Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
 
 
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115	.refcnt = ATOMIC_INIT(1), /* never free it */
 116	.mode = MPOL_PREFERRED,
 117	.flags = MPOL_F_LOCAL,
 118};
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120static const struct mempolicy_operations {
 121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122	/*
 123	 * If read-side task has no lock to protect task->mempolicy, write-side
 124	 * task will rebind the task->mempolicy by two step. The first step is
 125	 * setting all the newly nodes, and the second step is cleaning all the
 126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 127	 * page.
 128	 * If we have a lock to protect task->mempolicy in read-side, we do
 129	 * rebind directly.
 130	 *
 131	 * step:
 132	 * 	MPOL_REBIND_ONCE - do rebind work at once
 133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135	 */
 136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137			enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143	int nd, k;
 144
 145	for_each_node_mask(nd, *nodemask) {
 146		struct zone *z;
 147
 148		for (k = 0; k <= policy_zone; k++) {
 149			z = &NODE_DATA(nd)->node_zones[k];
 150			if (z->present_pages > 0)
 151				return 1;
 152		}
 153	}
 154
 155	return 0;
 156}
 157
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160	return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164				   const nodemask_t *rel)
 165{
 166	nodemask_t tmp;
 167	nodes_fold(tmp, *orig, nodes_weight(*rel));
 168	nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173	if (nodes_empty(*nodes))
 174		return -EINVAL;
 175	pol->v.nodes = *nodes;
 176	return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181	if (!nodes)
 182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 183	else if (nodes_empty(*nodes))
 184		return -EINVAL;			/*  no allowed nodes */
 185	else
 186		pol->v.preferred_node = first_node(*nodes);
 187	return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192	if (!is_valid_nodemask(nodes))
 193		return -EINVAL;
 194	pol->v.nodes = *nodes;
 195	return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210	int ret;
 211
 212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213	if (pol == NULL)
 214		return 0;
 215	/* Check N_HIGH_MEMORY */
 216	nodes_and(nsc->mask1,
 217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219	VM_BUG_ON(!nodes);
 220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221		nodes = NULL;	/* explicit local allocation */
 222	else {
 223		if (pol->flags & MPOL_F_RELATIVE_NODES)
 224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225		else
 226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228		if (mpol_store_user_nodemask(pol))
 229			pol->w.user_nodemask = *nodes;
 230		else
 231			pol->w.cpuset_mems_allowed =
 232						cpuset_current_mems_allowed;
 233	}
 234
 235	if (nodes)
 236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237	else
 238		ret = mpol_ops[pol->mode].create(pol, NULL);
 239	return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247				  nodemask_t *nodes)
 248{
 249	struct mempolicy *policy;
 250
 251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254	if (mode == MPOL_DEFAULT) {
 255		if (nodes && !nodes_empty(*nodes))
 256			return ERR_PTR(-EINVAL);
 257		return NULL;	/* simply delete any existing policy */
 258	}
 259	VM_BUG_ON(!nodes);
 260
 261	/*
 262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264	 * All other modes require a valid pointer to a non-empty nodemask.
 265	 */
 266	if (mode == MPOL_PREFERRED) {
 267		if (nodes_empty(*nodes)) {
 268			if (((flags & MPOL_F_STATIC_NODES) ||
 269			     (flags & MPOL_F_RELATIVE_NODES)))
 270				return ERR_PTR(-EINVAL);
 271		}
 
 
 
 
 272	} else if (nodes_empty(*nodes))
 273		return ERR_PTR(-EINVAL);
 274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275	if (!policy)
 276		return ERR_PTR(-ENOMEM);
 277	atomic_set(&policy->refcnt, 1);
 278	policy->mode = mode;
 279	policy->flags = flags;
 280
 281	return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287	if (!atomic_dec_and_test(&p->refcnt))
 288		return;
 289	kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293				enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 * 	MPOL_REBIND_ONCE  - do rebind work at once
 300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304				 enum mpol_rebind_step step)
 305{
 306	nodemask_t tmp;
 307
 308	if (pol->flags & MPOL_F_STATIC_NODES)
 309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312	else {
 313		/*
 314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315		 * result
 316		 */
 317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318			nodes_remap(tmp, pol->v.nodes,
 319					pol->w.cpuset_mems_allowed, *nodes);
 320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321		} else if (step == MPOL_REBIND_STEP2) {
 322			tmp = pol->w.cpuset_mems_allowed;
 323			pol->w.cpuset_mems_allowed = *nodes;
 324		} else
 325			BUG();
 326	}
 327
 328	if (nodes_empty(tmp))
 329		tmp = *nodes;
 330
 331	if (step == MPOL_REBIND_STEP1)
 332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334		pol->v.nodes = tmp;
 335	else
 336		BUG();
 337
 338	if (!node_isset(current->il_next, tmp)) {
 339		current->il_next = next_node(current->il_next, tmp);
 340		if (current->il_next >= MAX_NUMNODES)
 341			current->il_next = first_node(tmp);
 342		if (current->il_next >= MAX_NUMNODES)
 343			current->il_next = numa_node_id();
 344	}
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348				  const nodemask_t *nodes,
 349				  enum mpol_rebind_step step)
 350{
 351	nodemask_t tmp;
 352
 353	if (pol->flags & MPOL_F_STATIC_NODES) {
 354		int node = first_node(pol->w.user_nodemask);
 355
 356		if (node_isset(node, *nodes)) {
 357			pol->v.preferred_node = node;
 358			pol->flags &= ~MPOL_F_LOCAL;
 359		} else
 360			pol->flags |= MPOL_F_LOCAL;
 361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363		pol->v.preferred_node = first_node(tmp);
 364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366						   pol->w.cpuset_mems_allowed,
 367						   *nodes);
 368		pol->w.cpuset_mems_allowed = *nodes;
 369	}
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 * 	MPOL_REBIND_ONCE  - do rebind work at once
 385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389				enum mpol_rebind_step step)
 390{
 391	if (!pol)
 392		return;
 393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395		return;
 396
 397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398		return;
 399
 400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401		BUG();
 402
 403	if (step == MPOL_REBIND_STEP1)
 404		pol->flags |= MPOL_F_REBINDING;
 405	else if (step == MPOL_REBIND_STEP2)
 406		pol->flags &= ~MPOL_F_REBINDING;
 407	else if (step >= MPOL_REBIND_NSTEP)
 408		BUG();
 409
 410	mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421			enum mpol_rebind_step step)
 422{
 423	mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434	struct vm_area_struct *vma;
 435
 436	down_write(&mm->mmap_sem);
 437	for (vma = mm->mmap; vma; vma = vma->vm_next)
 438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439	up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443	[MPOL_DEFAULT] = {
 444		.rebind = mpol_rebind_default,
 445	},
 446	[MPOL_INTERLEAVE] = {
 447		.create = mpol_new_interleave,
 448		.rebind = mpol_rebind_nodemask,
 449	},
 450	[MPOL_PREFERRED] = {
 451		.create = mpol_new_preferred,
 452		.rebind = mpol_rebind_preferred,
 453	},
 454	[MPOL_BIND] = {
 455		.create = mpol_new_bind,
 456		.rebind = mpol_rebind_nodemask,
 457	},
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461				unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 465		unsigned long addr, unsigned long end,
 466		const nodemask_t *nodes, unsigned long flags,
 467		void *private)
 
 
 
 
 
 
 
 
 468{
 469	pte_t *orig_pte;
 
 
 
 
 470	pte_t *pte;
 471	spinlock_t *ptl;
 472
 473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474	do {
 475		struct page *page;
 476		int nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477
 
 
 
 478		if (!pte_present(*pte))
 479			continue;
 480		page = vm_normal_page(vma, addr, *pte);
 481		if (!page)
 482			continue;
 483		/*
 484		 * vm_normal_page() filters out zero pages, but there might
 485		 * still be PageReserved pages to skip, perhaps in a VDSO.
 486		 * And we cannot move PageKsm pages sensibly or safely yet.
 487		 */
 488		if (PageReserved(page) || PageKsm(page))
 489			continue;
 490		nid = page_to_nid(page);
 491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493
 494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495			migrate_page_add(page, private, flags);
 496		else
 497			break;
 498	} while (pte++, addr += PAGE_SIZE, addr != end);
 499	pte_unmap_unlock(orig_pte, ptl);
 500	return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 504		unsigned long addr, unsigned long end,
 505		const nodemask_t *nodes, unsigned long flags,
 506		void *private)
 507{
 508	pmd_t *pmd;
 509	unsigned long next;
 
 
 
 
 510
 511	pmd = pmd_offset(pud, addr);
 512	do {
 513		next = pmd_addr_end(addr, end);
 514		split_huge_page_pmd(vma->vm_mm, pmd);
 515		if (pmd_none_or_clear_bad(pmd))
 516			continue;
 517		if (check_pte_range(vma, pmd, addr, next, nodes,
 518				    flags, private))
 519			return -EIO;
 520	} while (pmd++, addr = next, addr != end);
 
 
 
 
 
 
 
 521	return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525		unsigned long addr, unsigned long end,
 526		const nodemask_t *nodes, unsigned long flags,
 527		void *private)
 
 
 
 
 
 
 
 
 528{
 529	pud_t *pud;
 530	unsigned long next;
 531
 532	pud = pud_offset(pgd, addr);
 533	do {
 534		next = pud_addr_end(addr, end);
 535		if (pud_none_or_clear_bad(pud))
 536			continue;
 537		if (check_pmd_range(vma, pud, addr, next, nodes,
 538				    flags, private))
 539			return -EIO;
 540	} while (pud++, addr = next, addr != end);
 541	return 0;
 542}
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545		unsigned long addr, unsigned long end,
 546		const nodemask_t *nodes, unsigned long flags,
 547		void *private)
 
 548{
 549	pgd_t *pgd;
 550	unsigned long next;
 551
 552	pgd = pgd_offset(vma->vm_mm, addr);
 553	do {
 554		next = pgd_addr_end(addr, end);
 555		if (pgd_none_or_clear_bad(pgd))
 556			continue;
 557		if (check_pud_range(vma, pgd, addr, next, nodes,
 558				    flags, private))
 559			return -EIO;
 560	} while (pgd++, addr = next, addr != end);
 561	return 0;
 562}
 
 563
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571		const nodemask_t *nodes, unsigned long flags, void *private)
 572{
 573	int err;
 574	struct vm_area_struct *first, *vma, *prev;
 
 
 
 
 
 
 
 
 
 
 575
 
 
 
 
 
 
 576
 577	first = find_vma(mm, start);
 578	if (!first)
 579		return ERR_PTR(-EFAULT);
 580	prev = NULL;
 581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583			if (!vma->vm_next && vma->vm_end < end)
 584				return ERR_PTR(-EFAULT);
 585			if (prev && prev->vm_end < vma->vm_start)
 586				return ERR_PTR(-EFAULT);
 587		}
 588		if (!is_vm_hugetlb_page(vma) &&
 589		    ((flags & MPOL_MF_STRICT) ||
 590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591				vma_migratable(vma)))) {
 592			unsigned long endvma = vma->vm_end;
 593
 594			if (endvma > end)
 595				endvma = end;
 596			if (vma->vm_start > start)
 597				start = vma->vm_start;
 598			err = check_pgd_range(vma, start, endvma, nodes,
 599						flags, private);
 600			if (err) {
 601				first = ERR_PTR(err);
 602				break;
 603			}
 604		}
 605		prev = vma;
 606	}
 607	return first;
 
 
 
 
 608}
 609
 610/* Apply policy to a single VMA */
 611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 
 
 
 
 
 
 
 
 
 612{
 613	int err = 0;
 614	struct mempolicy *old = vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615
 616	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 617		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 618		 vma->vm_ops, vma->vm_file,
 619		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 620
 621	if (vma->vm_ops && vma->vm_ops->set_policy)
 
 
 
 
 622		err = vma->vm_ops->set_policy(vma, new);
 623	if (!err) {
 624		mpol_get(new);
 625		vma->vm_policy = new;
 626		mpol_put(old);
 627	}
 
 
 
 
 
 
 
 
 628	return err;
 629}
 630
 631/* Step 2: apply policy to a range and do splits. */
 632static int mbind_range(struct mm_struct *mm, unsigned long start,
 633		       unsigned long end, struct mempolicy *new_pol)
 634{
 635	struct vm_area_struct *next;
 636	struct vm_area_struct *prev;
 637	struct vm_area_struct *vma;
 638	int err = 0;
 
 639	unsigned long vmstart;
 640	unsigned long vmend;
 641
 642	vma = find_vma_prev(mm, start, &prev);
 643	if (!vma || vma->vm_start > start)
 644		return -EFAULT;
 645
 
 
 
 
 646	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 647		next = vma->vm_next;
 648		vmstart = max(start, vma->vm_start);
 649		vmend   = min(end, vma->vm_end);
 650
 
 
 
 
 
 651		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 652				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 653				  new_pol);
 654		if (prev) {
 655			vma = prev;
 656			next = vma->vm_next;
 657			continue;
 
 
 
 658		}
 659		if (vma->vm_start != vmstart) {
 660			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 661			if (err)
 662				goto out;
 663		}
 664		if (vma->vm_end != vmend) {
 665			err = split_vma(vma->vm_mm, vma, vmend, 0);
 666			if (err)
 667				goto out;
 668		}
 669		err = policy_vma(vma, new_pol);
 
 670		if (err)
 671			goto out;
 672	}
 673
 674 out:
 675	return err;
 676}
 677
 678/*
 679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 680 * mempolicy.  Allows more rapid checking of this (combined perhaps
 681 * with other PF_* flag bits) on memory allocation hot code paths.
 682 *
 683 * If called from outside this file, the task 'p' should -only- be
 684 * a newly forked child not yet visible on the task list, because
 685 * manipulating the task flags of a visible task is not safe.
 686 *
 687 * The above limitation is why this routine has the funny name
 688 * mpol_fix_fork_child_flag().
 689 *
 690 * It is also safe to call this with a task pointer of current,
 691 * which the static wrapper mpol_set_task_struct_flag() does,
 692 * for use within this file.
 693 */
 694
 695void mpol_fix_fork_child_flag(struct task_struct *p)
 696{
 697	if (p->mempolicy)
 698		p->flags |= PF_MEMPOLICY;
 699	else
 700		p->flags &= ~PF_MEMPOLICY;
 701}
 702
 703static void mpol_set_task_struct_flag(void)
 704{
 705	mpol_fix_fork_child_flag(current);
 706}
 707
 708/* Set the process memory policy */
 709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 710			     nodemask_t *nodes)
 711{
 712	struct mempolicy *new, *old;
 713	struct mm_struct *mm = current->mm;
 714	NODEMASK_SCRATCH(scratch);
 715	int ret;
 716
 717	if (!scratch)
 718		return -ENOMEM;
 719
 720	new = mpol_new(mode, flags, nodes);
 721	if (IS_ERR(new)) {
 722		ret = PTR_ERR(new);
 723		goto out;
 724	}
 725	/*
 726	 * prevent changing our mempolicy while show_numa_maps()
 727	 * is using it.
 728	 * Note:  do_set_mempolicy() can be called at init time
 729	 * with no 'mm'.
 730	 */
 731	if (mm)
 732		down_write(&mm->mmap_sem);
 733	task_lock(current);
 734	ret = mpol_set_nodemask(new, nodes, scratch);
 735	if (ret) {
 736		task_unlock(current);
 737		if (mm)
 738			up_write(&mm->mmap_sem);
 739		mpol_put(new);
 740		goto out;
 741	}
 742	old = current->mempolicy;
 743	current->mempolicy = new;
 744	mpol_set_task_struct_flag();
 745	if (new && new->mode == MPOL_INTERLEAVE &&
 746	    nodes_weight(new->v.nodes))
 747		current->il_next = first_node(new->v.nodes);
 748	task_unlock(current);
 749	if (mm)
 750		up_write(&mm->mmap_sem);
 751
 752	mpol_put(old);
 753	ret = 0;
 754out:
 755	NODEMASK_SCRATCH_FREE(scratch);
 756	return ret;
 757}
 758
 759/*
 760 * Return nodemask for policy for get_mempolicy() query
 761 *
 762 * Called with task's alloc_lock held
 763 */
 764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 765{
 766	nodes_clear(*nodes);
 767	if (p == &default_policy)
 768		return;
 769
 770	switch (p->mode) {
 771	case MPOL_BIND:
 772		/* Fall through */
 773	case MPOL_INTERLEAVE:
 774		*nodes = p->v.nodes;
 775		break;
 776	case MPOL_PREFERRED:
 777		if (!(p->flags & MPOL_F_LOCAL))
 778			node_set(p->v.preferred_node, *nodes);
 779		/* else return empty node mask for local allocation */
 780		break;
 781	default:
 782		BUG();
 783	}
 784}
 785
 786static int lookup_node(struct mm_struct *mm, unsigned long addr)
 787{
 788	struct page *p;
 789	int err;
 790
 791	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 792	if (err >= 0) {
 793		err = page_to_nid(p);
 794		put_page(p);
 795	}
 796	return err;
 797}
 798
 799/* Retrieve NUMA policy */
 800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 801			     unsigned long addr, unsigned long flags)
 802{
 803	int err;
 804	struct mm_struct *mm = current->mm;
 805	struct vm_area_struct *vma = NULL;
 806	struct mempolicy *pol = current->mempolicy;
 807
 808	if (flags &
 809		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 810		return -EINVAL;
 811
 812	if (flags & MPOL_F_MEMS_ALLOWED) {
 813		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 814			return -EINVAL;
 815		*policy = 0;	/* just so it's initialized */
 816		task_lock(current);
 817		*nmask  = cpuset_current_mems_allowed;
 818		task_unlock(current);
 819		return 0;
 820	}
 821
 822	if (flags & MPOL_F_ADDR) {
 823		/*
 824		 * Do NOT fall back to task policy if the
 825		 * vma/shared policy at addr is NULL.  We
 826		 * want to return MPOL_DEFAULT in this case.
 827		 */
 828		down_read(&mm->mmap_sem);
 829		vma = find_vma_intersection(mm, addr, addr+1);
 830		if (!vma) {
 831			up_read(&mm->mmap_sem);
 832			return -EFAULT;
 833		}
 834		if (vma->vm_ops && vma->vm_ops->get_policy)
 835			pol = vma->vm_ops->get_policy(vma, addr);
 836		else
 837			pol = vma->vm_policy;
 838	} else if (addr)
 839		return -EINVAL;
 840
 841	if (!pol)
 842		pol = &default_policy;	/* indicates default behavior */
 843
 844	if (flags & MPOL_F_NODE) {
 845		if (flags & MPOL_F_ADDR) {
 846			err = lookup_node(mm, addr);
 847			if (err < 0)
 848				goto out;
 849			*policy = err;
 850		} else if (pol == current->mempolicy &&
 851				pol->mode == MPOL_INTERLEAVE) {
 852			*policy = current->il_next;
 853		} else {
 854			err = -EINVAL;
 855			goto out;
 856		}
 857	} else {
 858		*policy = pol == &default_policy ? MPOL_DEFAULT :
 859						pol->mode;
 860		/*
 861		 * Internal mempolicy flags must be masked off before exposing
 862		 * the policy to userspace.
 863		 */
 864		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 865	}
 866
 867	if (vma) {
 868		up_read(&current->mm->mmap_sem);
 869		vma = NULL;
 870	}
 871
 872	err = 0;
 873	if (nmask) {
 874		if (mpol_store_user_nodemask(pol)) {
 875			*nmask = pol->w.user_nodemask;
 876		} else {
 877			task_lock(current);
 878			get_policy_nodemask(pol, nmask);
 879			task_unlock(current);
 880		}
 881	}
 882
 883 out:
 884	mpol_cond_put(pol);
 885	if (vma)
 886		up_read(&current->mm->mmap_sem);
 887	return err;
 888}
 889
 890#ifdef CONFIG_MIGRATION
 891/*
 892 * page migration
 893 */
 894static void migrate_page_add(struct page *page, struct list_head *pagelist,
 895				unsigned long flags)
 896{
 897	/*
 898	 * Avoid migrating a page that is shared with others.
 899	 */
 900	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 901		if (!isolate_lru_page(page)) {
 902			list_add_tail(&page->lru, pagelist);
 903			inc_zone_page_state(page, NR_ISOLATED_ANON +
 904					    page_is_file_cache(page));
 905		}
 906	}
 907}
 908
 909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 910{
 911	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
 
 
 
 
 912}
 913
 914/*
 915 * Migrate pages from one node to a target node.
 916 * Returns error or the number of pages not migrated.
 917 */
 918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 919			   int flags)
 920{
 921	nodemask_t nmask;
 922	LIST_HEAD(pagelist);
 923	int err = 0;
 924	struct vm_area_struct *vma;
 925
 926	nodes_clear(nmask);
 927	node_set(source, nmask);
 928
 929	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 
 
 
 
 
 
 930			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 931	if (IS_ERR(vma))
 932		return PTR_ERR(vma);
 933
 934	if (!list_empty(&pagelist)) {
 935		err = migrate_pages(&pagelist, new_node_page, dest,
 936								false, true);
 937		if (err)
 938			putback_lru_pages(&pagelist);
 939	}
 940
 941	return err;
 942}
 943
 944/*
 945 * Move pages between the two nodesets so as to preserve the physical
 946 * layout as much as possible.
 947 *
 948 * Returns the number of page that could not be moved.
 949 */
 950int do_migrate_pages(struct mm_struct *mm,
 951	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 952{
 953	int busy = 0;
 954	int err;
 955	nodemask_t tmp;
 956
 957	err = migrate_prep();
 958	if (err)
 959		return err;
 960
 961	down_read(&mm->mmap_sem);
 962
 963	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 964	if (err)
 965		goto out;
 966
 967	/*
 968	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 969	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 970	 * bit in 'tmp', and return that <source, dest> pair for migration.
 971	 * The pair of nodemasks 'to' and 'from' define the map.
 972	 *
 973	 * If no pair of bits is found that way, fallback to picking some
 974	 * pair of 'source' and 'dest' bits that are not the same.  If the
 975	 * 'source' and 'dest' bits are the same, this represents a node
 976	 * that will be migrating to itself, so no pages need move.
 977	 *
 978	 * If no bits are left in 'tmp', or if all remaining bits left
 979	 * in 'tmp' correspond to the same bit in 'to', return false
 980	 * (nothing left to migrate).
 981	 *
 982	 * This lets us pick a pair of nodes to migrate between, such that
 983	 * if possible the dest node is not already occupied by some other
 984	 * source node, minimizing the risk of overloading the memory on a
 985	 * node that would happen if we migrated incoming memory to a node
 986	 * before migrating outgoing memory source that same node.
 987	 *
 988	 * A single scan of tmp is sufficient.  As we go, we remember the
 989	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 990	 * that not only moved, but what's better, moved to an empty slot
 991	 * (d is not set in tmp), then we break out then, with that pair.
 992	 * Otherwise when we finish scanning from_tmp, we at least have the
 993	 * most recent <s, d> pair that moved.  If we get all the way through
 994	 * the scan of tmp without finding any node that moved, much less
 995	 * moved to an empty node, then there is nothing left worth migrating.
 996	 */
 997
 998	tmp = *from_nodes;
 999	while (!nodes_empty(tmp)) {
1000		int s,d;
1001		int source = -1;
1002		int dest = 0;
1003
1004		for_each_node_mask(s, tmp) {
1005			d = node_remap(s, *from_nodes, *to_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006			if (s == d)
1007				continue;
1008
1009			source = s;	/* Node moved. Memorize */
1010			dest = d;
1011
1012			/* dest not in remaining from nodes? */
1013			if (!node_isset(dest, tmp))
1014				break;
1015		}
1016		if (source == -1)
1017			break;
1018
1019		node_clear(source, tmp);
1020		err = migrate_to_node(mm, source, dest, flags);
1021		if (err > 0)
1022			busy += err;
1023		if (err < 0)
1024			break;
1025	}
1026out:
1027	up_read(&mm->mmap_sem);
1028	if (err < 0)
1029		return err;
1030	return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not.  N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044	unsigned long uninitialized_var(address);
1045
 
1046	while (vma) {
1047		address = page_address_in_vma(page, vma);
1048		if (address != -EFAULT)
1049			break;
1050		vma = vma->vm_next;
1051	}
1052
 
 
 
 
1053	/*
1054	 * if !vma, alloc_page_vma() will use task or system default policy
1055	 */
1056	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061				unsigned long flags)
1062{
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068	return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073	return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078		     unsigned short mode, unsigned short mode_flags,
1079		     nodemask_t *nmask, unsigned long flags)
1080{
1081	struct vm_area_struct *vma;
1082	struct mm_struct *mm = current->mm;
1083	struct mempolicy *new;
1084	unsigned long end;
1085	int err;
1086	LIST_HEAD(pagelist);
1087
1088	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090		return -EINVAL;
1091	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092		return -EPERM;
1093
1094	if (start & ~PAGE_MASK)
1095		return -EINVAL;
1096
1097	if (mode == MPOL_DEFAULT)
1098		flags &= ~MPOL_MF_STRICT;
1099
1100	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101	end = start + len;
1102
1103	if (end < start)
1104		return -EINVAL;
1105	if (end == start)
1106		return 0;
1107
1108	new = mpol_new(mode, mode_flags, nmask);
1109	if (IS_ERR(new))
1110		return PTR_ERR(new);
1111
 
 
 
1112	/*
1113	 * If we are using the default policy then operation
1114	 * on discontinuous address spaces is okay after all
1115	 */
1116	if (!new)
1117		flags |= MPOL_MF_DISCONTIG_OK;
1118
1119	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120		 start, start + len, mode, mode_flags,
1121		 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125		err = migrate_prep();
1126		if (err)
1127			goto mpol_out;
1128	}
1129	{
1130		NODEMASK_SCRATCH(scratch);
1131		if (scratch) {
1132			down_write(&mm->mmap_sem);
1133			task_lock(current);
1134			err = mpol_set_nodemask(new, nmask, scratch);
1135			task_unlock(current);
1136			if (err)
1137				up_write(&mm->mmap_sem);
1138		} else
1139			err = -ENOMEM;
1140		NODEMASK_SCRATCH_FREE(scratch);
1141	}
1142	if (err)
1143		goto mpol_out;
1144
1145	vma = check_range(mm, start, end, nmask,
1146			  flags | MPOL_MF_INVERT, &pagelist);
 
 
1147
1148	err = PTR_ERR(vma);
1149	if (!IS_ERR(vma)) {
1150		int nr_failed = 0;
1151
1152		err = mbind_range(mm, start, end, new);
1153
1154		if (!list_empty(&pagelist)) {
1155			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156						(unsigned long)vma,
1157						false, true);
1158			if (nr_failed)
1159				putback_lru_pages(&pagelist);
1160		}
1161
1162		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163			err = -EIO;
1164	} else
1165		putback_lru_pages(&pagelist);
1166
1167	up_write(&mm->mmap_sem);
1168 mpol_out:
1169	mpol_put(new);
1170	return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179		     unsigned long maxnode)
1180{
1181	unsigned long k;
1182	unsigned long nlongs;
1183	unsigned long endmask;
1184
1185	--maxnode;
1186	nodes_clear(*nodes);
1187	if (maxnode == 0 || !nmask)
1188		return 0;
1189	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190		return -EINVAL;
1191
1192	nlongs = BITS_TO_LONGS(maxnode);
1193	if ((maxnode % BITS_PER_LONG) == 0)
1194		endmask = ~0UL;
1195	else
1196		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198	/* When the user specified more nodes than supported just check
1199	   if the non supported part is all zero. */
1200	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201		if (nlongs > PAGE_SIZE/sizeof(long))
1202			return -EINVAL;
1203		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204			unsigned long t;
1205			if (get_user(t, nmask + k))
1206				return -EFAULT;
1207			if (k == nlongs - 1) {
1208				if (t & endmask)
1209					return -EINVAL;
1210			} else if (t)
1211				return -EINVAL;
1212		}
1213		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214		endmask = ~0UL;
1215	}
1216
1217	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218		return -EFAULT;
1219	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220	return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225			      nodemask_t *nodes)
1226{
1227	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230	if (copy > nbytes) {
1231		if (copy > PAGE_SIZE)
1232			return -EINVAL;
1233		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234			return -EFAULT;
1235		copy = nbytes;
1236	}
1237	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241		unsigned long, mode, unsigned long __user *, nmask,
1242		unsigned long, maxnode, unsigned, flags)
1243{
1244	nodemask_t nodes;
1245	int err;
1246	unsigned short mode_flags;
1247
1248	mode_flags = mode & MPOL_MODE_FLAGS;
1249	mode &= ~MPOL_MODE_FLAGS;
1250	if (mode >= MPOL_MAX)
1251		return -EINVAL;
1252	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254		return -EINVAL;
1255	err = get_nodes(&nodes, nmask, maxnode);
1256	if (err)
1257		return err;
1258	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263		unsigned long, maxnode)
1264{
1265	int err;
1266	nodemask_t nodes;
1267	unsigned short flags;
1268
1269	flags = mode & MPOL_MODE_FLAGS;
1270	mode &= ~MPOL_MODE_FLAGS;
1271	if ((unsigned int)mode >= MPOL_MAX)
1272		return -EINVAL;
1273	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274		return -EINVAL;
1275	err = get_nodes(&nodes, nmask, maxnode);
1276	if (err)
1277		return err;
1278	return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282		const unsigned long __user *, old_nodes,
1283		const unsigned long __user *, new_nodes)
1284{
1285	const struct cred *cred = current_cred(), *tcred;
1286	struct mm_struct *mm = NULL;
1287	struct task_struct *task;
1288	nodemask_t task_nodes;
1289	int err;
1290	nodemask_t *old;
1291	nodemask_t *new;
1292	NODEMASK_SCRATCH(scratch);
1293
1294	if (!scratch)
1295		return -ENOMEM;
1296
1297	old = &scratch->mask1;
1298	new = &scratch->mask2;
1299
1300	err = get_nodes(old, old_nodes, maxnode);
1301	if (err)
1302		goto out;
1303
1304	err = get_nodes(new, new_nodes, maxnode);
1305	if (err)
1306		goto out;
1307
1308	/* Find the mm_struct */
1309	rcu_read_lock();
1310	task = pid ? find_task_by_vpid(pid) : current;
1311	if (!task) {
1312		rcu_read_unlock();
1313		err = -ESRCH;
1314		goto out;
1315	}
1316	mm = get_task_mm(task);
1317	rcu_read_unlock();
1318
1319	err = -EINVAL;
1320	if (!mm)
1321		goto out;
1322
1323	/*
1324	 * Check if this process has the right to modify the specified
1325	 * process. The right exists if the process has administrative
1326	 * capabilities, superuser privileges or the same
1327	 * userid as the target process.
1328	 */
1329	rcu_read_lock();
1330	tcred = __task_cred(task);
1331	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333	    !capable(CAP_SYS_NICE)) {
1334		rcu_read_unlock();
1335		err = -EPERM;
1336		goto out;
1337	}
1338	rcu_read_unlock();
1339
1340	task_nodes = cpuset_mems_allowed(task);
1341	/* Is the user allowed to access the target nodes? */
1342	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343		err = -EPERM;
1344		goto out;
1345	}
1346
1347	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348		err = -EINVAL;
1349		goto out;
1350	}
1351
1352	err = security_task_movememory(task);
1353	if (err)
 
 
 
 
 
 
 
1354		goto out;
 
1355
1356	err = do_migrate_pages(mm, old, new,
1357		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 
 
1358out:
1359	if (mm)
1360		mmput(mm);
1361	NODEMASK_SCRATCH_FREE(scratch);
1362
1363	return err;
 
 
 
 
 
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369		unsigned long __user *, nmask, unsigned long, maxnode,
1370		unsigned long, addr, unsigned long, flags)
1371{
1372	int err;
1373	int uninitialized_var(pval);
1374	nodemask_t nodes;
1375
1376	if (nmask != NULL && maxnode < MAX_NUMNODES)
1377		return -EINVAL;
1378
1379	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381	if (err)
1382		return err;
1383
1384	if (policy && put_user(pval, policy))
1385		return -EFAULT;
1386
1387	if (nmask)
1388		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390	return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396				     compat_ulong_t __user *nmask,
1397				     compat_ulong_t maxnode,
1398				     compat_ulong_t addr, compat_ulong_t flags)
1399{
1400	long err;
1401	unsigned long __user *nm = NULL;
1402	unsigned long nr_bits, alloc_size;
1403	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408	if (nmask)
1409		nm = compat_alloc_user_space(alloc_size);
1410
1411	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413	if (!err && nmask) {
1414		unsigned long copy_size;
1415		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416		err = copy_from_user(bm, nm, copy_size);
1417		/* ensure entire bitmap is zeroed */
1418		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420	}
1421
1422	return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426				     compat_ulong_t maxnode)
1427{
1428	long err = 0;
1429	unsigned long __user *nm = NULL;
1430	unsigned long nr_bits, alloc_size;
1431	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436	if (nmask) {
1437		err = compat_get_bitmap(bm, nmask, nr_bits);
1438		nm = compat_alloc_user_space(alloc_size);
1439		err |= copy_to_user(nm, bm, alloc_size);
1440	}
1441
1442	if (err)
1443		return -EFAULT;
1444
1445	return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450			     compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452	long err = 0;
1453	unsigned long __user *nm = NULL;
1454	unsigned long nr_bits, alloc_size;
1455	nodemask_t bm;
1456
1457	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460	if (nmask) {
1461		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462		nm = compat_alloc_user_space(alloc_size);
1463		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464	}
1465
1466	if (err)
1467		return -EFAULT;
1468
1469	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma   - virtual memory area whose policy is sought
1478 * @addr  - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task.  It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491		struct vm_area_struct *vma, unsigned long addr)
1492{
1493	struct mempolicy *pol = task->mempolicy;
1494
1495	if (vma) {
1496		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498									addr);
1499			if (vpol)
1500				pol = vpol;
1501		} else if (vma->vm_policy)
1502			pol = vma->vm_policy;
1503	}
1504	if (!pol)
1505		pol = &default_policy;
 
1506	return pol;
1507}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516	if (unlikely(policy->mode == MPOL_BIND) &&
1517			gfp_zone(gfp) >= policy_zone &&
1518			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519		return &policy->v.nodes;
1520
1521	return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526	int nd)
1527{
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
 
 
 
 
 
 
 
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone ? zone->node : numa_node_id();
1601	}
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
1616
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656	int w, bit = -1;
1657
1658	w = nodes_weight(*maskp);
1659	if (w)
1660		bit = bitmap_ord_to_pos(maskp->bits,
1661			get_random_int() % w, MAX_NUMNODES);
1662	return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682				gfp_t gfp_flags, struct mempolicy **mpol,
1683				nodemask_t **nodemask)
1684{
1685	struct zonelist *zl;
1686
1687	*mpol = get_vma_policy(current, vma, addr);
1688	*nodemask = NULL;	/* assume !MPOL_BIND */
1689
1690	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692				huge_page_shift(hstate_vma(vma))), gfp_flags);
1693	} else {
1694		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695		if ((*mpol)->mode == MPOL_BIND)
1696			*nodemask = &(*mpol)->v.nodes;
1697	}
1698	return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy.  Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719	struct mempolicy *mempolicy;
1720	int nid;
1721
1722	if (!(mask && current->mempolicy))
1723		return false;
1724
1725	task_lock(current);
1726	mempolicy = current->mempolicy;
1727	switch (mempolicy->mode) {
1728	case MPOL_PREFERRED:
1729		if (mempolicy->flags & MPOL_F_LOCAL)
1730			nid = numa_node_id();
1731		else
1732			nid = mempolicy->v.preferred_node;
1733		init_nodemask_of_node(mask, nid);
1734		break;
1735
1736	case MPOL_BIND:
1737		/* Fall through */
1738	case MPOL_INTERLEAVE:
1739		*mask =  mempolicy->v.nodes;
1740		break;
1741
1742	default:
1743		BUG();
1744	}
1745	task_unlock(current);
1746
1747	return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy.  Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762					const nodemask_t *mask)
1763{
1764	struct mempolicy *mempolicy;
1765	bool ret = true;
1766
1767	if (!mask)
1768		return ret;
1769	task_lock(tsk);
1770	mempolicy = tsk->mempolicy;
1771	if (!mempolicy)
1772		goto out;
1773
1774	switch (mempolicy->mode) {
1775	case MPOL_PREFERRED:
1776		/*
1777		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778		 * allocate from, they may fallback to other nodes when oom.
1779		 * Thus, it's possible for tsk to have allocated memory from
1780		 * nodes in mask.
1781		 */
1782		break;
1783	case MPOL_BIND:
1784	case MPOL_INTERLEAVE:
1785		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786		break;
1787	default:
1788		BUG();
1789	}
1790out:
1791	task_unlock(tsk);
1792	return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796   Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798					unsigned nid)
1799{
1800	struct zonelist *zl;
1801	struct page *page;
1802
1803	zl = node_zonelist(nid, gfp);
1804	page = __alloc_pages(gfp, order, zl);
1805	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807	return page;
1808}
1809
1810/**
1811 * 	alloc_pages_vma	- Allocate a page for a VMA.
1812 *
1813 * 	@gfp:
1814 *      %GFP_USER    user allocation.
1815 *      %GFP_KERNEL  kernel allocations,
1816 *      %GFP_HIGHMEM highmem/user allocations,
1817 *      %GFP_FS      allocation should not call back into a file system.
1818 *      %GFP_ATOMIC  don't sleep.
1819 *
1820 *	@order:Order of the GFP allocation.
1821 * 	@vma:  Pointer to VMA or NULL if not available.
1822 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 
 
1823 *
1824 * 	This function allocates a page from the kernel page pool and applies
1825 *	a NUMA policy associated with the VMA or the current process.
1826 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 *	mm_struct of the VMA to prevent it from going away. Should be used for
1828 *	all allocations for pages that will be mapped into
1829 * 	user space. Returns NULL when no page can be allocated.
1830 *
1831 *	Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835		unsigned long addr, int node)
1836{
1837	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838	struct zonelist *zl;
1839	struct page *page;
 
 
 
1840
1841	get_mems_allowed();
1842	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
 
 
 
1843		unsigned nid;
1844
1845		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846		mpol_cond_put(pol);
1847		page = alloc_page_interleave(gfp, order, nid);
1848		put_mems_allowed();
1849		return page;
1850	}
1851	zl = policy_zonelist(gfp, pol, node);
1852	if (unlikely(mpol_needs_cond_ref(pol))) {
 
 
1853		/*
1854		 * slow path: ref counted shared policy
 
 
 
 
 
 
 
1855		 */
1856		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857						zl, policy_nodemask(gfp, pol));
1858		__mpol_put(pol);
1859		put_mems_allowed();
1860		return page;
 
 
 
 
 
 
1861	}
1862	/*
1863	 * fast path:  default or task policy
1864	 */
1865	page = __alloc_pages_nodemask(gfp, order, zl,
1866				      policy_nodemask(gfp, pol));
1867	put_mems_allowed();
 
 
1868	return page;
1869}
1870
1871/**
1872 * 	alloc_pages_current - Allocate pages.
1873 *
1874 *	@gfp:
1875 *		%GFP_USER   user allocation,
1876 *      	%GFP_KERNEL kernel allocation,
1877 *      	%GFP_HIGHMEM highmem allocation,
1878 *      	%GFP_FS     don't call back into a file system.
1879 *      	%GFP_ATOMIC don't sleep.
1880 *	@order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 *	Allocate a page from the kernel page pool.  When not in
1883 *	interrupt context and apply the current process NUMA policy.
1884 *	Returns NULL when no page can be allocated.
1885 *
1886 *	Don't call cpuset_update_task_memory_state() unless
1887 *	1) it's ok to take cpuset_sem (can WAIT), and
1888 *	2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892	struct mempolicy *pol = current->mempolicy;
1893	struct page *page;
 
1894
1895	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896		pol = &default_policy;
 
 
 
1897
1898	get_mems_allowed();
1899	/*
1900	 * No reference counting needed for current->mempolicy
1901	 * nor system default_policy
1902	 */
1903	if (pol->mode == MPOL_INTERLEAVE)
1904		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905	else
1906		page = __alloc_pages_nodemask(gfp, order,
1907				policy_zonelist(gfp, pol, numa_node_id()),
1908				policy_nodemask(gfp, pol));
1909	put_mems_allowed();
 
 
 
1910	return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
 
 
 
 
 
 
 
 
 
 
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed().  This
1918 * keeps mempolicies cpuset relative after its cpuset moves.  See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930	if (!new)
1931		return ERR_PTR(-ENOMEM);
1932
1933	/* task's mempolicy is protected by alloc_lock */
1934	if (old == current->mempolicy) {
1935		task_lock(current);
1936		*new = *old;
1937		task_unlock(current);
1938	} else
1939		*new = *old;
1940
1941	rcu_read_lock();
1942	if (current_cpuset_is_being_rebound()) {
1943		nodemask_t mems = cpuset_mems_allowed(current);
1944		if (new->flags & MPOL_F_REBINDING)
1945			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946		else
1947			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948	}
1949	rcu_read_unlock();
1950	atomic_set(&new->refcnt, 1);
1951	return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958 * after return.  Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965						struct mempolicy *frompol)
1966{
1967	if (!mpol_needs_cond_ref(frompol))
1968		return frompol;
1969
1970	*tompol = *frompol;
1971	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972	__mpol_put(frompol);
1973	return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979	if (!a || !b)
1980		return 0;
1981	if (a->mode != b->mode)
1982		return 0;
1983	if (a->flags != b->flags)
1984		return 0;
1985	if (mpol_store_user_nodemask(a))
1986		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987			return 0;
1988
1989	switch (a->mode) {
1990	case MPOL_BIND:
1991		/* Fall through */
1992	case MPOL_INTERLEAVE:
1993		return nodes_equal(a->v.nodes, b->v.nodes);
1994	case MPOL_PREFERRED:
1995		return a->v.preferred_node == b->v.preferred_node;
1996	default:
1997		BUG();
1998		return 0;
1999	}
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
 
 
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016	struct rb_node *n = sp->root.rb_node;
2017
2018	while (n) {
2019		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021		if (start >= p->end)
2022			n = n->rb_right;
2023		else if (end <= p->start)
2024			n = n->rb_left;
2025		else
2026			break;
2027	}
2028	if (!n)
2029		return NULL;
2030	for (;;) {
2031		struct sp_node *w = NULL;
2032		struct rb_node *prev = rb_prev(n);
2033		if (!prev)
2034			break;
2035		w = rb_entry(prev, struct sp_node, nd);
2036		if (w->end <= start)
2037			break;
2038		n = prev;
2039	}
2040	return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
 
 
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047	struct rb_node **p = &sp->root.rb_node;
2048	struct rb_node *parent = NULL;
2049	struct sp_node *nd;
2050
2051	while (*p) {
2052		parent = *p;
2053		nd = rb_entry(parent, struct sp_node, nd);
2054		if (new->start < nd->start)
2055			p = &(*p)->rb_left;
2056		else if (new->end > nd->end)
2057			p = &(*p)->rb_right;
2058		else
2059			BUG();
2060	}
2061	rb_link_node(&new->nd, parent, p);
2062	rb_insert_color(&new->nd, &sp->root);
2063	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064		 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071	struct mempolicy *pol = NULL;
2072	struct sp_node *sn;
2073
2074	if (!sp->root.rb_node)
2075		return NULL;
2076	spin_lock(&sp->lock);
2077	sn = sp_lookup(sp, idx, idx+1);
2078	if (sn) {
2079		mpol_get(sn->policy);
2080		pol = sn->policy;
2081	}
2082	spin_unlock(&sp->lock);
2083	return pol;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089	rb_erase(&n->nd, &sp->root);
2090	mpol_put(n->policy);
2091	kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095				struct mempolicy *pol)
2096{
2097	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 
2098
 
2099	if (!n)
2100		return NULL;
2101	n->start = start;
2102	n->end = end;
2103	mpol_get(pol);
2104	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105	n->policy = pol;
 
 
 
 
2106	return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111				 unsigned long end, struct sp_node *new)
2112{
2113	struct sp_node *n, *new2 = NULL;
 
 
 
2114
2115restart:
2116	spin_lock(&sp->lock);
2117	n = sp_lookup(sp, start, end);
2118	/* Take care of old policies in the same range. */
2119	while (n && n->start < end) {
2120		struct rb_node *next = rb_next(&n->nd);
2121		if (n->start >= start) {
2122			if (n->end <= end)
2123				sp_delete(sp, n);
2124			else
2125				n->start = end;
2126		} else {
2127			/* Old policy spanning whole new range. */
2128			if (n->end > end) {
2129				if (!new2) {
2130					spin_unlock(&sp->lock);
2131					new2 = sp_alloc(end, n->end, n->policy);
2132					if (!new2)
2133						return -ENOMEM;
2134					goto restart;
2135				}
2136				n->end = start;
2137				sp_insert(sp, new2);
2138				new2 = NULL;
 
2139				break;
2140			} else
2141				n->end = start;
2142		}
2143		if (!next)
2144			break;
2145		n = rb_entry(next, struct sp_node, nd);
2146	}
2147	if (new)
2148		sp_insert(sp, new);
2149	spin_unlock(&sp->lock);
2150	if (new2) {
2151		mpol_put(new2->policy);
2152		kmem_cache_free(sn_cache, new2);
2153	}
2154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol:  struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169	int ret;
2170
2171	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172	spin_lock_init(&sp->lock);
2173
2174	if (mpol) {
2175		struct vm_area_struct pvma;
2176		struct mempolicy *new;
2177		NODEMASK_SCRATCH(scratch);
2178
2179		if (!scratch)
2180			goto put_mpol;
2181		/* contextualize the tmpfs mount point mempolicy */
2182		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183		if (IS_ERR(new))
2184			goto free_scratch; /* no valid nodemask intersection */
2185
2186		task_lock(current);
2187		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188		task_unlock(current);
2189		if (ret)
2190			goto put_new;
2191
2192		/* Create pseudo-vma that contains just the policy */
2193		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198		mpol_put(new);			/* drop initial ref */
2199free_scratch:
2200		NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203	}
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207			struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209	int err;
2210	struct sp_node *new = NULL;
2211	unsigned long sz = vma_pages(vma);
2212
2213	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214		 vma->vm_pgoff,
2215		 sz, npol ? npol->mode : -1,
2216		 npol ? npol->flags : -1,
2217		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219	if (npol) {
2220		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221		if (!new)
2222			return -ENOMEM;
2223	}
2224	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225	if (err && new)
2226		kmem_cache_free(sn_cache, new);
2227	return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233	struct sp_node *n;
2234	struct rb_node *next;
2235
2236	if (!p->root.rb_node)
2237		return;
2238	spin_lock(&p->lock);
2239	next = rb_first(&p->root);
2240	while (next) {
2241		n = rb_entry(next, struct sp_node, nd);
2242		next = rb_next(&n->nd);
2243		rb_erase(&n->nd, &p->root);
2244		mpol_put(n->policy);
2245		kmem_cache_free(sn_cache, n);
2246	}
2247	spin_unlock(&p->lock);
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253	nodemask_t interleave_nodes;
2254	unsigned long largest = 0;
2255	int nid, prefer = 0;
2256
2257	policy_cache = kmem_cache_create("numa_policy",
2258					 sizeof(struct mempolicy),
2259					 0, SLAB_PANIC, NULL);
2260
2261	sn_cache = kmem_cache_create("shared_policy_node",
2262				     sizeof(struct sp_node),
2263				     0, SLAB_PANIC, NULL);
2264
 
 
 
 
 
 
 
 
 
2265	/*
2266	 * Set interleaving policy for system init. Interleaving is only
2267	 * enabled across suitably sized nodes (default is >= 16MB), or
2268	 * fall back to the largest node if they're all smaller.
2269	 */
2270	nodes_clear(interleave_nodes);
2271	for_each_node_state(nid, N_HIGH_MEMORY) {
2272		unsigned long total_pages = node_present_pages(nid);
2273
2274		/* Preserve the largest node */
2275		if (largest < total_pages) {
2276			largest = total_pages;
2277			prefer = nid;
2278		}
2279
2280		/* Interleave this node? */
2281		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282			node_set(nid, interleave_nodes);
2283	}
2284
2285	/* All too small, use the largest */
2286	if (unlikely(nodes_empty(interleave_nodes)))
2287		node_set(prefer, interleave_nodes);
2288
2289	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290		printk("numa_policy_init: interleaving failed\n");
 
 
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310	[MPOL_DEFAULT]    = "default",
2311	[MPOL_PREFERRED]  = "prefer",
2312	[MPOL_BIND]       = "bind",
2313	[MPOL_INTERLEAVE] = "interleave",
2314	[MPOL_LOCAL]      = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str:  string containing mempolicy to parse
2322 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323 * @no_context:  flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 *	<mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331 * mount option.  Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved.  Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339	struct mempolicy *new = NULL;
2340	unsigned short mode;
2341	unsigned short uninitialized_var(mode_flags);
2342	nodemask_t nodes;
2343	char *nodelist = strchr(str, ':');
2344	char *flags = strchr(str, '=');
2345	int err = 1;
2346
2347	if (nodelist) {
2348		/* NUL-terminate mode or flags string */
2349		*nodelist++ = '\0';
2350		if (nodelist_parse(nodelist, nodes))
2351			goto out;
2352		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353			goto out;
2354	} else
2355		nodes_clear(nodes);
2356
2357	if (flags)
2358		*flags++ = '\0';	/* terminate mode string */
2359
2360	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361		if (!strcmp(str, policy_modes[mode])) {
2362			break;
2363		}
2364	}
2365	if (mode > MPOL_LOCAL)
2366		goto out;
2367
2368	switch (mode) {
2369	case MPOL_PREFERRED:
2370		/*
2371		 * Insist on a nodelist of one node only
2372		 */
2373		if (nodelist) {
2374			char *rest = nodelist;
2375			while (isdigit(*rest))
2376				rest++;
2377			if (*rest)
2378				goto out;
2379		}
2380		break;
2381	case MPOL_INTERLEAVE:
2382		/*
2383		 * Default to online nodes with memory if no nodelist
2384		 */
2385		if (!nodelist)
2386			nodes = node_states[N_HIGH_MEMORY];
2387		break;
2388	case MPOL_LOCAL:
2389		/*
2390		 * Don't allow a nodelist;  mpol_new() checks flags
2391		 */
2392		if (nodelist)
2393			goto out;
2394		mode = MPOL_PREFERRED;
2395		break;
2396	case MPOL_DEFAULT:
2397		/*
2398		 * Insist on a empty nodelist
2399		 */
2400		if (!nodelist)
2401			err = 0;
2402		goto out;
2403	case MPOL_BIND:
2404		/*
2405		 * Insist on a nodelist
2406		 */
2407		if (!nodelist)
2408			goto out;
2409	}
2410
2411	mode_flags = 0;
2412	if (flags) {
2413		/*
2414		 * Currently, we only support two mutually exclusive
2415		 * mode flags.
2416		 */
2417		if (!strcmp(flags, "static"))
2418			mode_flags |= MPOL_F_STATIC_NODES;
2419		else if (!strcmp(flags, "relative"))
2420			mode_flags |= MPOL_F_RELATIVE_NODES;
2421		else
2422			goto out;
2423	}
2424
2425	new = mpol_new(mode, mode_flags, &nodes);
2426	if (IS_ERR(new))
2427		goto out;
2428
2429	if (no_context) {
2430		/* save for contextualization */
2431		new->w.user_nodemask = nodes;
2432	} else {
2433		int ret;
2434		NODEMASK_SCRATCH(scratch);
2435		if (scratch) {
2436			task_lock(current);
2437			ret = mpol_set_nodemask(new, &nodes, scratch);
2438			task_unlock(current);
2439		} else
2440			ret = -ENOMEM;
2441		NODEMASK_SCRATCH_FREE(scratch);
2442		if (ret) {
2443			mpol_put(new);
2444			goto out;
2445		}
2446	}
2447	err = 0;
2448
2449out:
2450	/* Restore string for error message */
2451	if (nodelist)
2452		*--nodelist = ':';
2453	if (flags)
2454		*--flags = '=';
2455	if (!err)
2456		*mpol = new;
2457	return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer:  to contain formatted mempolicy string
2464 * @maxlen:  length of @buffer
2465 * @pol:  pointer to mempolicy to be formatted
2466 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474	char *p = buffer;
2475	int l;
2476	nodemask_t nodes;
2477	unsigned short mode;
2478	unsigned short flags = pol ? pol->flags : 0;
2479
2480	/*
2481	 * Sanity check:  room for longest mode, flag and some nodes
2482	 */
2483	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485	if (!pol || pol == &default_policy)
2486		mode = MPOL_DEFAULT;
2487	else
2488		mode = pol->mode;
 
 
2489
2490	switch (mode) {
2491	case MPOL_DEFAULT:
2492		nodes_clear(nodes);
2493		break;
2494
2495	case MPOL_PREFERRED:
2496		nodes_clear(nodes);
2497		if (flags & MPOL_F_LOCAL)
2498			mode = MPOL_LOCAL;	/* pseudo-policy */
2499		else
2500			node_set(pol->v.preferred_node, nodes);
2501		break;
2502
2503	case MPOL_BIND:
2504		/* Fall through */
2505	case MPOL_INTERLEAVE:
2506		if (no_context)
2507			nodes = pol->w.user_nodemask;
2508		else
2509			nodes = pol->v.nodes;
2510		break;
2511
2512	default:
2513		BUG();
 
 
2514	}
2515
2516	l = strlen(policy_modes[mode]);
2517	if (buffer + maxlen < p + l + 1)
2518		return -ENOSPC;
2519
2520	strcpy(p, policy_modes[mode]);
2521	p += l;
2522
2523	if (flags & MPOL_MODE_FLAGS) {
2524		if (buffer + maxlen < p + 2)
2525			return -ENOSPC;
2526		*p++ = '=';
2527
2528		/*
2529		 * Currently, the only defined flags are mutually exclusive
2530		 */
2531		if (flags & MPOL_F_STATIC_NODES)
2532			p += snprintf(p, buffer + maxlen - p, "static");
2533		else if (flags & MPOL_F_RELATIVE_NODES)
2534			p += snprintf(p, buffer + maxlen - p, "relative");
2535	}
2536
2537	if (!nodes_empty(nodes)) {
2538		if (buffer + maxlen < p + 2)
2539			return -ENOSPC;
2540		*p++ = ':';
2541	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542	}
2543	return p - buffer;
2544}
v4.6
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100#include <linux/random.h>
 101
 102#include "internal.h"
 103
 104/* Internal flags */
 105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 107
 108static struct kmem_cache *policy_cache;
 109static struct kmem_cache *sn_cache;
 110
 111/* Highest zone. An specific allocation for a zone below that is not
 112   policied. */
 113enum zone_type policy_zone = 0;
 114
 115/*
 116 * run-time system-wide default policy => local allocation
 117 */
 118static struct mempolicy default_policy = {
 119	.refcnt = ATOMIC_INIT(1), /* never free it */
 120	.mode = MPOL_PREFERRED,
 121	.flags = MPOL_F_LOCAL,
 122};
 123
 124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 125
 126struct mempolicy *get_task_policy(struct task_struct *p)
 127{
 128	struct mempolicy *pol = p->mempolicy;
 129	int node;
 130
 131	if (pol)
 132		return pol;
 133
 134	node = numa_node_id();
 135	if (node != NUMA_NO_NODE) {
 136		pol = &preferred_node_policy[node];
 137		/* preferred_node_policy is not initialised early in boot */
 138		if (pol->mode)
 139			return pol;
 140	}
 141
 142	return &default_policy;
 143}
 144
 145static const struct mempolicy_operations {
 146	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 147	/*
 148	 * If read-side task has no lock to protect task->mempolicy, write-side
 149	 * task will rebind the task->mempolicy by two step. The first step is
 150	 * setting all the newly nodes, and the second step is cleaning all the
 151	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 152	 * page.
 153	 * If we have a lock to protect task->mempolicy in read-side, we do
 154	 * rebind directly.
 155	 *
 156	 * step:
 157	 * 	MPOL_REBIND_ONCE - do rebind work at once
 158	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 159	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 160	 */
 161	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 162			enum mpol_rebind_step step);
 163} mpol_ops[MPOL_MAX];
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 166{
 167	return pol->flags & MPOL_MODE_FLAGS;
 168}
 169
 170static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 171				   const nodemask_t *rel)
 172{
 173	nodemask_t tmp;
 174	nodes_fold(tmp, *orig, nodes_weight(*rel));
 175	nodes_onto(*ret, tmp, *rel);
 176}
 177
 178static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 179{
 180	if (nodes_empty(*nodes))
 181		return -EINVAL;
 182	pol->v.nodes = *nodes;
 183	return 0;
 184}
 185
 186static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (!nodes)
 189		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 190	else if (nodes_empty(*nodes))
 191		return -EINVAL;			/*  no allowed nodes */
 192	else
 193		pol->v.preferred_node = first_node(*nodes);
 194	return 0;
 195}
 196
 197static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 198{
 199	if (nodes_empty(*nodes))
 200		return -EINVAL;
 201	pol->v.nodes = *nodes;
 202	return 0;
 203}
 204
 205/*
 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 207 * any, for the new policy.  mpol_new() has already validated the nodes
 208 * parameter with respect to the policy mode and flags.  But, we need to
 209 * handle an empty nodemask with MPOL_PREFERRED here.
 210 *
 211 * Must be called holding task's alloc_lock to protect task's mems_allowed
 212 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 213 */
 214static int mpol_set_nodemask(struct mempolicy *pol,
 215		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 216{
 217	int ret;
 218
 219	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 220	if (pol == NULL)
 221		return 0;
 222	/* Check N_MEMORY */
 223	nodes_and(nsc->mask1,
 224		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 225
 226	VM_BUG_ON(!nodes);
 227	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 228		nodes = NULL;	/* explicit local allocation */
 229	else {
 230		if (pol->flags & MPOL_F_RELATIVE_NODES)
 231			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 232		else
 233			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 234
 235		if (mpol_store_user_nodemask(pol))
 236			pol->w.user_nodemask = *nodes;
 237		else
 238			pol->w.cpuset_mems_allowed =
 239						cpuset_current_mems_allowed;
 240	}
 241
 242	if (nodes)
 243		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 244	else
 245		ret = mpol_ops[pol->mode].create(pol, NULL);
 246	return ret;
 247}
 248
 249/*
 250 * This function just creates a new policy, does some check and simple
 251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 252 */
 253static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 254				  nodemask_t *nodes)
 255{
 256	struct mempolicy *policy;
 257
 258	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 259		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 260
 261	if (mode == MPOL_DEFAULT) {
 262		if (nodes && !nodes_empty(*nodes))
 263			return ERR_PTR(-EINVAL);
 264		return NULL;
 265	}
 266	VM_BUG_ON(!nodes);
 267
 268	/*
 269	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 270	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 271	 * All other modes require a valid pointer to a non-empty nodemask.
 272	 */
 273	if (mode == MPOL_PREFERRED) {
 274		if (nodes_empty(*nodes)) {
 275			if (((flags & MPOL_F_STATIC_NODES) ||
 276			     (flags & MPOL_F_RELATIVE_NODES)))
 277				return ERR_PTR(-EINVAL);
 278		}
 279	} else if (mode == MPOL_LOCAL) {
 280		if (!nodes_empty(*nodes))
 281			return ERR_PTR(-EINVAL);
 282		mode = MPOL_PREFERRED;
 283	} else if (nodes_empty(*nodes))
 284		return ERR_PTR(-EINVAL);
 285	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 286	if (!policy)
 287		return ERR_PTR(-ENOMEM);
 288	atomic_set(&policy->refcnt, 1);
 289	policy->mode = mode;
 290	policy->flags = flags;
 291
 292	return policy;
 293}
 294
 295/* Slow path of a mpol destructor. */
 296void __mpol_put(struct mempolicy *p)
 297{
 298	if (!atomic_dec_and_test(&p->refcnt))
 299		return;
 300	kmem_cache_free(policy_cache, p);
 301}
 302
 303static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 304				enum mpol_rebind_step step)
 305{
 306}
 307
 308/*
 309 * step:
 310 * 	MPOL_REBIND_ONCE  - do rebind work at once
 311 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 312 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 313 */
 314static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 315				 enum mpol_rebind_step step)
 316{
 317	nodemask_t tmp;
 318
 319	if (pol->flags & MPOL_F_STATIC_NODES)
 320		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 321	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 322		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 323	else {
 324		/*
 325		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 326		 * result
 327		 */
 328		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 329			nodes_remap(tmp, pol->v.nodes,
 330					pol->w.cpuset_mems_allowed, *nodes);
 331			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 332		} else if (step == MPOL_REBIND_STEP2) {
 333			tmp = pol->w.cpuset_mems_allowed;
 334			pol->w.cpuset_mems_allowed = *nodes;
 335		} else
 336			BUG();
 337	}
 338
 339	if (nodes_empty(tmp))
 340		tmp = *nodes;
 341
 342	if (step == MPOL_REBIND_STEP1)
 343		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 344	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 345		pol->v.nodes = tmp;
 346	else
 347		BUG();
 348
 349	if (!node_isset(current->il_next, tmp)) {
 350		current->il_next = next_node(current->il_next, tmp);
 351		if (current->il_next >= MAX_NUMNODES)
 352			current->il_next = first_node(tmp);
 353		if (current->il_next >= MAX_NUMNODES)
 354			current->il_next = numa_node_id();
 355	}
 356}
 357
 358static void mpol_rebind_preferred(struct mempolicy *pol,
 359				  const nodemask_t *nodes,
 360				  enum mpol_rebind_step step)
 361{
 362	nodemask_t tmp;
 363
 364	if (pol->flags & MPOL_F_STATIC_NODES) {
 365		int node = first_node(pol->w.user_nodemask);
 366
 367		if (node_isset(node, *nodes)) {
 368			pol->v.preferred_node = node;
 369			pol->flags &= ~MPOL_F_LOCAL;
 370		} else
 371			pol->flags |= MPOL_F_LOCAL;
 372	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 373		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 374		pol->v.preferred_node = first_node(tmp);
 375	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 376		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 377						   pol->w.cpuset_mems_allowed,
 378						   *nodes);
 379		pol->w.cpuset_mems_allowed = *nodes;
 380	}
 381}
 382
 383/*
 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 385 *
 386 * If read-side task has no lock to protect task->mempolicy, write-side
 387 * task will rebind the task->mempolicy by two step. The first step is
 388 * setting all the newly nodes, and the second step is cleaning all the
 389 * disallowed nodes. In this way, we can avoid finding no node to alloc
 390 * page.
 391 * If we have a lock to protect task->mempolicy in read-side, we do
 392 * rebind directly.
 393 *
 394 * step:
 395 * 	MPOL_REBIND_ONCE  - do rebind work at once
 396 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 397 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 398 */
 399static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 400				enum mpol_rebind_step step)
 401{
 402	if (!pol)
 403		return;
 404	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 405	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 406		return;
 407
 408	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 409		return;
 410
 411	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 412		BUG();
 413
 414	if (step == MPOL_REBIND_STEP1)
 415		pol->flags |= MPOL_F_REBINDING;
 416	else if (step == MPOL_REBIND_STEP2)
 417		pol->flags &= ~MPOL_F_REBINDING;
 418	else if (step >= MPOL_REBIND_NSTEP)
 419		BUG();
 420
 421	mpol_ops[pol->mode].rebind(pol, newmask, step);
 422}
 423
 424/*
 425 * Wrapper for mpol_rebind_policy() that just requires task
 426 * pointer, and updates task mempolicy.
 427 *
 428 * Called with task's alloc_lock held.
 429 */
 430
 431void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 432			enum mpol_rebind_step step)
 433{
 434	mpol_rebind_policy(tsk->mempolicy, new, step);
 435}
 436
 437/*
 438 * Rebind each vma in mm to new nodemask.
 439 *
 440 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 441 */
 442
 443void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 444{
 445	struct vm_area_struct *vma;
 446
 447	down_write(&mm->mmap_sem);
 448	for (vma = mm->mmap; vma; vma = vma->vm_next)
 449		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 450	up_write(&mm->mmap_sem);
 451}
 452
 453static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 454	[MPOL_DEFAULT] = {
 455		.rebind = mpol_rebind_default,
 456	},
 457	[MPOL_INTERLEAVE] = {
 458		.create = mpol_new_interleave,
 459		.rebind = mpol_rebind_nodemask,
 460	},
 461	[MPOL_PREFERRED] = {
 462		.create = mpol_new_preferred,
 463		.rebind = mpol_rebind_preferred,
 464	},
 465	[MPOL_BIND] = {
 466		.create = mpol_new_bind,
 467		.rebind = mpol_rebind_nodemask,
 468	},
 469};
 470
 471static void migrate_page_add(struct page *page, struct list_head *pagelist,
 472				unsigned long flags);
 473
 474struct queue_pages {
 475	struct list_head *pagelist;
 476	unsigned long flags;
 477	nodemask_t *nmask;
 478	struct vm_area_struct *prev;
 479};
 480
 481/*
 482 * Scan through pages checking if pages follow certain conditions,
 483 * and move them to the pagelist if they do.
 484 */
 485static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 486			unsigned long end, struct mm_walk *walk)
 487{
 488	struct vm_area_struct *vma = walk->vma;
 489	struct page *page;
 490	struct queue_pages *qp = walk->private;
 491	unsigned long flags = qp->flags;
 492	int nid, ret;
 493	pte_t *pte;
 494	spinlock_t *ptl;
 495
 496	if (pmd_trans_huge(*pmd)) {
 497		ptl = pmd_lock(walk->mm, pmd);
 498		if (pmd_trans_huge(*pmd)) {
 499			page = pmd_page(*pmd);
 500			if (is_huge_zero_page(page)) {
 501				spin_unlock(ptl);
 502				split_huge_pmd(vma, pmd, addr);
 503			} else {
 504				get_page(page);
 505				spin_unlock(ptl);
 506				lock_page(page);
 507				ret = split_huge_page(page);
 508				unlock_page(page);
 509				put_page(page);
 510				if (ret)
 511					return 0;
 512			}
 513		} else {
 514			spin_unlock(ptl);
 515		}
 516	}
 517
 518retry:
 519	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 520	for (; addr != end; pte++, addr += PAGE_SIZE) {
 521		if (!pte_present(*pte))
 522			continue;
 523		page = vm_normal_page(vma, addr, *pte);
 524		if (!page)
 525			continue;
 526		/*
 527		 * vm_normal_page() filters out zero pages, but there might
 528		 * still be PageReserved pages to skip, perhaps in a VDSO.
 
 529		 */
 530		if (PageReserved(page))
 531			continue;
 532		nid = page_to_nid(page);
 533		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 534			continue;
 535		if (PageTransCompound(page) && PageAnon(page)) {
 536			get_page(page);
 537			pte_unmap_unlock(pte, ptl);
 538			lock_page(page);
 539			ret = split_huge_page(page);
 540			unlock_page(page);
 541			put_page(page);
 542			/* Failed to split -- skip. */
 543			if (ret) {
 544				pte = pte_offset_map_lock(walk->mm, pmd,
 545						addr, &ptl);
 546				continue;
 547			}
 548			goto retry;
 549		}
 550
 551		migrate_page_add(page, qp->pagelist, flags);
 552	}
 553	pte_unmap_unlock(pte - 1, ptl);
 554	cond_resched();
 555	return 0;
 
 
 556}
 557
 558static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 559			       unsigned long addr, unsigned long end,
 560			       struct mm_walk *walk)
 561{
 562#ifdef CONFIG_HUGETLB_PAGE
 563	struct queue_pages *qp = walk->private;
 564	unsigned long flags = qp->flags;
 565	int nid;
 566	struct page *page;
 567	spinlock_t *ptl;
 568	pte_t entry;
 569
 570	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 571	entry = huge_ptep_get(pte);
 572	if (!pte_present(entry))
 573		goto unlock;
 574	page = pte_page(entry);
 575	nid = page_to_nid(page);
 576	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 577		goto unlock;
 578	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 579	if (flags & (MPOL_MF_MOVE_ALL) ||
 580	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 581		isolate_huge_page(page, qp->pagelist);
 582unlock:
 583	spin_unlock(ptl);
 584#else
 585	BUG();
 586#endif
 587	return 0;
 588}
 589
 590#ifdef CONFIG_NUMA_BALANCING
 591/*
 592 * This is used to mark a range of virtual addresses to be inaccessible.
 593 * These are later cleared by a NUMA hinting fault. Depending on these
 594 * faults, pages may be migrated for better NUMA placement.
 595 *
 596 * This is assuming that NUMA faults are handled using PROT_NONE. If
 597 * an architecture makes a different choice, it will need further
 598 * changes to the core.
 599 */
 600unsigned long change_prot_numa(struct vm_area_struct *vma,
 601			unsigned long addr, unsigned long end)
 602{
 603	int nr_updated;
 
 604
 605	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 606	if (nr_updated)
 607		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 
 
 
 
 
 
 
 
 608
 609	return nr_updated;
 610}
 611#else
 612static unsigned long change_prot_numa(struct vm_area_struct *vma,
 613			unsigned long addr, unsigned long end)
 614{
 
 
 
 
 
 
 
 
 
 
 
 
 615	return 0;
 616}
 617#endif /* CONFIG_NUMA_BALANCING */
 618
 619static int queue_pages_test_walk(unsigned long start, unsigned long end,
 620				struct mm_walk *walk)
 
 
 
 
 
 
 621{
 622	struct vm_area_struct *vma = walk->vma;
 623	struct queue_pages *qp = walk->private;
 624	unsigned long endvma = vma->vm_end;
 625	unsigned long flags = qp->flags;
 626
 627	if (!vma_migratable(vma))
 628		return 1;
 629
 630	if (endvma > end)
 631		endvma = end;
 632	if (vma->vm_start > start)
 633		start = vma->vm_start;
 634
 635	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 636		if (!vma->vm_next && vma->vm_end < end)
 637			return -EFAULT;
 638		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 639			return -EFAULT;
 640	}
 641
 642	qp->prev = vma;
 643
 644	if (flags & MPOL_MF_LAZY) {
 645		/* Similar to task_numa_work, skip inaccessible VMAs */
 
 
 
 
 
 
 
 646		if (!is_vm_hugetlb_page(vma) &&
 647			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 648			!(vma->vm_flags & VM_MIXEDMAP))
 649			change_prot_numa(vma, start, endvma);
 650		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 651	}
 652
 653	/* queue pages from current vma */
 654	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 655		return 0;
 656	return 1;
 657}
 658
 659/*
 660 * Walk through page tables and collect pages to be migrated.
 661 *
 662 * If pages found in a given range are on a set of nodes (determined by
 663 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 664 * passed via @private.)
 665 */
 666static int
 667queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 668		nodemask_t *nodes, unsigned long flags,
 669		struct list_head *pagelist)
 670{
 671	struct queue_pages qp = {
 672		.pagelist = pagelist,
 673		.flags = flags,
 674		.nmask = nodes,
 675		.prev = NULL,
 676	};
 677	struct mm_walk queue_pages_walk = {
 678		.hugetlb_entry = queue_pages_hugetlb,
 679		.pmd_entry = queue_pages_pte_range,
 680		.test_walk = queue_pages_test_walk,
 681		.mm = mm,
 682		.private = &qp,
 683	};
 684
 685	return walk_page_range(start, end, &queue_pages_walk);
 686}
 687
 688/*
 689 * Apply policy to a single VMA
 690 * This must be called with the mmap_sem held for writing.
 691 */
 692static int vma_replace_policy(struct vm_area_struct *vma,
 693						struct mempolicy *pol)
 694{
 695	int err;
 696	struct mempolicy *old;
 697	struct mempolicy *new;
 698
 699	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 700		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 701		 vma->vm_ops, vma->vm_file,
 702		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 703
 704	new = mpol_dup(pol);
 705	if (IS_ERR(new))
 706		return PTR_ERR(new);
 707
 708	if (vma->vm_ops && vma->vm_ops->set_policy) {
 709		err = vma->vm_ops->set_policy(vma, new);
 710		if (err)
 711			goto err_out;
 
 
 712	}
 713
 714	old = vma->vm_policy;
 715	vma->vm_policy = new; /* protected by mmap_sem */
 716	mpol_put(old);
 717
 718	return 0;
 719 err_out:
 720	mpol_put(new);
 721	return err;
 722}
 723
 724/* Step 2: apply policy to a range and do splits. */
 725static int mbind_range(struct mm_struct *mm, unsigned long start,
 726		       unsigned long end, struct mempolicy *new_pol)
 727{
 728	struct vm_area_struct *next;
 729	struct vm_area_struct *prev;
 730	struct vm_area_struct *vma;
 731	int err = 0;
 732	pgoff_t pgoff;
 733	unsigned long vmstart;
 734	unsigned long vmend;
 735
 736	vma = find_vma(mm, start);
 737	if (!vma || vma->vm_start > start)
 738		return -EFAULT;
 739
 740	prev = vma->vm_prev;
 741	if (start > vma->vm_start)
 742		prev = vma;
 743
 744	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 745		next = vma->vm_next;
 746		vmstart = max(start, vma->vm_start);
 747		vmend   = min(end, vma->vm_end);
 748
 749		if (mpol_equal(vma_policy(vma), new_pol))
 750			continue;
 751
 752		pgoff = vma->vm_pgoff +
 753			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 754		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 755				 vma->anon_vma, vma->vm_file, pgoff,
 756				 new_pol, vma->vm_userfaultfd_ctx);
 757		if (prev) {
 758			vma = prev;
 759			next = vma->vm_next;
 760			if (mpol_equal(vma_policy(vma), new_pol))
 761				continue;
 762			/* vma_merge() joined vma && vma->next, case 8 */
 763			goto replace;
 764		}
 765		if (vma->vm_start != vmstart) {
 766			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 767			if (err)
 768				goto out;
 769		}
 770		if (vma->vm_end != vmend) {
 771			err = split_vma(vma->vm_mm, vma, vmend, 0);
 772			if (err)
 773				goto out;
 774		}
 775 replace:
 776		err = vma_replace_policy(vma, new_pol);
 777		if (err)
 778			goto out;
 779	}
 780
 781 out:
 782	return err;
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785/* Set the process memory policy */
 786static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 787			     nodemask_t *nodes)
 788{
 789	struct mempolicy *new, *old;
 
 790	NODEMASK_SCRATCH(scratch);
 791	int ret;
 792
 793	if (!scratch)
 794		return -ENOMEM;
 795
 796	new = mpol_new(mode, flags, nodes);
 797	if (IS_ERR(new)) {
 798		ret = PTR_ERR(new);
 799		goto out;
 800	}
 801
 
 
 
 
 
 
 
 802	task_lock(current);
 803	ret = mpol_set_nodemask(new, nodes, scratch);
 804	if (ret) {
 805		task_unlock(current);
 
 
 806		mpol_put(new);
 807		goto out;
 808	}
 809	old = current->mempolicy;
 810	current->mempolicy = new;
 
 811	if (new && new->mode == MPOL_INTERLEAVE &&
 812	    nodes_weight(new->v.nodes))
 813		current->il_next = first_node(new->v.nodes);
 814	task_unlock(current);
 
 
 
 815	mpol_put(old);
 816	ret = 0;
 817out:
 818	NODEMASK_SCRATCH_FREE(scratch);
 819	return ret;
 820}
 821
 822/*
 823 * Return nodemask for policy for get_mempolicy() query
 824 *
 825 * Called with task's alloc_lock held
 826 */
 827static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 828{
 829	nodes_clear(*nodes);
 830	if (p == &default_policy)
 831		return;
 832
 833	switch (p->mode) {
 834	case MPOL_BIND:
 835		/* Fall through */
 836	case MPOL_INTERLEAVE:
 837		*nodes = p->v.nodes;
 838		break;
 839	case MPOL_PREFERRED:
 840		if (!(p->flags & MPOL_F_LOCAL))
 841			node_set(p->v.preferred_node, *nodes);
 842		/* else return empty node mask for local allocation */
 843		break;
 844	default:
 845		BUG();
 846	}
 847}
 848
 849static int lookup_node(unsigned long addr)
 850{
 851	struct page *p;
 852	int err;
 853
 854	err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 855	if (err >= 0) {
 856		err = page_to_nid(p);
 857		put_page(p);
 858	}
 859	return err;
 860}
 861
 862/* Retrieve NUMA policy */
 863static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 864			     unsigned long addr, unsigned long flags)
 865{
 866	int err;
 867	struct mm_struct *mm = current->mm;
 868	struct vm_area_struct *vma = NULL;
 869	struct mempolicy *pol = current->mempolicy;
 870
 871	if (flags &
 872		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 873		return -EINVAL;
 874
 875	if (flags & MPOL_F_MEMS_ALLOWED) {
 876		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 877			return -EINVAL;
 878		*policy = 0;	/* just so it's initialized */
 879		task_lock(current);
 880		*nmask  = cpuset_current_mems_allowed;
 881		task_unlock(current);
 882		return 0;
 883	}
 884
 885	if (flags & MPOL_F_ADDR) {
 886		/*
 887		 * Do NOT fall back to task policy if the
 888		 * vma/shared policy at addr is NULL.  We
 889		 * want to return MPOL_DEFAULT in this case.
 890		 */
 891		down_read(&mm->mmap_sem);
 892		vma = find_vma_intersection(mm, addr, addr+1);
 893		if (!vma) {
 894			up_read(&mm->mmap_sem);
 895			return -EFAULT;
 896		}
 897		if (vma->vm_ops && vma->vm_ops->get_policy)
 898			pol = vma->vm_ops->get_policy(vma, addr);
 899		else
 900			pol = vma->vm_policy;
 901	} else if (addr)
 902		return -EINVAL;
 903
 904	if (!pol)
 905		pol = &default_policy;	/* indicates default behavior */
 906
 907	if (flags & MPOL_F_NODE) {
 908		if (flags & MPOL_F_ADDR) {
 909			err = lookup_node(addr);
 910			if (err < 0)
 911				goto out;
 912			*policy = err;
 913		} else if (pol == current->mempolicy &&
 914				pol->mode == MPOL_INTERLEAVE) {
 915			*policy = current->il_next;
 916		} else {
 917			err = -EINVAL;
 918			goto out;
 919		}
 920	} else {
 921		*policy = pol == &default_policy ? MPOL_DEFAULT :
 922						pol->mode;
 923		/*
 924		 * Internal mempolicy flags must be masked off before exposing
 925		 * the policy to userspace.
 926		 */
 927		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 928	}
 929
 930	if (vma) {
 931		up_read(&current->mm->mmap_sem);
 932		vma = NULL;
 933	}
 934
 935	err = 0;
 936	if (nmask) {
 937		if (mpol_store_user_nodemask(pol)) {
 938			*nmask = pol->w.user_nodemask;
 939		} else {
 940			task_lock(current);
 941			get_policy_nodemask(pol, nmask);
 942			task_unlock(current);
 943		}
 944	}
 945
 946 out:
 947	mpol_cond_put(pol);
 948	if (vma)
 949		up_read(&current->mm->mmap_sem);
 950	return err;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954/*
 955 * page migration
 956 */
 957static void migrate_page_add(struct page *page, struct list_head *pagelist,
 958				unsigned long flags)
 959{
 960	/*
 961	 * Avoid migrating a page that is shared with others.
 962	 */
 963	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 964		if (!isolate_lru_page(page)) {
 965			list_add_tail(&page->lru, pagelist);
 966			inc_zone_page_state(page, NR_ISOLATED_ANON +
 967					    page_is_file_cache(page));
 968		}
 969	}
 970}
 971
 972static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 973{
 974	if (PageHuge(page))
 975		return alloc_huge_page_node(page_hstate(compound_head(page)),
 976					node);
 977	else
 978		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 979						    __GFP_THISNODE, 0);
 980}
 981
 982/*
 983 * Migrate pages from one node to a target node.
 984 * Returns error or the number of pages not migrated.
 985 */
 986static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 987			   int flags)
 988{
 989	nodemask_t nmask;
 990	LIST_HEAD(pagelist);
 991	int err = 0;
 
 992
 993	nodes_clear(nmask);
 994	node_set(source, nmask);
 995
 996	/*
 997	 * This does not "check" the range but isolates all pages that
 998	 * need migration.  Between passing in the full user address
 999	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1000	 */
1001	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1002	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1003			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 
 
1004
1005	if (!list_empty(&pagelist)) {
1006		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1007					MIGRATE_SYNC, MR_SYSCALL);
1008		if (err)
1009			putback_movable_pages(&pagelist);
1010	}
1011
1012	return err;
1013}
1014
1015/*
1016 * Move pages between the two nodesets so as to preserve the physical
1017 * layout as much as possible.
1018 *
1019 * Returns the number of page that could not be moved.
1020 */
1021int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1022		     const nodemask_t *to, int flags)
1023{
1024	int busy = 0;
1025	int err;
1026	nodemask_t tmp;
1027
1028	err = migrate_prep();
1029	if (err)
1030		return err;
1031
1032	down_read(&mm->mmap_sem);
1033
 
 
 
 
1034	/*
1035	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1036	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1037	 * bit in 'tmp', and return that <source, dest> pair for migration.
1038	 * The pair of nodemasks 'to' and 'from' define the map.
1039	 *
1040	 * If no pair of bits is found that way, fallback to picking some
1041	 * pair of 'source' and 'dest' bits that are not the same.  If the
1042	 * 'source' and 'dest' bits are the same, this represents a node
1043	 * that will be migrating to itself, so no pages need move.
1044	 *
1045	 * If no bits are left in 'tmp', or if all remaining bits left
1046	 * in 'tmp' correspond to the same bit in 'to', return false
1047	 * (nothing left to migrate).
1048	 *
1049	 * This lets us pick a pair of nodes to migrate between, such that
1050	 * if possible the dest node is not already occupied by some other
1051	 * source node, minimizing the risk of overloading the memory on a
1052	 * node that would happen if we migrated incoming memory to a node
1053	 * before migrating outgoing memory source that same node.
1054	 *
1055	 * A single scan of tmp is sufficient.  As we go, we remember the
1056	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1057	 * that not only moved, but what's better, moved to an empty slot
1058	 * (d is not set in tmp), then we break out then, with that pair.
1059	 * Otherwise when we finish scanning from_tmp, we at least have the
1060	 * most recent <s, d> pair that moved.  If we get all the way through
1061	 * the scan of tmp without finding any node that moved, much less
1062	 * moved to an empty node, then there is nothing left worth migrating.
1063	 */
1064
1065	tmp = *from;
1066	while (!nodes_empty(tmp)) {
1067		int s,d;
1068		int source = NUMA_NO_NODE;
1069		int dest = 0;
1070
1071		for_each_node_mask(s, tmp) {
1072
1073			/*
1074			 * do_migrate_pages() tries to maintain the relative
1075			 * node relationship of the pages established between
1076			 * threads and memory areas.
1077                         *
1078			 * However if the number of source nodes is not equal to
1079			 * the number of destination nodes we can not preserve
1080			 * this node relative relationship.  In that case, skip
1081			 * copying memory from a node that is in the destination
1082			 * mask.
1083			 *
1084			 * Example: [2,3,4] -> [3,4,5] moves everything.
1085			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1086			 */
1087
1088			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1089						(node_isset(s, *to)))
1090				continue;
1091
1092			d = node_remap(s, *from, *to);
1093			if (s == d)
1094				continue;
1095
1096			source = s;	/* Node moved. Memorize */
1097			dest = d;
1098
1099			/* dest not in remaining from nodes? */
1100			if (!node_isset(dest, tmp))
1101				break;
1102		}
1103		if (source == NUMA_NO_NODE)
1104			break;
1105
1106		node_clear(source, tmp);
1107		err = migrate_to_node(mm, source, dest, flags);
1108		if (err > 0)
1109			busy += err;
1110		if (err < 0)
1111			break;
1112	}
 
1113	up_read(&mm->mmap_sem);
1114	if (err < 0)
1115		return err;
1116	return busy;
1117
1118}
1119
1120/*
1121 * Allocate a new page for page migration based on vma policy.
1122 * Start by assuming the page is mapped by the same vma as contains @start.
1123 * Search forward from there, if not.  N.B., this assumes that the
1124 * list of pages handed to migrate_pages()--which is how we get here--
1125 * is in virtual address order.
1126 */
1127static struct page *new_page(struct page *page, unsigned long start, int **x)
1128{
1129	struct vm_area_struct *vma;
1130	unsigned long uninitialized_var(address);
1131
1132	vma = find_vma(current->mm, start);
1133	while (vma) {
1134		address = page_address_in_vma(page, vma);
1135		if (address != -EFAULT)
1136			break;
1137		vma = vma->vm_next;
1138	}
1139
1140	if (PageHuge(page)) {
1141		BUG_ON(!vma);
1142		return alloc_huge_page_noerr(vma, address, 1);
1143	}
1144	/*
1145	 * if !vma, alloc_page_vma() will use task or system default policy
1146	 */
1147	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1148}
1149#else
1150
1151static void migrate_page_add(struct page *page, struct list_head *pagelist,
1152				unsigned long flags)
1153{
1154}
1155
1156int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1157		     const nodemask_t *to, int flags)
1158{
1159	return -ENOSYS;
1160}
1161
1162static struct page *new_page(struct page *page, unsigned long start, int **x)
1163{
1164	return NULL;
1165}
1166#endif
1167
1168static long do_mbind(unsigned long start, unsigned long len,
1169		     unsigned short mode, unsigned short mode_flags,
1170		     nodemask_t *nmask, unsigned long flags)
1171{
 
1172	struct mm_struct *mm = current->mm;
1173	struct mempolicy *new;
1174	unsigned long end;
1175	int err;
1176	LIST_HEAD(pagelist);
1177
1178	if (flags & ~(unsigned long)MPOL_MF_VALID)
 
1179		return -EINVAL;
1180	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1181		return -EPERM;
1182
1183	if (start & ~PAGE_MASK)
1184		return -EINVAL;
1185
1186	if (mode == MPOL_DEFAULT)
1187		flags &= ~MPOL_MF_STRICT;
1188
1189	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1190	end = start + len;
1191
1192	if (end < start)
1193		return -EINVAL;
1194	if (end == start)
1195		return 0;
1196
1197	new = mpol_new(mode, mode_flags, nmask);
1198	if (IS_ERR(new))
1199		return PTR_ERR(new);
1200
1201	if (flags & MPOL_MF_LAZY)
1202		new->flags |= MPOL_F_MOF;
1203
1204	/*
1205	 * If we are using the default policy then operation
1206	 * on discontinuous address spaces is okay after all
1207	 */
1208	if (!new)
1209		flags |= MPOL_MF_DISCONTIG_OK;
1210
1211	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1212		 start, start + len, mode, mode_flags,
1213		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1214
1215	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1216
1217		err = migrate_prep();
1218		if (err)
1219			goto mpol_out;
1220	}
1221	{
1222		NODEMASK_SCRATCH(scratch);
1223		if (scratch) {
1224			down_write(&mm->mmap_sem);
1225			task_lock(current);
1226			err = mpol_set_nodemask(new, nmask, scratch);
1227			task_unlock(current);
1228			if (err)
1229				up_write(&mm->mmap_sem);
1230		} else
1231			err = -ENOMEM;
1232		NODEMASK_SCRATCH_FREE(scratch);
1233	}
1234	if (err)
1235		goto mpol_out;
1236
1237	err = queue_pages_range(mm, start, end, nmask,
1238			  flags | MPOL_MF_INVERT, &pagelist);
1239	if (!err)
1240		err = mbind_range(mm, start, end, new);
1241
1242	if (!err) {
 
1243		int nr_failed = 0;
1244
 
 
1245		if (!list_empty(&pagelist)) {
1246			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1247			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1248				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1249			if (nr_failed)
1250				putback_movable_pages(&pagelist);
1251		}
1252
1253		if (nr_failed && (flags & MPOL_MF_STRICT))
1254			err = -EIO;
1255	} else
1256		putback_movable_pages(&pagelist);
1257
1258	up_write(&mm->mmap_sem);
1259 mpol_out:
1260	mpol_put(new);
1261	return err;
1262}
1263
1264/*
1265 * User space interface with variable sized bitmaps for nodelists.
1266 */
1267
1268/* Copy a node mask from user space. */
1269static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1270		     unsigned long maxnode)
1271{
1272	unsigned long k;
1273	unsigned long nlongs;
1274	unsigned long endmask;
1275
1276	--maxnode;
1277	nodes_clear(*nodes);
1278	if (maxnode == 0 || !nmask)
1279		return 0;
1280	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1281		return -EINVAL;
1282
1283	nlongs = BITS_TO_LONGS(maxnode);
1284	if ((maxnode % BITS_PER_LONG) == 0)
1285		endmask = ~0UL;
1286	else
1287		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1288
1289	/* When the user specified more nodes than supported just check
1290	   if the non supported part is all zero. */
1291	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292		if (nlongs > PAGE_SIZE/sizeof(long))
1293			return -EINVAL;
1294		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295			unsigned long t;
1296			if (get_user(t, nmask + k))
1297				return -EFAULT;
1298			if (k == nlongs - 1) {
1299				if (t & endmask)
1300					return -EINVAL;
1301			} else if (t)
1302				return -EINVAL;
1303		}
1304		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305		endmask = ~0UL;
1306	}
1307
1308	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1309		return -EFAULT;
1310	nodes_addr(*nodes)[nlongs-1] &= endmask;
1311	return 0;
1312}
1313
1314/* Copy a kernel node mask to user space */
1315static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1316			      nodemask_t *nodes)
1317{
1318	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1319	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1320
1321	if (copy > nbytes) {
1322		if (copy > PAGE_SIZE)
1323			return -EINVAL;
1324		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1325			return -EFAULT;
1326		copy = nbytes;
1327	}
1328	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329}
1330
1331SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1332		unsigned long, mode, const unsigned long __user *, nmask,
1333		unsigned long, maxnode, unsigned, flags)
1334{
1335	nodemask_t nodes;
1336	int err;
1337	unsigned short mode_flags;
1338
1339	mode_flags = mode & MPOL_MODE_FLAGS;
1340	mode &= ~MPOL_MODE_FLAGS;
1341	if (mode >= MPOL_MAX)
1342		return -EINVAL;
1343	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1344	    (mode_flags & MPOL_F_RELATIVE_NODES))
1345		return -EINVAL;
1346	err = get_nodes(&nodes, nmask, maxnode);
1347	if (err)
1348		return err;
1349	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1350}
1351
1352/* Set the process memory policy */
1353SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1354		unsigned long, maxnode)
1355{
1356	int err;
1357	nodemask_t nodes;
1358	unsigned short flags;
1359
1360	flags = mode & MPOL_MODE_FLAGS;
1361	mode &= ~MPOL_MODE_FLAGS;
1362	if ((unsigned int)mode >= MPOL_MAX)
1363		return -EINVAL;
1364	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1365		return -EINVAL;
1366	err = get_nodes(&nodes, nmask, maxnode);
1367	if (err)
1368		return err;
1369	return do_set_mempolicy(mode, flags, &nodes);
1370}
1371
1372SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1373		const unsigned long __user *, old_nodes,
1374		const unsigned long __user *, new_nodes)
1375{
1376	const struct cred *cred = current_cred(), *tcred;
1377	struct mm_struct *mm = NULL;
1378	struct task_struct *task;
1379	nodemask_t task_nodes;
1380	int err;
1381	nodemask_t *old;
1382	nodemask_t *new;
1383	NODEMASK_SCRATCH(scratch);
1384
1385	if (!scratch)
1386		return -ENOMEM;
1387
1388	old = &scratch->mask1;
1389	new = &scratch->mask2;
1390
1391	err = get_nodes(old, old_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	err = get_nodes(new, new_nodes, maxnode);
1396	if (err)
1397		goto out;
1398
1399	/* Find the mm_struct */
1400	rcu_read_lock();
1401	task = pid ? find_task_by_vpid(pid) : current;
1402	if (!task) {
1403		rcu_read_unlock();
1404		err = -ESRCH;
1405		goto out;
1406	}
1407	get_task_struct(task);
 
1408
1409	err = -EINVAL;
 
 
1410
1411	/*
1412	 * Check if this process has the right to modify the specified
1413	 * process. The right exists if the process has administrative
1414	 * capabilities, superuser privileges or the same
1415	 * userid as the target process.
1416	 */
 
1417	tcred = __task_cred(task);
1418	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1419	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1420	    !capable(CAP_SYS_NICE)) {
1421		rcu_read_unlock();
1422		err = -EPERM;
1423		goto out_put;
1424	}
1425	rcu_read_unlock();
1426
1427	task_nodes = cpuset_mems_allowed(task);
1428	/* Is the user allowed to access the target nodes? */
1429	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1430		err = -EPERM;
1431		goto out_put;
1432	}
1433
1434	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1435		err = -EINVAL;
1436		goto out_put;
1437	}
1438
1439	err = security_task_movememory(task);
1440	if (err)
1441		goto out_put;
1442
1443	mm = get_task_mm(task);
1444	put_task_struct(task);
1445
1446	if (!mm) {
1447		err = -EINVAL;
1448		goto out;
1449	}
1450
1451	err = do_migrate_pages(mm, old, new,
1452		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1453
1454	mmput(mm);
1455out:
 
 
1456	NODEMASK_SCRATCH_FREE(scratch);
1457
1458	return err;
1459
1460out_put:
1461	put_task_struct(task);
1462	goto out;
1463
1464}
1465
1466
1467/* Retrieve NUMA policy */
1468SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1469		unsigned long __user *, nmask, unsigned long, maxnode,
1470		unsigned long, addr, unsigned long, flags)
1471{
1472	int err;
1473	int uninitialized_var(pval);
1474	nodemask_t nodes;
1475
1476	if (nmask != NULL && maxnode < MAX_NUMNODES)
1477		return -EINVAL;
1478
1479	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1480
1481	if (err)
1482		return err;
1483
1484	if (policy && put_user(pval, policy))
1485		return -EFAULT;
1486
1487	if (nmask)
1488		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1489
1490	return err;
1491}
1492
1493#ifdef CONFIG_COMPAT
1494
1495COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1496		       compat_ulong_t __user *, nmask,
1497		       compat_ulong_t, maxnode,
1498		       compat_ulong_t, addr, compat_ulong_t, flags)
1499{
1500	long err;
1501	unsigned long __user *nm = NULL;
1502	unsigned long nr_bits, alloc_size;
1503	DECLARE_BITMAP(bm, MAX_NUMNODES);
1504
1505	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1506	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507
1508	if (nmask)
1509		nm = compat_alloc_user_space(alloc_size);
1510
1511	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1512
1513	if (!err && nmask) {
1514		unsigned long copy_size;
1515		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1516		err = copy_from_user(bm, nm, copy_size);
1517		/* ensure entire bitmap is zeroed */
1518		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1519		err |= compat_put_bitmap(nmask, bm, nr_bits);
1520	}
1521
1522	return err;
1523}
1524
1525COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1526		       compat_ulong_t, maxnode)
1527{
1528	long err = 0;
1529	unsigned long __user *nm = NULL;
1530	unsigned long nr_bits, alloc_size;
1531	DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536	if (nmask) {
1537		err = compat_get_bitmap(bm, nmask, nr_bits);
1538		nm = compat_alloc_user_space(alloc_size);
1539		err |= copy_to_user(nm, bm, alloc_size);
1540	}
1541
1542	if (err)
1543		return -EFAULT;
1544
1545	return sys_set_mempolicy(mode, nm, nr_bits+1);
1546}
1547
1548COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1549		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1550		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1551{
1552	long err = 0;
1553	unsigned long __user *nm = NULL;
1554	unsigned long nr_bits, alloc_size;
1555	nodemask_t bm;
1556
1557	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559
1560	if (nmask) {
1561		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1562		nm = compat_alloc_user_space(alloc_size);
1563		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1564	}
1565
1566	if (err)
1567		return -EFAULT;
1568
1569	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1570}
1571
1572#endif
1573
1574struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1575						unsigned long addr)
1576{
1577	struct mempolicy *pol = NULL;
1578
1579	if (vma) {
1580		if (vma->vm_ops && vma->vm_ops->get_policy) {
1581			pol = vma->vm_ops->get_policy(vma, addr);
1582		} else if (vma->vm_policy) {
1583			pol = vma->vm_policy;
1584
1585			/*
1586			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588			 * count on these policies which will be dropped by
1589			 * mpol_cond_put() later
1590			 */
1591			if (mpol_needs_cond_ref(pol))
1592				mpol_get(pol);
1593		}
1594	}
1595
1596	return pol;
1597}
1598
1599/*
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
 
1603 *
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
 
 
 
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task.  It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1610 */
1611static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1612						unsigned long addr)
1613{
1614	struct mempolicy *pol = __get_vma_policy(vma, addr);
1615
 
 
 
 
 
 
 
 
 
1616	if (!pol)
1617		pol = get_task_policy(current);
1618
1619	return pol;
1620}
1621
1622bool vma_policy_mof(struct vm_area_struct *vma)
1623{
1624	struct mempolicy *pol;
1625
1626	if (vma->vm_ops && vma->vm_ops->get_policy) {
1627		bool ret = false;
1628
1629		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630		if (pol && (pol->flags & MPOL_F_MOF))
1631			ret = true;
1632		mpol_cond_put(pol);
1633
1634		return ret;
1635	}
1636
1637	pol = vma->vm_policy;
1638	if (!pol)
1639		pol = get_task_policy(current);
1640
1641	return pol->flags & MPOL_F_MOF;
1642}
1643
1644static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1645{
1646	enum zone_type dynamic_policy_zone = policy_zone;
1647
1648	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1649
1650	/*
1651	 * if policy->v.nodes has movable memory only,
1652	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1653	 *
1654	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655	 * so if the following test faile, it implies
1656	 * policy->v.nodes has movable memory only.
1657	 */
1658	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659		dynamic_policy_zone = ZONE_MOVABLE;
1660
1661	return zone >= dynamic_policy_zone;
1662}
1663
1664/*
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1666 * page allocation
1667 */
1668static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1669{
1670	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1671	if (unlikely(policy->mode == MPOL_BIND) &&
1672			apply_policy_zone(policy, gfp_zone(gfp)) &&
1673			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674		return &policy->v.nodes;
1675
1676	return NULL;
1677}
1678
1679/* Return a zonelist indicated by gfp for node representing a mempolicy */
1680static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1681	int nd)
1682{
1683	switch (policy->mode) {
1684	case MPOL_PREFERRED:
1685		if (!(policy->flags & MPOL_F_LOCAL))
1686			nd = policy->v.preferred_node;
1687		break;
1688	case MPOL_BIND:
1689		/*
1690		 * Normally, MPOL_BIND allocations are node-local within the
1691		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1692		 * current node isn't part of the mask, we use the zonelist for
1693		 * the first node in the mask instead.
1694		 */
1695		if (unlikely(gfp & __GFP_THISNODE) &&
1696				unlikely(!node_isset(nd, policy->v.nodes)))
1697			nd = first_node(policy->v.nodes);
1698		break;
1699	default:
1700		BUG();
1701	}
1702	return node_zonelist(nd, gfp);
1703}
1704
1705/* Do dynamic interleaving for a process */
1706static unsigned interleave_nodes(struct mempolicy *policy)
1707{
1708	unsigned nid, next;
1709	struct task_struct *me = current;
1710
1711	nid = me->il_next;
1712	next = next_node(nid, policy->v.nodes);
1713	if (next >= MAX_NUMNODES)
1714		next = first_node(policy->v.nodes);
1715	if (next < MAX_NUMNODES)
1716		me->il_next = next;
1717	return nid;
1718}
1719
1720/*
1721 * Depending on the memory policy provide a node from which to allocate the
1722 * next slab entry.
 
 
 
 
1723 */
1724unsigned int mempolicy_slab_node(void)
1725{
1726	struct mempolicy *policy;
1727	int node = numa_mem_id();
1728
1729	if (in_interrupt())
1730		return node;
1731
1732	policy = current->mempolicy;
1733	if (!policy || policy->flags & MPOL_F_LOCAL)
1734		return node;
1735
1736	switch (policy->mode) {
1737	case MPOL_PREFERRED:
1738		/*
1739		 * handled MPOL_F_LOCAL above
1740		 */
1741		return policy->v.preferred_node;
1742
1743	case MPOL_INTERLEAVE:
1744		return interleave_nodes(policy);
1745
1746	case MPOL_BIND: {
1747		/*
1748		 * Follow bind policy behavior and start allocation at the
1749		 * first node.
1750		 */
1751		struct zonelist *zonelist;
1752		struct zone *zone;
1753		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1754		zonelist = &NODE_DATA(node)->node_zonelists[0];
1755		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1756							&policy->v.nodes,
1757							&zone);
1758		return zone ? zone->node : node;
1759	}
1760
1761	default:
1762		BUG();
1763	}
1764}
1765
1766/* Do static interleaving for a VMA with known offset. */
1767static unsigned offset_il_node(struct mempolicy *pol,
1768		struct vm_area_struct *vma, unsigned long off)
1769{
1770	unsigned nnodes = nodes_weight(pol->v.nodes);
1771	unsigned target;
1772	int c;
1773	int nid = NUMA_NO_NODE;
1774
1775	if (!nnodes)
1776		return numa_node_id();
1777	target = (unsigned int)off % nnodes;
1778	c = 0;
1779	do {
1780		nid = next_node(nid, pol->v.nodes);
1781		c++;
1782	} while (c <= target);
1783	return nid;
1784}
1785
1786/* Determine a node number for interleave */
1787static inline unsigned interleave_nid(struct mempolicy *pol,
1788		 struct vm_area_struct *vma, unsigned long addr, int shift)
1789{
1790	if (vma) {
1791		unsigned long off;
1792
1793		/*
1794		 * for small pages, there is no difference between
1795		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1796		 * for huge pages, since vm_pgoff is in units of small
1797		 * pages, we need to shift off the always 0 bits to get
1798		 * a useful offset.
1799		 */
1800		BUG_ON(shift < PAGE_SHIFT);
1801		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1802		off += (addr - vma->vm_start) >> shift;
1803		return offset_il_node(pol, vma, off);
1804	} else
1805		return interleave_nodes(pol);
1806}
1807
1808/*
1809 * Return the bit number of a random bit set in the nodemask.
1810 * (returns NUMA_NO_NODE if nodemask is empty)
1811 */
1812int node_random(const nodemask_t *maskp)
1813{
1814	int w, bit = NUMA_NO_NODE;
1815
1816	w = nodes_weight(*maskp);
1817	if (w)
1818		bit = bitmap_ord_to_pos(maskp->bits,
1819			get_random_int() % w, MAX_NUMNODES);
1820	return bit;
1821}
1822
1823#ifdef CONFIG_HUGETLBFS
1824/*
1825 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup and interleave policy
1828 * @gfp_flags: for requested zone
1829 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1830 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1831 *
1832 * Returns a zonelist suitable for a huge page allocation and a pointer
1833 * to the struct mempolicy for conditional unref after allocation.
1834 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1835 * @nodemask for filtering the zonelist.
1836 *
1837 * Must be protected by read_mems_allowed_begin()
1838 */
1839struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1840				gfp_t gfp_flags, struct mempolicy **mpol,
1841				nodemask_t **nodemask)
1842{
1843	struct zonelist *zl;
1844
1845	*mpol = get_vma_policy(vma, addr);
1846	*nodemask = NULL;	/* assume !MPOL_BIND */
1847
1848	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1849		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1850				huge_page_shift(hstate_vma(vma))), gfp_flags);
1851	} else {
1852		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1853		if ((*mpol)->mode == MPOL_BIND)
1854			*nodemask = &(*mpol)->v.nodes;
1855	}
1856	return zl;
1857}
1858
1859/*
1860 * init_nodemask_of_mempolicy
1861 *
1862 * If the current task's mempolicy is "default" [NULL], return 'false'
1863 * to indicate default policy.  Otherwise, extract the policy nodemask
1864 * for 'bind' or 'interleave' policy into the argument nodemask, or
1865 * initialize the argument nodemask to contain the single node for
1866 * 'preferred' or 'local' policy and return 'true' to indicate presence
1867 * of non-default mempolicy.
1868 *
1869 * We don't bother with reference counting the mempolicy [mpol_get/put]
1870 * because the current task is examining it's own mempolicy and a task's
1871 * mempolicy is only ever changed by the task itself.
1872 *
1873 * N.B., it is the caller's responsibility to free a returned nodemask.
1874 */
1875bool init_nodemask_of_mempolicy(nodemask_t *mask)
1876{
1877	struct mempolicy *mempolicy;
1878	int nid;
1879
1880	if (!(mask && current->mempolicy))
1881		return false;
1882
1883	task_lock(current);
1884	mempolicy = current->mempolicy;
1885	switch (mempolicy->mode) {
1886	case MPOL_PREFERRED:
1887		if (mempolicy->flags & MPOL_F_LOCAL)
1888			nid = numa_node_id();
1889		else
1890			nid = mempolicy->v.preferred_node;
1891		init_nodemask_of_node(mask, nid);
1892		break;
1893
1894	case MPOL_BIND:
1895		/* Fall through */
1896	case MPOL_INTERLEAVE:
1897		*mask =  mempolicy->v.nodes;
1898		break;
1899
1900	default:
1901		BUG();
1902	}
1903	task_unlock(current);
1904
1905	return true;
1906}
1907#endif
1908
1909/*
1910 * mempolicy_nodemask_intersects
1911 *
1912 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1913 * policy.  Otherwise, check for intersection between mask and the policy
1914 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1915 * policy, always return true since it may allocate elsewhere on fallback.
1916 *
1917 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1918 */
1919bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1920					const nodemask_t *mask)
1921{
1922	struct mempolicy *mempolicy;
1923	bool ret = true;
1924
1925	if (!mask)
1926		return ret;
1927	task_lock(tsk);
1928	mempolicy = tsk->mempolicy;
1929	if (!mempolicy)
1930		goto out;
1931
1932	switch (mempolicy->mode) {
1933	case MPOL_PREFERRED:
1934		/*
1935		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1936		 * allocate from, they may fallback to other nodes when oom.
1937		 * Thus, it's possible for tsk to have allocated memory from
1938		 * nodes in mask.
1939		 */
1940		break;
1941	case MPOL_BIND:
1942	case MPOL_INTERLEAVE:
1943		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1944		break;
1945	default:
1946		BUG();
1947	}
1948out:
1949	task_unlock(tsk);
1950	return ret;
1951}
1952
1953/* Allocate a page in interleaved policy.
1954   Own path because it needs to do special accounting. */
1955static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1956					unsigned nid)
1957{
1958	struct zonelist *zl;
1959	struct page *page;
1960
1961	zl = node_zonelist(nid, gfp);
1962	page = __alloc_pages(gfp, order, zl);
1963	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1964		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1965	return page;
1966}
1967
1968/**
1969 * 	alloc_pages_vma	- Allocate a page for a VMA.
1970 *
1971 * 	@gfp:
1972 *      %GFP_USER    user allocation.
1973 *      %GFP_KERNEL  kernel allocations,
1974 *      %GFP_HIGHMEM highmem/user allocations,
1975 *      %GFP_FS      allocation should not call back into a file system.
1976 *      %GFP_ATOMIC  don't sleep.
1977 *
1978 *	@order:Order of the GFP allocation.
1979 * 	@vma:  Pointer to VMA or NULL if not available.
1980 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1981 *	@node: Which node to prefer for allocation (modulo policy).
1982 *	@hugepage: for hugepages try only the preferred node if possible
1983 *
1984 * 	This function allocates a page from the kernel page pool and applies
1985 *	a NUMA policy associated with the VMA or the current process.
1986 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1987 *	mm_struct of the VMA to prevent it from going away. Should be used for
1988 *	all allocations for pages that will be mapped into user space. Returns
1989 *	NULL when no page can be allocated.
 
 
1990 */
1991struct page *
1992alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1993		unsigned long addr, int node, bool hugepage)
1994{
1995	struct mempolicy *pol;
 
1996	struct page *page;
1997	unsigned int cpuset_mems_cookie;
1998	struct zonelist *zl;
1999	nodemask_t *nmask;
2000
2001retry_cpuset:
2002	pol = get_vma_policy(vma, addr);
2003	cpuset_mems_cookie = read_mems_allowed_begin();
2004
2005	if (pol->mode == MPOL_INTERLEAVE) {
2006		unsigned nid;
2007
2008		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2009		mpol_cond_put(pol);
2010		page = alloc_page_interleave(gfp, order, nid);
2011		goto out;
 
2012	}
2013
2014	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2015		int hpage_node = node;
2016
2017		/*
2018		 * For hugepage allocation and non-interleave policy which
2019		 * allows the current node (or other explicitly preferred
2020		 * node) we only try to allocate from the current/preferred
2021		 * node and don't fall back to other nodes, as the cost of
2022		 * remote accesses would likely offset THP benefits.
2023		 *
2024		 * If the policy is interleave, or does not allow the current
2025		 * node in its nodemask, we allocate the standard way.
2026		 */
2027		if (pol->mode == MPOL_PREFERRED &&
2028						!(pol->flags & MPOL_F_LOCAL))
2029			hpage_node = pol->v.preferred_node;
2030
2031		nmask = policy_nodemask(gfp, pol);
2032		if (!nmask || node_isset(hpage_node, *nmask)) {
2033			mpol_cond_put(pol);
2034			page = __alloc_pages_node(hpage_node,
2035						gfp | __GFP_THISNODE, order);
2036			goto out;
2037		}
2038	}
2039
2040	nmask = policy_nodemask(gfp, pol);
2041	zl = policy_zonelist(gfp, pol, node);
2042	mpol_cond_put(pol);
2043	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2044out:
2045	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046		goto retry_cpuset;
2047	return page;
2048}
2049
2050/**
2051 * 	alloc_pages_current - Allocate pages.
2052 *
2053 *	@gfp:
2054 *		%GFP_USER   user allocation,
2055 *      	%GFP_KERNEL kernel allocation,
2056 *      	%GFP_HIGHMEM highmem allocation,
2057 *      	%GFP_FS     don't call back into a file system.
2058 *      	%GFP_ATOMIC don't sleep.
2059 *	@order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 *	Allocate a page from the kernel page pool.  When not in
2062 *	interrupt context and apply the current process NUMA policy.
2063 *	Returns NULL when no page can be allocated.
2064 *
2065 *	Don't call cpuset_update_task_memory_state() unless
2066 *	1) it's ok to take cpuset_sem (can WAIT), and
2067 *	2) allocating for current task (not interrupt).
2068 */
2069struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070{
2071	struct mempolicy *pol = &default_policy;
2072	struct page *page;
2073	unsigned int cpuset_mems_cookie;
2074
2075	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2076		pol = get_task_policy(current);
2077
2078retry_cpuset:
2079	cpuset_mems_cookie = read_mems_allowed_begin();
2080
 
2081	/*
2082	 * No reference counting needed for current->mempolicy
2083	 * nor system default_policy
2084	 */
2085	if (pol->mode == MPOL_INTERLEAVE)
2086		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2087	else
2088		page = __alloc_pages_nodemask(gfp, order,
2089				policy_zonelist(gfp, pol, numa_node_id()),
2090				policy_nodemask(gfp, pol));
2091
2092	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093		goto retry_cpuset;
2094
2095	return page;
2096}
2097EXPORT_SYMBOL(alloc_pages_current);
2098
2099int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100{
2101	struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103	if (IS_ERR(pol))
2104		return PTR_ERR(pol);
2105	dst->vm_policy = pol;
2106	return 0;
2107}
2108
2109/*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed().  This
2113 * keeps mempolicies cpuset relative after its cpuset moves.  See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120/* Slow path of a mempolicy duplicate */
2121struct mempolicy *__mpol_dup(struct mempolicy *old)
2122{
2123	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125	if (!new)
2126		return ERR_PTR(-ENOMEM);
2127
2128	/* task's mempolicy is protected by alloc_lock */
2129	if (old == current->mempolicy) {
2130		task_lock(current);
2131		*new = *old;
2132		task_unlock(current);
2133	} else
2134		*new = *old;
2135
 
2136	if (current_cpuset_is_being_rebound()) {
2137		nodemask_t mems = cpuset_mems_allowed(current);
2138		if (new->flags & MPOL_F_REBINDING)
2139			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140		else
2141			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142	}
 
2143	atomic_set(&new->refcnt, 1);
2144	return new;
2145}
2146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147/* Slow path of a mempolicy comparison */
2148bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149{
2150	if (!a || !b)
2151		return false;
2152	if (a->mode != b->mode)
2153		return false;
2154	if (a->flags != b->flags)
2155		return false;
2156	if (mpol_store_user_nodemask(a))
2157		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158			return false;
2159
2160	switch (a->mode) {
2161	case MPOL_BIND:
2162		/* Fall through */
2163	case MPOL_INTERLEAVE:
2164		return !!nodes_equal(a->v.nodes, b->v.nodes);
2165	case MPOL_PREFERRED:
2166		return a->v.preferred_node == b->v.preferred_node;
2167	default:
2168		BUG();
2169		return false;
2170	}
2171}
2172
2173/*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock rwlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182/*
2183 * lookup first element intersecting start-end.  Caller holds sp->lock for
2184 * reading or for writing
2185 */
2186static struct sp_node *
2187sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2188{
2189	struct rb_node *n = sp->root.rb_node;
2190
2191	while (n) {
2192		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2193
2194		if (start >= p->end)
2195			n = n->rb_right;
2196		else if (end <= p->start)
2197			n = n->rb_left;
2198		else
2199			break;
2200	}
2201	if (!n)
2202		return NULL;
2203	for (;;) {
2204		struct sp_node *w = NULL;
2205		struct rb_node *prev = rb_prev(n);
2206		if (!prev)
2207			break;
2208		w = rb_entry(prev, struct sp_node, nd);
2209		if (w->end <= start)
2210			break;
2211		n = prev;
2212	}
2213	return rb_entry(n, struct sp_node, nd);
2214}
2215
2216/*
2217 * Insert a new shared policy into the list.  Caller holds sp->lock for
2218 * writing.
2219 */
2220static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2221{
2222	struct rb_node **p = &sp->root.rb_node;
2223	struct rb_node *parent = NULL;
2224	struct sp_node *nd;
2225
2226	while (*p) {
2227		parent = *p;
2228		nd = rb_entry(parent, struct sp_node, nd);
2229		if (new->start < nd->start)
2230			p = &(*p)->rb_left;
2231		else if (new->end > nd->end)
2232			p = &(*p)->rb_right;
2233		else
2234			BUG();
2235	}
2236	rb_link_node(&new->nd, parent, p);
2237	rb_insert_color(&new->nd, &sp->root);
2238	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2239		 new->policy ? new->policy->mode : 0);
2240}
2241
2242/* Find shared policy intersecting idx */
2243struct mempolicy *
2244mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2245{
2246	struct mempolicy *pol = NULL;
2247	struct sp_node *sn;
2248
2249	if (!sp->root.rb_node)
2250		return NULL;
2251	read_lock(&sp->lock);
2252	sn = sp_lookup(sp, idx, idx+1);
2253	if (sn) {
2254		mpol_get(sn->policy);
2255		pol = sn->policy;
2256	}
2257	read_unlock(&sp->lock);
2258	return pol;
2259}
2260
2261static void sp_free(struct sp_node *n)
2262{
2263	mpol_put(n->policy);
2264	kmem_cache_free(sn_cache, n);
2265}
2266
2267/**
2268 * mpol_misplaced - check whether current page node is valid in policy
2269 *
2270 * @page: page to be checked
2271 * @vma: vm area where page mapped
2272 * @addr: virtual address where page mapped
2273 *
2274 * Lookup current policy node id for vma,addr and "compare to" page's
2275 * node id.
2276 *
2277 * Returns:
2278 *	-1	- not misplaced, page is in the right node
2279 *	node	- node id where the page should be
2280 *
2281 * Policy determination "mimics" alloc_page_vma().
2282 * Called from fault path where we know the vma and faulting address.
2283 */
2284int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2285{
2286	struct mempolicy *pol;
2287	struct zone *zone;
2288	int curnid = page_to_nid(page);
2289	unsigned long pgoff;
2290	int thiscpu = raw_smp_processor_id();
2291	int thisnid = cpu_to_node(thiscpu);
2292	int polnid = -1;
2293	int ret = -1;
2294
2295	BUG_ON(!vma);
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		BUG_ON(addr >= vma->vm_end);
2304		BUG_ON(addr < vma->vm_start);
2305
2306		pgoff = vma->vm_pgoff;
2307		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2308		polnid = offset_il_node(pol, vma, pgoff);
2309		break;
2310
2311	case MPOL_PREFERRED:
2312		if (pol->flags & MPOL_F_LOCAL)
2313			polnid = numa_node_id();
2314		else
2315			polnid = pol->v.preferred_node;
2316		break;
2317
2318	case MPOL_BIND:
2319		/*
2320		 * allows binding to multiple nodes.
2321		 * use current page if in policy nodemask,
2322		 * else select nearest allowed node, if any.
2323		 * If no allowed nodes, use current [!misplaced].
2324		 */
2325		if (node_isset(curnid, pol->v.nodes))
2326			goto out;
2327		(void)first_zones_zonelist(
2328				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2329				gfp_zone(GFP_HIGHUSER),
2330				&pol->v.nodes, &zone);
2331		polnid = zone->node;
2332		break;
2333
2334	default:
2335		BUG();
2336	}
2337
2338	/* Migrate the page towards the node whose CPU is referencing it */
2339	if (pol->flags & MPOL_F_MORON) {
2340		polnid = thisnid;
2341
2342		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2343			goto out;
2344	}
2345
2346	if (curnid != polnid)
2347		ret = polnid;
2348out:
2349	mpol_cond_put(pol);
2350
2351	return ret;
2352}
2353
2354static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2355{
2356	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2357	rb_erase(&n->nd, &sp->root);
2358	sp_free(n);
2359}
2360
2361static void sp_node_init(struct sp_node *node, unsigned long start,
2362			unsigned long end, struct mempolicy *pol)
2363{
2364	node->start = start;
2365	node->end = end;
2366	node->policy = pol;
2367}
2368
2369static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2370				struct mempolicy *pol)
2371{
2372	struct sp_node *n;
2373	struct mempolicy *newpol;
2374
2375	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2376	if (!n)
2377		return NULL;
2378
2379	newpol = mpol_dup(pol);
2380	if (IS_ERR(newpol)) {
2381		kmem_cache_free(sn_cache, n);
2382		return NULL;
2383	}
2384	newpol->flags |= MPOL_F_SHARED;
2385	sp_node_init(n, start, end, newpol);
2386
2387	return n;
2388}
2389
2390/* Replace a policy range. */
2391static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2392				 unsigned long end, struct sp_node *new)
2393{
2394	struct sp_node *n;
2395	struct sp_node *n_new = NULL;
2396	struct mempolicy *mpol_new = NULL;
2397	int ret = 0;
2398
2399restart:
2400	write_lock(&sp->lock);
2401	n = sp_lookup(sp, start, end);
2402	/* Take care of old policies in the same range. */
2403	while (n && n->start < end) {
2404		struct rb_node *next = rb_next(&n->nd);
2405		if (n->start >= start) {
2406			if (n->end <= end)
2407				sp_delete(sp, n);
2408			else
2409				n->start = end;
2410		} else {
2411			/* Old policy spanning whole new range. */
2412			if (n->end > end) {
2413				if (!n_new)
2414					goto alloc_new;
2415
2416				*mpol_new = *n->policy;
2417				atomic_set(&mpol_new->refcnt, 1);
2418				sp_node_init(n_new, end, n->end, mpol_new);
 
2419				n->end = start;
2420				sp_insert(sp, n_new);
2421				n_new = NULL;
2422				mpol_new = NULL;
2423				break;
2424			} else
2425				n->end = start;
2426		}
2427		if (!next)
2428			break;
2429		n = rb_entry(next, struct sp_node, nd);
2430	}
2431	if (new)
2432		sp_insert(sp, new);
2433	write_unlock(&sp->lock);
2434	ret = 0;
2435
2436err_out:
2437	if (mpol_new)
2438		mpol_put(mpol_new);
2439	if (n_new)
2440		kmem_cache_free(sn_cache, n_new);
2441
2442	return ret;
2443
2444alloc_new:
2445	write_unlock(&sp->lock);
2446	ret = -ENOMEM;
2447	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2448	if (!n_new)
2449		goto err_out;
2450	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2451	if (!mpol_new)
2452		goto err_out;
2453	goto restart;
2454}
2455
2456/**
2457 * mpol_shared_policy_init - initialize shared policy for inode
2458 * @sp: pointer to inode shared policy
2459 * @mpol:  struct mempolicy to install
2460 *
2461 * Install non-NULL @mpol in inode's shared policy rb-tree.
2462 * On entry, the current task has a reference on a non-NULL @mpol.
2463 * This must be released on exit.
2464 * This is called at get_inode() calls and we can use GFP_KERNEL.
2465 */
2466void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2467{
2468	int ret;
2469
2470	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2471	rwlock_init(&sp->lock);
2472
2473	if (mpol) {
2474		struct vm_area_struct pvma;
2475		struct mempolicy *new;
2476		NODEMASK_SCRATCH(scratch);
2477
2478		if (!scratch)
2479			goto put_mpol;
2480		/* contextualize the tmpfs mount point mempolicy */
2481		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2482		if (IS_ERR(new))
2483			goto free_scratch; /* no valid nodemask intersection */
2484
2485		task_lock(current);
2486		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2487		task_unlock(current);
2488		if (ret)
2489			goto put_new;
2490
2491		/* Create pseudo-vma that contains just the policy */
2492		memset(&pvma, 0, sizeof(struct vm_area_struct));
2493		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2494		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2495
2496put_new:
2497		mpol_put(new);			/* drop initial ref */
2498free_scratch:
2499		NODEMASK_SCRATCH_FREE(scratch);
2500put_mpol:
2501		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2502	}
2503}
2504
2505int mpol_set_shared_policy(struct shared_policy *info,
2506			struct vm_area_struct *vma, struct mempolicy *npol)
2507{
2508	int err;
2509	struct sp_node *new = NULL;
2510	unsigned long sz = vma_pages(vma);
2511
2512	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2513		 vma->vm_pgoff,
2514		 sz, npol ? npol->mode : -1,
2515		 npol ? npol->flags : -1,
2516		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2517
2518	if (npol) {
2519		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2520		if (!new)
2521			return -ENOMEM;
2522	}
2523	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524	if (err && new)
2525		sp_free(new);
2526	return err;
2527}
2528
2529/* Free a backing policy store on inode delete. */
2530void mpol_free_shared_policy(struct shared_policy *p)
2531{
2532	struct sp_node *n;
2533	struct rb_node *next;
2534
2535	if (!p->root.rb_node)
2536		return;
2537	write_lock(&p->lock);
2538	next = rb_first(&p->root);
2539	while (next) {
2540		n = rb_entry(next, struct sp_node, nd);
2541		next = rb_next(&n->nd);
2542		sp_delete(p, n);
 
 
2543	}
2544	write_unlock(&p->lock);
2545}
2546
2547#ifdef CONFIG_NUMA_BALANCING
2548static int __initdata numabalancing_override;
2549
2550static void __init check_numabalancing_enable(void)
2551{
2552	bool numabalancing_default = false;
2553
2554	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2555		numabalancing_default = true;
2556
2557	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2558	if (numabalancing_override)
2559		set_numabalancing_state(numabalancing_override == 1);
2560
2561	if (num_online_nodes() > 1 && !numabalancing_override) {
2562		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2563			numabalancing_default ? "Enabling" : "Disabling");
2564		set_numabalancing_state(numabalancing_default);
2565	}
2566}
2567
2568static int __init setup_numabalancing(char *str)
2569{
2570	int ret = 0;
2571	if (!str)
2572		goto out;
2573
2574	if (!strcmp(str, "enable")) {
2575		numabalancing_override = 1;
2576		ret = 1;
2577	} else if (!strcmp(str, "disable")) {
2578		numabalancing_override = -1;
2579		ret = 1;
2580	}
2581out:
2582	if (!ret)
2583		pr_warn("Unable to parse numa_balancing=\n");
2584
2585	return ret;
2586}
2587__setup("numa_balancing=", setup_numabalancing);
2588#else
2589static inline void __init check_numabalancing_enable(void)
2590{
2591}
2592#endif /* CONFIG_NUMA_BALANCING */
2593
2594/* assumes fs == KERNEL_DS */
2595void __init numa_policy_init(void)
2596{
2597	nodemask_t interleave_nodes;
2598	unsigned long largest = 0;
2599	int nid, prefer = 0;
2600
2601	policy_cache = kmem_cache_create("numa_policy",
2602					 sizeof(struct mempolicy),
2603					 0, SLAB_PANIC, NULL);
2604
2605	sn_cache = kmem_cache_create("shared_policy_node",
2606				     sizeof(struct sp_node),
2607				     0, SLAB_PANIC, NULL);
2608
2609	for_each_node(nid) {
2610		preferred_node_policy[nid] = (struct mempolicy) {
2611			.refcnt = ATOMIC_INIT(1),
2612			.mode = MPOL_PREFERRED,
2613			.flags = MPOL_F_MOF | MPOL_F_MORON,
2614			.v = { .preferred_node = nid, },
2615		};
2616	}
2617
2618	/*
2619	 * Set interleaving policy for system init. Interleaving is only
2620	 * enabled across suitably sized nodes (default is >= 16MB), or
2621	 * fall back to the largest node if they're all smaller.
2622	 */
2623	nodes_clear(interleave_nodes);
2624	for_each_node_state(nid, N_MEMORY) {
2625		unsigned long total_pages = node_present_pages(nid);
2626
2627		/* Preserve the largest node */
2628		if (largest < total_pages) {
2629			largest = total_pages;
2630			prefer = nid;
2631		}
2632
2633		/* Interleave this node? */
2634		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2635			node_set(nid, interleave_nodes);
2636	}
2637
2638	/* All too small, use the largest */
2639	if (unlikely(nodes_empty(interleave_nodes)))
2640		node_set(prefer, interleave_nodes);
2641
2642	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2643		pr_err("%s: interleaving failed\n", __func__);
2644
2645	check_numabalancing_enable();
2646}
2647
2648/* Reset policy of current process to default */
2649void numa_default_policy(void)
2650{
2651	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2652}
2653
2654/*
2655 * Parse and format mempolicy from/to strings
2656 */
2657
2658/*
2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
 
2660 */
 
2661static const char * const policy_modes[] =
2662{
2663	[MPOL_DEFAULT]    = "default",
2664	[MPOL_PREFERRED]  = "prefer",
2665	[MPOL_BIND]       = "bind",
2666	[MPOL_INTERLEAVE] = "interleave",
2667	[MPOL_LOCAL]      = "local",
2668};
2669
2670
2671#ifdef CONFIG_TMPFS
2672/**
2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2674 * @str:  string containing mempolicy to parse
2675 * @mpol:  pointer to struct mempolicy pointer, returned on success.
 
2676 *
2677 * Format of input:
2678 *	<mode>[=<flags>][:<nodelist>]
2679 *
 
 
 
 
 
 
 
2680 * On success, returns 0, else 1
2681 */
2682int mpol_parse_str(char *str, struct mempolicy **mpol)
2683{
2684	struct mempolicy *new = NULL;
2685	unsigned short mode;
2686	unsigned short mode_flags;
2687	nodemask_t nodes;
2688	char *nodelist = strchr(str, ':');
2689	char *flags = strchr(str, '=');
2690	int err = 1;
2691
2692	if (nodelist) {
2693		/* NUL-terminate mode or flags string */
2694		*nodelist++ = '\0';
2695		if (nodelist_parse(nodelist, nodes))
2696			goto out;
2697		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698			goto out;
2699	} else
2700		nodes_clear(nodes);
2701
2702	if (flags)
2703		*flags++ = '\0';	/* terminate mode string */
2704
2705	for (mode = 0; mode < MPOL_MAX; mode++) {
2706		if (!strcmp(str, policy_modes[mode])) {
2707			break;
2708		}
2709	}
2710	if (mode >= MPOL_MAX)
2711		goto out;
2712
2713	switch (mode) {
2714	case MPOL_PREFERRED:
2715		/*
2716		 * Insist on a nodelist of one node only
2717		 */
2718		if (nodelist) {
2719			char *rest = nodelist;
2720			while (isdigit(*rest))
2721				rest++;
2722			if (*rest)
2723				goto out;
2724		}
2725		break;
2726	case MPOL_INTERLEAVE:
2727		/*
2728		 * Default to online nodes with memory if no nodelist
2729		 */
2730		if (!nodelist)
2731			nodes = node_states[N_MEMORY];
2732		break;
2733	case MPOL_LOCAL:
2734		/*
2735		 * Don't allow a nodelist;  mpol_new() checks flags
2736		 */
2737		if (nodelist)
2738			goto out;
2739		mode = MPOL_PREFERRED;
2740		break;
2741	case MPOL_DEFAULT:
2742		/*
2743		 * Insist on a empty nodelist
2744		 */
2745		if (!nodelist)
2746			err = 0;
2747		goto out;
2748	case MPOL_BIND:
2749		/*
2750		 * Insist on a nodelist
2751		 */
2752		if (!nodelist)
2753			goto out;
2754	}
2755
2756	mode_flags = 0;
2757	if (flags) {
2758		/*
2759		 * Currently, we only support two mutually exclusive
2760		 * mode flags.
2761		 */
2762		if (!strcmp(flags, "static"))
2763			mode_flags |= MPOL_F_STATIC_NODES;
2764		else if (!strcmp(flags, "relative"))
2765			mode_flags |= MPOL_F_RELATIVE_NODES;
2766		else
2767			goto out;
2768	}
2769
2770	new = mpol_new(mode, mode_flags, &nodes);
2771	if (IS_ERR(new))
2772		goto out;
2773
2774	/*
2775	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2776	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2777	 */
2778	if (mode != MPOL_PREFERRED)
2779		new->v.nodes = nodes;
2780	else if (nodelist)
2781		new->v.preferred_node = first_node(nodes);
2782	else
2783		new->flags |= MPOL_F_LOCAL;
2784
2785	/*
2786	 * Save nodes for contextualization: this will be used to "clone"
2787	 * the mempolicy in a specific context [cpuset] at a later time.
2788	 */
2789	new->w.user_nodemask = nodes;
2790
 
2791	err = 0;
2792
2793out:
2794	/* Restore string for error message */
2795	if (nodelist)
2796		*--nodelist = ':';
2797	if (flags)
2798		*--flags = '=';
2799	if (!err)
2800		*mpol = new;
2801	return err;
2802}
2803#endif /* CONFIG_TMPFS */
2804
2805/**
2806 * mpol_to_str - format a mempolicy structure for printing
2807 * @buffer:  to contain formatted mempolicy string
2808 * @maxlen:  length of @buffer
2809 * @pol:  pointer to mempolicy to be formatted
 
2810 *
2811 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2813 * longest flag, "relative", and to display at least a few node ids.
2814 */
2815void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2816{
2817	char *p = buffer;
2818	nodemask_t nodes = NODE_MASK_NONE;
2819	unsigned short mode = MPOL_DEFAULT;
2820	unsigned short flags = 0;
 
2821
2822	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
 
 
 
 
 
2823		mode = pol->mode;
2824		flags = pol->flags;
2825	}
2826
2827	switch (mode) {
2828	case MPOL_DEFAULT:
 
2829		break;
 
2830	case MPOL_PREFERRED:
 
2831		if (flags & MPOL_F_LOCAL)
2832			mode = MPOL_LOCAL;
2833		else
2834			node_set(pol->v.preferred_node, nodes);
2835		break;
 
2836	case MPOL_BIND:
 
2837	case MPOL_INTERLEAVE:
2838		nodes = pol->v.nodes;
 
 
 
2839		break;
 
2840	default:
2841		WARN_ON_ONCE(1);
2842		snprintf(p, maxlen, "unknown");
2843		return;
2844	}
2845
2846	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 
 
 
 
 
2847
2848	if (flags & MPOL_MODE_FLAGS) {
2849		p += snprintf(p, buffer + maxlen - p, "=");
 
 
2850
2851		/*
2852		 * Currently, the only defined flags are mutually exclusive
2853		 */
2854		if (flags & MPOL_F_STATIC_NODES)
2855			p += snprintf(p, buffer + maxlen - p, "static");
2856		else if (flags & MPOL_F_RELATIVE_NODES)
2857			p += snprintf(p, buffer + maxlen - p, "relative");
2858	}
2859
2860	if (!nodes_empty(nodes))
2861		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2862			       nodemask_pr_args(&nodes));
 
 
 
 
2863}