Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/mm/fault-armv.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2002 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/bitops.h>
 16#include <linux/vmalloc.h>
 17#include <linux/init.h>
 18#include <linux/pagemap.h>
 19#include <linux/gfp.h>
 20
 21#include <asm/bugs.h>
 22#include <asm/cacheflush.h>
 23#include <asm/cachetype.h>
 24#include <asm/pgtable.h>
 25#include <asm/tlbflush.h>
 26
 27#include "mm.h"
 28
 29static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 30
 31#if __LINUX_ARM_ARCH__ < 6
 32/*
 33 * We take the easy way out of this problem - we make the
 34 * PTE uncacheable.  However, we leave the write buffer on.
 35 *
 36 * Note that the pte lock held when calling update_mmu_cache must also
 37 * guard the pte (somewhere else in the same mm) that we modify here.
 38 * Therefore those configurations which might call adjust_pte (those
 39 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 40 */
 41static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 42	unsigned long pfn, pte_t *ptep)
 43{
 44	pte_t entry = *ptep;
 45	int ret;
 46
 47	/*
 48	 * If this page is present, it's actually being shared.
 49	 */
 50	ret = pte_present(entry);
 51
 52	/*
 53	 * If this page isn't present, or is already setup to
 54	 * fault (ie, is old), we can safely ignore any issues.
 55	 */
 56	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 57		flush_cache_page(vma, address, pfn);
 58		outer_flush_range((pfn << PAGE_SHIFT),
 59				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 60		pte_val(entry) &= ~L_PTE_MT_MASK;
 61		pte_val(entry) |= shared_pte_mask;
 62		set_pte_at(vma->vm_mm, address, ptep, entry);
 63		flush_tlb_page(vma, address);
 64	}
 65
 66	return ret;
 67}
 68
 69#if USE_SPLIT_PTLOCKS
 70/*
 71 * If we are using split PTE locks, then we need to take the page
 72 * lock here.  Otherwise we are using shared mm->page_table_lock
 73 * which is already locked, thus cannot take it.
 74 */
 75static inline void do_pte_lock(spinlock_t *ptl)
 76{
 77	/*
 78	 * Use nested version here to indicate that we are already
 79	 * holding one similar spinlock.
 80	 */
 81	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 82}
 83
 84static inline void do_pte_unlock(spinlock_t *ptl)
 85{
 86	spin_unlock(ptl);
 87}
 88#else /* !USE_SPLIT_PTLOCKS */
 89static inline void do_pte_lock(spinlock_t *ptl) {}
 90static inline void do_pte_unlock(spinlock_t *ptl) {}
 91#endif /* USE_SPLIT_PTLOCKS */
 92
 93static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 94	unsigned long pfn)
 95{
 96	spinlock_t *ptl;
 97	pgd_t *pgd;
 98	pud_t *pud;
 99	pmd_t *pmd;
100	pte_t *pte;
101	int ret;
102
103	pgd = pgd_offset(vma->vm_mm, address);
104	if (pgd_none_or_clear_bad(pgd))
105		return 0;
106
107	pud = pud_offset(pgd, address);
108	if (pud_none_or_clear_bad(pud))
109		return 0;
110
111	pmd = pmd_offset(pud, address);
112	if (pmd_none_or_clear_bad(pmd))
113		return 0;
114
115	/*
116	 * This is called while another page table is mapped, so we
117	 * must use the nested version.  This also means we need to
118	 * open-code the spin-locking.
119	 */
120	ptl = pte_lockptr(vma->vm_mm, pmd);
121	pte = pte_offset_map(pmd, address);
122	do_pte_lock(ptl);
123
124	ret = do_adjust_pte(vma, address, pfn, pte);
125
126	do_pte_unlock(ptl);
127	pte_unmap(pte);
128
129	return ret;
130}
131
132static void
133make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
134	unsigned long addr, pte_t *ptep, unsigned long pfn)
135{
136	struct mm_struct *mm = vma->vm_mm;
137	struct vm_area_struct *mpnt;
138	struct prio_tree_iter iter;
139	unsigned long offset;
140	pgoff_t pgoff;
141	int aliases = 0;
142
143	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
144
145	/*
146	 * If we have any shared mappings that are in the same mm
147	 * space, then we need to handle them specially to maintain
148	 * cache coherency.
149	 */
150	flush_dcache_mmap_lock(mapping);
151	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
152		/*
153		 * If this VMA is not in our MM, we can ignore it.
154		 * Note that we intentionally mask out the VMA
155		 * that we are fixing up.
156		 */
157		if (mpnt->vm_mm != mm || mpnt == vma)
158			continue;
159		if (!(mpnt->vm_flags & VM_MAYSHARE))
160			continue;
161		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
162		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
163	}
164	flush_dcache_mmap_unlock(mapping);
165	if (aliases)
166		do_adjust_pte(vma, addr, pfn, ptep);
167}
168
169/*
170 * Take care of architecture specific things when placing a new PTE into
171 * a page table, or changing an existing PTE.  Basically, there are two
172 * things that we need to take care of:
173 *
174 *  1. If PG_dcache_clean is not set for the page, we need to ensure
175 *     that any cache entries for the kernels virtual memory
176 *     range are written back to the page.
177 *  2. If we have multiple shared mappings of the same space in
178 *     an object, we need to deal with the cache aliasing issues.
179 *
180 * Note that the pte lock will be held.
181 */
182void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
183	pte_t *ptep)
184{
185	unsigned long pfn = pte_pfn(*ptep);
186	struct address_space *mapping;
187	struct page *page;
188
189	if (!pfn_valid(pfn))
190		return;
191
192	/*
193	 * The zero page is never written to, so never has any dirty
194	 * cache lines, and therefore never needs to be flushed.
195	 */
196	page = pfn_to_page(pfn);
197	if (page == ZERO_PAGE(0))
198		return;
199
200	mapping = page_mapping(page);
201	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
202		__flush_dcache_page(mapping, page);
203	if (mapping) {
204		if (cache_is_vivt())
205			make_coherent(mapping, vma, addr, ptep, pfn);
206		else if (vma->vm_flags & VM_EXEC)
207			__flush_icache_all();
208	}
209}
210#endif	/* __LINUX_ARM_ARCH__ < 6 */
211
212/*
213 * Check whether the write buffer has physical address aliasing
214 * issues.  If it has, we need to avoid them for the case where
215 * we have several shared mappings of the same object in user
216 * space.
217 */
218static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
219{
220	register unsigned long zero = 0, one = 1, val;
221
222	local_irq_disable();
223	mb();
224	*p1 = one;
225	mb();
226	*p2 = zero;
227	mb();
228	val = *p1;
229	mb();
230	local_irq_enable();
231	return val != zero;
232}
233
234void __init check_writebuffer_bugs(void)
235{
236	struct page *page;
237	const char *reason;
238	unsigned long v = 1;
239
240	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
241
242	page = alloc_page(GFP_KERNEL);
243	if (page) {
244		unsigned long *p1, *p2;
245		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
246					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
247
248		p1 = vmap(&page, 1, VM_IOREMAP, prot);
249		p2 = vmap(&page, 1, VM_IOREMAP, prot);
250
251		if (p1 && p2) {
252			v = check_writebuffer(p1, p2);
253			reason = "enabling work-around";
254		} else {
255			reason = "unable to map memory\n";
256		}
257
258		vunmap(p1);
259		vunmap(p2);
260		put_page(page);
261	} else {
262		reason = "unable to grab page\n";
263	}
264
265	if (v) {
266		printk("failed, %s\n", reason);
267		shared_pte_mask = L_PTE_MT_UNCACHED;
268	} else {
269		printk("ok\n");
270	}
271}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/fault-armv.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Modifications for ARM processor (c) 1995-2002 Russell King
 
 
 
 
  7 */
 
  8#include <linux/sched.h>
  9#include <linux/kernel.h>
 10#include <linux/mm.h>
 11#include <linux/bitops.h>
 12#include <linux/vmalloc.h>
 13#include <linux/init.h>
 14#include <linux/pagemap.h>
 15#include <linux/gfp.h>
 16
 17#include <asm/bugs.h>
 18#include <asm/cacheflush.h>
 19#include <asm/cachetype.h>
 20#include <asm/pgtable.h>
 21#include <asm/tlbflush.h>
 22
 23#include "mm.h"
 24
 25static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 26
 27#if __LINUX_ARM_ARCH__ < 6
 28/*
 29 * We take the easy way out of this problem - we make the
 30 * PTE uncacheable.  However, we leave the write buffer on.
 31 *
 32 * Note that the pte lock held when calling update_mmu_cache must also
 33 * guard the pte (somewhere else in the same mm) that we modify here.
 34 * Therefore those configurations which might call adjust_pte (those
 35 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 36 */
 37static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 38	unsigned long pfn, pte_t *ptep)
 39{
 40	pte_t entry = *ptep;
 41	int ret;
 42
 43	/*
 44	 * If this page is present, it's actually being shared.
 45	 */
 46	ret = pte_present(entry);
 47
 48	/*
 49	 * If this page isn't present, or is already setup to
 50	 * fault (ie, is old), we can safely ignore any issues.
 51	 */
 52	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 53		flush_cache_page(vma, address, pfn);
 54		outer_flush_range((pfn << PAGE_SHIFT),
 55				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 56		pte_val(entry) &= ~L_PTE_MT_MASK;
 57		pte_val(entry) |= shared_pte_mask;
 58		set_pte_at(vma->vm_mm, address, ptep, entry);
 59		flush_tlb_page(vma, address);
 60	}
 61
 62	return ret;
 63}
 64
 65#if USE_SPLIT_PTE_PTLOCKS
 66/*
 67 * If we are using split PTE locks, then we need to take the page
 68 * lock here.  Otherwise we are using shared mm->page_table_lock
 69 * which is already locked, thus cannot take it.
 70 */
 71static inline void do_pte_lock(spinlock_t *ptl)
 72{
 73	/*
 74	 * Use nested version here to indicate that we are already
 75	 * holding one similar spinlock.
 76	 */
 77	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 78}
 79
 80static inline void do_pte_unlock(spinlock_t *ptl)
 81{
 82	spin_unlock(ptl);
 83}
 84#else /* !USE_SPLIT_PTE_PTLOCKS */
 85static inline void do_pte_lock(spinlock_t *ptl) {}
 86static inline void do_pte_unlock(spinlock_t *ptl) {}
 87#endif /* USE_SPLIT_PTE_PTLOCKS */
 88
 89static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 90	unsigned long pfn)
 91{
 92	spinlock_t *ptl;
 93	pgd_t *pgd;
 94	pud_t *pud;
 95	pmd_t *pmd;
 96	pte_t *pte;
 97	int ret;
 98
 99	pgd = pgd_offset(vma->vm_mm, address);
100	if (pgd_none_or_clear_bad(pgd))
101		return 0;
102
103	pud = pud_offset(pgd, address);
104	if (pud_none_or_clear_bad(pud))
105		return 0;
106
107	pmd = pmd_offset(pud, address);
108	if (pmd_none_or_clear_bad(pmd))
109		return 0;
110
111	/*
112	 * This is called while another page table is mapped, so we
113	 * must use the nested version.  This also means we need to
114	 * open-code the spin-locking.
115	 */
116	ptl = pte_lockptr(vma->vm_mm, pmd);
117	pte = pte_offset_map(pmd, address);
118	do_pte_lock(ptl);
119
120	ret = do_adjust_pte(vma, address, pfn, pte);
121
122	do_pte_unlock(ptl);
123	pte_unmap(pte);
124
125	return ret;
126}
127
128static void
129make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
130	unsigned long addr, pte_t *ptep, unsigned long pfn)
131{
132	struct mm_struct *mm = vma->vm_mm;
133	struct vm_area_struct *mpnt;
 
134	unsigned long offset;
135	pgoff_t pgoff;
136	int aliases = 0;
137
138	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
139
140	/*
141	 * If we have any shared mappings that are in the same mm
142	 * space, then we need to handle them specially to maintain
143	 * cache coherency.
144	 */
145	flush_dcache_mmap_lock(mapping);
146	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
147		/*
148		 * If this VMA is not in our MM, we can ignore it.
149		 * Note that we intentionally mask out the VMA
150		 * that we are fixing up.
151		 */
152		if (mpnt->vm_mm != mm || mpnt == vma)
153			continue;
154		if (!(mpnt->vm_flags & VM_MAYSHARE))
155			continue;
156		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
157		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
158	}
159	flush_dcache_mmap_unlock(mapping);
160	if (aliases)
161		do_adjust_pte(vma, addr, pfn, ptep);
162}
163
164/*
165 * Take care of architecture specific things when placing a new PTE into
166 * a page table, or changing an existing PTE.  Basically, there are two
167 * things that we need to take care of:
168 *
169 *  1. If PG_dcache_clean is not set for the page, we need to ensure
170 *     that any cache entries for the kernels virtual memory
171 *     range are written back to the page.
172 *  2. If we have multiple shared mappings of the same space in
173 *     an object, we need to deal with the cache aliasing issues.
174 *
175 * Note that the pte lock will be held.
176 */
177void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
178	pte_t *ptep)
179{
180	unsigned long pfn = pte_pfn(*ptep);
181	struct address_space *mapping;
182	struct page *page;
183
184	if (!pfn_valid(pfn))
185		return;
186
187	/*
188	 * The zero page is never written to, so never has any dirty
189	 * cache lines, and therefore never needs to be flushed.
190	 */
191	page = pfn_to_page(pfn);
192	if (page == ZERO_PAGE(0))
193		return;
194
195	mapping = page_mapping_file(page);
196	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
197		__flush_dcache_page(mapping, page);
198	if (mapping) {
199		if (cache_is_vivt())
200			make_coherent(mapping, vma, addr, ptep, pfn);
201		else if (vma->vm_flags & VM_EXEC)
202			__flush_icache_all();
203	}
204}
205#endif	/* __LINUX_ARM_ARCH__ < 6 */
206
207/*
208 * Check whether the write buffer has physical address aliasing
209 * issues.  If it has, we need to avoid them for the case where
210 * we have several shared mappings of the same object in user
211 * space.
212 */
213static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
214{
215	register unsigned long zero = 0, one = 1, val;
216
217	local_irq_disable();
218	mb();
219	*p1 = one;
220	mb();
221	*p2 = zero;
222	mb();
223	val = *p1;
224	mb();
225	local_irq_enable();
226	return val != zero;
227}
228
229void __init check_writebuffer_bugs(void)
230{
231	struct page *page;
232	const char *reason;
233	unsigned long v = 1;
234
235	pr_info("CPU: Testing write buffer coherency: ");
236
237	page = alloc_page(GFP_KERNEL);
238	if (page) {
239		unsigned long *p1, *p2;
240		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
241					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
242
243		p1 = vmap(&page, 1, VM_IOREMAP, prot);
244		p2 = vmap(&page, 1, VM_IOREMAP, prot);
245
246		if (p1 && p2) {
247			v = check_writebuffer(p1, p2);
248			reason = "enabling work-around";
249		} else {
250			reason = "unable to map memory\n";
251		}
252
253		vunmap(p1);
254		vunmap(p2);
255		put_page(page);
256	} else {
257		reason = "unable to grab page\n";
258	}
259
260	if (v) {
261		pr_cont("failed, %s\n", reason);
262		shared_pte_mask = L_PTE_MT_UNCACHED;
263	} else {
264		pr_cont("ok\n");
265	}
266}