Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/fault-armv.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2002 Russell King */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/bitops.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/gfp.h> #include <asm/bugs.h> #include <asm/cacheflush.h> #include <asm/cachetype.h> #include <asm/tlbflush.h> #include "mm.h" static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; #if __LINUX_ARM_ARCH__ < 6 /* * We take the easy way out of this problem - we make the * PTE uncacheable. However, we leave the write buffer on. * * Note that the pte lock held when calling update_mmu_cache must also * guard the pte (somewhere else in the same mm) that we modify here. * Therefore those configurations which might call adjust_pte (those * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. */ static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, unsigned long pfn, pte_t *ptep) { pte_t entry = *ptep; int ret; /* * If this page is present, it's actually being shared. */ ret = pte_present(entry); /* * If this page isn't present, or is already setup to * fault (ie, is old), we can safely ignore any issues. */ if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { flush_cache_page(vma, address, pfn); outer_flush_range((pfn << PAGE_SHIFT), (pfn << PAGE_SHIFT) + PAGE_SIZE); pte_val(entry) &= ~L_PTE_MT_MASK; pte_val(entry) |= shared_pte_mask; set_pte_at(vma->vm_mm, address, ptep, entry); flush_tlb_page(vma, address); } return ret; } #if USE_SPLIT_PTE_PTLOCKS /* * If we are using split PTE locks, then we need to take the page * lock here. Otherwise we are using shared mm->page_table_lock * which is already locked, thus cannot take it. */ static inline void do_pte_lock(spinlock_t *ptl) { /* * Use nested version here to indicate that we are already * holding one similar spinlock. */ spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); } static inline void do_pte_unlock(spinlock_t *ptl) { spin_unlock(ptl); } #else /* !USE_SPLIT_PTE_PTLOCKS */ static inline void do_pte_lock(spinlock_t *ptl) {} static inline void do_pte_unlock(spinlock_t *ptl) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static int adjust_pte(struct vm_area_struct *vma, unsigned long address, unsigned long pfn) { spinlock_t *ptl; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret; pgd = pgd_offset(vma->vm_mm, address); if (pgd_none_or_clear_bad(pgd)) return 0; p4d = p4d_offset(pgd, address); if (p4d_none_or_clear_bad(p4d)) return 0; pud = pud_offset(p4d, address); if (pud_none_or_clear_bad(pud)) return 0; pmd = pmd_offset(pud, address); if (pmd_none_or_clear_bad(pmd)) return 0; /* * This is called while another page table is mapped, so we * must use the nested version. This also means we need to * open-code the spin-locking. */ pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl); if (!pte) return 0; do_pte_lock(ptl); ret = do_adjust_pte(vma, address, pfn, pte); do_pte_unlock(ptl); pte_unmap(pte); return ret; } static void make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, unsigned long pfn) { struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *mpnt; unsigned long offset; pgoff_t pgoff; int aliases = 0; pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); /* * If we have any shared mappings that are in the same mm * space, then we need to handle them specially to maintain * cache coherency. */ flush_dcache_mmap_lock(mapping); vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { /* * If this VMA is not in our MM, we can ignore it. * Note that we intentionally mask out the VMA * that we are fixing up. */ if (mpnt->vm_mm != mm || mpnt == vma) continue; if (!(mpnt->vm_flags & VM_MAYSHARE)) continue; offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); } flush_dcache_mmap_unlock(mapping); if (aliases) do_adjust_pte(vma, addr, pfn, ptep); } /* * Take care of architecture specific things when placing a new PTE into * a page table, or changing an existing PTE. Basically, there are two * things that we need to take care of: * * 1. If PG_dcache_clean is not set for the page, we need to ensure * that any cache entries for the kernels virtual memory * range are written back to the page. * 2. If we have multiple shared mappings of the same space in * an object, we need to deal with the cache aliasing issues. * * Note that the pte lock will be held. */ void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, unsigned int nr) { unsigned long pfn = pte_pfn(*ptep); struct address_space *mapping; struct folio *folio; if (!pfn_valid(pfn)) return; /* * The zero page is never written to, so never has any dirty * cache lines, and therefore never needs to be flushed. */ if (is_zero_pfn(pfn)) return; folio = page_folio(pfn_to_page(pfn)); mapping = folio_flush_mapping(folio); if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) __flush_dcache_folio(mapping, folio); if (mapping) { if (cache_is_vivt()) make_coherent(mapping, vma, addr, ptep, pfn); else if (vma->vm_flags & VM_EXEC) __flush_icache_all(); } } #endif /* __LINUX_ARM_ARCH__ < 6 */ /* * Check whether the write buffer has physical address aliasing * issues. If it has, we need to avoid them for the case where * we have several shared mappings of the same object in user * space. */ static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) { register unsigned long zero = 0, one = 1, val; local_irq_disable(); mb(); *p1 = one; mb(); *p2 = zero; mb(); val = *p1; mb(); local_irq_enable(); return val != zero; } void __init check_writebuffer_bugs(void) { struct page *page; const char *reason; unsigned long v = 1; pr_info("CPU: Testing write buffer coherency: "); page = alloc_page(GFP_KERNEL); if (page) { unsigned long *p1, *p2; pgprot_t prot = __pgprot_modify(PAGE_KERNEL, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); p1 = vmap(&page, 1, VM_IOREMAP, prot); p2 = vmap(&page, 1, VM_IOREMAP, prot); if (p1 && p2) { v = check_writebuffer(p1, p2); reason = "enabling work-around"; } else { reason = "unable to map memory\n"; } vunmap(p1); vunmap(p2); put_page(page); } else { reason = "unable to grab page\n"; } if (v) { pr_cont("failed, %s\n", reason); shared_pte_mask = L_PTE_MT_UNCACHED; } else { pr_cont("ok\n"); } } |