Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
 
 
 
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
 
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
 
 
 
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115	.refcnt = ATOMIC_INIT(1), /* never free it */
 116	.mode = MPOL_PREFERRED,
 117	.flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122	/*
 123	 * If read-side task has no lock to protect task->mempolicy, write-side
 124	 * task will rebind the task->mempolicy by two step. The first step is
 125	 * setting all the newly nodes, and the second step is cleaning all the
 126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 127	 * page.
 128	 * If we have a lock to protect task->mempolicy in read-side, we do
 129	 * rebind directly.
 130	 *
 131	 * step:
 132	 * 	MPOL_REBIND_ONCE - do rebind work at once
 133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135	 */
 136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137			enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143	int nd, k;
 
 144
 145	for_each_node_mask(nd, *nodemask) {
 146		struct zone *z;
 147
 148		for (k = 0; k <= policy_zone; k++) {
 149			z = &NODE_DATA(nd)->node_zones[k];
 150			if (z->present_pages > 0)
 151				return 1;
 152		}
 
 153	}
 154
 155	return 0;
 156}
 157
 
 
 
 
 
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160	return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164				   const nodemask_t *rel)
 165{
 166	nodemask_t tmp;
 167	nodes_fold(tmp, *orig, nodes_weight(*rel));
 168	nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173	if (nodes_empty(*nodes))
 174		return -EINVAL;
 175	pol->v.nodes = *nodes;
 176	return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181	if (!nodes)
 182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 183	else if (nodes_empty(*nodes))
 184		return -EINVAL;			/*  no allowed nodes */
 185	else
 186		pol->v.preferred_node = first_node(*nodes);
 187	return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192	if (!is_valid_nodemask(nodes))
 193		return -EINVAL;
 194	pol->v.nodes = *nodes;
 195	return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210	int ret;
 211
 212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213	if (pol == NULL)
 214		return 0;
 215	/* Check N_HIGH_MEMORY */
 216	nodes_and(nsc->mask1,
 217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219	VM_BUG_ON(!nodes);
 220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221		nodes = NULL;	/* explicit local allocation */
 222	else {
 223		if (pol->flags & MPOL_F_RELATIVE_NODES)
 224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225		else
 226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228		if (mpol_store_user_nodemask(pol))
 229			pol->w.user_nodemask = *nodes;
 230		else
 231			pol->w.cpuset_mems_allowed =
 232						cpuset_current_mems_allowed;
 233	}
 234
 235	if (nodes)
 236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237	else
 238		ret = mpol_ops[pol->mode].create(pol, NULL);
 239	return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247				  nodemask_t *nodes)
 248{
 249	struct mempolicy *policy;
 250
 251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254	if (mode == MPOL_DEFAULT) {
 255		if (nodes && !nodes_empty(*nodes))
 256			return ERR_PTR(-EINVAL);
 257		return NULL;	/* simply delete any existing policy */
 258	}
 259	VM_BUG_ON(!nodes);
 260
 261	/*
 262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264	 * All other modes require a valid pointer to a non-empty nodemask.
 265	 */
 266	if (mode == MPOL_PREFERRED) {
 267		if (nodes_empty(*nodes)) {
 268			if (((flags & MPOL_F_STATIC_NODES) ||
 269			     (flags & MPOL_F_RELATIVE_NODES)))
 270				return ERR_PTR(-EINVAL);
 271		}
 
 
 
 
 
 
 272	} else if (nodes_empty(*nodes))
 273		return ERR_PTR(-EINVAL);
 274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275	if (!policy)
 276		return ERR_PTR(-ENOMEM);
 277	atomic_set(&policy->refcnt, 1);
 278	policy->mode = mode;
 279	policy->flags = flags;
 280
 281	return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287	if (!atomic_dec_and_test(&p->refcnt))
 288		return;
 289	kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293				enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 * 	MPOL_REBIND_ONCE  - do rebind work at once
 300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304				 enum mpol_rebind_step step)
 305{
 306	nodemask_t tmp;
 307
 308	if (pol->flags & MPOL_F_STATIC_NODES)
 309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312	else {
 313		/*
 314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315		 * result
 316		 */
 317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318			nodes_remap(tmp, pol->v.nodes,
 319					pol->w.cpuset_mems_allowed, *nodes);
 320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321		} else if (step == MPOL_REBIND_STEP2) {
 322			tmp = pol->w.cpuset_mems_allowed;
 323			pol->w.cpuset_mems_allowed = *nodes;
 324		} else
 325			BUG();
 326	}
 327
 328	if (nodes_empty(tmp))
 329		tmp = *nodes;
 330
 331	if (step == MPOL_REBIND_STEP1)
 332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334		pol->v.nodes = tmp;
 335	else
 336		BUG();
 337
 338	if (!node_isset(current->il_next, tmp)) {
 339		current->il_next = next_node(current->il_next, tmp);
 340		if (current->il_next >= MAX_NUMNODES)
 341			current->il_next = first_node(tmp);
 342		if (current->il_next >= MAX_NUMNODES)
 343			current->il_next = numa_node_id();
 344	}
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348				  const nodemask_t *nodes,
 349				  enum mpol_rebind_step step)
 350{
 351	nodemask_t tmp;
 352
 353	if (pol->flags & MPOL_F_STATIC_NODES) {
 354		int node = first_node(pol->w.user_nodemask);
 355
 356		if (node_isset(node, *nodes)) {
 357			pol->v.preferred_node = node;
 358			pol->flags &= ~MPOL_F_LOCAL;
 359		} else
 360			pol->flags |= MPOL_F_LOCAL;
 361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363		pol->v.preferred_node = first_node(tmp);
 364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366						   pol->w.cpuset_mems_allowed,
 367						   *nodes);
 368		pol->w.cpuset_mems_allowed = *nodes;
 369	}
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 * 	MPOL_REBIND_ONCE  - do rebind work at once
 385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389				enum mpol_rebind_step step)
 390{
 391	if (!pol)
 392		return;
 393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395		return;
 396
 397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398		return;
 399
 400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401		BUG();
 402
 403	if (step == MPOL_REBIND_STEP1)
 404		pol->flags |= MPOL_F_REBINDING;
 405	else if (step == MPOL_REBIND_STEP2)
 406		pol->flags &= ~MPOL_F_REBINDING;
 407	else if (step >= MPOL_REBIND_NSTEP)
 408		BUG();
 409
 410	mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421			enum mpol_rebind_step step)
 422{
 423	mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434	struct vm_area_struct *vma;
 435
 436	down_write(&mm->mmap_sem);
 437	for (vma = mm->mmap; vma; vma = vma->vm_next)
 438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439	up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443	[MPOL_DEFAULT] = {
 444		.rebind = mpol_rebind_default,
 445	},
 446	[MPOL_INTERLEAVE] = {
 447		.create = mpol_new_interleave,
 448		.rebind = mpol_rebind_nodemask,
 449	},
 450	[MPOL_PREFERRED] = {
 451		.create = mpol_new_preferred,
 452		.rebind = mpol_rebind_preferred,
 453	},
 454	[MPOL_BIND] = {
 455		.create = mpol_new_bind,
 456		.rebind = mpol_rebind_nodemask,
 457	},
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461				unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 465		unsigned long addr, unsigned long end,
 466		const nodemask_t *nodes, unsigned long flags,
 467		void *private)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468{
 469	pte_t *orig_pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	pte_t *pte;
 471	spinlock_t *ptl;
 472
 473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474	do {
 475		struct page *page;
 476		int nid;
 
 
 
 
 
 
 477
 
 
 478		if (!pte_present(*pte))
 479			continue;
 480		page = vm_normal_page(vma, addr, *pte);
 481		if (!page)
 482			continue;
 483		/*
 484		 * vm_normal_page() filters out zero pages, but there might
 485		 * still be PageReserved pages to skip, perhaps in a VDSO.
 486		 * And we cannot move PageKsm pages sensibly or safely yet.
 487		 */
 488		if (PageReserved(page) || PageKsm(page))
 489			continue;
 490		nid = page_to_nid(page);
 491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492			continue;
 
 
 
 
 
 
 493
 494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495			migrate_page_add(page, private, flags);
 496		else
 
 
 
 
 
 497			break;
 498	} while (pte++, addr += PAGE_SIZE, addr != end);
 499	pte_unmap_unlock(orig_pte, ptl);
 500	return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 504		unsigned long addr, unsigned long end,
 505		const nodemask_t *nodes, unsigned long flags,
 506		void *private)
 507{
 508	pmd_t *pmd;
 509	unsigned long next;
 510
 511	pmd = pmd_offset(pud, addr);
 512	do {
 513		next = pmd_addr_end(addr, end);
 514		split_huge_page_pmd(vma->vm_mm, pmd);
 515		if (pmd_none_or_clear_bad(pmd))
 516			continue;
 517		if (check_pte_range(vma, pmd, addr, next, nodes,
 518				    flags, private))
 519			return -EIO;
 520	} while (pmd++, addr = next, addr != end);
 521	return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525		unsigned long addr, unsigned long end,
 526		const nodemask_t *nodes, unsigned long flags,
 527		void *private)
 528{
 529	pud_t *pud;
 530	unsigned long next;
 531
 532	pud = pud_offset(pgd, addr);
 533	do {
 534		next = pud_addr_end(addr, end);
 535		if (pud_none_or_clear_bad(pud))
 536			continue;
 537		if (check_pmd_range(vma, pud, addr, next, nodes,
 538				    flags, private))
 539			return -EIO;
 540	} while (pud++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 
 
 541	return 0;
 542}
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545		unsigned long addr, unsigned long end,
 546		const nodemask_t *nodes, unsigned long flags,
 547		void *private)
 548{
 549	pgd_t *pgd;
 550	unsigned long next;
 551
 552	pgd = pgd_offset(vma->vm_mm, addr);
 553	do {
 554		next = pgd_addr_end(addr, end);
 555		if (pgd_none_or_clear_bad(pgd))
 556			continue;
 557		if (check_pud_range(vma, pgd, addr, next, nodes,
 558				    flags, private))
 559			return -EIO;
 560	} while (pgd++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 561	return 0;
 562}
 
 563
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571		const nodemask_t *nodes, unsigned long flags, void *private)
 572{
 573	int err;
 574	struct vm_area_struct *first, *vma, *prev;
 
 
 575
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577	first = find_vma(mm, start);
 578	if (!first)
 579		return ERR_PTR(-EFAULT);
 580	prev = NULL;
 581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583			if (!vma->vm_next && vma->vm_end < end)
 584				return ERR_PTR(-EFAULT);
 585			if (prev && prev->vm_end < vma->vm_start)
 586				return ERR_PTR(-EFAULT);
 587		}
 588		if (!is_vm_hugetlb_page(vma) &&
 589		    ((flags & MPOL_MF_STRICT) ||
 590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591				vma_migratable(vma)))) {
 592			unsigned long endvma = vma->vm_end;
 593
 594			if (endvma > end)
 595				endvma = end;
 596			if (vma->vm_start > start)
 597				start = vma->vm_start;
 598			err = check_pgd_range(vma, start, endvma, nodes,
 599						flags, private);
 600			if (err) {
 601				first = ERR_PTR(err);
 602				break;
 603			}
 604		}
 605		prev = vma;
 606	}
 607	return first;
 
 
 
 
 608}
 609
 610/* Apply policy to a single VMA */
 611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612{
 613	int err = 0;
 614	struct mempolicy *old = vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615
 616	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 617		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 618		 vma->vm_ops, vma->vm_file,
 619		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 620
 621	if (vma->vm_ops && vma->vm_ops->set_policy)
 
 
 
 
 622		err = vma->vm_ops->set_policy(vma, new);
 623	if (!err) {
 624		mpol_get(new);
 625		vma->vm_policy = new;
 626		mpol_put(old);
 627	}
 
 
 
 
 
 
 
 
 628	return err;
 629}
 630
 631/* Step 2: apply policy to a range and do splits. */
 632static int mbind_range(struct mm_struct *mm, unsigned long start,
 633		       unsigned long end, struct mempolicy *new_pol)
 634{
 635	struct vm_area_struct *next;
 636	struct vm_area_struct *prev;
 637	struct vm_area_struct *vma;
 638	int err = 0;
 
 639	unsigned long vmstart;
 640	unsigned long vmend;
 641
 642	vma = find_vma_prev(mm, start, &prev);
 643	if (!vma || vma->vm_start > start)
 644		return -EFAULT;
 645
 
 
 
 
 646	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 647		next = vma->vm_next;
 648		vmstart = max(start, vma->vm_start);
 649		vmend   = min(end, vma->vm_end);
 650
 
 
 
 
 
 651		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 652				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 653				  new_pol);
 654		if (prev) {
 655			vma = prev;
 656			next = vma->vm_next;
 657			continue;
 
 
 
 658		}
 659		if (vma->vm_start != vmstart) {
 660			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 661			if (err)
 662				goto out;
 663		}
 664		if (vma->vm_end != vmend) {
 665			err = split_vma(vma->vm_mm, vma, vmend, 0);
 666			if (err)
 667				goto out;
 668		}
 669		err = policy_vma(vma, new_pol);
 
 670		if (err)
 671			goto out;
 672	}
 673
 674 out:
 675	return err;
 676}
 677
 678/*
 679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 680 * mempolicy.  Allows more rapid checking of this (combined perhaps
 681 * with other PF_* flag bits) on memory allocation hot code paths.
 682 *
 683 * If called from outside this file, the task 'p' should -only- be
 684 * a newly forked child not yet visible on the task list, because
 685 * manipulating the task flags of a visible task is not safe.
 686 *
 687 * The above limitation is why this routine has the funny name
 688 * mpol_fix_fork_child_flag().
 689 *
 690 * It is also safe to call this with a task pointer of current,
 691 * which the static wrapper mpol_set_task_struct_flag() does,
 692 * for use within this file.
 693 */
 694
 695void mpol_fix_fork_child_flag(struct task_struct *p)
 696{
 697	if (p->mempolicy)
 698		p->flags |= PF_MEMPOLICY;
 699	else
 700		p->flags &= ~PF_MEMPOLICY;
 701}
 702
 703static void mpol_set_task_struct_flag(void)
 704{
 705	mpol_fix_fork_child_flag(current);
 706}
 707
 708/* Set the process memory policy */
 709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 710			     nodemask_t *nodes)
 711{
 712	struct mempolicy *new, *old;
 713	struct mm_struct *mm = current->mm;
 714	NODEMASK_SCRATCH(scratch);
 715	int ret;
 716
 717	if (!scratch)
 718		return -ENOMEM;
 719
 720	new = mpol_new(mode, flags, nodes);
 721	if (IS_ERR(new)) {
 722		ret = PTR_ERR(new);
 723		goto out;
 724	}
 725	/*
 726	 * prevent changing our mempolicy while show_numa_maps()
 727	 * is using it.
 728	 * Note:  do_set_mempolicy() can be called at init time
 729	 * with no 'mm'.
 730	 */
 731	if (mm)
 732		down_write(&mm->mmap_sem);
 733	task_lock(current);
 734	ret = mpol_set_nodemask(new, nodes, scratch);
 735	if (ret) {
 736		task_unlock(current);
 737		if (mm)
 738			up_write(&mm->mmap_sem);
 739		mpol_put(new);
 740		goto out;
 741	}
 742	old = current->mempolicy;
 743	current->mempolicy = new;
 744	mpol_set_task_struct_flag();
 745	if (new && new->mode == MPOL_INTERLEAVE &&
 746	    nodes_weight(new->v.nodes))
 747		current->il_next = first_node(new->v.nodes);
 748	task_unlock(current);
 749	if (mm)
 750		up_write(&mm->mmap_sem);
 751
 752	mpol_put(old);
 753	ret = 0;
 754out:
 755	NODEMASK_SCRATCH_FREE(scratch);
 756	return ret;
 757}
 758
 759/*
 760 * Return nodemask for policy for get_mempolicy() query
 761 *
 762 * Called with task's alloc_lock held
 763 */
 764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 765{
 766	nodes_clear(*nodes);
 767	if (p == &default_policy)
 768		return;
 769
 770	switch (p->mode) {
 771	case MPOL_BIND:
 772		/* Fall through */
 773	case MPOL_INTERLEAVE:
 774		*nodes = p->v.nodes;
 775		break;
 776	case MPOL_PREFERRED:
 777		if (!(p->flags & MPOL_F_LOCAL))
 778			node_set(p->v.preferred_node, *nodes);
 779		/* else return empty node mask for local allocation */
 780		break;
 781	default:
 782		BUG();
 783	}
 784}
 785
 786static int lookup_node(struct mm_struct *mm, unsigned long addr)
 787{
 788	struct page *p;
 789	int err;
 790
 791	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 
 792	if (err >= 0) {
 793		err = page_to_nid(p);
 794		put_page(p);
 795	}
 
 
 796	return err;
 797}
 798
 799/* Retrieve NUMA policy */
 800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 801			     unsigned long addr, unsigned long flags)
 802{
 803	int err;
 804	struct mm_struct *mm = current->mm;
 805	struct vm_area_struct *vma = NULL;
 806	struct mempolicy *pol = current->mempolicy;
 807
 808	if (flags &
 809		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 810		return -EINVAL;
 811
 812	if (flags & MPOL_F_MEMS_ALLOWED) {
 813		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 814			return -EINVAL;
 815		*policy = 0;	/* just so it's initialized */
 816		task_lock(current);
 817		*nmask  = cpuset_current_mems_allowed;
 818		task_unlock(current);
 819		return 0;
 820	}
 821
 822	if (flags & MPOL_F_ADDR) {
 823		/*
 824		 * Do NOT fall back to task policy if the
 825		 * vma/shared policy at addr is NULL.  We
 826		 * want to return MPOL_DEFAULT in this case.
 827		 */
 828		down_read(&mm->mmap_sem);
 829		vma = find_vma_intersection(mm, addr, addr+1);
 830		if (!vma) {
 831			up_read(&mm->mmap_sem);
 832			return -EFAULT;
 833		}
 834		if (vma->vm_ops && vma->vm_ops->get_policy)
 835			pol = vma->vm_ops->get_policy(vma, addr);
 836		else
 837			pol = vma->vm_policy;
 838	} else if (addr)
 839		return -EINVAL;
 840
 841	if (!pol)
 842		pol = &default_policy;	/* indicates default behavior */
 843
 844	if (flags & MPOL_F_NODE) {
 845		if (flags & MPOL_F_ADDR) {
 
 
 
 
 
 
 
 
 
 846			err = lookup_node(mm, addr);
 847			if (err < 0)
 848				goto out;
 849			*policy = err;
 850		} else if (pol == current->mempolicy &&
 851				pol->mode == MPOL_INTERLEAVE) {
 852			*policy = current->il_next;
 853		} else {
 854			err = -EINVAL;
 855			goto out;
 856		}
 857	} else {
 858		*policy = pol == &default_policy ? MPOL_DEFAULT :
 859						pol->mode;
 860		/*
 861		 * Internal mempolicy flags must be masked off before exposing
 862		 * the policy to userspace.
 863		 */
 864		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 865	}
 866
 867	if (vma) {
 868		up_read(&current->mm->mmap_sem);
 869		vma = NULL;
 870	}
 871
 872	err = 0;
 873	if (nmask) {
 874		if (mpol_store_user_nodemask(pol)) {
 875			*nmask = pol->w.user_nodemask;
 876		} else {
 877			task_lock(current);
 878			get_policy_nodemask(pol, nmask);
 879			task_unlock(current);
 880		}
 881	}
 882
 883 out:
 884	mpol_cond_put(pol);
 885	if (vma)
 886		up_read(&current->mm->mmap_sem);
 
 
 887	return err;
 888}
 889
 890#ifdef CONFIG_MIGRATION
 891/*
 892 * page migration
 893 */
 894static void migrate_page_add(struct page *page, struct list_head *pagelist,
 895				unsigned long flags)
 896{
 
 897	/*
 898	 * Avoid migrating a page that is shared with others.
 899	 */
 900	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 901		if (!isolate_lru_page(page)) {
 902			list_add_tail(&page->lru, pagelist);
 903			inc_zone_page_state(page, NR_ISOLATED_ANON +
 904					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 
 905		}
 906	}
 
 
 907}
 908
 909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 
 910{
 911	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914/*
 915 * Migrate pages from one node to a target node.
 916 * Returns error or the number of pages not migrated.
 917 */
 918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 919			   int flags)
 920{
 921	nodemask_t nmask;
 922	LIST_HEAD(pagelist);
 923	int err = 0;
 924	struct vm_area_struct *vma;
 925
 926	nodes_clear(nmask);
 927	node_set(source, nmask);
 928
 929	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 
 
 
 
 
 
 930			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 931	if (IS_ERR(vma))
 932		return PTR_ERR(vma);
 933
 934	if (!list_empty(&pagelist)) {
 935		err = migrate_pages(&pagelist, new_node_page, dest,
 936								false, true);
 937		if (err)
 938			putback_lru_pages(&pagelist);
 939	}
 940
 941	return err;
 942}
 943
 944/*
 945 * Move pages between the two nodesets so as to preserve the physical
 946 * layout as much as possible.
 947 *
 948 * Returns the number of page that could not be moved.
 949 */
 950int do_migrate_pages(struct mm_struct *mm,
 951	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 952{
 953	int busy = 0;
 954	int err;
 955	nodemask_t tmp;
 956
 957	err = migrate_prep();
 958	if (err)
 959		return err;
 960
 961	down_read(&mm->mmap_sem);
 962
 963	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 964	if (err)
 965		goto out;
 966
 967	/*
 968	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 969	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 970	 * bit in 'tmp', and return that <source, dest> pair for migration.
 971	 * The pair of nodemasks 'to' and 'from' define the map.
 972	 *
 973	 * If no pair of bits is found that way, fallback to picking some
 974	 * pair of 'source' and 'dest' bits that are not the same.  If the
 975	 * 'source' and 'dest' bits are the same, this represents a node
 976	 * that will be migrating to itself, so no pages need move.
 977	 *
 978	 * If no bits are left in 'tmp', or if all remaining bits left
 979	 * in 'tmp' correspond to the same bit in 'to', return false
 980	 * (nothing left to migrate).
 981	 *
 982	 * This lets us pick a pair of nodes to migrate between, such that
 983	 * if possible the dest node is not already occupied by some other
 984	 * source node, minimizing the risk of overloading the memory on a
 985	 * node that would happen if we migrated incoming memory to a node
 986	 * before migrating outgoing memory source that same node.
 987	 *
 988	 * A single scan of tmp is sufficient.  As we go, we remember the
 989	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 990	 * that not only moved, but what's better, moved to an empty slot
 991	 * (d is not set in tmp), then we break out then, with that pair.
 992	 * Otherwise when we finish scanning from_tmp, we at least have the
 993	 * most recent <s, d> pair that moved.  If we get all the way through
 994	 * the scan of tmp without finding any node that moved, much less
 995	 * moved to an empty node, then there is nothing left worth migrating.
 996	 */
 997
 998	tmp = *from_nodes;
 999	while (!nodes_empty(tmp)) {
1000		int s,d;
1001		int source = -1;
1002		int dest = 0;
1003
1004		for_each_node_mask(s, tmp) {
1005			d = node_remap(s, *from_nodes, *to_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006			if (s == d)
1007				continue;
1008
1009			source = s;	/* Node moved. Memorize */
1010			dest = d;
1011
1012			/* dest not in remaining from nodes? */
1013			if (!node_isset(dest, tmp))
1014				break;
1015		}
1016		if (source == -1)
1017			break;
1018
1019		node_clear(source, tmp);
1020		err = migrate_to_node(mm, source, dest, flags);
1021		if (err > 0)
1022			busy += err;
1023		if (err < 0)
1024			break;
1025	}
1026out:
1027	up_read(&mm->mmap_sem);
1028	if (err < 0)
1029		return err;
1030	return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not.  N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044	unsigned long uninitialized_var(address);
1045
 
1046	while (vma) {
1047		address = page_address_in_vma(page, vma);
1048		if (address != -EFAULT)
1049			break;
1050		vma = vma->vm_next;
1051	}
1052
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	/*
1054	 * if !vma, alloc_page_vma() will use task or system default policy
1055	 */
1056	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061				unsigned long flags)
1062{
 
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068	return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073	return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078		     unsigned short mode, unsigned short mode_flags,
1079		     nodemask_t *nmask, unsigned long flags)
1080{
1081	struct vm_area_struct *vma;
1082	struct mm_struct *mm = current->mm;
1083	struct mempolicy *new;
1084	unsigned long end;
1085	int err;
 
1086	LIST_HEAD(pagelist);
1087
1088	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090		return -EINVAL;
1091	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092		return -EPERM;
1093
1094	if (start & ~PAGE_MASK)
1095		return -EINVAL;
1096
1097	if (mode == MPOL_DEFAULT)
1098		flags &= ~MPOL_MF_STRICT;
1099
1100	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101	end = start + len;
1102
1103	if (end < start)
1104		return -EINVAL;
1105	if (end == start)
1106		return 0;
1107
1108	new = mpol_new(mode, mode_flags, nmask);
1109	if (IS_ERR(new))
1110		return PTR_ERR(new);
1111
 
 
 
1112	/*
1113	 * If we are using the default policy then operation
1114	 * on discontinuous address spaces is okay after all
1115	 */
1116	if (!new)
1117		flags |= MPOL_MF_DISCONTIG_OK;
1118
1119	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120		 start, start + len, mode, mode_flags,
1121		 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125		err = migrate_prep();
1126		if (err)
1127			goto mpol_out;
1128	}
1129	{
1130		NODEMASK_SCRATCH(scratch);
1131		if (scratch) {
1132			down_write(&mm->mmap_sem);
1133			task_lock(current);
1134			err = mpol_set_nodemask(new, nmask, scratch);
1135			task_unlock(current);
1136			if (err)
1137				up_write(&mm->mmap_sem);
1138		} else
1139			err = -ENOMEM;
1140		NODEMASK_SCRATCH_FREE(scratch);
1141	}
1142	if (err)
1143		goto mpol_out;
1144
1145	vma = check_range(mm, start, end, nmask,
1146			  flags | MPOL_MF_INVERT, &pagelist);
1147
1148	err = PTR_ERR(vma);
1149	if (!IS_ERR(vma)) {
1150		int nr_failed = 0;
 
1151
1152		err = mbind_range(mm, start, end, new);
 
 
 
1153
1154		if (!list_empty(&pagelist)) {
1155			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156						(unsigned long)vma,
1157						false, true);
1158			if (nr_failed)
1159				putback_lru_pages(&pagelist);
1160		}
1161
1162		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163			err = -EIO;
1164	} else
1165		putback_lru_pages(&pagelist);
 
 
 
1166
1167	up_write(&mm->mmap_sem);
1168 mpol_out:
1169	mpol_put(new);
1170	return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179		     unsigned long maxnode)
1180{
1181	unsigned long k;
 
1182	unsigned long nlongs;
1183	unsigned long endmask;
1184
1185	--maxnode;
1186	nodes_clear(*nodes);
1187	if (maxnode == 0 || !nmask)
1188		return 0;
1189	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190		return -EINVAL;
1191
1192	nlongs = BITS_TO_LONGS(maxnode);
1193	if ((maxnode % BITS_PER_LONG) == 0)
1194		endmask = ~0UL;
1195	else
1196		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198	/* When the user specified more nodes than supported just check
1199	   if the non supported part is all zero. */
 
 
 
 
 
 
 
1200	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201		if (nlongs > PAGE_SIZE/sizeof(long))
1202			return -EINVAL;
1203		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204			unsigned long t;
1205			if (get_user(t, nmask + k))
1206				return -EFAULT;
1207			if (k == nlongs - 1) {
1208				if (t & endmask)
1209					return -EINVAL;
1210			} else if (t)
1211				return -EINVAL;
1212		}
1213		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214		endmask = ~0UL;
1215	}
1216
 
 
 
 
 
 
 
 
 
 
1217	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218		return -EFAULT;
1219	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220	return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225			      nodemask_t *nodes)
1226{
1227	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230	if (copy > nbytes) {
1231		if (copy > PAGE_SIZE)
1232			return -EINVAL;
1233		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234			return -EFAULT;
1235		copy = nbytes;
1236	}
1237	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241		unsigned long, mode, unsigned long __user *, nmask,
1242		unsigned long, maxnode, unsigned, flags)
1243{
1244	nodemask_t nodes;
1245	int err;
1246	unsigned short mode_flags;
1247
 
1248	mode_flags = mode & MPOL_MODE_FLAGS;
1249	mode &= ~MPOL_MODE_FLAGS;
1250	if (mode >= MPOL_MAX)
1251		return -EINVAL;
1252	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254		return -EINVAL;
1255	err = get_nodes(&nodes, nmask, maxnode);
1256	if (err)
1257		return err;
1258	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
 
 
 
 
 
 
 
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263		unsigned long, maxnode)
1264{
1265	int err;
1266	nodemask_t nodes;
1267	unsigned short flags;
1268
1269	flags = mode & MPOL_MODE_FLAGS;
1270	mode &= ~MPOL_MODE_FLAGS;
1271	if ((unsigned int)mode >= MPOL_MAX)
1272		return -EINVAL;
1273	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274		return -EINVAL;
1275	err = get_nodes(&nodes, nmask, maxnode);
1276	if (err)
1277		return err;
1278	return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282		const unsigned long __user *, old_nodes,
1283		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1284{
1285	const struct cred *cred = current_cred(), *tcred;
1286	struct mm_struct *mm = NULL;
1287	struct task_struct *task;
1288	nodemask_t task_nodes;
1289	int err;
1290	nodemask_t *old;
1291	nodemask_t *new;
1292	NODEMASK_SCRATCH(scratch);
1293
1294	if (!scratch)
1295		return -ENOMEM;
1296
1297	old = &scratch->mask1;
1298	new = &scratch->mask2;
1299
1300	err = get_nodes(old, old_nodes, maxnode);
1301	if (err)
1302		goto out;
1303
1304	err = get_nodes(new, new_nodes, maxnode);
1305	if (err)
1306		goto out;
1307
1308	/* Find the mm_struct */
1309	rcu_read_lock();
1310	task = pid ? find_task_by_vpid(pid) : current;
1311	if (!task) {
1312		rcu_read_unlock();
1313		err = -ESRCH;
1314		goto out;
1315	}
1316	mm = get_task_mm(task);
1317	rcu_read_unlock();
1318
1319	err = -EINVAL;
1320	if (!mm)
1321		goto out;
1322
1323	/*
1324	 * Check if this process has the right to modify the specified
1325	 * process. The right exists if the process has administrative
1326	 * capabilities, superuser privileges or the same
1327	 * userid as the target process.
1328	 */
1329	rcu_read_lock();
1330	tcred = __task_cred(task);
1331	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333	    !capable(CAP_SYS_NICE)) {
1334		rcu_read_unlock();
1335		err = -EPERM;
1336		goto out;
1337	}
1338	rcu_read_unlock();
1339
1340	task_nodes = cpuset_mems_allowed(task);
1341	/* Is the user allowed to access the target nodes? */
1342	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343		err = -EPERM;
1344		goto out;
1345	}
1346
1347	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348		err = -EINVAL;
1349		goto out;
1350	}
1351
1352	err = security_task_movememory(task);
1353	if (err)
 
 
 
 
 
 
 
1354		goto out;
 
1355
1356	err = do_migrate_pages(mm, old, new,
1357		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 
 
1358out:
1359	if (mm)
1360		mmput(mm);
1361	NODEMASK_SCRATCH_FREE(scratch);
1362
1363	return err;
 
 
 
 
 
 
 
 
 
 
 
 
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369		unsigned long __user *, nmask, unsigned long, maxnode,
1370		unsigned long, addr, unsigned long, flags)
 
 
1371{
1372	int err;
1373	int uninitialized_var(pval);
1374	nodemask_t nodes;
1375
1376	if (nmask != NULL && maxnode < MAX_NUMNODES)
 
 
1377		return -EINVAL;
1378
1379	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381	if (err)
1382		return err;
1383
1384	if (policy && put_user(pval, policy))
1385		return -EFAULT;
1386
1387	if (nmask)
1388		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390	return err;
1391}
1392
 
 
 
 
 
 
 
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396				     compat_ulong_t __user *nmask,
1397				     compat_ulong_t maxnode,
1398				     compat_ulong_t addr, compat_ulong_t flags)
1399{
1400	long err;
1401	unsigned long __user *nm = NULL;
1402	unsigned long nr_bits, alloc_size;
1403	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408	if (nmask)
1409		nm = compat_alloc_user_space(alloc_size);
1410
1411	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413	if (!err && nmask) {
1414		unsigned long copy_size;
1415		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416		err = copy_from_user(bm, nm, copy_size);
1417		/* ensure entire bitmap is zeroed */
1418		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420	}
1421
1422	return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426				     compat_ulong_t maxnode)
1427{
1428	long err = 0;
1429	unsigned long __user *nm = NULL;
1430	unsigned long nr_bits, alloc_size;
1431	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436	if (nmask) {
1437		err = compat_get_bitmap(bm, nmask, nr_bits);
 
1438		nm = compat_alloc_user_space(alloc_size);
1439		err |= copy_to_user(nm, bm, alloc_size);
 
1440	}
1441
1442	if (err)
1443		return -EFAULT;
1444
1445	return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450			     compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452	long err = 0;
1453	unsigned long __user *nm = NULL;
1454	unsigned long nr_bits, alloc_size;
1455	nodemask_t bm;
1456
1457	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460	if (nmask) {
1461		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 
1462		nm = compat_alloc_user_space(alloc_size);
1463		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 
1464	}
1465
1466	if (err)
1467		return -EFAULT;
1468
1469	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470}
1471
1472#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma   - virtual memory area whose policy is sought
1478 * @addr  - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task.  It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491		struct vm_area_struct *vma, unsigned long addr)
1492{
1493	struct mempolicy *pol = task->mempolicy;
1494
1495	if (vma) {
1496		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498									addr);
1499			if (vpol)
1500				pol = vpol;
1501		} else if (vma->vm_policy)
1502			pol = vma->vm_policy;
1503	}
1504	if (!pol)
1505		pol = &default_policy;
 
1506	return pol;
1507}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516	if (unlikely(policy->mode == MPOL_BIND) &&
1517			gfp_zone(gfp) >= policy_zone &&
1518			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519		return &policy->v.nodes;
1520
1521	return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526	int nd)
1527{
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
 
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
 
 
 
 
 
 
 
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
 
 
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone ? zone->node : numa_node_id();
1601	}
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
 
 
 
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
1616
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656	int w, bit = -1;
1657
1658	w = nodes_weight(*maskp);
1659	if (w)
1660		bit = bitmap_ord_to_pos(maskp->bits,
1661			get_random_int() % w, MAX_NUMNODES);
1662	return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682				gfp_t gfp_flags, struct mempolicy **mpol,
1683				nodemask_t **nodemask)
1684{
1685	struct zonelist *zl;
1686
1687	*mpol = get_vma_policy(current, vma, addr);
1688	*nodemask = NULL;	/* assume !MPOL_BIND */
1689
1690	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692				huge_page_shift(hstate_vma(vma))), gfp_flags);
1693	} else {
1694		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695		if ((*mpol)->mode == MPOL_BIND)
1696			*nodemask = &(*mpol)->v.nodes;
1697	}
1698	return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy.  Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719	struct mempolicy *mempolicy;
1720	int nid;
1721
1722	if (!(mask && current->mempolicy))
1723		return false;
1724
1725	task_lock(current);
1726	mempolicy = current->mempolicy;
1727	switch (mempolicy->mode) {
1728	case MPOL_PREFERRED:
1729		if (mempolicy->flags & MPOL_F_LOCAL)
1730			nid = numa_node_id();
1731		else
1732			nid = mempolicy->v.preferred_node;
1733		init_nodemask_of_node(mask, nid);
1734		break;
1735
1736	case MPOL_BIND:
1737		/* Fall through */
1738	case MPOL_INTERLEAVE:
1739		*mask =  mempolicy->v.nodes;
1740		break;
1741
1742	default:
1743		BUG();
1744	}
1745	task_unlock(current);
1746
1747	return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy.  Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762					const nodemask_t *mask)
1763{
1764	struct mempolicy *mempolicy;
1765	bool ret = true;
1766
1767	if (!mask)
1768		return ret;
1769	task_lock(tsk);
1770	mempolicy = tsk->mempolicy;
1771	if (!mempolicy)
1772		goto out;
1773
1774	switch (mempolicy->mode) {
1775	case MPOL_PREFERRED:
1776		/*
1777		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778		 * allocate from, they may fallback to other nodes when oom.
1779		 * Thus, it's possible for tsk to have allocated memory from
1780		 * nodes in mask.
1781		 */
1782		break;
1783	case MPOL_BIND:
1784	case MPOL_INTERLEAVE:
1785		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786		break;
1787	default:
1788		BUG();
1789	}
1790out:
1791	task_unlock(tsk);
1792	return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796   Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798					unsigned nid)
1799{
1800	struct zonelist *zl;
1801	struct page *page;
1802
1803	zl = node_zonelist(nid, gfp);
1804	page = __alloc_pages(gfp, order, zl);
1805	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
1807	return page;
1808}
1809
1810/**
1811 * 	alloc_pages_vma	- Allocate a page for a VMA.
1812 *
1813 * 	@gfp:
1814 *      %GFP_USER    user allocation.
1815 *      %GFP_KERNEL  kernel allocations,
1816 *      %GFP_HIGHMEM highmem/user allocations,
1817 *      %GFP_FS      allocation should not call back into a file system.
1818 *      %GFP_ATOMIC  don't sleep.
1819 *
1820 *	@order:Order of the GFP allocation.
1821 * 	@vma:  Pointer to VMA or NULL if not available.
1822 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 
 
1823 *
1824 * 	This function allocates a page from the kernel page pool and applies
1825 *	a NUMA policy associated with the VMA or the current process.
1826 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 *	mm_struct of the VMA to prevent it from going away. Should be used for
1828 *	all allocations for pages that will be mapped into
1829 * 	user space. Returns NULL when no page can be allocated.
1830 *
1831 *	Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835		unsigned long addr, int node)
1836{
1837	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838	struct zonelist *zl;
1839	struct page *page;
 
 
1840
1841	get_mems_allowed();
1842	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
 
1843		unsigned nid;
1844
1845		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846		mpol_cond_put(pol);
1847		page = alloc_page_interleave(gfp, order, nid);
1848		put_mems_allowed();
1849		return page;
1850	}
1851	zl = policy_zonelist(gfp, pol, node);
1852	if (unlikely(mpol_needs_cond_ref(pol))) {
 
 
1853		/*
1854		 * slow path: ref counted shared policy
 
 
 
 
 
 
 
1855		 */
1856		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857						zl, policy_nodemask(gfp, pol));
1858		__mpol_put(pol);
1859		put_mems_allowed();
1860		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861	}
1862	/*
1863	 * fast path:  default or task policy
1864	 */
1865	page = __alloc_pages_nodemask(gfp, order, zl,
1866				      policy_nodemask(gfp, pol));
1867	put_mems_allowed();
1868	return page;
1869}
 
1870
1871/**
1872 * 	alloc_pages_current - Allocate pages.
1873 *
1874 *	@gfp:
1875 *		%GFP_USER   user allocation,
1876 *      	%GFP_KERNEL kernel allocation,
1877 *      	%GFP_HIGHMEM highmem allocation,
1878 *      	%GFP_FS     don't call back into a file system.
1879 *      	%GFP_ATOMIC don't sleep.
1880 *	@order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 *	Allocate a page from the kernel page pool.  When not in
1883 *	interrupt context and apply the current process NUMA policy.
1884 *	Returns NULL when no page can be allocated.
1885 *
1886 *	Don't call cpuset_update_task_memory_state() unless
1887 *	1) it's ok to take cpuset_sem (can WAIT), and
1888 *	2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892	struct mempolicy *pol = current->mempolicy;
1893	struct page *page;
1894
1895	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896		pol = &default_policy;
1897
1898	get_mems_allowed();
1899	/*
1900	 * No reference counting needed for current->mempolicy
1901	 * nor system default_policy
1902	 */
1903	if (pol->mode == MPOL_INTERLEAVE)
1904		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905	else
1906		page = __alloc_pages_nodemask(gfp, order,
1907				policy_zonelist(gfp, pol, numa_node_id()),
1908				policy_nodemask(gfp, pol));
1909	put_mems_allowed();
1910	return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
 
 
 
 
 
 
 
 
 
 
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed().  This
1918 * keeps mempolicies cpuset relative after its cpuset moves.  See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930	if (!new)
1931		return ERR_PTR(-ENOMEM);
1932
1933	/* task's mempolicy is protected by alloc_lock */
1934	if (old == current->mempolicy) {
1935		task_lock(current);
1936		*new = *old;
1937		task_unlock(current);
1938	} else
1939		*new = *old;
1940
1941	rcu_read_lock();
1942	if (current_cpuset_is_being_rebound()) {
1943		nodemask_t mems = cpuset_mems_allowed(current);
1944		if (new->flags & MPOL_F_REBINDING)
1945			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946		else
1947			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948	}
1949	rcu_read_unlock();
1950	atomic_set(&new->refcnt, 1);
1951	return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958 * after return.  Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965						struct mempolicy *frompol)
1966{
1967	if (!mpol_needs_cond_ref(frompol))
1968		return frompol;
1969
1970	*tompol = *frompol;
1971	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972	__mpol_put(frompol);
1973	return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979	if (!a || !b)
1980		return 0;
1981	if (a->mode != b->mode)
1982		return 0;
1983	if (a->flags != b->flags)
1984		return 0;
1985	if (mpol_store_user_nodemask(a))
1986		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987			return 0;
1988
1989	switch (a->mode) {
1990	case MPOL_BIND:
1991		/* Fall through */
1992	case MPOL_INTERLEAVE:
1993		return nodes_equal(a->v.nodes, b->v.nodes);
1994	case MPOL_PREFERRED:
 
 
 
1995		return a->v.preferred_node == b->v.preferred_node;
1996	default:
1997		BUG();
1998		return 0;
1999	}
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
 
 
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016	struct rb_node *n = sp->root.rb_node;
2017
2018	while (n) {
2019		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021		if (start >= p->end)
2022			n = n->rb_right;
2023		else if (end <= p->start)
2024			n = n->rb_left;
2025		else
2026			break;
2027	}
2028	if (!n)
2029		return NULL;
2030	for (;;) {
2031		struct sp_node *w = NULL;
2032		struct rb_node *prev = rb_prev(n);
2033		if (!prev)
2034			break;
2035		w = rb_entry(prev, struct sp_node, nd);
2036		if (w->end <= start)
2037			break;
2038		n = prev;
2039	}
2040	return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
 
 
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047	struct rb_node **p = &sp->root.rb_node;
2048	struct rb_node *parent = NULL;
2049	struct sp_node *nd;
2050
2051	while (*p) {
2052		parent = *p;
2053		nd = rb_entry(parent, struct sp_node, nd);
2054		if (new->start < nd->start)
2055			p = &(*p)->rb_left;
2056		else if (new->end > nd->end)
2057			p = &(*p)->rb_right;
2058		else
2059			BUG();
2060	}
2061	rb_link_node(&new->nd, parent, p);
2062	rb_insert_color(&new->nd, &sp->root);
2063	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064		 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071	struct mempolicy *pol = NULL;
2072	struct sp_node *sn;
2073
2074	if (!sp->root.rb_node)
2075		return NULL;
2076	spin_lock(&sp->lock);
2077	sn = sp_lookup(sp, idx, idx+1);
2078	if (sn) {
2079		mpol_get(sn->policy);
2080		pol = sn->policy;
2081	}
2082	spin_unlock(&sp->lock);
2083	return pol;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089	rb_erase(&n->nd, &sp->root);
2090	mpol_put(n->policy);
2091	kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095				struct mempolicy *pol)
2096{
2097	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 
2098
 
2099	if (!n)
2100		return NULL;
2101	n->start = start;
2102	n->end = end;
2103	mpol_get(pol);
2104	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105	n->policy = pol;
 
 
 
 
2106	return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111				 unsigned long end, struct sp_node *new)
2112{
2113	struct sp_node *n, *new2 = NULL;
 
 
 
2114
2115restart:
2116	spin_lock(&sp->lock);
2117	n = sp_lookup(sp, start, end);
2118	/* Take care of old policies in the same range. */
2119	while (n && n->start < end) {
2120		struct rb_node *next = rb_next(&n->nd);
2121		if (n->start >= start) {
2122			if (n->end <= end)
2123				sp_delete(sp, n);
2124			else
2125				n->start = end;
2126		} else {
2127			/* Old policy spanning whole new range. */
2128			if (n->end > end) {
2129				if (!new2) {
2130					spin_unlock(&sp->lock);
2131					new2 = sp_alloc(end, n->end, n->policy);
2132					if (!new2)
2133						return -ENOMEM;
2134					goto restart;
2135				}
2136				n->end = start;
2137				sp_insert(sp, new2);
2138				new2 = NULL;
 
2139				break;
2140			} else
2141				n->end = start;
2142		}
2143		if (!next)
2144			break;
2145		n = rb_entry(next, struct sp_node, nd);
2146	}
2147	if (new)
2148		sp_insert(sp, new);
2149	spin_unlock(&sp->lock);
2150	if (new2) {
2151		mpol_put(new2->policy);
2152		kmem_cache_free(sn_cache, new2);
2153	}
2154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol:  struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169	int ret;
2170
2171	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172	spin_lock_init(&sp->lock);
2173
2174	if (mpol) {
2175		struct vm_area_struct pvma;
2176		struct mempolicy *new;
2177		NODEMASK_SCRATCH(scratch);
2178
2179		if (!scratch)
2180			goto put_mpol;
2181		/* contextualize the tmpfs mount point mempolicy */
2182		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183		if (IS_ERR(new))
2184			goto free_scratch; /* no valid nodemask intersection */
2185
2186		task_lock(current);
2187		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188		task_unlock(current);
2189		if (ret)
2190			goto put_new;
2191
2192		/* Create pseudo-vma that contains just the policy */
2193		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198		mpol_put(new);			/* drop initial ref */
2199free_scratch:
2200		NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203	}
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207			struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209	int err;
2210	struct sp_node *new = NULL;
2211	unsigned long sz = vma_pages(vma);
2212
2213	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214		 vma->vm_pgoff,
2215		 sz, npol ? npol->mode : -1,
2216		 npol ? npol->flags : -1,
2217		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219	if (npol) {
2220		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221		if (!new)
2222			return -ENOMEM;
2223	}
2224	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225	if (err && new)
2226		kmem_cache_free(sn_cache, new);
2227	return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233	struct sp_node *n;
2234	struct rb_node *next;
2235
2236	if (!p->root.rb_node)
2237		return;
2238	spin_lock(&p->lock);
2239	next = rb_first(&p->root);
2240	while (next) {
2241		n = rb_entry(next, struct sp_node, nd);
2242		next = rb_next(&n->nd);
2243		rb_erase(&n->nd, &p->root);
2244		mpol_put(n->policy);
2245		kmem_cache_free(sn_cache, n);
2246	}
2247	spin_unlock(&p->lock);
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253	nodemask_t interleave_nodes;
2254	unsigned long largest = 0;
2255	int nid, prefer = 0;
2256
2257	policy_cache = kmem_cache_create("numa_policy",
2258					 sizeof(struct mempolicy),
2259					 0, SLAB_PANIC, NULL);
2260
2261	sn_cache = kmem_cache_create("shared_policy_node",
2262				     sizeof(struct sp_node),
2263				     0, SLAB_PANIC, NULL);
2264
 
 
 
 
 
 
 
 
 
2265	/*
2266	 * Set interleaving policy for system init. Interleaving is only
2267	 * enabled across suitably sized nodes (default is >= 16MB), or
2268	 * fall back to the largest node if they're all smaller.
2269	 */
2270	nodes_clear(interleave_nodes);
2271	for_each_node_state(nid, N_HIGH_MEMORY) {
2272		unsigned long total_pages = node_present_pages(nid);
2273
2274		/* Preserve the largest node */
2275		if (largest < total_pages) {
2276			largest = total_pages;
2277			prefer = nid;
2278		}
2279
2280		/* Interleave this node? */
2281		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282			node_set(nid, interleave_nodes);
2283	}
2284
2285	/* All too small, use the largest */
2286	if (unlikely(nodes_empty(interleave_nodes)))
2287		node_set(prefer, interleave_nodes);
2288
2289	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290		printk("numa_policy_init: interleaving failed\n");
 
 
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310	[MPOL_DEFAULT]    = "default",
2311	[MPOL_PREFERRED]  = "prefer",
2312	[MPOL_BIND]       = "bind",
2313	[MPOL_INTERLEAVE] = "interleave",
2314	[MPOL_LOCAL]      = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str:  string containing mempolicy to parse
2322 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323 * @no_context:  flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 *	<mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331 * mount option.  Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved.  Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339	struct mempolicy *new = NULL;
2340	unsigned short mode;
2341	unsigned short uninitialized_var(mode_flags);
2342	nodemask_t nodes;
2343	char *nodelist = strchr(str, ':');
2344	char *flags = strchr(str, '=');
2345	int err = 1;
2346
2347	if (nodelist) {
2348		/* NUL-terminate mode or flags string */
2349		*nodelist++ = '\0';
2350		if (nodelist_parse(nodelist, nodes))
2351			goto out;
2352		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353			goto out;
2354	} else
2355		nodes_clear(nodes);
2356
2357	if (flags)
2358		*flags++ = '\0';	/* terminate mode string */
2359
2360	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361		if (!strcmp(str, policy_modes[mode])) {
2362			break;
2363		}
2364	}
2365	if (mode > MPOL_LOCAL)
2366		goto out;
2367
2368	switch (mode) {
2369	case MPOL_PREFERRED:
2370		/*
2371		 * Insist on a nodelist of one node only
2372		 */
2373		if (nodelist) {
2374			char *rest = nodelist;
2375			while (isdigit(*rest))
2376				rest++;
2377			if (*rest)
2378				goto out;
2379		}
2380		break;
2381	case MPOL_INTERLEAVE:
2382		/*
2383		 * Default to online nodes with memory if no nodelist
2384		 */
2385		if (!nodelist)
2386			nodes = node_states[N_HIGH_MEMORY];
2387		break;
2388	case MPOL_LOCAL:
2389		/*
2390		 * Don't allow a nodelist;  mpol_new() checks flags
2391		 */
2392		if (nodelist)
2393			goto out;
2394		mode = MPOL_PREFERRED;
2395		break;
2396	case MPOL_DEFAULT:
2397		/*
2398		 * Insist on a empty nodelist
2399		 */
2400		if (!nodelist)
2401			err = 0;
2402		goto out;
2403	case MPOL_BIND:
2404		/*
2405		 * Insist on a nodelist
2406		 */
2407		if (!nodelist)
2408			goto out;
2409	}
2410
2411	mode_flags = 0;
2412	if (flags) {
2413		/*
2414		 * Currently, we only support two mutually exclusive
2415		 * mode flags.
2416		 */
2417		if (!strcmp(flags, "static"))
2418			mode_flags |= MPOL_F_STATIC_NODES;
2419		else if (!strcmp(flags, "relative"))
2420			mode_flags |= MPOL_F_RELATIVE_NODES;
2421		else
2422			goto out;
2423	}
2424
2425	new = mpol_new(mode, mode_flags, &nodes);
2426	if (IS_ERR(new))
2427		goto out;
2428
2429	if (no_context) {
2430		/* save for contextualization */
2431		new->w.user_nodemask = nodes;
2432	} else {
2433		int ret;
2434		NODEMASK_SCRATCH(scratch);
2435		if (scratch) {
2436			task_lock(current);
2437			ret = mpol_set_nodemask(new, &nodes, scratch);
2438			task_unlock(current);
2439		} else
2440			ret = -ENOMEM;
2441		NODEMASK_SCRATCH_FREE(scratch);
2442		if (ret) {
2443			mpol_put(new);
2444			goto out;
2445		}
2446	}
2447	err = 0;
2448
2449out:
2450	/* Restore string for error message */
2451	if (nodelist)
2452		*--nodelist = ':';
2453	if (flags)
2454		*--flags = '=';
2455	if (!err)
2456		*mpol = new;
2457	return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer:  to contain formatted mempolicy string
2464 * @maxlen:  length of @buffer
2465 * @pol:  pointer to mempolicy to be formatted
2466 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474	char *p = buffer;
2475	int l;
2476	nodemask_t nodes;
2477	unsigned short mode;
2478	unsigned short flags = pol ? pol->flags : 0;
2479
2480	/*
2481	 * Sanity check:  room for longest mode, flag and some nodes
2482	 */
2483	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485	if (!pol || pol == &default_policy)
2486		mode = MPOL_DEFAULT;
2487	else
2488		mode = pol->mode;
 
 
2489
2490	switch (mode) {
2491	case MPOL_DEFAULT:
2492		nodes_clear(nodes);
2493		break;
2494
2495	case MPOL_PREFERRED:
2496		nodes_clear(nodes);
2497		if (flags & MPOL_F_LOCAL)
2498			mode = MPOL_LOCAL;	/* pseudo-policy */
2499		else
2500			node_set(pol->v.preferred_node, nodes);
2501		break;
2502
2503	case MPOL_BIND:
2504		/* Fall through */
2505	case MPOL_INTERLEAVE:
2506		if (no_context)
2507			nodes = pol->w.user_nodemask;
2508		else
2509			nodes = pol->v.nodes;
2510		break;
2511
2512	default:
2513		BUG();
 
 
2514	}
2515
2516	l = strlen(policy_modes[mode]);
2517	if (buffer + maxlen < p + l + 1)
2518		return -ENOSPC;
2519
2520	strcpy(p, policy_modes[mode]);
2521	p += l;
2522
2523	if (flags & MPOL_MODE_FLAGS) {
2524		if (buffer + maxlen < p + 2)
2525			return -ENOSPC;
2526		*p++ = '=';
2527
2528		/*
2529		 * Currently, the only defined flags are mutually exclusive
2530		 */
2531		if (flags & MPOL_F_STATIC_NODES)
2532			p += snprintf(p, buffer + maxlen - p, "static");
2533		else if (flags & MPOL_F_RELATIVE_NODES)
2534			p += snprintf(p, buffer + maxlen - p, "relative");
2535	}
2536
2537	if (!nodes_empty(nodes)) {
2538		if (buffer + maxlen < p + 2)
2539			return -ENOSPC;
2540		*p++ = ':';
2541	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542	}
2543	return p - buffer;
2544}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129
 130struct mempolicy *get_task_policy(struct task_struct *p)
 
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 210		return 0;
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 404};
 405
 406static int migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431/*
 432 * queue_pages_pmd() has four possible return values:
 433 * 0 - pages are placed on the right node or queued successfully.
 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 435 *     specified.
 436 * 2 - THP was split.
 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 438 *        existing page was already on a node that does not follow the
 439 *        policy.
 440 */
 441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 442				unsigned long end, struct mm_walk *walk)
 443{
 444	int ret = 0;
 445	struct page *page;
 446	struct queue_pages *qp = walk->private;
 447	unsigned long flags;
 448
 449	if (unlikely(is_pmd_migration_entry(*pmd))) {
 450		ret = -EIO;
 451		goto unlock;
 452	}
 453	page = pmd_page(*pmd);
 454	if (is_huge_zero_page(page)) {
 455		spin_unlock(ptl);
 456		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 457		ret = 2;
 458		goto out;
 459	}
 460	if (!queue_pages_required(page, qp))
 461		goto unlock;
 462
 463	flags = qp->flags;
 464	/* go to thp migration */
 465	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 466		if (!vma_migratable(walk->vma) ||
 467		    migrate_page_add(page, qp->pagelist, flags)) {
 468			ret = 1;
 469			goto unlock;
 470		}
 471	} else
 472		ret = -EIO;
 473unlock:
 474	spin_unlock(ptl);
 475out:
 476	return ret;
 477}
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 *
 483 * queue_pages_pte_range() has three possible return values:
 484 * 0 - pages are placed on the right node or queued successfully.
 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 486 *     specified.
 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 488 *        on a node that does not follow the policy.
 489 */
 490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 491			unsigned long end, struct mm_walk *walk)
 492{
 493	struct vm_area_struct *vma = walk->vma;
 494	struct page *page;
 495	struct queue_pages *qp = walk->private;
 496	unsigned long flags = qp->flags;
 497	int ret;
 498	bool has_unmovable = false;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	ptl = pmd_trans_huge_lock(pmd, vma);
 503	if (ptl) {
 504		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 505		if (ret != 2)
 506			return ret;
 507	}
 508	/* THP was split, fall through to pte walk */
 509
 510	if (pmd_trans_unstable(pmd))
 511		return 0;
 512
 513	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 514	for (; addr != end; pte++, addr += PAGE_SIZE) {
 515		if (!pte_present(*pte))
 516			continue;
 517		page = vm_normal_page(vma, addr, *pte);
 518		if (!page)
 519			continue;
 520		/*
 521		 * vm_normal_page() filters out zero pages, but there might
 522		 * still be PageReserved pages to skip, perhaps in a VDSO.
 
 523		 */
 524		if (PageReserved(page))
 525			continue;
 526		if (!queue_pages_required(page, qp))
 
 527			continue;
 528		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 529			/* MPOL_MF_STRICT must be specified if we get here */
 530			if (!vma_migratable(vma)) {
 531				has_unmovable = true;
 532				break;
 533			}
 534
 535			/*
 536			 * Do not abort immediately since there may be
 537			 * temporary off LRU pages in the range.  Still
 538			 * need migrate other LRU pages.
 539			 */
 540			if (migrate_page_add(page, qp->pagelist, flags))
 541				has_unmovable = true;
 542		} else
 543			break;
 544	}
 545	pte_unmap_unlock(pte - 1, ptl);
 546	cond_resched();
 547
 548	if (has_unmovable)
 549		return 1;
 550
 551	return addr != end ? -EIO : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552}
 553
 554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 555			       unsigned long addr, unsigned long end,
 556			       struct mm_walk *walk)
 557{
 558#ifdef CONFIG_HUGETLB_PAGE
 559	struct queue_pages *qp = walk->private;
 560	unsigned long flags = qp->flags;
 561	struct page *page;
 562	spinlock_t *ptl;
 563	pte_t entry;
 564
 565	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 566	entry = huge_ptep_get(pte);
 567	if (!pte_present(entry))
 568		goto unlock;
 569	page = pte_page(entry);
 570	if (!queue_pages_required(page, qp))
 571		goto unlock;
 572	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 573	if (flags & (MPOL_MF_MOVE_ALL) ||
 574	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 575		isolate_huge_page(page, qp->pagelist);
 576unlock:
 577	spin_unlock(ptl);
 578#else
 579	BUG();
 580#endif
 581	return 0;
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585/*
 586 * This is used to mark a range of virtual addresses to be inaccessible.
 587 * These are later cleared by a NUMA hinting fault. Depending on these
 588 * faults, pages may be migrated for better NUMA placement.
 589 *
 590 * This is assuming that NUMA faults are handled using PROT_NONE. If
 591 * an architecture makes a different choice, it will need further
 592 * changes to the core.
 593 */
 594unsigned long change_prot_numa(struct vm_area_struct *vma,
 595			unsigned long addr, unsigned long end)
 596{
 597	int nr_updated;
 598
 599	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 600	if (nr_updated)
 601		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 602
 603	return nr_updated;
 604}
 605#else
 606static unsigned long change_prot_numa(struct vm_area_struct *vma,
 607			unsigned long addr, unsigned long end)
 608{
 609	return 0;
 610}
 611#endif /* CONFIG_NUMA_BALANCING */
 612
 613static int queue_pages_test_walk(unsigned long start, unsigned long end,
 614				struct mm_walk *walk)
 
 
 
 
 
 
 615{
 616	struct vm_area_struct *vma = walk->vma;
 617	struct queue_pages *qp = walk->private;
 618	unsigned long endvma = vma->vm_end;
 619	unsigned long flags = qp->flags;
 620
 621	/*
 622	 * Need check MPOL_MF_STRICT to return -EIO if possible
 623	 * regardless of vma_migratable
 624	 */
 625	if (!vma_migratable(vma) &&
 626	    !(flags & MPOL_MF_STRICT))
 627		return 1;
 628
 629	if (endvma > end)
 630		endvma = end;
 631	if (vma->vm_start > start)
 632		start = vma->vm_start;
 633
 634	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 635		if (!vma->vm_next && vma->vm_end < end)
 636			return -EFAULT;
 637		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 638			return -EFAULT;
 639	}
 640
 641	qp->prev = vma;
 642
 643	if (flags & MPOL_MF_LAZY) {
 644		/* Similar to task_numa_work, skip inaccessible VMAs */
 645		if (!is_vm_hugetlb_page(vma) &&
 646			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 647			!(vma->vm_flags & VM_MIXEDMAP))
 648			change_prot_numa(vma, start, endvma);
 649		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 650	}
 651
 652	/* queue pages from current vma */
 653	if (flags & MPOL_MF_VALID)
 654		return 0;
 655	return 1;
 656}
 657
 658static const struct mm_walk_ops queue_pages_walk_ops = {
 659	.hugetlb_entry		= queue_pages_hugetlb,
 660	.pmd_entry		= queue_pages_pte_range,
 661	.test_walk		= queue_pages_test_walk,
 662};
 663
 664/*
 665 * Walk through page tables and collect pages to be migrated.
 666 *
 667 * If pages found in a given range are on a set of nodes (determined by
 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 669 * passed via @private.
 670 *
 671 * queue_pages_range() has three possible return values:
 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 673 *     specified.
 674 * 0 - queue pages successfully or no misplaced page.
 675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 676 *         memory range specified by nodemask and maxnode points outside
 677 *         your accessible address space (-EFAULT)
 678 */
 679static int
 680queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 681		nodemask_t *nodes, unsigned long flags,
 682		struct list_head *pagelist)
 683{
 684	struct queue_pages qp = {
 685		.pagelist = pagelist,
 686		.flags = flags,
 687		.nmask = nodes,
 688		.prev = NULL,
 689	};
 690
 691	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 692}
 693
 694/*
 695 * Apply policy to a single VMA
 696 * This must be called with the mmap_sem held for writing.
 697 */
 698static int vma_replace_policy(struct vm_area_struct *vma,
 699						struct mempolicy *pol)
 700{
 701	int err;
 702	struct mempolicy *old;
 703	struct mempolicy *new;
 704
 705	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 706		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 707		 vma->vm_ops, vma->vm_file,
 708		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 709
 710	new = mpol_dup(pol);
 711	if (IS_ERR(new))
 712		return PTR_ERR(new);
 713
 714	if (vma->vm_ops && vma->vm_ops->set_policy) {
 715		err = vma->vm_ops->set_policy(vma, new);
 716		if (err)
 717			goto err_out;
 
 
 718	}
 719
 720	old = vma->vm_policy;
 721	vma->vm_policy = new; /* protected by mmap_sem */
 722	mpol_put(old);
 723
 724	return 0;
 725 err_out:
 726	mpol_put(new);
 727	return err;
 728}
 729
 730/* Step 2: apply policy to a range and do splits. */
 731static int mbind_range(struct mm_struct *mm, unsigned long start,
 732		       unsigned long end, struct mempolicy *new_pol)
 733{
 734	struct vm_area_struct *next;
 735	struct vm_area_struct *prev;
 736	struct vm_area_struct *vma;
 737	int err = 0;
 738	pgoff_t pgoff;
 739	unsigned long vmstart;
 740	unsigned long vmend;
 741
 742	vma = find_vma(mm, start);
 743	if (!vma || vma->vm_start > start)
 744		return -EFAULT;
 745
 746	prev = vma->vm_prev;
 747	if (start > vma->vm_start)
 748		prev = vma;
 749
 750	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 751		next = vma->vm_next;
 752		vmstart = max(start, vma->vm_start);
 753		vmend   = min(end, vma->vm_end);
 754
 755		if (mpol_equal(vma_policy(vma), new_pol))
 756			continue;
 757
 758		pgoff = vma->vm_pgoff +
 759			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 760		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 761				 vma->anon_vma, vma->vm_file, pgoff,
 762				 new_pol, vma->vm_userfaultfd_ctx);
 763		if (prev) {
 764			vma = prev;
 765			next = vma->vm_next;
 766			if (mpol_equal(vma_policy(vma), new_pol))
 767				continue;
 768			/* vma_merge() joined vma && vma->next, case 8 */
 769			goto replace;
 770		}
 771		if (vma->vm_start != vmstart) {
 772			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 773			if (err)
 774				goto out;
 775		}
 776		if (vma->vm_end != vmend) {
 777			err = split_vma(vma->vm_mm, vma, vmend, 0);
 778			if (err)
 779				goto out;
 780		}
 781 replace:
 782		err = vma_replace_policy(vma, new_pol);
 783		if (err)
 784			goto out;
 785	}
 786
 787 out:
 788	return err;
 789}
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791/* Set the process memory policy */
 792static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 793			     nodemask_t *nodes)
 794{
 795	struct mempolicy *new, *old;
 
 796	NODEMASK_SCRATCH(scratch);
 797	int ret;
 798
 799	if (!scratch)
 800		return -ENOMEM;
 801
 802	new = mpol_new(mode, flags, nodes);
 803	if (IS_ERR(new)) {
 804		ret = PTR_ERR(new);
 805		goto out;
 806	}
 807
 
 
 
 
 
 
 
 808	task_lock(current);
 809	ret = mpol_set_nodemask(new, nodes, scratch);
 810	if (ret) {
 811		task_unlock(current);
 
 
 812		mpol_put(new);
 813		goto out;
 814	}
 815	old = current->mempolicy;
 816	current->mempolicy = new;
 817	if (new && new->mode == MPOL_INTERLEAVE)
 818		current->il_prev = MAX_NUMNODES-1;
 
 
 819	task_unlock(current);
 
 
 
 820	mpol_put(old);
 821	ret = 0;
 822out:
 823	NODEMASK_SCRATCH_FREE(scratch);
 824	return ret;
 825}
 826
 827/*
 828 * Return nodemask for policy for get_mempolicy() query
 829 *
 830 * Called with task's alloc_lock held
 831 */
 832static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 833{
 834	nodes_clear(*nodes);
 835	if (p == &default_policy)
 836		return;
 837
 838	switch (p->mode) {
 839	case MPOL_BIND:
 840		/* Fall through */
 841	case MPOL_INTERLEAVE:
 842		*nodes = p->v.nodes;
 843		break;
 844	case MPOL_PREFERRED:
 845		if (!(p->flags & MPOL_F_LOCAL))
 846			node_set(p->v.preferred_node, *nodes);
 847		/* else return empty node mask for local allocation */
 848		break;
 849	default:
 850		BUG();
 851	}
 852}
 853
 854static int lookup_node(struct mm_struct *mm, unsigned long addr)
 855{
 856	struct page *p;
 857	int err;
 858
 859	int locked = 1;
 860	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 861	if (err >= 0) {
 862		err = page_to_nid(p);
 863		put_page(p);
 864	}
 865	if (locked)
 866		up_read(&mm->mmap_sem);
 867	return err;
 868}
 869
 870/* Retrieve NUMA policy */
 871static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 872			     unsigned long addr, unsigned long flags)
 873{
 874	int err;
 875	struct mm_struct *mm = current->mm;
 876	struct vm_area_struct *vma = NULL;
 877	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 878
 879	if (flags &
 880		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 881		return -EINVAL;
 882
 883	if (flags & MPOL_F_MEMS_ALLOWED) {
 884		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 885			return -EINVAL;
 886		*policy = 0;	/* just so it's initialized */
 887		task_lock(current);
 888		*nmask  = cpuset_current_mems_allowed;
 889		task_unlock(current);
 890		return 0;
 891	}
 892
 893	if (flags & MPOL_F_ADDR) {
 894		/*
 895		 * Do NOT fall back to task policy if the
 896		 * vma/shared policy at addr is NULL.  We
 897		 * want to return MPOL_DEFAULT in this case.
 898		 */
 899		down_read(&mm->mmap_sem);
 900		vma = find_vma_intersection(mm, addr, addr+1);
 901		if (!vma) {
 902			up_read(&mm->mmap_sem);
 903			return -EFAULT;
 904		}
 905		if (vma->vm_ops && vma->vm_ops->get_policy)
 906			pol = vma->vm_ops->get_policy(vma, addr);
 907		else
 908			pol = vma->vm_policy;
 909	} else if (addr)
 910		return -EINVAL;
 911
 912	if (!pol)
 913		pol = &default_policy;	/* indicates default behavior */
 914
 915	if (flags & MPOL_F_NODE) {
 916		if (flags & MPOL_F_ADDR) {
 917			/*
 918			 * Take a refcount on the mpol, lookup_node()
 919			 * wil drop the mmap_sem, so after calling
 920			 * lookup_node() only "pol" remains valid, "vma"
 921			 * is stale.
 922			 */
 923			pol_refcount = pol;
 924			vma = NULL;
 925			mpol_get(pol);
 926			err = lookup_node(mm, addr);
 927			if (err < 0)
 928				goto out;
 929			*policy = err;
 930		} else if (pol == current->mempolicy &&
 931				pol->mode == MPOL_INTERLEAVE) {
 932			*policy = next_node_in(current->il_prev, pol->v.nodes);
 933		} else {
 934			err = -EINVAL;
 935			goto out;
 936		}
 937	} else {
 938		*policy = pol == &default_policy ? MPOL_DEFAULT :
 939						pol->mode;
 940		/*
 941		 * Internal mempolicy flags must be masked off before exposing
 942		 * the policy to userspace.
 943		 */
 944		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 945	}
 946
 
 
 
 
 
 947	err = 0;
 948	if (nmask) {
 949		if (mpol_store_user_nodemask(pol)) {
 950			*nmask = pol->w.user_nodemask;
 951		} else {
 952			task_lock(current);
 953			get_policy_nodemask(pol, nmask);
 954			task_unlock(current);
 955		}
 956	}
 957
 958 out:
 959	mpol_cond_put(pol);
 960	if (vma)
 961		up_read(&mm->mmap_sem);
 962	if (pol_refcount)
 963		mpol_put(pol_refcount);
 964	return err;
 965}
 966
 967#ifdef CONFIG_MIGRATION
 968/*
 969 * page migration, thp tail pages can be passed.
 970 */
 971static int migrate_page_add(struct page *page, struct list_head *pagelist,
 972				unsigned long flags)
 973{
 974	struct page *head = compound_head(page);
 975	/*
 976	 * Avoid migrating a page that is shared with others.
 977	 */
 978	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 979		if (!isolate_lru_page(head)) {
 980			list_add_tail(&head->lru, pagelist);
 981			mod_node_page_state(page_pgdat(head),
 982				NR_ISOLATED_ANON + page_is_file_cache(head),
 983				hpage_nr_pages(head));
 984		} else if (flags & MPOL_MF_STRICT) {
 985			/*
 986			 * Non-movable page may reach here.  And, there may be
 987			 * temporary off LRU pages or non-LRU movable pages.
 988			 * Treat them as unmovable pages since they can't be
 989			 * isolated, so they can't be moved at the moment.  It
 990			 * should return -EIO for this case too.
 991			 */
 992			return -EIO;
 993		}
 994	}
 995
 996	return 0;
 997}
 998
 999/* page allocation callback for NUMA node migration */
1000struct page *alloc_new_node_page(struct page *page, unsigned long node)
1001{
1002	if (PageHuge(page))
1003		return alloc_huge_page_node(page_hstate(compound_head(page)),
1004					node);
1005	else if (PageTransHuge(page)) {
1006		struct page *thp;
1007
1008		thp = alloc_pages_node(node,
1009			(GFP_TRANSHUGE | __GFP_THISNODE),
1010			HPAGE_PMD_ORDER);
1011		if (!thp)
1012			return NULL;
1013		prep_transhuge_page(thp);
1014		return thp;
1015	} else
1016		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017						    __GFP_THISNODE, 0);
1018}
1019
1020/*
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1023 */
1024static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025			   int flags)
1026{
1027	nodemask_t nmask;
1028	LIST_HEAD(pagelist);
1029	int err = 0;
 
1030
1031	nodes_clear(nmask);
1032	node_set(source, nmask);
1033
1034	/*
1035	 * This does not "check" the range but isolates all pages that
1036	 * need migration.  Between passing in the full user address
1037	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038	 */
1039	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 
 
1042
1043	if (!list_empty(&pagelist)) {
1044		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045					MIGRATE_SYNC, MR_SYSCALL);
1046		if (err)
1047			putback_movable_pages(&pagelist);
1048	}
1049
1050	return err;
1051}
1052
1053/*
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1056 *
1057 * Returns the number of page that could not be moved.
1058 */
1059int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060		     const nodemask_t *to, int flags)
1061{
1062	int busy = 0;
1063	int err;
1064	nodemask_t tmp;
1065
1066	err = migrate_prep();
1067	if (err)
1068		return err;
1069
1070	down_read(&mm->mmap_sem);
1071
 
 
 
 
1072	/*
1073	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1075	 * bit in 'tmp', and return that <source, dest> pair for migration.
1076	 * The pair of nodemasks 'to' and 'from' define the map.
1077	 *
1078	 * If no pair of bits is found that way, fallback to picking some
1079	 * pair of 'source' and 'dest' bits that are not the same.  If the
1080	 * 'source' and 'dest' bits are the same, this represents a node
1081	 * that will be migrating to itself, so no pages need move.
1082	 *
1083	 * If no bits are left in 'tmp', or if all remaining bits left
1084	 * in 'tmp' correspond to the same bit in 'to', return false
1085	 * (nothing left to migrate).
1086	 *
1087	 * This lets us pick a pair of nodes to migrate between, such that
1088	 * if possible the dest node is not already occupied by some other
1089	 * source node, minimizing the risk of overloading the memory on a
1090	 * node that would happen if we migrated incoming memory to a node
1091	 * before migrating outgoing memory source that same node.
1092	 *
1093	 * A single scan of tmp is sufficient.  As we go, we remember the
1094	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1095	 * that not only moved, but what's better, moved to an empty slot
1096	 * (d is not set in tmp), then we break out then, with that pair.
1097	 * Otherwise when we finish scanning from_tmp, we at least have the
1098	 * most recent <s, d> pair that moved.  If we get all the way through
1099	 * the scan of tmp without finding any node that moved, much less
1100	 * moved to an empty node, then there is nothing left worth migrating.
1101	 */
1102
1103	tmp = *from;
1104	while (!nodes_empty(tmp)) {
1105		int s,d;
1106		int source = NUMA_NO_NODE;
1107		int dest = 0;
1108
1109		for_each_node_mask(s, tmp) {
1110
1111			/*
1112			 * do_migrate_pages() tries to maintain the relative
1113			 * node relationship of the pages established between
1114			 * threads and memory areas.
1115                         *
1116			 * However if the number of source nodes is not equal to
1117			 * the number of destination nodes we can not preserve
1118			 * this node relative relationship.  In that case, skip
1119			 * copying memory from a node that is in the destination
1120			 * mask.
1121			 *
1122			 * Example: [2,3,4] -> [3,4,5] moves everything.
1123			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1124			 */
1125
1126			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127						(node_isset(s, *to)))
1128				continue;
1129
1130			d = node_remap(s, *from, *to);
1131			if (s == d)
1132				continue;
1133
1134			source = s;	/* Node moved. Memorize */
1135			dest = d;
1136
1137			/* dest not in remaining from nodes? */
1138			if (!node_isset(dest, tmp))
1139				break;
1140		}
1141		if (source == NUMA_NO_NODE)
1142			break;
1143
1144		node_clear(source, tmp);
1145		err = migrate_to_node(mm, source, dest, flags);
1146		if (err > 0)
1147			busy += err;
1148		if (err < 0)
1149			break;
1150	}
 
1151	up_read(&mm->mmap_sem);
1152	if (err < 0)
1153		return err;
1154	return busy;
1155
1156}
1157
1158/*
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not.  N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1164 */
1165static struct page *new_page(struct page *page, unsigned long start)
1166{
1167	struct vm_area_struct *vma;
1168	unsigned long uninitialized_var(address);
1169
1170	vma = find_vma(current->mm, start);
1171	while (vma) {
1172		address = page_address_in_vma(page, vma);
1173		if (address != -EFAULT)
1174			break;
1175		vma = vma->vm_next;
1176	}
1177
1178	if (PageHuge(page)) {
1179		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180				vma, address);
1181	} else if (PageTransHuge(page)) {
1182		struct page *thp;
1183
1184		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185					 HPAGE_PMD_ORDER);
1186		if (!thp)
1187			return NULL;
1188		prep_transhuge_page(thp);
1189		return thp;
1190	}
1191	/*
1192	 * if !vma, alloc_page_vma() will use task or system default policy
1193	 */
1194	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195			vma, address);
1196}
1197#else
1198
1199static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200				unsigned long flags)
1201{
1202	return -EIO;
1203}
1204
1205int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206		     const nodemask_t *to, int flags)
1207{
1208	return -ENOSYS;
1209}
1210
1211static struct page *new_page(struct page *page, unsigned long start)
1212{
1213	return NULL;
1214}
1215#endif
1216
1217static long do_mbind(unsigned long start, unsigned long len,
1218		     unsigned short mode, unsigned short mode_flags,
1219		     nodemask_t *nmask, unsigned long flags)
1220{
 
1221	struct mm_struct *mm = current->mm;
1222	struct mempolicy *new;
1223	unsigned long end;
1224	int err;
1225	int ret;
1226	LIST_HEAD(pagelist);
1227
1228	if (flags & ~(unsigned long)MPOL_MF_VALID)
 
1229		return -EINVAL;
1230	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231		return -EPERM;
1232
1233	if (start & ~PAGE_MASK)
1234		return -EINVAL;
1235
1236	if (mode == MPOL_DEFAULT)
1237		flags &= ~MPOL_MF_STRICT;
1238
1239	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240	end = start + len;
1241
1242	if (end < start)
1243		return -EINVAL;
1244	if (end == start)
1245		return 0;
1246
1247	new = mpol_new(mode, mode_flags, nmask);
1248	if (IS_ERR(new))
1249		return PTR_ERR(new);
1250
1251	if (flags & MPOL_MF_LAZY)
1252		new->flags |= MPOL_F_MOF;
1253
1254	/*
1255	 * If we are using the default policy then operation
1256	 * on discontinuous address spaces is okay after all
1257	 */
1258	if (!new)
1259		flags |= MPOL_MF_DISCONTIG_OK;
1260
1261	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262		 start, start + len, mode, mode_flags,
1263		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1264
1265	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1266
1267		err = migrate_prep();
1268		if (err)
1269			goto mpol_out;
1270	}
1271	{
1272		NODEMASK_SCRATCH(scratch);
1273		if (scratch) {
1274			down_write(&mm->mmap_sem);
1275			task_lock(current);
1276			err = mpol_set_nodemask(new, nmask, scratch);
1277			task_unlock(current);
1278			if (err)
1279				up_write(&mm->mmap_sem);
1280		} else
1281			err = -ENOMEM;
1282		NODEMASK_SCRATCH_FREE(scratch);
1283	}
1284	if (err)
1285		goto mpol_out;
1286
1287	ret = queue_pages_range(mm, start, end, nmask,
1288			  flags | MPOL_MF_INVERT, &pagelist);
1289
1290	if (ret < 0) {
1291		err = ret;
1292		goto up_out;
1293	}
1294
1295	err = mbind_range(mm, start, end, new);
1296
1297	if (!err) {
1298		int nr_failed = 0;
1299
1300		if (!list_empty(&pagelist)) {
1301			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304			if (nr_failed)
1305				putback_movable_pages(&pagelist);
1306		}
1307
1308		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309			err = -EIO;
1310	} else {
1311up_out:
1312		if (!list_empty(&pagelist))
1313			putback_movable_pages(&pagelist);
1314	}
1315
1316	up_write(&mm->mmap_sem);
1317mpol_out:
1318	mpol_put(new);
1319	return err;
1320}
1321
1322/*
1323 * User space interface with variable sized bitmaps for nodelists.
1324 */
1325
1326/* Copy a node mask from user space. */
1327static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328		     unsigned long maxnode)
1329{
1330	unsigned long k;
1331	unsigned long t;
1332	unsigned long nlongs;
1333	unsigned long endmask;
1334
1335	--maxnode;
1336	nodes_clear(*nodes);
1337	if (maxnode == 0 || !nmask)
1338		return 0;
1339	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340		return -EINVAL;
1341
1342	nlongs = BITS_TO_LONGS(maxnode);
1343	if ((maxnode % BITS_PER_LONG) == 0)
1344		endmask = ~0UL;
1345	else
1346		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1347
1348	/*
1349	 * When the user specified more nodes than supported just check
1350	 * if the non supported part is all zero.
1351	 *
1352	 * If maxnode have more longs than MAX_NUMNODES, check
1353	 * the bits in that area first. And then go through to
1354	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1356	 */
1357	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 
 
1358		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 
1359			if (get_user(t, nmask + k))
1360				return -EFAULT;
1361			if (k == nlongs - 1) {
1362				if (t & endmask)
1363					return -EINVAL;
1364			} else if (t)
1365				return -EINVAL;
1366		}
1367		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368		endmask = ~0UL;
1369	}
1370
1371	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372		unsigned long valid_mask = endmask;
1373
1374		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375		if (get_user(t, nmask + nlongs - 1))
1376			return -EFAULT;
1377		if (t & valid_mask)
1378			return -EINVAL;
1379	}
1380
1381	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382		return -EFAULT;
1383	nodes_addr(*nodes)[nlongs-1] &= endmask;
1384	return 0;
1385}
1386
1387/* Copy a kernel node mask to user space */
1388static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389			      nodemask_t *nodes)
1390{
1391	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1393
1394	if (copy > nbytes) {
1395		if (copy > PAGE_SIZE)
1396			return -EINVAL;
1397		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398			return -EFAULT;
1399		copy = nbytes;
1400	}
1401	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1402}
1403
1404static long kernel_mbind(unsigned long start, unsigned long len,
1405			 unsigned long mode, const unsigned long __user *nmask,
1406			 unsigned long maxnode, unsigned int flags)
1407{
1408	nodemask_t nodes;
1409	int err;
1410	unsigned short mode_flags;
1411
1412	start = untagged_addr(start);
1413	mode_flags = mode & MPOL_MODE_FLAGS;
1414	mode &= ~MPOL_MODE_FLAGS;
1415	if (mode >= MPOL_MAX)
1416		return -EINVAL;
1417	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418	    (mode_flags & MPOL_F_RELATIVE_NODES))
1419		return -EINVAL;
1420	err = get_nodes(&nodes, nmask, maxnode);
1421	if (err)
1422		return err;
1423	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1424}
1425
1426SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427		unsigned long, mode, const unsigned long __user *, nmask,
1428		unsigned long, maxnode, unsigned int, flags)
1429{
1430	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1431}
1432
1433/* Set the process memory policy */
1434static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435				 unsigned long maxnode)
1436{
1437	int err;
1438	nodemask_t nodes;
1439	unsigned short flags;
1440
1441	flags = mode & MPOL_MODE_FLAGS;
1442	mode &= ~MPOL_MODE_FLAGS;
1443	if ((unsigned int)mode >= MPOL_MAX)
1444		return -EINVAL;
1445	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446		return -EINVAL;
1447	err = get_nodes(&nodes, nmask, maxnode);
1448	if (err)
1449		return err;
1450	return do_set_mempolicy(mode, flags, &nodes);
1451}
1452
1453SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454		unsigned long, maxnode)
1455{
1456	return kernel_set_mempolicy(mode, nmask, maxnode);
1457}
1458
1459static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460				const unsigned long __user *old_nodes,
1461				const unsigned long __user *new_nodes)
1462{
 
1463	struct mm_struct *mm = NULL;
1464	struct task_struct *task;
1465	nodemask_t task_nodes;
1466	int err;
1467	nodemask_t *old;
1468	nodemask_t *new;
1469	NODEMASK_SCRATCH(scratch);
1470
1471	if (!scratch)
1472		return -ENOMEM;
1473
1474	old = &scratch->mask1;
1475	new = &scratch->mask2;
1476
1477	err = get_nodes(old, old_nodes, maxnode);
1478	if (err)
1479		goto out;
1480
1481	err = get_nodes(new, new_nodes, maxnode);
1482	if (err)
1483		goto out;
1484
1485	/* Find the mm_struct */
1486	rcu_read_lock();
1487	task = pid ? find_task_by_vpid(pid) : current;
1488	if (!task) {
1489		rcu_read_unlock();
1490		err = -ESRCH;
1491		goto out;
1492	}
1493	get_task_struct(task);
 
1494
1495	err = -EINVAL;
 
 
1496
1497	/*
1498	 * Check if this process has the right to modify the specified process.
1499	 * Use the regular "ptrace_may_access()" checks.
 
 
1500	 */
1501	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
1502		rcu_read_unlock();
1503		err = -EPERM;
1504		goto out_put;
1505	}
1506	rcu_read_unlock();
1507
1508	task_nodes = cpuset_mems_allowed(task);
1509	/* Is the user allowed to access the target nodes? */
1510	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511		err = -EPERM;
1512		goto out_put;
1513	}
1514
1515	task_nodes = cpuset_mems_allowed(current);
1516	nodes_and(*new, *new, task_nodes);
1517	if (nodes_empty(*new))
1518		goto out_put;
1519
1520	err = security_task_movememory(task);
1521	if (err)
1522		goto out_put;
1523
1524	mm = get_task_mm(task);
1525	put_task_struct(task);
1526
1527	if (!mm) {
1528		err = -EINVAL;
1529		goto out;
1530	}
1531
1532	err = do_migrate_pages(mm, old, new,
1533		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534
1535	mmput(mm);
1536out:
 
 
1537	NODEMASK_SCRATCH_FREE(scratch);
1538
1539	return err;
1540
1541out_put:
1542	put_task_struct(task);
1543	goto out;
1544
1545}
1546
1547SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548		const unsigned long __user *, old_nodes,
1549		const unsigned long __user *, new_nodes)
1550{
1551	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552}
1553
1554
1555/* Retrieve NUMA policy */
1556static int kernel_get_mempolicy(int __user *policy,
1557				unsigned long __user *nmask,
1558				unsigned long maxnode,
1559				unsigned long addr,
1560				unsigned long flags)
1561{
1562	int err;
1563	int uninitialized_var(pval);
1564	nodemask_t nodes;
1565
1566	addr = untagged_addr(addr);
1567
1568	if (nmask != NULL && maxnode < nr_node_ids)
1569		return -EINVAL;
1570
1571	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1572
1573	if (err)
1574		return err;
1575
1576	if (policy && put_user(pval, policy))
1577		return -EFAULT;
1578
1579	if (nmask)
1580		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1581
1582	return err;
1583}
1584
1585SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586		unsigned long __user *, nmask, unsigned long, maxnode,
1587		unsigned long, addr, unsigned long, flags)
1588{
1589	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593
1594COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595		       compat_ulong_t __user *, nmask,
1596		       compat_ulong_t, maxnode,
1597		       compat_ulong_t, addr, compat_ulong_t, flags)
1598{
1599	long err;
1600	unsigned long __user *nm = NULL;
1601	unsigned long nr_bits, alloc_size;
1602	DECLARE_BITMAP(bm, MAX_NUMNODES);
1603
1604	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606
1607	if (nmask)
1608		nm = compat_alloc_user_space(alloc_size);
1609
1610	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1611
1612	if (!err && nmask) {
1613		unsigned long copy_size;
1614		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615		err = copy_from_user(bm, nm, copy_size);
1616		/* ensure entire bitmap is zeroed */
1617		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618		err |= compat_put_bitmap(nmask, bm, nr_bits);
1619	}
1620
1621	return err;
1622}
1623
1624COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625		       compat_ulong_t, maxnode)
1626{
 
1627	unsigned long __user *nm = NULL;
1628	unsigned long nr_bits, alloc_size;
1629	DECLARE_BITMAP(bm, MAX_NUMNODES);
1630
1631	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1633
1634	if (nmask) {
1635		if (compat_get_bitmap(bm, nmask, nr_bits))
1636			return -EFAULT;
1637		nm = compat_alloc_user_space(alloc_size);
1638		if (copy_to_user(nm, bm, alloc_size))
1639			return -EFAULT;
1640	}
1641
1642	return kernel_set_mempolicy(mode, nm, nr_bits+1);
 
 
 
1643}
1644
1645COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1648{
 
1649	unsigned long __user *nm = NULL;
1650	unsigned long nr_bits, alloc_size;
1651	nodemask_t bm;
1652
1653	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656	if (nmask) {
1657		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658			return -EFAULT;
1659		nm = compat_alloc_user_space(alloc_size);
1660		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661			return -EFAULT;
1662	}
1663
1664	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1665}
1666
1667COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668		       compat_ulong_t, maxnode,
1669		       const compat_ulong_t __user *, old_nodes,
1670		       const compat_ulong_t __user *, new_nodes)
1671{
1672	unsigned long __user *old = NULL;
1673	unsigned long __user *new = NULL;
1674	nodemask_t tmp_mask;
1675	unsigned long nr_bits;
1676	unsigned long size;
1677
1678	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680	if (old_nodes) {
1681		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682			return -EFAULT;
1683		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684		if (new_nodes)
1685			new = old + size / sizeof(unsigned long);
1686		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687			return -EFAULT;
1688	}
1689	if (new_nodes) {
1690		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691			return -EFAULT;
1692		if (new == NULL)
1693			new = compat_alloc_user_space(size);
1694		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695			return -EFAULT;
1696	}
1697	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1698}
1699
1700#endif /* CONFIG_COMPAT */
1701
1702struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703						unsigned long addr)
1704{
1705	struct mempolicy *pol = NULL;
1706
1707	if (vma) {
1708		if (vma->vm_ops && vma->vm_ops->get_policy) {
1709			pol = vma->vm_ops->get_policy(vma, addr);
1710		} else if (vma->vm_policy) {
1711			pol = vma->vm_policy;
1712
1713			/*
1714			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716			 * count on these policies which will be dropped by
1717			 * mpol_cond_put() later
1718			 */
1719			if (mpol_needs_cond_ref(pol))
1720				mpol_get(pol);
1721		}
1722	}
1723
1724	return pol;
1725}
1726
1727/*
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
 
1731 *
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
 
 
 
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task.  It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1738 */
1739static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740						unsigned long addr)
1741{
1742	struct mempolicy *pol = __get_vma_policy(vma, addr);
1743
 
 
 
 
 
 
 
 
 
1744	if (!pol)
1745		pol = get_task_policy(current);
1746
1747	return pol;
1748}
1749
1750bool vma_policy_mof(struct vm_area_struct *vma)
1751{
1752	struct mempolicy *pol;
1753
1754	if (vma->vm_ops && vma->vm_ops->get_policy) {
1755		bool ret = false;
1756
1757		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758		if (pol && (pol->flags & MPOL_F_MOF))
1759			ret = true;
1760		mpol_cond_put(pol);
1761
1762		return ret;
1763	}
1764
1765	pol = vma->vm_policy;
1766	if (!pol)
1767		pol = get_task_policy(current);
1768
1769	return pol->flags & MPOL_F_MOF;
1770}
1771
1772static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1773{
1774	enum zone_type dynamic_policy_zone = policy_zone;
1775
1776	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1777
1778	/*
1779	 * if policy->v.nodes has movable memory only,
1780	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1781	 *
1782	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783	 * so if the following test faile, it implies
1784	 * policy->v.nodes has movable memory only.
1785	 */
1786	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787		dynamic_policy_zone = ZONE_MOVABLE;
1788
1789	return zone >= dynamic_policy_zone;
1790}
1791
1792/*
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1795 */
1796static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1797{
1798	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1799	if (unlikely(policy->mode == MPOL_BIND) &&
1800			apply_policy_zone(policy, gfp_zone(gfp)) &&
1801			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802		return &policy->v.nodes;
1803
1804	return NULL;
1805}
1806
1807/* Return the node id preferred by the given mempolicy, or the given id */
1808static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809								int nd)
1810{
1811	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812		nd = policy->v.preferred_node;
1813	else {
 
 
 
1814		/*
1815		 * __GFP_THISNODE shouldn't even be used with the bind policy
1816		 * because we might easily break the expectation to stay on the
1817		 * requested node and not break the policy.
 
1818		 */
1819		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1820	}
1821
1822	return nd;
1823}
1824
1825/* Do dynamic interleaving for a process */
1826static unsigned interleave_nodes(struct mempolicy *policy)
1827{
1828	unsigned next;
1829	struct task_struct *me = current;
1830
1831	next = next_node_in(me->il_prev, policy->v.nodes);
 
 
 
1832	if (next < MAX_NUMNODES)
1833		me->il_prev = next;
1834	return next;
1835}
1836
1837/*
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
 
 
 
 
1840 */
1841unsigned int mempolicy_slab_node(void)
1842{
1843	struct mempolicy *policy;
1844	int node = numa_mem_id();
1845
1846	if (in_interrupt())
1847		return node;
1848
1849	policy = current->mempolicy;
1850	if (!policy || policy->flags & MPOL_F_LOCAL)
1851		return node;
1852
1853	switch (policy->mode) {
1854	case MPOL_PREFERRED:
1855		/*
1856		 * handled MPOL_F_LOCAL above
1857		 */
1858		return policy->v.preferred_node;
1859
1860	case MPOL_INTERLEAVE:
1861		return interleave_nodes(policy);
1862
1863	case MPOL_BIND: {
1864		struct zoneref *z;
1865
1866		/*
1867		 * Follow bind policy behavior and start allocation at the
1868		 * first node.
1869		 */
1870		struct zonelist *zonelist;
 
1871		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873		z = first_zones_zonelist(zonelist, highest_zoneidx,
1874							&policy->v.nodes);
1875		return z->zone ? zone_to_nid(z->zone) : node;
 
1876	}
1877
1878	default:
1879		BUG();
1880	}
1881}
1882
1883/*
1884 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1887 */
1888static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1889{
1890	unsigned nnodes = nodes_weight(pol->v.nodes);
1891	unsigned target;
1892	int i;
1893	int nid;
1894
1895	if (!nnodes)
1896		return numa_node_id();
1897	target = (unsigned int)n % nnodes;
1898	nid = first_node(pol->v.nodes);
1899	for (i = 0; i < target; i++)
1900		nid = next_node(nid, pol->v.nodes);
 
 
1901	return nid;
1902}
1903
1904/* Determine a node number for interleave */
1905static inline unsigned interleave_nid(struct mempolicy *pol,
1906		 struct vm_area_struct *vma, unsigned long addr, int shift)
1907{
1908	if (vma) {
1909		unsigned long off;
1910
1911		/*
1912		 * for small pages, there is no difference between
1913		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914		 * for huge pages, since vm_pgoff is in units of small
1915		 * pages, we need to shift off the always 0 bits to get
1916		 * a useful offset.
1917		 */
1918		BUG_ON(shift < PAGE_SHIFT);
1919		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920		off += (addr - vma->vm_start) >> shift;
1921		return offset_il_node(pol, off);
1922	} else
1923		return interleave_nodes(pol);
1924}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926#ifdef CONFIG_HUGETLBFS
1927/*
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1934 *
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1939 *
1940 * Must be protected by read_mems_allowed_begin()
1941 */
1942int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943				struct mempolicy **mpol, nodemask_t **nodemask)
 
1944{
1945	int nid;
1946
1947	*mpol = get_vma_policy(vma, addr);
1948	*nodemask = NULL;	/* assume !MPOL_BIND */
1949
1950	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951		nid = interleave_nid(*mpol, vma, addr,
1952					huge_page_shift(hstate_vma(vma)));
1953	} else {
1954		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955		if ((*mpol)->mode == MPOL_BIND)
1956			*nodemask = &(*mpol)->v.nodes;
1957	}
1958	return nid;
1959}
1960
1961/*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy.  Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978{
1979	struct mempolicy *mempolicy;
1980	int nid;
1981
1982	if (!(mask && current->mempolicy))
1983		return false;
1984
1985	task_lock(current);
1986	mempolicy = current->mempolicy;
1987	switch (mempolicy->mode) {
1988	case MPOL_PREFERRED:
1989		if (mempolicy->flags & MPOL_F_LOCAL)
1990			nid = numa_node_id();
1991		else
1992			nid = mempolicy->v.preferred_node;
1993		init_nodemask_of_node(mask, nid);
1994		break;
1995
1996	case MPOL_BIND:
1997		/* Fall through */
1998	case MPOL_INTERLEAVE:
1999		*mask =  mempolicy->v.nodes;
2000		break;
2001
2002	default:
2003		BUG();
2004	}
2005	task_unlock(current);
2006
2007	return true;
2008}
2009#endif
2010
2011/*
2012 * mempolicy_nodemask_intersects
2013 *
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy.  Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2018 *
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2020 */
2021bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022					const nodemask_t *mask)
2023{
2024	struct mempolicy *mempolicy;
2025	bool ret = true;
2026
2027	if (!mask)
2028		return ret;
2029	task_lock(tsk);
2030	mempolicy = tsk->mempolicy;
2031	if (!mempolicy)
2032		goto out;
2033
2034	switch (mempolicy->mode) {
2035	case MPOL_PREFERRED:
2036		/*
2037		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038		 * allocate from, they may fallback to other nodes when oom.
2039		 * Thus, it's possible for tsk to have allocated memory from
2040		 * nodes in mask.
2041		 */
2042		break;
2043	case MPOL_BIND:
2044	case MPOL_INTERLEAVE:
2045		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046		break;
2047	default:
2048		BUG();
2049	}
2050out:
2051	task_unlock(tsk);
2052	return ret;
2053}
2054
2055/* Allocate a page in interleaved policy.
2056   Own path because it needs to do special accounting. */
2057static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058					unsigned nid)
2059{
 
2060	struct page *page;
2061
2062	page = __alloc_pages(gfp, order, nid);
2063	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064	if (!static_branch_likely(&vm_numa_stat_key))
2065		return page;
2066	if (page && page_to_nid(page) == nid) {
2067		preempt_disable();
2068		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069		preempt_enable();
2070	}
2071	return page;
2072}
2073
2074/**
2075 * 	alloc_pages_vma	- Allocate a page for a VMA.
2076 *
2077 * 	@gfp:
2078 *      %GFP_USER    user allocation.
2079 *      %GFP_KERNEL  kernel allocations,
2080 *      %GFP_HIGHMEM highmem/user allocations,
2081 *      %GFP_FS      allocation should not call back into a file system.
2082 *      %GFP_ATOMIC  don't sleep.
2083 *
2084 *	@order:Order of the GFP allocation.
2085 * 	@vma:  Pointer to VMA or NULL if not available.
2086 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2087 *	@node: Which node to prefer for allocation (modulo policy).
2088 *	@hugepage: for hugepages try only the preferred node if possible
2089 *
2090 * 	This function allocates a page from the kernel page pool and applies
2091 *	a NUMA policy associated with the VMA or the current process.
2092 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 *	mm_struct of the VMA to prevent it from going away. Should be used for
2094 *	all allocations for pages that will be mapped into user space. Returns
2095 *	NULL when no page can be allocated.
 
 
2096 */
2097struct page *
2098alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099		unsigned long addr, int node, bool hugepage)
2100{
2101	struct mempolicy *pol;
 
2102	struct page *page;
2103	int preferred_nid;
2104	nodemask_t *nmask;
2105
2106	pol = get_vma_policy(vma, addr);
2107
2108	if (pol->mode == MPOL_INTERLEAVE) {
2109		unsigned nid;
2110
2111		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112		mpol_cond_put(pol);
2113		page = alloc_page_interleave(gfp, order, nid);
2114		goto out;
 
2115	}
2116
2117	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118		int hpage_node = node;
2119
2120		/*
2121		 * For hugepage allocation and non-interleave policy which
2122		 * allows the current node (or other explicitly preferred
2123		 * node) we only try to allocate from the current/preferred
2124		 * node and don't fall back to other nodes, as the cost of
2125		 * remote accesses would likely offset THP benefits.
2126		 *
2127		 * If the policy is interleave, or does not allow the current
2128		 * node in its nodemask, we allocate the standard way.
2129		 */
2130		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131			hpage_node = pol->v.preferred_node;
2132
2133		nmask = policy_nodemask(gfp, pol);
2134		if (!nmask || node_isset(hpage_node, *nmask)) {
2135			mpol_cond_put(pol);
2136			page = __alloc_pages_node(hpage_node,
2137						gfp | __GFP_THISNODE, order);
2138
2139			/*
2140			 * If hugepage allocations are configured to always
2141			 * synchronous compact or the vma has been madvised
2142			 * to prefer hugepage backing, retry allowing remote
2143			 * memory as well.
2144			 */
2145			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146				page = __alloc_pages_node(hpage_node,
2147						gfp | __GFP_NORETRY, order);
2148
2149			goto out;
2150		}
2151	}
2152
2153	nmask = policy_nodemask(gfp, pol);
2154	preferred_nid = policy_node(gfp, pol, node);
2155	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156	mpol_cond_put(pol);
2157out:
2158	return page;
2159}
2160EXPORT_SYMBOL(alloc_pages_vma);
2161
2162/**
2163 * 	alloc_pages_current - Allocate pages.
2164 *
2165 *	@gfp:
2166 *		%GFP_USER   user allocation,
2167 *      	%GFP_KERNEL kernel allocation,
2168 *      	%GFP_HIGHMEM highmem allocation,
2169 *      	%GFP_FS     don't call back into a file system.
2170 *      	%GFP_ATOMIC don't sleep.
2171 *	@order: Power of two of allocation size in pages. 0 is a single page.
2172 *
2173 *	Allocate a page from the kernel page pool.  When not in
2174 *	interrupt context and apply the current process NUMA policy.
2175 *	Returns NULL when no page can be allocated.
 
 
 
 
2176 */
2177struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2178{
2179	struct mempolicy *pol = &default_policy;
2180	struct page *page;
2181
2182	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183		pol = get_task_policy(current);
2184
 
2185	/*
2186	 * No reference counting needed for current->mempolicy
2187	 * nor system default_policy
2188	 */
2189	if (pol->mode == MPOL_INTERLEAVE)
2190		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2191	else
2192		page = __alloc_pages_nodemask(gfp, order,
2193				policy_node(gfp, pol, numa_node_id()),
2194				policy_nodemask(gfp, pol));
2195
2196	return page;
2197}
2198EXPORT_SYMBOL(alloc_pages_current);
2199
2200int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201{
2202	struct mempolicy *pol = mpol_dup(vma_policy(src));
2203
2204	if (IS_ERR(pol))
2205		return PTR_ERR(pol);
2206	dst->vm_policy = pol;
2207	return 0;
2208}
2209
2210/*
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed().  This
2214 * keeps mempolicies cpuset relative after its cpuset moves.  See
2215 * further kernel/cpuset.c update_nodemask().
2216 *
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2219 */
2220
2221/* Slow path of a mempolicy duplicate */
2222struct mempolicy *__mpol_dup(struct mempolicy *old)
2223{
2224	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2225
2226	if (!new)
2227		return ERR_PTR(-ENOMEM);
2228
2229	/* task's mempolicy is protected by alloc_lock */
2230	if (old == current->mempolicy) {
2231		task_lock(current);
2232		*new = *old;
2233		task_unlock(current);
2234	} else
2235		*new = *old;
2236
 
2237	if (current_cpuset_is_being_rebound()) {
2238		nodemask_t mems = cpuset_mems_allowed(current);
2239		mpol_rebind_policy(new, &mems);
 
 
 
2240	}
 
2241	atomic_set(&new->refcnt, 1);
2242	return new;
2243}
2244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245/* Slow path of a mempolicy comparison */
2246bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2247{
2248	if (!a || !b)
2249		return false;
2250	if (a->mode != b->mode)
2251		return false;
2252	if (a->flags != b->flags)
2253		return false;
2254	if (mpol_store_user_nodemask(a))
2255		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256			return false;
2257
2258	switch (a->mode) {
2259	case MPOL_BIND:
2260		/* Fall through */
2261	case MPOL_INTERLEAVE:
2262		return !!nodes_equal(a->v.nodes, b->v.nodes);
2263	case MPOL_PREFERRED:
2264		/* a's ->flags is the same as b's */
2265		if (a->flags & MPOL_F_LOCAL)
2266			return true;
2267		return a->v.preferred_node == b->v.preferred_node;
2268	default:
2269		BUG();
2270		return false;
2271	}
2272}
2273
2274/*
2275 * Shared memory backing store policy support.
2276 *
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2281 */
2282
2283/*
2284 * lookup first element intersecting start-end.  Caller holds sp->lock for
2285 * reading or for writing
2286 */
2287static struct sp_node *
2288sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2289{
2290	struct rb_node *n = sp->root.rb_node;
2291
2292	while (n) {
2293		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2294
2295		if (start >= p->end)
2296			n = n->rb_right;
2297		else if (end <= p->start)
2298			n = n->rb_left;
2299		else
2300			break;
2301	}
2302	if (!n)
2303		return NULL;
2304	for (;;) {
2305		struct sp_node *w = NULL;
2306		struct rb_node *prev = rb_prev(n);
2307		if (!prev)
2308			break;
2309		w = rb_entry(prev, struct sp_node, nd);
2310		if (w->end <= start)
2311			break;
2312		n = prev;
2313	}
2314	return rb_entry(n, struct sp_node, nd);
2315}
2316
2317/*
2318 * Insert a new shared policy into the list.  Caller holds sp->lock for
2319 * writing.
2320 */
2321static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2322{
2323	struct rb_node **p = &sp->root.rb_node;
2324	struct rb_node *parent = NULL;
2325	struct sp_node *nd;
2326
2327	while (*p) {
2328		parent = *p;
2329		nd = rb_entry(parent, struct sp_node, nd);
2330		if (new->start < nd->start)
2331			p = &(*p)->rb_left;
2332		else if (new->end > nd->end)
2333			p = &(*p)->rb_right;
2334		else
2335			BUG();
2336	}
2337	rb_link_node(&new->nd, parent, p);
2338	rb_insert_color(&new->nd, &sp->root);
2339	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340		 new->policy ? new->policy->mode : 0);
2341}
2342
2343/* Find shared policy intersecting idx */
2344struct mempolicy *
2345mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2346{
2347	struct mempolicy *pol = NULL;
2348	struct sp_node *sn;
2349
2350	if (!sp->root.rb_node)
2351		return NULL;
2352	read_lock(&sp->lock);
2353	sn = sp_lookup(sp, idx, idx+1);
2354	if (sn) {
2355		mpol_get(sn->policy);
2356		pol = sn->policy;
2357	}
2358	read_unlock(&sp->lock);
2359	return pol;
2360}
2361
2362static void sp_free(struct sp_node *n)
2363{
2364	mpol_put(n->policy);
2365	kmem_cache_free(sn_cache, n);
2366}
2367
2368/**
2369 * mpol_misplaced - check whether current page node is valid in policy
2370 *
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2374 *
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2377 *
2378 * Returns:
2379 *	-1	- not misplaced, page is in the right node
2380 *	node	- node id where the page should be
2381 *
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
2384 */
2385int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386{
2387	struct mempolicy *pol;
2388	struct zoneref *z;
2389	int curnid = page_to_nid(page);
2390	unsigned long pgoff;
2391	int thiscpu = raw_smp_processor_id();
2392	int thisnid = cpu_to_node(thiscpu);
2393	int polnid = NUMA_NO_NODE;
2394	int ret = -1;
2395
2396	pol = get_vma_policy(vma, addr);
2397	if (!(pol->flags & MPOL_F_MOF))
2398		goto out;
2399
2400	switch (pol->mode) {
2401	case MPOL_INTERLEAVE:
2402		pgoff = vma->vm_pgoff;
2403		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404		polnid = offset_il_node(pol, pgoff);
2405		break;
2406
2407	case MPOL_PREFERRED:
2408		if (pol->flags & MPOL_F_LOCAL)
2409			polnid = numa_node_id();
2410		else
2411			polnid = pol->v.preferred_node;
2412		break;
2413
2414	case MPOL_BIND:
2415
2416		/*
2417		 * allows binding to multiple nodes.
2418		 * use current page if in policy nodemask,
2419		 * else select nearest allowed node, if any.
2420		 * If no allowed nodes, use current [!misplaced].
2421		 */
2422		if (node_isset(curnid, pol->v.nodes))
2423			goto out;
2424		z = first_zones_zonelist(
2425				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426				gfp_zone(GFP_HIGHUSER),
2427				&pol->v.nodes);
2428		polnid = zone_to_nid(z->zone);
2429		break;
2430
2431	default:
2432		BUG();
2433	}
2434
2435	/* Migrate the page towards the node whose CPU is referencing it */
2436	if (pol->flags & MPOL_F_MORON) {
2437		polnid = thisnid;
2438
2439		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440			goto out;
2441	}
2442
2443	if (curnid != polnid)
2444		ret = polnid;
2445out:
2446	mpol_cond_put(pol);
2447
2448	return ret;
2449}
2450
2451/*
2452 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2456 */
2457void mpol_put_task_policy(struct task_struct *task)
2458{
2459	struct mempolicy *pol;
2460
2461	task_lock(task);
2462	pol = task->mempolicy;
2463	task->mempolicy = NULL;
2464	task_unlock(task);
2465	mpol_put(pol);
2466}
2467
2468static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2469{
2470	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471	rb_erase(&n->nd, &sp->root);
2472	sp_free(n);
2473}
2474
2475static void sp_node_init(struct sp_node *node, unsigned long start,
2476			unsigned long end, struct mempolicy *pol)
2477{
2478	node->start = start;
2479	node->end = end;
2480	node->policy = pol;
2481}
2482
2483static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484				struct mempolicy *pol)
2485{
2486	struct sp_node *n;
2487	struct mempolicy *newpol;
2488
2489	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490	if (!n)
2491		return NULL;
2492
2493	newpol = mpol_dup(pol);
2494	if (IS_ERR(newpol)) {
2495		kmem_cache_free(sn_cache, n);
2496		return NULL;
2497	}
2498	newpol->flags |= MPOL_F_SHARED;
2499	sp_node_init(n, start, end, newpol);
2500
2501	return n;
2502}
2503
2504/* Replace a policy range. */
2505static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506				 unsigned long end, struct sp_node *new)
2507{
2508	struct sp_node *n;
2509	struct sp_node *n_new = NULL;
2510	struct mempolicy *mpol_new = NULL;
2511	int ret = 0;
2512
2513restart:
2514	write_lock(&sp->lock);
2515	n = sp_lookup(sp, start, end);
2516	/* Take care of old policies in the same range. */
2517	while (n && n->start < end) {
2518		struct rb_node *next = rb_next(&n->nd);
2519		if (n->start >= start) {
2520			if (n->end <= end)
2521				sp_delete(sp, n);
2522			else
2523				n->start = end;
2524		} else {
2525			/* Old policy spanning whole new range. */
2526			if (n->end > end) {
2527				if (!n_new)
2528					goto alloc_new;
2529
2530				*mpol_new = *n->policy;
2531				atomic_set(&mpol_new->refcnt, 1);
2532				sp_node_init(n_new, end, n->end, mpol_new);
 
2533				n->end = start;
2534				sp_insert(sp, n_new);
2535				n_new = NULL;
2536				mpol_new = NULL;
2537				break;
2538			} else
2539				n->end = start;
2540		}
2541		if (!next)
2542			break;
2543		n = rb_entry(next, struct sp_node, nd);
2544	}
2545	if (new)
2546		sp_insert(sp, new);
2547	write_unlock(&sp->lock);
2548	ret = 0;
2549
2550err_out:
2551	if (mpol_new)
2552		mpol_put(mpol_new);
2553	if (n_new)
2554		kmem_cache_free(sn_cache, n_new);
2555
2556	return ret;
2557
2558alloc_new:
2559	write_unlock(&sp->lock);
2560	ret = -ENOMEM;
2561	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562	if (!n_new)
2563		goto err_out;
2564	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565	if (!mpol_new)
2566		goto err_out;
2567	goto restart;
2568}
2569
2570/**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol:  struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
2580void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581{
2582	int ret;
2583
2584	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2585	rwlock_init(&sp->lock);
2586
2587	if (mpol) {
2588		struct vm_area_struct pvma;
2589		struct mempolicy *new;
2590		NODEMASK_SCRATCH(scratch);
2591
2592		if (!scratch)
2593			goto put_mpol;
2594		/* contextualize the tmpfs mount point mempolicy */
2595		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596		if (IS_ERR(new))
2597			goto free_scratch; /* no valid nodemask intersection */
2598
2599		task_lock(current);
2600		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601		task_unlock(current);
2602		if (ret)
2603			goto put_new;
2604
2605		/* Create pseudo-vma that contains just the policy */
2606		vma_init(&pvma, NULL);
2607		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2608		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610put_new:
2611		mpol_put(new);			/* drop initial ref */
2612free_scratch:
2613		NODEMASK_SCRATCH_FREE(scratch);
2614put_mpol:
2615		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2616	}
2617}
2618
2619int mpol_set_shared_policy(struct shared_policy *info,
2620			struct vm_area_struct *vma, struct mempolicy *npol)
2621{
2622	int err;
2623	struct sp_node *new = NULL;
2624	unsigned long sz = vma_pages(vma);
2625
2626	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627		 vma->vm_pgoff,
2628		 sz, npol ? npol->mode : -1,
2629		 npol ? npol->flags : -1,
2630		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2631
2632	if (npol) {
2633		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634		if (!new)
2635			return -ENOMEM;
2636	}
2637	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638	if (err && new)
2639		sp_free(new);
2640	return err;
2641}
2642
2643/* Free a backing policy store on inode delete. */
2644void mpol_free_shared_policy(struct shared_policy *p)
2645{
2646	struct sp_node *n;
2647	struct rb_node *next;
2648
2649	if (!p->root.rb_node)
2650		return;
2651	write_lock(&p->lock);
2652	next = rb_first(&p->root);
2653	while (next) {
2654		n = rb_entry(next, struct sp_node, nd);
2655		next = rb_next(&n->nd);
2656		sp_delete(p, n);
 
 
2657	}
2658	write_unlock(&p->lock);
2659}
2660
2661#ifdef CONFIG_NUMA_BALANCING
2662static int __initdata numabalancing_override;
2663
2664static void __init check_numabalancing_enable(void)
2665{
2666	bool numabalancing_default = false;
2667
2668	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669		numabalancing_default = true;
2670
2671	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672	if (numabalancing_override)
2673		set_numabalancing_state(numabalancing_override == 1);
2674
2675	if (num_online_nodes() > 1 && !numabalancing_override) {
2676		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677			numabalancing_default ? "Enabling" : "Disabling");
2678		set_numabalancing_state(numabalancing_default);
2679	}
2680}
2681
2682static int __init setup_numabalancing(char *str)
2683{
2684	int ret = 0;
2685	if (!str)
2686		goto out;
2687
2688	if (!strcmp(str, "enable")) {
2689		numabalancing_override = 1;
2690		ret = 1;
2691	} else if (!strcmp(str, "disable")) {
2692		numabalancing_override = -1;
2693		ret = 1;
2694	}
2695out:
2696	if (!ret)
2697		pr_warn("Unable to parse numa_balancing=\n");
2698
2699	return ret;
2700}
2701__setup("numa_balancing=", setup_numabalancing);
2702#else
2703static inline void __init check_numabalancing_enable(void)
2704{
2705}
2706#endif /* CONFIG_NUMA_BALANCING */
2707
2708/* assumes fs == KERNEL_DS */
2709void __init numa_policy_init(void)
2710{
2711	nodemask_t interleave_nodes;
2712	unsigned long largest = 0;
2713	int nid, prefer = 0;
2714
2715	policy_cache = kmem_cache_create("numa_policy",
2716					 sizeof(struct mempolicy),
2717					 0, SLAB_PANIC, NULL);
2718
2719	sn_cache = kmem_cache_create("shared_policy_node",
2720				     sizeof(struct sp_node),
2721				     0, SLAB_PANIC, NULL);
2722
2723	for_each_node(nid) {
2724		preferred_node_policy[nid] = (struct mempolicy) {
2725			.refcnt = ATOMIC_INIT(1),
2726			.mode = MPOL_PREFERRED,
2727			.flags = MPOL_F_MOF | MPOL_F_MORON,
2728			.v = { .preferred_node = nid, },
2729		};
2730	}
2731
2732	/*
2733	 * Set interleaving policy for system init. Interleaving is only
2734	 * enabled across suitably sized nodes (default is >= 16MB), or
2735	 * fall back to the largest node if they're all smaller.
2736	 */
2737	nodes_clear(interleave_nodes);
2738	for_each_node_state(nid, N_MEMORY) {
2739		unsigned long total_pages = node_present_pages(nid);
2740
2741		/* Preserve the largest node */
2742		if (largest < total_pages) {
2743			largest = total_pages;
2744			prefer = nid;
2745		}
2746
2747		/* Interleave this node? */
2748		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749			node_set(nid, interleave_nodes);
2750	}
2751
2752	/* All too small, use the largest */
2753	if (unlikely(nodes_empty(interleave_nodes)))
2754		node_set(prefer, interleave_nodes);
2755
2756	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757		pr_err("%s: interleaving failed\n", __func__);
2758
2759	check_numabalancing_enable();
2760}
2761
2762/* Reset policy of current process to default */
2763void numa_default_policy(void)
2764{
2765	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766}
2767
2768/*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772/*
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
 
2774 */
 
2775static const char * const policy_modes[] =
2776{
2777	[MPOL_DEFAULT]    = "default",
2778	[MPOL_PREFERRED]  = "prefer",
2779	[MPOL_BIND]       = "bind",
2780	[MPOL_INTERLEAVE] = "interleave",
2781	[MPOL_LOCAL]      = "local",
2782};
2783
2784
2785#ifdef CONFIG_TMPFS
2786/**
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str:  string containing mempolicy to parse
2789 * @mpol:  pointer to struct mempolicy pointer, returned on success.
 
2790 *
2791 * Format of input:
2792 *	<mode>[=<flags>][:<nodelist>]
2793 *
 
 
 
 
 
 
 
2794 * On success, returns 0, else 1
2795 */
2796int mpol_parse_str(char *str, struct mempolicy **mpol)
2797{
2798	struct mempolicy *new = NULL;
2799	unsigned short mode_flags;
 
2800	nodemask_t nodes;
2801	char *nodelist = strchr(str, ':');
2802	char *flags = strchr(str, '=');
2803	int err = 1, mode;
2804
2805	if (nodelist) {
2806		/* NUL-terminate mode or flags string */
2807		*nodelist++ = '\0';
2808		if (nodelist_parse(nodelist, nodes))
2809			goto out;
2810		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2811			goto out;
2812	} else
2813		nodes_clear(nodes);
2814
2815	if (flags)
2816		*flags++ = '\0';	/* terminate mode string */
2817
2818	mode = match_string(policy_modes, MPOL_MAX, str);
2819	if (mode < 0)
 
 
 
 
2820		goto out;
2821
2822	switch (mode) {
2823	case MPOL_PREFERRED:
2824		/*
2825		 * Insist on a nodelist of one node only
2826		 */
2827		if (nodelist) {
2828			char *rest = nodelist;
2829			while (isdigit(*rest))
2830				rest++;
2831			if (*rest)
2832				goto out;
2833		}
2834		break;
2835	case MPOL_INTERLEAVE:
2836		/*
2837		 * Default to online nodes with memory if no nodelist
2838		 */
2839		if (!nodelist)
2840			nodes = node_states[N_MEMORY];
2841		break;
2842	case MPOL_LOCAL:
2843		/*
2844		 * Don't allow a nodelist;  mpol_new() checks flags
2845		 */
2846		if (nodelist)
2847			goto out;
2848		mode = MPOL_PREFERRED;
2849		break;
2850	case MPOL_DEFAULT:
2851		/*
2852		 * Insist on a empty nodelist
2853		 */
2854		if (!nodelist)
2855			err = 0;
2856		goto out;
2857	case MPOL_BIND:
2858		/*
2859		 * Insist on a nodelist
2860		 */
2861		if (!nodelist)
2862			goto out;
2863	}
2864
2865	mode_flags = 0;
2866	if (flags) {
2867		/*
2868		 * Currently, we only support two mutually exclusive
2869		 * mode flags.
2870		 */
2871		if (!strcmp(flags, "static"))
2872			mode_flags |= MPOL_F_STATIC_NODES;
2873		else if (!strcmp(flags, "relative"))
2874			mode_flags |= MPOL_F_RELATIVE_NODES;
2875		else
2876			goto out;
2877	}
2878
2879	new = mpol_new(mode, mode_flags, &nodes);
2880	if (IS_ERR(new))
2881		goto out;
2882
2883	/*
2884	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886	 */
2887	if (mode != MPOL_PREFERRED)
2888		new->v.nodes = nodes;
2889	else if (nodelist)
2890		new->v.preferred_node = first_node(nodes);
2891	else
2892		new->flags |= MPOL_F_LOCAL;
2893
2894	/*
2895	 * Save nodes for contextualization: this will be used to "clone"
2896	 * the mempolicy in a specific context [cpuset] at a later time.
2897	 */
2898	new->w.user_nodemask = nodes;
2899
 
2900	err = 0;
2901
2902out:
2903	/* Restore string for error message */
2904	if (nodelist)
2905		*--nodelist = ':';
2906	if (flags)
2907		*--flags = '=';
2908	if (!err)
2909		*mpol = new;
2910	return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
 
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926	char *p = buffer;
2927	nodemask_t nodes = NODE_MASK_NONE;
2928	unsigned short mode = MPOL_DEFAULT;
2929	unsigned short flags = 0;
 
2930
2931	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
 
 
 
 
 
2932		mode = pol->mode;
2933		flags = pol->flags;
2934	}
2935
2936	switch (mode) {
2937	case MPOL_DEFAULT:
 
2938		break;
 
2939	case MPOL_PREFERRED:
 
2940		if (flags & MPOL_F_LOCAL)
2941			mode = MPOL_LOCAL;
2942		else
2943			node_set(pol->v.preferred_node, nodes);
2944		break;
 
2945	case MPOL_BIND:
 
2946	case MPOL_INTERLEAVE:
2947		nodes = pol->v.nodes;
 
 
 
2948		break;
 
2949	default:
2950		WARN_ON_ONCE(1);
2951		snprintf(p, maxlen, "unknown");
2952		return;
2953	}
2954
2955	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 
 
 
 
 
2956
2957	if (flags & MPOL_MODE_FLAGS) {
2958		p += snprintf(p, buffer + maxlen - p, "=");
 
 
2959
2960		/*
2961		 * Currently, the only defined flags are mutually exclusive
2962		 */
2963		if (flags & MPOL_F_STATIC_NODES)
2964			p += snprintf(p, buffer + maxlen - p, "static");
2965		else if (flags & MPOL_F_RELATIVE_NODES)
2966			p += snprintf(p, buffer + maxlen - p, "relative");
2967	}
2968
2969	if (!nodes_empty(nodes))
2970		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2971			       nodemask_pr_args(&nodes));
 
 
 
 
2972}