Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/mm/fault-armv.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2002 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/bitops.h>
 16#include <linux/vmalloc.h>
 17#include <linux/init.h>
 18#include <linux/pagemap.h>
 19#include <linux/gfp.h>
 20
 21#include <asm/bugs.h>
 22#include <asm/cacheflush.h>
 23#include <asm/cachetype.h>
 24#include <asm/pgtable.h>
 25#include <asm/tlbflush.h>
 26
 27#include "mm.h"
 28
 29static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 30
 31#if __LINUX_ARM_ARCH__ < 6
 32/*
 33 * We take the easy way out of this problem - we make the
 34 * PTE uncacheable.  However, we leave the write buffer on.
 35 *
 36 * Note that the pte lock held when calling update_mmu_cache must also
 37 * guard the pte (somewhere else in the same mm) that we modify here.
 38 * Therefore those configurations which might call adjust_pte (those
 39 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 40 */
 41static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 42	unsigned long pfn, pte_t *ptep)
 43{
 44	pte_t entry = *ptep;
 45	int ret;
 46
 47	/*
 48	 * If this page is present, it's actually being shared.
 49	 */
 50	ret = pte_present(entry);
 51
 52	/*
 53	 * If this page isn't present, or is already setup to
 54	 * fault (ie, is old), we can safely ignore any issues.
 55	 */
 56	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 57		flush_cache_page(vma, address, pfn);
 58		outer_flush_range((pfn << PAGE_SHIFT),
 59				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 60		pte_val(entry) &= ~L_PTE_MT_MASK;
 61		pte_val(entry) |= shared_pte_mask;
 62		set_pte_at(vma->vm_mm, address, ptep, entry);
 63		flush_tlb_page(vma, address);
 64	}
 65
 66	return ret;
 67}
 68
 69#if USE_SPLIT_PTLOCKS
 70/*
 71 * If we are using split PTE locks, then we need to take the page
 72 * lock here.  Otherwise we are using shared mm->page_table_lock
 73 * which is already locked, thus cannot take it.
 74 */
 75static inline void do_pte_lock(spinlock_t *ptl)
 76{
 77	/*
 78	 * Use nested version here to indicate that we are already
 79	 * holding one similar spinlock.
 80	 */
 81	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 82}
 83
 84static inline void do_pte_unlock(spinlock_t *ptl)
 85{
 86	spin_unlock(ptl);
 87}
 88#else /* !USE_SPLIT_PTLOCKS */
 89static inline void do_pte_lock(spinlock_t *ptl) {}
 90static inline void do_pte_unlock(spinlock_t *ptl) {}
 91#endif /* USE_SPLIT_PTLOCKS */
 92
 93static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 94	unsigned long pfn)
 95{
 96	spinlock_t *ptl;
 97	pgd_t *pgd;
 
 98	pud_t *pud;
 99	pmd_t *pmd;
100	pte_t *pte;
101	int ret;
102
103	pgd = pgd_offset(vma->vm_mm, address);
104	if (pgd_none_or_clear_bad(pgd))
105		return 0;
106
107	pud = pud_offset(pgd, address);
 
 
 
 
108	if (pud_none_or_clear_bad(pud))
109		return 0;
110
111	pmd = pmd_offset(pud, address);
112	if (pmd_none_or_clear_bad(pmd))
113		return 0;
114
115	/*
116	 * This is called while another page table is mapped, so we
117	 * must use the nested version.  This also means we need to
118	 * open-code the spin-locking.
119	 */
120	ptl = pte_lockptr(vma->vm_mm, pmd);
121	pte = pte_offset_map(pmd, address);
122	do_pte_lock(ptl);
123
124	ret = do_adjust_pte(vma, address, pfn, pte);
125
126	do_pte_unlock(ptl);
127	pte_unmap(pte);
128
129	return ret;
130}
131
132static void
133make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
134	unsigned long addr, pte_t *ptep, unsigned long pfn)
135{
136	struct mm_struct *mm = vma->vm_mm;
137	struct vm_area_struct *mpnt;
138	struct prio_tree_iter iter;
139	unsigned long offset;
140	pgoff_t pgoff;
141	int aliases = 0;
142
143	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
144
145	/*
146	 * If we have any shared mappings that are in the same mm
147	 * space, then we need to handle them specially to maintain
148	 * cache coherency.
149	 */
150	flush_dcache_mmap_lock(mapping);
151	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
152		/*
153		 * If this VMA is not in our MM, we can ignore it.
154		 * Note that we intentionally mask out the VMA
155		 * that we are fixing up.
156		 */
157		if (mpnt->vm_mm != mm || mpnt == vma)
158			continue;
159		if (!(mpnt->vm_flags & VM_MAYSHARE))
160			continue;
161		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
162		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
163	}
164	flush_dcache_mmap_unlock(mapping);
165	if (aliases)
166		do_adjust_pte(vma, addr, pfn, ptep);
167}
168
169/*
170 * Take care of architecture specific things when placing a new PTE into
171 * a page table, or changing an existing PTE.  Basically, there are two
172 * things that we need to take care of:
173 *
174 *  1. If PG_dcache_clean is not set for the page, we need to ensure
175 *     that any cache entries for the kernels virtual memory
176 *     range are written back to the page.
177 *  2. If we have multiple shared mappings of the same space in
178 *     an object, we need to deal with the cache aliasing issues.
179 *
180 * Note that the pte lock will be held.
181 */
182void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
183	pte_t *ptep)
184{
185	unsigned long pfn = pte_pfn(*ptep);
186	struct address_space *mapping;
187	struct page *page;
188
189	if (!pfn_valid(pfn))
190		return;
191
192	/*
193	 * The zero page is never written to, so never has any dirty
194	 * cache lines, and therefore never needs to be flushed.
195	 */
196	page = pfn_to_page(pfn);
197	if (page == ZERO_PAGE(0))
198		return;
199
200	mapping = page_mapping(page);
201	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
202		__flush_dcache_page(mapping, page);
203	if (mapping) {
204		if (cache_is_vivt())
205			make_coherent(mapping, vma, addr, ptep, pfn);
206		else if (vma->vm_flags & VM_EXEC)
207			__flush_icache_all();
208	}
209}
210#endif	/* __LINUX_ARM_ARCH__ < 6 */
211
212/*
213 * Check whether the write buffer has physical address aliasing
214 * issues.  If it has, we need to avoid them for the case where
215 * we have several shared mappings of the same object in user
216 * space.
217 */
218static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
219{
220	register unsigned long zero = 0, one = 1, val;
221
222	local_irq_disable();
223	mb();
224	*p1 = one;
225	mb();
226	*p2 = zero;
227	mb();
228	val = *p1;
229	mb();
230	local_irq_enable();
231	return val != zero;
232}
233
234void __init check_writebuffer_bugs(void)
235{
236	struct page *page;
237	const char *reason;
238	unsigned long v = 1;
239
240	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
241
242	page = alloc_page(GFP_KERNEL);
243	if (page) {
244		unsigned long *p1, *p2;
245		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
246					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
247
248		p1 = vmap(&page, 1, VM_IOREMAP, prot);
249		p2 = vmap(&page, 1, VM_IOREMAP, prot);
250
251		if (p1 && p2) {
252			v = check_writebuffer(p1, p2);
253			reason = "enabling work-around";
254		} else {
255			reason = "unable to map memory\n";
256		}
257
258		vunmap(p1);
259		vunmap(p2);
260		put_page(page);
261	} else {
262		reason = "unable to grab page\n";
263	}
264
265	if (v) {
266		printk("failed, %s\n", reason);
267		shared_pte_mask = L_PTE_MT_UNCACHED;
268	} else {
269		printk("ok\n");
270	}
271}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/fault-armv.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Modifications for ARM processor (c) 1995-2002 Russell King
 
 
 
 
  7 */
 
  8#include <linux/sched.h>
  9#include <linux/kernel.h>
 10#include <linux/mm.h>
 11#include <linux/bitops.h>
 12#include <linux/vmalloc.h>
 13#include <linux/init.h>
 14#include <linux/pagemap.h>
 15#include <linux/gfp.h>
 16
 17#include <asm/bugs.h>
 18#include <asm/cacheflush.h>
 19#include <asm/cachetype.h>
 
 20#include <asm/tlbflush.h>
 21
 22#include "mm.h"
 23
 24static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 25
 26#if __LINUX_ARM_ARCH__ < 6
 27/*
 28 * We take the easy way out of this problem - we make the
 29 * PTE uncacheable.  However, we leave the write buffer on.
 30 *
 31 * Note that the pte lock held when calling update_mmu_cache must also
 32 * guard the pte (somewhere else in the same mm) that we modify here.
 33 * Therefore those configurations which might call adjust_pte (those
 34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 35 */
 36static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 37	unsigned long pfn, pte_t *ptep)
 38{
 39	pte_t entry = *ptep;
 40	int ret;
 41
 42	/*
 43	 * If this page is present, it's actually being shared.
 44	 */
 45	ret = pte_present(entry);
 46
 47	/*
 48	 * If this page isn't present, or is already setup to
 49	 * fault (ie, is old), we can safely ignore any issues.
 50	 */
 51	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 52		flush_cache_page(vma, address, pfn);
 53		outer_flush_range((pfn << PAGE_SHIFT),
 54				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 55		pte_val(entry) &= ~L_PTE_MT_MASK;
 56		pte_val(entry) |= shared_pte_mask;
 57		set_pte_at(vma->vm_mm, address, ptep, entry);
 58		flush_tlb_page(vma, address);
 59	}
 60
 61	return ret;
 62}
 63
 64#if USE_SPLIT_PTE_PTLOCKS
 65/*
 66 * If we are using split PTE locks, then we need to take the page
 67 * lock here.  Otherwise we are using shared mm->page_table_lock
 68 * which is already locked, thus cannot take it.
 69 */
 70static inline void do_pte_lock(spinlock_t *ptl)
 71{
 72	/*
 73	 * Use nested version here to indicate that we are already
 74	 * holding one similar spinlock.
 75	 */
 76	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 77}
 78
 79static inline void do_pte_unlock(spinlock_t *ptl)
 80{
 81	spin_unlock(ptl);
 82}
 83#else /* !USE_SPLIT_PTE_PTLOCKS */
 84static inline void do_pte_lock(spinlock_t *ptl) {}
 85static inline void do_pte_unlock(spinlock_t *ptl) {}
 86#endif /* USE_SPLIT_PTE_PTLOCKS */
 87
 88static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 89	unsigned long pfn)
 90{
 91	spinlock_t *ptl;
 92	pgd_t *pgd;
 93	p4d_t *p4d;
 94	pud_t *pud;
 95	pmd_t *pmd;
 96	pte_t *pte;
 97	int ret;
 98
 99	pgd = pgd_offset(vma->vm_mm, address);
100	if (pgd_none_or_clear_bad(pgd))
101		return 0;
102
103	p4d = p4d_offset(pgd, address);
104	if (p4d_none_or_clear_bad(p4d))
105		return 0;
106
107	pud = pud_offset(p4d, address);
108	if (pud_none_or_clear_bad(pud))
109		return 0;
110
111	pmd = pmd_offset(pud, address);
112	if (pmd_none_or_clear_bad(pmd))
113		return 0;
114
115	/*
116	 * This is called while another page table is mapped, so we
117	 * must use the nested version.  This also means we need to
118	 * open-code the spin-locking.
119	 */
120	ptl = pte_lockptr(vma->vm_mm, pmd);
121	pte = pte_offset_map(pmd, address);
122	do_pte_lock(ptl);
123
124	ret = do_adjust_pte(vma, address, pfn, pte);
125
126	do_pte_unlock(ptl);
127	pte_unmap(pte);
128
129	return ret;
130}
131
132static void
133make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
134	unsigned long addr, pte_t *ptep, unsigned long pfn)
135{
136	struct mm_struct *mm = vma->vm_mm;
137	struct vm_area_struct *mpnt;
 
138	unsigned long offset;
139	pgoff_t pgoff;
140	int aliases = 0;
141
142	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
143
144	/*
145	 * If we have any shared mappings that are in the same mm
146	 * space, then we need to handle them specially to maintain
147	 * cache coherency.
148	 */
149	flush_dcache_mmap_lock(mapping);
150	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
151		/*
152		 * If this VMA is not in our MM, we can ignore it.
153		 * Note that we intentionally mask out the VMA
154		 * that we are fixing up.
155		 */
156		if (mpnt->vm_mm != mm || mpnt == vma)
157			continue;
158		if (!(mpnt->vm_flags & VM_MAYSHARE))
159			continue;
160		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
161		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162	}
163	flush_dcache_mmap_unlock(mapping);
164	if (aliases)
165		do_adjust_pte(vma, addr, pfn, ptep);
166}
167
168/*
169 * Take care of architecture specific things when placing a new PTE into
170 * a page table, or changing an existing PTE.  Basically, there are two
171 * things that we need to take care of:
172 *
173 *  1. If PG_dcache_clean is not set for the page, we need to ensure
174 *     that any cache entries for the kernels virtual memory
175 *     range are written back to the page.
176 *  2. If we have multiple shared mappings of the same space in
177 *     an object, we need to deal with the cache aliasing issues.
178 *
179 * Note that the pte lock will be held.
180 */
181void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
182	pte_t *ptep)
183{
184	unsigned long pfn = pte_pfn(*ptep);
185	struct address_space *mapping;
186	struct page *page;
187
188	if (!pfn_valid(pfn))
189		return;
190
191	/*
192	 * The zero page is never written to, so never has any dirty
193	 * cache lines, and therefore never needs to be flushed.
194	 */
195	page = pfn_to_page(pfn);
196	if (page == ZERO_PAGE(0))
197		return;
198
199	mapping = page_mapping_file(page);
200	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
201		__flush_dcache_page(mapping, page);
202	if (mapping) {
203		if (cache_is_vivt())
204			make_coherent(mapping, vma, addr, ptep, pfn);
205		else if (vma->vm_flags & VM_EXEC)
206			__flush_icache_all();
207	}
208}
209#endif	/* __LINUX_ARM_ARCH__ < 6 */
210
211/*
212 * Check whether the write buffer has physical address aliasing
213 * issues.  If it has, we need to avoid them for the case where
214 * we have several shared mappings of the same object in user
215 * space.
216 */
217static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218{
219	register unsigned long zero = 0, one = 1, val;
220
221	local_irq_disable();
222	mb();
223	*p1 = one;
224	mb();
225	*p2 = zero;
226	mb();
227	val = *p1;
228	mb();
229	local_irq_enable();
230	return val != zero;
231}
232
233void __init check_writebuffer_bugs(void)
234{
235	struct page *page;
236	const char *reason;
237	unsigned long v = 1;
238
239	pr_info("CPU: Testing write buffer coherency: ");
240
241	page = alloc_page(GFP_KERNEL);
242	if (page) {
243		unsigned long *p1, *p2;
244		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
245					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246
247		p1 = vmap(&page, 1, VM_IOREMAP, prot);
248		p2 = vmap(&page, 1, VM_IOREMAP, prot);
249
250		if (p1 && p2) {
251			v = check_writebuffer(p1, p2);
252			reason = "enabling work-around";
253		} else {
254			reason = "unable to map memory\n";
255		}
256
257		vunmap(p1);
258		vunmap(p2);
259		put_page(page);
260	} else {
261		reason = "unable to grab page\n";
262	}
263
264	if (v) {
265		pr_cont("failed, %s\n", reason);
266		shared_pte_mask = L_PTE_MT_UNCACHED;
267	} else {
268		pr_cont("ok\n");
269	}
270}