Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
 
 
 
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
 
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
 
 
 
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115	.refcnt = ATOMIC_INIT(1), /* never free it */
 116	.mode = MPOL_PREFERRED,
 117	.flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122	/*
 123	 * If read-side task has no lock to protect task->mempolicy, write-side
 124	 * task will rebind the task->mempolicy by two step. The first step is
 125	 * setting all the newly nodes, and the second step is cleaning all the
 126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 127	 * page.
 128	 * If we have a lock to protect task->mempolicy in read-side, we do
 129	 * rebind directly.
 130	 *
 131	 * step:
 132	 * 	MPOL_REBIND_ONCE - do rebind work at once
 133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135	 */
 136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137			enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 
 
 
 
 
 
 
 142{
 143	int nd, k;
 144
 145	for_each_node_mask(nd, *nodemask) {
 146		struct zone *z;
 147
 148		for (k = 0; k <= policy_zone; k++) {
 149			z = &NODE_DATA(nd)->node_zones[k];
 150			if (z->present_pages > 0)
 151				return 1;
 
 
 152		}
 153	}
 154
 155	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156}
 157
 
 
 
 
 
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160	return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164				   const nodemask_t *rel)
 165{
 166	nodemask_t tmp;
 167	nodes_fold(tmp, *orig, nodes_weight(*rel));
 168	nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173	if (nodes_empty(*nodes))
 174		return -EINVAL;
 175	pol->v.nodes = *nodes;
 176	return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181	if (!nodes)
 182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 183	else if (nodes_empty(*nodes))
 184		return -EINVAL;			/*  no allowed nodes */
 185	else
 186		pol->v.preferred_node = first_node(*nodes);
 187	return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192	if (!is_valid_nodemask(nodes))
 193		return -EINVAL;
 194	pol->v.nodes = *nodes;
 
 
 195	return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210	int ret;
 211
 212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213	if (pol == NULL)
 
 
 
 
 214		return 0;
 215	/* Check N_HIGH_MEMORY */
 
 216	nodes_and(nsc->mask1,
 217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219	VM_BUG_ON(!nodes);
 220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221		nodes = NULL;	/* explicit local allocation */
 222	else {
 223		if (pol->flags & MPOL_F_RELATIVE_NODES)
 224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225		else
 226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228		if (mpol_store_user_nodemask(pol))
 229			pol->w.user_nodemask = *nodes;
 230		else
 231			pol->w.cpuset_mems_allowed =
 232						cpuset_current_mems_allowed;
 233	}
 234
 235	if (nodes)
 236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237	else
 238		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 239	return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247				  nodemask_t *nodes)
 248{
 249	struct mempolicy *policy;
 250
 251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254	if (mode == MPOL_DEFAULT) {
 255		if (nodes && !nodes_empty(*nodes))
 256			return ERR_PTR(-EINVAL);
 257		return NULL;	/* simply delete any existing policy */
 258	}
 259	VM_BUG_ON(!nodes);
 260
 261	/*
 262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264	 * All other modes require a valid pointer to a non-empty nodemask.
 265	 */
 266	if (mode == MPOL_PREFERRED) {
 267		if (nodes_empty(*nodes)) {
 268			if (((flags & MPOL_F_STATIC_NODES) ||
 269			     (flags & MPOL_F_RELATIVE_NODES)))
 270				return ERR_PTR(-EINVAL);
 
 
 271		}
 
 
 
 
 
 272	} else if (nodes_empty(*nodes))
 273		return ERR_PTR(-EINVAL);
 274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275	if (!policy)
 276		return ERR_PTR(-ENOMEM);
 277	atomic_set(&policy->refcnt, 1);
 278	policy->mode = mode;
 279	policy->flags = flags;
 
 280
 281	return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287	if (!atomic_dec_and_test(&p->refcnt))
 288		return;
 289	kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293				enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 * 	MPOL_REBIND_ONCE  - do rebind work at once
 300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304				 enum mpol_rebind_step step)
 305{
 306	nodemask_t tmp;
 307
 308	if (pol->flags & MPOL_F_STATIC_NODES)
 309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312	else {
 313		/*
 314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315		 * result
 316		 */
 317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318			nodes_remap(tmp, pol->v.nodes,
 319					pol->w.cpuset_mems_allowed, *nodes);
 320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321		} else if (step == MPOL_REBIND_STEP2) {
 322			tmp = pol->w.cpuset_mems_allowed;
 323			pol->w.cpuset_mems_allowed = *nodes;
 324		} else
 325			BUG();
 326	}
 327
 328	if (nodes_empty(tmp))
 329		tmp = *nodes;
 330
 331	if (step == MPOL_REBIND_STEP1)
 332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334		pol->v.nodes = tmp;
 335	else
 336		BUG();
 337
 338	if (!node_isset(current->il_next, tmp)) {
 339		current->il_next = next_node(current->il_next, tmp);
 340		if (current->il_next >= MAX_NUMNODES)
 341			current->il_next = first_node(tmp);
 342		if (current->il_next >= MAX_NUMNODES)
 343			current->il_next = numa_node_id();
 344	}
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348				  const nodemask_t *nodes,
 349				  enum mpol_rebind_step step)
 350{
 351	nodemask_t tmp;
 352
 353	if (pol->flags & MPOL_F_STATIC_NODES) {
 354		int node = first_node(pol->w.user_nodemask);
 355
 356		if (node_isset(node, *nodes)) {
 357			pol->v.preferred_node = node;
 358			pol->flags &= ~MPOL_F_LOCAL;
 359		} else
 360			pol->flags |= MPOL_F_LOCAL;
 361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363		pol->v.preferred_node = first_node(tmp);
 364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366						   pol->w.cpuset_mems_allowed,
 367						   *nodes);
 368		pol->w.cpuset_mems_allowed = *nodes;
 369	}
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 * 	MPOL_REBIND_ONCE  - do rebind work at once
 385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389				enum mpol_rebind_step step)
 390{
 391	if (!pol)
 392		return;
 393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395		return;
 396
 397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398		return;
 399
 400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401		BUG();
 402
 403	if (step == MPOL_REBIND_STEP1)
 404		pol->flags |= MPOL_F_REBINDING;
 405	else if (step == MPOL_REBIND_STEP2)
 406		pol->flags &= ~MPOL_F_REBINDING;
 407	else if (step >= MPOL_REBIND_NSTEP)
 408		BUG();
 409
 410	mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421			enum mpol_rebind_step step)
 422{
 423	mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434	struct vm_area_struct *vma;
 
 435
 436	down_write(&mm->mmap_sem);
 437	for (vma = mm->mmap; vma; vma = vma->vm_next)
 438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439	up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443	[MPOL_DEFAULT] = {
 444		.rebind = mpol_rebind_default,
 445	},
 446	[MPOL_INTERLEAVE] = {
 447		.create = mpol_new_interleave,
 448		.rebind = mpol_rebind_nodemask,
 449	},
 450	[MPOL_PREFERRED] = {
 451		.create = mpol_new_preferred,
 452		.rebind = mpol_rebind_preferred,
 453	},
 454	[MPOL_BIND] = {
 455		.create = mpol_new_bind,
 456		.rebind = mpol_rebind_nodemask,
 457	},
 
 
 
 
 
 
 
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461				unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 465		unsigned long addr, unsigned long end,
 466		const nodemask_t *nodes, unsigned long flags,
 467		void *private)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468{
 469	pte_t *orig_pte;
 470	pte_t *pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	spinlock_t *ptl;
 472
 473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474	do {
 475		struct page *page;
 476		int nid;
 
 
 477
 
 
 478		if (!pte_present(*pte))
 479			continue;
 480		page = vm_normal_page(vma, addr, *pte);
 481		if (!page)
 482			continue;
 483		/*
 484		 * vm_normal_page() filters out zero pages, but there might
 485		 * still be PageReserved pages to skip, perhaps in a VDSO.
 486		 * And we cannot move PageKsm pages sensibly or safely yet.
 487		 */
 488		if (PageReserved(page) || PageKsm(page))
 489			continue;
 490		nid = page_to_nid(page);
 491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492			continue;
 
 
 
 
 
 
 493
 494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495			migrate_page_add(page, private, flags);
 496		else
 
 
 
 
 
 497			break;
 498	} while (pte++, addr += PAGE_SIZE, addr != end);
 499	pte_unmap_unlock(orig_pte, ptl);
 500	return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 504		unsigned long addr, unsigned long end,
 505		const nodemask_t *nodes, unsigned long flags,
 506		void *private)
 507{
 508	pmd_t *pmd;
 509	unsigned long next;
 510
 511	pmd = pmd_offset(pud, addr);
 512	do {
 513		next = pmd_addr_end(addr, end);
 514		split_huge_page_pmd(vma->vm_mm, pmd);
 515		if (pmd_none_or_clear_bad(pmd))
 516			continue;
 517		if (check_pte_range(vma, pmd, addr, next, nodes,
 518				    flags, private))
 519			return -EIO;
 520	} while (pmd++, addr = next, addr != end);
 521	return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525		unsigned long addr, unsigned long end,
 526		const nodemask_t *nodes, unsigned long flags,
 527		void *private)
 528{
 529	pud_t *pud;
 530	unsigned long next;
 531
 532	pud = pud_offset(pgd, addr);
 533	do {
 534		next = pud_addr_end(addr, end);
 535		if (pud_none_or_clear_bad(pud))
 536			continue;
 537		if (check_pmd_range(vma, pud, addr, next, nodes,
 538				    flags, private))
 539			return -EIO;
 540	} while (pud++, addr = next, addr != end);
 541	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542}
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545		unsigned long addr, unsigned long end,
 546		const nodemask_t *nodes, unsigned long flags,
 547		void *private)
 548{
 549	pgd_t *pgd;
 550	unsigned long next;
 551
 552	pgd = pgd_offset(vma->vm_mm, addr);
 553	do {
 554		next = pgd_addr_end(addr, end);
 555		if (pgd_none_or_clear_bad(pgd))
 556			continue;
 557		if (check_pud_range(vma, pgd, addr, next, nodes,
 558				    flags, private))
 559			return -EIO;
 560	} while (pgd++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561	return 0;
 562}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571		const nodemask_t *nodes, unsigned long flags, void *private)
 
 
 
 
 
 
 
 
 
 
 
 572{
 573	int err;
 574	struct vm_area_struct *first, *vma, *prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 575
 576
 577	first = find_vma(mm, start);
 578	if (!first)
 579		return ERR_PTR(-EFAULT);
 580	prev = NULL;
 581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583			if (!vma->vm_next && vma->vm_end < end)
 584				return ERR_PTR(-EFAULT);
 585			if (prev && prev->vm_end < vma->vm_start)
 586				return ERR_PTR(-EFAULT);
 587		}
 588		if (!is_vm_hugetlb_page(vma) &&
 589		    ((flags & MPOL_MF_STRICT) ||
 590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591				vma_migratable(vma)))) {
 592			unsigned long endvma = vma->vm_end;
 593
 594			if (endvma > end)
 595				endvma = end;
 596			if (vma->vm_start > start)
 597				start = vma->vm_start;
 598			err = check_pgd_range(vma, start, endvma, nodes,
 599						flags, private);
 600			if (err) {
 601				first = ERR_PTR(err);
 602				break;
 603			}
 604		}
 605		prev = vma;
 606	}
 607	return first;
 608}
 609
 610/* Apply policy to a single VMA */
 611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 
 
 
 
 612{
 613	int err = 0;
 614	struct mempolicy *old = vma->vm_policy;
 
 615
 616	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 617		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 618		 vma->vm_ops, vma->vm_file,
 619		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 620
 621	if (vma->vm_ops && vma->vm_ops->set_policy)
 
 
 
 
 622		err = vma->vm_ops->set_policy(vma, new);
 623	if (!err) {
 624		mpol_get(new);
 625		vma->vm_policy = new;
 626		mpol_put(old);
 627	}
 
 
 
 
 
 
 
 
 628	return err;
 629}
 630
 631/* Step 2: apply policy to a range and do splits. */
 632static int mbind_range(struct mm_struct *mm, unsigned long start,
 633		       unsigned long end, struct mempolicy *new_pol)
 634{
 635	struct vm_area_struct *next;
 636	struct vm_area_struct *prev;
 637	struct vm_area_struct *vma;
 638	int err = 0;
 639	unsigned long vmstart;
 640	unsigned long vmend;
 641
 642	vma = find_vma_prev(mm, start, &prev);
 643	if (!vma || vma->vm_start > start)
 644		return -EFAULT;
 645
 646	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 647		next = vma->vm_next;
 648		vmstart = max(start, vma->vm_start);
 649		vmend   = min(end, vma->vm_end);
 
 
 
 
 
 
 
 
 
 650
 
 
 651		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 652				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 653				  new_pol);
 
 654		if (prev) {
 
 
 655			vma = prev;
 656			next = vma->vm_next;
 657			continue;
 658		}
 659		if (vma->vm_start != vmstart) {
 660			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 661			if (err)
 662				goto out;
 
 
 663		}
 664		if (vma->vm_end != vmend) {
 665			err = split_vma(vma->vm_mm, vma, vmend, 0);
 666			if (err)
 667				goto out;
 
 
 668		}
 669		err = policy_vma(vma, new_pol);
 
 670		if (err)
 671			goto out;
 
 
 672	}
 673
 674 out:
 675	return err;
 676}
 677
 678/*
 679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 680 * mempolicy.  Allows more rapid checking of this (combined perhaps
 681 * with other PF_* flag bits) on memory allocation hot code paths.
 682 *
 683 * If called from outside this file, the task 'p' should -only- be
 684 * a newly forked child not yet visible on the task list, because
 685 * manipulating the task flags of a visible task is not safe.
 686 *
 687 * The above limitation is why this routine has the funny name
 688 * mpol_fix_fork_child_flag().
 689 *
 690 * It is also safe to call this with a task pointer of current,
 691 * which the static wrapper mpol_set_task_struct_flag() does,
 692 * for use within this file.
 693 */
 694
 695void mpol_fix_fork_child_flag(struct task_struct *p)
 696{
 697	if (p->mempolicy)
 698		p->flags |= PF_MEMPOLICY;
 699	else
 700		p->flags &= ~PF_MEMPOLICY;
 701}
 702
 703static void mpol_set_task_struct_flag(void)
 704{
 705	mpol_fix_fork_child_flag(current);
 706}
 707
 708/* Set the process memory policy */
 709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 710			     nodemask_t *nodes)
 711{
 712	struct mempolicy *new, *old;
 713	struct mm_struct *mm = current->mm;
 714	NODEMASK_SCRATCH(scratch);
 715	int ret;
 716
 717	if (!scratch)
 718		return -ENOMEM;
 719
 720	new = mpol_new(mode, flags, nodes);
 721	if (IS_ERR(new)) {
 722		ret = PTR_ERR(new);
 723		goto out;
 724	}
 725	/*
 726	 * prevent changing our mempolicy while show_numa_maps()
 727	 * is using it.
 728	 * Note:  do_set_mempolicy() can be called at init time
 729	 * with no 'mm'.
 730	 */
 731	if (mm)
 732		down_write(&mm->mmap_sem);
 733	task_lock(current);
 734	ret = mpol_set_nodemask(new, nodes, scratch);
 735	if (ret) {
 736		task_unlock(current);
 737		if (mm)
 738			up_write(&mm->mmap_sem);
 739		mpol_put(new);
 740		goto out;
 741	}
 
 742	old = current->mempolicy;
 743	current->mempolicy = new;
 744	mpol_set_task_struct_flag();
 745	if (new && new->mode == MPOL_INTERLEAVE &&
 746	    nodes_weight(new->v.nodes))
 747		current->il_next = first_node(new->v.nodes);
 748	task_unlock(current);
 749	if (mm)
 750		up_write(&mm->mmap_sem);
 751
 752	mpol_put(old);
 753	ret = 0;
 754out:
 755	NODEMASK_SCRATCH_FREE(scratch);
 756	return ret;
 757}
 758
 759/*
 760 * Return nodemask for policy for get_mempolicy() query
 761 *
 762 * Called with task's alloc_lock held
 763 */
 764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 765{
 766	nodes_clear(*nodes);
 767	if (p == &default_policy)
 768		return;
 769
 770	switch (p->mode) {
 771	case MPOL_BIND:
 772		/* Fall through */
 773	case MPOL_INTERLEAVE:
 774		*nodes = p->v.nodes;
 775		break;
 776	case MPOL_PREFERRED:
 777		if (!(p->flags & MPOL_F_LOCAL))
 778			node_set(p->v.preferred_node, *nodes);
 779		/* else return empty node mask for local allocation */
 
 
 780		break;
 781	default:
 782		BUG();
 783	}
 784}
 785
 786static int lookup_node(struct mm_struct *mm, unsigned long addr)
 787{
 788	struct page *p;
 789	int err;
 790
 791	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 792	if (err >= 0) {
 793		err = page_to_nid(p);
 794		put_page(p);
 795	}
 796	return err;
 797}
 798
 799/* Retrieve NUMA policy */
 800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 801			     unsigned long addr, unsigned long flags)
 802{
 803	int err;
 804	struct mm_struct *mm = current->mm;
 805	struct vm_area_struct *vma = NULL;
 806	struct mempolicy *pol = current->mempolicy;
 807
 808	if (flags &
 809		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 810		return -EINVAL;
 811
 812	if (flags & MPOL_F_MEMS_ALLOWED) {
 813		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 814			return -EINVAL;
 815		*policy = 0;	/* just so it's initialized */
 816		task_lock(current);
 817		*nmask  = cpuset_current_mems_allowed;
 818		task_unlock(current);
 819		return 0;
 820	}
 821
 822	if (flags & MPOL_F_ADDR) {
 823		/*
 824		 * Do NOT fall back to task policy if the
 825		 * vma/shared policy at addr is NULL.  We
 826		 * want to return MPOL_DEFAULT in this case.
 827		 */
 828		down_read(&mm->mmap_sem);
 829		vma = find_vma_intersection(mm, addr, addr+1);
 830		if (!vma) {
 831			up_read(&mm->mmap_sem);
 832			return -EFAULT;
 833		}
 834		if (vma->vm_ops && vma->vm_ops->get_policy)
 835			pol = vma->vm_ops->get_policy(vma, addr);
 836		else
 837			pol = vma->vm_policy;
 838	} else if (addr)
 839		return -EINVAL;
 840
 841	if (!pol)
 842		pol = &default_policy;	/* indicates default behavior */
 843
 844	if (flags & MPOL_F_NODE) {
 845		if (flags & MPOL_F_ADDR) {
 
 
 
 
 
 
 
 
 
 846			err = lookup_node(mm, addr);
 847			if (err < 0)
 848				goto out;
 849			*policy = err;
 850		} else if (pol == current->mempolicy &&
 851				pol->mode == MPOL_INTERLEAVE) {
 852			*policy = current->il_next;
 853		} else {
 854			err = -EINVAL;
 855			goto out;
 856		}
 857	} else {
 858		*policy = pol == &default_policy ? MPOL_DEFAULT :
 859						pol->mode;
 860		/*
 861		 * Internal mempolicy flags must be masked off before exposing
 862		 * the policy to userspace.
 863		 */
 864		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 865	}
 866
 867	if (vma) {
 868		up_read(&current->mm->mmap_sem);
 869		vma = NULL;
 870	}
 871
 872	err = 0;
 873	if (nmask) {
 874		if (mpol_store_user_nodemask(pol)) {
 875			*nmask = pol->w.user_nodemask;
 876		} else {
 877			task_lock(current);
 878			get_policy_nodemask(pol, nmask);
 879			task_unlock(current);
 880		}
 881	}
 882
 883 out:
 884	mpol_cond_put(pol);
 885	if (vma)
 886		up_read(&current->mm->mmap_sem);
 
 
 887	return err;
 888}
 889
 890#ifdef CONFIG_MIGRATION
 891/*
 892 * page migration
 893 */
 894static void migrate_page_add(struct page *page, struct list_head *pagelist,
 895				unsigned long flags)
 896{
 
 897	/*
 898	 * Avoid migrating a page that is shared with others.
 899	 */
 900	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 901		if (!isolate_lru_page(page)) {
 902			list_add_tail(&page->lru, pagelist);
 903			inc_zone_page_state(page, NR_ISOLATED_ANON +
 904					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 
 905		}
 906	}
 907}
 908
 909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 910{
 911	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 912}
 913
 914/*
 915 * Migrate pages from one node to a target node.
 916 * Returns error or the number of pages not migrated.
 917 */
 918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 919			   int flags)
 920{
 921	nodemask_t nmask;
 
 922	LIST_HEAD(pagelist);
 923	int err = 0;
 924	struct vm_area_struct *vma;
 
 
 
 925
 926	nodes_clear(nmask);
 927	node_set(source, nmask);
 928
 929	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 
 
 
 
 
 
 
 930			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 931	if (IS_ERR(vma))
 932		return PTR_ERR(vma);
 933
 934	if (!list_empty(&pagelist)) {
 935		err = migrate_pages(&pagelist, new_node_page, dest,
 936								false, true);
 937		if (err)
 938			putback_lru_pages(&pagelist);
 939	}
 940
 941	return err;
 942}
 943
 944/*
 945 * Move pages between the two nodesets so as to preserve the physical
 946 * layout as much as possible.
 947 *
 948 * Returns the number of page that could not be moved.
 949 */
 950int do_migrate_pages(struct mm_struct *mm,
 951	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 952{
 953	int busy = 0;
 954	int err;
 955	nodemask_t tmp;
 956
 957	err = migrate_prep();
 958	if (err)
 959		return err;
 960
 961	down_read(&mm->mmap_sem);
 962
 963	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 964	if (err)
 965		goto out;
 966
 967	/*
 968	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 969	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 970	 * bit in 'tmp', and return that <source, dest> pair for migration.
 971	 * The pair of nodemasks 'to' and 'from' define the map.
 972	 *
 973	 * If no pair of bits is found that way, fallback to picking some
 974	 * pair of 'source' and 'dest' bits that are not the same.  If the
 975	 * 'source' and 'dest' bits are the same, this represents a node
 976	 * that will be migrating to itself, so no pages need move.
 977	 *
 978	 * If no bits are left in 'tmp', or if all remaining bits left
 979	 * in 'tmp' correspond to the same bit in 'to', return false
 980	 * (nothing left to migrate).
 981	 *
 982	 * This lets us pick a pair of nodes to migrate between, such that
 983	 * if possible the dest node is not already occupied by some other
 984	 * source node, minimizing the risk of overloading the memory on a
 985	 * node that would happen if we migrated incoming memory to a node
 986	 * before migrating outgoing memory source that same node.
 987	 *
 988	 * A single scan of tmp is sufficient.  As we go, we remember the
 989	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 990	 * that not only moved, but what's better, moved to an empty slot
 991	 * (d is not set in tmp), then we break out then, with that pair.
 992	 * Otherwise when we finish scanning from_tmp, we at least have the
 993	 * most recent <s, d> pair that moved.  If we get all the way through
 994	 * the scan of tmp without finding any node that moved, much less
 995	 * moved to an empty node, then there is nothing left worth migrating.
 996	 */
 997
 998	tmp = *from_nodes;
 999	while (!nodes_empty(tmp)) {
1000		int s,d;
1001		int source = -1;
1002		int dest = 0;
1003
1004		for_each_node_mask(s, tmp) {
1005			d = node_remap(s, *from_nodes, *to_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006			if (s == d)
1007				continue;
1008
1009			source = s;	/* Node moved. Memorize */
1010			dest = d;
1011
1012			/* dest not in remaining from nodes? */
1013			if (!node_isset(dest, tmp))
1014				break;
1015		}
1016		if (source == -1)
1017			break;
1018
1019		node_clear(source, tmp);
1020		err = migrate_to_node(mm, source, dest, flags);
1021		if (err > 0)
1022			busy += err;
1023		if (err < 0)
1024			break;
1025	}
1026out:
1027	up_read(&mm->mmap_sem);
 
1028	if (err < 0)
1029		return err;
1030	return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not.  N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044	unsigned long uninitialized_var(address);
 
 
 
1045
1046	while (vma) {
1047		address = page_address_in_vma(page, vma);
1048		if (address != -EFAULT)
1049			break;
1050		vma = vma->vm_next;
1051	}
1052
 
 
 
 
 
 
 
1053	/*
1054	 * if !vma, alloc_page_vma() will use task or system default policy
1055	 */
1056	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061				unsigned long flags)
1062{
 
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068	return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073	return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078		     unsigned short mode, unsigned short mode_flags,
1079		     nodemask_t *nmask, unsigned long flags)
1080{
1081	struct vm_area_struct *vma;
1082	struct mm_struct *mm = current->mm;
1083	struct mempolicy *new;
1084	unsigned long end;
1085	int err;
 
1086	LIST_HEAD(pagelist);
1087
1088	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090		return -EINVAL;
1091	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092		return -EPERM;
1093
1094	if (start & ~PAGE_MASK)
1095		return -EINVAL;
1096
1097	if (mode == MPOL_DEFAULT)
1098		flags &= ~MPOL_MF_STRICT;
1099
1100	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101	end = start + len;
1102
1103	if (end < start)
1104		return -EINVAL;
1105	if (end == start)
1106		return 0;
1107
1108	new = mpol_new(mode, mode_flags, nmask);
1109	if (IS_ERR(new))
1110		return PTR_ERR(new);
1111
 
 
 
1112	/*
1113	 * If we are using the default policy then operation
1114	 * on discontinuous address spaces is okay after all
1115	 */
1116	if (!new)
1117		flags |= MPOL_MF_DISCONTIG_OK;
1118
1119	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120		 start, start + len, mode, mode_flags,
1121		 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125		err = migrate_prep();
1126		if (err)
1127			goto mpol_out;
1128	}
1129	{
1130		NODEMASK_SCRATCH(scratch);
1131		if (scratch) {
1132			down_write(&mm->mmap_sem);
1133			task_lock(current);
1134			err = mpol_set_nodemask(new, nmask, scratch);
1135			task_unlock(current);
1136			if (err)
1137				up_write(&mm->mmap_sem);
1138		} else
1139			err = -ENOMEM;
1140		NODEMASK_SCRATCH_FREE(scratch);
1141	}
1142	if (err)
1143		goto mpol_out;
1144
1145	vma = check_range(mm, start, end, nmask,
1146			  flags | MPOL_MF_INVERT, &pagelist);
1147
1148	err = PTR_ERR(vma);
1149	if (!IS_ERR(vma)) {
1150		int nr_failed = 0;
 
 
 
1151
1152		err = mbind_range(mm, start, end, new);
 
1153
1154		if (!list_empty(&pagelist)) {
1155			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156						(unsigned long)vma,
1157						false, true);
1158			if (nr_failed)
1159				putback_lru_pages(&pagelist);
1160		}
1161
1162		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163			err = -EIO;
1164	} else
1165		putback_lru_pages(&pagelist);
 
 
 
1166
1167	up_write(&mm->mmap_sem);
1168 mpol_out:
1169	mpol_put(new);
 
 
1170	return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179		     unsigned long maxnode)
1180{
1181	unsigned long k;
1182	unsigned long nlongs;
1183	unsigned long endmask;
1184
1185	--maxnode;
1186	nodes_clear(*nodes);
1187	if (maxnode == 0 || !nmask)
1188		return 0;
1189	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190		return -EINVAL;
1191
1192	nlongs = BITS_TO_LONGS(maxnode);
1193	if ((maxnode % BITS_PER_LONG) == 0)
1194		endmask = ~0UL;
1195	else
1196		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 
 
 
1197
1198	/* When the user specified more nodes than supported just check
1199	   if the non supported part is all zero. */
1200	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201		if (nlongs > PAGE_SIZE/sizeof(long))
1202			return -EINVAL;
1203		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204			unsigned long t;
1205			if (get_user(t, nmask + k))
1206				return -EFAULT;
1207			if (k == nlongs - 1) {
1208				if (t & endmask)
1209					return -EINVAL;
1210			} else if (t)
1211				return -EINVAL;
1212		}
1213		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214		endmask = ~0UL;
1215	}
1216
1217	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218		return -EFAULT;
1219	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220	return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225			      nodemask_t *nodes)
1226{
1227	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 
 
 
 
1229
1230	if (copy > nbytes) {
1231		if (copy > PAGE_SIZE)
1232			return -EINVAL;
1233		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234			return -EFAULT;
1235		copy = nbytes;
 
1236	}
 
 
 
 
 
1237	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241		unsigned long, mode, unsigned long __user *, nmask,
1242		unsigned long, maxnode, unsigned, flags)
1243{
1244	nodemask_t nodes;
1245	int err;
1246	unsigned short mode_flags;
1247
1248	mode_flags = mode & MPOL_MODE_FLAGS;
1249	mode &= ~MPOL_MODE_FLAGS;
1250	if (mode >= MPOL_MAX)
1251		return -EINVAL;
1252	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255	err = get_nodes(&nodes, nmask, maxnode);
1256	if (err)
1257		return err;
1258	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263		unsigned long, maxnode)
1264{
1265	int err;
1266	nodemask_t nodes;
1267	unsigned short flags;
 
 
 
 
 
1268
1269	flags = mode & MPOL_MODE_FLAGS;
1270	mode &= ~MPOL_MODE_FLAGS;
1271	if ((unsigned int)mode >= MPOL_MAX)
1272		return -EINVAL;
1273	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
 
 
 
1274		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275	err = get_nodes(&nodes, nmask, maxnode);
1276	if (err)
1277		return err;
1278	return do_set_mempolicy(mode, flags, &nodes);
 
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282		const unsigned long __user *, old_nodes,
1283		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1284{
1285	const struct cred *cred = current_cred(), *tcred;
1286	struct mm_struct *mm = NULL;
1287	struct task_struct *task;
1288	nodemask_t task_nodes;
1289	int err;
1290	nodemask_t *old;
1291	nodemask_t *new;
1292	NODEMASK_SCRATCH(scratch);
1293
1294	if (!scratch)
1295		return -ENOMEM;
1296
1297	old = &scratch->mask1;
1298	new = &scratch->mask2;
1299
1300	err = get_nodes(old, old_nodes, maxnode);
1301	if (err)
1302		goto out;
1303
1304	err = get_nodes(new, new_nodes, maxnode);
1305	if (err)
1306		goto out;
1307
1308	/* Find the mm_struct */
1309	rcu_read_lock();
1310	task = pid ? find_task_by_vpid(pid) : current;
1311	if (!task) {
1312		rcu_read_unlock();
1313		err = -ESRCH;
1314		goto out;
1315	}
1316	mm = get_task_mm(task);
1317	rcu_read_unlock();
1318
1319	err = -EINVAL;
1320	if (!mm)
1321		goto out;
1322
1323	/*
1324	 * Check if this process has the right to modify the specified
1325	 * process. The right exists if the process has administrative
1326	 * capabilities, superuser privileges or the same
1327	 * userid as the target process.
1328	 */
1329	rcu_read_lock();
1330	tcred = __task_cred(task);
1331	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333	    !capable(CAP_SYS_NICE)) {
1334		rcu_read_unlock();
1335		err = -EPERM;
1336		goto out;
1337	}
1338	rcu_read_unlock();
1339
1340	task_nodes = cpuset_mems_allowed(task);
1341	/* Is the user allowed to access the target nodes? */
1342	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343		err = -EPERM;
1344		goto out;
1345	}
1346
1347	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348		err = -EINVAL;
1349		goto out;
1350	}
1351
1352	err = security_task_movememory(task);
1353	if (err)
 
 
 
 
 
 
 
1354		goto out;
 
1355
1356	err = do_migrate_pages(mm, old, new,
1357		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 
 
1358out:
1359	if (mm)
1360		mmput(mm);
1361	NODEMASK_SCRATCH_FREE(scratch);
1362
1363	return err;
 
 
 
 
 
 
 
 
 
 
 
 
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369		unsigned long __user *, nmask, unsigned long, maxnode,
1370		unsigned long, addr, unsigned long, flags)
 
 
1371{
1372	int err;
1373	int uninitialized_var(pval);
1374	nodemask_t nodes;
1375
1376	if (nmask != NULL && maxnode < MAX_NUMNODES)
1377		return -EINVAL;
1378
 
 
1379	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381	if (err)
1382		return err;
1383
1384	if (policy && put_user(pval, policy))
1385		return -EFAULT;
1386
1387	if (nmask)
1388		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390	return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396				     compat_ulong_t __user *nmask,
1397				     compat_ulong_t maxnode,
1398				     compat_ulong_t addr, compat_ulong_t flags)
1399{
1400	long err;
1401	unsigned long __user *nm = NULL;
1402	unsigned long nr_bits, alloc_size;
1403	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408	if (nmask)
1409		nm = compat_alloc_user_space(alloc_size);
1410
1411	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413	if (!err && nmask) {
1414		unsigned long copy_size;
1415		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416		err = copy_from_user(bm, nm, copy_size);
1417		/* ensure entire bitmap is zeroed */
1418		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420	}
1421
1422	return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426				     compat_ulong_t maxnode)
1427{
1428	long err = 0;
1429	unsigned long __user *nm = NULL;
1430	unsigned long nr_bits, alloc_size;
1431	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436	if (nmask) {
1437		err = compat_get_bitmap(bm, nmask, nr_bits);
1438		nm = compat_alloc_user_space(alloc_size);
1439		err |= copy_to_user(nm, bm, alloc_size);
1440	}
 
1441
1442	if (err)
1443		return -EFAULT;
 
1444
1445	return sys_set_mempolicy(mode, nm, nr_bits+1);
 
 
 
 
 
 
 
 
 
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450			     compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452	long err = 0;
1453	unsigned long __user *nm = NULL;
1454	unsigned long nr_bits, alloc_size;
1455	nodemask_t bm;
1456
1457	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 
 
 
1459
1460	if (nmask) {
1461		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462		nm = compat_alloc_user_space(alloc_size);
1463		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 
 
 
 
 
1464	}
1465
1466	if (err)
1467		return -EFAULT;
1468
1469	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma   - virtual memory area whose policy is sought
1478 * @addr  - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task.  It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491		struct vm_area_struct *vma, unsigned long addr)
1492{
1493	struct mempolicy *pol = task->mempolicy;
1494
1495	if (vma) {
1496		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498									addr);
1499			if (vpol)
1500				pol = vpol;
1501		} else if (vma->vm_policy)
1502			pol = vma->vm_policy;
1503	}
1504	if (!pol)
1505		pol = &default_policy;
 
1506	return pol;
1507}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
 
 
1515	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516	if (unlikely(policy->mode == MPOL_BIND) &&
1517			gfp_zone(gfp) >= policy_zone &&
1518			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519		return &policy->v.nodes;
 
 
 
1520
1521	return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526	int nd)
 
 
 
 
 
1527{
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
 
 
 
 
 
 
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
 
 
 
 
 
 
 
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
 
 
 
 
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone ? zone->node : numa_node_id();
1601	}
 
 
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
 
 
 
 
 
 
 
 
 
 
 
1616
 
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656	int w, bit = -1;
1657
1658	w = nodes_weight(*maskp);
1659	if (w)
1660		bit = bitmap_ord_to_pos(maskp->bits,
1661			get_random_int() % w, MAX_NUMNODES);
1662	return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682				gfp_t gfp_flags, struct mempolicy **mpol,
1683				nodemask_t **nodemask)
1684{
1685	struct zonelist *zl;
1686
1687	*mpol = get_vma_policy(current, vma, addr);
1688	*nodemask = NULL;	/* assume !MPOL_BIND */
1689
1690	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692				huge_page_shift(hstate_vma(vma))), gfp_flags);
 
 
 
 
1693	} else {
1694		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695		if ((*mpol)->mode == MPOL_BIND)
1696			*nodemask = &(*mpol)->v.nodes;
1697	}
1698	return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy.  Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719	struct mempolicy *mempolicy;
1720	int nid;
1721
1722	if (!(mask && current->mempolicy))
1723		return false;
1724
1725	task_lock(current);
1726	mempolicy = current->mempolicy;
1727	switch (mempolicy->mode) {
1728	case MPOL_PREFERRED:
1729		if (mempolicy->flags & MPOL_F_LOCAL)
1730			nid = numa_node_id();
1731		else
1732			nid = mempolicy->v.preferred_node;
1733		init_nodemask_of_node(mask, nid);
1734		break;
1735
1736	case MPOL_BIND:
1737		/* Fall through */
1738	case MPOL_INTERLEAVE:
1739		*mask =  mempolicy->v.nodes;
 
 
 
 
1740		break;
1741
1742	default:
1743		BUG();
1744	}
1745	task_unlock(current);
1746
1747	return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy.  Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762					const nodemask_t *mask)
1763{
1764	struct mempolicy *mempolicy;
1765	bool ret = true;
1766
1767	if (!mask)
1768		return ret;
 
1769	task_lock(tsk);
1770	mempolicy = tsk->mempolicy;
1771	if (!mempolicy)
1772		goto out;
1773
1774	switch (mempolicy->mode) {
1775	case MPOL_PREFERRED:
1776		/*
1777		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778		 * allocate from, they may fallback to other nodes when oom.
1779		 * Thus, it's possible for tsk to have allocated memory from
1780		 * nodes in mask.
1781		 */
1782		break;
1783	case MPOL_BIND:
1784	case MPOL_INTERLEAVE:
1785		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786		break;
1787	default:
1788		BUG();
1789	}
1790out:
1791	task_unlock(tsk);
 
1792	return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796   Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798					unsigned nid)
1799{
1800	struct zonelist *zl;
1801	struct page *page;
1802
1803	zl = node_zonelist(nid, gfp);
1804	page = __alloc_pages(gfp, order, zl);
1805	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
1807	return page;
1808}
1809
1810/**
1811 * 	alloc_pages_vma	- Allocate a page for a VMA.
1812 *
1813 * 	@gfp:
1814 *      %GFP_USER    user allocation.
1815 *      %GFP_KERNEL  kernel allocations,
1816 *      %GFP_HIGHMEM highmem/user allocations,
1817 *      %GFP_FS      allocation should not call back into a file system.
1818 *      %GFP_ATOMIC  don't sleep.
1819 *
1820 *	@order:Order of the GFP allocation.
1821 * 	@vma:  Pointer to VMA or NULL if not available.
1822 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1823 *
1824 * 	This function allocates a page from the kernel page pool and applies
1825 *	a NUMA policy associated with the VMA or the current process.
1826 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 *	mm_struct of the VMA to prevent it from going away. Should be used for
1828 *	all allocations for pages that will be mapped into
1829 * 	user space. Returns NULL when no page can be allocated.
1830 *
1831 *	Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835		unsigned long addr, int node)
1836{
1837	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838	struct zonelist *zl;
1839	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840
1841	get_mems_allowed();
1842	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843		unsigned nid;
1844
1845		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846		mpol_cond_put(pol);
 
1847		page = alloc_page_interleave(gfp, order, nid);
1848		put_mems_allowed();
1849		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850	}
1851	zl = policy_zonelist(gfp, pol, node);
1852	if (unlikely(mpol_needs_cond_ref(pol))) {
 
 
1853		/*
1854		 * slow path: ref counted shared policy
 
 
 
 
 
 
 
1855		 */
1856		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857						zl, policy_nodemask(gfp, pol));
1858		__mpol_put(pol);
1859		put_mems_allowed();
1860		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861	}
1862	/*
1863	 * fast path:  default or task policy
1864	 */
1865	page = __alloc_pages_nodemask(gfp, order, zl,
1866				      policy_nodemask(gfp, pol));
1867	put_mems_allowed();
1868	return page;
1869}
 
1870
1871/**
1872 * 	alloc_pages_current - Allocate pages.
1873 *
1874 *	@gfp:
1875 *		%GFP_USER   user allocation,
1876 *      	%GFP_KERNEL kernel allocation,
1877 *      	%GFP_HIGHMEM highmem allocation,
1878 *      	%GFP_FS     don't call back into a file system.
1879 *      	%GFP_ATOMIC don't sleep.
1880 *	@order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 *	Allocate a page from the kernel page pool.  When not in
1883 *	interrupt context and apply the current process NUMA policy.
1884 *	Returns NULL when no page can be allocated.
1885 *
1886 *	Don't call cpuset_update_task_memory_state() unless
1887 *	1) it's ok to take cpuset_sem (can WAIT), and
1888 *	2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892	struct mempolicy *pol = current->mempolicy;
1893	struct page *page;
1894
1895	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896		pol = &default_policy;
1897
1898	get_mems_allowed();
1899	/*
1900	 * No reference counting needed for current->mempolicy
1901	 * nor system default_policy
1902	 */
1903	if (pol->mode == MPOL_INTERLEAVE)
1904		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
 
 
 
1905	else
1906		page = __alloc_pages_nodemask(gfp, order,
1907				policy_zonelist(gfp, pol, numa_node_id()),
1908				policy_nodemask(gfp, pol));
1909	put_mems_allowed();
1910	return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed().  This
1918 * keeps mempolicies cpuset relative after its cpuset moves.  See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930	if (!new)
1931		return ERR_PTR(-ENOMEM);
1932
1933	/* task's mempolicy is protected by alloc_lock */
1934	if (old == current->mempolicy) {
1935		task_lock(current);
1936		*new = *old;
1937		task_unlock(current);
1938	} else
1939		*new = *old;
1940
1941	rcu_read_lock();
1942	if (current_cpuset_is_being_rebound()) {
1943		nodemask_t mems = cpuset_mems_allowed(current);
1944		if (new->flags & MPOL_F_REBINDING)
1945			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946		else
1947			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948	}
1949	rcu_read_unlock();
1950	atomic_set(&new->refcnt, 1);
1951	return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958 * after return.  Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965						struct mempolicy *frompol)
1966{
1967	if (!mpol_needs_cond_ref(frompol))
1968		return frompol;
1969
1970	*tompol = *frompol;
1971	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972	__mpol_put(frompol);
1973	return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979	if (!a || !b)
1980		return 0;
1981	if (a->mode != b->mode)
1982		return 0;
1983	if (a->flags != b->flags)
1984		return 0;
 
 
1985	if (mpol_store_user_nodemask(a))
1986		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987			return 0;
1988
1989	switch (a->mode) {
1990	case MPOL_BIND:
1991		/* Fall through */
1992	case MPOL_INTERLEAVE:
1993		return nodes_equal(a->v.nodes, b->v.nodes);
1994	case MPOL_PREFERRED:
1995		return a->v.preferred_node == b->v.preferred_node;
 
 
 
1996	default:
1997		BUG();
1998		return 0;
1999	}
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
 
 
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016	struct rb_node *n = sp->root.rb_node;
2017
2018	while (n) {
2019		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021		if (start >= p->end)
2022			n = n->rb_right;
2023		else if (end <= p->start)
2024			n = n->rb_left;
2025		else
2026			break;
2027	}
2028	if (!n)
2029		return NULL;
2030	for (;;) {
2031		struct sp_node *w = NULL;
2032		struct rb_node *prev = rb_prev(n);
2033		if (!prev)
2034			break;
2035		w = rb_entry(prev, struct sp_node, nd);
2036		if (w->end <= start)
2037			break;
2038		n = prev;
2039	}
2040	return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
 
 
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047	struct rb_node **p = &sp->root.rb_node;
2048	struct rb_node *parent = NULL;
2049	struct sp_node *nd;
2050
2051	while (*p) {
2052		parent = *p;
2053		nd = rb_entry(parent, struct sp_node, nd);
2054		if (new->start < nd->start)
2055			p = &(*p)->rb_left;
2056		else if (new->end > nd->end)
2057			p = &(*p)->rb_right;
2058		else
2059			BUG();
2060	}
2061	rb_link_node(&new->nd, parent, p);
2062	rb_insert_color(&new->nd, &sp->root);
2063	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064		 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071	struct mempolicy *pol = NULL;
2072	struct sp_node *sn;
2073
2074	if (!sp->root.rb_node)
2075		return NULL;
2076	spin_lock(&sp->lock);
2077	sn = sp_lookup(sp, idx, idx+1);
2078	if (sn) {
2079		mpol_get(sn->policy);
2080		pol = sn->policy;
2081	}
2082	spin_unlock(&sp->lock);
2083	return pol;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089	rb_erase(&n->nd, &sp->root);
2090	mpol_put(n->policy);
2091	kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095				struct mempolicy *pol)
2096{
2097	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 
2098
 
2099	if (!n)
2100		return NULL;
2101	n->start = start;
2102	n->end = end;
2103	mpol_get(pol);
2104	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105	n->policy = pol;
 
 
 
 
2106	return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111				 unsigned long end, struct sp_node *new)
2112{
2113	struct sp_node *n, *new2 = NULL;
 
 
 
2114
2115restart:
2116	spin_lock(&sp->lock);
2117	n = sp_lookup(sp, start, end);
2118	/* Take care of old policies in the same range. */
2119	while (n && n->start < end) {
2120		struct rb_node *next = rb_next(&n->nd);
2121		if (n->start >= start) {
2122			if (n->end <= end)
2123				sp_delete(sp, n);
2124			else
2125				n->start = end;
2126		} else {
2127			/* Old policy spanning whole new range. */
2128			if (n->end > end) {
2129				if (!new2) {
2130					spin_unlock(&sp->lock);
2131					new2 = sp_alloc(end, n->end, n->policy);
2132					if (!new2)
2133						return -ENOMEM;
2134					goto restart;
2135				}
2136				n->end = start;
2137				sp_insert(sp, new2);
2138				new2 = NULL;
 
2139				break;
2140			} else
2141				n->end = start;
2142		}
2143		if (!next)
2144			break;
2145		n = rb_entry(next, struct sp_node, nd);
2146	}
2147	if (new)
2148		sp_insert(sp, new);
2149	spin_unlock(&sp->lock);
2150	if (new2) {
2151		mpol_put(new2->policy);
2152		kmem_cache_free(sn_cache, new2);
2153	}
2154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol:  struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169	int ret;
2170
2171	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172	spin_lock_init(&sp->lock);
2173
2174	if (mpol) {
2175		struct vm_area_struct pvma;
2176		struct mempolicy *new;
2177		NODEMASK_SCRATCH(scratch);
2178
2179		if (!scratch)
2180			goto put_mpol;
2181		/* contextualize the tmpfs mount point mempolicy */
2182		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183		if (IS_ERR(new))
2184			goto free_scratch; /* no valid nodemask intersection */
2185
2186		task_lock(current);
2187		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188		task_unlock(current);
2189		if (ret)
2190			goto put_new;
2191
2192		/* Create pseudo-vma that contains just the policy */
2193		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198		mpol_put(new);			/* drop initial ref */
2199free_scratch:
2200		NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203	}
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207			struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209	int err;
2210	struct sp_node *new = NULL;
2211	unsigned long sz = vma_pages(vma);
2212
2213	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214		 vma->vm_pgoff,
2215		 sz, npol ? npol->mode : -1,
2216		 npol ? npol->flags : -1,
2217		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219	if (npol) {
2220		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221		if (!new)
2222			return -ENOMEM;
2223	}
2224	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225	if (err && new)
2226		kmem_cache_free(sn_cache, new);
2227	return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233	struct sp_node *n;
2234	struct rb_node *next;
2235
2236	if (!p->root.rb_node)
2237		return;
2238	spin_lock(&p->lock);
2239	next = rb_first(&p->root);
2240	while (next) {
2241		n = rb_entry(next, struct sp_node, nd);
2242		next = rb_next(&n->nd);
2243		rb_erase(&n->nd, &p->root);
2244		mpol_put(n->policy);
2245		kmem_cache_free(sn_cache, n);
2246	}
2247	spin_unlock(&p->lock);
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253	nodemask_t interleave_nodes;
2254	unsigned long largest = 0;
2255	int nid, prefer = 0;
2256
2257	policy_cache = kmem_cache_create("numa_policy",
2258					 sizeof(struct mempolicy),
2259					 0, SLAB_PANIC, NULL);
2260
2261	sn_cache = kmem_cache_create("shared_policy_node",
2262				     sizeof(struct sp_node),
2263				     0, SLAB_PANIC, NULL);
2264
 
 
 
 
 
 
 
 
 
2265	/*
2266	 * Set interleaving policy for system init. Interleaving is only
2267	 * enabled across suitably sized nodes (default is >= 16MB), or
2268	 * fall back to the largest node if they're all smaller.
2269	 */
2270	nodes_clear(interleave_nodes);
2271	for_each_node_state(nid, N_HIGH_MEMORY) {
2272		unsigned long total_pages = node_present_pages(nid);
2273
2274		/* Preserve the largest node */
2275		if (largest < total_pages) {
2276			largest = total_pages;
2277			prefer = nid;
2278		}
2279
2280		/* Interleave this node? */
2281		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282			node_set(nid, interleave_nodes);
2283	}
2284
2285	/* All too small, use the largest */
2286	if (unlikely(nodes_empty(interleave_nodes)))
2287		node_set(prefer, interleave_nodes);
2288
2289	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290		printk("numa_policy_init: interleaving failed\n");
 
 
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310	[MPOL_DEFAULT]    = "default",
2311	[MPOL_PREFERRED]  = "prefer",
2312	[MPOL_BIND]       = "bind",
2313	[MPOL_INTERLEAVE] = "interleave",
2314	[MPOL_LOCAL]      = "local"
 
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str:  string containing mempolicy to parse
2322 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323 * @no_context:  flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 *	<mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331 * mount option.  Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved.  Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339	struct mempolicy *new = NULL;
2340	unsigned short mode;
2341	unsigned short uninitialized_var(mode_flags);
2342	nodemask_t nodes;
2343	char *nodelist = strchr(str, ':');
2344	char *flags = strchr(str, '=');
2345	int err = 1;
 
 
 
2346
2347	if (nodelist) {
2348		/* NUL-terminate mode or flags string */
2349		*nodelist++ = '\0';
2350		if (nodelist_parse(nodelist, nodes))
2351			goto out;
2352		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353			goto out;
2354	} else
2355		nodes_clear(nodes);
2356
2357	if (flags)
2358		*flags++ = '\0';	/* terminate mode string */
2359
2360	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361		if (!strcmp(str, policy_modes[mode])) {
2362			break;
2363		}
2364	}
2365	if (mode > MPOL_LOCAL)
2366		goto out;
2367
2368	switch (mode) {
2369	case MPOL_PREFERRED:
2370		/*
2371		 * Insist on a nodelist of one node only
 
 
2372		 */
2373		if (nodelist) {
2374			char *rest = nodelist;
2375			while (isdigit(*rest))
2376				rest++;
2377			if (*rest)
2378				goto out;
 
 
2379		}
2380		break;
2381	case MPOL_INTERLEAVE:
2382		/*
2383		 * Default to online nodes with memory if no nodelist
2384		 */
2385		if (!nodelist)
2386			nodes = node_states[N_HIGH_MEMORY];
2387		break;
2388	case MPOL_LOCAL:
2389		/*
2390		 * Don't allow a nodelist;  mpol_new() checks flags
2391		 */
2392		if (nodelist)
2393			goto out;
2394		mode = MPOL_PREFERRED;
2395		break;
2396	case MPOL_DEFAULT:
2397		/*
2398		 * Insist on a empty nodelist
2399		 */
2400		if (!nodelist)
2401			err = 0;
2402		goto out;
 
2403	case MPOL_BIND:
2404		/*
2405		 * Insist on a nodelist
2406		 */
2407		if (!nodelist)
2408			goto out;
2409	}
2410
2411	mode_flags = 0;
2412	if (flags) {
2413		/*
2414		 * Currently, we only support two mutually exclusive
2415		 * mode flags.
2416		 */
2417		if (!strcmp(flags, "static"))
2418			mode_flags |= MPOL_F_STATIC_NODES;
2419		else if (!strcmp(flags, "relative"))
2420			mode_flags |= MPOL_F_RELATIVE_NODES;
2421		else
2422			goto out;
2423	}
2424
2425	new = mpol_new(mode, mode_flags, &nodes);
2426	if (IS_ERR(new))
2427		goto out;
2428
2429	if (no_context) {
2430		/* save for contextualization */
2431		new->w.user_nodemask = nodes;
 
 
 
 
 
 
2432	} else {
2433		int ret;
2434		NODEMASK_SCRATCH(scratch);
2435		if (scratch) {
2436			task_lock(current);
2437			ret = mpol_set_nodemask(new, &nodes, scratch);
2438			task_unlock(current);
2439		} else
2440			ret = -ENOMEM;
2441		NODEMASK_SCRATCH_FREE(scratch);
2442		if (ret) {
2443			mpol_put(new);
2444			goto out;
2445		}
2446	}
 
 
 
 
 
 
 
2447	err = 0;
2448
2449out:
2450	/* Restore string for error message */
2451	if (nodelist)
2452		*--nodelist = ':';
2453	if (flags)
2454		*--flags = '=';
2455	if (!err)
2456		*mpol = new;
2457	return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer:  to contain formatted mempolicy string
2464 * @maxlen:  length of @buffer
2465 * @pol:  pointer to mempolicy to be formatted
2466 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474	char *p = buffer;
2475	int l;
2476	nodemask_t nodes;
2477	unsigned short mode;
2478	unsigned short flags = pol ? pol->flags : 0;
2479
2480	/*
2481	 * Sanity check:  room for longest mode, flag and some nodes
2482	 */
2483	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485	if (!pol || pol == &default_policy)
2486		mode = MPOL_DEFAULT;
2487	else
2488		mode = pol->mode;
 
 
2489
2490	switch (mode) {
2491	case MPOL_DEFAULT:
2492		nodes_clear(nodes);
2493		break;
2494
2495	case MPOL_PREFERRED:
2496		nodes_clear(nodes);
2497		if (flags & MPOL_F_LOCAL)
2498			mode = MPOL_LOCAL;	/* pseudo-policy */
2499		else
2500			node_set(pol->v.preferred_node, nodes);
2501		break;
2502
2503	case MPOL_BIND:
2504		/* Fall through */
2505	case MPOL_INTERLEAVE:
2506		if (no_context)
2507			nodes = pol->w.user_nodemask;
2508		else
2509			nodes = pol->v.nodes;
2510		break;
2511
2512	default:
2513		BUG();
 
 
2514	}
2515
2516	l = strlen(policy_modes[mode]);
2517	if (buffer + maxlen < p + l + 1)
2518		return -ENOSPC;
2519
2520	strcpy(p, policy_modes[mode]);
2521	p += l;
2522
2523	if (flags & MPOL_MODE_FLAGS) {
2524		if (buffer + maxlen < p + 2)
2525			return -ENOSPC;
2526		*p++ = '=';
2527
2528		/*
2529		 * Currently, the only defined flags are mutually exclusive
2530		 */
2531		if (flags & MPOL_F_STATIC_NODES)
2532			p += snprintf(p, buffer + maxlen - p, "static");
2533		else if (flags & MPOL_F_RELATIVE_NODES)
2534			p += snprintf(p, buffer + maxlen - p, "relative");
2535	}
2536
2537	if (!nodes_empty(nodes)) {
2538		if (buffer + maxlen < p + 2)
2539			return -ENOSPC;
2540		*p++ = ':';
2541	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542	}
2543	return p - buffer;
2544}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * preferred many Try a set of nodes first before normal fallback. This is
  35 *                similar to preferred without the special case.
  36 *
  37 * default        Allocate on the local node first, or when on a VMA
  38 *                use the process policy. This is what Linux always did
  39 *		  in a NUMA aware kernel and still does by, ahem, default.
  40 *
  41 * The process policy is applied for most non interrupt memory allocations
  42 * in that process' context. Interrupts ignore the policies and always
  43 * try to allocate on the local CPU. The VMA policy is only applied for memory
  44 * allocations for a VMA in the VM.
  45 *
  46 * Currently there are a few corner cases in swapping where the policy
  47 * is not applied, but the majority should be handled. When process policy
  48 * is used it is not remembered over swap outs/swap ins.
  49 *
  50 * Only the highest zone in the zone hierarchy gets policied. Allocations
  51 * requesting a lower zone just use default policy. This implies that
  52 * on systems with highmem kernel lowmem allocation don't get policied.
  53 * Same with GFP_DMA allocations.
  54 *
  55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  56 * all users and remembered even when nobody has memory mapped.
  57 */
  58
  59/* Notebook:
  60   fix mmap readahead to honour policy and enable policy for any page cache
  61   object
  62   statistics for bigpages
  63   global policy for page cache? currently it uses process policy. Requires
  64   first item above.
  65   handle mremap for shared memory (currently ignored for the policy)
  66   grows down?
  67   make bind policy root only? It can trigger oom much faster and the
  68   kernel is not always grateful with that.
  69*/
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/mempolicy.h>
  74#include <linux/pagewalk.h>
  75#include <linux/highmem.h>
  76#include <linux/hugetlb.h>
  77#include <linux/kernel.h>
  78#include <linux/sched.h>
  79#include <linux/sched/mm.h>
  80#include <linux/sched/numa_balancing.h>
  81#include <linux/sched/task.h>
  82#include <linux/nodemask.h>
  83#include <linux/cpuset.h>
  84#include <linux/slab.h>
  85#include <linux/string.h>
  86#include <linux/export.h>
  87#include <linux/nsproxy.h>
  88#include <linux/interrupt.h>
  89#include <linux/init.h>
  90#include <linux/compat.h>
  91#include <linux/ptrace.h>
  92#include <linux/swap.h>
  93#include <linux/seq_file.h>
  94#include <linux/proc_fs.h>
  95#include <linux/migrate.h>
  96#include <linux/ksm.h>
  97#include <linux/rmap.h>
  98#include <linux/security.h>
  99#include <linux/syscalls.h>
 100#include <linux/ctype.h>
 101#include <linux/mm_inline.h>
 102#include <linux/mmu_notifier.h>
 103#include <linux/printk.h>
 104#include <linux/swapops.h>
 105
 106#include <asm/tlbflush.h>
 107#include <asm/tlb.h>
 108#include <linux/uaccess.h>
 109
 110#include "internal.h"
 111
 112/* Internal flags */
 113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 115
 116static struct kmem_cache *policy_cache;
 117static struct kmem_cache *sn_cache;
 118
 119/* Highest zone. An specific allocation for a zone below that is not
 120   policied. */
 121enum zone_type policy_zone = 0;
 122
 123/*
 124 * run-time system-wide default policy => local allocation
 125 */
 126static struct mempolicy default_policy = {
 127	.refcnt = ATOMIC_INIT(1), /* never free it */
 128	.mode = MPOL_LOCAL,
 
 129};
 130
 131static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133/**
 134 * numa_map_to_online_node - Find closest online node
 135 * @node: Node id to start the search
 136 *
 137 * Lookup the next closest node by distance if @nid is not online.
 138 *
 139 * Return: this @node if it is online, otherwise the closest node by distance
 140 */
 141int numa_map_to_online_node(int node)
 142{
 143	int min_dist = INT_MAX, dist, n, min_node;
 144
 145	if (node == NUMA_NO_NODE || node_online(node))
 146		return node;
 147
 148	min_node = node;
 149	for_each_online_node(n) {
 150		dist = node_distance(node, n);
 151		if (dist < min_dist) {
 152			min_dist = dist;
 153			min_node = n;
 154		}
 155	}
 156
 157	return min_node;
 158}
 159EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 160
 161struct mempolicy *get_task_policy(struct task_struct *p)
 162{
 163	struct mempolicy *pol = p->mempolicy;
 164	int node;
 165
 166	if (pol)
 167		return pol;
 168
 169	node = numa_node_id();
 170	if (node != NUMA_NO_NODE) {
 171		pol = &preferred_node_policy[node];
 172		/* preferred_node_policy is not initialised early in boot */
 173		if (pol->mode)
 174			return pol;
 175	}
 176
 177	return &default_policy;
 178}
 179
 180static const struct mempolicy_operations {
 181	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 182	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 183} mpol_ops[MPOL_MAX];
 184
 185static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 186{
 187	return pol->flags & MPOL_MODE_FLAGS;
 188}
 189
 190static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 191				   const nodemask_t *rel)
 192{
 193	nodemask_t tmp;
 194	nodes_fold(tmp, *orig, nodes_weight(*rel));
 195	nodes_onto(*ret, tmp, *rel);
 196}
 197
 198static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 199{
 200	if (nodes_empty(*nodes))
 201		return -EINVAL;
 202	pol->nodes = *nodes;
 203	return 0;
 204}
 205
 206static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 207{
 208	if (nodes_empty(*nodes))
 
 
 
 
 
 
 
 
 
 
 
 209		return -EINVAL;
 210
 211	nodes_clear(pol->nodes);
 212	node_set(first_node(*nodes), pol->nodes);
 213	return 0;
 214}
 215
 216/*
 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 218 * any, for the new policy.  mpol_new() has already validated the nodes
 219 * parameter with respect to the policy mode and flags.
 
 220 *
 221 * Must be called holding task's alloc_lock to protect task's mems_allowed
 222 * and mempolicy.  May also be called holding the mmap_lock for write.
 223 */
 224static int mpol_set_nodemask(struct mempolicy *pol,
 225		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 226{
 227	int ret;
 228
 229	/*
 230	 * Default (pol==NULL) resp. local memory policies are not a
 231	 * subject of any remapping. They also do not need any special
 232	 * constructor.
 233	 */
 234	if (!pol || pol->mode == MPOL_LOCAL)
 235		return 0;
 236
 237	/* Check N_MEMORY */
 238	nodes_and(nsc->mask1,
 239		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 240
 241	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 242
 243	if (pol->flags & MPOL_F_RELATIVE_NODES)
 244		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 245	else
 246		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 247
 248	if (mpol_store_user_nodemask(pol))
 249		pol->w.user_nodemask = *nodes;
 250	else
 251		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 252
 253	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 254	return ret;
 255}
 256
 257/*
 258 * This function just creates a new policy, does some check and simple
 259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 260 */
 261static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 262				  nodemask_t *nodes)
 263{
 264	struct mempolicy *policy;
 265
 266	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 267		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 268
 269	if (mode == MPOL_DEFAULT) {
 270		if (nodes && !nodes_empty(*nodes))
 271			return ERR_PTR(-EINVAL);
 272		return NULL;
 273	}
 274	VM_BUG_ON(!nodes);
 275
 276	/*
 277	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 278	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 279	 * All other modes require a valid pointer to a non-empty nodemask.
 280	 */
 281	if (mode == MPOL_PREFERRED) {
 282		if (nodes_empty(*nodes)) {
 283			if (((flags & MPOL_F_STATIC_NODES) ||
 284			     (flags & MPOL_F_RELATIVE_NODES)))
 285				return ERR_PTR(-EINVAL);
 286
 287			mode = MPOL_LOCAL;
 288		}
 289	} else if (mode == MPOL_LOCAL) {
 290		if (!nodes_empty(*nodes) ||
 291		    (flags & MPOL_F_STATIC_NODES) ||
 292		    (flags & MPOL_F_RELATIVE_NODES))
 293			return ERR_PTR(-EINVAL);
 294	} else if (nodes_empty(*nodes))
 295		return ERR_PTR(-EINVAL);
 296	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 297	if (!policy)
 298		return ERR_PTR(-ENOMEM);
 299	atomic_set(&policy->refcnt, 1);
 300	policy->mode = mode;
 301	policy->flags = flags;
 302	policy->home_node = NUMA_NO_NODE;
 303
 304	return policy;
 305}
 306
 307/* Slow path of a mpol destructor. */
 308void __mpol_put(struct mempolicy *p)
 309{
 310	if (!atomic_dec_and_test(&p->refcnt))
 311		return;
 312	kmem_cache_free(policy_cache, p);
 313}
 314
 315static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 316{
 317}
 318
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES)
 324		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 325	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 326		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 327	else {
 328		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 329								*nodes);
 330		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 331	}
 332
 333	if (nodes_empty(tmp))
 334		tmp = *nodes;
 335
 336	pol->nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339static void mpol_rebind_preferred(struct mempolicy *pol,
 340						const nodemask_t *nodes)
 
 341{
 342	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343}
 344
 345/*
 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 347 *
 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 349 * policies are protected by task->mems_allowed_seq to prevent a premature
 350 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 351 */
 352static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 353{
 354	if (!pol || pol->mode == MPOL_LOCAL)
 355		return;
 356	if (!mpol_store_user_nodemask(pol) &&
 357	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 358		return;
 359
 360	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363/*
 364 * Wrapper for mpol_rebind_policy() that just requires task
 365 * pointer, and updates task mempolicy.
 366 *
 367 * Called with task's alloc_lock held.
 368 */
 369
 370void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 371{
 372	mpol_rebind_policy(tsk->mempolicy, new);
 373}
 374
 375/*
 376 * Rebind each vma in mm to new nodemask.
 377 *
 378 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 379 */
 380
 381void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 382{
 383	struct vm_area_struct *vma;
 384	VMA_ITERATOR(vmi, mm, 0);
 385
 386	mmap_write_lock(mm);
 387	for_each_vma(vmi, vma)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_nodemask,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_nodemask,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411	[MPOL_PREFERRED_MANY] = {
 412		.create = mpol_new_nodemask,
 413		.rebind = mpol_rebind_preferred,
 414	},
 415};
 416
 417static int migrate_page_add(struct page *page, struct list_head *pagelist,
 418				unsigned long flags);
 419
 420struct queue_pages {
 421	struct list_head *pagelist;
 422	unsigned long flags;
 423	nodemask_t *nmask;
 424	unsigned long start;
 425	unsigned long end;
 426	struct vm_area_struct *first;
 427};
 428
 429/*
 430 * Check if the page's nid is in qp->nmask.
 431 *
 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 433 * in the invert of qp->nmask.
 434 */
 435static inline bool queue_pages_required(struct page *page,
 436					struct queue_pages *qp)
 437{
 438	int nid = page_to_nid(page);
 439	unsigned long flags = qp->flags;
 440
 441	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 442}
 443
 444/*
 445 * queue_pages_pmd() has three possible return values:
 446 * 0 - pages are placed on the right node or queued successfully, or
 447 *     special page is met, i.e. huge zero page.
 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 449 *     specified.
 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 451 *        existing page was already on a node that does not follow the
 452 *        policy.
 453 */
 454static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 455				unsigned long end, struct mm_walk *walk)
 456	__releases(ptl)
 457{
 458	int ret = 0;
 459	struct page *page;
 460	struct queue_pages *qp = walk->private;
 461	unsigned long flags;
 462
 463	if (unlikely(is_pmd_migration_entry(*pmd))) {
 464		ret = -EIO;
 465		goto unlock;
 466	}
 467	page = pmd_page(*pmd);
 468	if (is_huge_zero_page(page)) {
 469		walk->action = ACTION_CONTINUE;
 470		goto unlock;
 471	}
 472	if (!queue_pages_required(page, qp))
 473		goto unlock;
 474
 475	flags = qp->flags;
 476	/* go to thp migration */
 477	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 478		if (!vma_migratable(walk->vma) ||
 479		    migrate_page_add(page, qp->pagelist, flags)) {
 480			ret = 1;
 481			goto unlock;
 482		}
 483	} else
 484		ret = -EIO;
 485unlock:
 486	spin_unlock(ptl);
 487	return ret;
 488}
 489
 490/*
 491 * Scan through pages checking if pages follow certain conditions,
 492 * and move them to the pagelist if they do.
 493 *
 494 * queue_pages_pte_range() has three possible return values:
 495 * 0 - pages are placed on the right node or queued successfully, or
 496 *     special page is met, i.e. zero page.
 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 498 *     specified.
 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 500 *        on a node that does not follow the policy.
 501 */
 502static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 503			unsigned long end, struct mm_walk *walk)
 504{
 505	struct vm_area_struct *vma = walk->vma;
 506	struct page *page;
 507	struct queue_pages *qp = walk->private;
 508	unsigned long flags = qp->flags;
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl)
 515		return queue_pages_pmd(pmd, ptl, addr, end, walk);
 516
 517	if (pmd_trans_unstable(pmd))
 518		return 0;
 519
 520	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 521	for (; addr != end; pte++, addr += PAGE_SIZE) {
 522		if (!pte_present(*pte))
 523			continue;
 524		page = vm_normal_page(vma, addr, *pte);
 525		if (!page || is_zone_device_page(page))
 526			continue;
 527		/*
 528		 * vm_normal_page() filters out zero pages, but there might
 529		 * still be PageReserved pages to skip, perhaps in a VDSO.
 
 530		 */
 531		if (PageReserved(page))
 532			continue;
 533		if (!queue_pages_required(page, qp))
 
 534			continue;
 535		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 536			/* MPOL_MF_STRICT must be specified if we get here */
 537			if (!vma_migratable(vma)) {
 538				has_unmovable = true;
 539				break;
 540			}
 541
 542			/*
 543			 * Do not abort immediately since there may be
 544			 * temporary off LRU pages in the range.  Still
 545			 * need migrate other LRU pages.
 546			 */
 547			if (migrate_page_add(page, qp->pagelist, flags))
 548				has_unmovable = true;
 549		} else
 550			break;
 551	}
 552	pte_unmap_unlock(mapped_pte, ptl);
 553	cond_resched();
 554
 555	if (has_unmovable)
 556		return 1;
 557
 558	return addr != end ? -EIO : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 562			       unsigned long addr, unsigned long end,
 563			       struct mm_walk *walk)
 564{
 565	int ret = 0;
 566#ifdef CONFIG_HUGETLB_PAGE
 567	struct queue_pages *qp = walk->private;
 568	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 569	struct page *page;
 570	spinlock_t *ptl;
 571	pte_t entry;
 572
 573	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 574	entry = huge_ptep_get(pte);
 575	if (!pte_present(entry))
 576		goto unlock;
 577	page = pte_page(entry);
 578	if (!queue_pages_required(page, qp))
 579		goto unlock;
 580
 581	if (flags == MPOL_MF_STRICT) {
 582		/*
 583		 * STRICT alone means only detecting misplaced page and no
 584		 * need to further check other vma.
 585		 */
 586		ret = -EIO;
 587		goto unlock;
 588	}
 589
 590	if (!vma_migratable(walk->vma)) {
 591		/*
 592		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 593		 * stopped walking current vma.
 594		 * Detecting misplaced page but allow migrating pages which
 595		 * have been queued.
 596		 */
 597		ret = 1;
 598		goto unlock;
 599	}
 600
 601	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 602	if (flags & (MPOL_MF_MOVE_ALL) ||
 603	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
 604	     !hugetlb_pmd_shared(pte))) {
 605		if (isolate_hugetlb(page, qp->pagelist) &&
 606			(flags & MPOL_MF_STRICT))
 607			/*
 608			 * Failed to isolate page but allow migrating pages
 609			 * which have been queued.
 610			 */
 611			ret = 1;
 612	}
 613unlock:
 614	spin_unlock(ptl);
 615#else
 616	BUG();
 617#endif
 618	return ret;
 619}
 620
 621#ifdef CONFIG_NUMA_BALANCING
 622/*
 623 * This is used to mark a range of virtual addresses to be inaccessible.
 624 * These are later cleared by a NUMA hinting fault. Depending on these
 625 * faults, pages may be migrated for better NUMA placement.
 626 *
 627 * This is assuming that NUMA faults are handled using PROT_NONE. If
 628 * an architecture makes a different choice, it will need further
 629 * changes to the core.
 630 */
 631unsigned long change_prot_numa(struct vm_area_struct *vma,
 632			unsigned long addr, unsigned long end)
 633{
 634	struct mmu_gather tlb;
 635	int nr_updated;
 636
 637	tlb_gather_mmu(&tlb, vma->vm_mm);
 638
 639	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
 640				       MM_CP_PROT_NUMA);
 641	if (nr_updated)
 642		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 643
 644	tlb_finish_mmu(&tlb);
 645
 646	return nr_updated;
 647}
 648#else
 649static unsigned long change_prot_numa(struct vm_area_struct *vma,
 650			unsigned long addr, unsigned long end)
 651{
 652	return 0;
 653}
 654#endif /* CONFIG_NUMA_BALANCING */
 655
 656static int queue_pages_test_walk(unsigned long start, unsigned long end,
 657				struct mm_walk *walk)
 658{
 659	struct vm_area_struct *next, *vma = walk->vma;
 660	struct queue_pages *qp = walk->private;
 661	unsigned long endvma = vma->vm_end;
 662	unsigned long flags = qp->flags;
 663
 664	/* range check first */
 665	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 666
 667	if (!qp->first) {
 668		qp->first = vma;
 669		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 670			(qp->start < vma->vm_start))
 671			/* hole at head side of range */
 672			return -EFAULT;
 673	}
 674	next = find_vma(vma->vm_mm, vma->vm_end);
 675	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 676		((vma->vm_end < qp->end) &&
 677		(!next || vma->vm_end < next->vm_start)))
 678		/* hole at middle or tail of range */
 679		return -EFAULT;
 680
 681	/*
 682	 * Need check MPOL_MF_STRICT to return -EIO if possible
 683	 * regardless of vma_migratable
 684	 */
 685	if (!vma_migratable(vma) &&
 686	    !(flags & MPOL_MF_STRICT))
 687		return 1;
 688
 689	if (endvma > end)
 690		endvma = end;
 691
 692	if (flags & MPOL_MF_LAZY) {
 693		/* Similar to task_numa_work, skip inaccessible VMAs */
 694		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 695			!(vma->vm_flags & VM_MIXEDMAP))
 696			change_prot_numa(vma, start, endvma);
 697		return 1;
 698	}
 699
 700	/* queue pages from current vma */
 701	if (flags & MPOL_MF_VALID)
 702		return 0;
 703	return 1;
 704}
 705
 706static const struct mm_walk_ops queue_pages_walk_ops = {
 707	.hugetlb_entry		= queue_pages_hugetlb,
 708	.pmd_entry		= queue_pages_pte_range,
 709	.test_walk		= queue_pages_test_walk,
 710};
 711
 712/*
 713 * Walk through page tables and collect pages to be migrated.
 714 *
 715 * If pages found in a given range are on a set of nodes (determined by
 716 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 717 * passed via @private.
 718 *
 719 * queue_pages_range() has three possible return values:
 720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 721 *     specified.
 722 * 0 - queue pages successfully or no misplaced page.
 723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 724 *         memory range specified by nodemask and maxnode points outside
 725 *         your accessible address space (-EFAULT)
 726 */
 727static int
 728queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 729		nodemask_t *nodes, unsigned long flags,
 730		struct list_head *pagelist)
 731{
 732	int err;
 733	struct queue_pages qp = {
 734		.pagelist = pagelist,
 735		.flags = flags,
 736		.nmask = nodes,
 737		.start = start,
 738		.end = end,
 739		.first = NULL,
 740	};
 741
 742	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 743
 744	if (!qp.first)
 745		/* whole range in hole */
 746		err = -EFAULT;
 747
 748	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749}
 750
 751/*
 752 * Apply policy to a single VMA
 753 * This must be called with the mmap_lock held for writing.
 754 */
 755static int vma_replace_policy(struct vm_area_struct *vma,
 756						struct mempolicy *pol)
 757{
 758	int err;
 759	struct mempolicy *old;
 760	struct mempolicy *new;
 761
 762	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 763		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 764		 vma->vm_ops, vma->vm_file,
 765		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 766
 767	new = mpol_dup(pol);
 768	if (IS_ERR(new))
 769		return PTR_ERR(new);
 770
 771	if (vma->vm_ops && vma->vm_ops->set_policy) {
 772		err = vma->vm_ops->set_policy(vma, new);
 773		if (err)
 774			goto err_out;
 
 
 775	}
 776
 777	old = vma->vm_policy;
 778	vma->vm_policy = new; /* protected by mmap_lock */
 779	mpol_put(old);
 780
 781	return 0;
 782 err_out:
 783	mpol_put(new);
 784	return err;
 785}
 786
 787/* Step 2: apply policy to a range and do splits. */
 788static int mbind_range(struct mm_struct *mm, unsigned long start,
 789		       unsigned long end, struct mempolicy *new_pol)
 790{
 791	MA_STATE(mas, &mm->mm_mt, start, start);
 792	struct vm_area_struct *prev;
 793	struct vm_area_struct *vma;
 794	int err = 0;
 795	pgoff_t pgoff;
 
 796
 797	prev = mas_prev(&mas, 0);
 798	if (unlikely(!prev))
 799		mas_set(&mas, start);
 800
 801	vma = mas_find(&mas, end - 1);
 802	if (WARN_ON(!vma))
 803		return 0;
 804
 805	if (start > vma->vm_start)
 806		prev = vma;
 807
 808	for (; vma; vma = mas_next(&mas, end - 1)) {
 809		unsigned long vmstart = max(start, vma->vm_start);
 810		unsigned long vmend = min(end, vma->vm_end);
 811
 812		if (mpol_equal(vma_policy(vma), new_pol))
 813			goto next;
 814
 815		pgoff = vma->vm_pgoff +
 816			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 817		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 818				 vma->anon_vma, vma->vm_file, pgoff,
 819				 new_pol, vma->vm_userfaultfd_ctx,
 820				 anon_vma_name(vma));
 821		if (prev) {
 822			/* vma_merge() invalidated the mas */
 823			mas_pause(&mas);
 824			vma = prev;
 825			goto replace;
 
 826		}
 827		if (vma->vm_start != vmstart) {
 828			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 829			if (err)
 830				goto out;
 831			/* split_vma() invalidated the mas */
 832			mas_pause(&mas);
 833		}
 834		if (vma->vm_end != vmend) {
 835			err = split_vma(vma->vm_mm, vma, vmend, 0);
 836			if (err)
 837				goto out;
 838			/* split_vma() invalidated the mas */
 839			mas_pause(&mas);
 840		}
 841replace:
 842		err = vma_replace_policy(vma, new_pol);
 843		if (err)
 844			goto out;
 845next:
 846		prev = vma;
 847	}
 848
 849out:
 850	return err;
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853/* Set the process memory policy */
 854static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 855			     nodemask_t *nodes)
 856{
 857	struct mempolicy *new, *old;
 
 858	NODEMASK_SCRATCH(scratch);
 859	int ret;
 860
 861	if (!scratch)
 862		return -ENOMEM;
 863
 864	new = mpol_new(mode, flags, nodes);
 865	if (IS_ERR(new)) {
 866		ret = PTR_ERR(new);
 867		goto out;
 868	}
 869
 
 
 
 
 
 
 
 870	task_lock(current);
 871	ret = mpol_set_nodemask(new, nodes, scratch);
 872	if (ret) {
 873		task_unlock(current);
 
 
 874		mpol_put(new);
 875		goto out;
 876	}
 877
 878	old = current->mempolicy;
 879	current->mempolicy = new;
 880	if (new && new->mode == MPOL_INTERLEAVE)
 881		current->il_prev = MAX_NUMNODES-1;
 
 
 882	task_unlock(current);
 
 
 
 883	mpol_put(old);
 884	ret = 0;
 885out:
 886	NODEMASK_SCRATCH_FREE(scratch);
 887	return ret;
 888}
 889
 890/*
 891 * Return nodemask for policy for get_mempolicy() query
 892 *
 893 * Called with task's alloc_lock held
 894 */
 895static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 896{
 897	nodes_clear(*nodes);
 898	if (p == &default_policy)
 899		return;
 900
 901	switch (p->mode) {
 902	case MPOL_BIND:
 
 903	case MPOL_INTERLEAVE:
 
 
 904	case MPOL_PREFERRED:
 905	case MPOL_PREFERRED_MANY:
 906		*nodes = p->nodes;
 907		break;
 908	case MPOL_LOCAL:
 909		/* return empty node mask for local allocation */
 910		break;
 911	default:
 912		BUG();
 913	}
 914}
 915
 916static int lookup_node(struct mm_struct *mm, unsigned long addr)
 917{
 918	struct page *p = NULL;
 919	int ret;
 920
 921	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 922	if (ret > 0) {
 923		ret = page_to_nid(p);
 924		put_page(p);
 925	}
 926	return ret;
 927}
 928
 929/* Retrieve NUMA policy */
 930static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 931			     unsigned long addr, unsigned long flags)
 932{
 933	int err;
 934	struct mm_struct *mm = current->mm;
 935	struct vm_area_struct *vma = NULL;
 936	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 937
 938	if (flags &
 939		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 940		return -EINVAL;
 941
 942	if (flags & MPOL_F_MEMS_ALLOWED) {
 943		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 944			return -EINVAL;
 945		*policy = 0;	/* just so it's initialized */
 946		task_lock(current);
 947		*nmask  = cpuset_current_mems_allowed;
 948		task_unlock(current);
 949		return 0;
 950	}
 951
 952	if (flags & MPOL_F_ADDR) {
 953		/*
 954		 * Do NOT fall back to task policy if the
 955		 * vma/shared policy at addr is NULL.  We
 956		 * want to return MPOL_DEFAULT in this case.
 957		 */
 958		mmap_read_lock(mm);
 959		vma = vma_lookup(mm, addr);
 960		if (!vma) {
 961			mmap_read_unlock(mm);
 962			return -EFAULT;
 963		}
 964		if (vma->vm_ops && vma->vm_ops->get_policy)
 965			pol = vma->vm_ops->get_policy(vma, addr);
 966		else
 967			pol = vma->vm_policy;
 968	} else if (addr)
 969		return -EINVAL;
 970
 971	if (!pol)
 972		pol = &default_policy;	/* indicates default behavior */
 973
 974	if (flags & MPOL_F_NODE) {
 975		if (flags & MPOL_F_ADDR) {
 976			/*
 977			 * Take a refcount on the mpol, because we are about to
 978			 * drop the mmap_lock, after which only "pol" remains
 979			 * valid, "vma" is stale.
 980			 */
 981			pol_refcount = pol;
 982			vma = NULL;
 983			mpol_get(pol);
 984			mmap_read_unlock(mm);
 985			err = lookup_node(mm, addr);
 986			if (err < 0)
 987				goto out;
 988			*policy = err;
 989		} else if (pol == current->mempolicy &&
 990				pol->mode == MPOL_INTERLEAVE) {
 991			*policy = next_node_in(current->il_prev, pol->nodes);
 992		} else {
 993			err = -EINVAL;
 994			goto out;
 995		}
 996	} else {
 997		*policy = pol == &default_policy ? MPOL_DEFAULT :
 998						pol->mode;
 999		/*
1000		 * Internal mempolicy flags must be masked off before exposing
1001		 * the policy to userspace.
1002		 */
1003		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004	}
1005
 
 
 
 
 
1006	err = 0;
1007	if (nmask) {
1008		if (mpol_store_user_nodemask(pol)) {
1009			*nmask = pol->w.user_nodemask;
1010		} else {
1011			task_lock(current);
1012			get_policy_nodemask(pol, nmask);
1013			task_unlock(current);
1014		}
1015	}
1016
1017 out:
1018	mpol_cond_put(pol);
1019	if (vma)
1020		mmap_read_unlock(mm);
1021	if (pol_refcount)
1022		mpol_put(pol_refcount);
1023	return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027/*
1028 * page migration, thp tail pages can be passed.
1029 */
1030static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031				unsigned long flags)
1032{
1033	struct page *head = compound_head(page);
1034	/*
1035	 * Avoid migrating a page that is shared with others.
1036	 */
1037	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038		if (!isolate_lru_page(head)) {
1039			list_add_tail(&head->lru, pagelist);
1040			mod_node_page_state(page_pgdat(head),
1041				NR_ISOLATED_ANON + page_is_file_lru(head),
1042				thp_nr_pages(head));
1043		} else if (flags & MPOL_MF_STRICT) {
1044			/*
1045			 * Non-movable page may reach here.  And, there may be
1046			 * temporary off LRU pages or non-LRU movable pages.
1047			 * Treat them as unmovable pages since they can't be
1048			 * isolated, so they can't be moved at the moment.  It
1049			 * should return -EIO for this case too.
1050			 */
1051			return -EIO;
1052		}
1053	}
 
1054
1055	return 0;
 
 
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			   int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	int err = 0;
1069	struct migration_target_control mtc = {
1070		.nid = dest,
1071		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1072	};
1073
1074	nodes_clear(nmask);
1075	node_set(source, nmask);
1076
1077	/*
1078	 * This does not "check" the range but isolates all pages that
1079	 * need migration.  Between passing in the full user address
1080	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081	 */
1082	vma = find_vma(mm, 0);
1083	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1085			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 
 
1086
1087	if (!list_empty(&pagelist)) {
1088		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1089				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090		if (err)
1091			putback_movable_pages(&pagelist);
1092	}
1093
1094	return err;
1095}
1096
1097/*
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1100 *
1101 * Returns the number of page that could not be moved.
1102 */
1103int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104		     const nodemask_t *to, int flags)
1105{
1106	int busy = 0;
1107	int err = 0;
1108	nodemask_t tmp;
1109
1110	lru_cache_disable();
 
 
1111
1112	mmap_read_lock(mm);
 
 
 
 
1113
1114	/*
1115	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1116	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1117	 * bit in 'tmp', and return that <source, dest> pair for migration.
1118	 * The pair of nodemasks 'to' and 'from' define the map.
1119	 *
1120	 * If no pair of bits is found that way, fallback to picking some
1121	 * pair of 'source' and 'dest' bits that are not the same.  If the
1122	 * 'source' and 'dest' bits are the same, this represents a node
1123	 * that will be migrating to itself, so no pages need move.
1124	 *
1125	 * If no bits are left in 'tmp', or if all remaining bits left
1126	 * in 'tmp' correspond to the same bit in 'to', return false
1127	 * (nothing left to migrate).
1128	 *
1129	 * This lets us pick a pair of nodes to migrate between, such that
1130	 * if possible the dest node is not already occupied by some other
1131	 * source node, minimizing the risk of overloading the memory on a
1132	 * node that would happen if we migrated incoming memory to a node
1133	 * before migrating outgoing memory source that same node.
1134	 *
1135	 * A single scan of tmp is sufficient.  As we go, we remember the
1136	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1137	 * that not only moved, but what's better, moved to an empty slot
1138	 * (d is not set in tmp), then we break out then, with that pair.
1139	 * Otherwise when we finish scanning from_tmp, we at least have the
1140	 * most recent <s, d> pair that moved.  If we get all the way through
1141	 * the scan of tmp without finding any node that moved, much less
1142	 * moved to an empty node, then there is nothing left worth migrating.
1143	 */
1144
1145	tmp = *from;
1146	while (!nodes_empty(tmp)) {
1147		int s, d;
1148		int source = NUMA_NO_NODE;
1149		int dest = 0;
1150
1151		for_each_node_mask(s, tmp) {
1152
1153			/*
1154			 * do_migrate_pages() tries to maintain the relative
1155			 * node relationship of the pages established between
1156			 * threads and memory areas.
1157                         *
1158			 * However if the number of source nodes is not equal to
1159			 * the number of destination nodes we can not preserve
1160			 * this node relative relationship.  In that case, skip
1161			 * copying memory from a node that is in the destination
1162			 * mask.
1163			 *
1164			 * Example: [2,3,4] -> [3,4,5] moves everything.
1165			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166			 */
1167
1168			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1169						(node_isset(s, *to)))
1170				continue;
1171
1172			d = node_remap(s, *from, *to);
1173			if (s == d)
1174				continue;
1175
1176			source = s;	/* Node moved. Memorize */
1177			dest = d;
1178
1179			/* dest not in remaining from nodes? */
1180			if (!node_isset(dest, tmp))
1181				break;
1182		}
1183		if (source == NUMA_NO_NODE)
1184			break;
1185
1186		node_clear(source, tmp);
1187		err = migrate_to_node(mm, source, dest, flags);
1188		if (err > 0)
1189			busy += err;
1190		if (err < 0)
1191			break;
1192	}
1193	mmap_read_unlock(mm);
1194
1195	lru_cache_enable();
1196	if (err < 0)
1197		return err;
1198	return busy;
1199
1200}
1201
1202/*
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not.  N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1208 */
1209static struct page *new_page(struct page *page, unsigned long start)
1210{
1211	struct folio *dst, *src = page_folio(page);
1212	struct vm_area_struct *vma;
1213	unsigned long address;
1214	VMA_ITERATOR(vmi, current->mm, start);
1215	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216
1217	for_each_vma(vmi, vma) {
1218		address = page_address_in_vma(page, vma);
1219		if (address != -EFAULT)
1220			break;
 
1221	}
1222
1223	if (folio_test_hugetlb(src))
1224		return alloc_huge_page_vma(page_hstate(&src->page),
1225				vma, address);
1226
1227	if (folio_test_large(src))
1228		gfp = GFP_TRANSHUGE;
1229
1230	/*
1231	 * if !vma, vma_alloc_folio() will use task or system default policy
1232	 */
1233	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234			folio_test_large(src));
1235	return &dst->page;
1236}
1237#else
1238
1239static int migrate_page_add(struct page *page, struct list_head *pagelist,
1240				unsigned long flags)
1241{
1242	return -EIO;
1243}
1244
1245int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246		     const nodemask_t *to, int flags)
1247{
1248	return -ENOSYS;
1249}
1250
1251static struct page *new_page(struct page *page, unsigned long start)
1252{
1253	return NULL;
1254}
1255#endif
1256
1257static long do_mbind(unsigned long start, unsigned long len,
1258		     unsigned short mode, unsigned short mode_flags,
1259		     nodemask_t *nmask, unsigned long flags)
1260{
 
1261	struct mm_struct *mm = current->mm;
1262	struct mempolicy *new;
1263	unsigned long end;
1264	int err;
1265	int ret;
1266	LIST_HEAD(pagelist);
1267
1268	if (flags & ~(unsigned long)MPOL_MF_VALID)
 
1269		return -EINVAL;
1270	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271		return -EPERM;
1272
1273	if (start & ~PAGE_MASK)
1274		return -EINVAL;
1275
1276	if (mode == MPOL_DEFAULT)
1277		flags &= ~MPOL_MF_STRICT;
1278
1279	len = PAGE_ALIGN(len);
1280	end = start + len;
1281
1282	if (end < start)
1283		return -EINVAL;
1284	if (end == start)
1285		return 0;
1286
1287	new = mpol_new(mode, mode_flags, nmask);
1288	if (IS_ERR(new))
1289		return PTR_ERR(new);
1290
1291	if (flags & MPOL_MF_LAZY)
1292		new->flags |= MPOL_F_MOF;
1293
1294	/*
1295	 * If we are using the default policy then operation
1296	 * on discontinuous address spaces is okay after all
1297	 */
1298	if (!new)
1299		flags |= MPOL_MF_DISCONTIG_OK;
1300
1301	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302		 start, start + len, mode, mode_flags,
1303		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304
1305	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306
1307		lru_cache_disable();
 
 
1308	}
1309	{
1310		NODEMASK_SCRATCH(scratch);
1311		if (scratch) {
1312			mmap_write_lock(mm);
 
1313			err = mpol_set_nodemask(new, nmask, scratch);
 
1314			if (err)
1315				mmap_write_unlock(mm);
1316		} else
1317			err = -ENOMEM;
1318		NODEMASK_SCRATCH_FREE(scratch);
1319	}
1320	if (err)
1321		goto mpol_out;
1322
1323	ret = queue_pages_range(mm, start, end, nmask,
1324			  flags | MPOL_MF_INVERT, &pagelist);
1325
1326	if (ret < 0) {
1327		err = ret;
1328		goto up_out;
1329	}
1330
1331	err = mbind_range(mm, start, end, new);
1332
1333	if (!err) {
1334		int nr_failed = 0;
1335
1336		if (!list_empty(&pagelist)) {
1337			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340			if (nr_failed)
1341				putback_movable_pages(&pagelist);
1342		}
1343
1344		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345			err = -EIO;
1346	} else {
1347up_out:
1348		if (!list_empty(&pagelist))
1349			putback_movable_pages(&pagelist);
1350	}
1351
1352	mmap_write_unlock(mm);
1353mpol_out:
1354	mpol_put(new);
1355	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356		lru_cache_enable();
1357	return err;
1358}
1359
1360/*
1361 * User space interface with variable sized bitmaps for nodelists.
1362 */
1363static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364		      unsigned long maxnode)
1365{
1366	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367	int ret;
1368
1369	if (in_compat_syscall())
1370		ret = compat_get_bitmap(mask,
1371					(const compat_ulong_t __user *)nmask,
1372					maxnode);
1373	else
1374		ret = copy_from_user(mask, nmask,
1375				     nlongs * sizeof(unsigned long));
1376
1377	if (ret)
1378		return -EFAULT;
1379
1380	if (maxnode % BITS_PER_LONG)
1381		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382
1383	return 0;
1384}
1385
1386/* Copy a node mask from user space. */
1387static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388		     unsigned long maxnode)
1389{
 
 
 
 
1390	--maxnode;
1391	nodes_clear(*nodes);
1392	if (maxnode == 0 || !nmask)
1393		return 0;
1394	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395		return -EINVAL;
1396
1397	/*
1398	 * When the user specified more nodes than supported just check
1399	 * if the non supported part is all zero, one word at a time,
1400	 * starting at the end.
1401	 */
1402	while (maxnode > MAX_NUMNODES) {
1403		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404		unsigned long t;
1405
1406		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1407			return -EFAULT;
1408
1409		if (maxnode - bits >= MAX_NUMNODES) {
1410			maxnode -= bits;
1411		} else {
1412			maxnode = MAX_NUMNODES;
1413			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
 
 
 
 
 
 
1414		}
1415		if (t)
1416			return -EINVAL;
1417	}
1418
1419	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1420}
1421
1422/* Copy a kernel node mask to user space */
1423static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424			      nodemask_t *nodes)
1425{
1426	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428	bool compat = in_compat_syscall();
1429
1430	if (compat)
1431		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432
1433	if (copy > nbytes) {
1434		if (copy > PAGE_SIZE)
1435			return -EINVAL;
1436		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437			return -EFAULT;
1438		copy = nbytes;
1439		maxnode = nr_node_ids;
1440	}
1441
1442	if (compat)
1443		return compat_put_bitmap((compat_ulong_t __user *)mask,
1444					 nodes_addr(*nodes), maxnode);
1445
1446	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447}
1448
1449/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
 
1451{
1452	*flags = *mode & MPOL_MODE_FLAGS;
1453	*mode &= ~MPOL_MODE_FLAGS;
 
1454
1455	if ((unsigned int)(*mode) >=  MPOL_MAX)
 
 
1456		return -EINVAL;
1457	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
 
1458		return -EINVAL;
1459	if (*flags & MPOL_F_NUMA_BALANCING) {
1460		if (*mode != MPOL_BIND)
1461			return -EINVAL;
1462		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463	}
1464	return 0;
1465}
1466
1467static long kernel_mbind(unsigned long start, unsigned long len,
1468			 unsigned long mode, const unsigned long __user *nmask,
1469			 unsigned long maxnode, unsigned int flags)
1470{
1471	unsigned short mode_flags;
1472	nodemask_t nodes;
1473	int lmode = mode;
1474	int err;
1475
1476	start = untagged_addr(start);
1477	err = sanitize_mpol_flags(&lmode, &mode_flags);
1478	if (err)
1479		return err;
1480
1481	err = get_nodes(&nodes, nmask, maxnode);
1482	if (err)
1483		return err;
1484
1485	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486}
1487
1488SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489		unsigned long, home_node, unsigned long, flags)
 
1490{
1491	struct mm_struct *mm = current->mm;
1492	struct vm_area_struct *vma;
1493	struct mempolicy *new;
1494	unsigned long vmstart;
1495	unsigned long vmend;
1496	unsigned long end;
1497	int err = -ENOENT;
1498	VMA_ITERATOR(vmi, mm, start);
1499
1500	start = untagged_addr(start);
1501	if (start & ~PAGE_MASK)
 
1502		return -EINVAL;
1503	/*
1504	 * flags is used for future extension if any.
1505	 */
1506	if (flags != 0)
1507		return -EINVAL;
1508
1509	/*
1510	 * Check home_node is online to avoid accessing uninitialized
1511	 * NODE_DATA.
1512	 */
1513	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514		return -EINVAL;
1515
1516	len = PAGE_ALIGN(len);
1517	end = start + len;
1518
1519	if (end < start)
1520		return -EINVAL;
1521	if (end == start)
1522		return 0;
1523	mmap_write_lock(mm);
1524	for_each_vma_range(vmi, vma, end) {
1525		vmstart = max(start, vma->vm_start);
1526		vmend   = min(end, vma->vm_end);
1527		new = mpol_dup(vma_policy(vma));
1528		if (IS_ERR(new)) {
1529			err = PTR_ERR(new);
1530			break;
1531		}
1532		/*
1533		 * Only update home node if there is an existing vma policy
1534		 */
1535		if (!new)
1536			continue;
1537
1538		/*
1539		 * If any vma in the range got policy other than MPOL_BIND
1540		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1541		 * the home node for vmas we already updated before.
1542		 */
1543		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1544			mpol_put(new);
1545			err = -EOPNOTSUPP;
1546			break;
1547		}
1548
1549		new->home_node = home_node;
1550		err = mbind_range(mm, vmstart, vmend, new);
1551		mpol_put(new);
1552		if (err)
1553			break;
1554	}
1555	mmap_write_unlock(mm);
1556	return err;
1557}
1558
1559SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560		unsigned long, mode, const unsigned long __user *, nmask,
1561		unsigned long, maxnode, unsigned int, flags)
1562{
1563	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564}
1565
1566/* Set the process memory policy */
1567static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568				 unsigned long maxnode)
1569{
1570	unsigned short mode_flags;
1571	nodemask_t nodes;
1572	int lmode = mode;
1573	int err;
1574
1575	err = sanitize_mpol_flags(&lmode, &mode_flags);
1576	if (err)
1577		return err;
1578
1579	err = get_nodes(&nodes, nmask, maxnode);
1580	if (err)
1581		return err;
1582
1583	return do_set_mempolicy(lmode, mode_flags, &nodes);
1584}
1585
1586SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587		unsigned long, maxnode)
1588{
1589	return kernel_set_mempolicy(mode, nmask, maxnode);
1590}
1591
1592static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593				const unsigned long __user *old_nodes,
1594				const unsigned long __user *new_nodes)
1595{
 
1596	struct mm_struct *mm = NULL;
1597	struct task_struct *task;
1598	nodemask_t task_nodes;
1599	int err;
1600	nodemask_t *old;
1601	nodemask_t *new;
1602	NODEMASK_SCRATCH(scratch);
1603
1604	if (!scratch)
1605		return -ENOMEM;
1606
1607	old = &scratch->mask1;
1608	new = &scratch->mask2;
1609
1610	err = get_nodes(old, old_nodes, maxnode);
1611	if (err)
1612		goto out;
1613
1614	err = get_nodes(new, new_nodes, maxnode);
1615	if (err)
1616		goto out;
1617
1618	/* Find the mm_struct */
1619	rcu_read_lock();
1620	task = pid ? find_task_by_vpid(pid) : current;
1621	if (!task) {
1622		rcu_read_unlock();
1623		err = -ESRCH;
1624		goto out;
1625	}
1626	get_task_struct(task);
 
1627
1628	err = -EINVAL;
 
 
1629
1630	/*
1631	 * Check if this process has the right to modify the specified process.
1632	 * Use the regular "ptrace_may_access()" checks.
 
 
1633	 */
1634	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
1635		rcu_read_unlock();
1636		err = -EPERM;
1637		goto out_put;
1638	}
1639	rcu_read_unlock();
1640
1641	task_nodes = cpuset_mems_allowed(task);
1642	/* Is the user allowed to access the target nodes? */
1643	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644		err = -EPERM;
1645		goto out_put;
1646	}
1647
1648	task_nodes = cpuset_mems_allowed(current);
1649	nodes_and(*new, *new, task_nodes);
1650	if (nodes_empty(*new))
1651		goto out_put;
1652
1653	err = security_task_movememory(task);
1654	if (err)
1655		goto out_put;
1656
1657	mm = get_task_mm(task);
1658	put_task_struct(task);
1659
1660	if (!mm) {
1661		err = -EINVAL;
1662		goto out;
1663	}
1664
1665	err = do_migrate_pages(mm, old, new,
1666		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667
1668	mmput(mm);
1669out:
 
 
1670	NODEMASK_SCRATCH_FREE(scratch);
1671
1672	return err;
1673
1674out_put:
1675	put_task_struct(task);
1676	goto out;
1677
1678}
1679
1680SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681		const unsigned long __user *, old_nodes,
1682		const unsigned long __user *, new_nodes)
1683{
1684	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685}
1686
1687
1688/* Retrieve NUMA policy */
1689static int kernel_get_mempolicy(int __user *policy,
1690				unsigned long __user *nmask,
1691				unsigned long maxnode,
1692				unsigned long addr,
1693				unsigned long flags)
1694{
1695	int err;
1696	int pval;
1697	nodemask_t nodes;
1698
1699	if (nmask != NULL && maxnode < nr_node_ids)
1700		return -EINVAL;
1701
1702	addr = untagged_addr(addr);
1703
1704	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705
1706	if (err)
1707		return err;
1708
1709	if (policy && put_user(pval, policy))
1710		return -EFAULT;
1711
1712	if (nmask)
1713		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714
1715	return err;
1716}
1717
1718SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719		unsigned long __user *, nmask, unsigned long, maxnode,
1720		unsigned long, addr, unsigned long, flags)
1721{
1722	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725bool vma_migratable(struct vm_area_struct *vma)
 
1726{
1727	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728		return false;
 
 
 
 
 
1729
1730	/*
1731	 * DAX device mappings require predictable access latency, so avoid
1732	 * incurring periodic faults.
1733	 */
1734	if (vma_is_dax(vma))
1735		return false;
1736
1737	if (is_vm_hugetlb_page(vma) &&
1738		!hugepage_migration_supported(hstate_vma(vma)))
1739		return false;
1740
1741	/*
1742	 * Migration allocates pages in the highest zone. If we cannot
1743	 * do so then migration (at least from node to node) is not
1744	 * possible.
1745	 */
1746	if (vma->vm_file &&
1747		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748			< policy_zone)
1749		return false;
1750	return true;
1751}
1752
1753struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754						unsigned long addr)
 
1755{
1756	struct mempolicy *pol = NULL;
 
 
 
1757
1758	if (vma) {
1759		if (vma->vm_ops && vma->vm_ops->get_policy) {
1760			pol = vma->vm_ops->get_policy(vma, addr);
1761		} else if (vma->vm_policy) {
1762			pol = vma->vm_policy;
1763
1764			/*
1765			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767			 * count on these policies which will be dropped by
1768			 * mpol_cond_put() later
1769			 */
1770			if (mpol_needs_cond_ref(pol))
1771				mpol_get(pol);
1772		}
1773	}
1774
1775	return pol;
 
 
 
1776}
1777
 
 
1778/*
1779 * get_vma_policy(@vma, @addr)
1780 * @vma: virtual memory area whose policy is sought
1781 * @addr: address in @vma for shared policy lookup
 
1782 *
1783 * Returns effective policy for a VMA at specified address.
1784 * Falls back to current->mempolicy or system default policy, as necessary.
 
 
 
1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786 * count--added by the get_policy() vm_op, as appropriate--to protect against
1787 * freeing by another task.  It is the caller's responsibility to free the
1788 * extra reference for shared policies.
1789 */
1790static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791						unsigned long addr)
1792{
1793	struct mempolicy *pol = __get_vma_policy(vma, addr);
1794
 
 
 
 
 
 
 
 
 
1795	if (!pol)
1796		pol = get_task_policy(current);
1797
1798	return pol;
1799}
1800
1801bool vma_policy_mof(struct vm_area_struct *vma)
1802{
1803	struct mempolicy *pol;
1804
1805	if (vma->vm_ops && vma->vm_ops->get_policy) {
1806		bool ret = false;
1807
1808		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809		if (pol && (pol->flags & MPOL_F_MOF))
1810			ret = true;
1811		mpol_cond_put(pol);
1812
1813		return ret;
1814	}
1815
1816	pol = vma->vm_policy;
1817	if (!pol)
1818		pol = get_task_policy(current);
1819
1820	return pol->flags & MPOL_F_MOF;
1821}
1822
1823bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824{
1825	enum zone_type dynamic_policy_zone = policy_zone;
1826
1827	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828
1829	/*
1830	 * if policy->nodes has movable memory only,
1831	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832	 *
1833	 * policy->nodes is intersect with node_states[N_MEMORY].
1834	 * so if the following test fails, it implies
1835	 * policy->nodes has movable memory only.
1836	 */
1837	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838		dynamic_policy_zone = ZONE_MOVABLE;
1839
1840	return zone >= dynamic_policy_zone;
1841}
1842
1843/*
1844 * Return a nodemask representing a mempolicy for filtering nodes for
1845 * page allocation
1846 */
1847nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848{
1849	int mode = policy->mode;
1850
1851	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1852	if (unlikely(mode == MPOL_BIND) &&
1853		apply_policy_zone(policy, gfp_zone(gfp)) &&
1854		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855		return &policy->nodes;
1856
1857	if (mode == MPOL_PREFERRED_MANY)
1858		return &policy->nodes;
1859
1860	return NULL;
1861}
1862
1863/*
1864 * Return the  preferred node id for 'prefer' mempolicy, and return
1865 * the given id for all other policies.
1866 *
1867 * policy_node() is always coupled with policy_nodemask(), which
1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 */
1870static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871{
1872	if (policy->mode == MPOL_PREFERRED) {
1873		nd = first_node(policy->nodes);
1874	} else {
 
 
 
1875		/*
1876		 * __GFP_THISNODE shouldn't even be used with the bind policy
1877		 * because we might easily break the expectation to stay on the
1878		 * requested node and not break the policy.
 
1879		 */
1880		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1881	}
1882
1883	if ((policy->mode == MPOL_BIND ||
1884	     policy->mode == MPOL_PREFERRED_MANY) &&
1885	    policy->home_node != NUMA_NO_NODE)
1886		return policy->home_node;
1887
1888	return nd;
1889}
1890
1891/* Do dynamic interleaving for a process */
1892static unsigned interleave_nodes(struct mempolicy *policy)
1893{
1894	unsigned next;
1895	struct task_struct *me = current;
1896
1897	next = next_node_in(me->il_prev, policy->nodes);
 
 
 
1898	if (next < MAX_NUMNODES)
1899		me->il_prev = next;
1900	return next;
1901}
1902
1903/*
1904 * Depending on the memory policy provide a node from which to allocate the
1905 * next slab entry.
 
 
 
 
1906 */
1907unsigned int mempolicy_slab_node(void)
1908{
1909	struct mempolicy *policy;
1910	int node = numa_mem_id();
1911
1912	if (!in_task())
1913		return node;
1914
1915	policy = current->mempolicy;
1916	if (!policy)
1917		return node;
1918
1919	switch (policy->mode) {
1920	case MPOL_PREFERRED:
1921		return first_node(policy->nodes);
 
 
 
1922
1923	case MPOL_INTERLEAVE:
1924		return interleave_nodes(policy);
1925
1926	case MPOL_BIND:
1927	case MPOL_PREFERRED_MANY:
1928	{
1929		struct zoneref *z;
1930
1931		/*
1932		 * Follow bind policy behavior and start allocation at the
1933		 * first node.
1934		 */
1935		struct zonelist *zonelist;
 
1936		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938		z = first_zones_zonelist(zonelist, highest_zoneidx,
1939							&policy->nodes);
1940		return z->zone ? zone_to_nid(z->zone) : node;
 
1941	}
1942	case MPOL_LOCAL:
1943		return node;
1944
1945	default:
1946		BUG();
1947	}
1948}
1949
1950/*
1951 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953 * number of present nodes.
1954 */
1955static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956{
1957	nodemask_t nodemask = pol->nodes;
1958	unsigned int target, nnodes;
1959	int i;
1960	int nid;
1961	/*
1962	 * The barrier will stabilize the nodemask in a register or on
1963	 * the stack so that it will stop changing under the code.
1964	 *
1965	 * Between first_node() and next_node(), pol->nodes could be changed
1966	 * by other threads. So we put pol->nodes in a local stack.
1967	 */
1968	barrier();
1969
1970	nnodes = nodes_weight(nodemask);
1971	if (!nnodes)
1972		return numa_node_id();
1973	target = (unsigned int)n % nnodes;
1974	nid = first_node(nodemask);
1975	for (i = 0; i < target; i++)
1976		nid = next_node(nid, nodemask);
 
 
1977	return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984	if (vma) {
1985		unsigned long off;
1986
1987		/*
1988		 * for small pages, there is no difference between
1989		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990		 * for huge pages, since vm_pgoff is in units of small
1991		 * pages, we need to shift off the always 0 bits to get
1992		 * a useful offset.
1993		 */
1994		BUG_ON(shift < PAGE_SHIFT);
1995		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996		off += (addr - vma->vm_start) >> shift;
1997		return offset_il_node(pol, off);
1998	} else
1999		return interleave_nodes(pol);
2000}
2001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014 * to the mempolicy's @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019				struct mempolicy **mpol, nodemask_t **nodemask)
 
2020{
2021	int nid;
2022	int mode;
 
 
2023
2024	*mpol = get_vma_policy(vma, addr);
2025	*nodemask = NULL;
2026	mode = (*mpol)->mode;
2027
2028	if (unlikely(mode == MPOL_INTERLEAVE)) {
2029		nid = interleave_nid(*mpol, vma, addr,
2030					huge_page_shift(hstate_vma(vma)));
2031	} else {
2032		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034			*nodemask = &(*mpol)->nodes;
2035	}
2036	return nid;
2037}
2038
2039/*
2040 * init_nodemask_of_mempolicy
2041 *
2042 * If the current task's mempolicy is "default" [NULL], return 'false'
2043 * to indicate default policy.  Otherwise, extract the policy nodemask
2044 * for 'bind' or 'interleave' policy into the argument nodemask, or
2045 * initialize the argument nodemask to contain the single node for
2046 * 'preferred' or 'local' policy and return 'true' to indicate presence
2047 * of non-default mempolicy.
2048 *
2049 * We don't bother with reference counting the mempolicy [mpol_get/put]
2050 * because the current task is examining it's own mempolicy and a task's
2051 * mempolicy is only ever changed by the task itself.
2052 *
2053 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 */
2055bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056{
2057	struct mempolicy *mempolicy;
 
2058
2059	if (!(mask && current->mempolicy))
2060		return false;
2061
2062	task_lock(current);
2063	mempolicy = current->mempolicy;
2064	switch (mempolicy->mode) {
2065	case MPOL_PREFERRED:
2066	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2067	case MPOL_BIND:
 
2068	case MPOL_INTERLEAVE:
2069		*mask = mempolicy->nodes;
2070		break;
2071
2072	case MPOL_LOCAL:
2073		init_nodemask_of_node(mask, numa_node_id());
2074		break;
2075
2076	default:
2077		BUG();
2078	}
2079	task_unlock(current);
2080
2081	return true;
2082}
2083#endif
2084
2085/*
2086 * mempolicy_in_oom_domain
2087 *
2088 * If tsk's mempolicy is "bind", check for intersection between mask and
2089 * the policy nodemask. Otherwise, return true for all other policies
2090 * including "interleave", as a tsk with "interleave" policy may have
2091 * memory allocated from all nodes in system.
2092 *
2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 */
2095bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096					const nodemask_t *mask)
2097{
2098	struct mempolicy *mempolicy;
2099	bool ret = true;
2100
2101	if (!mask)
2102		return ret;
2103
2104	task_lock(tsk);
2105	mempolicy = tsk->mempolicy;
2106	if (mempolicy && mempolicy->mode == MPOL_BIND)
2107		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108	task_unlock(tsk);
2109
2110	return ret;
2111}
2112
2113/* Allocate a page in interleaved policy.
2114   Own path because it needs to do special accounting. */
2115static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116					unsigned nid)
2117{
 
2118	struct page *page;
2119
2120	page = __alloc_pages(gfp, order, nid, NULL);
2121	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122	if (!static_branch_likely(&vm_numa_stat_key))
2123		return page;
2124	if (page && page_to_nid(page) == nid) {
2125		preempt_disable();
2126		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127		preempt_enable();
2128	}
2129	return page;
2130}
2131
2132static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133						int nid, struct mempolicy *pol)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134{
 
 
2135	struct page *page;
2136	gfp_t preferred_gfp;
2137
2138	/*
2139	 * This is a two pass approach. The first pass will only try the
2140	 * preferred nodes but skip the direct reclaim and allow the
2141	 * allocation to fail, while the second pass will try all the
2142	 * nodes in system.
2143	 */
2144	preferred_gfp = gfp | __GFP_NOWARN;
2145	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147	if (!page)
2148		page = __alloc_pages(gfp, order, nid, NULL);
2149
2150	return page;
2151}
2152
2153/**
2154 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @gfp: GFP flags.
2156 * @order: Order of the folio.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual address of the allocation.  Must be inside @vma.
2159 * @hugepage: For hugepages try only the preferred node if possible.
2160 *
2161 * Allocate a folio for a specific address in @vma, using the appropriate
2162 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2163 * of the mm_struct of the VMA to prevent it from going away.  Should be
2164 * used for all allocations for folios that will be mapped into user space.
2165 *
2166 * Return: The folio on success or NULL if allocation fails.
2167 */
2168struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169		unsigned long addr, bool hugepage)
2170{
2171	struct mempolicy *pol;
2172	int node = numa_node_id();
2173	struct folio *folio;
2174	int preferred_nid;
2175	nodemask_t *nmask;
2176
2177	pol = get_vma_policy(vma, addr);
2178
2179	if (pol->mode == MPOL_INTERLEAVE) {
2180		struct page *page;
2181		unsigned nid;
2182
2183		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184		mpol_cond_put(pol);
2185		gfp |= __GFP_COMP;
2186		page = alloc_page_interleave(gfp, order, nid);
2187		if (page && order > 1)
2188			prep_transhuge_page(page);
2189		folio = (struct folio *)page;
2190		goto out;
2191	}
2192
2193	if (pol->mode == MPOL_PREFERRED_MANY) {
2194		struct page *page;
2195
2196		node = policy_node(gfp, pol, node);
2197		gfp |= __GFP_COMP;
2198		page = alloc_pages_preferred_many(gfp, order, node, pol);
2199		mpol_cond_put(pol);
2200		if (page && order > 1)
2201			prep_transhuge_page(page);
2202		folio = (struct folio *)page;
2203		goto out;
2204	}
2205
2206	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2207		int hpage_node = node;
2208
2209		/*
2210		 * For hugepage allocation and non-interleave policy which
2211		 * allows the current node (or other explicitly preferred
2212		 * node) we only try to allocate from the current/preferred
2213		 * node and don't fall back to other nodes, as the cost of
2214		 * remote accesses would likely offset THP benefits.
2215		 *
2216		 * If the policy is interleave or does not allow the current
2217		 * node in its nodemask, we allocate the standard way.
2218		 */
2219		if (pol->mode == MPOL_PREFERRED)
2220			hpage_node = first_node(pol->nodes);
2221
2222		nmask = policy_nodemask(gfp, pol);
2223		if (!nmask || node_isset(hpage_node, *nmask)) {
2224			mpol_cond_put(pol);
2225			/*
2226			 * First, try to allocate THP only on local node, but
2227			 * don't reclaim unnecessarily, just compact.
2228			 */
2229			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2230					__GFP_NORETRY, order, hpage_node);
2231
2232			/*
2233			 * If hugepage allocations are configured to always
2234			 * synchronous compact or the vma has been madvised
2235			 * to prefer hugepage backing, retry allowing remote
2236			 * memory with both reclaim and compact as well.
2237			 */
2238			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2239				folio = __folio_alloc(gfp, order, hpage_node,
2240						      nmask);
2241
2242			goto out;
2243		}
2244	}
2245
2246	nmask = policy_nodemask(gfp, pol);
2247	preferred_nid = policy_node(gfp, pol, node);
2248	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249	mpol_cond_put(pol);
2250out:
2251	return folio;
2252}
2253EXPORT_SYMBOL(vma_alloc_folio);
2254
2255/**
2256 * alloc_pages - Allocate pages.
2257 * @gfp: GFP flags.
2258 * @order: Power of two of number of pages to allocate.
2259 *
2260 * Allocate 1 << @order contiguous pages.  The physical address of the
2261 * first page is naturally aligned (eg an order-3 allocation will be aligned
2262 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2263 * process is honoured when in process context.
2264 *
2265 * Context: Can be called from any context, providing the appropriate GFP
2266 * flags are used.
2267 * Return: The page on success or NULL if allocation fails.
 
 
 
 
 
2268 */
2269struct page *alloc_pages(gfp_t gfp, unsigned order)
2270{
2271	struct mempolicy *pol = &default_policy;
2272	struct page *page;
2273
2274	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2275		pol = get_task_policy(current);
2276
 
2277	/*
2278	 * No reference counting needed for current->mempolicy
2279	 * nor system default_policy
2280	 */
2281	if (pol->mode == MPOL_INTERLEAVE)
2282		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2283	else if (pol->mode == MPOL_PREFERRED_MANY)
2284		page = alloc_pages_preferred_many(gfp, order,
2285				  policy_node(gfp, pol, numa_node_id()), pol);
2286	else
2287		page = __alloc_pages(gfp, order,
2288				policy_node(gfp, pol, numa_node_id()),
2289				policy_nodemask(gfp, pol));
2290
2291	return page;
2292}
2293EXPORT_SYMBOL(alloc_pages);
2294
2295struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296{
2297	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298
2299	if (page && order > 1)
2300		prep_transhuge_page(page);
2301	return (struct folio *)page;
2302}
2303EXPORT_SYMBOL(folio_alloc);
2304
2305static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2306		struct mempolicy *pol, unsigned long nr_pages,
2307		struct page **page_array)
2308{
2309	int nodes;
2310	unsigned long nr_pages_per_node;
2311	int delta;
2312	int i;
2313	unsigned long nr_allocated;
2314	unsigned long total_allocated = 0;
2315
2316	nodes = nodes_weight(pol->nodes);
2317	nr_pages_per_node = nr_pages / nodes;
2318	delta = nr_pages - nodes * nr_pages_per_node;
2319
2320	for (i = 0; i < nodes; i++) {
2321		if (delta) {
2322			nr_allocated = __alloc_pages_bulk(gfp,
2323					interleave_nodes(pol), NULL,
2324					nr_pages_per_node + 1, NULL,
2325					page_array);
2326			delta--;
2327		} else {
2328			nr_allocated = __alloc_pages_bulk(gfp,
2329					interleave_nodes(pol), NULL,
2330					nr_pages_per_node, NULL, page_array);
2331		}
2332
2333		page_array += nr_allocated;
2334		total_allocated += nr_allocated;
2335	}
2336
2337	return total_allocated;
2338}
2339
2340static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2341		struct mempolicy *pol, unsigned long nr_pages,
2342		struct page **page_array)
2343{
2344	gfp_t preferred_gfp;
2345	unsigned long nr_allocated = 0;
2346
2347	preferred_gfp = gfp | __GFP_NOWARN;
2348	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349
2350	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2351					   nr_pages, NULL, page_array);
2352
2353	if (nr_allocated < nr_pages)
2354		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2355				nr_pages - nr_allocated, NULL,
2356				page_array + nr_allocated);
2357	return nr_allocated;
2358}
2359
2360/* alloc pages bulk and mempolicy should be considered at the
2361 * same time in some situation such as vmalloc.
2362 *
2363 * It can accelerate memory allocation especially interleaving
2364 * allocate memory.
2365 */
2366unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2367		unsigned long nr_pages, struct page **page_array)
2368{
2369	struct mempolicy *pol = &default_policy;
2370
2371	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2372		pol = get_task_policy(current);
2373
2374	if (pol->mode == MPOL_INTERLEAVE)
2375		return alloc_pages_bulk_array_interleave(gfp, pol,
2376							 nr_pages, page_array);
2377
2378	if (pol->mode == MPOL_PREFERRED_MANY)
2379		return alloc_pages_bulk_array_preferred_many(gfp,
2380				numa_node_id(), pol, nr_pages, page_array);
2381
2382	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2383				  policy_nodemask(gfp, pol), nr_pages, NULL,
2384				  page_array);
2385}
2386
2387int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388{
2389	struct mempolicy *pol = mpol_dup(vma_policy(src));
2390
2391	if (IS_ERR(pol))
2392		return PTR_ERR(pol);
2393	dst->vm_policy = pol;
2394	return 0;
2395}
2396
2397/*
2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2400 * with the mems_allowed returned by cpuset_mems_allowed().  This
2401 * keeps mempolicies cpuset relative after its cpuset moves.  See
2402 * further kernel/cpuset.c update_nodemask().
2403 *
2404 * current's mempolicy may be rebinded by the other task(the task that changes
2405 * cpuset's mems), so we needn't do rebind work for current task.
2406 */
2407
2408/* Slow path of a mempolicy duplicate */
2409struct mempolicy *__mpol_dup(struct mempolicy *old)
2410{
2411	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2412
2413	if (!new)
2414		return ERR_PTR(-ENOMEM);
2415
2416	/* task's mempolicy is protected by alloc_lock */
2417	if (old == current->mempolicy) {
2418		task_lock(current);
2419		*new = *old;
2420		task_unlock(current);
2421	} else
2422		*new = *old;
2423
 
2424	if (current_cpuset_is_being_rebound()) {
2425		nodemask_t mems = cpuset_mems_allowed(current);
2426		mpol_rebind_policy(new, &mems);
 
 
 
2427	}
 
2428	atomic_set(&new->refcnt, 1);
2429	return new;
2430}
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432/* Slow path of a mempolicy comparison */
2433bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2434{
2435	if (!a || !b)
2436		return false;
2437	if (a->mode != b->mode)
2438		return false;
2439	if (a->flags != b->flags)
2440		return false;
2441	if (a->home_node != b->home_node)
2442		return false;
2443	if (mpol_store_user_nodemask(a))
2444		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445			return false;
2446
2447	switch (a->mode) {
2448	case MPOL_BIND:
 
2449	case MPOL_INTERLEAVE:
 
2450	case MPOL_PREFERRED:
2451	case MPOL_PREFERRED_MANY:
2452		return !!nodes_equal(a->nodes, b->nodes);
2453	case MPOL_LOCAL:
2454		return true;
2455	default:
2456		BUG();
2457		return false;
2458	}
2459}
2460
2461/*
2462 * Shared memory backing store policy support.
2463 *
2464 * Remember policies even when nobody has shared memory mapped.
2465 * The policies are kept in Red-Black tree linked from the inode.
2466 * They are protected by the sp->lock rwlock, which should be held
2467 * for any accesses to the tree.
2468 */
2469
2470/*
2471 * lookup first element intersecting start-end.  Caller holds sp->lock for
2472 * reading or for writing
2473 */
2474static struct sp_node *
2475sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476{
2477	struct rb_node *n = sp->root.rb_node;
2478
2479	while (n) {
2480		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481
2482		if (start >= p->end)
2483			n = n->rb_right;
2484		else if (end <= p->start)
2485			n = n->rb_left;
2486		else
2487			break;
2488	}
2489	if (!n)
2490		return NULL;
2491	for (;;) {
2492		struct sp_node *w = NULL;
2493		struct rb_node *prev = rb_prev(n);
2494		if (!prev)
2495			break;
2496		w = rb_entry(prev, struct sp_node, nd);
2497		if (w->end <= start)
2498			break;
2499		n = prev;
2500	}
2501	return rb_entry(n, struct sp_node, nd);
2502}
2503
2504/*
2505 * Insert a new shared policy into the list.  Caller holds sp->lock for
2506 * writing.
2507 */
2508static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509{
2510	struct rb_node **p = &sp->root.rb_node;
2511	struct rb_node *parent = NULL;
2512	struct sp_node *nd;
2513
2514	while (*p) {
2515		parent = *p;
2516		nd = rb_entry(parent, struct sp_node, nd);
2517		if (new->start < nd->start)
2518			p = &(*p)->rb_left;
2519		else if (new->end > nd->end)
2520			p = &(*p)->rb_right;
2521		else
2522			BUG();
2523	}
2524	rb_link_node(&new->nd, parent, p);
2525	rb_insert_color(&new->nd, &sp->root);
2526	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2527		 new->policy ? new->policy->mode : 0);
2528}
2529
2530/* Find shared policy intersecting idx */
2531struct mempolicy *
2532mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533{
2534	struct mempolicy *pol = NULL;
2535	struct sp_node *sn;
2536
2537	if (!sp->root.rb_node)
2538		return NULL;
2539	read_lock(&sp->lock);
2540	sn = sp_lookup(sp, idx, idx+1);
2541	if (sn) {
2542		mpol_get(sn->policy);
2543		pol = sn->policy;
2544	}
2545	read_unlock(&sp->lock);
2546	return pol;
2547}
2548
2549static void sp_free(struct sp_node *n)
2550{
2551	mpol_put(n->policy);
2552	kmem_cache_free(sn_cache, n);
2553}
2554
2555/**
2556 * mpol_misplaced - check whether current page node is valid in policy
2557 *
2558 * @page: page to be checked
2559 * @vma: vm area where page mapped
2560 * @addr: virtual address where page mapped
2561 *
2562 * Lookup current policy node id for vma,addr and "compare to" page's
2563 * node id.  Policy determination "mimics" alloc_page_vma().
2564 * Called from fault path where we know the vma and faulting address.
2565 *
2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2567 * policy, or a suitable node ID to allocate a replacement page from.
2568 */
2569int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570{
2571	struct mempolicy *pol;
2572	struct zoneref *z;
2573	int curnid = page_to_nid(page);
2574	unsigned long pgoff;
2575	int thiscpu = raw_smp_processor_id();
2576	int thisnid = cpu_to_node(thiscpu);
2577	int polnid = NUMA_NO_NODE;
2578	int ret = NUMA_NO_NODE;
2579
2580	pol = get_vma_policy(vma, addr);
2581	if (!(pol->flags & MPOL_F_MOF))
2582		goto out;
2583
2584	switch (pol->mode) {
2585	case MPOL_INTERLEAVE:
2586		pgoff = vma->vm_pgoff;
2587		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2588		polnid = offset_il_node(pol, pgoff);
2589		break;
2590
2591	case MPOL_PREFERRED:
2592		if (node_isset(curnid, pol->nodes))
2593			goto out;
2594		polnid = first_node(pol->nodes);
2595		break;
2596
2597	case MPOL_LOCAL:
2598		polnid = numa_node_id();
2599		break;
2600
2601	case MPOL_BIND:
2602		/* Optimize placement among multiple nodes via NUMA balancing */
2603		if (pol->flags & MPOL_F_MORON) {
2604			if (node_isset(thisnid, pol->nodes))
2605				break;
2606			goto out;
2607		}
2608		fallthrough;
2609
2610	case MPOL_PREFERRED_MANY:
2611		/*
2612		 * use current page if in policy nodemask,
2613		 * else select nearest allowed node, if any.
2614		 * If no allowed nodes, use current [!misplaced].
2615		 */
2616		if (node_isset(curnid, pol->nodes))
2617			goto out;
2618		z = first_zones_zonelist(
2619				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2620				gfp_zone(GFP_HIGHUSER),
2621				&pol->nodes);
2622		polnid = zone_to_nid(z->zone);
2623		break;
2624
2625	default:
2626		BUG();
2627	}
2628
2629	/* Migrate the page towards the node whose CPU is referencing it */
2630	if (pol->flags & MPOL_F_MORON) {
2631		polnid = thisnid;
2632
2633		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2634			goto out;
2635	}
2636
2637	if (curnid != polnid)
2638		ret = polnid;
2639out:
2640	mpol_cond_put(pol);
2641
2642	return ret;
2643}
2644
2645/*
2646 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2647 * dropped after task->mempolicy is set to NULL so that any allocation done as
2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2649 * policy.
2650 */
2651void mpol_put_task_policy(struct task_struct *task)
2652{
2653	struct mempolicy *pol;
2654
2655	task_lock(task);
2656	pol = task->mempolicy;
2657	task->mempolicy = NULL;
2658	task_unlock(task);
2659	mpol_put(pol);
2660}
2661
2662static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663{
2664	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2665	rb_erase(&n->nd, &sp->root);
2666	sp_free(n);
2667}
2668
2669static void sp_node_init(struct sp_node *node, unsigned long start,
2670			unsigned long end, struct mempolicy *pol)
2671{
2672	node->start = start;
2673	node->end = end;
2674	node->policy = pol;
2675}
2676
2677static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2678				struct mempolicy *pol)
2679{
2680	struct sp_node *n;
2681	struct mempolicy *newpol;
2682
2683	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2684	if (!n)
2685		return NULL;
2686
2687	newpol = mpol_dup(pol);
2688	if (IS_ERR(newpol)) {
2689		kmem_cache_free(sn_cache, n);
2690		return NULL;
2691	}
2692	newpol->flags |= MPOL_F_SHARED;
2693	sp_node_init(n, start, end, newpol);
2694
2695	return n;
2696}
2697
2698/* Replace a policy range. */
2699static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2700				 unsigned long end, struct sp_node *new)
2701{
2702	struct sp_node *n;
2703	struct sp_node *n_new = NULL;
2704	struct mempolicy *mpol_new = NULL;
2705	int ret = 0;
2706
2707restart:
2708	write_lock(&sp->lock);
2709	n = sp_lookup(sp, start, end);
2710	/* Take care of old policies in the same range. */
2711	while (n && n->start < end) {
2712		struct rb_node *next = rb_next(&n->nd);
2713		if (n->start >= start) {
2714			if (n->end <= end)
2715				sp_delete(sp, n);
2716			else
2717				n->start = end;
2718		} else {
2719			/* Old policy spanning whole new range. */
2720			if (n->end > end) {
2721				if (!n_new)
2722					goto alloc_new;
2723
2724				*mpol_new = *n->policy;
2725				atomic_set(&mpol_new->refcnt, 1);
2726				sp_node_init(n_new, end, n->end, mpol_new);
 
2727				n->end = start;
2728				sp_insert(sp, n_new);
2729				n_new = NULL;
2730				mpol_new = NULL;
2731				break;
2732			} else
2733				n->end = start;
2734		}
2735		if (!next)
2736			break;
2737		n = rb_entry(next, struct sp_node, nd);
2738	}
2739	if (new)
2740		sp_insert(sp, new);
2741	write_unlock(&sp->lock);
2742	ret = 0;
2743
2744err_out:
2745	if (mpol_new)
2746		mpol_put(mpol_new);
2747	if (n_new)
2748		kmem_cache_free(sn_cache, n_new);
2749
2750	return ret;
2751
2752alloc_new:
2753	write_unlock(&sp->lock);
2754	ret = -ENOMEM;
2755	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2756	if (!n_new)
2757		goto err_out;
2758	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2759	if (!mpol_new)
2760		goto err_out;
2761	atomic_set(&mpol_new->refcnt, 1);
2762	goto restart;
2763}
2764
2765/**
2766 * mpol_shared_policy_init - initialize shared policy for inode
2767 * @sp: pointer to inode shared policy
2768 * @mpol:  struct mempolicy to install
2769 *
2770 * Install non-NULL @mpol in inode's shared policy rb-tree.
2771 * On entry, the current task has a reference on a non-NULL @mpol.
2772 * This must be released on exit.
2773 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 */
2775void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2776{
2777	int ret;
2778
2779	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2780	rwlock_init(&sp->lock);
2781
2782	if (mpol) {
2783		struct vm_area_struct pvma;
2784		struct mempolicy *new;
2785		NODEMASK_SCRATCH(scratch);
2786
2787		if (!scratch)
2788			goto put_mpol;
2789		/* contextualize the tmpfs mount point mempolicy */
2790		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791		if (IS_ERR(new))
2792			goto free_scratch; /* no valid nodemask intersection */
2793
2794		task_lock(current);
2795		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2796		task_unlock(current);
2797		if (ret)
2798			goto put_new;
2799
2800		/* Create pseudo-vma that contains just the policy */
2801		vma_init(&pvma, NULL);
2802		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2803		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2804
2805put_new:
2806		mpol_put(new);			/* drop initial ref */
2807free_scratch:
2808		NODEMASK_SCRATCH_FREE(scratch);
2809put_mpol:
2810		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2811	}
2812}
2813
2814int mpol_set_shared_policy(struct shared_policy *info,
2815			struct vm_area_struct *vma, struct mempolicy *npol)
2816{
2817	int err;
2818	struct sp_node *new = NULL;
2819	unsigned long sz = vma_pages(vma);
2820
2821	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822		 vma->vm_pgoff,
2823		 sz, npol ? npol->mode : -1,
2824		 npol ? npol->flags : -1,
2825		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2826
2827	if (npol) {
2828		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2829		if (!new)
2830			return -ENOMEM;
2831	}
2832	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2833	if (err && new)
2834		sp_free(new);
2835	return err;
2836}
2837
2838/* Free a backing policy store on inode delete. */
2839void mpol_free_shared_policy(struct shared_policy *p)
2840{
2841	struct sp_node *n;
2842	struct rb_node *next;
2843
2844	if (!p->root.rb_node)
2845		return;
2846	write_lock(&p->lock);
2847	next = rb_first(&p->root);
2848	while (next) {
2849		n = rb_entry(next, struct sp_node, nd);
2850		next = rb_next(&n->nd);
2851		sp_delete(p, n);
 
 
2852	}
2853	write_unlock(&p->lock);
2854}
2855
2856#ifdef CONFIG_NUMA_BALANCING
2857static int __initdata numabalancing_override;
2858
2859static void __init check_numabalancing_enable(void)
2860{
2861	bool numabalancing_default = false;
2862
2863	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2864		numabalancing_default = true;
2865
2866	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2867	if (numabalancing_override)
2868		set_numabalancing_state(numabalancing_override == 1);
2869
2870	if (num_online_nodes() > 1 && !numabalancing_override) {
2871		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2872			numabalancing_default ? "Enabling" : "Disabling");
2873		set_numabalancing_state(numabalancing_default);
2874	}
2875}
2876
2877static int __init setup_numabalancing(char *str)
2878{
2879	int ret = 0;
2880	if (!str)
2881		goto out;
2882
2883	if (!strcmp(str, "enable")) {
2884		numabalancing_override = 1;
2885		ret = 1;
2886	} else if (!strcmp(str, "disable")) {
2887		numabalancing_override = -1;
2888		ret = 1;
2889	}
2890out:
2891	if (!ret)
2892		pr_warn("Unable to parse numa_balancing=\n");
2893
2894	return ret;
2895}
2896__setup("numa_balancing=", setup_numabalancing);
2897#else
2898static inline void __init check_numabalancing_enable(void)
2899{
2900}
2901#endif /* CONFIG_NUMA_BALANCING */
2902
2903/* assumes fs == KERNEL_DS */
2904void __init numa_policy_init(void)
2905{
2906	nodemask_t interleave_nodes;
2907	unsigned long largest = 0;
2908	int nid, prefer = 0;
2909
2910	policy_cache = kmem_cache_create("numa_policy",
2911					 sizeof(struct mempolicy),
2912					 0, SLAB_PANIC, NULL);
2913
2914	sn_cache = kmem_cache_create("shared_policy_node",
2915				     sizeof(struct sp_node),
2916				     0, SLAB_PANIC, NULL);
2917
2918	for_each_node(nid) {
2919		preferred_node_policy[nid] = (struct mempolicy) {
2920			.refcnt = ATOMIC_INIT(1),
2921			.mode = MPOL_PREFERRED,
2922			.flags = MPOL_F_MOF | MPOL_F_MORON,
2923			.nodes = nodemask_of_node(nid),
2924		};
2925	}
2926
2927	/*
2928	 * Set interleaving policy for system init. Interleaving is only
2929	 * enabled across suitably sized nodes (default is >= 16MB), or
2930	 * fall back to the largest node if they're all smaller.
2931	 */
2932	nodes_clear(interleave_nodes);
2933	for_each_node_state(nid, N_MEMORY) {
2934		unsigned long total_pages = node_present_pages(nid);
2935
2936		/* Preserve the largest node */
2937		if (largest < total_pages) {
2938			largest = total_pages;
2939			prefer = nid;
2940		}
2941
2942		/* Interleave this node? */
2943		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2944			node_set(nid, interleave_nodes);
2945	}
2946
2947	/* All too small, use the largest */
2948	if (unlikely(nodes_empty(interleave_nodes)))
2949		node_set(prefer, interleave_nodes);
2950
2951	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2952		pr_err("%s: interleaving failed\n", __func__);
2953
2954	check_numabalancing_enable();
2955}
2956
2957/* Reset policy of current process to default */
2958void numa_default_policy(void)
2959{
2960	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2961}
2962
2963/*
2964 * Parse and format mempolicy from/to strings
2965 */
2966
 
 
 
 
 
2967static const char * const policy_modes[] =
2968{
2969	[MPOL_DEFAULT]    = "default",
2970	[MPOL_PREFERRED]  = "prefer",
2971	[MPOL_BIND]       = "bind",
2972	[MPOL_INTERLEAVE] = "interleave",
2973	[MPOL_LOCAL]      = "local",
2974	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2975};
2976
2977
2978#ifdef CONFIG_TMPFS
2979/**
2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2981 * @str:  string containing mempolicy to parse
2982 * @mpol:  pointer to struct mempolicy pointer, returned on success.
 
2983 *
2984 * Format of input:
2985 *	<mode>[=<flags>][:<nodelist>]
2986 *
2987 * Return: %0 on success, else %1
 
 
 
 
 
 
 
2988 */
2989int mpol_parse_str(char *str, struct mempolicy **mpol)
2990{
2991	struct mempolicy *new = NULL;
2992	unsigned short mode_flags;
 
2993	nodemask_t nodes;
2994	char *nodelist = strchr(str, ':');
2995	char *flags = strchr(str, '=');
2996	int err = 1, mode;
2997
2998	if (flags)
2999		*flags++ = '\0';	/* terminate mode string */
3000
3001	if (nodelist) {
3002		/* NUL-terminate mode or flags string */
3003		*nodelist++ = '\0';
3004		if (nodelist_parse(nodelist, nodes))
3005			goto out;
3006		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007			goto out;
3008	} else
3009		nodes_clear(nodes);
3010
3011	mode = match_string(policy_modes, MPOL_MAX, str);
3012	if (mode < 0)
 
 
 
 
 
 
 
3013		goto out;
3014
3015	switch (mode) {
3016	case MPOL_PREFERRED:
3017		/*
3018		 * Insist on a nodelist of one node only, although later
3019		 * we use first_node(nodes) to grab a single node, so here
3020		 * nodelist (or nodes) cannot be empty.
3021		 */
3022		if (nodelist) {
3023			char *rest = nodelist;
3024			while (isdigit(*rest))
3025				rest++;
3026			if (*rest)
3027				goto out;
3028			if (nodes_empty(nodes))
3029				goto out;
3030		}
3031		break;
3032	case MPOL_INTERLEAVE:
3033		/*
3034		 * Default to online nodes with memory if no nodelist
3035		 */
3036		if (!nodelist)
3037			nodes = node_states[N_MEMORY];
3038		break;
3039	case MPOL_LOCAL:
3040		/*
3041		 * Don't allow a nodelist;  mpol_new() checks flags
3042		 */
3043		if (nodelist)
3044			goto out;
 
3045		break;
3046	case MPOL_DEFAULT:
3047		/*
3048		 * Insist on a empty nodelist
3049		 */
3050		if (!nodelist)
3051			err = 0;
3052		goto out;
3053	case MPOL_PREFERRED_MANY:
3054	case MPOL_BIND:
3055		/*
3056		 * Insist on a nodelist
3057		 */
3058		if (!nodelist)
3059			goto out;
3060	}
3061
3062	mode_flags = 0;
3063	if (flags) {
3064		/*
3065		 * Currently, we only support two mutually exclusive
3066		 * mode flags.
3067		 */
3068		if (!strcmp(flags, "static"))
3069			mode_flags |= MPOL_F_STATIC_NODES;
3070		else if (!strcmp(flags, "relative"))
3071			mode_flags |= MPOL_F_RELATIVE_NODES;
3072		else
3073			goto out;
3074	}
3075
3076	new = mpol_new(mode, mode_flags, &nodes);
3077	if (IS_ERR(new))
3078		goto out;
3079
3080	/*
3081	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3082	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083	 */
3084	if (mode != MPOL_PREFERRED) {
3085		new->nodes = nodes;
3086	} else if (nodelist) {
3087		nodes_clear(new->nodes);
3088		node_set(first_node(nodes), new->nodes);
3089	} else {
3090		new->mode = MPOL_LOCAL;
 
 
 
 
 
 
 
 
 
 
 
 
3091	}
3092
3093	/*
3094	 * Save nodes for contextualization: this will be used to "clone"
3095	 * the mempolicy in a specific context [cpuset] at a later time.
3096	 */
3097	new->w.user_nodemask = nodes;
3098
3099	err = 0;
3100
3101out:
3102	/* Restore string for error message */
3103	if (nodelist)
3104		*--nodelist = ':';
3105	if (flags)
3106		*--flags = '=';
3107	if (!err)
3108		*mpol = new;
3109	return err;
3110}
3111#endif /* CONFIG_TMPFS */
3112
3113/**
3114 * mpol_to_str - format a mempolicy structure for printing
3115 * @buffer:  to contain formatted mempolicy string
3116 * @maxlen:  length of @buffer
3117 * @pol:  pointer to mempolicy to be formatted
 
3118 *
3119 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3121 * longest flag, "relative", and to display at least a few node ids.
3122 */
3123void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3124{
3125	char *p = buffer;
3126	nodemask_t nodes = NODE_MASK_NONE;
3127	unsigned short mode = MPOL_DEFAULT;
3128	unsigned short flags = 0;
 
 
 
 
 
 
3129
3130	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
3131		mode = pol->mode;
3132		flags = pol->flags;
3133	}
3134
3135	switch (mode) {
3136	case MPOL_DEFAULT:
3137	case MPOL_LOCAL:
3138		break;
 
3139	case MPOL_PREFERRED:
3140	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
3141	case MPOL_BIND:
 
3142	case MPOL_INTERLEAVE:
3143		nodes = pol->nodes;
 
 
 
3144		break;
 
3145	default:
3146		WARN_ON_ONCE(1);
3147		snprintf(p, maxlen, "unknown");
3148		return;
3149	}
3150
3151	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 
 
 
 
 
3152
3153	if (flags & MPOL_MODE_FLAGS) {
3154		p += snprintf(p, buffer + maxlen - p, "=");
 
 
3155
3156		/*
3157		 * Currently, the only defined flags are mutually exclusive
3158		 */
3159		if (flags & MPOL_F_STATIC_NODES)
3160			p += snprintf(p, buffer + maxlen - p, "static");
3161		else if (flags & MPOL_F_RELATIVE_NODES)
3162			p += snprintf(p, buffer + maxlen - p, "relative");
3163	}
3164
3165	if (!nodes_empty(nodes))
3166		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167			       nodemask_pr_args(&nodes));
 
 
 
 
3168}