 case MPOL_BIND:
2404 /*
2405 * Insist on a nodelist
2406 */
2407 if (!nodelist)
2408 goto out;
2409 }
2410
2411 mode_flags = 0;
2412 if (flags) {
2413 /*
2414 * Currently, we only support two mutually exclusive
2415 * mode flags.
2416 */
2417 if (!strcmp(flags, "static"))
2418 mode_flags |= MPOL_F_STATIC_NODES;
2419 else if (!strcmp(flags, "relative"))
2420 mode_flags |= MPOL_F_RELATIVE_NODES;
2421 else
2422 goto out;
2423 }
2424
2425 new = mpol_new(mode, mode_flags, &nodes);
2426 if (IS_ERR(new))
2427 goto out;
2428
2429 if (no_context) {
2430 /* save for contextualization */
2431 new->w.user_nodemask = nodes;
2432 } else {
2433 int ret;
2434 NODEMASK_SCRATCH(scratch);
2435 if (scratch) {
2436 task_lock(current);
2437 ret = mpol_set_nodemask(new, &nodes, scratch);
2438 task_unlock(current);
2439 } else
2440 ret = -ENOMEM;
2441 NODEMASK_SCRATCH_FREE(scratch);
2442 if (ret) {
2443 mpol_put(new);
2444 goto out;
2445 }
2446 }
2447 err = 0;
2448
2449out:
2450 /* Restore string for error message */
2451 if (nodelist)
2452 *--nodelist = ':';
2453 if (flags)
2454 *--flags = '=';
2455 if (!err)
2456 *mpol = new;
2457 return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer: to contain formatted mempolicy string
2464 * @maxlen: length of @buffer
2465 * @pol: pointer to mempolicy to be formatted
2466 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474 char *p = buffer;
2475 int l;
2476 nodemask_t nodes;
2477 unsigned short mode;
2478 unsigned short flags = pol ? pol->flags : 0;
2479
2480 /*
2481 * Sanity check: room for longest mode, flag and some nodes
2482 */
2483 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485 if (!pol || pol == &default_policy)
2486 mode = MPOL_DEFAULT;
2487 else
2488 mode = pol->mode;
2489
2490 switch (mode) {
2491 case MPOL_DEFAULT:
2492 nodes_clear(nodes);
2493 break;
2494
2495 case MPOL_PREFERRED:
2496 nodes_clear(nodes);
2497 if (flags & MPOL_F_LOCAL)
2498 mode = MPOL_LOCAL; /* pseudo-policy */
2499 else
2500 node_set(pol->v.preferred_node, nodes);
2501 break;
2502
2503 case MPOL_BIND:
2504 /* Fall through */
2505 case MPOL_INTERLEAVE:
2506 if (no_context)
2507 nodes = pol->w.user_nodemask;
2508 else
2509 nodes = pol->v.nodes;
2510 break;
2511
2512 default:
2513 BUG();
2514 }
2515
2516 l = strlen(policy_modes[mode]);
2517 if (buffer + maxlen < p + l + 1)
2518 return -ENOSPC;
2519
2520 strcpy(p, policy_modes[mode]);
2521 p += l;
2522
2523 if (flags & MPOL_MODE_FLAGS) {
2524 if (buffer + maxlen < p + 2)
2525 return -ENOSPC;
2526 *p++ = '=';
2527
2528 /*
2529 * Currently, the only defined flags are mutually exclusive
2530 */
2531 if (flags & MPOL_F_STATIC_NODES)
2532 p += snprintf(p, buffer + maxlen - p, "static");
2533 else if (flags & MPOL_F_RELATIVE_NODES)
2534 p += snprintf(p, buffer + maxlen - p, "relative");
2535 }
2536
2537 if (!nodes_empty(nodes)) {
2538 if (buffer + maxlen < p + 2)
2539 return -ENOSPC;
2540 *p++ = ':';
2541 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542 }
2543 return p - buffer;
2544}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmem/tmpfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59/* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69*/
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/mempolicy.h>
74#include <linux/pagewalk.h>
75#include <linux/highmem.h>
76#include <linux/hugetlb.h>
77#include <linux/kernel.h>
78#include <linux/sched.h>
79#include <linux/sched/mm.h>
80#include <linux/sched/numa_balancing.h>
81#include <linux/sched/task.h>
82#include <linux/nodemask.h>
83#include <linux/cpuset.h>
84#include <linux/slab.h>
85#include <linux/string.h>
86#include <linux/export.h>
87#include <linux/nsproxy.h>
88#include <linux/interrupt.h>
89#include <linux/init.h>
90#include <linux/compat.h>
91#include <linux/ptrace.h>
92#include <linux/swap.h>
93#include <linux/seq_file.h>
94#include <linux/proc_fs.h>
95#include <linux/migrate.h>
96#include <linux/ksm.h>
97#include <linux/rmap.h>
98#include <linux/security.h>
99#include <linux/syscalls.h>
100#include <linux/ctype.h>
101#include <linux/mm_inline.h>
102#include <linux/mmu_notifier.h>
103#include <linux/printk.h>
104#include <linux/swapops.h>
105
106#include <asm/tlbflush.h>
107#include <asm/tlb.h>
108#include <linux/uaccess.h>
109
110#include "internal.h"
111
112/* Internal flags */
113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115#define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
116
117static struct kmem_cache *policy_cache;
118static struct kmem_cache *sn_cache;
119
120/* Highest zone. An specific allocation for a zone below that is not
121 policied. */
122enum zone_type policy_zone = 0;
123
124/*
125 * run-time system-wide default policy => local allocation
126 */
127static struct mempolicy default_policy = {
128 .refcnt = ATOMIC_INIT(1), /* never free it */
129 .mode = MPOL_LOCAL,
130};
131
132static struct mempolicy preferred_node_policy[MAX_NUMNODES];
133
134/**
135 * numa_nearest_node - Find nearest node by state
136 * @node: Node id to start the search
137 * @state: State to filter the search
138 *
139 * Lookup the closest node by distance if @nid is not in state.
140 *
141 * Return: this @node if it is in state, otherwise the closest node by distance
142 */
143int numa_nearest_node(int node, unsigned int state)
144{
145 int min_dist = INT_MAX, dist, n, min_node;
146
147 if (state >= NR_NODE_STATES)
148 return -EINVAL;
149
150 if (node == NUMA_NO_NODE || node_state(node, state))
151 return node;
152
153 min_node = node;
154 for_each_node_state(n, state) {
155 dist = node_distance(node, n);
156 if (dist < min_dist) {
157 min_dist = dist;
158 min_node = n;
159 }
160 }
161
162 return min_node;
163}
164EXPORT_SYMBOL_GPL(numa_nearest_node);
165
166struct mempolicy *get_task_policy(struct task_struct *p)
167{
168 struct mempolicy *pol = p->mempolicy;
169 int node;
170
171 if (pol)
172 return pol;
173
174 node = numa_node_id();
175 if (node != NUMA_NO_NODE) {
176 pol = &preferred_node_policy[node];
177 /* preferred_node_policy is not initialised early in boot */
178 if (pol->mode)
179 return pol;
180 }
181
182 return &default_policy;
183}
184
185static const struct mempolicy_operations {
186 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
187 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
188} mpol_ops[MPOL_MAX];
189
190static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
191{
192 return pol->flags & MPOL_MODE_FLAGS;
193}
194
195static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
196 const nodemask_t *rel)
197{
198 nodemask_t tmp;
199 nodes_fold(tmp, *orig, nodes_weight(*rel));
200 nodes_onto(*ret, tmp, *rel);
201}
202
203static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
204{
205 if (nodes_empty(*nodes))
206 return -EINVAL;
207 pol->nodes = *nodes;
208 return 0;
209}
210
211static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
212{
213 if (nodes_empty(*nodes))
214 return -EINVAL;
215
216 nodes_clear(pol->nodes);
217 node_set(first_node(*nodes), pol->nodes);
218 return 0;
219}
220
221/*
222 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
223 * any, for the new policy. mpol_new() has already validated the nodes
224 * parameter with respect to the policy mode and flags.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
229static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231{
232 int ret;
233
234 /*
235 * Default (pol==NULL) resp. local memory policies are not a
236 * subject of any remapping. They also do not need any special
237 * constructor.
238 */
239 if (!pol || pol->mode == MPOL_LOCAL)
240 return 0;
241
242 /* Check N_MEMORY */
243 nodes_and(nsc->mask1,
244 cpuset_current_mems_allowed, node_states[N_MEMORY]);
245
246 VM_BUG_ON(!nodes);
247
248 if (pol->flags & MPOL_F_RELATIVE_NODES)
249 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
250 else
251 nodes_and(nsc->mask2, *nodes, nsc->mask1);
252
253 if (mpol_store_user_nodemask(pol))
254 pol->w.user_nodemask = *nodes;
255 else
256 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
257
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 return ret;
260}
261
262/*
263 * This function just creates a new policy, does some check and simple
264 * initialization. You must invoke mpol_set_nodemask() to set nodes.
265 */
266static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
267 nodemask_t *nodes)
268{
269 struct mempolicy *policy;
270
271 if (mode == MPOL_DEFAULT) {
272 if (nodes && !nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 return NULL;
275 }
276 VM_BUG_ON(!nodes);
277
278 /*
279 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
280 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
281 * All other modes require a valid pointer to a non-empty nodemask.
282 */
283 if (mode == MPOL_PREFERRED) {
284 if (nodes_empty(*nodes)) {
285 if (((flags & MPOL_F_STATIC_NODES) ||
286 (flags & MPOL_F_RELATIVE_NODES)))
287 return ERR_PTR(-EINVAL);
288
289 mode = MPOL_LOCAL;
290 }
291 } else if (mode == MPOL_LOCAL) {
292 if (!nodes_empty(*nodes) ||
293 (flags & MPOL_F_STATIC_NODES) ||
294 (flags & MPOL_F_RELATIVE_NODES))
295 return ERR_PTR(-EINVAL);
296 } else if (nodes_empty(*nodes))
297 return ERR_PTR(-EINVAL);
298
299 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
300 if (!policy)
301 return ERR_PTR(-ENOMEM);
302 atomic_set(&policy->refcnt, 1);
303 policy->mode = mode;
304 policy->flags = flags;
305 policy->home_node = NUMA_NO_NODE;
306
307 return policy;
308}
309
310/* Slow path of a mpol destructor. */
311void __mpol_put(struct mempolicy *pol)
312{
313 if (!atomic_dec_and_test(&pol->refcnt))
314 return;
315 kmem_cache_free(policy_cache, pol);
316}
317
318static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319{
320}
321
322static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323{
324 nodemask_t tmp;
325
326 if (pol->flags & MPOL_F_STATIC_NODES)
327 nodes_and(tmp, pol->w.user_nodemask, *nodes);
328 else if (pol->flags & MPOL_F_RELATIVE_NODES)
329 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
330 else {
331 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
332 *nodes);
333 pol->w.cpuset_mems_allowed = *nodes;
334 }
335
336 if (nodes_empty(tmp))
337 tmp = *nodes;
338
339 pol->nodes = tmp;
340}
341
342static void mpol_rebind_preferred(struct mempolicy *pol,
343 const nodemask_t *nodes)
344{
345 pol->w.cpuset_mems_allowed = *nodes;
346}
347
348/*
349 * mpol_rebind_policy - Migrate a policy to a different set of nodes
350 *
351 * Per-vma policies are protected by mmap_lock. Allocations using per-task
352 * policies are protected by task->mems_allowed_seq to prevent a premature
353 * OOM/allocation failure due to parallel nodemask modification.
354 */
355static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
356{
357 if (!pol || pol->mode == MPOL_LOCAL)
358 return;
359 if (!mpol_store_user_nodemask(pol) &&
360 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
361 return;
362
363 mpol_ops[pol->mode].rebind(pol, newmask);
364}
365
366/*
367 * Wrapper for mpol_rebind_policy() that just requires task
368 * pointer, and updates task mempolicy.
369 *
370 * Called with task's alloc_lock held.
371 */
372void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
373{
374 mpol_rebind_policy(tsk->mempolicy, new);
375}
376
377/*
378 * Rebind each vma in mm to new nodemask.
379 *
380 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 */
382void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383{
384 struct vm_area_struct *vma;
385 VMA_ITERATOR(vmi, mm, 0);
386
387 mmap_write_lock(mm);
388 for_each_vma(vmi, vma) {
389 vma_start_write(vma);
390 mpol_rebind_policy(vma->vm_policy, new);
391 }
392 mmap_write_unlock(mm);
393}
394
395static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
396 [MPOL_DEFAULT] = {
397 .rebind = mpol_rebind_default,
398 },
399 [MPOL_INTERLEAVE] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
402 },
403 [MPOL_PREFERRED] = {
404 .create = mpol_new_preferred,
405 .rebind = mpol_rebind_preferred,
406 },
407 [MPOL_BIND] = {
408 .create = mpol_new_nodemask,
409 .rebind = mpol_rebind_nodemask,
410 },
411 [MPOL_LOCAL] = {
412 .rebind = mpol_rebind_default,
413 },
414 [MPOL_PREFERRED_MANY] = {
415 .create = mpol_new_nodemask,
416 .rebind = mpol_rebind_preferred,
417 },
418};
419
420static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
421 unsigned long flags);
422static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
423 pgoff_t ilx, int *nid);
424
425static bool strictly_unmovable(unsigned long flags)
426{
427 /*
428 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
429 * if any misplaced page is found.
430 */
431 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
432 MPOL_MF_STRICT;
433}
434
435struct migration_mpol { /* for alloc_migration_target_by_mpol() */
436 struct mempolicy *pol;
437 pgoff_t ilx;
438};
439
440struct queue_pages {
441 struct list_head *pagelist;
442 unsigned long flags;
443 nodemask_t *nmask;
444 unsigned long start;
445 unsigned long end;
446 struct vm_area_struct *first;
447 struct folio *large; /* note last large folio encountered */
448 long nr_failed; /* could not be isolated at this time */
449};
450
451/*
452 * Check if the folio's nid is in qp->nmask.
453 *
454 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
455 * in the invert of qp->nmask.
456 */
457static inline bool queue_folio_required(struct folio *folio,
458 struct queue_pages *qp)
459{
460 int nid = folio_nid(folio);
461 unsigned long flags = qp->flags;
462
463 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
464}
465
466static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
467{
468 struct folio *folio;
469 struct queue_pages *qp = walk->private;
470
471 if (unlikely(is_pmd_migration_entry(*pmd))) {
472 qp->nr_failed++;
473 return;
474 }
475 folio = pfn_folio(pmd_pfn(*pmd));
476 if (is_huge_zero_page(&folio->page)) {
477 walk->action = ACTION_CONTINUE;
478 return;
479 }
480 if (!queue_folio_required(folio, qp))
481 return;
482 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
483 !vma_migratable(walk->vma) ||
484 !migrate_folio_add(folio, qp->pagelist, qp->flags))
485 qp->nr_failed++;
486}
487
488/*
489 * Scan through folios, checking if they satisfy the required conditions,
490 * moving them from LRU to local pagelist for migration if they do (or not).
491 *
492 * queue_folios_pte_range() has two possible return values:
493 * 0 - continue walking to scan for more, even if an existing folio on the
494 * wrong node could not be isolated and queued for migration.
495 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
496 * and an existing folio was on a node that does not follow the policy.
497 */
498static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
499 unsigned long end, struct mm_walk *walk)
500{
501 struct vm_area_struct *vma = walk->vma;
502 struct folio *folio;
503 struct queue_pages *qp = walk->private;
504 unsigned long flags = qp->flags;
505 pte_t *pte, *mapped_pte;
506 pte_t ptent;
507 spinlock_t *ptl;
508
509 ptl = pmd_trans_huge_lock(pmd, vma);
510 if (ptl) {
511 queue_folios_pmd(pmd, walk);
512 spin_unlock(ptl);
513 goto out;
514 }
515
516 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
517 if (!pte) {
518 walk->action = ACTION_AGAIN;
519 return 0;
520 }
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 ptent = ptep_get(pte);
523 if (pte_none(ptent))
524 continue;
525 if (!pte_present(ptent)) {
526 if (is_migration_entry(pte_to_swp_entry(ptent)))
527 qp->nr_failed++;
528 continue;
529 }
530 folio = vm_normal_folio(vma, addr, ptent);
531 if (!folio || folio_is_zone_device(folio))
532 continue;
533 /*
534 * vm_normal_folio() filters out zero pages, but there might
535 * still be reserved folios to skip, perhaps in a VDSO.
536 */
537 if (folio_test_reserved(folio))
538 continue;
539 if (!queue_folio_required(folio, qp))
540 continue;
541 if (folio_test_large(folio)) {
542 /*
543 * A large folio can only be isolated from LRU once,
544 * but may be mapped by many PTEs (and Copy-On-Write may
545 * intersperse PTEs of other, order 0, folios). This is
546 * a common case, so don't mistake it for failure (but
547 * there can be other cases of multi-mapped pages which
548 * this quick check does not help to filter out - and a
549 * search of the pagelist might grow to be prohibitive).
550 *
551 * migrate_pages(&pagelist) returns nr_failed folios, so
552 * check "large" now so that queue_pages_range() returns
553 * a comparable nr_failed folios. This does imply that
554 * if folio could not be isolated for some racy reason
555 * at its first PTE, later PTEs will not give it another
556 * chance of isolation; but keeps the accounting simple.
557 */
558 if (folio == qp->large)
559 continue;
560 qp->large = folio;
561 }
562 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
563 !vma_migratable(vma) ||
564 !migrate_folio_add(folio, qp->pagelist, flags)) {
565 qp->nr_failed++;
566 if (strictly_unmovable(flags))
567 break;
568 }
569 }
570 pte_unmap_unlock(mapped_pte, ptl);
571 cond_resched();
572out:
573 if (qp->nr_failed && strictly_unmovable(flags))
574 return -EIO;
575 return 0;
576}
577
578static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
579 unsigned long addr, unsigned long end,
580 struct mm_walk *walk)
581{
582#ifdef CONFIG_HUGETLB_PAGE
583 struct queue_pages *qp = walk->private;
584 unsigned long flags = qp->flags;
585 struct folio *folio;
586 spinlock_t *ptl;
587 pte_t entry;
588
589 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
590 entry = huge_ptep_get(pte);
591 if (!pte_present(entry)) {
592 if (unlikely(is_hugetlb_entry_migration(entry)))
593 qp->nr_failed++;
594 goto unlock;
595 }
596 folio = pfn_folio(pte_pfn(entry));
597 if (!queue_folio_required(folio, qp))
598 goto unlock;
599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 !vma_migratable(walk->vma)) {
601 qp->nr_failed++;
602 goto unlock;
603 }
604 /*
605 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
606 * Choosing not to migrate a shared folio is not counted as a failure.
607 *
608 * To check if the folio is shared, ideally we want to make sure
609 * every page is mapped to the same process. Doing that is very
610 * expensive, so check the estimated sharers of the folio instead.
611 */
612 if ((flags & MPOL_MF_MOVE_ALL) ||
613 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
614 if (!isolate_hugetlb(folio, qp->pagelist))
615 qp->nr_failed++;
616unlock:
617 spin_unlock(ptl);
618 if (qp->nr_failed && strictly_unmovable(flags))
619 return -EIO;
620#endif
621 return 0;
622}
623
624#ifdef CONFIG_NUMA_BALANCING
625/*
626 * This is used to mark a range of virtual addresses to be inaccessible.
627 * These are later cleared by a NUMA hinting fault. Depending on these
628 * faults, pages may be migrated for better NUMA placement.
629 *
630 * This is assuming that NUMA faults are handled using PROT_NONE. If
631 * an architecture makes a different choice, it will need further
632 * changes to the core.
633 */
634unsigned long change_prot_numa(struct vm_area_struct *vma,
635 unsigned long addr, unsigned long end)
636{
637 struct mmu_gather tlb;
638 long nr_updated;
639
640 tlb_gather_mmu(&tlb, vma->vm_mm);
641
642 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
643 if (nr_updated > 0)
644 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
645
646 tlb_finish_mmu(&tlb);
647
648 return nr_updated;
649}
650#endif /* CONFIG_NUMA_BALANCING */
651
652static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
654{
655 struct vm_area_struct *next, *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
659
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
662
663 if (!qp->first) {
664 qp->first = vma;
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
668 return -EFAULT;
669 }
670 next = find_vma(vma->vm_mm, vma->vm_end);
671 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
672 ((vma->vm_end < qp->end) &&
673 (!next || vma->vm_end < next->vm_start)))
674 /* hole at middle or tail of range */
675 return -EFAULT;
676
677 /*
678 * Need check MPOL_MF_STRICT to return -EIO if possible
679 * regardless of vma_migratable
680 */
681 if (!vma_migratable(vma) &&
682 !(flags & MPOL_MF_STRICT))
683 return 1;
684
685 if (endvma > end)
686 endvma = end;
687
688 /*
689 * Check page nodes, and queue pages to move, in the current vma.
690 * But if no moving, and no strict checking, the scan can be skipped.
691 */
692 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
693 return 0;
694 return 1;
695}
696
697static const struct mm_walk_ops queue_pages_walk_ops = {
698 .hugetlb_entry = queue_folios_hugetlb,
699 .pmd_entry = queue_folios_pte_range,
700 .test_walk = queue_pages_test_walk,
701 .walk_lock = PGWALK_RDLOCK,
702};
703
704static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
705 .hugetlb_entry = queue_folios_hugetlb,
706 .pmd_entry = queue_folios_pte_range,
707 .test_walk = queue_pages_test_walk,
708 .walk_lock = PGWALK_WRLOCK,
709};
710
711/*
712 * Walk through page tables and collect pages to be migrated.
713 *
714 * If pages found in a given range are not on the required set of @nodes,
715 * and migration is allowed, they are isolated and queued to @pagelist.
716 *
717 * queue_pages_range() may return:
718 * 0 - all pages already on the right node, or successfully queued for moving
719 * (or neither strict checking nor moving requested: only range checking).
720 * >0 - this number of misplaced folios could not be queued for moving
721 * (a hugetlbfs page or a transparent huge page being counted as 1).
722 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
723 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
724 */
725static long
726queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
727 nodemask_t *nodes, unsigned long flags,
728 struct list_head *pagelist)
729{
730 int err;
731 struct queue_pages qp = {
732 .pagelist = pagelist,
733 .flags = flags,
734 .nmask = nodes,
735 .start = start,
736 .end = end,
737 .first = NULL,
738 };
739 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
740 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
741
742 err = walk_page_range(mm, start, end, ops, &qp);
743
744 if (!qp.first)
745 /* whole range in hole */
746 err = -EFAULT;
747
748 return err ? : qp.nr_failed;
749}
750
751/*
752 * Apply policy to a single VMA
753 * This must be called with the mmap_lock held for writing.
754 */
755static int vma_replace_policy(struct vm_area_struct *vma,
756 struct mempolicy *pol)
757{
758 int err;
759 struct mempolicy *old;
760 struct mempolicy *new;
761
762 vma_assert_write_locked(vma);
763
764 new = mpol_dup(pol);
765 if (IS_ERR(new))
766 return PTR_ERR(new);
767
768 if (vma->vm_ops && vma->vm_ops->set_policy) {
769 err = vma->vm_ops->set_policy(vma, new);
770 if (err)
771 goto err_out;
772 }
773
774 old = vma->vm_policy;
775 vma->vm_policy = new; /* protected by mmap_lock */
776 mpol_put(old);
777
778 return 0;
779 err_out:
780 mpol_put(new);
781 return err;
782}
783
784/* Split or merge the VMA (if required) and apply the new policy */
785static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
786 struct vm_area_struct **prev, unsigned long start,
787 unsigned long end, struct mempolicy *new_pol)
788{
789 unsigned long vmstart, vmend;
790
791 vmend = min(end, vma->vm_end);
792 if (start > vma->vm_start) {
793 *prev = vma;
794 vmstart = start;
795 } else {
796 vmstart = vma->vm_start;
797 }
798
799 if (mpol_equal(vma->vm_policy, new_pol)) {
800 *prev = vma;
801 return 0;
802 }
803
804 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
805 if (IS_ERR(vma))
806 return PTR_ERR(vma);
807
808 *prev = vma;
809 return vma_replace_policy(vma, new_pol);
810}
811
812/* Set the process memory policy */
813static long do_set_mempolicy(unsigned short mode, unsigned short flags,
814 nodemask_t *nodes)
815{
816 struct mempolicy *new, *old;
817 NODEMASK_SCRATCH(scratch);
818 int ret;
819
820 if (!scratch)
821 return -ENOMEM;
822
823 new = mpol_new(mode, flags, nodes);
824 if (IS_ERR(new)) {
825 ret = PTR_ERR(new);
826 goto out;
827 }
828
829 task_lock(current);
830 ret = mpol_set_nodemask(new, nodes, scratch);
831 if (ret) {
832 task_unlock(current);
833 mpol_put(new);
834 goto out;
835 }
836
837 old = current->mempolicy;
838 current->mempolicy = new;
839 if (new && new->mode == MPOL_INTERLEAVE)
840 current->il_prev = MAX_NUMNODES-1;
841 task_unlock(current);
842 mpol_put(old);
843 ret = 0;
844out:
845 NODEMASK_SCRATCH_FREE(scratch);
846 return ret;
847}
848
849/*
850 * Return nodemask for policy for get_mempolicy() query
851 *
852 * Called with task's alloc_lock held
853 */
854static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
855{
856 nodes_clear(*nodes);
857 if (pol == &default_policy)
858 return;
859
860 switch (pol->mode) {
861 case MPOL_BIND:
862 case MPOL_INTERLEAVE:
863 case MPOL_PREFERRED:
864 case MPOL_PREFERRED_MANY:
865 *nodes = pol->nodes;
866 break;
867 case MPOL_LOCAL:
868 /* return empty node mask for local allocation */
869 break;
870 default:
871 BUG();
872 }
873}
874
875static int lookup_node(struct mm_struct *mm, unsigned long addr)
876{
877 struct page *p = NULL;
878 int ret;
879
880 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
881 if (ret > 0) {
882 ret = page_to_nid(p);
883 put_page(p);
884 }
885 return ret;
886}
887
888/* Retrieve NUMA policy */
889static long do_get_mempolicy(int *policy, nodemask_t *nmask,
890 unsigned long addr, unsigned long flags)
891{
892 int err;
893 struct mm_struct *mm = current->mm;
894 struct vm_area_struct *vma = NULL;
895 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
896
897 if (flags &
898 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
899 return -EINVAL;
900
901 if (flags & MPOL_F_MEMS_ALLOWED) {
902 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
903 return -EINVAL;
904 *policy = 0; /* just so it's initialized */
905 task_lock(current);
906 *nmask = cpuset_current_mems_allowed;
907 task_unlock(current);
908 return 0;
909 }
910
911 if (flags & MPOL_F_ADDR) {
912 pgoff_t ilx; /* ignored here */
913 /*
914 * Do NOT fall back to task policy if the
915 * vma/shared policy at addr is NULL. We
916 * want to return MPOL_DEFAULT in this case.
917 */
918 mmap_read_lock(mm);
919 vma = vma_lookup(mm, addr);
920 if (!vma) {
921 mmap_read_unlock(mm);
922 return -EFAULT;
923 }
924 pol = __get_vma_policy(vma, addr, &ilx);
925 } else if (addr)
926 return -EINVAL;
927
928 if (!pol)
929 pol = &default_policy; /* indicates default behavior */
930
931 if (flags & MPOL_F_NODE) {
932 if (flags & MPOL_F_ADDR) {
933 /*
934 * Take a refcount on the mpol, because we are about to
935 * drop the mmap_lock, after which only "pol" remains
936 * valid, "vma" is stale.
937 */
938 pol_refcount = pol;
939 vma = NULL;
940 mpol_get(pol);
941 mmap_read_unlock(mm);
942 err = lookup_node(mm, addr);
943 if (err < 0)
944 goto out;
945 *policy = err;
946 } else if (pol == current->mempolicy &&
947 pol->mode == MPOL_INTERLEAVE) {
948 *policy = next_node_in(current->il_prev, pol->nodes);
949 } else {
950 err = -EINVAL;
951 goto out;
952 }
953 } else {
954 *policy = pol == &default_policy ? MPOL_DEFAULT :
955 pol->mode;
956 /*
957 * Internal mempolicy flags must be masked off before exposing
958 * the policy to userspace.
959 */
960 *policy |= (pol->flags & MPOL_MODE_FLAGS);
961 }
962
963 err = 0;
964 if (nmask) {
965 if (mpol_store_user_nodemask(pol)) {
966 *nmask = pol->w.user_nodemask;
967 } else {
968 task_lock(current);
969 get_policy_nodemask(pol, nmask);
970 task_unlock(current);
971 }
972 }
973
974 out:
975 mpol_cond_put(pol);
976 if (vma)
977 mmap_read_unlock(mm);
978 if (pol_refcount)
979 mpol_put(pol_refcount);
980 return err;
981}
982
983#ifdef CONFIG_MIGRATION
984static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
985 unsigned long flags)
986{
987 /*
988 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
989 * Choosing not to migrate a shared folio is not counted as a failure.
990 *
991 * To check if the folio is shared, ideally we want to make sure
992 * every page is mapped to the same process. Doing that is very
993 * expensive, so check the estimated sharers of the folio instead.
994 */
995 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
996 if (folio_isolate_lru(folio)) {
997 list_add_tail(&folio->lru, foliolist);
998 node_stat_mod_folio(folio,
999 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1000 folio_nr_pages(folio));
1001 } else {
1002 /*
1003 * Non-movable folio may reach here. And, there may be
1004 * temporary off LRU folios or non-LRU movable folios.
1005 * Treat them as unmovable folios since they can't be
1006 * isolated, so they can't be moved at the moment.
1007 */
1008 return false;
1009 }
1010 }
1011 return true;
1012}
1013
1014/*
1015 * Migrate pages from one node to a target node.
1016 * Returns error or the number of pages not migrated.
1017 */
1018static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1019 int flags)
1020{
1021 nodemask_t nmask;
1022 struct vm_area_struct *vma;
1023 LIST_HEAD(pagelist);
1024 long nr_failed;
1025 long err = 0;
1026 struct migration_target_control mtc = {
1027 .nid = dest,
1028 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1029 };
1030
1031 nodes_clear(nmask);
1032 node_set(source, nmask);
1033
1034 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1035
1036 mmap_read_lock(mm);
1037 vma = find_vma(mm, 0);
1038
1039 /*
1040 * This does not migrate the range, but isolates all pages that
1041 * need migration. Between passing in the full user address
1042 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1043 * but passes back the count of pages which could not be isolated.
1044 */
1045 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1046 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1047 mmap_read_unlock(mm);
1048
1049 if (!list_empty(&pagelist)) {
1050 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1051 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1052 if (err)
1053 putback_movable_pages(&pagelist);
1054 }
1055
1056 if (err >= 0)
1057 err += nr_failed;
1058 return err;
1059}
1060
1061/*
1062 * Move pages between the two nodesets so as to preserve the physical
1063 * layout as much as possible.
1064 *
1065 * Returns the number of page that could not be moved.
1066 */
1067int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1068 const nodemask_t *to, int flags)
1069{
1070 long nr_failed = 0;
1071 long err = 0;
1072 nodemask_t tmp;
1073
1074 lru_cache_disable();
1075
1076 /*
1077 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1078 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1079 * bit in 'tmp', and return that <source, dest> pair for migration.
1080 * The pair of nodemasks 'to' and 'from' define the map.
1081 *
1082 * If no pair of bits is found that way, fallback to picking some
1083 * pair of 'source' and 'dest' bits that are not the same. If the
1084 * 'source' and 'dest' bits are the same, this represents a node
1085 * that will be migrating to itself, so no pages need move.
1086 *
1087 * If no bits are left in 'tmp', or if all remaining bits left
1088 * in 'tmp' correspond to the same bit in 'to', return false
1089 * (nothing left to migrate).
1090 *
1091 * This lets us pick a pair of nodes to migrate between, such that
1092 * if possible the dest node is not already occupied by some other
1093 * source node, minimizing the risk of overloading the memory on a
1094 * node that would happen if we migrated incoming memory to a node
1095 * before migrating outgoing memory source that same node.
1096 *
1097 * A single scan of tmp is sufficient. As we go, we remember the
1098 * most recent <s, d> pair that moved (s != d). If we find a pair
1099 * that not only moved, but what's better, moved to an empty slot
1100 * (d is not set in tmp), then we break out then, with that pair.
1101 * Otherwise when we finish scanning from_tmp, we at least have the
1102 * most recent <s, d> pair that moved. If we get all the way through
1103 * the scan of tmp without finding any node that moved, much less
1104 * moved to an empty node, then there is nothing left worth migrating.
1105 */
1106
1107 tmp = *from;
1108 while (!nodes_empty(tmp)) {
1109 int s, d;
1110 int source = NUMA_NO_NODE;
1111 int dest = 0;
1112
1113 for_each_node_mask(s, tmp) {
1114
1115 /*
1116 * do_migrate_pages() tries to maintain the relative
1117 * node relationship of the pages established between
1118 * threads and memory areas.
1119 *
1120 * However if the number of source nodes is not equal to
1121 * the number of destination nodes we can not preserve
1122 * this node relative relationship. In that case, skip
1123 * copying memory from a node that is in the destination
1124 * mask.
1125 *
1126 * Example: [2,3,4] -> [3,4,5] moves everything.
1127 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1128 */
1129
1130 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1131 (node_isset(s, *to)))
1132 continue;
1133
1134 d = node_remap(s, *from, *to);
1135 if (s == d)
1136 continue;
1137
1138 source = s; /* Node moved. Memorize */
1139 dest = d;
1140
1141 /* dest not in remaining from nodes? */
1142 if (!node_isset(dest, tmp))
1143 break;
1144 }
1145 if (source == NUMA_NO_NODE)
1146 break;
1147
1148 node_clear(source, tmp);
1149 err = migrate_to_node(mm, source, dest, flags);
1150 if (err > 0)
1151 nr_failed += err;
1152 if (err < 0)
1153 break;
1154 }
1155
1156 lru_cache_enable();
1157 if (err < 0)
1158 return err;
1159 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1160}
1161
1162/*
1163 * Allocate a new folio for page migration, according to NUMA mempolicy.
1164 */
1165static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1166 unsigned long private)
1167{
1168 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1169 struct mempolicy *pol = mmpol->pol;
1170 pgoff_t ilx = mmpol->ilx;
1171 struct page *page;
1172 unsigned int order;
1173 int nid = numa_node_id();
1174 gfp_t gfp;
1175
1176 order = folio_order(src);
1177 ilx += src->index >> order;
1178
1179 if (folio_test_hugetlb(src)) {
1180 nodemask_t *nodemask;
1181 struct hstate *h;
1182
1183 h = folio_hstate(src);
1184 gfp = htlb_alloc_mask(h);
1185 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1186 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp);
1187 }
1188
1189 if (folio_test_large(src))
1190 gfp = GFP_TRANSHUGE;
1191 else
1192 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1193
1194 page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1195 return page_rmappable_folio(page);
1196}
1197#else
1198
1199static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1200 unsigned long flags)
1201{
1202 return false;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206 const nodemask_t *to, int flags)
1207{
1208 return -ENOSYS;
1209}
1210
1211static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1212 unsigned long private)
1213{
1214 return NULL;
1215}
1216#endif
1217
1218static long do_mbind(unsigned long start, unsigned long len,
1219 unsigned short mode, unsigned short mode_flags,
1220 nodemask_t *nmask, unsigned long flags)
1221{
1222 struct mm_struct *mm = current->mm;
1223 struct vm_area_struct *vma, *prev;
1224 struct vma_iterator vmi;
1225 struct migration_mpol mmpol;
1226 struct mempolicy *new;
1227 unsigned long end;
1228 long err;
1229 long nr_failed;
1230 LIST_HEAD(pagelist);
1231
1232 if (flags & ~(unsigned long)MPOL_MF_VALID)
1233 return -EINVAL;
1234 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1235 return -EPERM;
1236
1237 if (start & ~PAGE_MASK)
1238 return -EINVAL;
1239
1240 if (mode == MPOL_DEFAULT)
1241 flags &= ~MPOL_MF_STRICT;
1242
1243 len = PAGE_ALIGN(len);
1244 end = start + len;
1245
1246 if (end < start)
1247 return -EINVAL;
1248 if (end == start)
1249 return 0;
1250
1251 new = mpol_new(mode, mode_flags, nmask);
1252 if (IS_ERR(new))
1253 return PTR_ERR(new);
1254
1255 /*
1256 * If we are using the default policy then operation
1257 * on discontinuous address spaces is okay after all
1258 */
1259 if (!new)
1260 flags |= MPOL_MF_DISCONTIG_OK;
1261
1262 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1263 lru_cache_disable();
1264 {
1265 NODEMASK_SCRATCH(scratch);
1266 if (scratch) {
1267 mmap_write_lock(mm);
1268 err = mpol_set_nodemask(new, nmask, scratch);
1269 if (err)
1270 mmap_write_unlock(mm);
1271 } else
1272 err = -ENOMEM;
1273 NODEMASK_SCRATCH_FREE(scratch);
1274 }
1275 if (err)
1276 goto mpol_out;
1277
1278 /*
1279 * Lock the VMAs before scanning for pages to migrate,
1280 * to ensure we don't miss a concurrently inserted page.
1281 */
1282 nr_failed = queue_pages_range(mm, start, end, nmask,
1283 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1284
1285 if (nr_failed < 0) {
1286 err = nr_failed;
1287 nr_failed = 0;
1288 } else {
1289 vma_iter_init(&vmi, mm, start);
1290 prev = vma_prev(&vmi);
1291 for_each_vma_range(vmi, vma, end) {
1292 err = mbind_range(&vmi, vma, &prev, start, end, new);
1293 if (err)
1294 break;
1295 }
1296 }
1297
1298 if (!err && !list_empty(&pagelist)) {
1299 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1300 if (!new) {
1301 new = get_task_policy(current);
1302 mpol_get(new);
1303 }
1304 mmpol.pol = new;
1305 mmpol.ilx = 0;
1306
1307 /*
1308 * In the interleaved case, attempt to allocate on exactly the
1309 * targeted nodes, for the first VMA to be migrated; for later
1310 * VMAs, the nodes will still be interleaved from the targeted
1311 * nodemask, but one by one may be selected differently.
1312 */
1313 if (new->mode == MPOL_INTERLEAVE) {
1314 struct page *page;
1315 unsigned int order;
1316 unsigned long addr = -EFAULT;
1317
1318 list_for_each_entry(page, &pagelist, lru) {
1319 if (!PageKsm(page))
1320 break;
1321 }
1322 if (!list_entry_is_head(page, &pagelist, lru)) {
1323 vma_iter_init(&vmi, mm, start);
1324 for_each_vma_range(vmi, vma, end) {
1325 addr = page_address_in_vma(page, vma);
1326 if (addr != -EFAULT)
1327 break;
1328 }
1329 }
1330 if (addr != -EFAULT) {
1331 order = compound_order(page);
1332 /* We already know the pol, but not the ilx */
1333 mpol_cond_put(get_vma_policy(vma, addr, order,
1334 &mmpol.ilx));
1335 /* Set base from which to increment by index */
1336 mmpol.ilx -= page->index >> order;
1337 }
1338 }
1339 }
1340
1341 mmap_write_unlock(mm);
1342
1343 if (!err && !list_empty(&pagelist)) {
1344 nr_failed |= migrate_pages(&pagelist,
1345 alloc_migration_target_by_mpol, NULL,
1346 (unsigned long)&mmpol, MIGRATE_SYNC,
1347 MR_MEMPOLICY_MBIND, NULL);
1348 }
1349
1350 if (nr_failed && (flags & MPOL_MF_STRICT))
1351 err = -EIO;
1352 if (!list_empty(&pagelist))
1353 putback_movable_pages(&pagelist);
1354mpol_out:
1355 mpol_put(new);
1356 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1357 lru_cache_enable();
1358 return err;
1359}
1360
1361/*
1362 * User space interface with variable sized bitmaps for nodelists.
1363 */
1364static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1365 unsigned long maxnode)
1366{
1367 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1368 int ret;
1369
1370 if (in_compat_syscall())
1371 ret = compat_get_bitmap(mask,
1372 (const compat_ulong_t __user *)nmask,
1373 maxnode);
1374 else
1375 ret = copy_from_user(mask, nmask,
1376 nlongs * sizeof(unsigned long));
1377
1378 if (ret)
1379 return -EFAULT;
1380
1381 if (maxnode % BITS_PER_LONG)
1382 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1383
1384 return 0;
1385}
1386
1387/* Copy a node mask from user space. */
1388static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1389 unsigned long maxnode)
1390{
1391 --maxnode;
1392 nodes_clear(*nodes);
1393 if (maxnode == 0 || !nmask)
1394 return 0;
1395 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1396 return -EINVAL;
1397
1398 /*
1399 * When the user specified more nodes than supported just check
1400 * if the non supported part is all zero, one word at a time,
1401 * starting at the end.
1402 */
1403 while (maxnode > MAX_NUMNODES) {
1404 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1405 unsigned long t;
1406
1407 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1408 return -EFAULT;
1409
1410 if (maxnode - bits >= MAX_NUMNODES) {
1411 maxnode -= bits;
1412 } else {
1413 maxnode = MAX_NUMNODES;
1414 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1415 }
1416 if (t)
1417 return -EINVAL;
1418 }
1419
1420 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1421}
1422
1423/* Copy a kernel node mask to user space */
1424static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1425 nodemask_t *nodes)
1426{
1427 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1428 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1429 bool compat = in_compat_syscall();
1430
1431 if (compat)
1432 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1433
1434 if (copy > nbytes) {
1435 if (copy > PAGE_SIZE)
1436 return -EINVAL;
1437 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1438 return -EFAULT;
1439 copy = nbytes;
1440 maxnode = nr_node_ids;
1441 }
1442
1443 if (compat)
1444 return compat_put_bitmap((compat_ulong_t __user *)mask,
1445 nodes_addr(*nodes), maxnode);
1446
1447 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1448}
1449
1450/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1451static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1452{
1453 *flags = *mode & MPOL_MODE_FLAGS;
1454 *mode &= ~MPOL_MODE_FLAGS;
1455
1456 if ((unsigned int)(*mode) >= MPOL_MAX)
1457 return -EINVAL;
1458 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1459 return -EINVAL;
1460 if (*flags & MPOL_F_NUMA_BALANCING) {
1461 if (*mode != MPOL_BIND)
1462 return -EINVAL;
1463 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1464 }
1465 return 0;
1466}
1467
1468static long kernel_mbind(unsigned long start, unsigned long len,
1469 unsigned long mode, const unsigned long __user *nmask,
1470 unsigned long maxnode, unsigned int flags)
1471{
1472 unsigned short mode_flags;
1473 nodemask_t nodes;
1474 int lmode = mode;
1475 int err;
1476
1477 start = untagged_addr(start);
1478 err = sanitize_mpol_flags(&lmode, &mode_flags);
1479 if (err)
1480 return err;
1481
1482 err = get_nodes(&nodes, nmask, maxnode);
1483 if (err)
1484 return err;
1485
1486 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1487}
1488
1489SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1490 unsigned long, home_node, unsigned long, flags)
1491{
1492 struct mm_struct *mm = current->mm;
1493 struct vm_area_struct *vma, *prev;
1494 struct mempolicy *new, *old;
1495 unsigned long end;
1496 int err = -ENOENT;
1497 VMA_ITERATOR(vmi, mm, start);
1498
1499 start = untagged_addr(start);
1500 if (start & ~PAGE_MASK)
1501 return -EINVAL;
1502 /*
1503 * flags is used for future extension if any.
1504 */
1505 if (flags != 0)
1506 return -EINVAL;
1507
1508 /*
1509 * Check home_node is online to avoid accessing uninitialized
1510 * NODE_DATA.
1511 */
1512 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513 return -EINVAL;
1514
1515 len = PAGE_ALIGN(len);
1516 end = start + len;
1517
1518 if (end < start)
1519 return -EINVAL;
1520 if (end == start)
1521 return 0;
1522 mmap_write_lock(mm);
1523 prev = vma_prev(&vmi);
1524 for_each_vma_range(vmi, vma, end) {
1525 /*
1526 * If any vma in the range got policy other than MPOL_BIND
1527 * or MPOL_PREFERRED_MANY we return error. We don't reset
1528 * the home node for vmas we already updated before.
1529 */
1530 old = vma_policy(vma);
1531 if (!old) {
1532 prev = vma;
1533 continue;
1534 }
1535 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1536 err = -EOPNOTSUPP;
1537 break;
1538 }
1539 new = mpol_dup(old);
1540 if (IS_ERR(new)) {
1541 err = PTR_ERR(new);
1542 break;
1543 }
1544
1545 vma_start_write(vma);
1546 new->home_node = home_node;
1547 err = mbind_range(&vmi, vma, &prev, start, end, new);
1548 mpol_put(new);
1549 if (err)
1550 break;
1551 }
1552 mmap_write_unlock(mm);
1553 return err;
1554}
1555
1556SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1557 unsigned long, mode, const unsigned long __user *, nmask,
1558 unsigned long, maxnode, unsigned int, flags)
1559{
1560 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1561}
1562
1563/* Set the process memory policy */
1564static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1565 unsigned long maxnode)
1566{
1567 unsigned short mode_flags;
1568 nodemask_t nodes;
1569 int lmode = mode;
1570 int err;
1571
1572 err = sanitize_mpol_flags(&lmode, &mode_flags);
1573 if (err)
1574 return err;
1575
1576 err = get_nodes(&nodes, nmask, maxnode);
1577 if (err)
1578 return err;
1579
1580 return do_set_mempolicy(lmode, mode_flags, &nodes);
1581}
1582
1583SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1584 unsigned long, maxnode)
1585{
1586 return kernel_set_mempolicy(mode, nmask, maxnode);
1587}
1588
1589static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1590 const unsigned long __user *old_nodes,
1591 const unsigned long __user *new_nodes)
1592{
1593 struct mm_struct *mm = NULL;
1594 struct task_struct *task;
1595 nodemask_t task_nodes;
1596 int err;
1597 nodemask_t *old;
1598 nodemask_t *new;
1599 NODEMASK_SCRATCH(scratch);
1600
1601 if (!scratch)
1602 return -ENOMEM;
1603
1604 old = &scratch->mask1;
1605 new = &scratch->mask2;
1606
1607 err = get_nodes(old, old_nodes, maxnode);
1608 if (err)
1609 goto out;
1610
1611 err = get_nodes(new, new_nodes, maxnode);
1612 if (err)
1613 goto out;
1614
1615 /* Find the mm_struct */
1616 rcu_read_lock();
1617 task = pid ? find_task_by_vpid(pid) : current;
1618 if (!task) {
1619 rcu_read_unlock();
1620 err = -ESRCH;
1621 goto out;
1622 }
1623 get_task_struct(task);
1624
1625 err = -EINVAL;
1626
1627 /*
1628 * Check if this process has the right to modify the specified process.
1629 * Use the regular "ptrace_may_access()" checks.
1630 */
1631 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1632 rcu_read_unlock();
1633 err = -EPERM;
1634 goto out_put;
1635 }
1636 rcu_read_unlock();
1637
1638 task_nodes = cpuset_mems_allowed(task);
1639 /* Is the user allowed to access the target nodes? */
1640 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1641 err = -EPERM;
1642 goto out_put;
1643 }
1644
1645 task_nodes = cpuset_mems_allowed(current);
1646 nodes_and(*new, *new, task_nodes);
1647 if (nodes_empty(*new))
1648 goto out_put;
1649
1650 err = security_task_movememory(task);
1651 if (err)
1652 goto out_put;
1653
1654 mm = get_task_mm(task);
1655 put_task_struct(task);
1656
1657 if (!mm) {
1658 err = -EINVAL;
1659 goto out;
1660 }
1661
1662 err = do_migrate_pages(mm, old, new,
1663 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1664
1665 mmput(mm);
1666out:
1667 NODEMASK_SCRATCH_FREE(scratch);
1668
1669 return err;
1670
1671out_put:
1672 put_task_struct(task);
1673 goto out;
1674}
1675
1676SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1677 const unsigned long __user *, old_nodes,
1678 const unsigned long __user *, new_nodes)
1679{
1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1681}
1682
1683/* Retrieve NUMA policy */
1684static int kernel_get_mempolicy(int __user *policy,
1685 unsigned long __user *nmask,
1686 unsigned long maxnode,
1687 unsigned long addr,
1688 unsigned long flags)
1689{
1690 int err;
1691 int pval;
1692 nodemask_t nodes;
1693
1694 if (nmask != NULL && maxnode < nr_node_ids)
1695 return -EINVAL;
1696
1697 addr = untagged_addr(addr);
1698
1699 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1700
1701 if (err)
1702 return err;
1703
1704 if (policy && put_user(pval, policy))
1705 return -EFAULT;
1706
1707 if (nmask)
1708 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1709
1710 return err;
1711}
1712
1713SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1714 unsigned long __user *, nmask, unsigned long, maxnode,
1715 unsigned long, addr, unsigned long, flags)
1716{
1717 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1718}
1719
1720bool vma_migratable(struct vm_area_struct *vma)
1721{
1722 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1723 return false;
1724
1725 /*
1726 * DAX device mappings require predictable access latency, so avoid
1727 * incurring periodic faults.
1728 */
1729 if (vma_is_dax(vma))
1730 return false;
1731
1732 if (is_vm_hugetlb_page(vma) &&
1733 !hugepage_migration_supported(hstate_vma(vma)))
1734 return false;
1735
1736 /*
1737 * Migration allocates pages in the highest zone. If we cannot
1738 * do so then migration (at least from node to node) is not
1739 * possible.
1740 */
1741 if (vma->vm_file &&
1742 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1743 < policy_zone)
1744 return false;
1745 return true;
1746}
1747
1748struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1749 unsigned long addr, pgoff_t *ilx)
1750{
1751 *ilx = 0;
1752 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1753 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1754}
1755
1756/*
1757 * get_vma_policy(@vma, @addr, @order, @ilx)
1758 * @vma: virtual memory area whose policy is sought
1759 * @addr: address in @vma for shared policy lookup
1760 * @order: 0, or appropriate huge_page_order for interleaving
1761 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE
1762 *
1763 * Returns effective policy for a VMA at specified address.
1764 * Falls back to current->mempolicy or system default policy, as necessary.
1765 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1766 * count--added by the get_policy() vm_op, as appropriate--to protect against
1767 * freeing by another task. It is the caller's responsibility to free the
1768 * extra reference for shared policies.
1769 */
1770struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1771 unsigned long addr, int order, pgoff_t *ilx)
1772{
1773 struct mempolicy *pol;
1774
1775 pol = __get_vma_policy(vma, addr, ilx);
1776 if (!pol)
1777 pol = get_task_policy(current);
1778 if (pol->mode == MPOL_INTERLEAVE) {
1779 *ilx += vma->vm_pgoff >> order;
1780 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1781 }
1782 return pol;
1783}
1784
1785bool vma_policy_mof(struct vm_area_struct *vma)
1786{
1787 struct mempolicy *pol;
1788
1789 if (vma->vm_ops && vma->vm_ops->get_policy) {
1790 bool ret = false;
1791 pgoff_t ilx; /* ignored here */
1792
1793 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1794 if (pol && (pol->flags & MPOL_F_MOF))
1795 ret = true;
1796 mpol_cond_put(pol);
1797
1798 return ret;
1799 }
1800
1801 pol = vma->vm_policy;
1802 if (!pol)
1803 pol = get_task_policy(current);
1804
1805 return pol->flags & MPOL_F_MOF;
1806}
1807
1808bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1809{
1810 enum zone_type dynamic_policy_zone = policy_zone;
1811
1812 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1813
1814 /*
1815 * if policy->nodes has movable memory only,
1816 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1817 *
1818 * policy->nodes is intersect with node_states[N_MEMORY].
1819 * so if the following test fails, it implies
1820 * policy->nodes has movable memory only.
1821 */
1822 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1823 dynamic_policy_zone = ZONE_MOVABLE;
1824
1825 return zone >= dynamic_policy_zone;
1826}
1827
1828/* Do dynamic interleaving for a process */
1829static unsigned int interleave_nodes(struct mempolicy *policy)
1830{
1831 unsigned int nid;
1832
1833 nid = next_node_in(current->il_prev, policy->nodes);
1834 if (nid < MAX_NUMNODES)
1835 current->il_prev = nid;
1836 return nid;
1837}
1838
1839/*
1840 * Depending on the memory policy provide a node from which to allocate the
1841 * next slab entry.
1842 */
1843unsigned int mempolicy_slab_node(void)
1844{
1845 struct mempolicy *policy;
1846 int node = numa_mem_id();
1847
1848 if (!in_task())
1849 return node;
1850
1851 policy = current->mempolicy;
1852 if (!policy)
1853 return node;
1854
1855 switch (policy->mode) {
1856 case MPOL_PREFERRED:
1857 return first_node(policy->nodes);
1858
1859 case MPOL_INTERLEAVE:
1860 return interleave_nodes(policy);
1861
1862 case MPOL_BIND:
1863 case MPOL_PREFERRED_MANY:
1864 {
1865 struct zoneref *z;
1866
1867 /*
1868 * Follow bind policy behavior and start allocation at the
1869 * first node.
1870 */
1871 struct zonelist *zonelist;
1872 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1873 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1874 z = first_zones_zonelist(zonelist, highest_zoneidx,
1875 &policy->nodes);
1876 return z->zone ? zone_to_nid(z->zone) : node;
1877 }
1878 case MPOL_LOCAL:
1879 return node;
1880
1881 default:
1882 BUG();
1883 }
1884}
1885
1886/*
1887 * Do static interleaving for interleave index @ilx. Returns the ilx'th
1888 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
1889 * exceeds the number of present nodes.
1890 */
1891static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1892{
1893 nodemask_t nodemask = pol->nodes;
1894 unsigned int target, nnodes;
1895 int i;
1896 int nid;
1897 /*
1898 * The barrier will stabilize the nodemask in a register or on
1899 * the stack so that it will stop changing under the code.
1900 *
1901 * Between first_node() and next_node(), pol->nodes could be changed
1902 * by other threads. So we put pol->nodes in a local stack.
1903 */
1904 barrier();
1905
1906 nnodes = nodes_weight(nodemask);
1907 if (!nnodes)
1908 return numa_node_id();
1909 target = ilx % nnodes;
1910 nid = first_node(nodemask);
1911 for (i = 0; i < target; i++)
1912 nid = next_node(nid, nodemask);
1913 return nid;
1914}
1915
1916/*
1917 * Return a nodemask representing a mempolicy for filtering nodes for
1918 * page allocation, together with preferred node id (or the input node id).
1919 */
1920static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
1921 pgoff_t ilx, int *nid)
1922{
1923 nodemask_t *nodemask = NULL;
1924
1925 switch (pol->mode) {
1926 case MPOL_PREFERRED:
1927 /* Override input node id */
1928 *nid = first_node(pol->nodes);
1929 break;
1930 case MPOL_PREFERRED_MANY:
1931 nodemask = &pol->nodes;
1932 if (pol->home_node != NUMA_NO_NODE)
1933 *nid = pol->home_node;
1934 break;
1935 case MPOL_BIND:
1936 /* Restrict to nodemask (but not on lower zones) */
1937 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
1938 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
1939 nodemask = &pol->nodes;
1940 if (pol->home_node != NUMA_NO_NODE)
1941 *nid = pol->home_node;
1942 /*
1943 * __GFP_THISNODE shouldn't even be used with the bind policy
1944 * because we might easily break the expectation to stay on the
1945 * requested node and not break the policy.
1946 */
1947 WARN_ON_ONCE(gfp & __GFP_THISNODE);
1948 break;
1949 case MPOL_INTERLEAVE:
1950 /* Override input node id */
1951 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
1952 interleave_nodes(pol) : interleave_nid(pol, ilx);
1953 break;
1954 }
1955
1956 return nodemask;
1957}
1958
1959#ifdef CONFIG_HUGETLBFS
1960/*
1961 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1962 * @vma: virtual memory area whose policy is sought
1963 * @addr: address in @vma for shared policy lookup and interleave policy
1964 * @gfp_flags: for requested zone
1965 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1966 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1967 *
1968 * Returns a nid suitable for a huge page allocation and a pointer
1969 * to the struct mempolicy for conditional unref after allocation.
1970 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1971 * to the mempolicy's @nodemask for filtering the zonelist.
1972 */
1973int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1974 struct mempolicy **mpol, nodemask_t **nodemask)
1975{
1976 pgoff_t ilx;
1977 int nid;
1978
1979 nid = numa_node_id();
1980 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
1981 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
1982 return nid;
1983}
1984
1985/*
1986 * init_nodemask_of_mempolicy
1987 *
1988 * If the current task's mempolicy is "default" [NULL], return 'false'
1989 * to indicate default policy. Otherwise, extract the policy nodemask
1990 * for 'bind' or 'interleave' policy into the argument nodemask, or
1991 * initialize the argument nodemask to contain the single node for
1992 * 'preferred' or 'local' policy and return 'true' to indicate presence
1993 * of non-default mempolicy.
1994 *
1995 * We don't bother with reference counting the mempolicy [mpol_get/put]
1996 * because the current task is examining it's own mempolicy and a task's
1997 * mempolicy is only ever changed by the task itself.
1998 *
1999 * N.B., it is the caller's responsibility to free a returned nodemask.
2000 */
2001bool init_nodemask_of_mempolicy(nodemask_t *mask)
2002{
2003 struct mempolicy *mempolicy;
2004
2005 if (!(mask && current->mempolicy))
2006 return false;
2007
2008 task_lock(current);
2009 mempolicy = current->mempolicy;
2010 switch (mempolicy->mode) {
2011 case MPOL_PREFERRED:
2012 case MPOL_PREFERRED_MANY:
2013 case MPOL_BIND:
2014 case MPOL_INTERLEAVE:
2015 *mask = mempolicy->nodes;
2016 break;
2017
2018 case MPOL_LOCAL:
2019 init_nodemask_of_node(mask, numa_node_id());
2020 break;
2021
2022 default:
2023 BUG();
2024 }
2025 task_unlock(current);
2026
2027 return true;
2028}
2029#endif
2030
2031/*
2032 * mempolicy_in_oom_domain
2033 *
2034 * If tsk's mempolicy is "bind", check for intersection between mask and
2035 * the policy nodemask. Otherwise, return true for all other policies
2036 * including "interleave", as a tsk with "interleave" policy may have
2037 * memory allocated from all nodes in system.
2038 *
2039 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2040 */
2041bool mempolicy_in_oom_domain(struct task_struct *tsk,
2042 const nodemask_t *mask)
2043{
2044 struct mempolicy *mempolicy;
2045 bool ret = true;
2046
2047 if (!mask)
2048 return ret;
2049
2050 task_lock(tsk);
2051 mempolicy = tsk->mempolicy;
2052 if (mempolicy && mempolicy->mode == MPOL_BIND)
2053 ret = nodes_intersects(mempolicy->nodes, *mask);
2054 task_unlock(tsk);
2055
2056 return ret;
2057}
2058
2059static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2060 int nid, nodemask_t *nodemask)
2061{
2062 struct page *page;
2063 gfp_t preferred_gfp;
2064
2065 /*
2066 * This is a two pass approach. The first pass will only try the
2067 * preferred nodes but skip the direct reclaim and allow the
2068 * allocation to fail, while the second pass will try all the
2069 * nodes in system.
2070 */
2071 preferred_gfp = gfp | __GFP_NOWARN;
2072 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2073 page = __alloc_pages(preferred_gfp, order, nid, nodemask);
2074 if (!page)
2075 page = __alloc_pages(gfp, order, nid, NULL);
2076
2077 return page;
2078}
2079
2080/**
2081 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2082 * @gfp: GFP flags.
2083 * @order: Order of the page allocation.
2084 * @pol: Pointer to the NUMA mempolicy.
2085 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2086 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2087 *
2088 * Return: The page on success or NULL if allocation fails.
2089 */
2090struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2091 struct mempolicy *pol, pgoff_t ilx, int nid)
2092{
2093 nodemask_t *nodemask;
2094 struct page *page;
2095
2096 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2097
2098 if (pol->mode == MPOL_PREFERRED_MANY)
2099 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2100
2101 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2102 /* filter "hugepage" allocation, unless from alloc_pages() */
2103 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2104 /*
2105 * For hugepage allocation and non-interleave policy which
2106 * allows the current node (or other explicitly preferred
2107 * node) we only try to allocate from the current/preferred
2108 * node and don't fall back to other nodes, as the cost of
2109 * remote accesses would likely offset THP benefits.
2110 *
2111 * If the policy is interleave or does not allow the current
2112 * node in its nodemask, we allocate the standard way.
2113 */
2114 if (pol->mode != MPOL_INTERLEAVE &&
2115 (!nodemask || node_isset(nid, *nodemask))) {
2116 /*
2117 * First, try to allocate THP only on local node, but
2118 * don't reclaim unnecessarily, just compact.
2119 */
2120 page = __alloc_pages_node(nid,
2121 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2122 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2123 return page;
2124 /*
2125 * If hugepage allocations are configured to always
2126 * synchronous compact or the vma has been madvised
2127 * to prefer hugepage backing, retry allowing remote
2128 * memory with both reclaim and compact as well.
2129 */
2130 }
2131 }
2132
2133 page = __alloc_pages(gfp, order, nid, nodemask);
2134
2135 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2136 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2137 if (static_branch_likely(&vm_numa_stat_key) &&
2138 page_to_nid(page) == nid) {
2139 preempt_disable();
2140 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2141 preempt_enable();
2142 }
2143 }
2144
2145 return page;
2146}
2147
2148/**
2149 * vma_alloc_folio - Allocate a folio for a VMA.
2150 * @gfp: GFP flags.
2151 * @order: Order of the folio.
2152 * @vma: Pointer to VMA.
2153 * @addr: Virtual address of the allocation. Must be inside @vma.
2154 * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2155 *
2156 * Allocate a folio for a specific address in @vma, using the appropriate
2157 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2158 * VMA to prevent it from going away. Should be used for all allocations
2159 * for folios that will be mapped into user space, excepting hugetlbfs, and
2160 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2161 *
2162 * Return: The folio on success or NULL if allocation fails.
2163 */
2164struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2165 unsigned long addr, bool hugepage)
2166{
2167 struct mempolicy *pol;
2168 pgoff_t ilx;
2169 struct page *page;
2170
2171 pol = get_vma_policy(vma, addr, order, &ilx);
2172 page = alloc_pages_mpol(gfp | __GFP_COMP, order,
2173 pol, ilx, numa_node_id());
2174 mpol_cond_put(pol);
2175 return page_rmappable_folio(page);
2176}
2177EXPORT_SYMBOL(vma_alloc_folio);
2178
2179/**
2180 * alloc_pages - Allocate pages.
2181 * @gfp: GFP flags.
2182 * @order: Power of two of number of pages to allocate.
2183 *
2184 * Allocate 1 << @order contiguous pages. The physical address of the
2185 * first page is naturally aligned (eg an order-3 allocation will be aligned
2186 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2187 * process is honoured when in process context.
2188 *
2189 * Context: Can be called from any context, providing the appropriate GFP
2190 * flags are used.
2191 * Return: The page on success or NULL if allocation fails.
2192 */
2193struct page *alloc_pages(gfp_t gfp, unsigned int order)
2194{
2195 struct mempolicy *pol = &default_policy;
2196
2197 /*
2198 * No reference counting needed for current->mempolicy
2199 * nor system default_policy
2200 */
2201 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2202 pol = get_task_policy(current);
2203
2204 return alloc_pages_mpol(gfp, order,
2205 pol, NO_INTERLEAVE_INDEX, numa_node_id());
2206}
2207EXPORT_SYMBOL(alloc_pages);
2208
2209struct folio *folio_alloc(gfp_t gfp, unsigned int order)
2210{
2211 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
2212}
2213EXPORT_SYMBOL(folio_alloc);
2214
2215static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2216 struct mempolicy *pol, unsigned long nr_pages,
2217 struct page **page_array)
2218{
2219 int nodes;
2220 unsigned long nr_pages_per_node;
2221 int delta;
2222 int i;
2223 unsigned long nr_allocated;
2224 unsigned long total_allocated = 0;
2225
2226 nodes = nodes_weight(pol->nodes);
2227 nr_pages_per_node = nr_pages / nodes;
2228 delta = nr_pages - nodes * nr_pages_per_node;
2229
2230 for (i = 0; i < nodes; i++) {
2231 if (delta) {
2232 nr_allocated = __alloc_pages_bulk(gfp,
2233 interleave_nodes(pol), NULL,
2234 nr_pages_per_node + 1, NULL,
2235 page_array);
2236 delta--;
2237 } else {
2238 nr_allocated = __alloc_pages_bulk(gfp,
2239 interleave_nodes(pol), NULL,
2240 nr_pages_per_node, NULL, page_array);
2241 }
2242
2243 page_array += nr_allocated;
2244 total_allocated += nr_allocated;
2245 }
2246
2247 return total_allocated;
2248}
2249
2250static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2251 struct mempolicy *pol, unsigned long nr_pages,
2252 struct page **page_array)
2253{
2254 gfp_t preferred_gfp;
2255 unsigned long nr_allocated = 0;
2256
2257 preferred_gfp = gfp | __GFP_NOWARN;
2258 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2259
2260 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2261 nr_pages, NULL, page_array);
2262
2263 if (nr_allocated < nr_pages)
2264 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2265 nr_pages - nr_allocated, NULL,
2266 page_array + nr_allocated);
2267 return nr_allocated;
2268}
2269
2270/* alloc pages bulk and mempolicy should be considered at the
2271 * same time in some situation such as vmalloc.
2272 *
2273 * It can accelerate memory allocation especially interleaving
2274 * allocate memory.
2275 */
2276unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2277 unsigned long nr_pages, struct page **page_array)
2278{
2279 struct mempolicy *pol = &default_policy;
2280 nodemask_t *nodemask;
2281 int nid;
2282
2283 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2284 pol = get_task_policy(current);
2285
2286 if (pol->mode == MPOL_INTERLEAVE)
2287 return alloc_pages_bulk_array_interleave(gfp, pol,
2288 nr_pages, page_array);
2289
2290 if (pol->mode == MPOL_PREFERRED_MANY)
2291 return alloc_pages_bulk_array_preferred_many(gfp,
2292 numa_node_id(), pol, nr_pages, page_array);
2293
2294 nid = numa_node_id();
2295 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2296 return __alloc_pages_bulk(gfp, nid, nodemask,
2297 nr_pages, NULL, page_array);
2298}
2299
2300int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2301{
2302 struct mempolicy *pol = mpol_dup(src->vm_policy);
2303
2304 if (IS_ERR(pol))
2305 return PTR_ERR(pol);
2306 dst->vm_policy = pol;
2307 return 0;
2308}
2309
2310/*
2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313 * with the mems_allowed returned by cpuset_mems_allowed(). This
2314 * keeps mempolicies cpuset relative after its cpuset moves. See
2315 * further kernel/cpuset.c update_nodemask().
2316 *
2317 * current's mempolicy may be rebinded by the other task(the task that changes
2318 * cpuset's mems), so we needn't do rebind work for current task.
2319 */
2320
2321/* Slow path of a mempolicy duplicate */
2322struct mempolicy *__mpol_dup(struct mempolicy *old)
2323{
2324 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2325
2326 if (!new)
2327 return ERR_PTR(-ENOMEM);
2328
2329 /* task's mempolicy is protected by alloc_lock */
2330 if (old == current->mempolicy) {
2331 task_lock(current);
2332 *new = *old;
2333 task_unlock(current);
2334 } else
2335 *new = *old;
2336
2337 if (current_cpuset_is_being_rebound()) {
2338 nodemask_t mems = cpuset_mems_allowed(current);
2339 mpol_rebind_policy(new, &mems);
2340 }
2341 atomic_set(&new->refcnt, 1);
2342 return new;
2343}
2344
2345/* Slow path of a mempolicy comparison */
2346bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2347{
2348 if (!a || !b)
2349 return false;
2350 if (a->mode != b->mode)
2351 return false;
2352 if (a->flags != b->flags)
2353 return false;
2354 if (a->home_node != b->home_node)
2355 return false;
2356 if (mpol_store_user_nodemask(a))
2357 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2358 return false;
2359
2360 switch (a->mode) {
2361 case MPOL_BIND:
2362 case MPOL_INTERLEAVE:
2363 case MPOL_PREFERRED:
2364 case MPOL_PREFERRED_MANY:
2365 return !!nodes_equal(a->nodes, b->nodes);
2366 case MPOL_LOCAL:
2367 return true;
2368 default:
2369 BUG();
2370 return false;
2371 }
2372}
2373
2374/*
2375 * Shared memory backing store policy support.
2376 *
2377 * Remember policies even when nobody has shared memory mapped.
2378 * The policies are kept in Red-Black tree linked from the inode.
2379 * They are protected by the sp->lock rwlock, which should be held
2380 * for any accesses to the tree.
2381 */
2382
2383/*
2384 * lookup first element intersecting start-end. Caller holds sp->lock for
2385 * reading or for writing
2386 */
2387static struct sp_node *sp_lookup(struct shared_policy *sp,
2388 pgoff_t start, pgoff_t end)
2389{
2390 struct rb_node *n = sp->root.rb_node;
2391
2392 while (n) {
2393 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2394
2395 if (start >= p->end)
2396 n = n->rb_right;
2397 else if (end <= p->start)
2398 n = n->rb_left;
2399 else
2400 break;
2401 }
2402 if (!n)
2403 return NULL;
2404 for (;;) {
2405 struct sp_node *w = NULL;
2406 struct rb_node *prev = rb_prev(n);
2407 if (!prev)
2408 break;
2409 w = rb_entry(prev, struct sp_node, nd);
2410 if (w->end <= start)
2411 break;
2412 n = prev;
2413 }
2414 return rb_entry(n, struct sp_node, nd);
2415}
2416
2417/*
2418 * Insert a new shared policy into the list. Caller holds sp->lock for
2419 * writing.
2420 */
2421static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2422{
2423 struct rb_node **p = &sp->root.rb_node;
2424 struct rb_node *parent = NULL;
2425 struct sp_node *nd;
2426
2427 while (*p) {
2428 parent = *p;
2429 nd = rb_entry(parent, struct sp_node, nd);
2430 if (new->start < nd->start)
2431 p = &(*p)->rb_left;
2432 else if (new->end > nd->end)
2433 p = &(*p)->rb_right;
2434 else
2435 BUG();
2436 }
2437 rb_link_node(&new->nd, parent, p);
2438 rb_insert_color(&new->nd, &sp->root);
2439}
2440
2441/* Find shared policy intersecting idx */
2442struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2443 pgoff_t idx)
2444{
2445 struct mempolicy *pol = NULL;
2446 struct sp_node *sn;
2447
2448 if (!sp->root.rb_node)
2449 return NULL;
2450 read_lock(&sp->lock);
2451 sn = sp_lookup(sp, idx, idx+1);
2452 if (sn) {
2453 mpol_get(sn->policy);
2454 pol = sn->policy;
2455 }
2456 read_unlock(&sp->lock);
2457 return pol;
2458}
2459
2460static void sp_free(struct sp_node *n)
2461{
2462 mpol_put(n->policy);
2463 kmem_cache_free(sn_cache, n);
2464}
2465
2466/**
2467 * mpol_misplaced - check whether current folio node is valid in policy
2468 *
2469 * @folio: folio to be checked
2470 * @vma: vm area where folio mapped
2471 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2472 *
2473 * Lookup current policy node id for vma,addr and "compare to" folio's
2474 * node id. Policy determination "mimics" alloc_page_vma().
2475 * Called from fault path where we know the vma and faulting address.
2476 *
2477 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2478 * policy, or a suitable node ID to allocate a replacement folio from.
2479 */
2480int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma,
2481 unsigned long addr)
2482{
2483 struct mempolicy *pol;
2484 pgoff_t ilx;
2485 struct zoneref *z;
2486 int curnid = folio_nid(folio);
2487 int thiscpu = raw_smp_processor_id();
2488 int thisnid = cpu_to_node(thiscpu);
2489 int polnid = NUMA_NO_NODE;
2490 int ret = NUMA_NO_NODE;
2491
2492 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2493 if (!(pol->flags & MPOL_F_MOF))
2494 goto out;
2495
2496 switch (pol->mode) {
2497 case MPOL_INTERLEAVE:
2498 polnid = interleave_nid(pol, ilx);
2499 break;
2500
2501 case MPOL_PREFERRED:
2502 if (node_isset(curnid, pol->nodes))
2503 goto out;
2504 polnid = first_node(pol->nodes);
2505 break;
2506
2507 case MPOL_LOCAL:
2508 polnid = numa_node_id();
2509 break;
2510
2511 case MPOL_BIND:
2512 /* Optimize placement among multiple nodes via NUMA balancing */
2513 if (pol->flags & MPOL_F_MORON) {
2514 if (node_isset(thisnid, pol->nodes))
2515 break;
2516 goto out;
2517 }
2518 fallthrough;
2519
2520 case MPOL_PREFERRED_MANY:
2521 /*
2522 * use current page if in policy nodemask,
2523 * else select nearest allowed node, if any.
2524 * If no allowed nodes, use current [!misplaced].
2525 */
2526 if (node_isset(curnid, pol->nodes))
2527 goto out;
2528 z = first_zones_zonelist(
2529 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2530 gfp_zone(GFP_HIGHUSER),
2531 &pol->nodes);
2532 polnid = zone_to_nid(z->zone);
2533 break;
2534
2535 default:
2536 BUG();
2537 }
2538
2539 /* Migrate the folio towards the node whose CPU is referencing it */
2540 if (pol->flags & MPOL_F_MORON) {
2541 polnid = thisnid;
2542
2543 if (!should_numa_migrate_memory(current, folio, curnid,
2544 thiscpu))
2545 goto out;
2546 }
2547
2548 if (curnid != polnid)
2549 ret = polnid;
2550out:
2551 mpol_cond_put(pol);
2552
2553 return ret;
2554}
2555
2556/*
2557 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2558 * dropped after task->mempolicy is set to NULL so that any allocation done as
2559 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2560 * policy.
2561 */
2562void mpol_put_task_policy(struct task_struct *task)
2563{
2564 struct mempolicy *pol;
2565
2566 task_lock(task);
2567 pol = task->mempolicy;
2568 task->mempolicy = NULL;
2569 task_unlock(task);
2570 mpol_put(pol);
2571}
2572
2573static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2574{
2575 rb_erase(&n->nd, &sp->root);
2576 sp_free(n);
2577}
2578
2579static void sp_node_init(struct sp_node *node, unsigned long start,
2580 unsigned long end, struct mempolicy *pol)
2581{
2582 node->start = start;
2583 node->end = end;
2584 node->policy = pol;
2585}
2586
2587static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2588 struct mempolicy *pol)
2589{
2590 struct sp_node *n;
2591 struct mempolicy *newpol;
2592
2593 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2594 if (!n)
2595 return NULL;
2596
2597 newpol = mpol_dup(pol);
2598 if (IS_ERR(newpol)) {
2599 kmem_cache_free(sn_cache, n);
2600 return NULL;
2601 }
2602 newpol->flags |= MPOL_F_SHARED;
2603 sp_node_init(n, start, end, newpol);
2604
2605 return n;
2606}
2607
2608/* Replace a policy range. */
2609static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2610 pgoff_t end, struct sp_node *new)
2611{
2612 struct sp_node *n;
2613 struct sp_node *n_new = NULL;
2614 struct mempolicy *mpol_new = NULL;
2615 int ret = 0;
2616
2617restart:
2618 write_lock(&sp->lock);
2619 n = sp_lookup(sp, start, end);
2620 /* Take care of old policies in the same range. */
2621 while (n && n->start < end) {
2622 struct rb_node *next = rb_next(&n->nd);
2623 if (n->start >= start) {
2624 if (n->end <= end)
2625 sp_delete(sp, n);
2626 else
2627 n->start = end;
2628 } else {
2629 /* Old policy spanning whole new range. */
2630 if (n->end > end) {
2631 if (!n_new)
2632 goto alloc_new;
2633
2634 *mpol_new = *n->policy;
2635 atomic_set(&mpol_new->refcnt, 1);
2636 sp_node_init(n_new, end, n->end, mpol_new);
2637 n->end = start;
2638 sp_insert(sp, n_new);
2639 n_new = NULL;
2640 mpol_new = NULL;
2641 break;
2642 } else
2643 n->end = start;
2644 }
2645 if (!next)
2646 break;
2647 n = rb_entry(next, struct sp_node, nd);
2648 }
2649 if (new)
2650 sp_insert(sp, new);
2651 write_unlock(&sp->lock);
2652 ret = 0;
2653
2654err_out:
2655 if (mpol_new)
2656 mpol_put(mpol_new);
2657 if (n_new)
2658 kmem_cache_free(sn_cache, n_new);
2659
2660 return ret;
2661
2662alloc_new:
2663 write_unlock(&sp->lock);
2664 ret = -ENOMEM;
2665 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2666 if (!n_new)
2667 goto err_out;
2668 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2669 if (!mpol_new)
2670 goto err_out;
2671 atomic_set(&mpol_new->refcnt, 1);
2672 goto restart;
2673}
2674
2675/**
2676 * mpol_shared_policy_init - initialize shared policy for inode
2677 * @sp: pointer to inode shared policy
2678 * @mpol: struct mempolicy to install
2679 *
2680 * Install non-NULL @mpol in inode's shared policy rb-tree.
2681 * On entry, the current task has a reference on a non-NULL @mpol.
2682 * This must be released on exit.
2683 * This is called at get_inode() calls and we can use GFP_KERNEL.
2684 */
2685void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2686{
2687 int ret;
2688
2689 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2690 rwlock_init(&sp->lock);
2691
2692 if (mpol) {
2693 struct sp_node *sn;
2694 struct mempolicy *npol;
2695 NODEMASK_SCRATCH(scratch);
2696
2697 if (!scratch)
2698 goto put_mpol;
2699
2700 /* contextualize the tmpfs mount point mempolicy to this file */
2701 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2702 if (IS_ERR(npol))
2703 goto free_scratch; /* no valid nodemask intersection */
2704
2705 task_lock(current);
2706 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2707 task_unlock(current);
2708 if (ret)
2709 goto put_npol;
2710
2711 /* alloc node covering entire file; adds ref to file's npol */
2712 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2713 if (sn)
2714 sp_insert(sp, sn);
2715put_npol:
2716 mpol_put(npol); /* drop initial ref on file's npol */
2717free_scratch:
2718 NODEMASK_SCRATCH_FREE(scratch);
2719put_mpol:
2720 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2721 }
2722}
2723
2724int mpol_set_shared_policy(struct shared_policy *sp,
2725 struct vm_area_struct *vma, struct mempolicy *pol)
2726{
2727 int err;
2728 struct sp_node *new = NULL;
2729 unsigned long sz = vma_pages(vma);
2730
2731 if (pol) {
2732 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
2733 if (!new)
2734 return -ENOMEM;
2735 }
2736 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
2737 if (err && new)
2738 sp_free(new);
2739 return err;
2740}
2741
2742/* Free a backing policy store on inode delete. */
2743void mpol_free_shared_policy(struct shared_policy *sp)
2744{
2745 struct sp_node *n;
2746 struct rb_node *next;
2747
2748 if (!sp->root.rb_node)
2749 return;
2750 write_lock(&sp->lock);
2751 next = rb_first(&sp->root);
2752 while (next) {
2753 n = rb_entry(next, struct sp_node, nd);
2754 next = rb_next(&n->nd);
2755 sp_delete(sp, n);
2756 }
2757 write_unlock(&sp->lock);
2758}
2759
2760#ifdef CONFIG_NUMA_BALANCING
2761static int __initdata numabalancing_override;
2762
2763static void __init check_numabalancing_enable(void)
2764{
2765 bool numabalancing_default = false;
2766
2767 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768 numabalancing_default = true;
2769
2770 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771 if (numabalancing_override)
2772 set_numabalancing_state(numabalancing_override == 1);
2773
2774 if (num_online_nodes() > 1 && !numabalancing_override) {
2775 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776 numabalancing_default ? "Enabling" : "Disabling");
2777 set_numabalancing_state(numabalancing_default);
2778 }
2779}
2780
2781static int __init setup_numabalancing(char *str)
2782{
2783 int ret = 0;
2784 if (!str)
2785 goto out;
2786
2787 if (!strcmp(str, "enable")) {
2788 numabalancing_override = 1;
2789 ret = 1;
2790 } else if (!strcmp(str, "disable")) {
2791 numabalancing_override = -1;
2792 ret = 1;
2793 }
2794out:
2795 if (!ret)
2796 pr_warn("Unable to parse numa_balancing=\n");
2797
2798 return ret;
2799}
2800__setup("numa_balancing=", setup_numabalancing);
2801#else
2802static inline void __init check_numabalancing_enable(void)
2803{
2804}
2805#endif /* CONFIG_NUMA_BALANCING */
2806
2807void __init numa_policy_init(void)
2808{
2809 nodemask_t interleave_nodes;
2810 unsigned long largest = 0;
2811 int nid, prefer = 0;
2812
2813 policy_cache = kmem_cache_create("numa_policy",
2814 sizeof(struct mempolicy),
2815 0, SLAB_PANIC, NULL);
2816
2817 sn_cache = kmem_cache_create("shared_policy_node",
2818 sizeof(struct sp_node),
2819 0, SLAB_PANIC, NULL);
2820
2821 for_each_node(nid) {
2822 preferred_node_policy[nid] = (struct mempolicy) {
2823 .refcnt = ATOMIC_INIT(1),
2824 .mode = MPOL_PREFERRED,
2825 .flags = MPOL_F_MOF | MPOL_F_MORON,
2826 .nodes = nodemask_of_node(nid),
2827 };
2828 }
2829
2830 /*
2831 * Set interleaving policy for system init. Interleaving is only
2832 * enabled across suitably sized nodes (default is >= 16MB), or
2833 * fall back to the largest node if they're all smaller.
2834 */
2835 nodes_clear(interleave_nodes);
2836 for_each_node_state(nid, N_MEMORY) {
2837 unsigned long total_pages = node_present_pages(nid);
2838
2839 /* Preserve the largest node */
2840 if (largest < total_pages) {
2841 largest = total_pages;
2842 prefer = nid;
2843 }
2844
2845 /* Interleave this node? */
2846 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2847 node_set(nid, interleave_nodes);
2848 }
2849
2850 /* All too small, use the largest */
2851 if (unlikely(nodes_empty(interleave_nodes)))
2852 node_set(prefer, interleave_nodes);
2853
2854 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2855 pr_err("%s: interleaving failed\n", __func__);
2856
2857 check_numabalancing_enable();
2858}
2859
2860/* Reset policy of current process to default */
2861void numa_default_policy(void)
2862{
2863 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2864}
2865
2866/*
2867 * Parse and format mempolicy from/to strings
2868 */
2869static const char * const policy_modes[] =
2870{
2871 [MPOL_DEFAULT] = "default",
2872 [MPOL_PREFERRED] = "prefer",
2873 [MPOL_BIND] = "bind",
2874 [MPOL_INTERLEAVE] = "interleave",
2875 [MPOL_LOCAL] = "local",
2876 [MPOL_PREFERRED_MANY] = "prefer (many)",
2877};
2878
2879#ifdef CONFIG_TMPFS
2880/**
2881 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2882 * @str: string containing mempolicy to parse
2883 * @mpol: pointer to struct mempolicy pointer, returned on success.
2884 *
2885 * Format of input:
2886 * <mode>[=<flags>][:<nodelist>]
2887 *
2888 * Return: %0 on success, else %1
2889 */
2890int mpol_parse_str(char *str, struct mempolicy **mpol)
2891{
2892 struct mempolicy *new = NULL;
2893 unsigned short mode_flags;
2894 nodemask_t nodes;
2895 char *nodelist = strchr(str, ':');
2896 char *flags = strchr(str, '=');
2897 int err = 1, mode;
2898
2899 if (flags)
2900 *flags++ = '\0'; /* terminate mode string */
2901
2902 if (nodelist) {
2903 /* NUL-terminate mode or flags string */
2904 *nodelist++ = '\0';
2905 if (nodelist_parse(nodelist, nodes))
2906 goto out;
2907 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2908 goto out;
2909 } else
2910 nodes_clear(nodes);
2911
2912 mode = match_string(policy_modes, MPOL_MAX, str);
2913 if (mode < 0)
2914 goto out;
2915
2916 switch (mode) {
2917 case MPOL_PREFERRED:
2918 /*
2919 * Insist on a nodelist of one node only, although later
2920 * we use first_node(nodes) to grab a single node, so here
2921 * nodelist (or nodes) cannot be empty.
2922 */
2923 if (nodelist) {
2924 char *rest = nodelist;
2925 while (isdigit(*rest))
2926 rest++;
2927 if (*rest)
2928 goto out;
2929 if (nodes_empty(nodes))
2930 goto out;
2931 }
2932 break;
2933 case MPOL_INTERLEAVE:
2934 /*
2935 * Default to online nodes with memory if no nodelist
2936 */
2937 if (!nodelist)
2938 nodes = node_states[N_MEMORY];
2939 break;
2940 case MPOL_LOCAL:
2941 /*
2942 * Don't allow a nodelist; mpol_new() checks flags
2943 */
2944 if (nodelist)
2945 goto out;
2946 break;
2947 case MPOL_DEFAULT:
2948 /*
2949 * Insist on a empty nodelist
2950 */
2951 if (!nodelist)
2952 err = 0;
2953 goto out;
2954 case MPOL_PREFERRED_MANY:
2955 case MPOL_BIND:
2956 /*
2957 * Insist on a nodelist
2958 */
2959 if (!nodelist)
2960 goto out;
2961 }
2962
2963 mode_flags = 0;
2964 if (flags) {
2965 /*
2966 * Currently, we only support two mutually exclusive
2967 * mode flags.
2968 */
2969 if (!strcmp(flags, "static"))
2970 mode_flags |= MPOL_F_STATIC_NODES;
2971 else if (!strcmp(flags, "relative"))
2972 mode_flags |= MPOL_F_RELATIVE_NODES;
2973 else
2974 goto out;
2975 }
2976
2977 new = mpol_new(mode, mode_flags, &nodes);
2978 if (IS_ERR(new))
2979 goto out;
2980
2981 /*
2982 * Save nodes for mpol_to_str() to show the tmpfs mount options
2983 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2984 */
2985 if (mode != MPOL_PREFERRED) {
2986 new->nodes = nodes;
2987 } else if (nodelist) {
2988 nodes_clear(new->nodes);
2989 node_set(first_node(nodes), new->nodes);
2990 } else {
2991 new->mode = MPOL_LOCAL;
2992 }
2993
2994 /*
2995 * Save nodes for contextualization: this will be used to "clone"
2996 * the mempolicy in a specific context [cpuset] at a later time.
2997 */
2998 new->w.user_nodemask = nodes;
2999
3000 err = 0;
3001
3002out:
3003 /* Restore string for error message */
3004 if (nodelist)
3005 *--nodelist = ':';
3006 if (flags)
3007 *--flags = '=';
3008 if (!err)
3009 *mpol = new;
3010 return err;
3011}
3012#endif /* CONFIG_TMPFS */
3013
3014/**
3015 * mpol_to_str - format a mempolicy structure for printing
3016 * @buffer: to contain formatted mempolicy string
3017 * @maxlen: length of @buffer
3018 * @pol: pointer to mempolicy to be formatted
3019 *
3020 * Convert @pol into a string. If @buffer is too short, truncate the string.
3021 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3022 * longest flag, "relative", and to display at least a few node ids.
3023 */
3024void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3025{
3026 char *p = buffer;
3027 nodemask_t nodes = NODE_MASK_NONE;
3028 unsigned short mode = MPOL_DEFAULT;
3029 unsigned short flags = 0;
3030
3031 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3032 mode = pol->mode;
3033 flags = pol->flags;
3034 }
3035
3036 switch (mode) {
3037 case MPOL_DEFAULT:
3038 case MPOL_LOCAL:
3039 break;
3040 case MPOL_PREFERRED:
3041 case MPOL_PREFERRED_MANY:
3042 case MPOL_BIND:
3043 case MPOL_INTERLEAVE:
3044 nodes = pol->nodes;
3045 break;
3046 default:
3047 WARN_ON_ONCE(1);
3048 snprintf(p, maxlen, "unknown");
3049 return;
3050 }
3051
3052 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3053
3054 if (flags & MPOL_MODE_FLAGS) {
3055 p += snprintf(p, buffer + maxlen - p, "=");
3056
3057 /*
3058 * Currently, the only defined flags are mutually exclusive
3059 */
3060 if (flags & MPOL_F_STATIC_NODES)
3061 p += snprintf(p, buffer + maxlen - p, "static");
3062 else if (flags & MPOL_F_RELATIVE_NODES)
3063 p += snprintf(p, buffer + maxlen - p, "relative");
3064 }
3065
3066 if (!nodes_empty(nodes))
3067 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3068 nodemask_pr_args(&nodes));
3069}