Loading...
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608}
609
610/* Apply policy to a single VMA */
611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612{
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629}
630
631/* Step 2: apply policy to a range and do splits. */
632static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634{
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 unsigned long vmstart;
640 unsigned long vmend;
641
642 vma = find_vma_prev(mm, start, &prev);
643 if (!vma || vma->vm_start > start)
644 return -EFAULT;
645
646 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
647 next = vma->vm_next;
648 vmstart = max(start, vma->vm_start);
649 vmend = min(end, vma->vm_end);
650
651 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
652 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
653 new_pol);
654 if (prev) {
655 vma = prev;
656 next = vma->vm_next;
657 continue;
658 }
659 if (vma->vm_start != vmstart) {
660 err = split_vma(vma->vm_mm, vma, vmstart, 1);
661 if (err)
662 goto out;
663 }
664 if (vma->vm_end != vmend) {
665 err = split_vma(vma->vm_mm, vma, vmend, 0);
666 if (err)
667 goto out;
668 }
669 err = policy_vma(vma, new_pol);
670 if (err)
671 goto out;
672 }
673
674 out:
675 return err;
676}
677
678/*
679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
680 * mempolicy. Allows more rapid checking of this (combined perhaps
681 * with other PF_* flag bits) on memory allocation hot code paths.
682 *
683 * If called from outside this file, the task 'p' should -only- be
684 * a newly forked child not yet visible on the task list, because
685 * manipulating the task flags of a visible task is not safe.
686 *
687 * The above limitation is why this routine has the funny name
688 * mpol_fix_fork_child_flag().
689 *
690 * It is also safe to call this with a task pointer of current,
691 * which the static wrapper mpol_set_task_struct_flag() does,
692 * for use within this file.
693 */
694
695void mpol_fix_fork_child_flag(struct task_struct *p)
696{
697 if (p->mempolicy)
698 p->flags |= PF_MEMPOLICY;
699 else
700 p->flags &= ~PF_MEMPOLICY;
701}
702
703static void mpol_set_task_struct_flag(void)
704{
705 mpol_fix_fork_child_flag(current);
706}
707
708/* Set the process memory policy */
709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
710 nodemask_t *nodes)
711{
712 struct mempolicy *new, *old;
713 struct mm_struct *mm = current->mm;
714 NODEMASK_SCRATCH(scratch);
715 int ret;
716
717 if (!scratch)
718 return -ENOMEM;
719
720 new = mpol_new(mode, flags, nodes);
721 if (IS_ERR(new)) {
722 ret = PTR_ERR(new);
723 goto out;
724 }
725 /*
726 * prevent changing our mempolicy while show_numa_maps()
727 * is using it.
728 * Note: do_set_mempolicy() can be called at init time
729 * with no 'mm'.
730 */
731 if (mm)
732 down_write(&mm->mmap_sem);
733 task_lock(current);
734 ret = mpol_set_nodemask(new, nodes, scratch);
735 if (ret) {
736 task_unlock(current);
737 if (mm)
738 up_write(&mm->mmap_sem);
739 mpol_put(new);
740 goto out;
741 }
742 old = current->mempolicy;
743 current->mempolicy = new;
744 mpol_set_task_struct_flag();
745 if (new && new->mode == MPOL_INTERLEAVE &&
746 nodes_weight(new->v.nodes))
747 current->il_next = first_node(new->v.nodes);
748 task_unlock(current);
749 if (mm)
750 up_write(&mm->mmap_sem);
751
752 mpol_put(old);
753 ret = 0;
754out:
755 NODEMASK_SCRATCH_FREE(scratch);
756 return ret;
757}
758
759/*
760 * Return nodemask for policy for get_mempolicy() query
761 *
762 * Called with task's alloc_lock held
763 */
764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
765{
766 nodes_clear(*nodes);
767 if (p == &default_policy)
768 return;
769
770 switch (p->mode) {
771 case MPOL_BIND:
772 /* Fall through */
773 case MPOL_INTERLEAVE:
774 *nodes = p->v.nodes;
775 break;
776 case MPOL_PREFERRED:
777 if (!(p->flags & MPOL_F_LOCAL))
778 node_set(p->v.preferred_node, *nodes);
779 /* else return empty node mask for local allocation */
780 break;
781 default:
782 BUG();
783 }
784}
785
786static int lookup_node(struct mm_struct *mm, unsigned long addr)
787{
788 struct page *p;
789 int err;
790
791 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
792 if (err >= 0) {
793 err = page_to_nid(p);
794 put_page(p);
795 }
796 return err;
797}
798
799/* Retrieve NUMA policy */
800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
801 unsigned long addr, unsigned long flags)
802{
803 int err;
804 struct mm_struct *mm = current->mm;
805 struct vm_area_struct *vma = NULL;
806 struct mempolicy *pol = current->mempolicy;
807
808 if (flags &
809 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
810 return -EINVAL;
811
812 if (flags & MPOL_F_MEMS_ALLOWED) {
813 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
814 return -EINVAL;
815 *policy = 0; /* just so it's initialized */
816 task_lock(current);
817 *nmask = cpuset_current_mems_allowed;
818 task_unlock(current);
819 return 0;
820 }
821
822 if (flags & MPOL_F_ADDR) {
823 /*
824 * Do NOT fall back to task policy if the
825 * vma/shared policy at addr is NULL. We
826 * want to return MPOL_DEFAULT in this case.
827 */
828 down_read(&mm->mmap_sem);
829 vma = find_vma_intersection(mm, addr, addr+1);
830 if (!vma) {
831 up_read(&mm->mmap_sem);
832 return -EFAULT;
833 }
834 if (vma->vm_ops && vma->vm_ops->get_policy)
835 pol = vma->vm_ops->get_policy(vma, addr);
836 else
837 pol = vma->vm_policy;
838 } else if (addr)
839 return -EINVAL;
840
841 if (!pol)
842 pol = &default_policy; /* indicates default behavior */
843
844 if (flags & MPOL_F_NODE) {
845 if (flags & MPOL_F_ADDR) {
846 err = lookup_node(mm, addr);
847 if (err < 0)
848 goto out;
849 *policy = err;
850 } else if (pol == current->mempolicy &&
851 pol->mode == MPOL_INTERLEAVE) {
852 *policy = current->il_next;
853 } else {
854 err = -EINVAL;
855 goto out;
856 }
857 } else {
858 *policy = pol == &default_policy ? MPOL_DEFAULT :
859 pol->mode;
860 /*
861 * Internal mempolicy flags must be masked off before exposing
862 * the policy to userspace.
863 */
864 *policy |= (pol->flags & MPOL_MODE_FLAGS);
865 }
866
867 if (vma) {
868 up_read(¤t->mm->mmap_sem);
869 vma = NULL;
870 }
871
872 err = 0;
873 if (nmask) {
874 if (mpol_store_user_nodemask(pol)) {
875 *nmask = pol->w.user_nodemask;
876 } else {
877 task_lock(current);
878 get_policy_nodemask(pol, nmask);
879 task_unlock(current);
880 }
881 }
882
883 out:
884 mpol_cond_put(pol);
885 if (vma)
886 up_read(¤t->mm->mmap_sem);
887 return err;
888}
889
890#ifdef CONFIG_MIGRATION
891/*
892 * page migration
893 */
894static void migrate_page_add(struct page *page, struct list_head *pagelist,
895 unsigned long flags)
896{
897 /*
898 * Avoid migrating a page that is shared with others.
899 */
900 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
901 if (!isolate_lru_page(page)) {
902 list_add_tail(&page->lru, pagelist);
903 inc_zone_page_state(page, NR_ISOLATED_ANON +
904 page_is_file_cache(page));
905 }
906 }
907}
908
909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
910{
911 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
912}
913
914/*
915 * Migrate pages from one node to a target node.
916 * Returns error or the number of pages not migrated.
917 */
918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
919 int flags)
920{
921 nodemask_t nmask;
922 LIST_HEAD(pagelist);
923 int err = 0;
924 struct vm_area_struct *vma;
925
926 nodes_clear(nmask);
927 node_set(source, nmask);
928
929 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
930 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
931 if (IS_ERR(vma))
932 return PTR_ERR(vma);
933
934 if (!list_empty(&pagelist)) {
935 err = migrate_pages(&pagelist, new_node_page, dest,
936 false, true);
937 if (err)
938 putback_lru_pages(&pagelist);
939 }
940
941 return err;
942}
943
944/*
945 * Move pages between the two nodesets so as to preserve the physical
946 * layout as much as possible.
947 *
948 * Returns the number of page that could not be moved.
949 */
950int do_migrate_pages(struct mm_struct *mm,
951 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
952{
953 int busy = 0;
954 int err;
955 nodemask_t tmp;
956
957 err = migrate_prep();
958 if (err)
959 return err;
960
961 down_read(&mm->mmap_sem);
962
963 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
964 if (err)
965 goto out;
966
967 /*
968 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
969 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
970 * bit in 'tmp', and return that <source, dest> pair for migration.
971 * The pair of nodemasks 'to' and 'from' define the map.
972 *
973 * If no pair of bits is found that way, fallback to picking some
974 * pair of 'source' and 'dest' bits that are not the same. If the
975 * 'source' and 'dest' bits are the same, this represents a node
976 * that will be migrating to itself, so no pages need move.
977 *
978 * If no bits are left in 'tmp', or if all remaining bits left
979 * in 'tmp' correspond to the same bit in 'to', return false
980 * (nothing left to migrate).
981 *
982 * This lets us pick a pair of nodes to migrate between, such that
983 * if possible the dest node is not already occupied by some other
984 * source node, minimizing the risk of overloading the memory on a
985 * node that would happen if we migrated incoming memory to a node
986 * before migrating outgoing memory source that same node.
987 *
988 * A single scan of tmp is sufficient. As we go, we remember the
989 * most recent <s, d> pair that moved (s != d). If we find a pair
990 * that not only moved, but what's better, moved to an empty slot
991 * (d is not set in tmp), then we break out then, with that pair.
992 * Otherwise when we finish scanning from_tmp, we at least have the
993 * most recent <s, d> pair that moved. If we get all the way through
994 * the scan of tmp without finding any node that moved, much less
995 * moved to an empty node, then there is nothing left worth migrating.
996 */
997
998 tmp = *from_nodes;
999 while (!nodes_empty(tmp)) {
1000 int s,d;
1001 int source = -1;
1002 int dest = 0;
1003
1004 for_each_node_mask(s, tmp) {
1005 d = node_remap(s, *from_nodes, *to_nodes);
1006 if (s == d)
1007 continue;
1008
1009 source = s; /* Node moved. Memorize */
1010 dest = d;
1011
1012 /* dest not in remaining from nodes? */
1013 if (!node_isset(dest, tmp))
1014 break;
1015 }
1016 if (source == -1)
1017 break;
1018
1019 node_clear(source, tmp);
1020 err = migrate_to_node(mm, source, dest, flags);
1021 if (err > 0)
1022 busy += err;
1023 if (err < 0)
1024 break;
1025 }
1026out:
1027 up_read(&mm->mmap_sem);
1028 if (err < 0)
1029 return err;
1030 return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not. N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044 unsigned long uninitialized_var(address);
1045
1046 while (vma) {
1047 address = page_address_in_vma(page, vma);
1048 if (address != -EFAULT)
1049 break;
1050 vma = vma->vm_next;
1051 }
1052
1053 /*
1054 * if !vma, alloc_page_vma() will use task or system default policy
1055 */
1056 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061 unsigned long flags)
1062{
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068 return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073 return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078 unsigned short mode, unsigned short mode_flags,
1079 nodemask_t *nmask, unsigned long flags)
1080{
1081 struct vm_area_struct *vma;
1082 struct mm_struct *mm = current->mm;
1083 struct mempolicy *new;
1084 unsigned long end;
1085 int err;
1086 LIST_HEAD(pagelist);
1087
1088 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090 return -EINVAL;
1091 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092 return -EPERM;
1093
1094 if (start & ~PAGE_MASK)
1095 return -EINVAL;
1096
1097 if (mode == MPOL_DEFAULT)
1098 flags &= ~MPOL_MF_STRICT;
1099
1100 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101 end = start + len;
1102
1103 if (end < start)
1104 return -EINVAL;
1105 if (end == start)
1106 return 0;
1107
1108 new = mpol_new(mode, mode_flags, nmask);
1109 if (IS_ERR(new))
1110 return PTR_ERR(new);
1111
1112 /*
1113 * If we are using the default policy then operation
1114 * on discontinuous address spaces is okay after all
1115 */
1116 if (!new)
1117 flags |= MPOL_MF_DISCONTIG_OK;
1118
1119 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120 start, start + len, mode, mode_flags,
1121 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125 err = migrate_prep();
1126 if (err)
1127 goto mpol_out;
1128 }
1129 {
1130 NODEMASK_SCRATCH(scratch);
1131 if (scratch) {
1132 down_write(&mm->mmap_sem);
1133 task_lock(current);
1134 err = mpol_set_nodemask(new, nmask, scratch);
1135 task_unlock(current);
1136 if (err)
1137 up_write(&mm->mmap_sem);
1138 } else
1139 err = -ENOMEM;
1140 NODEMASK_SCRATCH_FREE(scratch);
1141 }
1142 if (err)
1143 goto mpol_out;
1144
1145 vma = check_range(mm, start, end, nmask,
1146 flags | MPOL_MF_INVERT, &pagelist);
1147
1148 err = PTR_ERR(vma);
1149 if (!IS_ERR(vma)) {
1150 int nr_failed = 0;
1151
1152 err = mbind_range(mm, start, end, new);
1153
1154 if (!list_empty(&pagelist)) {
1155 nr_failed = migrate_pages(&pagelist, new_vma_page,
1156 (unsigned long)vma,
1157 false, true);
1158 if (nr_failed)
1159 putback_lru_pages(&pagelist);
1160 }
1161
1162 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163 err = -EIO;
1164 } else
1165 putback_lru_pages(&pagelist);
1166
1167 up_write(&mm->mmap_sem);
1168 mpol_out:
1169 mpol_put(new);
1170 return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179 unsigned long maxnode)
1180{
1181 unsigned long k;
1182 unsigned long nlongs;
1183 unsigned long endmask;
1184
1185 --maxnode;
1186 nodes_clear(*nodes);
1187 if (maxnode == 0 || !nmask)
1188 return 0;
1189 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190 return -EINVAL;
1191
1192 nlongs = BITS_TO_LONGS(maxnode);
1193 if ((maxnode % BITS_PER_LONG) == 0)
1194 endmask = ~0UL;
1195 else
1196 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198 /* When the user specified more nodes than supported just check
1199 if the non supported part is all zero. */
1200 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201 if (nlongs > PAGE_SIZE/sizeof(long))
1202 return -EINVAL;
1203 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204 unsigned long t;
1205 if (get_user(t, nmask + k))
1206 return -EFAULT;
1207 if (k == nlongs - 1) {
1208 if (t & endmask)
1209 return -EINVAL;
1210 } else if (t)
1211 return -EINVAL;
1212 }
1213 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214 endmask = ~0UL;
1215 }
1216
1217 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218 return -EFAULT;
1219 nodes_addr(*nodes)[nlongs-1] &= endmask;
1220 return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225 nodemask_t *nodes)
1226{
1227 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230 if (copy > nbytes) {
1231 if (copy > PAGE_SIZE)
1232 return -EINVAL;
1233 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234 return -EFAULT;
1235 copy = nbytes;
1236 }
1237 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241 unsigned long, mode, unsigned long __user *, nmask,
1242 unsigned long, maxnode, unsigned, flags)
1243{
1244 nodemask_t nodes;
1245 int err;
1246 unsigned short mode_flags;
1247
1248 mode_flags = mode & MPOL_MODE_FLAGS;
1249 mode &= ~MPOL_MODE_FLAGS;
1250 if (mode >= MPOL_MAX)
1251 return -EINVAL;
1252 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253 (mode_flags & MPOL_F_RELATIVE_NODES))
1254 return -EINVAL;
1255 err = get_nodes(&nodes, nmask, maxnode);
1256 if (err)
1257 return err;
1258 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263 unsigned long, maxnode)
1264{
1265 int err;
1266 nodemask_t nodes;
1267 unsigned short flags;
1268
1269 flags = mode & MPOL_MODE_FLAGS;
1270 mode &= ~MPOL_MODE_FLAGS;
1271 if ((unsigned int)mode >= MPOL_MAX)
1272 return -EINVAL;
1273 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274 return -EINVAL;
1275 err = get_nodes(&nodes, nmask, maxnode);
1276 if (err)
1277 return err;
1278 return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282 const unsigned long __user *, old_nodes,
1283 const unsigned long __user *, new_nodes)
1284{
1285 const struct cred *cred = current_cred(), *tcred;
1286 struct mm_struct *mm = NULL;
1287 struct task_struct *task;
1288 nodemask_t task_nodes;
1289 int err;
1290 nodemask_t *old;
1291 nodemask_t *new;
1292 NODEMASK_SCRATCH(scratch);
1293
1294 if (!scratch)
1295 return -ENOMEM;
1296
1297 old = &scratch->mask1;
1298 new = &scratch->mask2;
1299
1300 err = get_nodes(old, old_nodes, maxnode);
1301 if (err)
1302 goto out;
1303
1304 err = get_nodes(new, new_nodes, maxnode);
1305 if (err)
1306 goto out;
1307
1308 /* Find the mm_struct */
1309 rcu_read_lock();
1310 task = pid ? find_task_by_vpid(pid) : current;
1311 if (!task) {
1312 rcu_read_unlock();
1313 err = -ESRCH;
1314 goto out;
1315 }
1316 mm = get_task_mm(task);
1317 rcu_read_unlock();
1318
1319 err = -EINVAL;
1320 if (!mm)
1321 goto out;
1322
1323 /*
1324 * Check if this process has the right to modify the specified
1325 * process. The right exists if the process has administrative
1326 * capabilities, superuser privileges or the same
1327 * userid as the target process.
1328 */
1329 rcu_read_lock();
1330 tcred = __task_cred(task);
1331 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1333 !capable(CAP_SYS_NICE)) {
1334 rcu_read_unlock();
1335 err = -EPERM;
1336 goto out;
1337 }
1338 rcu_read_unlock();
1339
1340 task_nodes = cpuset_mems_allowed(task);
1341 /* Is the user allowed to access the target nodes? */
1342 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343 err = -EPERM;
1344 goto out;
1345 }
1346
1347 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348 err = -EINVAL;
1349 goto out;
1350 }
1351
1352 err = security_task_movememory(task);
1353 if (err)
1354 goto out;
1355
1356 err = do_migrate_pages(mm, old, new,
1357 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1358out:
1359 if (mm)
1360 mmput(mm);
1361 NODEMASK_SCRATCH_FREE(scratch);
1362
1363 return err;
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369 unsigned long __user *, nmask, unsigned long, maxnode,
1370 unsigned long, addr, unsigned long, flags)
1371{
1372 int err;
1373 int uninitialized_var(pval);
1374 nodemask_t nodes;
1375
1376 if (nmask != NULL && maxnode < MAX_NUMNODES)
1377 return -EINVAL;
1378
1379 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381 if (err)
1382 return err;
1383
1384 if (policy && put_user(pval, policy))
1385 return -EFAULT;
1386
1387 if (nmask)
1388 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390 return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396 compat_ulong_t __user *nmask,
1397 compat_ulong_t maxnode,
1398 compat_ulong_t addr, compat_ulong_t flags)
1399{
1400 long err;
1401 unsigned long __user *nm = NULL;
1402 unsigned long nr_bits, alloc_size;
1403 DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408 if (nmask)
1409 nm = compat_alloc_user_space(alloc_size);
1410
1411 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413 if (!err && nmask) {
1414 unsigned long copy_size;
1415 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416 err = copy_from_user(bm, nm, copy_size);
1417 /* ensure entire bitmap is zeroed */
1418 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419 err |= compat_put_bitmap(nmask, bm, nr_bits);
1420 }
1421
1422 return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426 compat_ulong_t maxnode)
1427{
1428 long err = 0;
1429 unsigned long __user *nm = NULL;
1430 unsigned long nr_bits, alloc_size;
1431 DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436 if (nmask) {
1437 err = compat_get_bitmap(bm, nmask, nr_bits);
1438 nm = compat_alloc_user_space(alloc_size);
1439 err |= copy_to_user(nm, bm, alloc_size);
1440 }
1441
1442 if (err)
1443 return -EFAULT;
1444
1445 return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449 compat_ulong_t mode, compat_ulong_t __user *nmask,
1450 compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452 long err = 0;
1453 unsigned long __user *nm = NULL;
1454 unsigned long nr_bits, alloc_size;
1455 nodemask_t bm;
1456
1457 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460 if (nmask) {
1461 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462 nm = compat_alloc_user_space(alloc_size);
1463 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464 }
1465
1466 if (err)
1467 return -EFAULT;
1468
1469 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma - virtual memory area whose policy is sought
1478 * @addr - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task. It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491 struct vm_area_struct *vma, unsigned long addr)
1492{
1493 struct mempolicy *pol = task->mempolicy;
1494
1495 if (vma) {
1496 if (vma->vm_ops && vma->vm_ops->get_policy) {
1497 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498 addr);
1499 if (vpol)
1500 pol = vpol;
1501 } else if (vma->vm_policy)
1502 pol = vma->vm_policy;
1503 }
1504 if (!pol)
1505 pol = &default_policy;
1506 return pol;
1507}
1508
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1516 if (unlikely(policy->mode == MPOL_BIND) &&
1517 gfp_zone(gfp) >= policy_zone &&
1518 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519 return &policy->v.nodes;
1520
1521 return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526 int nd)
1527{
1528 switch (policy->mode) {
1529 case MPOL_PREFERRED:
1530 if (!(policy->flags & MPOL_F_LOCAL))
1531 nd = policy->v.preferred_node;
1532 break;
1533 case MPOL_BIND:
1534 /*
1535 * Normally, MPOL_BIND allocations are node-local within the
1536 * allowed nodemask. However, if __GFP_THISNODE is set and the
1537 * current node isn't part of the mask, we use the zonelist for
1538 * the first node in the mask instead.
1539 */
1540 if (unlikely(gfp & __GFP_THISNODE) &&
1541 unlikely(!node_isset(nd, policy->v.nodes)))
1542 nd = first_node(policy->v.nodes);
1543 break;
1544 default:
1545 BUG();
1546 }
1547 return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553 unsigned nid, next;
1554 struct task_struct *me = current;
1555
1556 nid = me->il_next;
1557 next = next_node(nid, policy->v.nodes);
1558 if (next >= MAX_NUMNODES)
1559 next = first_node(policy->v.nodes);
1560 if (next < MAX_NUMNODES)
1561 me->il_next = next;
1562 return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller. If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy. The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
1575 if (!policy || policy->flags & MPOL_F_LOCAL)
1576 return numa_node_id();
1577
1578 switch (policy->mode) {
1579 case MPOL_PREFERRED:
1580 /*
1581 * handled MPOL_F_LOCAL above
1582 */
1583 return policy->v.preferred_node;
1584
1585 case MPOL_INTERLEAVE:
1586 return interleave_nodes(policy);
1587
1588 case MPOL_BIND: {
1589 /*
1590 * Follow bind policy behavior and start allocation at the
1591 * first node.
1592 */
1593 struct zonelist *zonelist;
1594 struct zone *zone;
1595 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1598 &policy->v.nodes,
1599 &zone);
1600 return zone ? zone->node : numa_node_id();
1601 }
1602
1603 default:
1604 BUG();
1605 }
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610 struct vm_area_struct *vma, unsigned long off)
1611{
1612 unsigned nnodes = nodes_weight(pol->v.nodes);
1613 unsigned target;
1614 int c;
1615 int nid = -1;
1616
1617 if (!nnodes)
1618 return numa_node_id();
1619 target = (unsigned int)off % nnodes;
1620 c = 0;
1621 do {
1622 nid = next_node(nid, pol->v.nodes);
1623 c++;
1624 } while (c <= target);
1625 return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632 if (vma) {
1633 unsigned long off;
1634
1635 /*
1636 * for small pages, there is no difference between
1637 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638 * for huge pages, since vm_pgoff is in units of small
1639 * pages, we need to shift off the always 0 bits to get
1640 * a useful offset.
1641 */
1642 BUG_ON(shift < PAGE_SHIFT);
1643 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644 off += (addr - vma->vm_start) >> shift;
1645 return offset_il_node(pol, vma, off);
1646 } else
1647 return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656 int w, bit = -1;
1657
1658 w = nodes_weight(*maskp);
1659 if (w)
1660 bit = bitmap_ord_to_pos(maskp->bits,
1661 get_random_int() % w, MAX_NUMNODES);
1662 return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682 gfp_t gfp_flags, struct mempolicy **mpol,
1683 nodemask_t **nodemask)
1684{
1685 struct zonelist *zl;
1686
1687 *mpol = get_vma_policy(current, vma, addr);
1688 *nodemask = NULL; /* assume !MPOL_BIND */
1689
1690 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692 huge_page_shift(hstate_vma(vma))), gfp_flags);
1693 } else {
1694 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695 if ((*mpol)->mode == MPOL_BIND)
1696 *nodemask = &(*mpol)->v.nodes;
1697 }
1698 return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy. Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719 struct mempolicy *mempolicy;
1720 int nid;
1721
1722 if (!(mask && current->mempolicy))
1723 return false;
1724
1725 task_lock(current);
1726 mempolicy = current->mempolicy;
1727 switch (mempolicy->mode) {
1728 case MPOL_PREFERRED:
1729 if (mempolicy->flags & MPOL_F_LOCAL)
1730 nid = numa_node_id();
1731 else
1732 nid = mempolicy->v.preferred_node;
1733 init_nodemask_of_node(mask, nid);
1734 break;
1735
1736 case MPOL_BIND:
1737 /* Fall through */
1738 case MPOL_INTERLEAVE:
1739 *mask = mempolicy->v.nodes;
1740 break;
1741
1742 default:
1743 BUG();
1744 }
1745 task_unlock(current);
1746
1747 return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy. Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762 const nodemask_t *mask)
1763{
1764 struct mempolicy *mempolicy;
1765 bool ret = true;
1766
1767 if (!mask)
1768 return ret;
1769 task_lock(tsk);
1770 mempolicy = tsk->mempolicy;
1771 if (!mempolicy)
1772 goto out;
1773
1774 switch (mempolicy->mode) {
1775 case MPOL_PREFERRED:
1776 /*
1777 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778 * allocate from, they may fallback to other nodes when oom.
1779 * Thus, it's possible for tsk to have allocated memory from
1780 * nodes in mask.
1781 */
1782 break;
1783 case MPOL_BIND:
1784 case MPOL_INTERLEAVE:
1785 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786 break;
1787 default:
1788 BUG();
1789 }
1790out:
1791 task_unlock(tsk);
1792 return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796 Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798 unsigned nid)
1799{
1800 struct zonelist *zl;
1801 struct page *page;
1802
1803 zl = node_zonelist(nid, gfp);
1804 page = __alloc_pages(gfp, order, zl);
1805 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807 return page;
1808}
1809
1810/**
1811 * alloc_pages_vma - Allocate a page for a VMA.
1812 *
1813 * @gfp:
1814 * %GFP_USER user allocation.
1815 * %GFP_KERNEL kernel allocations,
1816 * %GFP_HIGHMEM highmem/user allocations,
1817 * %GFP_FS allocation should not call back into a file system.
1818 * %GFP_ATOMIC don't sleep.
1819 *
1820 * @order:Order of the GFP allocation.
1821 * @vma: Pointer to VMA or NULL if not available.
1822 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1823 *
1824 * This function allocates a page from the kernel page pool and applies
1825 * a NUMA policy associated with the VMA or the current process.
1826 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 * mm_struct of the VMA to prevent it from going away. Should be used for
1828 * all allocations for pages that will be mapped into
1829 * user space. Returns NULL when no page can be allocated.
1830 *
1831 * Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835 unsigned long addr, int node)
1836{
1837 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838 struct zonelist *zl;
1839 struct page *page;
1840
1841 get_mems_allowed();
1842 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843 unsigned nid;
1844
1845 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846 mpol_cond_put(pol);
1847 page = alloc_page_interleave(gfp, order, nid);
1848 put_mems_allowed();
1849 return page;
1850 }
1851 zl = policy_zonelist(gfp, pol, node);
1852 if (unlikely(mpol_needs_cond_ref(pol))) {
1853 /*
1854 * slow path: ref counted shared policy
1855 */
1856 struct page *page = __alloc_pages_nodemask(gfp, order,
1857 zl, policy_nodemask(gfp, pol));
1858 __mpol_put(pol);
1859 put_mems_allowed();
1860 return page;
1861 }
1862 /*
1863 * fast path: default or task policy
1864 */
1865 page = __alloc_pages_nodemask(gfp, order, zl,
1866 policy_nodemask(gfp, pol));
1867 put_mems_allowed();
1868 return page;
1869}
1870
1871/**
1872 * alloc_pages_current - Allocate pages.
1873 *
1874 * @gfp:
1875 * %GFP_USER user allocation,
1876 * %GFP_KERNEL kernel allocation,
1877 * %GFP_HIGHMEM highmem allocation,
1878 * %GFP_FS don't call back into a file system.
1879 * %GFP_ATOMIC don't sleep.
1880 * @order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 * Allocate a page from the kernel page pool. When not in
1883 * interrupt context and apply the current process NUMA policy.
1884 * Returns NULL when no page can be allocated.
1885 *
1886 * Don't call cpuset_update_task_memory_state() unless
1887 * 1) it's ok to take cpuset_sem (can WAIT), and
1888 * 2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892 struct mempolicy *pol = current->mempolicy;
1893 struct page *page;
1894
1895 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896 pol = &default_policy;
1897
1898 get_mems_allowed();
1899 /*
1900 * No reference counting needed for current->mempolicy
1901 * nor system default_policy
1902 */
1903 if (pol->mode == MPOL_INTERLEAVE)
1904 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905 else
1906 page = __alloc_pages_nodemask(gfp, order,
1907 policy_zonelist(gfp, pol, numa_node_id()),
1908 policy_nodemask(gfp, pol));
1909 put_mems_allowed();
1910 return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed(). This
1918 * keeps mempolicies cpuset relative after its cpuset moves. See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930 if (!new)
1931 return ERR_PTR(-ENOMEM);
1932
1933 /* task's mempolicy is protected by alloc_lock */
1934 if (old == current->mempolicy) {
1935 task_lock(current);
1936 *new = *old;
1937 task_unlock(current);
1938 } else
1939 *new = *old;
1940
1941 rcu_read_lock();
1942 if (current_cpuset_is_being_rebound()) {
1943 nodemask_t mems = cpuset_mems_allowed(current);
1944 if (new->flags & MPOL_F_REBINDING)
1945 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946 else
1947 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948 }
1949 rcu_read_unlock();
1950 atomic_set(&new->refcnt, 1);
1951 return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1958 * after return. Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965 struct mempolicy *frompol)
1966{
1967 if (!mpol_needs_cond_ref(frompol))
1968 return frompol;
1969
1970 *tompol = *frompol;
1971 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1972 __mpol_put(frompol);
1973 return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979 if (!a || !b)
1980 return 0;
1981 if (a->mode != b->mode)
1982 return 0;
1983 if (a->flags != b->flags)
1984 return 0;
1985 if (mpol_store_user_nodemask(a))
1986 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987 return 0;
1988
1989 switch (a->mode) {
1990 case MPOL_BIND:
1991 /* Fall through */
1992 case MPOL_INTERLEAVE:
1993 return nodes_equal(a->v.nodes, b->v.nodes);
1994 case MPOL_PREFERRED:
1995 return a->v.preferred_node == b->v.preferred_node;
1996 default:
1997 BUG();
1998 return 0;
1999 }
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016 struct rb_node *n = sp->root.rb_node;
2017
2018 while (n) {
2019 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021 if (start >= p->end)
2022 n = n->rb_right;
2023 else if (end <= p->start)
2024 n = n->rb_left;
2025 else
2026 break;
2027 }
2028 if (!n)
2029 return NULL;
2030 for (;;) {
2031 struct sp_node *w = NULL;
2032 struct rb_node *prev = rb_prev(n);
2033 if (!prev)
2034 break;
2035 w = rb_entry(prev, struct sp_node, nd);
2036 if (w->end <= start)
2037 break;
2038 n = prev;
2039 }
2040 return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047 struct rb_node **p = &sp->root.rb_node;
2048 struct rb_node *parent = NULL;
2049 struct sp_node *nd;
2050
2051 while (*p) {
2052 parent = *p;
2053 nd = rb_entry(parent, struct sp_node, nd);
2054 if (new->start < nd->start)
2055 p = &(*p)->rb_left;
2056 else if (new->end > nd->end)
2057 p = &(*p)->rb_right;
2058 else
2059 BUG();
2060 }
2061 rb_link_node(&new->nd, parent, p);
2062 rb_insert_color(&new->nd, &sp->root);
2063 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071 struct mempolicy *pol = NULL;
2072 struct sp_node *sn;
2073
2074 if (!sp->root.rb_node)
2075 return NULL;
2076 spin_lock(&sp->lock);
2077 sn = sp_lookup(sp, idx, idx+1);
2078 if (sn) {
2079 mpol_get(sn->policy);
2080 pol = sn->policy;
2081 }
2082 spin_unlock(&sp->lock);
2083 return pol;
2084}
2085
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089 rb_erase(&n->nd, &sp->root);
2090 mpol_put(n->policy);
2091 kmem_cache_free(sn_cache, n);
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095 struct mempolicy *pol)
2096{
2097 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2098
2099 if (!n)
2100 return NULL;
2101 n->start = start;
2102 n->end = end;
2103 mpol_get(pol);
2104 pol->flags |= MPOL_F_SHARED; /* for unref */
2105 n->policy = pol;
2106 return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111 unsigned long end, struct sp_node *new)
2112{
2113 struct sp_node *n, *new2 = NULL;
2114
2115restart:
2116 spin_lock(&sp->lock);
2117 n = sp_lookup(sp, start, end);
2118 /* Take care of old policies in the same range. */
2119 while (n && n->start < end) {
2120 struct rb_node *next = rb_next(&n->nd);
2121 if (n->start >= start) {
2122 if (n->end <= end)
2123 sp_delete(sp, n);
2124 else
2125 n->start = end;
2126 } else {
2127 /* Old policy spanning whole new range. */
2128 if (n->end > end) {
2129 if (!new2) {
2130 spin_unlock(&sp->lock);
2131 new2 = sp_alloc(end, n->end, n->policy);
2132 if (!new2)
2133 return -ENOMEM;
2134 goto restart;
2135 }
2136 n->end = start;
2137 sp_insert(sp, new2);
2138 new2 = NULL;
2139 break;
2140 } else
2141 n->end = start;
2142 }
2143 if (!next)
2144 break;
2145 n = rb_entry(next, struct sp_node, nd);
2146 }
2147 if (new)
2148 sp_insert(sp, new);
2149 spin_unlock(&sp->lock);
2150 if (new2) {
2151 mpol_put(new2->policy);
2152 kmem_cache_free(sn_cache, new2);
2153 }
2154 return 0;
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol: struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169 int ret;
2170
2171 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2172 spin_lock_init(&sp->lock);
2173
2174 if (mpol) {
2175 struct vm_area_struct pvma;
2176 struct mempolicy *new;
2177 NODEMASK_SCRATCH(scratch);
2178
2179 if (!scratch)
2180 goto put_mpol;
2181 /* contextualize the tmpfs mount point mempolicy */
2182 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183 if (IS_ERR(new))
2184 goto free_scratch; /* no valid nodemask intersection */
2185
2186 task_lock(current);
2187 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188 task_unlock(current);
2189 if (ret)
2190 goto put_new;
2191
2192 /* Create pseudo-vma that contains just the policy */
2193 memset(&pvma, 0, sizeof(struct vm_area_struct));
2194 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2195 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198 mpol_put(new); /* drop initial ref */
2199free_scratch:
2200 NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2203 }
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207 struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209 int err;
2210 struct sp_node *new = NULL;
2211 unsigned long sz = vma_pages(vma);
2212
2213 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214 vma->vm_pgoff,
2215 sz, npol ? npol->mode : -1,
2216 npol ? npol->flags : -1,
2217 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219 if (npol) {
2220 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221 if (!new)
2222 return -ENOMEM;
2223 }
2224 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225 if (err && new)
2226 kmem_cache_free(sn_cache, new);
2227 return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233 struct sp_node *n;
2234 struct rb_node *next;
2235
2236 if (!p->root.rb_node)
2237 return;
2238 spin_lock(&p->lock);
2239 next = rb_first(&p->root);
2240 while (next) {
2241 n = rb_entry(next, struct sp_node, nd);
2242 next = rb_next(&n->nd);
2243 rb_erase(&n->nd, &p->root);
2244 mpol_put(n->policy);
2245 kmem_cache_free(sn_cache, n);
2246 }
2247 spin_unlock(&p->lock);
2248}
2249
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253 nodemask_t interleave_nodes;
2254 unsigned long largest = 0;
2255 int nid, prefer = 0;
2256
2257 policy_cache = kmem_cache_create("numa_policy",
2258 sizeof(struct mempolicy),
2259 0, SLAB_PANIC, NULL);
2260
2261 sn_cache = kmem_cache_create("shared_policy_node",
2262 sizeof(struct sp_node),
2263 0, SLAB_PANIC, NULL);
2264
2265 /*
2266 * Set interleaving policy for system init. Interleaving is only
2267 * enabled across suitably sized nodes (default is >= 16MB), or
2268 * fall back to the largest node if they're all smaller.
2269 */
2270 nodes_clear(interleave_nodes);
2271 for_each_node_state(nid, N_HIGH_MEMORY) {
2272 unsigned long total_pages = node_present_pages(nid);
2273
2274 /* Preserve the largest node */
2275 if (largest < total_pages) {
2276 largest = total_pages;
2277 prefer = nid;
2278 }
2279
2280 /* Interleave this node? */
2281 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282 node_set(nid, interleave_nodes);
2283 }
2284
2285 /* All too small, use the largest */
2286 if (unlikely(nodes_empty(interleave_nodes)))
2287 node_set(prefer, interleave_nodes);
2288
2289 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290 printk("numa_policy_init: interleaving failed\n");
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310 [MPOL_DEFAULT] = "default",
2311 [MPOL_PREFERRED] = "prefer",
2312 [MPOL_BIND] = "bind",
2313 [MPOL_INTERLEAVE] = "interleave",
2314 [MPOL_LOCAL] = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str: string containing mempolicy to parse
2322 * @mpol: pointer to struct mempolicy pointer, returned on success.
2323 * @no_context: flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 * <mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy. This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2331 * mount option. Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved. Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339 struct mempolicy *new = NULL;
2340 unsigned short mode;
2341 unsigned short uninitialized_var(mode_flags);
2342 nodemask_t nodes;
2343 char *nodelist = strchr(str, ':');
2344 char *flags = strchr(str, '=');
2345 int err = 1;
2346
2347 if (nodelist) {
2348 /* NUL-terminate mode or flags string */
2349 *nodelist++ = '\0';
2350 if (nodelist_parse(nodelist, nodes))
2351 goto out;
2352 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353 goto out;
2354 } else
2355 nodes_clear(nodes);
2356
2357 if (flags)
2358 *flags++ = '\0'; /* terminate mode string */
2359
2360 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361 if (!strcmp(str, policy_modes[mode])) {
2362 break;
2363 }
2364 }
2365 if (mode > MPOL_LOCAL)
2366 goto out;
2367
2368 switch (mode) {
2369 case MPOL_PREFERRED:
2370 /*
2371 * Insist on a nodelist of one node only
2372 */
2373 if (nodelist) {
2374 char *rest = nodelist;
2375 while (isdigit(*rest))
2376 rest++;
2377 if (*rest)
2378 goto out;
2379 }
2380 break;
2381 case MPOL_INTERLEAVE:
2382 /*
2383 * Default to online nodes with memory if no nodelist
2384 */
2385 if (!nodelist)
2386 nodes = node_states[N_HIGH_MEMORY];
2387 break;
2388 case MPOL_LOCAL:
2389 /*
2390 * Don't allow a nodelist; mpol_new() checks flags
2391 */
2392 if (nodelist)
2393 goto out;
2394 mode = MPOL_PREFERRED;
2395 break;
2396 case MPOL_DEFAULT:
2397 /*
2398 * Insist on a empty nodelist
2399 */
2400 if (!nodelist)
2401 err = 0;
2402 goto out;
2403 case MPOL_BIND:
2404 /*
2405 * Insist on a nodelist
2406 */
2407 if (!nodelist)
2408 goto out;
2409 }
2410
2411 mode_flags = 0;
2412 if (flags) {
2413 /*
2414 * Currently, we only support two mutually exclusive
2415 * mode flags.
2416 */
2417 if (!strcmp(flags, "static"))
2418 mode_flags |= MPOL_F_STATIC_NODES;
2419 else if (!strcmp(flags, "relative"))
2420 mode_flags |= MPOL_F_RELATIVE_NODES;
2421 else
2422 goto out;
2423 }
2424
2425 new = mpol_new(mode, mode_flags, &nodes);
2426 if (IS_ERR(new))
2427 goto out;
2428
2429 if (no_context) {
2430 /* save for contextualization */
2431 new->w.user_nodemask = nodes;
2432 } else {
2433 int ret;
2434 NODEMASK_SCRATCH(scratch);
2435 if (scratch) {
2436 task_lock(current);
2437 ret = mpol_set_nodemask(new, &nodes, scratch);
2438 task_unlock(current);
2439 } else
2440 ret = -ENOMEM;
2441 NODEMASK_SCRATCH_FREE(scratch);
2442 if (ret) {
2443 mpol_put(new);
2444 goto out;
2445 }
2446 }
2447 err = 0;
2448
2449out:
2450 /* Restore string for error message */
2451 if (nodelist)
2452 *--nodelist = ':';
2453 if (flags)
2454 *--flags = '=';
2455 if (!err)
2456 *mpol = new;
2457 return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer: to contain formatted mempolicy string
2464 * @maxlen: length of @buffer
2465 * @pol: pointer to mempolicy to be formatted
2466 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474 char *p = buffer;
2475 int l;
2476 nodemask_t nodes;
2477 unsigned short mode;
2478 unsigned short flags = pol ? pol->flags : 0;
2479
2480 /*
2481 * Sanity check: room for longest mode, flag and some nodes
2482 */
2483 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485 if (!pol || pol == &default_policy)
2486 mode = MPOL_DEFAULT;
2487 else
2488 mode = pol->mode;
2489
2490 switch (mode) {
2491 case MPOL_DEFAULT:
2492 nodes_clear(nodes);
2493 break;
2494
2495 case MPOL_PREFERRED:
2496 nodes_clear(nodes);
2497 if (flags & MPOL_F_LOCAL)
2498 mode = MPOL_LOCAL; /* pseudo-policy */
2499 else
2500 node_set(pol->v.preferred_node, nodes);
2501 break;
2502
2503 case MPOL_BIND:
2504 /* Fall through */
2505 case MPOL_INTERLEAVE:
2506 if (no_context)
2507 nodes = pol->w.user_nodemask;
2508 else
2509 nodes = pol->v.nodes;
2510 break;
2511
2512 default:
2513 BUG();
2514 }
2515
2516 l = strlen(policy_modes[mode]);
2517 if (buffer + maxlen < p + l + 1)
2518 return -ENOSPC;
2519
2520 strcpy(p, policy_modes[mode]);
2521 p += l;
2522
2523 if (flags & MPOL_MODE_FLAGS) {
2524 if (buffer + maxlen < p + 2)
2525 return -ENOSPC;
2526 *p++ = '=';
2527
2528 /*
2529 * Currently, the only defined flags are mutually exclusive
2530 */
2531 if (flags & MPOL_F_STATIC_NODES)
2532 p += snprintf(p, buffer + maxlen - p, "static");
2533 else if (flags & MPOL_F_RELATIVE_NODES)
2534 p += snprintf(p, buffer + maxlen - p, "relative");
2535 }
2536
2537 if (!nodes_empty(nodes)) {
2538 if (buffer + maxlen < p + 2)
2539 return -ENOSPC;
2540 *p++ = ':';
2541 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542 }
2543 return p - buffer;
2544}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59/* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69*/
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/mempolicy.h>
74#include <linux/pagewalk.h>
75#include <linux/highmem.h>
76#include <linux/hugetlb.h>
77#include <linux/kernel.h>
78#include <linux/sched.h>
79#include <linux/sched/mm.h>
80#include <linux/sched/numa_balancing.h>
81#include <linux/sched/task.h>
82#include <linux/nodemask.h>
83#include <linux/cpuset.h>
84#include <linux/slab.h>
85#include <linux/string.h>
86#include <linux/export.h>
87#include <linux/nsproxy.h>
88#include <linux/interrupt.h>
89#include <linux/init.h>
90#include <linux/compat.h>
91#include <linux/ptrace.h>
92#include <linux/swap.h>
93#include <linux/seq_file.h>
94#include <linux/proc_fs.h>
95#include <linux/migrate.h>
96#include <linux/ksm.h>
97#include <linux/rmap.h>
98#include <linux/security.h>
99#include <linux/syscalls.h>
100#include <linux/ctype.h>
101#include <linux/mm_inline.h>
102#include <linux/mmu_notifier.h>
103#include <linux/printk.h>
104#include <linux/swapops.h>
105
106#include <asm/tlbflush.h>
107#include <asm/tlb.h>
108#include <linux/uaccess.h>
109
110#include "internal.h"
111
112/* Internal flags */
113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115
116static struct kmem_cache *policy_cache;
117static struct kmem_cache *sn_cache;
118
119/* Highest zone. An specific allocation for a zone below that is not
120 policied. */
121enum zone_type policy_zone = 0;
122
123/*
124 * run-time system-wide default policy => local allocation
125 */
126static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
128 .mode = MPOL_LOCAL,
129};
130
131static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132
133/**
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
136 *
137 * Lookup the next closest node by distance if @nid is not online.
138 *
139 * Return: this @node if it is online, otherwise the closest node by distance
140 */
141int numa_map_to_online_node(int node)
142{
143 int min_dist = INT_MAX, dist, n, min_node;
144
145 if (node == NUMA_NO_NODE || node_online(node))
146 return node;
147
148 min_node = node;
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
152 min_dist = dist;
153 min_node = n;
154 }
155 }
156
157 return min_node;
158}
159EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160
161struct mempolicy *get_task_policy(struct task_struct *p)
162{
163 struct mempolicy *pol = p->mempolicy;
164 int node;
165
166 if (pol)
167 return pol;
168
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
173 if (pol->mode)
174 return pol;
175 }
176
177 return &default_policy;
178}
179
180static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183} mpol_ops[MPOL_MAX];
184
185static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186{
187 return pol->flags & MPOL_MODE_FLAGS;
188}
189
190static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
192{
193 nodemask_t tmp;
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
196}
197
198static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199{
200 if (nodes_empty(*nodes))
201 return -EINVAL;
202 pol->nodes = *nodes;
203 return 0;
204}
205
206static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207{
208 if (nodes_empty(*nodes))
209 return -EINVAL;
210
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
213 return 0;
214}
215
216/*
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
220 *
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
223 */
224static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
226{
227 int ret;
228
229 /*
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
232 * constructor.
233 */
234 if (!pol || pol->mode == MPOL_LOCAL)
235 return 0;
236
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 else
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
247
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
250 else
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 return ret;
255}
256
257/*
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
260 */
261static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
263{
264 struct mempolicy *policy;
265
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
273 }
274 VM_BUG_ON(!nodes);
275
276 /*
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
280 */
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
286
287 mode = MPOL_LOCAL;
288 }
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 if (!policy)
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
300 policy->mode = mode;
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
303
304 return policy;
305}
306
307/* Slow path of a mpol destructor. */
308void __mpol_put(struct mempolicy *p)
309{
310 if (!atomic_dec_and_test(&p->refcnt))
311 return;
312 kmem_cache_free(policy_cache, p);
313}
314
315static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316{
317}
318
319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320{
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 else {
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 *nodes);
330 pol->w.cpuset_mems_allowed = *nodes;
331 }
332
333 if (nodes_empty(tmp))
334 tmp = *nodes;
335
336 pol->nodes = tmp;
337}
338
339static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
341{
342 pol->w.cpuset_mems_allowed = *nodes;
343}
344
345/*
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
347 *
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
351 */
352static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353{
354 if (!pol || pol->mode == MPOL_LOCAL)
355 return;
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 return;
359
360 mpol_ops[pol->mode].rebind(pol, newmask);
361}
362
363/*
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
366 *
367 * Called with task's alloc_lock held.
368 */
369
370void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371{
372 mpol_rebind_policy(tsk->mempolicy, new);
373}
374
375/*
376 * Rebind each vma in mm to new nodemask.
377 *
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
379 */
380
381void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382{
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
385
386 mmap_write_lock(mm);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
390}
391
392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 [MPOL_DEFAULT] = {
394 .rebind = mpol_rebind_default,
395 },
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
399 },
400 [MPOL_PREFERRED] = {
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
403 },
404 [MPOL_BIND] = {
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
407 },
408 [MPOL_LOCAL] = {
409 .rebind = mpol_rebind_default,
410 },
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
414 },
415};
416
417static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 unsigned long flags);
419
420struct queue_pages {
421 struct list_head *pagelist;
422 unsigned long flags;
423 nodemask_t *nmask;
424 unsigned long start;
425 unsigned long end;
426 struct vm_area_struct *first;
427};
428
429/*
430 * Check if the page's nid is in qp->nmask.
431 *
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
434 */
435static inline bool queue_pages_required(struct page *page,
436 struct queue_pages *qp)
437{
438 int nid = page_to_nid(page);
439 unsigned long flags = qp->flags;
440
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442}
443
444/*
445 * queue_pages_pmd() has three possible return values:
446 * 0 - pages are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449 * specified.
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing page was already on a node that does not follow the
452 * policy.
453 */
454static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
456 __releases(ptl)
457{
458 int ret = 0;
459 struct page *page;
460 struct queue_pages *qp = walk->private;
461 unsigned long flags;
462
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
464 ret = -EIO;
465 goto unlock;
466 }
467 page = pmd_page(*pmd);
468 if (is_huge_zero_page(page)) {
469 walk->action = ACTION_CONTINUE;
470 goto unlock;
471 }
472 if (!queue_pages_required(page, qp))
473 goto unlock;
474
475 flags = qp->flags;
476 /* go to thp migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_page_add(page, qp->pagelist, flags)) {
480 ret = 1;
481 goto unlock;
482 }
483 } else
484 ret = -EIO;
485unlock:
486 spin_unlock(ptl);
487 return ret;
488}
489
490/*
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
493 *
494 * queue_pages_pte_range() has three possible return values:
495 * 0 - pages are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498 * specified.
499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500 * on a node that does not follow the policy.
501 */
502static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
504{
505 struct vm_area_struct *vma = walk->vma;
506 struct page *page;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
511 spinlock_t *ptl;
512
513 ptl = pmd_trans_huge_lock(pmd, vma);
514 if (ptl)
515 return queue_pages_pmd(pmd, ptl, addr, end, walk);
516
517 if (pmd_trans_unstable(pmd))
518 return 0;
519
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
523 continue;
524 page = vm_normal_page(vma, addr, *pte);
525 if (!page || is_zone_device_page(page))
526 continue;
527 /*
528 * vm_normal_page() filters out zero pages, but there might
529 * still be PageReserved pages to skip, perhaps in a VDSO.
530 */
531 if (PageReserved(page))
532 continue;
533 if (!queue_pages_required(page, qp))
534 continue;
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
539 break;
540 }
541
542 /*
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
546 */
547 if (migrate_page_add(page, qp->pagelist, flags))
548 has_unmovable = true;
549 } else
550 break;
551 }
552 pte_unmap_unlock(mapped_pte, ptl);
553 cond_resched();
554
555 if (has_unmovable)
556 return 1;
557
558 return addr != end ? -EIO : 0;
559}
560
561static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
564{
565 int ret = 0;
566#ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 struct page *page;
570 spinlock_t *ptl;
571 pte_t entry;
572
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
576 goto unlock;
577 page = pte_page(entry);
578 if (!queue_pages_required(page, qp))
579 goto unlock;
580
581 if (flags == MPOL_MF_STRICT) {
582 /*
583 * STRICT alone means only detecting misplaced page and no
584 * need to further check other vma.
585 */
586 ret = -EIO;
587 goto unlock;
588 }
589
590 if (!vma_migratable(walk->vma)) {
591 /*
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced page but allow migrating pages which
595 * have been queued.
596 */
597 ret = 1;
598 goto unlock;
599 }
600
601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 if (flags & (MPOL_MF_MOVE_ALL) ||
603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
604 !hugetlb_pmd_shared(pte))) {
605 if (isolate_hugetlb(page, qp->pagelist) &&
606 (flags & MPOL_MF_STRICT))
607 /*
608 * Failed to isolate page but allow migrating pages
609 * which have been queued.
610 */
611 ret = 1;
612 }
613unlock:
614 spin_unlock(ptl);
615#else
616 BUG();
617#endif
618 return ret;
619}
620
621#ifdef CONFIG_NUMA_BALANCING
622/*
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
626 *
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
630 */
631unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633{
634 struct mmu_gather tlb;
635 int nr_updated;
636
637 tlb_gather_mmu(&tlb, vma->vm_mm);
638
639 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
640 MM_CP_PROT_NUMA);
641 if (nr_updated)
642 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
643
644 tlb_finish_mmu(&tlb);
645
646 return nr_updated;
647}
648#else
649static unsigned long change_prot_numa(struct vm_area_struct *vma,
650 unsigned long addr, unsigned long end)
651{
652 return 0;
653}
654#endif /* CONFIG_NUMA_BALANCING */
655
656static int queue_pages_test_walk(unsigned long start, unsigned long end,
657 struct mm_walk *walk)
658{
659 struct vm_area_struct *next, *vma = walk->vma;
660 struct queue_pages *qp = walk->private;
661 unsigned long endvma = vma->vm_end;
662 unsigned long flags = qp->flags;
663
664 /* range check first */
665 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
666
667 if (!qp->first) {
668 qp->first = vma;
669 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
670 (qp->start < vma->vm_start))
671 /* hole at head side of range */
672 return -EFAULT;
673 }
674 next = find_vma(vma->vm_mm, vma->vm_end);
675 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 ((vma->vm_end < qp->end) &&
677 (!next || vma->vm_end < next->vm_start)))
678 /* hole at middle or tail of range */
679 return -EFAULT;
680
681 /*
682 * Need check MPOL_MF_STRICT to return -EIO if possible
683 * regardless of vma_migratable
684 */
685 if (!vma_migratable(vma) &&
686 !(flags & MPOL_MF_STRICT))
687 return 1;
688
689 if (endvma > end)
690 endvma = end;
691
692 if (flags & MPOL_MF_LAZY) {
693 /* Similar to task_numa_work, skip inaccessible VMAs */
694 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
695 !(vma->vm_flags & VM_MIXEDMAP))
696 change_prot_numa(vma, start, endvma);
697 return 1;
698 }
699
700 /* queue pages from current vma */
701 if (flags & MPOL_MF_VALID)
702 return 0;
703 return 1;
704}
705
706static const struct mm_walk_ops queue_pages_walk_ops = {
707 .hugetlb_entry = queue_pages_hugetlb,
708 .pmd_entry = queue_pages_pte_range,
709 .test_walk = queue_pages_test_walk,
710};
711
712/*
713 * Walk through page tables and collect pages to be migrated.
714 *
715 * If pages found in a given range are on a set of nodes (determined by
716 * @nodes and @flags,) it's isolated and queued to the pagelist which is
717 * passed via @private.
718 *
719 * queue_pages_range() has three possible return values:
720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
721 * specified.
722 * 0 - queue pages successfully or no misplaced page.
723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
724 * memory range specified by nodemask and maxnode points outside
725 * your accessible address space (-EFAULT)
726 */
727static int
728queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
729 nodemask_t *nodes, unsigned long flags,
730 struct list_head *pagelist)
731{
732 int err;
733 struct queue_pages qp = {
734 .pagelist = pagelist,
735 .flags = flags,
736 .nmask = nodes,
737 .start = start,
738 .end = end,
739 .first = NULL,
740 };
741
742 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
743
744 if (!qp.first)
745 /* whole range in hole */
746 err = -EFAULT;
747
748 return err;
749}
750
751/*
752 * Apply policy to a single VMA
753 * This must be called with the mmap_lock held for writing.
754 */
755static int vma_replace_policy(struct vm_area_struct *vma,
756 struct mempolicy *pol)
757{
758 int err;
759 struct mempolicy *old;
760 struct mempolicy *new;
761
762 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
763 vma->vm_start, vma->vm_end, vma->vm_pgoff,
764 vma->vm_ops, vma->vm_file,
765 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
766
767 new = mpol_dup(pol);
768 if (IS_ERR(new))
769 return PTR_ERR(new);
770
771 if (vma->vm_ops && vma->vm_ops->set_policy) {
772 err = vma->vm_ops->set_policy(vma, new);
773 if (err)
774 goto err_out;
775 }
776
777 old = vma->vm_policy;
778 vma->vm_policy = new; /* protected by mmap_lock */
779 mpol_put(old);
780
781 return 0;
782 err_out:
783 mpol_put(new);
784 return err;
785}
786
787/* Step 2: apply policy to a range and do splits. */
788static int mbind_range(struct mm_struct *mm, unsigned long start,
789 unsigned long end, struct mempolicy *new_pol)
790{
791 MA_STATE(mas, &mm->mm_mt, start, start);
792 struct vm_area_struct *prev;
793 struct vm_area_struct *vma;
794 int err = 0;
795 pgoff_t pgoff;
796
797 prev = mas_prev(&mas, 0);
798 if (unlikely(!prev))
799 mas_set(&mas, start);
800
801 vma = mas_find(&mas, end - 1);
802 if (WARN_ON(!vma))
803 return 0;
804
805 if (start > vma->vm_start)
806 prev = vma;
807
808 for (; vma; vma = mas_next(&mas, end - 1)) {
809 unsigned long vmstart = max(start, vma->vm_start);
810 unsigned long vmend = min(end, vma->vm_end);
811
812 if (mpol_equal(vma_policy(vma), new_pol))
813 goto next;
814
815 pgoff = vma->vm_pgoff +
816 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
817 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
818 vma->anon_vma, vma->vm_file, pgoff,
819 new_pol, vma->vm_userfaultfd_ctx,
820 anon_vma_name(vma));
821 if (prev) {
822 /* vma_merge() invalidated the mas */
823 mas_pause(&mas);
824 vma = prev;
825 goto replace;
826 }
827 if (vma->vm_start != vmstart) {
828 err = split_vma(vma->vm_mm, vma, vmstart, 1);
829 if (err)
830 goto out;
831 /* split_vma() invalidated the mas */
832 mas_pause(&mas);
833 }
834 if (vma->vm_end != vmend) {
835 err = split_vma(vma->vm_mm, vma, vmend, 0);
836 if (err)
837 goto out;
838 /* split_vma() invalidated the mas */
839 mas_pause(&mas);
840 }
841replace:
842 err = vma_replace_policy(vma, new_pol);
843 if (err)
844 goto out;
845next:
846 prev = vma;
847 }
848
849out:
850 return err;
851}
852
853/* Set the process memory policy */
854static long do_set_mempolicy(unsigned short mode, unsigned short flags,
855 nodemask_t *nodes)
856{
857 struct mempolicy *new, *old;
858 NODEMASK_SCRATCH(scratch);
859 int ret;
860
861 if (!scratch)
862 return -ENOMEM;
863
864 new = mpol_new(mode, flags, nodes);
865 if (IS_ERR(new)) {
866 ret = PTR_ERR(new);
867 goto out;
868 }
869
870 task_lock(current);
871 ret = mpol_set_nodemask(new, nodes, scratch);
872 if (ret) {
873 task_unlock(current);
874 mpol_put(new);
875 goto out;
876 }
877
878 old = current->mempolicy;
879 current->mempolicy = new;
880 if (new && new->mode == MPOL_INTERLEAVE)
881 current->il_prev = MAX_NUMNODES-1;
882 task_unlock(current);
883 mpol_put(old);
884 ret = 0;
885out:
886 NODEMASK_SCRATCH_FREE(scratch);
887 return ret;
888}
889
890/*
891 * Return nodemask for policy for get_mempolicy() query
892 *
893 * Called with task's alloc_lock held
894 */
895static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
896{
897 nodes_clear(*nodes);
898 if (p == &default_policy)
899 return;
900
901 switch (p->mode) {
902 case MPOL_BIND:
903 case MPOL_INTERLEAVE:
904 case MPOL_PREFERRED:
905 case MPOL_PREFERRED_MANY:
906 *nodes = p->nodes;
907 break;
908 case MPOL_LOCAL:
909 /* return empty node mask for local allocation */
910 break;
911 default:
912 BUG();
913 }
914}
915
916static int lookup_node(struct mm_struct *mm, unsigned long addr)
917{
918 struct page *p = NULL;
919 int ret;
920
921 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
922 if (ret > 0) {
923 ret = page_to_nid(p);
924 put_page(p);
925 }
926 return ret;
927}
928
929/* Retrieve NUMA policy */
930static long do_get_mempolicy(int *policy, nodemask_t *nmask,
931 unsigned long addr, unsigned long flags)
932{
933 int err;
934 struct mm_struct *mm = current->mm;
935 struct vm_area_struct *vma = NULL;
936 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
937
938 if (flags &
939 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
940 return -EINVAL;
941
942 if (flags & MPOL_F_MEMS_ALLOWED) {
943 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
944 return -EINVAL;
945 *policy = 0; /* just so it's initialized */
946 task_lock(current);
947 *nmask = cpuset_current_mems_allowed;
948 task_unlock(current);
949 return 0;
950 }
951
952 if (flags & MPOL_F_ADDR) {
953 /*
954 * Do NOT fall back to task policy if the
955 * vma/shared policy at addr is NULL. We
956 * want to return MPOL_DEFAULT in this case.
957 */
958 mmap_read_lock(mm);
959 vma = vma_lookup(mm, addr);
960 if (!vma) {
961 mmap_read_unlock(mm);
962 return -EFAULT;
963 }
964 if (vma->vm_ops && vma->vm_ops->get_policy)
965 pol = vma->vm_ops->get_policy(vma, addr);
966 else
967 pol = vma->vm_policy;
968 } else if (addr)
969 return -EINVAL;
970
971 if (!pol)
972 pol = &default_policy; /* indicates default behavior */
973
974 if (flags & MPOL_F_NODE) {
975 if (flags & MPOL_F_ADDR) {
976 /*
977 * Take a refcount on the mpol, because we are about to
978 * drop the mmap_lock, after which only "pol" remains
979 * valid, "vma" is stale.
980 */
981 pol_refcount = pol;
982 vma = NULL;
983 mpol_get(pol);
984 mmap_read_unlock(mm);
985 err = lookup_node(mm, addr);
986 if (err < 0)
987 goto out;
988 *policy = err;
989 } else if (pol == current->mempolicy &&
990 pol->mode == MPOL_INTERLEAVE) {
991 *policy = next_node_in(current->il_prev, pol->nodes);
992 } else {
993 err = -EINVAL;
994 goto out;
995 }
996 } else {
997 *policy = pol == &default_policy ? MPOL_DEFAULT :
998 pol->mode;
999 /*
1000 * Internal mempolicy flags must be masked off before exposing
1001 * the policy to userspace.
1002 */
1003 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 }
1005
1006 err = 0;
1007 if (nmask) {
1008 if (mpol_store_user_nodemask(pol)) {
1009 *nmask = pol->w.user_nodemask;
1010 } else {
1011 task_lock(current);
1012 get_policy_nodemask(pol, nmask);
1013 task_unlock(current);
1014 }
1015 }
1016
1017 out:
1018 mpol_cond_put(pol);
1019 if (vma)
1020 mmap_read_unlock(mm);
1021 if (pol_refcount)
1022 mpol_put(pol_refcount);
1023 return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027/*
1028 * page migration, thp tail pages can be passed.
1029 */
1030static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031 unsigned long flags)
1032{
1033 struct page *head = compound_head(page);
1034 /*
1035 * Avoid migrating a page that is shared with others.
1036 */
1037 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038 if (!isolate_lru_page(head)) {
1039 list_add_tail(&head->lru, pagelist);
1040 mod_node_page_state(page_pgdat(head),
1041 NR_ISOLATED_ANON + page_is_file_lru(head),
1042 thp_nr_pages(head));
1043 } else if (flags & MPOL_MF_STRICT) {
1044 /*
1045 * Non-movable page may reach here. And, there may be
1046 * temporary off LRU pages or non-LRU movable pages.
1047 * Treat them as unmovable pages since they can't be
1048 * isolated, so they can't be moved at the moment. It
1049 * should return -EIO for this case too.
1050 */
1051 return -EIO;
1052 }
1053 }
1054
1055 return 0;
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 int flags)
1064{
1065 nodemask_t nmask;
1066 struct vm_area_struct *vma;
1067 LIST_HEAD(pagelist);
1068 int err = 0;
1069 struct migration_target_control mtc = {
1070 .nid = dest,
1071 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1072 };
1073
1074 nodes_clear(nmask);
1075 node_set(source, nmask);
1076
1077 /*
1078 * This does not "check" the range but isolates all pages that
1079 * need migration. Between passing in the full user address
1080 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081 */
1082 vma = find_vma(mm, 0);
1083 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1085 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086
1087 if (!list_empty(&pagelist)) {
1088 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1089 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090 if (err)
1091 putback_movable_pages(&pagelist);
1092 }
1093
1094 return err;
1095}
1096
1097/*
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1100 *
1101 * Returns the number of page that could not be moved.
1102 */
1103int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104 const nodemask_t *to, int flags)
1105{
1106 int busy = 0;
1107 int err = 0;
1108 nodemask_t tmp;
1109
1110 lru_cache_disable();
1111
1112 mmap_read_lock(mm);
1113
1114 /*
1115 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1116 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1117 * bit in 'tmp', and return that <source, dest> pair for migration.
1118 * The pair of nodemasks 'to' and 'from' define the map.
1119 *
1120 * If no pair of bits is found that way, fallback to picking some
1121 * pair of 'source' and 'dest' bits that are not the same. If the
1122 * 'source' and 'dest' bits are the same, this represents a node
1123 * that will be migrating to itself, so no pages need move.
1124 *
1125 * If no bits are left in 'tmp', or if all remaining bits left
1126 * in 'tmp' correspond to the same bit in 'to', return false
1127 * (nothing left to migrate).
1128 *
1129 * This lets us pick a pair of nodes to migrate between, such that
1130 * if possible the dest node is not already occupied by some other
1131 * source node, minimizing the risk of overloading the memory on a
1132 * node that would happen if we migrated incoming memory to a node
1133 * before migrating outgoing memory source that same node.
1134 *
1135 * A single scan of tmp is sufficient. As we go, we remember the
1136 * most recent <s, d> pair that moved (s != d). If we find a pair
1137 * that not only moved, but what's better, moved to an empty slot
1138 * (d is not set in tmp), then we break out then, with that pair.
1139 * Otherwise when we finish scanning from_tmp, we at least have the
1140 * most recent <s, d> pair that moved. If we get all the way through
1141 * the scan of tmp without finding any node that moved, much less
1142 * moved to an empty node, then there is nothing left worth migrating.
1143 */
1144
1145 tmp = *from;
1146 while (!nodes_empty(tmp)) {
1147 int s, d;
1148 int source = NUMA_NO_NODE;
1149 int dest = 0;
1150
1151 for_each_node_mask(s, tmp) {
1152
1153 /*
1154 * do_migrate_pages() tries to maintain the relative
1155 * node relationship of the pages established between
1156 * threads and memory areas.
1157 *
1158 * However if the number of source nodes is not equal to
1159 * the number of destination nodes we can not preserve
1160 * this node relative relationship. In that case, skip
1161 * copying memory from a node that is in the destination
1162 * mask.
1163 *
1164 * Example: [2,3,4] -> [3,4,5] moves everything.
1165 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166 */
1167
1168 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1169 (node_isset(s, *to)))
1170 continue;
1171
1172 d = node_remap(s, *from, *to);
1173 if (s == d)
1174 continue;
1175
1176 source = s; /* Node moved. Memorize */
1177 dest = d;
1178
1179 /* dest not in remaining from nodes? */
1180 if (!node_isset(dest, tmp))
1181 break;
1182 }
1183 if (source == NUMA_NO_NODE)
1184 break;
1185
1186 node_clear(source, tmp);
1187 err = migrate_to_node(mm, source, dest, flags);
1188 if (err > 0)
1189 busy += err;
1190 if (err < 0)
1191 break;
1192 }
1193 mmap_read_unlock(mm);
1194
1195 lru_cache_enable();
1196 if (err < 0)
1197 return err;
1198 return busy;
1199
1200}
1201
1202/*
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not. N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1208 */
1209static struct page *new_page(struct page *page, unsigned long start)
1210{
1211 struct folio *dst, *src = page_folio(page);
1212 struct vm_area_struct *vma;
1213 unsigned long address;
1214 VMA_ITERATOR(vmi, current->mm, start);
1215 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216
1217 for_each_vma(vmi, vma) {
1218 address = page_address_in_vma(page, vma);
1219 if (address != -EFAULT)
1220 break;
1221 }
1222
1223 if (folio_test_hugetlb(src))
1224 return alloc_huge_page_vma(page_hstate(&src->page),
1225 vma, address);
1226
1227 if (folio_test_large(src))
1228 gfp = GFP_TRANSHUGE;
1229
1230 /*
1231 * if !vma, vma_alloc_folio() will use task or system default policy
1232 */
1233 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234 folio_test_large(src));
1235 return &dst->page;
1236}
1237#else
1238
1239static int migrate_page_add(struct page *page, struct list_head *pagelist,
1240 unsigned long flags)
1241{
1242 return -EIO;
1243}
1244
1245int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246 const nodemask_t *to, int flags)
1247{
1248 return -ENOSYS;
1249}
1250
1251static struct page *new_page(struct page *page, unsigned long start)
1252{
1253 return NULL;
1254}
1255#endif
1256
1257static long do_mbind(unsigned long start, unsigned long len,
1258 unsigned short mode, unsigned short mode_flags,
1259 nodemask_t *nmask, unsigned long flags)
1260{
1261 struct mm_struct *mm = current->mm;
1262 struct mempolicy *new;
1263 unsigned long end;
1264 int err;
1265 int ret;
1266 LIST_HEAD(pagelist);
1267
1268 if (flags & ~(unsigned long)MPOL_MF_VALID)
1269 return -EINVAL;
1270 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271 return -EPERM;
1272
1273 if (start & ~PAGE_MASK)
1274 return -EINVAL;
1275
1276 if (mode == MPOL_DEFAULT)
1277 flags &= ~MPOL_MF_STRICT;
1278
1279 len = PAGE_ALIGN(len);
1280 end = start + len;
1281
1282 if (end < start)
1283 return -EINVAL;
1284 if (end == start)
1285 return 0;
1286
1287 new = mpol_new(mode, mode_flags, nmask);
1288 if (IS_ERR(new))
1289 return PTR_ERR(new);
1290
1291 if (flags & MPOL_MF_LAZY)
1292 new->flags |= MPOL_F_MOF;
1293
1294 /*
1295 * If we are using the default policy then operation
1296 * on discontinuous address spaces is okay after all
1297 */
1298 if (!new)
1299 flags |= MPOL_MF_DISCONTIG_OK;
1300
1301 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302 start, start + len, mode, mode_flags,
1303 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304
1305 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306
1307 lru_cache_disable();
1308 }
1309 {
1310 NODEMASK_SCRATCH(scratch);
1311 if (scratch) {
1312 mmap_write_lock(mm);
1313 err = mpol_set_nodemask(new, nmask, scratch);
1314 if (err)
1315 mmap_write_unlock(mm);
1316 } else
1317 err = -ENOMEM;
1318 NODEMASK_SCRATCH_FREE(scratch);
1319 }
1320 if (err)
1321 goto mpol_out;
1322
1323 ret = queue_pages_range(mm, start, end, nmask,
1324 flags | MPOL_MF_INVERT, &pagelist);
1325
1326 if (ret < 0) {
1327 err = ret;
1328 goto up_out;
1329 }
1330
1331 err = mbind_range(mm, start, end, new);
1332
1333 if (!err) {
1334 int nr_failed = 0;
1335
1336 if (!list_empty(&pagelist)) {
1337 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340 if (nr_failed)
1341 putback_movable_pages(&pagelist);
1342 }
1343
1344 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345 err = -EIO;
1346 } else {
1347up_out:
1348 if (!list_empty(&pagelist))
1349 putback_movable_pages(&pagelist);
1350 }
1351
1352 mmap_write_unlock(mm);
1353mpol_out:
1354 mpol_put(new);
1355 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356 lru_cache_enable();
1357 return err;
1358}
1359
1360/*
1361 * User space interface with variable sized bitmaps for nodelists.
1362 */
1363static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364 unsigned long maxnode)
1365{
1366 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367 int ret;
1368
1369 if (in_compat_syscall())
1370 ret = compat_get_bitmap(mask,
1371 (const compat_ulong_t __user *)nmask,
1372 maxnode);
1373 else
1374 ret = copy_from_user(mask, nmask,
1375 nlongs * sizeof(unsigned long));
1376
1377 if (ret)
1378 return -EFAULT;
1379
1380 if (maxnode % BITS_PER_LONG)
1381 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382
1383 return 0;
1384}
1385
1386/* Copy a node mask from user space. */
1387static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388 unsigned long maxnode)
1389{
1390 --maxnode;
1391 nodes_clear(*nodes);
1392 if (maxnode == 0 || !nmask)
1393 return 0;
1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 return -EINVAL;
1396
1397 /*
1398 * When the user specified more nodes than supported just check
1399 * if the non supported part is all zero, one word at a time,
1400 * starting at the end.
1401 */
1402 while (maxnode > MAX_NUMNODES) {
1403 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404 unsigned long t;
1405
1406 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1407 return -EFAULT;
1408
1409 if (maxnode - bits >= MAX_NUMNODES) {
1410 maxnode -= bits;
1411 } else {
1412 maxnode = MAX_NUMNODES;
1413 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1414 }
1415 if (t)
1416 return -EINVAL;
1417 }
1418
1419 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1420}
1421
1422/* Copy a kernel node mask to user space */
1423static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424 nodemask_t *nodes)
1425{
1426 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428 bool compat = in_compat_syscall();
1429
1430 if (compat)
1431 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432
1433 if (copy > nbytes) {
1434 if (copy > PAGE_SIZE)
1435 return -EINVAL;
1436 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437 return -EFAULT;
1438 copy = nbytes;
1439 maxnode = nr_node_ids;
1440 }
1441
1442 if (compat)
1443 return compat_put_bitmap((compat_ulong_t __user *)mask,
1444 nodes_addr(*nodes), maxnode);
1445
1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447}
1448
1449/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1451{
1452 *flags = *mode & MPOL_MODE_FLAGS;
1453 *mode &= ~MPOL_MODE_FLAGS;
1454
1455 if ((unsigned int)(*mode) >= MPOL_MAX)
1456 return -EINVAL;
1457 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1458 return -EINVAL;
1459 if (*flags & MPOL_F_NUMA_BALANCING) {
1460 if (*mode != MPOL_BIND)
1461 return -EINVAL;
1462 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463 }
1464 return 0;
1465}
1466
1467static long kernel_mbind(unsigned long start, unsigned long len,
1468 unsigned long mode, const unsigned long __user *nmask,
1469 unsigned long maxnode, unsigned int flags)
1470{
1471 unsigned short mode_flags;
1472 nodemask_t nodes;
1473 int lmode = mode;
1474 int err;
1475
1476 start = untagged_addr(start);
1477 err = sanitize_mpol_flags(&lmode, &mode_flags);
1478 if (err)
1479 return err;
1480
1481 err = get_nodes(&nodes, nmask, maxnode);
1482 if (err)
1483 return err;
1484
1485 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486}
1487
1488SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489 unsigned long, home_node, unsigned long, flags)
1490{
1491 struct mm_struct *mm = current->mm;
1492 struct vm_area_struct *vma;
1493 struct mempolicy *new;
1494 unsigned long vmstart;
1495 unsigned long vmend;
1496 unsigned long end;
1497 int err = -ENOENT;
1498 VMA_ITERATOR(vmi, mm, start);
1499
1500 start = untagged_addr(start);
1501 if (start & ~PAGE_MASK)
1502 return -EINVAL;
1503 /*
1504 * flags is used for future extension if any.
1505 */
1506 if (flags != 0)
1507 return -EINVAL;
1508
1509 /*
1510 * Check home_node is online to avoid accessing uninitialized
1511 * NODE_DATA.
1512 */
1513 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514 return -EINVAL;
1515
1516 len = PAGE_ALIGN(len);
1517 end = start + len;
1518
1519 if (end < start)
1520 return -EINVAL;
1521 if (end == start)
1522 return 0;
1523 mmap_write_lock(mm);
1524 for_each_vma_range(vmi, vma, end) {
1525 vmstart = max(start, vma->vm_start);
1526 vmend = min(end, vma->vm_end);
1527 new = mpol_dup(vma_policy(vma));
1528 if (IS_ERR(new)) {
1529 err = PTR_ERR(new);
1530 break;
1531 }
1532 /*
1533 * Only update home node if there is an existing vma policy
1534 */
1535 if (!new)
1536 continue;
1537
1538 /*
1539 * If any vma in the range got policy other than MPOL_BIND
1540 * or MPOL_PREFERRED_MANY we return error. We don't reset
1541 * the home node for vmas we already updated before.
1542 */
1543 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1544 mpol_put(new);
1545 err = -EOPNOTSUPP;
1546 break;
1547 }
1548
1549 new->home_node = home_node;
1550 err = mbind_range(mm, vmstart, vmend, new);
1551 mpol_put(new);
1552 if (err)
1553 break;
1554 }
1555 mmap_write_unlock(mm);
1556 return err;
1557}
1558
1559SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560 unsigned long, mode, const unsigned long __user *, nmask,
1561 unsigned long, maxnode, unsigned int, flags)
1562{
1563 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564}
1565
1566/* Set the process memory policy */
1567static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568 unsigned long maxnode)
1569{
1570 unsigned short mode_flags;
1571 nodemask_t nodes;
1572 int lmode = mode;
1573 int err;
1574
1575 err = sanitize_mpol_flags(&lmode, &mode_flags);
1576 if (err)
1577 return err;
1578
1579 err = get_nodes(&nodes, nmask, maxnode);
1580 if (err)
1581 return err;
1582
1583 return do_set_mempolicy(lmode, mode_flags, &nodes);
1584}
1585
1586SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587 unsigned long, maxnode)
1588{
1589 return kernel_set_mempolicy(mode, nmask, maxnode);
1590}
1591
1592static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593 const unsigned long __user *old_nodes,
1594 const unsigned long __user *new_nodes)
1595{
1596 struct mm_struct *mm = NULL;
1597 struct task_struct *task;
1598 nodemask_t task_nodes;
1599 int err;
1600 nodemask_t *old;
1601 nodemask_t *new;
1602 NODEMASK_SCRATCH(scratch);
1603
1604 if (!scratch)
1605 return -ENOMEM;
1606
1607 old = &scratch->mask1;
1608 new = &scratch->mask2;
1609
1610 err = get_nodes(old, old_nodes, maxnode);
1611 if (err)
1612 goto out;
1613
1614 err = get_nodes(new, new_nodes, maxnode);
1615 if (err)
1616 goto out;
1617
1618 /* Find the mm_struct */
1619 rcu_read_lock();
1620 task = pid ? find_task_by_vpid(pid) : current;
1621 if (!task) {
1622 rcu_read_unlock();
1623 err = -ESRCH;
1624 goto out;
1625 }
1626 get_task_struct(task);
1627
1628 err = -EINVAL;
1629
1630 /*
1631 * Check if this process has the right to modify the specified process.
1632 * Use the regular "ptrace_may_access()" checks.
1633 */
1634 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1635 rcu_read_unlock();
1636 err = -EPERM;
1637 goto out_put;
1638 }
1639 rcu_read_unlock();
1640
1641 task_nodes = cpuset_mems_allowed(task);
1642 /* Is the user allowed to access the target nodes? */
1643 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644 err = -EPERM;
1645 goto out_put;
1646 }
1647
1648 task_nodes = cpuset_mems_allowed(current);
1649 nodes_and(*new, *new, task_nodes);
1650 if (nodes_empty(*new))
1651 goto out_put;
1652
1653 err = security_task_movememory(task);
1654 if (err)
1655 goto out_put;
1656
1657 mm = get_task_mm(task);
1658 put_task_struct(task);
1659
1660 if (!mm) {
1661 err = -EINVAL;
1662 goto out;
1663 }
1664
1665 err = do_migrate_pages(mm, old, new,
1666 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667
1668 mmput(mm);
1669out:
1670 NODEMASK_SCRATCH_FREE(scratch);
1671
1672 return err;
1673
1674out_put:
1675 put_task_struct(task);
1676 goto out;
1677
1678}
1679
1680SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681 const unsigned long __user *, old_nodes,
1682 const unsigned long __user *, new_nodes)
1683{
1684 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685}
1686
1687
1688/* Retrieve NUMA policy */
1689static int kernel_get_mempolicy(int __user *policy,
1690 unsigned long __user *nmask,
1691 unsigned long maxnode,
1692 unsigned long addr,
1693 unsigned long flags)
1694{
1695 int err;
1696 int pval;
1697 nodemask_t nodes;
1698
1699 if (nmask != NULL && maxnode < nr_node_ids)
1700 return -EINVAL;
1701
1702 addr = untagged_addr(addr);
1703
1704 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705
1706 if (err)
1707 return err;
1708
1709 if (policy && put_user(pval, policy))
1710 return -EFAULT;
1711
1712 if (nmask)
1713 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714
1715 return err;
1716}
1717
1718SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719 unsigned long __user *, nmask, unsigned long, maxnode,
1720 unsigned long, addr, unsigned long, flags)
1721{
1722 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1723}
1724
1725bool vma_migratable(struct vm_area_struct *vma)
1726{
1727 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728 return false;
1729
1730 /*
1731 * DAX device mappings require predictable access latency, so avoid
1732 * incurring periodic faults.
1733 */
1734 if (vma_is_dax(vma))
1735 return false;
1736
1737 if (is_vm_hugetlb_page(vma) &&
1738 !hugepage_migration_supported(hstate_vma(vma)))
1739 return false;
1740
1741 /*
1742 * Migration allocates pages in the highest zone. If we cannot
1743 * do so then migration (at least from node to node) is not
1744 * possible.
1745 */
1746 if (vma->vm_file &&
1747 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748 < policy_zone)
1749 return false;
1750 return true;
1751}
1752
1753struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754 unsigned long addr)
1755{
1756 struct mempolicy *pol = NULL;
1757
1758 if (vma) {
1759 if (vma->vm_ops && vma->vm_ops->get_policy) {
1760 pol = vma->vm_ops->get_policy(vma, addr);
1761 } else if (vma->vm_policy) {
1762 pol = vma->vm_policy;
1763
1764 /*
1765 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767 * count on these policies which will be dropped by
1768 * mpol_cond_put() later
1769 */
1770 if (mpol_needs_cond_ref(pol))
1771 mpol_get(pol);
1772 }
1773 }
1774
1775 return pol;
1776}
1777
1778/*
1779 * get_vma_policy(@vma, @addr)
1780 * @vma: virtual memory area whose policy is sought
1781 * @addr: address in @vma for shared policy lookup
1782 *
1783 * Returns effective policy for a VMA at specified address.
1784 * Falls back to current->mempolicy or system default policy, as necessary.
1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786 * count--added by the get_policy() vm_op, as appropriate--to protect against
1787 * freeing by another task. It is the caller's responsibility to free the
1788 * extra reference for shared policies.
1789 */
1790static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791 unsigned long addr)
1792{
1793 struct mempolicy *pol = __get_vma_policy(vma, addr);
1794
1795 if (!pol)
1796 pol = get_task_policy(current);
1797
1798 return pol;
1799}
1800
1801bool vma_policy_mof(struct vm_area_struct *vma)
1802{
1803 struct mempolicy *pol;
1804
1805 if (vma->vm_ops && vma->vm_ops->get_policy) {
1806 bool ret = false;
1807
1808 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809 if (pol && (pol->flags & MPOL_F_MOF))
1810 ret = true;
1811 mpol_cond_put(pol);
1812
1813 return ret;
1814 }
1815
1816 pol = vma->vm_policy;
1817 if (!pol)
1818 pol = get_task_policy(current);
1819
1820 return pol->flags & MPOL_F_MOF;
1821}
1822
1823bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824{
1825 enum zone_type dynamic_policy_zone = policy_zone;
1826
1827 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828
1829 /*
1830 * if policy->nodes has movable memory only,
1831 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832 *
1833 * policy->nodes is intersect with node_states[N_MEMORY].
1834 * so if the following test fails, it implies
1835 * policy->nodes has movable memory only.
1836 */
1837 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838 dynamic_policy_zone = ZONE_MOVABLE;
1839
1840 return zone >= dynamic_policy_zone;
1841}
1842
1843/*
1844 * Return a nodemask representing a mempolicy for filtering nodes for
1845 * page allocation
1846 */
1847nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848{
1849 int mode = policy->mode;
1850
1851 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1852 if (unlikely(mode == MPOL_BIND) &&
1853 apply_policy_zone(policy, gfp_zone(gfp)) &&
1854 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855 return &policy->nodes;
1856
1857 if (mode == MPOL_PREFERRED_MANY)
1858 return &policy->nodes;
1859
1860 return NULL;
1861}
1862
1863/*
1864 * Return the preferred node id for 'prefer' mempolicy, and return
1865 * the given id for all other policies.
1866 *
1867 * policy_node() is always coupled with policy_nodemask(), which
1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 */
1870static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871{
1872 if (policy->mode == MPOL_PREFERRED) {
1873 nd = first_node(policy->nodes);
1874 } else {
1875 /*
1876 * __GFP_THISNODE shouldn't even be used with the bind policy
1877 * because we might easily break the expectation to stay on the
1878 * requested node and not break the policy.
1879 */
1880 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1881 }
1882
1883 if ((policy->mode == MPOL_BIND ||
1884 policy->mode == MPOL_PREFERRED_MANY) &&
1885 policy->home_node != NUMA_NO_NODE)
1886 return policy->home_node;
1887
1888 return nd;
1889}
1890
1891/* Do dynamic interleaving for a process */
1892static unsigned interleave_nodes(struct mempolicy *policy)
1893{
1894 unsigned next;
1895 struct task_struct *me = current;
1896
1897 next = next_node_in(me->il_prev, policy->nodes);
1898 if (next < MAX_NUMNODES)
1899 me->il_prev = next;
1900 return next;
1901}
1902
1903/*
1904 * Depending on the memory policy provide a node from which to allocate the
1905 * next slab entry.
1906 */
1907unsigned int mempolicy_slab_node(void)
1908{
1909 struct mempolicy *policy;
1910 int node = numa_mem_id();
1911
1912 if (!in_task())
1913 return node;
1914
1915 policy = current->mempolicy;
1916 if (!policy)
1917 return node;
1918
1919 switch (policy->mode) {
1920 case MPOL_PREFERRED:
1921 return first_node(policy->nodes);
1922
1923 case MPOL_INTERLEAVE:
1924 return interleave_nodes(policy);
1925
1926 case MPOL_BIND:
1927 case MPOL_PREFERRED_MANY:
1928 {
1929 struct zoneref *z;
1930
1931 /*
1932 * Follow bind policy behavior and start allocation at the
1933 * first node.
1934 */
1935 struct zonelist *zonelist;
1936 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938 z = first_zones_zonelist(zonelist, highest_zoneidx,
1939 &policy->nodes);
1940 return z->zone ? zone_to_nid(z->zone) : node;
1941 }
1942 case MPOL_LOCAL:
1943 return node;
1944
1945 default:
1946 BUG();
1947 }
1948}
1949
1950/*
1951 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953 * number of present nodes.
1954 */
1955static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956{
1957 nodemask_t nodemask = pol->nodes;
1958 unsigned int target, nnodes;
1959 int i;
1960 int nid;
1961 /*
1962 * The barrier will stabilize the nodemask in a register or on
1963 * the stack so that it will stop changing under the code.
1964 *
1965 * Between first_node() and next_node(), pol->nodes could be changed
1966 * by other threads. So we put pol->nodes in a local stack.
1967 */
1968 barrier();
1969
1970 nnodes = nodes_weight(nodemask);
1971 if (!nnodes)
1972 return numa_node_id();
1973 target = (unsigned int)n % nnodes;
1974 nid = first_node(nodemask);
1975 for (i = 0; i < target; i++)
1976 nid = next_node(nid, nodemask);
1977 return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984 if (vma) {
1985 unsigned long off;
1986
1987 /*
1988 * for small pages, there is no difference between
1989 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990 * for huge pages, since vm_pgoff is in units of small
1991 * pages, we need to shift off the always 0 bits to get
1992 * a useful offset.
1993 */
1994 BUG_ON(shift < PAGE_SHIFT);
1995 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996 off += (addr - vma->vm_start) >> shift;
1997 return offset_il_node(pol, off);
1998 } else
1999 return interleave_nodes(pol);
2000}
2001
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014 * to the mempolicy's @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019 struct mempolicy **mpol, nodemask_t **nodemask)
2020{
2021 int nid;
2022 int mode;
2023
2024 *mpol = get_vma_policy(vma, addr);
2025 *nodemask = NULL;
2026 mode = (*mpol)->mode;
2027
2028 if (unlikely(mode == MPOL_INTERLEAVE)) {
2029 nid = interleave_nid(*mpol, vma, addr,
2030 huge_page_shift(hstate_vma(vma)));
2031 } else {
2032 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034 *nodemask = &(*mpol)->nodes;
2035 }
2036 return nid;
2037}
2038
2039/*
2040 * init_nodemask_of_mempolicy
2041 *
2042 * If the current task's mempolicy is "default" [NULL], return 'false'
2043 * to indicate default policy. Otherwise, extract the policy nodemask
2044 * for 'bind' or 'interleave' policy into the argument nodemask, or
2045 * initialize the argument nodemask to contain the single node for
2046 * 'preferred' or 'local' policy and return 'true' to indicate presence
2047 * of non-default mempolicy.
2048 *
2049 * We don't bother with reference counting the mempolicy [mpol_get/put]
2050 * because the current task is examining it's own mempolicy and a task's
2051 * mempolicy is only ever changed by the task itself.
2052 *
2053 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 */
2055bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056{
2057 struct mempolicy *mempolicy;
2058
2059 if (!(mask && current->mempolicy))
2060 return false;
2061
2062 task_lock(current);
2063 mempolicy = current->mempolicy;
2064 switch (mempolicy->mode) {
2065 case MPOL_PREFERRED:
2066 case MPOL_PREFERRED_MANY:
2067 case MPOL_BIND:
2068 case MPOL_INTERLEAVE:
2069 *mask = mempolicy->nodes;
2070 break;
2071
2072 case MPOL_LOCAL:
2073 init_nodemask_of_node(mask, numa_node_id());
2074 break;
2075
2076 default:
2077 BUG();
2078 }
2079 task_unlock(current);
2080
2081 return true;
2082}
2083#endif
2084
2085/*
2086 * mempolicy_in_oom_domain
2087 *
2088 * If tsk's mempolicy is "bind", check for intersection between mask and
2089 * the policy nodemask. Otherwise, return true for all other policies
2090 * including "interleave", as a tsk with "interleave" policy may have
2091 * memory allocated from all nodes in system.
2092 *
2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 */
2095bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096 const nodemask_t *mask)
2097{
2098 struct mempolicy *mempolicy;
2099 bool ret = true;
2100
2101 if (!mask)
2102 return ret;
2103
2104 task_lock(tsk);
2105 mempolicy = tsk->mempolicy;
2106 if (mempolicy && mempolicy->mode == MPOL_BIND)
2107 ret = nodes_intersects(mempolicy->nodes, *mask);
2108 task_unlock(tsk);
2109
2110 return ret;
2111}
2112
2113/* Allocate a page in interleaved policy.
2114 Own path because it needs to do special accounting. */
2115static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116 unsigned nid)
2117{
2118 struct page *page;
2119
2120 page = __alloc_pages(gfp, order, nid, NULL);
2121 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122 if (!static_branch_likely(&vm_numa_stat_key))
2123 return page;
2124 if (page && page_to_nid(page) == nid) {
2125 preempt_disable();
2126 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127 preempt_enable();
2128 }
2129 return page;
2130}
2131
2132static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133 int nid, struct mempolicy *pol)
2134{
2135 struct page *page;
2136 gfp_t preferred_gfp;
2137
2138 /*
2139 * This is a two pass approach. The first pass will only try the
2140 * preferred nodes but skip the direct reclaim and allow the
2141 * allocation to fail, while the second pass will try all the
2142 * nodes in system.
2143 */
2144 preferred_gfp = gfp | __GFP_NOWARN;
2145 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147 if (!page)
2148 page = __alloc_pages(gfp, order, nid, NULL);
2149
2150 return page;
2151}
2152
2153/**
2154 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @gfp: GFP flags.
2156 * @order: Order of the folio.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual address of the allocation. Must be inside @vma.
2159 * @hugepage: For hugepages try only the preferred node if possible.
2160 *
2161 * Allocate a folio for a specific address in @vma, using the appropriate
2162 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2163 * of the mm_struct of the VMA to prevent it from going away. Should be
2164 * used for all allocations for folios that will be mapped into user space.
2165 *
2166 * Return: The folio on success or NULL if allocation fails.
2167 */
2168struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169 unsigned long addr, bool hugepage)
2170{
2171 struct mempolicy *pol;
2172 int node = numa_node_id();
2173 struct folio *folio;
2174 int preferred_nid;
2175 nodemask_t *nmask;
2176
2177 pol = get_vma_policy(vma, addr);
2178
2179 if (pol->mode == MPOL_INTERLEAVE) {
2180 struct page *page;
2181 unsigned nid;
2182
2183 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184 mpol_cond_put(pol);
2185 gfp |= __GFP_COMP;
2186 page = alloc_page_interleave(gfp, order, nid);
2187 if (page && order > 1)
2188 prep_transhuge_page(page);
2189 folio = (struct folio *)page;
2190 goto out;
2191 }
2192
2193 if (pol->mode == MPOL_PREFERRED_MANY) {
2194 struct page *page;
2195
2196 node = policy_node(gfp, pol, node);
2197 gfp |= __GFP_COMP;
2198 page = alloc_pages_preferred_many(gfp, order, node, pol);
2199 mpol_cond_put(pol);
2200 if (page && order > 1)
2201 prep_transhuge_page(page);
2202 folio = (struct folio *)page;
2203 goto out;
2204 }
2205
2206 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2207 int hpage_node = node;
2208
2209 /*
2210 * For hugepage allocation and non-interleave policy which
2211 * allows the current node (or other explicitly preferred
2212 * node) we only try to allocate from the current/preferred
2213 * node and don't fall back to other nodes, as the cost of
2214 * remote accesses would likely offset THP benefits.
2215 *
2216 * If the policy is interleave or does not allow the current
2217 * node in its nodemask, we allocate the standard way.
2218 */
2219 if (pol->mode == MPOL_PREFERRED)
2220 hpage_node = first_node(pol->nodes);
2221
2222 nmask = policy_nodemask(gfp, pol);
2223 if (!nmask || node_isset(hpage_node, *nmask)) {
2224 mpol_cond_put(pol);
2225 /*
2226 * First, try to allocate THP only on local node, but
2227 * don't reclaim unnecessarily, just compact.
2228 */
2229 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2230 __GFP_NORETRY, order, hpage_node);
2231
2232 /*
2233 * If hugepage allocations are configured to always
2234 * synchronous compact or the vma has been madvised
2235 * to prefer hugepage backing, retry allowing remote
2236 * memory with both reclaim and compact as well.
2237 */
2238 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2239 folio = __folio_alloc(gfp, order, hpage_node,
2240 nmask);
2241
2242 goto out;
2243 }
2244 }
2245
2246 nmask = policy_nodemask(gfp, pol);
2247 preferred_nid = policy_node(gfp, pol, node);
2248 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249 mpol_cond_put(pol);
2250out:
2251 return folio;
2252}
2253EXPORT_SYMBOL(vma_alloc_folio);
2254
2255/**
2256 * alloc_pages - Allocate pages.
2257 * @gfp: GFP flags.
2258 * @order: Power of two of number of pages to allocate.
2259 *
2260 * Allocate 1 << @order contiguous pages. The physical address of the
2261 * first page is naturally aligned (eg an order-3 allocation will be aligned
2262 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2263 * process is honoured when in process context.
2264 *
2265 * Context: Can be called from any context, providing the appropriate GFP
2266 * flags are used.
2267 * Return: The page on success or NULL if allocation fails.
2268 */
2269struct page *alloc_pages(gfp_t gfp, unsigned order)
2270{
2271 struct mempolicy *pol = &default_policy;
2272 struct page *page;
2273
2274 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2275 pol = get_task_policy(current);
2276
2277 /*
2278 * No reference counting needed for current->mempolicy
2279 * nor system default_policy
2280 */
2281 if (pol->mode == MPOL_INTERLEAVE)
2282 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2283 else if (pol->mode == MPOL_PREFERRED_MANY)
2284 page = alloc_pages_preferred_many(gfp, order,
2285 policy_node(gfp, pol, numa_node_id()), pol);
2286 else
2287 page = __alloc_pages(gfp, order,
2288 policy_node(gfp, pol, numa_node_id()),
2289 policy_nodemask(gfp, pol));
2290
2291 return page;
2292}
2293EXPORT_SYMBOL(alloc_pages);
2294
2295struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296{
2297 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298
2299 if (page && order > 1)
2300 prep_transhuge_page(page);
2301 return (struct folio *)page;
2302}
2303EXPORT_SYMBOL(folio_alloc);
2304
2305static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2306 struct mempolicy *pol, unsigned long nr_pages,
2307 struct page **page_array)
2308{
2309 int nodes;
2310 unsigned long nr_pages_per_node;
2311 int delta;
2312 int i;
2313 unsigned long nr_allocated;
2314 unsigned long total_allocated = 0;
2315
2316 nodes = nodes_weight(pol->nodes);
2317 nr_pages_per_node = nr_pages / nodes;
2318 delta = nr_pages - nodes * nr_pages_per_node;
2319
2320 for (i = 0; i < nodes; i++) {
2321 if (delta) {
2322 nr_allocated = __alloc_pages_bulk(gfp,
2323 interleave_nodes(pol), NULL,
2324 nr_pages_per_node + 1, NULL,
2325 page_array);
2326 delta--;
2327 } else {
2328 nr_allocated = __alloc_pages_bulk(gfp,
2329 interleave_nodes(pol), NULL,
2330 nr_pages_per_node, NULL, page_array);
2331 }
2332
2333 page_array += nr_allocated;
2334 total_allocated += nr_allocated;
2335 }
2336
2337 return total_allocated;
2338}
2339
2340static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2341 struct mempolicy *pol, unsigned long nr_pages,
2342 struct page **page_array)
2343{
2344 gfp_t preferred_gfp;
2345 unsigned long nr_allocated = 0;
2346
2347 preferred_gfp = gfp | __GFP_NOWARN;
2348 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349
2350 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2351 nr_pages, NULL, page_array);
2352
2353 if (nr_allocated < nr_pages)
2354 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2355 nr_pages - nr_allocated, NULL,
2356 page_array + nr_allocated);
2357 return nr_allocated;
2358}
2359
2360/* alloc pages bulk and mempolicy should be considered at the
2361 * same time in some situation such as vmalloc.
2362 *
2363 * It can accelerate memory allocation especially interleaving
2364 * allocate memory.
2365 */
2366unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2367 unsigned long nr_pages, struct page **page_array)
2368{
2369 struct mempolicy *pol = &default_policy;
2370
2371 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2372 pol = get_task_policy(current);
2373
2374 if (pol->mode == MPOL_INTERLEAVE)
2375 return alloc_pages_bulk_array_interleave(gfp, pol,
2376 nr_pages, page_array);
2377
2378 if (pol->mode == MPOL_PREFERRED_MANY)
2379 return alloc_pages_bulk_array_preferred_many(gfp,
2380 numa_node_id(), pol, nr_pages, page_array);
2381
2382 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2383 policy_nodemask(gfp, pol), nr_pages, NULL,
2384 page_array);
2385}
2386
2387int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388{
2389 struct mempolicy *pol = mpol_dup(vma_policy(src));
2390
2391 if (IS_ERR(pol))
2392 return PTR_ERR(pol);
2393 dst->vm_policy = pol;
2394 return 0;
2395}
2396
2397/*
2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2400 * with the mems_allowed returned by cpuset_mems_allowed(). This
2401 * keeps mempolicies cpuset relative after its cpuset moves. See
2402 * further kernel/cpuset.c update_nodemask().
2403 *
2404 * current's mempolicy may be rebinded by the other task(the task that changes
2405 * cpuset's mems), so we needn't do rebind work for current task.
2406 */
2407
2408/* Slow path of a mempolicy duplicate */
2409struct mempolicy *__mpol_dup(struct mempolicy *old)
2410{
2411 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2412
2413 if (!new)
2414 return ERR_PTR(-ENOMEM);
2415
2416 /* task's mempolicy is protected by alloc_lock */
2417 if (old == current->mempolicy) {
2418 task_lock(current);
2419 *new = *old;
2420 task_unlock(current);
2421 } else
2422 *new = *old;
2423
2424 if (current_cpuset_is_being_rebound()) {
2425 nodemask_t mems = cpuset_mems_allowed(current);
2426 mpol_rebind_policy(new, &mems);
2427 }
2428 atomic_set(&new->refcnt, 1);
2429 return new;
2430}
2431
2432/* Slow path of a mempolicy comparison */
2433bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2434{
2435 if (!a || !b)
2436 return false;
2437 if (a->mode != b->mode)
2438 return false;
2439 if (a->flags != b->flags)
2440 return false;
2441 if (a->home_node != b->home_node)
2442 return false;
2443 if (mpol_store_user_nodemask(a))
2444 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445 return false;
2446
2447 switch (a->mode) {
2448 case MPOL_BIND:
2449 case MPOL_INTERLEAVE:
2450 case MPOL_PREFERRED:
2451 case MPOL_PREFERRED_MANY:
2452 return !!nodes_equal(a->nodes, b->nodes);
2453 case MPOL_LOCAL:
2454 return true;
2455 default:
2456 BUG();
2457 return false;
2458 }
2459}
2460
2461/*
2462 * Shared memory backing store policy support.
2463 *
2464 * Remember policies even when nobody has shared memory mapped.
2465 * The policies are kept in Red-Black tree linked from the inode.
2466 * They are protected by the sp->lock rwlock, which should be held
2467 * for any accesses to the tree.
2468 */
2469
2470/*
2471 * lookup first element intersecting start-end. Caller holds sp->lock for
2472 * reading or for writing
2473 */
2474static struct sp_node *
2475sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476{
2477 struct rb_node *n = sp->root.rb_node;
2478
2479 while (n) {
2480 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481
2482 if (start >= p->end)
2483 n = n->rb_right;
2484 else if (end <= p->start)
2485 n = n->rb_left;
2486 else
2487 break;
2488 }
2489 if (!n)
2490 return NULL;
2491 for (;;) {
2492 struct sp_node *w = NULL;
2493 struct rb_node *prev = rb_prev(n);
2494 if (!prev)
2495 break;
2496 w = rb_entry(prev, struct sp_node, nd);
2497 if (w->end <= start)
2498 break;
2499 n = prev;
2500 }
2501 return rb_entry(n, struct sp_node, nd);
2502}
2503
2504/*
2505 * Insert a new shared policy into the list. Caller holds sp->lock for
2506 * writing.
2507 */
2508static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509{
2510 struct rb_node **p = &sp->root.rb_node;
2511 struct rb_node *parent = NULL;
2512 struct sp_node *nd;
2513
2514 while (*p) {
2515 parent = *p;
2516 nd = rb_entry(parent, struct sp_node, nd);
2517 if (new->start < nd->start)
2518 p = &(*p)->rb_left;
2519 else if (new->end > nd->end)
2520 p = &(*p)->rb_right;
2521 else
2522 BUG();
2523 }
2524 rb_link_node(&new->nd, parent, p);
2525 rb_insert_color(&new->nd, &sp->root);
2526 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2527 new->policy ? new->policy->mode : 0);
2528}
2529
2530/* Find shared policy intersecting idx */
2531struct mempolicy *
2532mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533{
2534 struct mempolicy *pol = NULL;
2535 struct sp_node *sn;
2536
2537 if (!sp->root.rb_node)
2538 return NULL;
2539 read_lock(&sp->lock);
2540 sn = sp_lookup(sp, idx, idx+1);
2541 if (sn) {
2542 mpol_get(sn->policy);
2543 pol = sn->policy;
2544 }
2545 read_unlock(&sp->lock);
2546 return pol;
2547}
2548
2549static void sp_free(struct sp_node *n)
2550{
2551 mpol_put(n->policy);
2552 kmem_cache_free(sn_cache, n);
2553}
2554
2555/**
2556 * mpol_misplaced - check whether current page node is valid in policy
2557 *
2558 * @page: page to be checked
2559 * @vma: vm area where page mapped
2560 * @addr: virtual address where page mapped
2561 *
2562 * Lookup current policy node id for vma,addr and "compare to" page's
2563 * node id. Policy determination "mimics" alloc_page_vma().
2564 * Called from fault path where we know the vma and faulting address.
2565 *
2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2567 * policy, or a suitable node ID to allocate a replacement page from.
2568 */
2569int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570{
2571 struct mempolicy *pol;
2572 struct zoneref *z;
2573 int curnid = page_to_nid(page);
2574 unsigned long pgoff;
2575 int thiscpu = raw_smp_processor_id();
2576 int thisnid = cpu_to_node(thiscpu);
2577 int polnid = NUMA_NO_NODE;
2578 int ret = NUMA_NO_NODE;
2579
2580 pol = get_vma_policy(vma, addr);
2581 if (!(pol->flags & MPOL_F_MOF))
2582 goto out;
2583
2584 switch (pol->mode) {
2585 case MPOL_INTERLEAVE:
2586 pgoff = vma->vm_pgoff;
2587 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2588 polnid = offset_il_node(pol, pgoff);
2589 break;
2590
2591 case MPOL_PREFERRED:
2592 if (node_isset(curnid, pol->nodes))
2593 goto out;
2594 polnid = first_node(pol->nodes);
2595 break;
2596
2597 case MPOL_LOCAL:
2598 polnid = numa_node_id();
2599 break;
2600
2601 case MPOL_BIND:
2602 /* Optimize placement among multiple nodes via NUMA balancing */
2603 if (pol->flags & MPOL_F_MORON) {
2604 if (node_isset(thisnid, pol->nodes))
2605 break;
2606 goto out;
2607 }
2608 fallthrough;
2609
2610 case MPOL_PREFERRED_MANY:
2611 /*
2612 * use current page if in policy nodemask,
2613 * else select nearest allowed node, if any.
2614 * If no allowed nodes, use current [!misplaced].
2615 */
2616 if (node_isset(curnid, pol->nodes))
2617 goto out;
2618 z = first_zones_zonelist(
2619 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2620 gfp_zone(GFP_HIGHUSER),
2621 &pol->nodes);
2622 polnid = zone_to_nid(z->zone);
2623 break;
2624
2625 default:
2626 BUG();
2627 }
2628
2629 /* Migrate the page towards the node whose CPU is referencing it */
2630 if (pol->flags & MPOL_F_MORON) {
2631 polnid = thisnid;
2632
2633 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2634 goto out;
2635 }
2636
2637 if (curnid != polnid)
2638 ret = polnid;
2639out:
2640 mpol_cond_put(pol);
2641
2642 return ret;
2643}
2644
2645/*
2646 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2647 * dropped after task->mempolicy is set to NULL so that any allocation done as
2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2649 * policy.
2650 */
2651void mpol_put_task_policy(struct task_struct *task)
2652{
2653 struct mempolicy *pol;
2654
2655 task_lock(task);
2656 pol = task->mempolicy;
2657 task->mempolicy = NULL;
2658 task_unlock(task);
2659 mpol_put(pol);
2660}
2661
2662static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663{
2664 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2665 rb_erase(&n->nd, &sp->root);
2666 sp_free(n);
2667}
2668
2669static void sp_node_init(struct sp_node *node, unsigned long start,
2670 unsigned long end, struct mempolicy *pol)
2671{
2672 node->start = start;
2673 node->end = end;
2674 node->policy = pol;
2675}
2676
2677static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2678 struct mempolicy *pol)
2679{
2680 struct sp_node *n;
2681 struct mempolicy *newpol;
2682
2683 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2684 if (!n)
2685 return NULL;
2686
2687 newpol = mpol_dup(pol);
2688 if (IS_ERR(newpol)) {
2689 kmem_cache_free(sn_cache, n);
2690 return NULL;
2691 }
2692 newpol->flags |= MPOL_F_SHARED;
2693 sp_node_init(n, start, end, newpol);
2694
2695 return n;
2696}
2697
2698/* Replace a policy range. */
2699static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2700 unsigned long end, struct sp_node *new)
2701{
2702 struct sp_node *n;
2703 struct sp_node *n_new = NULL;
2704 struct mempolicy *mpol_new = NULL;
2705 int ret = 0;
2706
2707restart:
2708 write_lock(&sp->lock);
2709 n = sp_lookup(sp, start, end);
2710 /* Take care of old policies in the same range. */
2711 while (n && n->start < end) {
2712 struct rb_node *next = rb_next(&n->nd);
2713 if (n->start >= start) {
2714 if (n->end <= end)
2715 sp_delete(sp, n);
2716 else
2717 n->start = end;
2718 } else {
2719 /* Old policy spanning whole new range. */
2720 if (n->end > end) {
2721 if (!n_new)
2722 goto alloc_new;
2723
2724 *mpol_new = *n->policy;
2725 atomic_set(&mpol_new->refcnt, 1);
2726 sp_node_init(n_new, end, n->end, mpol_new);
2727 n->end = start;
2728 sp_insert(sp, n_new);
2729 n_new = NULL;
2730 mpol_new = NULL;
2731 break;
2732 } else
2733 n->end = start;
2734 }
2735 if (!next)
2736 break;
2737 n = rb_entry(next, struct sp_node, nd);
2738 }
2739 if (new)
2740 sp_insert(sp, new);
2741 write_unlock(&sp->lock);
2742 ret = 0;
2743
2744err_out:
2745 if (mpol_new)
2746 mpol_put(mpol_new);
2747 if (n_new)
2748 kmem_cache_free(sn_cache, n_new);
2749
2750 return ret;
2751
2752alloc_new:
2753 write_unlock(&sp->lock);
2754 ret = -ENOMEM;
2755 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2756 if (!n_new)
2757 goto err_out;
2758 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2759 if (!mpol_new)
2760 goto err_out;
2761 atomic_set(&mpol_new->refcnt, 1);
2762 goto restart;
2763}
2764
2765/**
2766 * mpol_shared_policy_init - initialize shared policy for inode
2767 * @sp: pointer to inode shared policy
2768 * @mpol: struct mempolicy to install
2769 *
2770 * Install non-NULL @mpol in inode's shared policy rb-tree.
2771 * On entry, the current task has a reference on a non-NULL @mpol.
2772 * This must be released on exit.
2773 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 */
2775void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2776{
2777 int ret;
2778
2779 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2780 rwlock_init(&sp->lock);
2781
2782 if (mpol) {
2783 struct vm_area_struct pvma;
2784 struct mempolicy *new;
2785 NODEMASK_SCRATCH(scratch);
2786
2787 if (!scratch)
2788 goto put_mpol;
2789 /* contextualize the tmpfs mount point mempolicy */
2790 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791 if (IS_ERR(new))
2792 goto free_scratch; /* no valid nodemask intersection */
2793
2794 task_lock(current);
2795 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2796 task_unlock(current);
2797 if (ret)
2798 goto put_new;
2799
2800 /* Create pseudo-vma that contains just the policy */
2801 vma_init(&pvma, NULL);
2802 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2803 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2804
2805put_new:
2806 mpol_put(new); /* drop initial ref */
2807free_scratch:
2808 NODEMASK_SCRATCH_FREE(scratch);
2809put_mpol:
2810 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2811 }
2812}
2813
2814int mpol_set_shared_policy(struct shared_policy *info,
2815 struct vm_area_struct *vma, struct mempolicy *npol)
2816{
2817 int err;
2818 struct sp_node *new = NULL;
2819 unsigned long sz = vma_pages(vma);
2820
2821 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822 vma->vm_pgoff,
2823 sz, npol ? npol->mode : -1,
2824 npol ? npol->flags : -1,
2825 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2826
2827 if (npol) {
2828 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2829 if (!new)
2830 return -ENOMEM;
2831 }
2832 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2833 if (err && new)
2834 sp_free(new);
2835 return err;
2836}
2837
2838/* Free a backing policy store on inode delete. */
2839void mpol_free_shared_policy(struct shared_policy *p)
2840{
2841 struct sp_node *n;
2842 struct rb_node *next;
2843
2844 if (!p->root.rb_node)
2845 return;
2846 write_lock(&p->lock);
2847 next = rb_first(&p->root);
2848 while (next) {
2849 n = rb_entry(next, struct sp_node, nd);
2850 next = rb_next(&n->nd);
2851 sp_delete(p, n);
2852 }
2853 write_unlock(&p->lock);
2854}
2855
2856#ifdef CONFIG_NUMA_BALANCING
2857static int __initdata numabalancing_override;
2858
2859static void __init check_numabalancing_enable(void)
2860{
2861 bool numabalancing_default = false;
2862
2863 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2864 numabalancing_default = true;
2865
2866 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2867 if (numabalancing_override)
2868 set_numabalancing_state(numabalancing_override == 1);
2869
2870 if (num_online_nodes() > 1 && !numabalancing_override) {
2871 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2872 numabalancing_default ? "Enabling" : "Disabling");
2873 set_numabalancing_state(numabalancing_default);
2874 }
2875}
2876
2877static int __init setup_numabalancing(char *str)
2878{
2879 int ret = 0;
2880 if (!str)
2881 goto out;
2882
2883 if (!strcmp(str, "enable")) {
2884 numabalancing_override = 1;
2885 ret = 1;
2886 } else if (!strcmp(str, "disable")) {
2887 numabalancing_override = -1;
2888 ret = 1;
2889 }
2890out:
2891 if (!ret)
2892 pr_warn("Unable to parse numa_balancing=\n");
2893
2894 return ret;
2895}
2896__setup("numa_balancing=", setup_numabalancing);
2897#else
2898static inline void __init check_numabalancing_enable(void)
2899{
2900}
2901#endif /* CONFIG_NUMA_BALANCING */
2902
2903/* assumes fs == KERNEL_DS */
2904void __init numa_policy_init(void)
2905{
2906 nodemask_t interleave_nodes;
2907 unsigned long largest = 0;
2908 int nid, prefer = 0;
2909
2910 policy_cache = kmem_cache_create("numa_policy",
2911 sizeof(struct mempolicy),
2912 0, SLAB_PANIC, NULL);
2913
2914 sn_cache = kmem_cache_create("shared_policy_node",
2915 sizeof(struct sp_node),
2916 0, SLAB_PANIC, NULL);
2917
2918 for_each_node(nid) {
2919 preferred_node_policy[nid] = (struct mempolicy) {
2920 .refcnt = ATOMIC_INIT(1),
2921 .mode = MPOL_PREFERRED,
2922 .flags = MPOL_F_MOF | MPOL_F_MORON,
2923 .nodes = nodemask_of_node(nid),
2924 };
2925 }
2926
2927 /*
2928 * Set interleaving policy for system init. Interleaving is only
2929 * enabled across suitably sized nodes (default is >= 16MB), or
2930 * fall back to the largest node if they're all smaller.
2931 */
2932 nodes_clear(interleave_nodes);
2933 for_each_node_state(nid, N_MEMORY) {
2934 unsigned long total_pages = node_present_pages(nid);
2935
2936 /* Preserve the largest node */
2937 if (largest < total_pages) {
2938 largest = total_pages;
2939 prefer = nid;
2940 }
2941
2942 /* Interleave this node? */
2943 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2944 node_set(nid, interleave_nodes);
2945 }
2946
2947 /* All too small, use the largest */
2948 if (unlikely(nodes_empty(interleave_nodes)))
2949 node_set(prefer, interleave_nodes);
2950
2951 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2952 pr_err("%s: interleaving failed\n", __func__);
2953
2954 check_numabalancing_enable();
2955}
2956
2957/* Reset policy of current process to default */
2958void numa_default_policy(void)
2959{
2960 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2961}
2962
2963/*
2964 * Parse and format mempolicy from/to strings
2965 */
2966
2967static const char * const policy_modes[] =
2968{
2969 [MPOL_DEFAULT] = "default",
2970 [MPOL_PREFERRED] = "prefer",
2971 [MPOL_BIND] = "bind",
2972 [MPOL_INTERLEAVE] = "interleave",
2973 [MPOL_LOCAL] = "local",
2974 [MPOL_PREFERRED_MANY] = "prefer (many)",
2975};
2976
2977
2978#ifdef CONFIG_TMPFS
2979/**
2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2981 * @str: string containing mempolicy to parse
2982 * @mpol: pointer to struct mempolicy pointer, returned on success.
2983 *
2984 * Format of input:
2985 * <mode>[=<flags>][:<nodelist>]
2986 *
2987 * Return: %0 on success, else %1
2988 */
2989int mpol_parse_str(char *str, struct mempolicy **mpol)
2990{
2991 struct mempolicy *new = NULL;
2992 unsigned short mode_flags;
2993 nodemask_t nodes;
2994 char *nodelist = strchr(str, ':');
2995 char *flags = strchr(str, '=');
2996 int err = 1, mode;
2997
2998 if (flags)
2999 *flags++ = '\0'; /* terminate mode string */
3000
3001 if (nodelist) {
3002 /* NUL-terminate mode or flags string */
3003 *nodelist++ = '\0';
3004 if (nodelist_parse(nodelist, nodes))
3005 goto out;
3006 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007 goto out;
3008 } else
3009 nodes_clear(nodes);
3010
3011 mode = match_string(policy_modes, MPOL_MAX, str);
3012 if (mode < 0)
3013 goto out;
3014
3015 switch (mode) {
3016 case MPOL_PREFERRED:
3017 /*
3018 * Insist on a nodelist of one node only, although later
3019 * we use first_node(nodes) to grab a single node, so here
3020 * nodelist (or nodes) cannot be empty.
3021 */
3022 if (nodelist) {
3023 char *rest = nodelist;
3024 while (isdigit(*rest))
3025 rest++;
3026 if (*rest)
3027 goto out;
3028 if (nodes_empty(nodes))
3029 goto out;
3030 }
3031 break;
3032 case MPOL_INTERLEAVE:
3033 /*
3034 * Default to online nodes with memory if no nodelist
3035 */
3036 if (!nodelist)
3037 nodes = node_states[N_MEMORY];
3038 break;
3039 case MPOL_LOCAL:
3040 /*
3041 * Don't allow a nodelist; mpol_new() checks flags
3042 */
3043 if (nodelist)
3044 goto out;
3045 break;
3046 case MPOL_DEFAULT:
3047 /*
3048 * Insist on a empty nodelist
3049 */
3050 if (!nodelist)
3051 err = 0;
3052 goto out;
3053 case MPOL_PREFERRED_MANY:
3054 case MPOL_BIND:
3055 /*
3056 * Insist on a nodelist
3057 */
3058 if (!nodelist)
3059 goto out;
3060 }
3061
3062 mode_flags = 0;
3063 if (flags) {
3064 /*
3065 * Currently, we only support two mutually exclusive
3066 * mode flags.
3067 */
3068 if (!strcmp(flags, "static"))
3069 mode_flags |= MPOL_F_STATIC_NODES;
3070 else if (!strcmp(flags, "relative"))
3071 mode_flags |= MPOL_F_RELATIVE_NODES;
3072 else
3073 goto out;
3074 }
3075
3076 new = mpol_new(mode, mode_flags, &nodes);
3077 if (IS_ERR(new))
3078 goto out;
3079
3080 /*
3081 * Save nodes for mpol_to_str() to show the tmpfs mount options
3082 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083 */
3084 if (mode != MPOL_PREFERRED) {
3085 new->nodes = nodes;
3086 } else if (nodelist) {
3087 nodes_clear(new->nodes);
3088 node_set(first_node(nodes), new->nodes);
3089 } else {
3090 new->mode = MPOL_LOCAL;
3091 }
3092
3093 /*
3094 * Save nodes for contextualization: this will be used to "clone"
3095 * the mempolicy in a specific context [cpuset] at a later time.
3096 */
3097 new->w.user_nodemask = nodes;
3098
3099 err = 0;
3100
3101out:
3102 /* Restore string for error message */
3103 if (nodelist)
3104 *--nodelist = ':';
3105 if (flags)
3106 *--flags = '=';
3107 if (!err)
3108 *mpol = new;
3109 return err;
3110}
3111#endif /* CONFIG_TMPFS */
3112
3113/**
3114 * mpol_to_str - format a mempolicy structure for printing
3115 * @buffer: to contain formatted mempolicy string
3116 * @maxlen: length of @buffer
3117 * @pol: pointer to mempolicy to be formatted
3118 *
3119 * Convert @pol into a string. If @buffer is too short, truncate the string.
3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3121 * longest flag, "relative", and to display at least a few node ids.
3122 */
3123void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3124{
3125 char *p = buffer;
3126 nodemask_t nodes = NODE_MASK_NONE;
3127 unsigned short mode = MPOL_DEFAULT;
3128 unsigned short flags = 0;
3129
3130 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3131 mode = pol->mode;
3132 flags = pol->flags;
3133 }
3134
3135 switch (mode) {
3136 case MPOL_DEFAULT:
3137 case MPOL_LOCAL:
3138 break;
3139 case MPOL_PREFERRED:
3140 case MPOL_PREFERRED_MANY:
3141 case MPOL_BIND:
3142 case MPOL_INTERLEAVE:
3143 nodes = pol->nodes;
3144 break;
3145 default:
3146 WARN_ON_ONCE(1);
3147 snprintf(p, maxlen, "unknown");
3148 return;
3149 }
3150
3151 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3152
3153 if (flags & MPOL_MODE_FLAGS) {
3154 p += snprintf(p, buffer + maxlen - p, "=");
3155
3156 /*
3157 * Currently, the only defined flags are mutually exclusive
3158 */
3159 if (flags & MPOL_F_STATIC_NODES)
3160 p += snprintf(p, buffer + maxlen - p, "static");
3161 else if (flags & MPOL_F_RELATIVE_NODES)
3162 p += snprintf(p, buffer + maxlen - p, "relative");
3163 }
3164
3165 if (!nodes_empty(nodes))
3166 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167 nodemask_pr_args(&nodes));
3168}